OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gas/] [doc/] [c-s390.texi] - Blame information for rev 179

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 179 jshamlet
@c Copyright 2009, 2011
2
@c Free Software Foundation, Inc.
3
@c This is part of the GAS manual.
4
@c For copying conditions, see the file as.texinfo.
5
@ifset GENERIC
6
@page
7
@node S/390-Dependent
8
@chapter IBM S/390 Dependent Features
9
@end ifset
10
@ifclear GENERIC
11
@node Machine Dependencies
12
@chapter IBM S/390 Dependent Features
13
@end ifclear
14
 
15
@cindex s390 support
16
 
17
The s390 version of @code{@value{AS}} supports two architectures modes
18
and seven chip levels. The architecture modes are the Enterprise System
19
Architecture (ESA) and the newer z/Architecture mode. The chip levels
20
are g5, g6, z900, z990, z9-109, z9-ec, z10 and z196.
21
 
22
@menu
23
* s390 Options::                Command-line Options.
24
* s390 Characters::             Special Characters.
25
* s390 Syntax::                 Assembler Instruction syntax.
26
* s390 Directives::             Assembler Directives.
27
* s390 Floating Point::         Floating Point.
28
@end menu
29
 
30
@node s390 Options
31
@section Options
32
@cindex options for s390
33
@cindex s390 options
34
 
35
The following table lists all available s390 specific options:
36
 
37
@table @code
38
@cindex @samp{-m31} option, s390
39
@cindex @samp{-m64} option, s390
40
@item -m31 | -m64
41
Select 31- or 64-bit ABI implying a word size of 32- or 64-bit.
42
 
43
These options are only available with the ELF object file format, and
44
require that the necessary BFD support has been included (on a 31-bit
45
platform you must add --enable-64-bit-bfd on the call to the configure
46
script to enable 64-bit usage and use s390x as target platform).
47
 
48
@cindex @samp{-mesa} option, s390
49
@cindex @samp{-mzarch} option, s390
50
@item -mesa | -mzarch
51
Select the architecture mode, either the Enterprise System Architecture
52
(esa) mode or the z/Architecture mode (zarch).
53
 
54
The 64-bit instructions are only available with the z/Architecture mode.
55
The combination of @samp{-m64} and @samp{-mesa} results in a warning
56
message.
57
 
58
@cindex @samp{-march=} option, s390
59
@item -march=@var{CPU}
60
This option specifies the target processor. The following processor names
61
are recognized:
62
@code{g5},
63
@code{g6},
64
@code{z900},
65
@code{z990},
66
@code{z9-109},
67
@code{z9-ec},
68
@code{z10} and
69
@code{z196}.
70
Assembling an instruction that is not supported on the target processor
71
results in an error message. Do not specify @code{g5} or @code{g6}
72
with @samp{-mzarch}.
73
 
74
@cindex @samp{-mregnames} option, s390
75
@item -mregnames
76
Allow symbolic names for registers.
77
 
78
@cindex @samp{-mno-regnames} option, s390
79
@item -mno-regnames
80
Do not allow symbolic names for registers.
81
 
82
@cindex @samp{-mwarn-areg-zero} option, s390
83
@item -mwarn-areg-zero
84
Warn whenever the operand for a base or index register has been specified
85
but evaluates to zero. This can indicate the misuse of general purpose
86
register 0 as an address register.
87
 
88
@end table
89
 
90
@node s390 Characters
91
@section Special Characters
92
@cindex line comment character, s390
93
@cindex s390 line comment character
94
 
95
@samp{#} is the line comment character.
96
 
97
If a @samp{#} appears as the first character of a line then the whole
98
line is treated as a comment, but in this case the line could also be
99
a logical line number directive (@pxref{Comments}) or a preprocessor
100
control command (@pxref{Preprocessing}).
101
 
102
@cindex line separator, s390
103
@cindex statement separator, s390
104
@cindex s390 line separator
105
The @samp{;} character can be used instead of a newline to separate
106
statements.
107
 
108
@node s390 Syntax
109
@section Instruction syntax
110
@cindex instruction syntax, s390
111
@cindex s390 instruction syntax
112
 
113
The assembler syntax closely follows the syntax outlined in
114
Enterprise Systems Architecture/390 Principles of Operation (SA22-7201)
115
and the z/Architecture Principles of Operation (SA22-7832).
116
 
117
Each instruction has two major parts, the instruction mnemonic
118
and the instruction operands. The instruction format varies.
119
 
