OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [docs/] [datasheet/] [software.adoc] - Blame information for rev 64

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 60 zero_gravi
:sectnums:
2
== Software Framework
3
 
4
To make actual use of the NEORV32 processor, the project comes with a complete software eco-system. This
5
ecosystem is based on the RISC-V port of the GCC GNU Compiler Collection and consists of the following elementary parts:
6
 
7
[cols="<6,<4"]
8
[grid="none"]
9
|=======================
10
| Application/bootloader start-up code | `sw/common/crt0.S`
11
| Application/bootloader linker script | `sw/common/neorv32.ld`
12
| Core hardware driver libraries | `sw/lib/include/` & `sw/lib/source/`
13 62 zero_gravi
| Central makefile | `sw/common/common.mk`
14 60 zero_gravi
| Auxiliary tool for generating NEORV32 executables | `sw/image_gen/`
15
| Default bootloader | `sw/bootloader/bootloader.c`
16
|=======================
17
 
18
Last but not least, the NEORV32 ecosystem provides some example programs for testing the hardware, for
19
illustrating the usage of peripherals and for general getting in touch with the project (`sw/example`).
20
 
21
// ####################################################################################################################
22
:sectnums:
23
=== Compiler Toolchain
24
 
25
The toolchain for this project is based on the free RISC-V GCC-port. You can find the compiler sources and
26
build instructions on the official RISC-V GNU toolchain GitHub page: https://github.com/riscv/riscv-gnutoolchain.
27
 
28
The NEORV32 implements a 32-bit base integer architecture (`rv32i`) and a 32-bit integer and soft-float ABI
29
(ilp32), so make sure you build an according toolchain.
30
 
31
Alternatively, you can download my prebuilt `rv32i/e` toolchains for 64-bit x86 Linux from: https://github.com/stnolting/riscv-gcc-prebuilt
32
 
33
The default toolchain prefix used by the project's makefiles is (can be changed in the makefiles): **`riscv32-unknown-elf`**
34
 
35
[TIP]
36
More information regarding the toolchain (building from scratch or downloading the prebuilt ones)
37 61 zero_gravi
can be found in the user guides' section https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup[Software Toolchain Setup].
38 60 zero_gravi
 
39
 
40
 
41
<<<
42
// ####################################################################################################################
43
:sectnums:
44
=== Core Libraries
45
 
46
The NEORV32 project provides a set of C libraries that allows an easy usage of the processor/CPU features.
47
Just include the main NEORV32 library file in your application's source file(s):
48
 
49
[source,c]
50
----
51
#include 
52
----
53
 
54
Together with the makefile, this will automatically include all the processor's header files located in
55
`sw/lib/include` into your application. The actual source files of the core libraries are located in
56
`sw/lib/source` and are automatically included into the source list of your software project. The following
57
files are currently part of the NEORV32 core library:
58
 
59
[cols="<3,<4,<8"]
60
[options="header",grid="rows"]
61
|=======================
62
| C source file | C header file | Description
63
| -                  | `neorv32.h`            | main NEORV32 definitions and library file
64 64 zero_gravi
| -                  | `neorv32_legacy.h`     | legacy back-compatibility layer
65 60 zero_gravi
| `neorv32_cfs.c`    | `neorv32_cfs.h`        | HW driver (stub)footnote:[This driver file only represents a stub, since the real CFS drivers are defined by the actual CFS implementation.] functions for the custom functions subsystem
66
| `neorv32_cpu.c`    | `neorv32_cpu.h`        | HW driver functions for the NEORV32 **CPU**
67
| `neorv32_gpio.c`   | `neorv32_gpio.h`       | HW driver functions for the **GPIO**
68
| -                  | `neorv32_intrinsics.h` | macros for custom intrinsics/instructions
69
| `neorv32_mtime.c`  | `neorv32_mtime.h`      | HW driver functions for the **MTIME**
70
| `neorv32_neoled.c` | `neorv32_neoled.h`     | HW driver functions for the **NEOLED**
71
| `neorv32_pwm.c`    | `neorv32_pwm.h`        | HW driver functions for the **PWM**
72
| `neorv32_rte.c`    | `neorv32_rte.h`        | NEORV32 **runtime environment** and helpers
73
| `neorv32_spi.c`    | `neorv32_spi.h`        | HW driver functions for the **SPI**
74
| `neorv32_trng.c`   | `neorv32_trng.h`       | HW driver functions for the **TRNG**
75
| `neorv32_twi.c`    | `neorv32_twi.h`        | HW driver functions for the **TWI**
76
| `neorv32_uart.c`   | `neorv32_uart.h`       | HW driver functions for the **UART0** and **UART1**
77
| `neorv32_wdt.c`    | `neorv32_wdt.h`        | HW driver functions for the **WDT**
78
|=======================
79
 
