OpenCores
URL https://opencores.org/ocsvn/forwardcom/forwardcom/trunk

Subversion Repositories forwardcom

[/] [forwardcom/] [trunk/] [subfunctions.vh] - Blame information for rev 9

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 9 Agner
//////////////////////////////////////////////////////////////////////////////////
2
// Engineer: Agner Fog
3
// 
4
// Create Date:    2020-06-13
5
// Last modified:  2021-08-03
6
// Module Name:    subfunctions
7
// Project Name:   ForwardCom soft core
8
// Target Devices: Artix 7
9
// Tool Versions:  Vivado v. 2020.1
10
// License:        CERN-OHL-W v. 2 or later
11
// Description:    Subfunctions for calculations:
12
// bitscan:        find highest set bit
13
// popcount:       count number of 1-bits
14
// reversebits:    reverse order of bits
15
// truth_table_lookup: 3-input truth table
16
//////////////////////////////////////////////////////////////////////////////////
17
`include "defines.vh"
18
 
19
// 6-input popcount, fits into 6-input LUT.
20
function [2:0] popcount6;
21
    input [5:0] inp;
22
    integer sum;
23
    sum = 0;
24
    for (integer k = 0; k < 6; k ++) begin
25
        sum += {2'b00, inp[k]};
26
    end
27
    return sum;
28
endfunction
29
 
30
// 32 input popcount
31
function [5:0] popcount32;
32
    input [31:0] inp;
33
    logic[5:0] sum;
34
    sum = 0;
35
    for (integer j = 0; j < 5; j++) begin
36
        sum += popcount6(inp[(j*6)+:6]);
37
    end
38
    sum += popcount6({4'b0,inp[31:30]});
39
    return sum;
40
endfunction
41
 
42
// 64 input popcount
43
function [6:0] popcount64;
44
    input [63:0] inp;
45
    logic[6:0] sum;
46
    sum = 0;
47
    for (integer j = 0; j < 10; j++) begin
48
        sum += popcount6(inp[(j*6)+:6]);
49
    end
50
    sum += popcount6({2'b0,inp[63:60]});
51
    return sum;
52
endfunction
53
 
54
// 64 input bit scan
55
// (also known as leading zero counter or priority encoder)
56
// return value:
57
// bitscan64[6:1] is an index to the highest 1-bit in the input
58
// bitscan64[0]   is 1 if all input bits are zero
59
function [6:0] bitscan64A;
60
    input [63:0] m0;         // 64 bits input
61
    logic [5:0]  r;          // index to highest 1-bit
62
    logic        iszero;     // indicates that input is zero
63
 
64
    logic [15:0] m1;         // subdivision
65
    logic [3:0]  m2;         // subdivision
66
    r = 0;
67
 
68
    // divide into four blocks of 16 bits each
69
    if (|m0[63:48]) begin
70
        r[5:4] = 3;          // r[5:4] indicates which 16-bit block contains the highest 1-bit
71
        m1 = m0[63:48];      // m1 is the 16-bit block that contains the highest 1-bit
72
    end else if (|m0[47:32]) begin
73
        r[5:4] = 2;
74
        m1 = m0[47:32];
75
    end else if (|m0[31:16]) begin
76
        r[5:4] = 1;
77
        m1 = m0[31:16];
78
    end else begin
79
        r[5:4] = 0;
80
        m1 = m0[15:0];
81
    end
82
 
83
    // now subdivide m1 into four blocks of 4 bits each
84
    if (|m1[15:12]) begin
85
        r[3:2] = 3;          // r[3:2] indicates which 4-bit block of m1 contains the highest 1-bit
86
        m2 = m1[15:12];      // m2 is the 4-bit block that contains the highest 1-bit
87
    end else if (|m1[11:8]) begin
88
        m2 = m1[11:8];
89
        r[3:2] = 2;
90
    end else if (|m1[7:4]) begin
91
        m2 = m1[7:4];
92
        r[3:2] = 1;
93
    end else begin
94
        m2 = m1[3:0];
95
        r[3:2] = 0;
96
    end
97
 