120
@menu
121
* s390 Register::               Register Naming
122
* s390 Mnemonics::              Instruction Mnemonics
123
* s390 Operands::               Instruction Operands
124
* s390 Formats::                Instruction Formats
125
* s390 Aliases::                Instruction Aliases
126
* s390 Operand Modifier::       Instruction Operand Modifier
127
* s390 Instruction Marker::     Instruction Marker
128
* s390 Literal Pool Entries::   Literal Pool Entries
129
@end menu
130
 
131
@node s390 Register
132
@subsection Register naming
133
@cindex register naming, s390
134
@cindex s390 register naming
135
 
136
The @code{@value{AS}} recognizes a number of predefined symbols for the
137
various processor registers. A register specification in one of the
138
instruction formats is an unsigned integer between 0 and 15. The specific
139
instruction and the position of the register in the instruction format
140
denotes the type of the register. The register symbols are prefixed with
141
@samp{%}:
142
 
143
@display
144
@multitable {%rN} {the 16 general purpose registers, 0 <= N <= 15}
145
@item %rN @tab the 16 general purpose registers, 0 <= N <= 15
146
@item %fN @tab the 16 floating point registers, 0 <= N <= 15
147
@item %aN @tab the 16 access registers, 0 <= N <= 15
148
@item %cN @tab the 16 control registers, 0 <= N <= 15
149
@item %lit @tab an alias for the general purpose register %r13
150
@item %sp @tab an alias for the general purpose register %r15
151
@end multitable
152
@end display
153
 
154
@node s390 Mnemonics
155
@subsection Instruction Mnemonics
156
@cindex instruction mnemonics, s390
157
@cindex s390 instruction mnemonics
158
 
159
All instructions documented in the Principles of Operation are supported
160
with the mnemonic and order of operands as described.
161
The instruction mnemonic identifies the instruction format
162
(@ref{s390 Formats}) and the specific operation code for the instruction.
163
For example, the @samp{lr} mnemonic denotes the instruction format @samp{RR}
164
with the operation code @samp{0x18}.
165
 
166
The definition of the various mnemonics follows a scheme, where the first
167
character usually hint at the type of the instruction:
168
 
169
@display
170
@multitable {sla, sll} {if r is the last character the instruction operates on registers}
171
@item a @tab add instruction, for example @samp{al} for add logical 32-bit
172
@item b @tab branch instruction, for example @samp{bc} for branch on condition
173
@item c @tab compare or convert instruction, for example @samp{cr} for compare
174
register 32-bit
175
@item d @tab divide instruction, for example @samp{dlr} devide logical register
176
64-bit to 32-bit
177
@item i @tab insert instruction, for example @samp{ic} insert character
178
@item l @tab load instruction, for example @samp{ltr} load and test register
179
@item mv @tab move instruction, for example @samp{mvc} move character
180
@item m @tab multiply instruction, for example @samp{mh} multiply halfword
181
@item n @tab and instruction, for example @samp{ni} and immediate
182
@item o @tab or instruction, for example @samp{oc} or character
183
@item sla, sll @tab shift left single instruction
184
@item sra, srl @tab shift right single instruction
185
@item st @tab store instruction, for example @samp{stm} store multiple
186
@item s @tab subtract instruction, for example @samp{slr} subtract
187
logical 32-bit
188
@item t @tab test or translate instruction, of example @samp{tm} test under mask
189
@item x @tab exclusive or instruction, for example @samp{xc} exclusive or
190
character
191
@end multitable
192
@end display
193
 
194
Certain characters at the end of the mnemonic may describe a property
195
of the instruction:
196
 
197
@display
198
@multitable {c} {if r is the last character the instruction operates on registers}
199
@item c @tab the instruction uses a 8-bit character operand
200
@item f @tab the instruction extends a 32-bit operand to 64 bit
201
@item g @tab the operands are treated as 64-bit values
202
@item h @tab the operand uses a 16-bit halfword operand
203
@item i @tab the instruction uses an immediate operand
204
@item l @tab the instruction uses unsigned, logical operands
205
@item m @tab the instruction uses a mask or operates on multiple values
206
@item r @tab if r is the last character, the instruction operates on registers
207
@item y @tab the instruction uses 20-bit displacements
208
@end multitable
209
@end display
210
 
211
There are many exceptions to the scheme outlined in the above lists, in
212
particular for the priviledged instructions. For non-priviledged
213
instruction it works quite well, for example the instruction @samp{clgfr}
214
c: compare instruction, l: unsigned operands, g: 64-bit operands,
215
f: 32- to 64-bit extension, r: register operands. The instruction compares
216
an 64-bit value in a register with the zero extended 32-bit value from
217
a second register.
218
For a complete list of all mnemonics see appendix B in the Principles
219
of Operation.
220
 