80
.Documentation
81
[TIP]
82
All core library software sources are highly documented using _doxygen_. See section <>.
83
The documentation is automatically built and deployed to GitHub pages by the CI workflow (:https://stnolting.github.io/neorv32/sw/files.html).
84
 
85
 
86
 
87
 
88
<<<
89
// ####################################################################################################################
90
:sectnums:
91
=== Application Makefile
92
 
93 62 zero_gravi
Application compilation is based on a single, centralized **GNU makefiles** `sw/common/common.mk`. Each project in the
94
`sw/example` folder features a makefile that just includes this central makefile. When creating a new project, copy an existing project folder or
95 60 zero_gravi
at least the makefile to your new project folder. I suggest to create new projects also in `sw/example` to keep
96
the file dependencies. Of course, these dependencies can be manually configured via makefiles variables
97
when your project is located somewhere else.
98
 
99 62 zero_gravi
[NOTE]
100 60 zero_gravi
Before you can use the makefiles, you need to install the RISC-V GCC toolchain. Also, you have to add the
101 62 zero_gravi
installation folder of the compiler to your system's `PATH` variable. More information can be found in
102
https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup[User Guide: Software Toolchain Setup].
103 60 zero_gravi
 
104
The makefile is invoked by simply executing make in your console:
105
 
106
[source,bash]
107
----
108
neorv32/sw/example/blink_led$ make
109
----
110
 
111
:sectnums:
112
==== Targets
113
 
114 62 zero_gravi
Just executing `make` (or executing `make help`) will show the help menu listing all available targets.
115 60 zero_gravi
 
116 62 zero_gravi
[source,makefile]
117
----
118
$ make
119
<<< NEORV32 Application Makefile >>>
120
Make sure to add the bin folder of RISC-V GCC to your PATH variable.
121
Targets:
122
 help       - show this text
123
 check      - check toolchain
124
 info       - show makefile/toolchain configuration
125
 exe        - compile and generate  executable for upload via bootloader
126
 hex        - compile and generate  executable raw file
127
 install    - compile, generate and install VHDL IMEM boot image (for application)
128 63 zero_gravi
 sim        - in-console simulation using the default testbench and GHDL
129 62 zero_gravi
 all        - exe + hex + install
130
 elf_info   - show ELF layout info
131
 clean      - clean up project
132
 clean_all  - clean up project, core libraries and image generator
133
 bootloader - compile, generate and install VHDL BOOTROM boot image (for bootloader only!)
134
----
135 60 zero_gravi
 
136
 
137
:sectnums:
138
==== Configuration
139
 
140 62 zero_gravi
The compilation flow is configured via variables right at the beginning of the **central**
141
makefile (`sw/common/common.mk`):
142 60 zero_gravi
 
143 62 zero_gravi
[TIP]
144
The makefile configuration variables can be (re-)defined directly when invoking the makefile. For
145
example via `$ make MARCH=-march=rv32ic clean_all exe`. You can also make project-specific definitions
146
of all variables inside the project's actual makefile (e.g., `sw/example/blink_led/makefile`).
147
 
148 60 zero_gravi
[source,makefile]
149
----
150
# *****************************************************************************
151
# USER CONFIGURATION
152
# *****************************************************************************
153
# User's application sources (*.c, *.cpp, *.s, *.S); add additional files here
154
APP_SRC ?= $(wildcard ./*.c) $(wildcard ./*.s) $(wildcard ./*.cpp) $(wildcard ./*.S)
155
# User's application include folders (don't forget the '-I' before each entry)
156
APP_INC ?= -I .
157
# User's application include folders - for assembly files only (don't forget the '-I' before each
158
entry)
159
ASM_INC ?= -I .
160
# Optimization
161
EFFORT ?= -Os
162
# Compiler toolchain
163 62 zero_gravi
RISCV_PREFIX ?= riscv32-unknown-elf-
164 60 zero_gravi
# CPU architecture and ABI
165
MARCH ?= -march=rv32i
166
MABI  ?= -mabi=ilp32
167
# User flags for additional configuration (will be added to compiler flags)
168
USER_FLAGS ?=
169
# Relative or absolute path to the NEORV32 home folder
170
NEORV32_HOME ?= ../../..
171
# *****************************************************************************
172
----
173
 
