OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [docs/] [datasheet/] [soc_uart.adoc] - Blame information for rev 72

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 60 zero_gravi
<<<
2
:sectnums:
3
==== Primary Universal Asynchronous Receiver and Transmitter (UART0)
4
 
5
[cols="<3,<3,<4"]
6
[frame="topbot",grid="none"]
7
|=======================
8
| Hardware source file(s): | neorv32_uart.vhd |
9
| Software driver file(s): | neorv32_uart.c |
10
|                          | neorv32_uart.h |
11
| Top entity port:         | `uart0_txd_o` | serial transmitter output UART0
12
|                          | `uart0_rxd_i` | serial receiver input UART0
13
|                          | `uart0_rts_o` | flow control: RX ready to receive
14
|                          | `uart0_cts_i` | flow control: TX allowed to send
15 65 zero_gravi
| Configuration generics:  | _IO_UART0_EN_   | implement UART0 when _true_
16
|                          | _UART0_RX_FIFO_ | RX FIFO depth (power of 2, min 1)
17
|                          | _UART0_TX_FIFO_ | TX FIFO depth (power of 2, min 1)
18
| CPU interrupts:          | fast IRQ channel 2 | RX interrupt
19
|                          | fast IRQ channel 3 | TX interrupt (see <<_processor_interrupts>>)
20 60 zero_gravi
|=======================
21
 
22 65 zero_gravi
The UART is a standard serial interface mainly used to establish a communication channel between a host computer
23
computer/user and an application running on the embedded processor.
24
 
25
The NEORV32 UARTs feature independent transmitter and receiver with a fixed frame configuration of 8 data bits,
26
an optional parity bit (even or odd) and a fixed stop bit. The actual transmission rate - the Baudrate - is
27
programmable via software. Optional FIFOs with custom sizes can be configured for the transmitter and receiver
28
independently.
29
 
30
The UART features two memory-mapped registers `CTRL` and `DATA`, which are used for configuration, status
31
check and data transfer.
32
 
33 72 zero_gravi
.Standard Console(s)
34 65 zero_gravi
[NOTE]
35 72 zero_gravi
Please note that _all_ default example programs and software libraries of the NEORV32 software
36 60 zero_gravi
framework (including the bootloader and the runtime environment) use the primary UART
37 72 zero_gravi
(_UART0_) as default user console interface. Furthermore, UART0 is used to implement all the standard
38
input, output and error consoles (`STDIN`, `STDOUT` and `STDERR`).
39 60 zero_gravi
 
40 65 zero_gravi
 
41 60 zero_gravi
**Theory of Operation**
42
 
43 66 zero_gravi
UART0 is enabled by setting the _UART_CTRL_EN_ bit in the UART0 control register `CTRL`. The Baud rate
44 65 zero_gravi
is configured via a 12-bit _UART_CTRL_BAUDxx_ baud prescaler (`baud_prsc`) and a 3-bit _UART_CTRL_PRSCx_
45
clock prescaler (`clock_prescaler`) that scales the processor's primary clock (_f~main~_).
46 60 zero_gravi
 
47 65 zero_gravi
.UART0 prescaler configuration
48 60 zero_gravi
[cols="<4,^1,^1,^1,^1,^1,^1,^1,^1"]
49
[options="header",grid="rows"]
50
|=======================
51 64 zero_gravi
| **`UART_CTRL_PRSCx`**       | `0b000` | `0b001` | `0b010` | `0b011` | `0b100` | `0b101` | `0b110` | `0b111`
52 60 zero_gravi
| Resulting `clock_prescaler` |       2 |       4 |       8 |      64 |     128 |    1024 |    2048 |    4096
53
|=======================
54
 
55 66 zero_gravi
_**Baud rate**_ = (_f~main~[Hz]_ / `clock_prescaler`) / (`baud_prsc` + 1)
56 60 zero_gravi
 
57 64 zero_gravi
A new transmission is started by writing the data byte to be send to the lowest byte of the `DATA` register. The
58
transfer is completed when the _UART_CTRL_TX_BUSY_ control register flag returns to zero. A new received byte
59 65 zero_gravi
is available when the _UART_DATA_AVAIL_ flag of the `DATA` register is set. A "frame error" in a received byte
60
(invalid stop bit) is indicated via the _UART_DATA_FERR_ flag in the `DATA` register. The flag is cleared by
61
reading the `DATA` register.
62 60 zero_gravi
 