221
@node s390 Operands
222
@subsection Instruction Operands
223
@cindex instruction operands, s390
224
@cindex s390 instruction operands
225
 
226
Instruction operands can be grouped into three classes, operands located
227
in registers, immediate operands, and operands in storage.
228
 
229
A register operand can be located in general, floating-point, access,
230
or control register. The register is identified by a four-bit field.
231
The field containing the register operand is called the R field.
232
 
233
Immediate operands are contained within the instruction and can have
234
8, 16 or 32 bits. The field containing the immediate operand is called
235
the I field. Dependent on the instruction the I field is either signed
236
or unsigned.
237
 
238
A storage operand consists of an address and a length. The address of a
239
storage operands can be specified in any of these ways:
240
 
241
@itemize
242
@item The content of a single general R
243
@item The sum of the content of a general register called the base
244
register B plus the content of a displacement field D
245
@item The sum of the contents of two general registers called the
246
index register X and the base register B plus the content of a
247
displacement field
248
@item The sum of the current instruction address and a 32-bit signed
249
immediate field multiplied by two.
250
@end itemize
251
 
252
The length of a storage operand can be:
253
 
254
@itemize
255
@item Implied by the instruction
256
@item Specified by a bitmask
257
@item Specified by a four-bit or eight-bit length field L
258
@item Specified by the content of a general register
259
@end itemize
260
 
261
The notation for storage operand addresses formed from multiple fields is
262
as follows:
263
 
264
@table @code
265
@item Dn(Bn)
266
the address for operand number n is formed from the content of general
267
register Bn called the base register and the displacement field Dn.
268
@item Dn(Xn,Bn)
269
the address for operand number n is formed from the content of general
270
register Xn called the index register, general register Bn called the
271
base register and the displacement field Dn.
272
@item Dn(Ln,Bn)
273
the address for operand number n is formed from the content of general
274
regiser Bn called the base register and the displacement field Dn.
275
The length of the operand n is specified by the field Ln.
276
@end table
277
 
278
The base registers Bn and the index registers Xn of a storage operand can
279
be skipped. If Bn and Xn are skipped, a zero will be stored to the operand
280
field. The notation changes as follows:
281
 
282
@display
283
@multitable @columnfractions 0.30 0.30
284
@headitem full notation @tab short notation
285
@item Dn(0,Bn) @tab Dn(Bn)
286
@item Dn(0,0) @tab Dn
287
@item Dn(0) @tab Dn
288
@item Dn(Ln,0) @tab Dn(Ln)
289
@end multitable
290
@end display
291
 
292
 
293
@node s390 Formats
294
@subsection Instruction Formats
295
@cindex instruction formats, s390
296
@cindex s390 instruction formats
297
 
298
The Principles of Operation manuals lists 26 instruction formats where
299
some of the formats have multiple variants. For the @samp{.insn}
300
pseudo directive the assembler recognizes some of the formats.
301
Typically, the most general variant of the instruction format is used
302
by the @samp{.insn} directive.
303
 
304
The following table lists the abbreviations used in the table of
305
instruction formats:
306
 
307
@display
308
@multitable {OpCode / OpCd} {Displacement lower 12 bits for operand x.}
309
@item OpCode / OpCd @tab Part of the op code.
310
@item Bx @tab Base register number for operand x.
311
@item Dx @tab Displacement for operand x.
312
@item DLx @tab Displacement lower 12 bits for operand x.
313
@item DHx @tab Displacement higher 8-bits for operand x.
314
@item Rx @tab Register number for operand x.
315
@item Xx @tab Index register number for operand x.
316
@item Ix @tab Signed immediate for operand x.
317
@item Ux @tab Unsigned immediate for operand x.
318
@end multitable
319
@end display
320
 
321
An instruction is two, four, or six bytes in length and must be aligned
322
on a 2 byte boundary. The first two bits of the instruction specify the
323
length of the instruction, 00 indicates a two byte instruction, 01 and 10
324
indicates a four byte instruction, and 11 indicates a six byte instruction.
325
 
326
The following table lists the s390 instruction formats that are available
327
with the @samp{.insn} pseudo directive:
328
 
329
@table @code
330
@item E format
331
@verbatim
332
+-------------+
333
|    OpCode   |
334
+-------------+
335
 