174
[cols="<3,<10"]
175
[grid="none"]
176
|=======================
177
| _APP_SRC_         | The source files of the application (`*.c`, `*.cpp`, `*.S` and `*.s` files are allowed; file of these types in the project folder are automatically added via wildcards). Additional files can be added; separated by white spaces
178
| _APP_INC_         | Include file folders; separated by white spaces; must be defined with `-I` prefix
179
| _ASM_INC_         | Include file folders that are used only for the assembly source files (`*.S`/`*.s`).
180
| _EFFORT_          | Optimization level, optimize for size (`-Os`) is default; legal values: `-O0`, `-O1`, `-O2`, `-O3`, `-Os`
181 62 zero_gravi
| _RISCV_PREFIX_    | The toolchain prefix to be used; follows the naming convention "architecture-vendor-output-"
182
| _MARCH_           | The targetd RISC-V architecture/ISA. Only `rv32` is supported by the NEORV32. Enable compiler support of optional CPU extension by adding the according extension letter (e.g. `rv32im` for _M_ CPU extension). See https://stnolting.github.io/neorv32/ug/#_enabling_risc_v_cpu_extensions[User Guide: Enabling RISC-V CPU Extensions] for more information.
183 60 zero_gravi
| _MABI_            | The default 32-bit integer ABI.
184
| _USER_FLAGS_      | Additional flags that will be forwarded to the compiler tools
185
| _NEORV32_HOME_    | Relative or absolute path to the NEORV32 project home folder. Adapt this if the makefile/project is not in the project's `sw/example folder`.
186
| _COM_PORT_        | Default serial port for executable upload to bootloader.
187
|=======================
188
 
189
:sectnums:
190
==== Default Compiler Flags
191
 
192
The following default compiler flags are used for compiling an application. These flags are defined via the
193
`CC_OPTS` variable. Custom flags can be appended via the `USER_FLAGS` variable to the `CC_OPTS` variable.
194
 
195
[cols="<3,<9"]
196
[grid="none"]
197
|=======================
198
| `-Wall` | Enable all compiler warnings.
199
| `-ffunction-sections` | Put functions and data segment in independent sections. This allows a code optimization as dead code and unused data can be easily removed.
200
| `-nostartfiles` | Do not use the default start code. The makefiles use the NEORV32-specific start-up code instead (`sw/common/crt0.S`).
201
| `-Wl,--gc-sections` | Make the linker perform dead code elimination.
202
| `-lm` | Include/link with `math.h`.
203
| `-lc` | Search for the standard C library when linking.
204
| `-lgcc` | Make sure we have no unresolved references to internal GCC library subroutines.
205
| `-mno-fdiv` | Use builtin software functions for floating-point divisions and square roots (since the according instructions are not supported yet).
206
| `-falign-functions=4` .4+| Force a 32-bit alignment of functions and labels (branch/jump/call targets). This increases performance as it simplifies instruction fetch when using the C extension. As a drawback this will also slightly increase the program code.
207
| `-falign-labels=4`
208
| `-falign-loops=4`
209
| `-falign-jumps=4`
210
|=======================
211
 
212
 
213
 
214
<<<
215
// ####################################################################################################################
216
:sectnums:
217
=== Executable Image Format
218
 
219 61 zero_gravi
In order to generate a file, which can be executed by the processor, all source files have to be compiler, linked
220
and packed into a final _executable_.
221 60 zero_gravi
 
222 61 zero_gravi
:sectnums:
223
==== Linker Script
224
 
225
When all the application sources have been compiled, they need to be _linked_ in order to generate a unified
226
program file. For this purpose the makefile uses the NEORV32-specific linker script `sw/common/neorv32.ld` for
227
linking all object files that were generated during compilation.
228
 
229
The linker script defines three memory _sections_: `rom`, `ram` and `iodev`. Each section provides specific
230
access _attributes_: read access (`r`), write access (`w`) and executable (`x`).
231
 
232
.Linker memory sections - general
233 60 zero_gravi
[cols="<2,^1,<7"]
234
[options="header",grid="rows"]
235
|=======================
236
| Memory section  | Attributes | Description
237 61 zero_gravi
| `ram`           | `rwx`      | Data memory address space (processor-internal/external DMEM)
238
| `rom`           | `rx`       | Instruction memory address space (processor-internal/external IMEM) _or_ internal bootloader ROM
239
| `iodev`         | `rw`       | Processor-internal memory-mapped IO/peripheral devices address space
240 60 zero_gravi
|=======================
241
 
242 61 zero_gravi
These sections are defined right at the beginning of the linker script:
243 60 zero_gravi
 