63 66 zero_gravi
[TIP]
64
A transmission (RX or TX) can be terminated at any time by disabling the UART module
65
by clearing the _UART_CTRL_EN_ control register bit.
66 60 zero_gravi
 
67 66 zero_gravi
 
68 65 zero_gravi
**RX and TX FIFOs**
69 60 zero_gravi
 
70 65 zero_gravi
UART0 provides optional FIFO buffers for the transmitter and the receiver. The _UART0_RX_FIFO_ generic defines
71
the depth of the RX FIFO (for receiving data) while the _UART0_TX_FIFO_ defines the depth of the TX FIFO
72
(for sending data). Both generics have to be a power of two with a minimal allowed value of 1. This minimal
73
value will implement simple "double-buffering" instead of full-featured FIFOs.
74
Both FIFOs are cleared whenever UART0 is disabled (clearing _UART_CTRL_EN_ in `CTRL`).
75 60 zero_gravi
 
76 65 zero_gravi
The state of both FIFO (_empty_, _at lest half-full_, _full_) is available via the _UART_CTRL_?X_EMPTY_,
77
 _UART_CTRL_?X_HALF_ and _UART_CTRL_*X_FULL_ flags in the `CTRL` register.
78 60 zero_gravi
 
79 65 zero_gravi
If the RX FIFO is already full and new data is received by the receiver unit, the _UART_DATA_OVERR_ flag
80
in the `DATA` register is set indicating an "overrun". This flag is cleared by reading the `DATA` register.
81 60 zero_gravi
 
82 66 zero_gravi
[NOTE]
83
In contrast to other FIFO-equipped peripherals, software **cannot** determine the UART's FIFO size configuration
84
by reading specific control register bits (simply because there are no bits left in the control register).
85 60 zero_gravi
 
86
 
87 65 zero_gravi
**Hardware Flow Control - RTS/CTS**
88 60 zero_gravi
 
89 65 zero_gravi
UART0 supports optional hardware flow control using the standard CTS (clear to send) and/or RTS (ready to send
90
/ ready to receive "RTR") signals. Both hardware control flow mechanisms can be enabled individually.
91 60 zero_gravi
 
92 65 zero_gravi
* If **RTS hardware flow control** is enabled by setting the _UART_CTRL_RTS_EN_ control register flag, the UART
93
will pull the `uart0_rts_o` signal low if the UART's receiver is ready to receive new data.
94
As long as this signal is low the connected device can send new data. `uart0_rts_o` is always LOW if the UART is disabled.
95
The RTS line is de-asserted (going high) as soon as the start bit of a new incoming char has been
96
detected.
97 60 zero_gravi
 
98 65 zero_gravi
* If **CTS hardware flow control** is enabled by setting the _UART_CTRL_CTS_EN_ control register flag, the UART's
99
transmitter will not start sending a new data until the `uart0_cts_i` signal goes low. During this time, the UART busy flag
100
_UART_CTRL_TX_BUSY_ remains set. If `uart0_cts_i` is asserted, no new data transmission will be started by the UART.
101
The state of the `uart0_cts_i` signal has no effect on a transmission being already in progress. Application software can check
102 64 zero_gravi
the current state of the `uart0_cts_o` input signal via the _UART_CTRL_CTS_ control register flag.
103 60 zero_gravi
 
104
 
105 65 zero_gravi
**Parity Modes**
106
 
107
An optional parity bit can be added to the data stream if the _UART_CTRL_PMODE1_ flag is set.
108
When _UART_CTRL_PMODE0_ is zero, the UART operates in "even parity" mode. If this flag is set, the UART operates in "odd parity" mode.
109
Parity errors in received data are indicated via the _UART_DATA_PERR_ flag in the `DATA` register. This flag is updated with each new
110
received character and is cleared by reading the `DATA` register.
111
 
112
 
113 68 zero_gravi
**UART Interrupts**
114 60 zero_gravi
 
115 68 zero_gravi
UART0 features two independent interrupt for signaling certain RX and TX conditions. The behavior of these conditions differs
116
based on the configured FIFO sizes. If the according FIFO size is greater than 1, the _UART_CTRL_RX_IRQ_ and _UART_CTRL_TX_IRQ_
117
`CTRL` flags allow a more fine-grained IRQ configuration. An interrupt can only become pending if the according interrupt
118
condition is fulfilled and the UART is enabled at all.
119 60 zero_gravi
 