336
@end verbatim
337
 
338
@item RI format: <insn> R1,I2
339
@verbatim
340
+--------+----+----+------------------+
341
| OpCode | R1 |OpCd|        I2        |
342
+--------+----+----+------------------+
343
 
344
@end verbatim
345
 
346
@item RIE format: <insn> R1,R3,I2
347
@verbatim
348
+--------+----+----+------------------+--------+--------+
349
| OpCode | R1 | R3 |        I2        |////////| OpCode |
350
+--------+----+----+------------------+--------+--------+
351
 
352
@end verbatim
353
 
354
@item RIL format: <insn> R1,I2
355
@verbatim
356
+--------+----+----+------------------------------------+
357
| OpCode | R1 |OpCd|                  I2                |
358
+--------+----+----+------------------------------------+
359
 
360
@end verbatim
361
 
362
@item RILU format: <insn> R1,U2
363
@verbatim
364
+--------+----+----+------------------------------------+
365
| OpCode | R1 |OpCd|                  U2                |
366
+--------+----+----+------------------------------------+
367
 
368
@end verbatim
369
 
370
@item RIS format: <insn> R1,I2,M3,D4(B4)
371
@verbatim
372
+--------+----+----+----+-------------+--------+--------+
373
| OpCode | R1 | M3 | B4 |     D4      |   I2   | Opcode |
374
+--------+----+----+----+-------------+--------+--------+
375
 
376
@end verbatim
377
 
378
@item RR format: <insn> R1,R2
379
@verbatim
380
+--------+----+----+
381
| OpCode | R1 | R2 |
382
+--------+----+----+
383
 
384
@end verbatim
385
 
386
@item RRE format: <insn> R1,R2
387
@verbatim
388
+------------------+--------+----+----+
389
|      OpCode      |////////| R1 | R2 |
390
+------------------+--------+----+----+
391
 
392
@end verbatim
393
 
394
@item RRF format: <insn> R1,R2,R3,M4
395
@verbatim
396
+------------------+----+----+----+----+
397
|      OpCode      | R3 | M4 | R1 | R2 |
398
+------------------+----+----+----+----+
399
 
400
@end verbatim
401
 
402
@item RRS format: <insn> R1,R2,M3,D4(B4)
403
@verbatim
404
+--------+----+----+----+-------------+----+----+--------+
405
| OpCode | R1 | R3 | B4 |     D4      | M3 |////| OpCode |
406
+--------+----+----+----+-------------+----+----+--------+
407
 
408
@end verbatim
409
 
410
@item RS format: <insn> R1,R3,D2(B2)
411
@verbatim
412
+--------+----+----+----+-------------+
413
| OpCode | R1 | R3 | B2 |     D2      |
414
+--------+----+----+----+-------------+
415
 
416
@end verbatim
417
 
418
@item RSE format: <insn> R1,R3,D2(B2)
419
@verbatim
420
+--------+----+----+----+-------------+--------+--------+
421
| OpCode | R1 | R3 | B2 |     D2      |////////| OpCode |
422
+--------+----+----+----+-------------+--------+--------+
423
 
424
@end verbatim
425
 
426
@item RSI format: <insn> R1,R3,I2
427
@verbatim
428
+--------+----+----+------------------------------------+
429
| OpCode | R1 | R3 |                  I2                |
430
+--------+----+----+------------------------------------+
431
 
432
@end verbatim
433
 
434
@item RSY format: <insn> R1,R3,D2(B2)
435
@verbatim
436
+--------+----+----+----+-------------+--------+--------+
437
| OpCode | R1 | R3 | B2 |    DL2      |  DH2   | OpCode |
438
+--------+----+----+----+-------------+--------+--------+
439
 
440
@end verbatim
441
 
442
@item RX format: <insn> R1,D2(X2,B2)
443
@verbatim
444
+--------+----+----+----+-------------+
445
| OpCode | R1 | X2 | B2 |     D2      |
446
+--------+----+----+----+-------------+
447
 
448
@end verbatim
449
 
450
@item RXE format: <insn> R1,D2(X2,B2)
451
@verbatim
452
+--------+----+----+----+-------------+--------+--------+
453
| OpCode | R1 | X2 | B2 |     D2      |////////| OpCode |
454
+--------+----+----+----+-------------+--------+--------+
455
 
456
@end verbatim
457
 
458
@item RXF format: <insn> R1,R3,D2(X2,B2)
459
@verbatim
460
+--------+----+----+----+-------------+----+---+--------+
461
| OpCode | R3 | X2 | B2 |     D2      | R1 |///| OpCode |
462
+--------+----+----+----+-------------+----+---+--------+
463
 