244 61 zero_gravi
.Linker memory sections - cut-out from linker script `neorv32.ld`
245
[source,c]
246
----
247
MEMORY
248
{
249
  ram  (rwx) : ORIGIN = 0x80000000, LENGTH = DEFINED(make_bootloader) ? 512 : 8*1024
250
  rom   (rx) : ORIGIN = DEFINED(make_bootloader) ? 0xFFFF0000 : 0x00000000, LENGTH = DEFINED(make_bootloader) ? 32K : 2048M
251
  iodev (rw) : ORIGIN = 0xFFFFFE00, LENGTH = 512
252
}
253
----
254 60 zero_gravi
 
255 61 zero_gravi
Each memory section provides a _base address_ `ORIGIN` and a _size_ `LENGTH`. The base address and size of the `iodev` section is
256
fixed and must not be altered. The base addresses and sizes of the `ram` and `rom` regions correspond to the total available instruction
257
and data memory address space (see section <<_address_space_layout>>).
258 60 zero_gravi
 
259 61 zero_gravi
[IMPORTANT]
260
`ORIGIN` of the `ram` section has to be always identical to the processor's `dspace_base_c` hardware configuration. Additionally,
261
`ORIGIN` of the `rom` section has to be always identical to the processor's `ispace_base_c` hardware configuration.
262
 
263
The sizes of `ram` section has to be equal to the size of the **physical available data instruction memory**. For example, if the processor
264
setup only uses processor-internal DMEM (<<_mem_int_dmem_en>> = _true_ and no external data memory attached) the `LENGTH` parameter of
265
this memory section has to be equal to the size configured by the <<_mem_int_dmem_size>> generic.
266
 
267
The sizes of `rom` section is a little bit more complicated. The default linker script configuration assumes a _maximum_ of 2GB _logical_
268
memory space, which is also the default configuration of the processor's hardware instruction memory address space. This size _does not_ have
269
to reflect the _actual_ physical size of the instruction memory (internal IMEM and/or processor-external memory). It just provides a maximum
270
limit. When uploading new executable via the bootloader, the bootloader itself checks if sufficient _physical_ instruction memory is available.
271
If a new executable is embedded right into the internal-IMEM the synthesis tool will check, if the configured instruction memory size
272
is sufficient (e.g., via the <<_mem_int_imem_size>> generic).
273
 
274
[IMPORTANT]
275
The `rom` region uses a conditional assignment (via the `make_bootloader` symbol) for `ORIGIN` and `LENGTH` that is used to place
276
"normal executable" (i.e. for the IMEM) or "the bootloader image" to their according memories. +
277
 +
278
The `ram` region also uses a conditional assignment (via the `make_bootloader` symbol) for `LENGTH`. When compiling the bootloader
279
(`make_bootloader` symbol is set) the generated bootloader will only use the _first_ 512 bytes of the data address space. This is
280
a fall-back to ensure the bootloader can operate independently of the actual _physical_ data memory size.
281
 
282
The linker maps all the regions from the compiled object files into four final sections: `.text`, `.rodata`, `.data` and `.bss`.
283
These four regions contain everything required for the application to run:
284
 
285
.Linker memory regions
286 60 zero_gravi
[cols="<1,<9"]
287
[options="header",grid="rows"]
288
|=======================
289 62 zero_gravi
| Region    | Description
290 60 zero_gravi
| `.text`   | Executable instructions generated from the start-up code and all application sources.
291
| `.rodata` | Constants (like strings) from the application; also the initial data for initialized variables.
292
| `.data`   | This section is required for the address generation of fixed (= global) variables only.
293
| `.bss`    | This section is required for the address generation of dynamic memory constructs only.
294
|=======================
295
 
296
The `.text` and `.rodata` sections are mapped to processor's instruction memory space and the `.data` and
297 61 zero_gravi
`.bss` sections are mapped to the processor's data memory space. Finally, the `.text`, `.rodata` and `.data`
298
sections are extracted and concatenated into a single file `main.bin`.
299 60 zero_gravi
 
300
 
301 61 zero_gravi
:sectnums:
302
==== Executable Image Generator
303 60 zero_gravi
 
304 61 zero_gravi
The `main.bin` file is packed by the NEORV32 image generator (`sw/image_gen`) to generate the final executable file.
305
 
306
[NOTE]
307
The sources of the image generator are automatically compiled when invoking the makefile.
308
 
309
The image generator can generate three types of executables, selected by a flag when calling the generator:
310
 
311 60 zero_gravi
[cols="<1,<9"]
312
[grid="none"]
313
|=======================
314
| `-app_bin` | Generates an executable binary file `neorv32_exe.bin` (for UART uploading via the bootloader).
315 62 zero_gravi
| `-app_hex` | Generates a plain ASCII hex-char file `neorv32_exe.hex` that can be used to initialize custom (instruction-) memories (in synthesis/simulation).
316 60 zero_gravi
| `-app_img` | Generates an executable VHDL memory initialization image for the processor-internal IMEM. This option generates the `rtl/core/neorv32_application_image.vhd` file.
317
| `-bld_img` | Generates an executable VHDL memory initialization image for the processor-internal BOOT ROM. This option generates the `rtl/core/neorv32_bootloader_image.vhd` file.
318
|=======================
319
 