98
    // finally, test each of the four bits in m2
99
    if (m2[3])      r[1:0] = 3; // r[1:0] indicates which of the 4 bit bits in m2 contains the highest 1-bit
100
    else if (m2[2]) r[1:0] = 2;
101
    else if (m2[1]) r[1:0] = 1;
102
    else            r[1:0] = 0;
103
 
104
    // test if everything is zero
105
    iszero = ~|m2;
106
 
107
    // return two values
108
    return {r, iszero};
109
endfunction
110
 
111
 
112
// 64 input bit scan, alternative implementation
113
// (this one is slightly slower)
114
// return value:
115
// bitscan64[6:1] is an index to the highest 1-bit in the input
116
// bitscan64[0]   is 1 if all input bits are zero
117
function [6:0] bitscan64B;
118
    input [63:0] m0;         // 64 bits input
119
    logic [5:0]  r;          // index to highest 1-bit
120
    logic        iszero;     // indicates that input is zero
121
    logic [3:0]  m1;         // subdivision flags
122
    logic [3:0]  m2;         // subdivision
123
    r = 0;
124
 
125
    if (|m0[63:48]) begin
126
        r[5:4] = 3;
127
        m1[3] = |m0[63:60];
128
        m1[2] = |m0[59:56];
129
        m1[1] = |m0[55:52];
130
        m1[0] = |m0[51:48];
131
 
132
    end else if (|m0[47:32]) begin
133
        r[5:4] = 2;
134
        m1[3] = |m0[47:44];
135
        m1[2] = |m0[43:40];
136
        m1[1] = |m0[39:36];
137
        m1[0] = |m0[35:32];
138
 
139
    end else if (|m0[31:16]) begin
140
        r[5:4] = 1;
141
        m1[3] = |m0[31:28];
142
        m1[2] = |m0[27:24];
143
        m1[1] = |m0[23:20];
144
        m1[0] = |m0[19:16];
145
 
146
    end else begin
147
        r[5:4] = 0;
148
        m1[3] = |m0[15:12];
149
        m1[2] = |m0[11:8];
150
        m1[1] = |m0[7:4];
151
        m1[0] = |m0[3:0];
152
    end
153
 
154
    if (m1[3]) begin
155
        r[3:2] = 3;
156
    end else if (m1[2]) begin
157
        r[3:2] = 2;
158
    end else if (m1[1]) begin
159
        r[3:2] = 1;
160
    end else begin
161
        r[3:2] = 0;
162
    end
163
 
164
    // extract the 4-bit block that contains the highest 1-bit
165
    m2 = m0[{r[5:2],2'b0}+: 4];
166
 
167
    if      (m2[3]) r[1:0] = 3;
168
    else if (m2[2]) r[1:0] = 2;
169
    else if (m2[1]) r[1:0] = 1;
170
    else            r[1:0] = 0;
171
 
172
    // test if everything is zero
173
    iszero = ~|m2;
174
 
175
    // return two values
176
    return {r, iszero};
177
endfunction
178
 
179
 
180
// 64 input bit scan, alternative implementation
181
// (this one appears to be the fastest)
182
// return value:
183
// bitscan64[6:1] is an index to the highest 1-bit in the input
184
// bitscan64[0]   is 1 if all input bits are zero
185
function [6:0] bitscan64C;
186
    input [63:0] m0;         // 64 bits input
187
    logic [5:0]  r;          // index to highest 1-bit
188
    logic        iszero;     // indicates that input is zero
189
    logic [15:0] m1;         // subdivision flags
190
    logic [3:0]  m2;         // subdivision
191
    logic [3:0]  m3;         // subdivision
192
    r = 0;
193
 