464
@end verbatim
465
 
466
@item RXY format: <insn> R1,D2(X2,B2)
467
@verbatim
468
+--------+----+----+----+-------------+--------+--------+
469
| OpCode | R1 | X2 | B2 |     DL2     |   DH2  | OpCode |
470
+--------+----+----+----+-------------+--------+--------+
471
 
472
@end verbatim
473
 
474
@item S format: <insn> D2(B2)
475
@verbatim
476
+------------------+----+-------------+
477
|      OpCode      | B2 |     D2      |
478
+------------------+----+-------------+
479
 
480
@end verbatim
481
 
482
@item SI format: <insn> D1(B1),I2
483
@verbatim
484
+--------+---------+----+-------------+
485
| OpCode |   I2    | B1 |     D1      |
486
+--------+---------+----+-------------+
487
 
488
@end verbatim
489
 
490
@item SIY format: <insn> D1(B1),U2
491
@verbatim
492
+--------+---------+----+-------------+--------+--------+
493
| OpCode |   I2    | B1 |     DL1     |  DH1   | OpCode |
494
+--------+---------+----+-------------+--------+--------+
495
 
496
@end verbatim
497
 
498
@item SIL format: <insn> D1(B1),I2
499
@verbatim
500
+------------------+----+-------------+-----------------+
501
|      OpCode      | B1 |      D1     |       I2        |
502
+------------------+----+-------------+-----------------+
503
 
504
@end verbatim
505
 
506
@item SS format: <insn> D1(R1,B1),D2(B3),R3
507
@verbatim
508
+--------+----+----+----+-------------+----+------------+
509
| OpCode | R1 | R3 | B1 |     D1      | B2 |     D2     |
510
+--------+----+----+----+-------------+----+------------+
511
 
512
@end verbatim
513
 
514
@item SSE format: <insn> D1(B1),D2(B2)
515
@verbatim
516
+------------------+----+-------------+----+------------+
517
|      OpCode      | B1 |     D1      | B2 |     D2     |
518
+------------------+----+-------------+----+------------+
519
 
520
@end verbatim
521
 
522
@item SSF format: <insn> D1(B1),D2(B2),R3
523
@verbatim
524
+--------+----+----+----+-------------+----+------------+
525
| OpCode | R3 |OpCd| B1 |     D1      | B2 |     D2     |
526
+--------+----+----+----+-------------+----+------------+
527
 
528
@end verbatim
529
 
530
@end table
531
 
532
For the complete list of all instruction format variants see the
533
Principles of Operation manuals.
534
 
535
@node s390 Aliases
536
@subsection Instruction Aliases
537
@cindex instruction aliases, s390
538
@cindex s390 instruction aliases
539
 
540
A specific bit pattern can have multiple mnemonics, for example
541
the bit pattern @samp{0xa7000000} has the mnemonics @samp{tmh} and
542
@samp{tmlh}. In addition, there are a number of mnemonics recognized by
543
@code{@value{AS}} that are not present in the Principles of Operation.
544
These are the short forms of the branch instructions, where the condition
545
code mask operand is encoded in the mnemonic. This is relevant for the
546
branch instructions, the compare and branch instructions, and the
547
compare and trap instructions.
548
 
549
For the branch instructions there are 20 condition code strings that can
550
be used as part of the mnemonic in place of a mask operand in the instruction
551
format:
552
 
553
@display
554
@multitable @columnfractions .30 .30
555
@headitem instruction @tab short form
556
@item bcr   M1,R2  @tab  b<m>r  R2
557
@item bc    M1,D2(X2,B2) @tab  b<m>   D2(X2,B2)
558
@item brc   M1,I2 @tab j<m>   I2
559
@item brcl  M1,I2 @tab jg<m>  I2
560
@end multitable
561
@end display
562
 
563
In the mnemonic for a branch instruction the condition code string <m>
564
can be any of the following:
565
 
566
@display
567
@multitable {nle} {jump on not zero / if not zeros}
568
@item o @tab jump on overflow / if ones
569
@item h @tab jump on A high
570
@item p @tab jump on plus
571
@item nle @tab jump on not low or equal
572
@item l @tab jump on A low
573
@item m @tab jump on minus
574
@item nhe @tab jump on not high or equal
575
@item lh @tab jump on low or high
576
@item ne @tab jump on A not equal B
577
@item nz @tab jump on not zero / if not zeros
578
@item e @tab jump on A equal B
579
@item z @tab jump on zero / if zeroes
580
@item nlh @tab jump on not low or high
581
@item he @tab jump on high or equal
582
@item nl @tab jump on A not low
583
@item nm @tab jump on not minus / if not mixed
584
@item le @tab jump on low or equal
585
@item nh @tab jump on A not high
586
@item np @tab jump on not plus
587
@item no @tab jump on not overflow / if not ones
588
@end multitable
589
@end display
590
 