320 61 zero_gravi
All these options are managed by the makefile. The _normal application_ compilation flow will generate the `neorv32_exe.bin`
321
executable to be upload via UART to the NEORV32 bootloader.
322 60 zero_gravi
 
323 61 zero_gravi
The image generator add a small header to the `neorv32_exe.bin` executable, which consists of three 32-bit words located right at the
324
beginning of the file. The first word of the executable is the signature word and is always `0x4788cafe`. Based on this word the bootloader
325
can identify a valid image file. The next word represents the size in bytes of the actual program
326 60 zero_gravi
image in bytes. A simple "complement" checksum of the actual program image is given by the third word. This
327
provides a simple protection against data transmission or storage errors.
328
 
329
 
330 61 zero_gravi
:sectnums:
331
==== Start-Up Code (crt0)
332 60 zero_gravi
 
333 61 zero_gravi
The CPU and also the processor require a minimal start-up and initialization code to bring the CPU (and the SoC)
334
into a stable and initialized state and to initialize the C runtime environment before the actual application can be executed.
335
This start-up code is located in `sw/common/crt0.S` and is automatically linked _every_ application program
336
and placed right before the actual application code so it gets executed right after reset.
337 60 zero_gravi
 
338 61 zero_gravi
The `crt0.S` start-up performs the following operations:
339 60 zero_gravi
 
340 61 zero_gravi
[start=1]
341
. Initialize all integer registers `x1 - x31` (or jsut `x1 - x15` when using the `E` CPU extension) to a defined value.
342
. Initialize the global pointer `gp` and the stack pointer `sp` according to the `.data` segment layout provided by the linker script.
343
. Initialize all CPU core CSRs and also install a default "dummy" trap handler for _all_ traps. This handler catches all traps during the early boot phase.
344
. Clear IO area: Write zero to all memory-mapped registers within the IO region (`iodev` section). If certain devices have not been implemented, a bus access fault exception will occur. This exception is captured by the dummy trap handler.
345
. Clear the `.bss` section defined by the linker script.
346
. Copy read-only data from the `.text` section to the `.data` section to set initialized variables.
347
. Call the application's `main` function (with _no_ arguments: `argc` = `argv` = 0).
348
. If the `main` function returns `crt0` can call an "after-main handler" (see below)
349
. If there is no after-main handler or after returning from the after-main handler the processor goes to an endless sleep mode (using a simple loop or via the `wfi` instruction if available).
350 60 zero_gravi
 
351 61 zero_gravi
:sectnums:
352
===== After-Main Handler
353
 
354
If the application's `main()` function actually returns, an _after main handler_ can be executed. This handler can be a normal function
355
since the C runtime is still available when executed. If this handler uses any kind of peripheral/IO modules make sure these are
356
already initialized within the application or you have to initialize them _inside_ the handler.
357
 
358
.After-main handler - function prototype
359
[source,c]
360
----
361
int __neorv32_crt0_after_main(int32_t return_code);
362
----
363
 
364
The function has exactly one argument (`return_code`) that provides the _return value_ of the application's main function.
365
For instance, this variable contains _-1_ if the main function returned with `return -1;`. The return value of the
366
`__neorv32_crt0_after_main` function is irrelevant as there is no further "software instance" executed afterwards that can check this.
367
However, the on-chip debugger could still evaluate the return value of the after-main handler.
368
 
369
A simple `printf` can be used to inform the user when the application main function return
370
(this example assumes that UART0 has been already properly configured in the actual application):
371
 
372
.After-main handler - example
373
[source,c]
374
----
375
int __neorv32_crt0_after_main(int32_t return_code) {
376
 
377
  neorv32_uart_printf("Main returned with code: %i\n", return_code);
378
  return 0;
379
}
380
----
381
 
382
 
383 60 zero_gravi
<<<
384
// ####################################################################################################################
385
:sectnums:
386
=== Bootloader
387
 
388 61 zero_gravi
[NOTE]
389
This section illustrated the **default** bootloader from the repository. The bootloader can be customized
390
to target application-specific scenarios. See User Guide section
391
https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader[Customizing the Internal Bootloader]
392
for more information.
393 60 zero_gravi
 