194
    m1[15] = |m0[63:60];
195
    m1[14] = |m0[59:56];
196
    m1[13] = |m0[55:52];
197
    m1[12] = |m0[51:48];
198
    m1[11] = |m0[47:44];
199
    m1[10] = |m0[43:40];
200
    m1[9]  = |m0[39:36];
201
    m1[8]  = |m0[35:32];
202
    m1[7]  = |m0[31:28];
203
    m1[6]  = |m0[27:24];
204
    m1[5]  = |m0[23:20];
205
    m1[4]  = |m0[19:16];
206
    m1[3]  = |m0[15:12];
207
    m1[2]  = |m0[11:8];
208
    m1[1]  = |m0[7:4];
209
    m1[0]  = |m0[3:0];
210
 
211
    m2[3]  = |m1[15:12];
212
    m2[2]  = |m1[11:8];
213
    m2[1]  = |m1[7:4];
214
    m2[1]  = |m1[3:0];
215
 
216
    if (m2[3]) begin
217
        r[5:4] = 3;
218
        if      (m1[15]) r[3:2] = 3;
219
        else if (m1[14]) r[3:2] = 2;
220
        else if (m1[13]) r[3:2] = 1;
221
        else             r[3:2] = 0;
222
 
223
    end else if (m2[2]) begin
224
        r[5:4] = 2;
225
        if      (m1[11]) r[3:2] = 3;
226
        else if (m1[10]) r[3:2] = 2;
227
        else if (m1[9])  r[3:2] = 1;
228
        else             r[3:2] = 0;
229
 
230
    end else if (m2[1]) begin
231
        r[5:4] = 1;
232
        if      (m1[7])  r[3:2] = 3;
233
        else if (m1[6])  r[3:2] = 2;
234
        else if (m1[5])  r[3:2] = 1;
235
        else             r[3:2] = 0;
236
 
237
    end else begin
238
        r[5:4] = 0;
239
        if      (m1[3])  r[3:2] = 3;
240
        else if (m1[2])  r[3:2] = 2;
241
        else if (m1[1])  r[3:2] = 1;
242
        else             r[3:2] = 0;
243
 
244
    end
245
 
246
    // extract the 4-bit block that contains the highest 1-bit
247
    m3 = m0[{r[5:2],2'b0}+: 4];
248
 
249
    if      (m3[3]) r[1:0] = 3;
250
    else if (m3[2]) r[1:0] = 2;
251
    else if (m3[1]) r[1:0] = 1;
252
    else            r[1:0] = 0;
253
 
254
    // test if everything is zero
255
    iszero = ~|m2;
256
 
257
    // return two values
258
    return {r, iszero};
259
endfunction
260
 
261
 
262
// This function finds the index to a single bit in a 64-bit input
263
// where only one bit is set. Used when bitscan relies on the output of roundp2
264
// Use the formula b = a & ~(a-1) to isolate the lowest set bit before
265
// calling bitindex. Reverse the order of the bits to find the highest set bit.
266
// The return value is {r, iszero} where r is the position of the single 1-bit,
267
// iszero is 1 if all input bits are zero.
268
// Note that this function does not work if more than one input bit is 1.
269
function [6:0] bitindex;
270
    input [63:0] m0;         // 64 bits input
271
    logic [5:0]  r;          // index to highest 1-bit
272
    logic        iszero;     // indicates that input is zero
273
 
274
    logic [15:0] m2;         // OR combination of groups of four bits
275
 
276
    m2[15] = |m0[63:60];
277
    m2[14] = |m0[59:56];
278
    m2[13] = |m0[55:52];
279
    m2[12] = |m0[51:48];
280
 
281
    m2[11] = |m0[47:44];
282
    m2[10] = |m0[43:40];
283
    m2[9]  = |m0[39:36];
284
    m2[8]  = |m0[35:32];
285
 
286
    m2[7]  = |m0[31:28];
287
    m2[6]  = |m0[27:24];
288
    m2[5]  = |m0[23:20];
289
    m2[4]  = |m0[19:16];
290
 