591
For the compare and branch, and compare and trap instructions there
592
are 12 condition code strings that can be used as part of the mnemonic in
593
place of a mask operand in the instruction format:
594
 
595
@display
596
@multitable @columnfractions .40 .40
597
@headitem instruction @tab short form
598
@item crb    R1,R2,M3,D4(B4)  @tab  crb<m>    R1,R2,D4(B4)
599
@item cgrb   R1,R2,M3,D4(B4)  @tab  cgrb<m>   R1,R2,D4(B4)
600
@item crj    R1,R2,M3,I4  @tab  crj<m>    R1,R2,I4
601
@item cgrj   R1,R2,M3,I4  @tab  cgrj<m>   R1,R2,I4
602
@item cib    R1,I2,M3,D4(B4)  @tab  cib<m>    R1,I2,D4(B4)
603
@item cgib   R1,I2,M3,D4(B4)  @tab  cgib<m>   R1,I2,D4(B4)
604
@item cij    R1,I2,M3,I4  @tab  cij<m>    R1,I2,I4
605
@item cgij   R1,I2,M3,I4  @tab  cgij<m>   R1,I2,I4
606
@item crt    R1,R2,M3  @tab  crt<m>    R1,R2
607
@item cgrt   R1,R2,M3  @tab  cgrt<m>   R1,R2
608
@item cit    R1,I2,M3  @tab  cit<m>    R1,I2
609
@item cgit   R1,I2,M3  @tab  cgit<m>   R1,I2
610
@item clrb   R1,R2,M3,D4(B4)  @tab  clrb<m>   R1,R2,D4(B4)
611
@item clgrb  R1,R2,M3,D4(B4)  @tab  clgrb<m>  R1,R2,D4(B4)
612
@item clrj   R1,R2,M3,I4  @tab  clrj<m>   R1,R2,I4
613
@item clgrj  R1,R2,M3,I4  @tab  clgrj<m>  R1,R2,I4
614
@item clib   R1,I2,M3,D4(B4)  @tab  clib<m>   R1,I2,D4(B4)
615
@item clgib  R1,I2,M3,D4(B4)  @tab  clgib<m>  R1,I2,D4(B4)
616
@item clij   R1,I2,M3,I4  @tab  clij<m>   R1,I2,I4
617
@item clgij  R1,I2,M3,I4  @tab  clgij<m>  R1,I2,I4
618
@item clrt   R1,R2,M3  @tab  clrt<m>   R1,R2
619
@item clgrt  R1,R2,M3  @tab  clgrt<m>  R1,R2
620
@item clfit  R1,I2,M3  @tab  clfit<m>  R1,I2
621
@item clgit  R1,I2,M3  @tab  clgit<m>  R1,I2
622
@end multitable
623
@end display
624
 
625
In the mnemonic for a compare and branch and compare and trap instruction
626
the condition code string <m> can be any of the following:
627
 
628
@display
629
@multitable {nle} {jump on not zero / if not zeros}
630
@item h @tab jump on A high
631
@item nle @tab jump on not low or equal
632
@item l @tab jump on A low
633
@item nhe @tab jump on not high or equal
634
@item ne @tab jump on A not equal B
635
@item lh @tab jump on low or high
636
@item e @tab jump on A equal B
637
@item nlh @tab jump on not low or high
638
@item nl @tab jump on A not low
639
@item he @tab jump on high or equal
640
@item nh @tab jump on A not high
641
@item le @tab jump on low or equal
642
@end multitable
643
@end display
644
 
645
@node s390 Operand Modifier
646
@subsection Instruction Operand Modifier
647
@cindex instruction operand modifier, s390
648
@cindex s390 instruction operand modifier
649
 
650
If a symbol modifier is attached to a symbol in an expression for an
651
instruction operand field, the symbol term is replaced with a reference
652
to an object in the global offset table (GOT) or the procedure linkage
653
table (PLT). The following expressions are allowed:
654
@samp{symbol@@modifier + constant},
655
@samp{symbol@@modifier + label + constant}, and
656
@samp{symbol@@modifier - label + constant}.
657
The term @samp{symbol} is the symbol that will be entered into the GOT or
658
PLT, @samp{label} is a local label, and @samp{constant} is an arbitrary
659
expression that the assembler can evaluate to a constant value.
660
 