394 61 zero_gravi
The default NEORV32 bootloader (source code `sw/bootloader/bootloader.c`) provides a build-in firmware that
395
allows to upload new application executables via UART at every time and to optionally store/boot them to/from
396
an external SPI flash. It features a simple "automatic boot" feature that will try to fetch an executable
397
from SPI flash if there is _no_ UART user interaction. This allows to build processor setup with
398
non-volatile application storage, which can be updated at any time.
399 60 zero_gravi
 
400 61 zero_gravi
The bootloader is only implemented if the <<_int_bootloader_en>> generic is _true_. This will
401
select the <<_indirect_boot>> boot configuration.
402 60 zero_gravi
 
403 61 zero_gravi
.Hardware requirements of the _default_ NEORV32 bootloader
404 60 zero_gravi
[IMPORTANT]
405 61 zero_gravi
**REQUIRED**: The bootloader requires the CSR access CPU extension (<<_cpu_extension_riscv_zicsr>> generic is _true_)
406
and at least 512 bytes of data memory (processor-internal DMEM or external DMEM). +
407
 +
408
_RECOMMENDED_: For user interaction via UART (like uploading executables) the primary UART (UART0) has to be
409
implemented (<<_io_uart0_en>> generic is _true_). Without UART the bootloader does not make much sense. However, auto-boot
410
via SPI is still supported but the bootloader should be customized (see User Guide) for this purpose. +
411
 +
412
_OPTIONAL_: The default bootloader uses bit 0 of the GPIO output port as "heart beat" and status LED if the
413
GPIO controller is implemented (<<_io_gpio_en>> generic is _true_). +
414
 +
415
_OPTIONAL_: The MTIME machine timer (<<_io_mtime_en>> generic is _true_) and the SPI controller
416
(<<_io_spi_en>> generic is _true_) are required in order to use the bootloader's auto-boot feature
417
(automatic boot from external SPI flash if there is no user interaction via UART).
418 60 zero_gravi
 
419
To interact with the bootloader, connect the primary UART (UART0) signals (`uart0_txd_o` and
420
`uart0_rxd_o`) of the processor's top entity via a serial port (-adapter) to your computer (hardware flow control is
421
not used so the according interface signals can be ignored.), configure your
422 62 zero_gravi
terminal program using the following settings and perform a reset of the processor.
423 60 zero_gravi
 
424
Terminal console settings (`19200-8-N-1`):
425
 
426
* 19200 Baud
427
* 8 data bits
428
* no parity bit
429
* 1 stop bit
430
* newline on `\r\n` (carriage return, newline)
431
* no transfer protocol / control flow protocol - just the raw byte stuff
432
 
433
The bootloader uses the LSB of the top entity's `gpio_o` output port as high-active status LED (all other
434
output pin are set to low level by the bootloader). After reset, this LED will start blinking at ~2Hz and the
435
following intro screen should show up in your terminal:
436
 
437
[source]
438
----
439
<< NEORV32 Bootloader >>
440
 
441
BLDV: Mar 23 2021
442
HWV:  0x01050208
443
CLK:  0x05F5E100
444
MISA: 0x40901105
445 64 zero_gravi
CPU:  0x00000023
446
SOC:  0x0EFF0037
447 60 zero_gravi
IMEM: 0x00004000 bytes @ 0x00000000
448
DMEM: 0x00002000 bytes @ 0x80000000
449
 
450
Autoboot in 8s. Press key to abort.
451
----
452
 
453
This start-up screen also gives some brief information about the bootloader and several system configuration parameters:
454
 
455
[cols="<2,<15"]
456
[grid="none"]
457
|=======================
458
| `BLDV` | Bootloader version (built date).
459
| `HWV`  | Processor hardware version (from the `mimpid` CSR) in BCD format (example: `0x01040606` = v1.4.6.6).
460
| `CLK`  | Processor clock speed in Hz (via the SYSINFO module, from the _CLOCK_FREQUENCY_ generic).
461
| `MISA` | CPU extensions (from the `misa` CSR).
462 64 zero_gravi
| `CPU`  | CPU sub-extensions (via the `CPU` register in the SYSINFO module)
463
| `SOC`  | Processor configuration (via the `SOC` register in the SYSINFO module / from the IO_* and MEM_* configuration generics).
464 60 zero_gravi
| `IMEM` | IMEM memory base address and size in byte (from the _MEM_INT_IMEM_SIZE_ generic).
465
| `DMEM` | DMEM memory base address and size in byte (from the _MEM_INT_DMEM_SIZE_ generic).
466
|=======================
467
 
