OpenCores
URL https://opencores.org/ocsvn/altor32/altor32/trunk

Subversion Repositories altor32

[/] [altor32/] [trunk/] [gcc-x64/] [or1knd-elf/] [or1knd-elf/] [include/] [c++/] [4.8.0/] [tr1/] [legendre_function.tcc] - Blame information for rev 35

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 35 ultra_embe
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006, 2007, 2008, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
//
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
//
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// .
25
 
26
/** @file tr1/legendre_function.tcc
27
 *  This is an internal header file, included by other library headers.
28
 *  Do not attempt to use it directly. @headername{tr1/cmath}
29
 */
30
 
31
//
32
// ISO C++ 14882 TR1: 5.2  Special functions
33
//
34
 
35
// Written by Edward Smith-Rowland based on:
36
//   (1) Handbook of Mathematical Functions,
37
//       ed. Milton Abramowitz and Irene A. Stegun,
38
//       Dover Publications,
39
//       Section 8, pp. 331-341
40
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
41
//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
42
//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
43
//       2nd ed, pp. 252-254
44
 
45
#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
46
#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
47
 
48
#include "special_function_util.h"
49
 
50
namespace std _GLIBCXX_VISIBILITY(default)
51
{
52
namespace tr1
53
{
54
  // [5.2] Special functions
55
 
56
  // Implementation-space details.
57
  namespace __detail
58
  {
59
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
60
 
61
    /**
62
     *   @brief  Return the Legendre polynomial by recursion on order
63
     *           @f$ l @f$.
64
     *
65
     *   The Legendre function of @f$ l @f$ and @f$ x @f$,
66
     *   @f$ P_l(x) @f$, is defined by:
67
     *   @f[
68
     *     P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
69
     *   @f]
70
     *
71
     *   @param  l  The order of the Legendre polynomial.  @f$l >= 0@f$.
72
     *   @param  x  The argument of the Legendre polynomial.  @f$|x| <= 1@f$.
73
     */
74
    template
75
    _Tp
76
    __poly_legendre_p(const unsigned int __l, const _Tp __x)
77
    {
78
 
79
      if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
80
        std::__throw_domain_error(__N("Argument out of range"
81
                                      " in __poly_legendre_p."));
82
      else if (__isnan(__x))
83
        return std::numeric_limits<_Tp>::quiet_NaN();
84
      else if (__x == +_Tp(1))
85
        return +_Tp(1);
86
      else if (__x == -_Tp(1))
87
        return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
88
      else
89
        {
90
          _Tp __p_lm2 = _Tp(1);
91
          if (__l == 0)
92
            return __p_lm2;
93
 
94
          _Tp __p_lm1 = __x;
95
          if (__l == 1)
96
            return __p_lm1;
97
 
98
          _Tp __p_l = 0;
99
          for (unsigned int __ll = 2; __ll <= __l; ++__ll)
100
            {
101
              //  This arrangement is supposed to be better for roundoff
102
              //  protection, Arfken, 2nd Ed, Eq 12.17a.
103
              __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
104
                    - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
105
              __p_lm2 = __p_lm1;
106
              __p_lm1 = __p_l;
107
            }
108
 
109
          return __p_l;
110
        }
111
    }
112
 
113
 
114
    /**
115
     *   @brief  Return the associated Legendre function by recursion
116
     *           on @f$ l @f$.
117
     *
118
     *   The associated Legendre function is derived from the Legendre function
119
     *   @f$ P_l(x) @f$ by the Rodrigues formula:
120
     *   @f[
121
     *     P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
122
     *   @f]
123
     *
124
     *   @param  l  The order of the associated Legendre function.
125
     *              @f$ l >= 0 @f$.
126
     *   @param  m  The order of the associated Legendre function.
127
     *              @f$ m <= l @f$.
128
     *   @param  x  The argument of the associated Legendre function.
129
     *              @f$ |x| <= 1 @f$.
130
     */
131
    template
132
    _Tp
133
    __assoc_legendre_p(const unsigned int __l, const unsigned int __m,
134
                       const _Tp __x)
135
    {
136
 
137
      if (__x < _Tp(-1) || __x > _Tp(+1))
138
        std::__throw_domain_error(__N("Argument out of range"
139
                                      " in __assoc_legendre_p."));
140
      else if (__m > __l)
141
        std::__throw_domain_error(__N("Degree out of range"
142
                                      " in __assoc_legendre_p."));
143
      else if (__isnan(__x))
144
        return std::numeric_limits<_Tp>::quiet_NaN();
145
      else if (__m == 0)
146
        return __poly_legendre_p(__l, __x);
147
      else
148
        {
149
          _Tp __p_mm = _Tp(1);
150
          if (__m > 0)
151
            {
152
              //  Two square roots seem more accurate more of the time
153
              //  than just one.
154
              _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
155
              _Tp __fact = _Tp(1);
156
              for (unsigned int __i = 1; __i <= __m; ++__i)
157
                {
158
                  __p_mm *= -__fact * __root;
159
                  __fact += _Tp(2);
160
                }
161
            }
162
          if (__l == __m)
163
            return __p_mm;
164
 