120 68 zero_gravi
* If _UART0_RX_FIFO_ is exactly 1, the RX interrupt goes pending when data _becomes_ available in the RX FIFO
121
(-> _UART_CTRL_RX_EMPTY_ clears). _UART_CTRL_RX_IRQ_ is hardwired to `0` in this case.
122
* If _UART0_TX_FIFO_ is exactly 1, the TX interrupt goes pending when at least one entry in the TX FIFO _becomes_ free
123
(-> _UART_CTRL_TX_FULL_ clears). _UART_CTRL_TX_IRQ_ is hardwired to `0` in this case.
124 60 zero_gravi
 
125 68 zero_gravi
* If _UART0_RX_FIFO_ is greater than 1: If _UART_CTRL_RX_IRQ_ is `0` the RX interrupt goes pending when data _becomes_
126
available in the RX FIFO (-> _UART_CTRL_RX_EMPTY_ clears). If _UART_CTRL_RX_IRQ_ is `1` the RX interrupt becomes pending
127
the RX FIFO _becomes_ at least half-full (-> _UART_CTRL_RX_HALF_ sets).
128
* If _UART0_TX_FIFO_ is greater than 1: If _UART_CTRL_TX_IRQ_ is `0` the TX interrupt goes pending when at least one entry
129
in the TX FIFO _becomes_ free (-> _UART_CTRL_TX_FULL_ clears). If _UART_CTRL_TX_IRQ_ is `1` the TX interrupt goes pending
130
when the RX FIFO _becomes_ less than half-full (-> _UART_CTRL_TX_HALF_ clears).
131 65 zero_gravi
 
132 69 zero_gravi
Once the RX or TX interrupt has become pending, it has to be explicitly cleared again by setting the
133
according `mip` CSR bit.
134 65 zero_gravi
 
135
 
136 60 zero_gravi
**Simulation Mode**
137
 
138 64 zero_gravi
The default UART0 operation will transmit any data written to the `DATA` register via the serial TX line at
139 65 zero_gravi
the defined baud rate via the physical link. To accelerate UART0 output during simulation
140
(and also to dump large amounts of data) the UART0 features a _simulation mode_.
141 60 zero_gravi
 
142 65 zero_gravi
Simulation mode is enabled by setting the _UART_CTRL_SIM_MODE_ bit in the UART0's control register
143
`CTRL`. Any other UART0 configuration bits are irrelevant for this mode but UART0 has to be enabled via the
144
_UART_CTRL_EN_ bit. There will be no physical UART0 transmissions via `uart0_txd_o` at all when
145
simulation mode is enabled. Furthermore, no interrupts (RX & TX) will be triggered.
146 60 zero_gravi
 
147 65 zero_gravi
When the simulation mode is enabled any data written to `DATA[7:0]` is
148
directly output as ASCII char to the simulator console. Additionally, all chars are also stored to a text file
149
`neorv32.uart0.sim_mode.text.out` in the simulation home folder.
150 60 zero_gravi
 
151 65 zero_gravi
Furthermore, the whole 32-bit word written to `DATA[31:0]` is stored as plain 8-char hexadecimal value to a
152
second text file `neorv32.uart0.sim_mode.data.out` also located in the simulation home folder.
153
 
154 60 zero_gravi
[TIP]
155 65 zero_gravi
More information regarding the simulation-mode of the UART0 can be found in the User Guide
156 62 zero_gravi
section https://stnolting.github.io/neorv32/ug/#_simulating_the_processor[Simulating the Processor].
157 60 zero_gravi
 