468
Now you have 8 seconds to press any key. Otherwise, the bootloader starts the auto boot sequence. When
469
you press any key within the 8 seconds, the actual bootloader user console starts:
470
 
471
[source]
472
----
473
<< NEORV32 Bootloader >>
474
 
475
BLDV: Mar 23 2021
476
HWV:  0x01050208
477
CLK:  0x05F5E100
478
USER: 0x10000DE0
479
MISA: 0x40901105
480 64 zero_gravi
CPU:  0x00000023
481
SOC:  0x0EFF0037
482 60 zero_gravi
IMEM: 0x00004000 bytes @ 0x00000000
483
DMEM: 0x00002000 bytes @ 0x80000000
484
 
485
Autoboot in 8s. Press key to abort.
486
Aborted.
487
 
488
Available commands:
489
h: Help
490
r: Restart
491
u: Upload
492
s: Store to flash
493
l: Load from flash
494
e: Execute
495
CMD:>
496
----
497
 
498
The auto-boot countdown is stopped and now you can enter a command from the list to perform the
499
corresponding operation:
500
 
501
* `h`: Show the help text (again)
502
* `r`: Restart the bootloader and the auto-boot sequence
503
* `u`: Upload new program executable (`neorv32_exe.bin`) via UART into the instruction memory
504
* `s`: Store executable to SPI flash at `spi_csn_o(0)`
505
* `l`: Load executable from SPI flash at `spi_csn_o(0)`
506
* `e`: Start the application, which is currently stored in the instruction memory (IMEM)
507
 
508
A new executable can be uploaded via UART by executing the `u` command. After that, the executable can be directly
509
executed via the `e` command. To store the recently uploaded executable to an attached SPI flash press `s`. To
510
directly load an executable from the SPI flash press `l`. The bootloader and the auto-boot sequence can be
511
manually restarted via the `r` command.
512
 
513
[TIP]
514
The CPU is in machine level privilege mode after reset. When the bootloader boots an application,
515
this application is also started in machine level privilege mode.
516
 
517 61 zero_gravi
[TIP]
518
For detailed information on using an SPI flash for application storage see User Guide section
519
https://stnolting.github.io/neorv32/ug/#_programming_an_external_spi_flash_via_the_bootloader[Programming an External SPI Flash via the Bootloader].
520 60 zero_gravi
 
521
 
522
:sectnums:
523
==== Auto Boot Sequence
524 61 zero_gravi
When you reset the NEORV32 processor, the bootloader waits 8 seconds for a UART console input before it
525 60 zero_gravi
starts the automatic boot sequence. This sequence tries to fetch a valid boot image from the external SPI
526 61 zero_gravi
flash, connected to SPI chip select `spi_csn_o(0)`. If a valid boot image is found that can be successfully
527
transferred into the instruction memory, it is automatically started. If no SPI flash is detected or if there
528
is no valid boot image found, and error code will be shown.
529 60 zero_gravi
 
530
 
531
:sectnums:
532
==== Bootloader Error Codes
533
 
534
If something goes wrong during bootloader operation, an error code is shown. In this case the processor
535
stalls, a bell command and one of the following error codes are send to the terminal, the bootloader status
536 61 zero_gravi
LED is permanently activated and the system must be manually reset.
537 60 zero_gravi
 
538
[cols="<2,<13"]
539
[grid="rows"]
540
|=======================
541 62 zero_gravi
| **`ERROR_0`** | If you try to transfer an invalid executable (via UART or from the external SPI flash), this error message shows up. There might be a transfer protocol configuration error in the terminal program. Also, if no SPI flash was found during an auto-boot attempt, this message will be displayed.
542
| **`ERROR_1`** | Your program is way too big for the internal processor’s instructions memory. Increase the memory size or reduce your application code.
543 60 zero_gravi
| **`ERROR_2`** | This indicates a checksum error. Something went wrong during the transfer of the program image (upload via UART or loading from the external SPI flash). If the error was caused by a UART upload, just try it again. When the error was generated during a flash access, the stored image might be corrupted.
544
| **`ERROR_3`** | This error occurs if the attached SPI flash cannot be accessed. Make sure you have the right type of flash and that it is properly connected to the NEORV32 SPI port using chip select #0.
545
|=======================
546
 
547
 
548
 
549
<<<
550
// ####################################################################################################################
551
:sectnums:
552
=== NEORV32 Runtime Environment
553
 
554
The NEORV32 provides a minimal runtime environment (RTE) that takes care of a stable
555
and _safe_ execution environment by handling _all_ traps (including interrupts).
556
 