165
          _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
166
          if (__l == __m + 1)
167
            return __p_mp1m;
168
 
169
          _Tp __p_lm2m = __p_mm;
170
          _Tp __P_lm1m = __p_mp1m;
171
          _Tp __p_lm = _Tp(0);
172
          for (unsigned int __j = __m + 2; __j <= __l; ++__j)
173
            {
174
              __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
175
                      - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
176
              __p_lm2m = __P_lm1m;
177
              __P_lm1m = __p_lm;
178
            }
179
 
180
          return __p_lm;
181
        }
182
    }
183
 
184
 
185
    /**
186
     *   @brief  Return the spherical associated Legendre function.
187
     *
188
     *   The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
189
     *   and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
190
     *   @f[
191
     *      Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
192
     *                                  \frac{(l-m)!}{(l+m)!}]
193
     *                     P_l^m(\cos\theta) \exp^{im\phi}
194
     *   @f]
195
     *   is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
196
     *   associated Legendre function.
197
     *
198
     *   This function differs from the associated Legendre function by
199
     *   argument (@f$x = \cos(\theta)@f$) and by a normalization factor
200
     *   but this factor is rather large for large @f$ l @f$ and @f$ m @f$
201
     *   and so this function is stable for larger differences of @f$ l @f$
202
     *   and @f$ m @f$.
203
     *
204
     *   @param  l  The order of the spherical associated Legendre function.
205
     *              @f$ l >= 0 @f$.
206
     *   @param  m  The order of the spherical associated Legendre function.
207
     *              @f$ m <= l @f$.
208
     *   @param  theta  The radian angle argument of the spherical associated
209
     *                  Legendre function.
210
     */
211
    template 
212
    _Tp
213
    __sph_legendre(const unsigned int __l, const unsigned int __m,
214
                   const _Tp __theta)
215
    {
216
      if (__isnan(__theta))
217
        return std::numeric_limits<_Tp>::quiet_NaN();
218
 
219
      const _Tp __x = std::cos(__theta);
220
 
221
      if (__l < __m)
222
        {
223
          std::__throw_domain_error(__N("Bad argument "
224
                                        "in __sph_legendre."));
225
        }
226
      else if (__m == 0)
227
        {
228
          _Tp __P = __poly_legendre_p(__l, __x);
229
          _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
230
                     / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
231
          __P *= __fact;
232
          return __P;
233
        }
234
      else if (__x == _Tp(1) || __x == -_Tp(1))
235
        {
236
          //  m > 0 here
237
          return _Tp(0);
238
        }
239
      else
240
        {
241
          // m > 0 and |x| < 1 here
242
 
243
          // Starting value for recursion.
244
          // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
245
          //             (-1)^m (1-x^2)^(m/2) / pi^(1/4)
246
          const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
247
          const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
248
#if _GLIBCXX_USE_C99_MATH_TR1
249
          const _Tp __lncirc = std::tr1::log1p(-__x * __x);
250
#else
251
          const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
252
#endif
253
          //  Gamma(m+1/2) / Gamma(m)
254
#if _GLIBCXX_USE_C99_MATH_TR1
255
          const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
256
                             - std::tr1::lgamma(_Tp(__m));
257
#else
258
          const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
259
                             - __log_gamma(_Tp(__m));
260
#endif
261
          const _Tp __lnpre_val =
262
                    -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
263
                    + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
264
          _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
265
                   / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
266
          _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
267
          _Tp __y_mp1m = __y_mp1m_factor * __y_mm;
268
 
269
          if (__l == __m)
270
            {
271
              return __y_mm;
272
            }
273
          else if (__l == __m + 1)
274
            {
275
              return __y_mp1m;
276
            }
277
          else
278
            {
279
              _Tp __y_lm = _Tp(0);
280
 
281
              // Compute Y_l^m, l > m+1, upward recursion on l.
282
              for ( int __ll = __m + 2; __ll <= __l; ++__ll)
283
                {
284
                  const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
285
                  const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
286
                  const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
287
                                                       * _Tp(2 * __ll - 1));
288
                  const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
289
                                                                / _Tp(2 * __ll - 3));
290
                  __y_lm = (__x * __y_mp1m * __fact1
291
                         - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
292
                  __y_mm = __y_mp1m;
293
                  __y_mp1m = __y_lm;
294
                }
295
 
296
              return __y_lm;
297
            }
298
        }
299
    }
300
 
301
  _GLIBCXX_END_NAMESPACE_VERSION
302
  } // namespace std::tr1::__detail
303
}
304
}
305
 
306
#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.