158 65 zero_gravi
 
159 64 zero_gravi
.UART0 register map (`struct NEORV32_UART0`)
160 60 zero_gravi
[cols="<6,<7,<10,^2,<18"]
161
[options="header",grid="all"]
162
|=======================
163
| Address | Name [C] | Bit(s), Name [C] | R/W | Function
164 65 zero_gravi
.21+<| `0xffffffa0` .21+<| `NEORV32_UART0.CTRL` <|`11:0` _UART_CTRL_BAUDxx_ ^| r/w <| 12-bit BAUD value configuration value
165
                                                <|`12` _UART_CTRL_SIM_MODE_ ^| r/w <| enable **simulation mode**
166
                                                <|`13` _UART_CTRL_RX_EMPTY_ ^| r/- <| RX FIFO is empty
167
                                                <|`14` _UART_CTRL_RX_HALF_  ^| r/- <| RX FIFO is at least half-full
168
                                                <|`15` _UART_CTRL_RX_FULL_  ^| r/- <| RX FIFO is full
169
                                                <|`16` _UART_CTRL_TX_EMPTY_ ^| r/- <| TX FIFO is empty
170
                                                <|`17` _UART_CTRL_TX_HALF_  ^| r/- <| TX FIFO is at least half-full
171
                                                <|`18` _UART_CTRL_TX_FULL_  ^| r/- <| TX FIFO is full
172
                                                <|`19` -                    ^| r/- <| _reserved_, read as zero
173
                                                <|`20` _UART_CTRL_RTS_EN_   ^| r/w <| enable RTS hardware flow control
174
                                                <|`21` _UART_CTRL_CTS_EN_   ^| r/w <| enable CTS hardware flow control
175
                                                <|`22` _UART_CTRL_PMODE0_   ^| r/w .2+<| parity bit enable and configuration (`00`/`01`= no parity; `10`=even parity; `11`=odd parity)
176
                                                <|`23` _UART_CTRL_PMODE1_   ^| r/w
177
                                                <|`24` _UART_CTRL_PRSC0_    ^| r/w .3+<| 3-bit baudrate clock prescaler select
178
                                                <|`25` _UART_CTRL_PRSC1_    ^| r/w
179
                                                <|`26` _UART_CTRL_PRSC2_    ^| r/w
180
                                                <|`27` _UART_CTRL_CTS_      ^| r/- <| current state of UART's CTS input signal
181
                                                <|`28` _UART_CTRL_EN_       ^| r/w <| UART enable
182
                                                <|`29` _UART_CTRL_RX_IRQ_   ^| r/w <| RX IRQ mode: `1`=FIFO at least half-full; `0`=FIFO not empty
183
                                                <|`30` _UART_CTRL_TX_IRQ_   ^| r/w <| TX IRQ mode: `1`=FIFO less than half-full; `0`=FIFO not full
184
                                                <|`31` _UART_CTRL_TX_BUSY_  ^| r/- <| transmitter busy flag
185 64 zero_gravi
.6+<| `0xffffffa4` .6+<| `NEORV32_UART0.DATA` <|`7:0` _UART_DATA_MSB_ : _UART_DATA_LSB_ ^| r/w <| receive/transmit data (8-bit)
186
                                              <|`31:0` -                ^| -/w <| **simulation data output**
187
                                              <|`28` _UART_DATA_PERR_   ^| r/- <| RX parity error
188
                                              <|`29` _UART_DATA_FERR_   ^| r/- <| RX data frame error (stop bit nt set)
189
                                              <|`30` _UART_DATA_OVERR_  ^| r/- <| RX data overrun
190
                                              <|`31` _UART_DATA_AVAIL_  ^| r/- <| RX data available when set
191 60 zero_gravi
|=======================
192
 
193
 
194
 
195
<<<
196
// ####################################################################################################################
197
:sectnums:
198
==== Secondary Universal Asynchronous Receiver and Transmitter (UART1)
199
 
200
[cols="<3,<3,<4"]
201
[frame="topbot",grid="none"]
202
|=======================
203
| Hardware source file(s): | neorv32_uart.vhd |
204
| Software driver file(s): | neorv32_uart.c |
205
|                          | neorv32_uart.h |
206
| Top entity port:         | `uart1_txd_o` | serial transmitter output UART1
207
|                          | `uart1_rxd_i` | serial receiver input UART1
208
|                          | `uart1_rts_o` | flow control: RX ready to receive
209
|                          | `uart1_cts_i` | flow control: TX allowed to send
210 65 zero_gravi
| Configuration generics:  | _IO_UART1_EN_   | implement UART1 when _true_
211
|                          | _UART1_RX_FIFO_ | RX FIFO depth (power of 2, min 1)
212
|                          | _UART1_TX_FIFO_ | TX FIFO depth (power of 2, min 1)
213
| CPU interrupts:          | fast IRQ channel 4 | RX interrupt
214
|                          | fast IRQ channel 5 | TX interrupt (see <<_processor_interrupts>>)
215 60 zero_gravi
|=======================
216
 
217 65 zero_gravi
 
218 60 zero_gravi
**Theory of Operation**
219
 
220
The secondary UART (UART1) is functional identical to the primary UART (<<_primary_universal_asynchronous_receiver_and_transmitter_uart0>>).
221 65 zero_gravi
Obviously, UART1 has different addresses for the control register (`CTRL`) and the data register (`DATA`) - see the register map below.
222
The register's bits/flags use the same bit positions and naming as for the primary UART. The RX and TX interrupts of UART1 are
223
mapped to different CPU fast interrupt (FIRQ) channels.
224 60 zero_gravi
 