557
[NOTE]
558
Using the RTE is **optional**. The RTE provides a simple and comfortable way of delegating traps while making sure that all traps (even though they are not
559
explicitly used by the application) are handled correctly. Performance-optimized applications or embedded operating systems should not use the RTE for delegating traps.
560
 
561
When execution enters the application's `main` function, the actual runtime environment is responsible for catching all implemented exceptions
562
and interrupts. To activate the NEORV32 RTE execute the following function:
563
 
564
[source,c]
565
----
566
void neorv32_rte_setup(void);
567
----
568
 
569
This setup initializes the `mtvec` CSR, which provides the base entry point for all trap
570
handlers. The address stored to this register reflects the first-level exception handler provided by the
571
NEORV32 RTE. Whenever an exception or interrupt is triggered, this first-level handler is called.
572
 
573
The first-level handler performs a complete context save, analyzes the source of the exception/interrupt and
574
calls the according second-level exception handler, which actually takes care of the exception/interrupt
575
handling. For this, the RTE manages a private look-up table to store the addresses of the according trap
576
handlers.
577
 
578
After the initial setup of the RTE, each entry in the trap handler's look-up table is initialized with a debug
579
handler, that outputs detailed hardware information via the **primary UART (UART0)** when triggered. This
580
is intended as a fall-back for debugging or for accidentally-triggered exceptions/interrupts.
581
For instance, an illegal instruction exception catched by the RTE debug handler might look like this in the UART0 output:
582
 
583
[source]
584
----
585
 Illegal instruction @0x000002d6, MTVAL=0x00001537 
586
----
587
 
588
To install the **actual application's trap handlers** the NEORV32 RTE provides functions for installing and
589
un-installing trap handler for each implemented exception/interrupt source.
590
 
591
[source,c]
592
----
593
int neorv32_rte_exception_install(uint8_t id, void (*handler)(void));
594
----
595
 
596
[cols="<5,<12"]
597
[options="header",grid="rows"]
598
|=======================
599
| ID name [C] | Description / trap causing entry
600
| `RTE_TRAP_I_MISALIGNED` | instruction address misaligned
601
| `RTE_TRAP_I_ACCESS`     | instruction (bus) access fault
602
| `RTE_TRAP_I_ILLEGAL`    | illegal instruction
603
| `RTE_TRAP_BREAKPOINT`   | breakpoint (`ebreak` instruction)
604
| `RTE_TRAP_L_MISALIGNED` | load address misaligned
605
| `RTE_TRAP_L_ACCESS`     | load (bus) access fault
606
| `RTE_TRAP_S_MISALIGNED` | store address misaligned
607
| `RTE_TRAP_S_ACCESS`     | store (bus) access fault
608
| `RTE_TRAP_MENV_CALL`    | environment call from machine mode (`ecall` instruction)
609
| `RTE_TRAP_UENV_CALL`    | environment call from user mode (`ecall` instruction)
610
| `RTE_TRAP_MTI`          | machine timer interrupt
611
| `RTE_TRAP_MEI`          | machine external interrupt
612
| `RTE_TRAP_MSI`          | machine software interrupt
613
| `RTE_TRAP_FIRQ_0` : `RTE_TRAP_FIRQ_15` | fast interrupt channel 0..15
614
|=======================
615
 
616
When installing a custom handler function for any of these exception/interrupts, make sure the function uses
617
**no attributes** (especially no interrupt attribute!), has no arguments and no return value like in the following
618
example:
619
 
620
[source,c]
621
----
622
void handler_xyz(void) {
623
 
624
  // handle exception/interrupt...
625
}
626
----
627
 
628
[WARNING]
629
Do NOT use the `((interrupt))` attribute for the application exception handler functions! This
630
will place an `mret` instruction to the end of it making it impossible to return to the first-level
631
exception handler of the RTE, which will cause stack corruption.
632
 
633
Example: Installation of the MTIME interrupt handler:
634
 
635
[source,c]
636
----
637
neorv32_rte_exception_install(EXC_MTI, handler_xyz);
638
----
639
 
640
To remove a previously installed exception handler call the according un-install function from the NEORV32
641
runtime environment. This will replace the previously installed handler by the initial debug handler, so even
642
un-installed exceptions and interrupts are further captured.
643
 
644
[source,c]
645
----
646
int neorv32_rte_exception_uninstall(uint8_t id);
647
----
648
 
649
Example: Removing the MTIME interrupt handler:
650
 
651
[source,c]
652
----
653
neorv32_rte_exception_uninstall(EXC_MTI);
654
----
655
 
656
[TIP]
657
More information regarding the NEORV32 runtime environment can be found in the doxygen
658
software documentation (also available online at https://stnolting.github.io/neorv32/sw/files.html[GitHub pages]).

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.