661
The term @samp{(symbol + constant1)@@modifier +/- label + constant2}
662
is also accepted but a warning message is printed and the term is
663
converted to @samp{symbol@@modifier +/- label + constant1 + constant2}.
664
 
665
@table @code
666
@item @@got
667
@itemx @@got12
668
The @@got modifier can be used for displacement fields, 16-bit immediate
669
fields and 32-bit pc-relative immediate fields. The @@got12 modifier is
670
synonym to @@got. The symbol is added to the GOT. For displacement
671
fields and 16-bit immediate fields the symbol term is replaced with
672
the offset from the start of the GOT to the GOT slot for the symbol.
673
For a 32-bit pc-relative field the pc-relative offset to the GOT
674
slot from the current instruction address is used.
675
@item @@gotent
676
The @@gotent modifier can be used for 32-bit pc-relative immediate fields.
677
The symbol is added to the GOT and the symbol term is replaced with
678
the pc-relative offset from the current instruction to the GOT slot for the
679
symbol.
680
@item @@gotoff
681
The @@gotoff modifier can be used for 16-bit immediate fields. The symbol
682
term is replaced with the offset from the start of the GOT to the
683
address of the symbol.
684
@item @@gotplt
685
The @@gotplt modifier can be used for displacement fields, 16-bit immediate
686
fields, and 32-bit pc-relative immediate fields. A procedure linkage
687
table entry is generated for the symbol and a jump slot for the symbol
688
is added to the GOT. For displacement fields and 16-bit immediate
689
fields the symbol term is replaced with the offset from the start of the
690
GOT to the jump slot for the symbol. For a 32-bit pc-relative field
691
the pc-relative offset to the jump slot from the current instruction
692
address is used.
693
@item @@plt
694
The @@plt modifier can be used for 16-bit and 32-bit pc-relative immediate
695
fields. A procedure linkage table entry is generated for the symbol.
696
The symbol term is replaced with the relative offset from the current
697
instruction to the PLT entry for the symbol.
698
@item @@pltoff
699
The @@pltoff modifier can be used for 16-bit immediate fields. The symbol
700
term is replaced with the offset from the start of the PLT to the address
701
of the symbol.
702
@item @@gotntpoff
703
The @@gotntpoff modifier can be used for displacement fields. The symbol
704
is added to the static TLS block and the negated offset to the symbol
705
in the static TLS block is added to the GOT. The symbol term is replaced
706
with the offset to the GOT slot from the start of the GOT.
707
@item @@indntpoff
708
The @@indntpoff modifier can be used for 32-bit pc-relative immediate
709
fields. The symbol is added to the static TLS block and the negated offset
710
to the symbol in the static TLS block is added to the GOT. The symbol term
711
is replaced with the pc-relative offset to the GOT slot from the current
712
instruction address.
713
@end table
714
 
715
For more information about the thread local storage modifiers
716
@samp{gotntpoff} and @samp{indntpoff} see the ELF extension documentation
717
@samp{ELF Handling For Thread-Local Storage}.
718
 
719
@node s390 Instruction Marker
720
@subsection Instruction Marker
721
@cindex instruction marker, s390
722
@cindex s390 instruction marker
723
 
724
The thread local storage instruction markers are used by the linker to
725
perform code optimization.
726
 
727
@table @code
728
@item :tls_load
729
The :tls_load marker is used to flag the load instruction in the initial
730
exec TLS model that retrieves the offset from the thread pointer to a
731
thread local storage variable from the GOT.
732
@item :tls_gdcall
733
The :tls_gdcall marker is used to flag the branch-and-save instruction to
734
the __tls_get_offset function in the global dynamic TLS model.
735
@item :tls_ldcall
736
The :tls_ldcall marker is used to flag the branch-and-save instruction to
737
the __tls_get_offset function in the local dynamic TLS model.
738
@end table
739
 
740
For more information about the thread local storage instruction marker
741
and the linker optimizations see the ELF extension documentation
742
@samp{ELF Handling For Thread-Local Storage}.
743
 
744
@node s390 Literal Pool Entries
745
@subsection Literal Pool Entries
746
@cindex literal pool entries, s390
747
@cindex s390 literal pool entries
748
 