225 65 zero_gravi
 
226 60 zero_gravi
**Simulation Mode**
227
 
228
The secondary UART (UART1) provides the same simulation options as the primary UART. However,
229
output data is written to UART1-specific files: `neorv32.uart1.sim_mode.text.out` is used to store
230
plain ASCII text and `neorv32.uart1.sim_mode.data.out` is used to store full 32-bit hexadecimal
231 65 zero_gravi
data words.
232 60 zero_gravi
 
233 65 zero_gravi
 
234 64 zero_gravi
.UART1 register map (`struct NEORV32_UART1`)
235 60 zero_gravi
[cols="<6,<7,<10,^2,<18"]
236
[options="header",grid="all"]
237
|=======================
238
| Address | Name [C] | Bit(s), Name [C] | R/W | Function
239 65 zero_gravi
.21+<| `0xffffffd0` .21+<| `NEORV32_UART1.CTRL` <|`11:0` _UART_CTRL_BAUDxx_ ^| r/w <| 12-bit BAUD value configuration value
240
                                                <|`12` _UART_CTRL_SIM_MODE_ ^| r/w <| enable **simulation mode**
241
                                                <|`13` _UART_CTRL_RX_EMPTY_ ^| r/- <| RX FIFO is empty
242
                                                <|`14` _UART_CTRL_RX_HALF_  ^| r/- <| RX FIFO is at least half-full
243
                                                <|`15` _UART_CTRL_RX_FULL_  ^| r/- <| RX FIFO is full
244
                                                <|`16` _UART_CTRL_TX_EMPTY_ ^| r/- <| TX FIFO is empty
245
                                                <|`17` _UART_CTRL_TX_HALF_  ^| r/- <| TX FIFO is at least half-full
246
                                                <|`18` _UART_CTRL_TX_FULL_  ^| r/- <| TX FIFO is full
247
                                                <|`19` -                    ^| r/- <| _reserved_, read as zero
248
                                                <|`20` _UART_CTRL_RTS_EN_   ^| r/w <| enable RTS hardware flow control
249
                                                <|`21` _UART_CTRL_CTS_EN_   ^| r/w <| enable CTS hardware flow control
250
                                                <|`22` _UART_CTRL_PMODE0_   ^| r/w .2+<| parity bit enable and configuration (`00`/`01`= no parity; `10`=even parity; `11`=odd parity)
251
                                                <|`23` _UART_CTRL_PMODE1_   ^| r/w
252
                                                <|`24` _UART_CTRL_PRSC0_    ^| r/w .3+<| 3-bit baudrate clock prescaler select
253
                                                <|`25` _UART_CTRL_PRSC1_    ^| r/w
254
                                                <|`26` _UART_CTRL_PRSC2_    ^| r/w
255
                                                <|`27` _UART_CTRL_CTS_      ^| r/- <| current state of UART's CTS input signal
256
                                                <|`28` _UART_CTRL_EN_       ^| r/w <| UART enable
257
                                                <|`29` _UART_CTRL_RX_IRQ_   ^| r/w <| RX IRQ mode: `1`=FIFO at least half-full; `0`=FIFO not empty; hardwired to zero if _UART0_RX_FIFO_ = 1
258
                                                <|`30` _UART_CTRL_TX_IRQ_   ^| r/w <| TX IRQ mode: `1`=FIFO less than half-full; `0`=FIFO not full; hardwired to zero if _UART0_TX_FIFO_ = 1
259
                                                <|`31` _UART_CTRL_TX_BUSY_  ^| r/- <| transmitter busy flag
260 64 zero_gravi
.6+<| `0xffffffd4` .6+<| `NEORV32_UART1.DATA` <|`7:0` _UART_DATA_MSB_ : _UART_DATA_LSB_ ^| r/w <| receive/transmit data (8-bit)
261
                                              <|`31:0` -                ^| -/w <| **simulation data output**
262
                                              <|`28` _UART_DATA_PERR_   ^| r/- <| RX parity error
263
                                              <|`29` _UART_DATA_FERR_   ^| r/- <| RX data frame error (stop bit nt set)
264
                                              <|`30` _UART_DATA_OVERR_  ^| r/- <| RX data overrun
265
                                              <|`31` _UART_DATA_AVAIL_  ^| r/- <| RX data available when set
266 60 zero_gravi
|=======================

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.