291
    m2[3]  = |m0[15:12];
292
    m2[2]  = |m0[11:8];
293
    m2[1]  = |m0[7:4];
294
    m2[0]  = 0;//|m0[3:0]; // not used
295
 
296
    r[5] = m2[8]|m2[9]|m2[10]|m2[11]|m2[12]|m2[13]|m2[14]|m2[15];
297
    r[4] = m2[4]|m2[5]|m2[6]|m2[7]|m2[12]|m2[13]|m2[14]|m2[15];
298
    r[3] = m2[2]|m2[3]|m2[6]|m2[7]|m2[10]|m2[11]|m2[14]|m2[15];
299
    r[2] = m2[1]|m2[3]|m2[5]|m2[7]|m2[9]|m2[11]|m2[13]|m2[15];
300
    r[1] = m0[2]|m0[3]|m0[6]|m0[7]|m0[10]|m0[11]|m0[14]|m0[15]|
301
           m0[18]|m0[19]|m0[22]|m0[23]|m0[26]|m0[27]|m0[30]|m0[31]|
302
           m0[34]|m0[35]|m0[38]|m0[39]|m0[42]|m0[43]|m0[46]|m0[47]|
303
           m0[50]|m0[51]|m0[54]|m0[55]|m0[58]|m0[59]|m0[62]|m0[63];
304
    r[0] = m0[1]|m0[3]|m0[5]|m0[7]|m0[9]|m0[11]|m0[13]|m0[15]|
305
           m0[17]|m0[19]|m0[21]|m0[23]|m0[25]|m0[27]|m0[29]|m0[31]|
306
           m0[33]|m0[35]|m0[37]|m0[39]|m0[41]|m0[43]|m0[45]|m0[47]|
307
           m0[49]|m0[51]|m0[53]|m0[55]|m0[57]|m0[59]|m0[61]|m0[63];
308
 
309
    iszero = (~|r) && ~(m0[0]);
310
 
311
    // return two values
312
    return {r, iszero};
313
endfunction
314
 
315
 
316
// reverse order of bits
317
function [7:0] reversebits8;
318
    input [7:0] in;          // 8 bits input    
319
    return {in[0],in[1],in[2],in[3],in[4],in[5],in[6],in[7]};
320
endfunction
321
 
322
// reverse order of bits
323
function [15:0] reversebits16;
324
    input [15:0] in;         // 16 bits input    
325
    return {reversebits8(in[7:0]),reversebits8(in[15:8])};
326
endfunction
327
 
328
// reverse order of bits
329
function [31:0] reversebits32;
330
    input [31:0] in;         // 32 bits input    
331
    return {reversebits8(in[7:0]),reversebits8(in[15:8]),reversebits8(in[23:16]),reversebits8(in[31:24])};
332
endfunction
333
 
334
// reverse order of bits
335
function [63:0] reversebits64;
336
    input [63:0] in;         // 32 bits input    
337
    return {reversebits8(in[7:0]),reversebits8(in[15:8]),reversebits8(in[23:16]),reversebits8(in[31:24]),
338
    reversebits8(in[39:32]),reversebits8(in[47:40]),reversebits8(in[55:48]),reversebits8(in[63:56])};
339
endfunction
340
 
341
// Truth table lookup with three inputs for truth_tab3 instruction
342
function  [`RB1:0] truth_table_lookup;
343
    input [`RB1:0] in1;      // input 1
344
    input [`RB1:0] in2;      // input 2
345
    input [`RB1:0] in3;      // input 3
346
    input [7:0]    ttable;   // 8 bit truth table
347
    logic [`RB1:0] res;      // result
348
    for (integer k = 0; k < `RB; k++) begin       // loop through bits
349
        res[k] = ttable[{in3[k],in2[k],in1[k]}];  // lookup with 3 bits index
350
    end
351
    truth_table_lookup = res;// result
352
endfunction

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.