749
A literal pool is a collection of values. To access the values a pointer
750
to the literal pool is loaded to a register, the literal pool register.
751
Usually, register %r13 is used as the literal pool register
752
(@ref{s390 Register}). Literal pool entries are created by adding the
753
suffix :lit1, :lit2, :lit4, or :lit8 to the end of an expression for an
754
instruction operand. The expression is added to the literal pool and the
755
operand is replaced with the offset to the literal in the literal pool.
756
 
757
@table @code
758
@item :lit1
759
The literal pool entry is created as an 8-bit value. An operand modifier
760
must not be used for the original expression.
761
@item :lit2
762
The literal pool entry is created as a 16 bit value. The operand modifier
763
@@got may be used in the original expression. The term @samp{x@@got:lit2}
764
will put the got offset for the global symbol x to the literal pool as
765
16 bit value.
766
@item :lit4
767
The literal pool entry is created as a 32-bit value. The operand modifier
768
@@got and @@plt may be used in the original expression. The term
769
@samp{x@@got:lit4} will put the got offset for the global symbol x to the
770
literal pool as a 32-bit value. The term @samp{x@@plt:lit4} will put the
771
plt offset for the global symbol x to the literal pool as a 32-bit value.
772
@item :lit8
773
The literal pool entry is created as a 64-bit value. The operand modifier
774
@@got and @@plt may be used in the original expression. The term
775
@samp{x@@got:lit8} will put the got offset for the global symbol x to the
776
literal pool as a 64-bit value. The term @samp{x@@plt:lit8} will put the
777
plt offset for the global symbol x to the literal pool as a 64-bit value.
778
@end table
779
 
780
The assembler directive @samp{.ltorg} is used to emit all literal pool
781
entries to the current position.
782
 
783
@node s390 Directives
784
@section Assembler Directives
785
 
786
@code{@value{AS}} for s390 supports all of the standard ELF
787
assembler directives as outlined in the main part of this document.
788
Some directives have been extended and there are some additional
789
directives, which are only available for the s390 @code{@value{AS}}.
790
 
791
@table @code
792
@cindex @code{.insn} directive, s390
793
@item .insn
794
This directive permits the numeric representation of an instructions
795
and makes the assembler insert the operands according to one of the
796
instructions formats for @samp{.insn} (@ref{s390 Formats}).
797
For example, the instruction @samp{l %r1,24(%r15)} could be written as
798
@samp{.insn rx,0x58000000,%r1,24(%r15)}.
799
@cindex @code{.short} directive, s390
800
@cindex @code{.long} directive, s390
801
@cindex @code{.quad} directive, s390
802
@item .short
803
@itemx .long
804
@itemx .quad
805
This directive places one or more 16-bit (.short), 32-bit (.long), or
806
64-bit (.quad) values into the current section. If an ELF or TLS modifier
807
is used only the following expressions are allowed:
808
@samp{symbol@@modifier + constant},
809
@samp{symbol@@modifier + label + constant}, and
810
@samp{symbol@@modifier - label + constant}.
811
The following modifiers are available:
812
@table @code
813
@item @@got
814
@itemx @@got12
815
The @@got modifier can be used for .short, .long and .quad. The @@got12
816
modifier is synonym to @@got. The symbol is added to the GOT. The symbol
817
term is replaced with offset from the start of the GOT to the GOT slot for
818
the symbol.
819
@item @@gotoff
820
The @@gotoff modifier can be used for .short, .long and .quad. The symbol
821
term is replaced with the offset from the start of the GOT to the address
822
of the symbol.
823
@item @@gotplt
824
The @@gotplt modifier can be used for .long and .quad. A procedure linkage
825
table entry is generated for the symbol and a jump slot for the symbol
826
is added to the GOT. The symbol term is replaced with the offset from the
827
start of the GOT to the jump slot for the symbol.
828
@item @@plt
829
The @@plt modifier can be used for .long and .quad. A procedure linkage
830
table entry us generated for the symbol. The symbol term is replaced with
831
the address of the PLT entry for the symbol.
832
@item @@pltoff
833
The @@pltoff modifier can be used for .short, .long and .quad. The symbol
834
term is replaced with the offset from the start of the PLT to the address
835
of the symbol.
836
@item @@tlsgd
837
@itemx @@tlsldm
838
The @@tlsgd and @@tlsldm modifier can be used for .long and .quad. A
839
tls_index structure for the symbol is added to the GOT. The symbol term is
840
replaced with the offset from the start of the GOT to the tls_index structure.
841
@item @@gotntpoff
842
@itemx @@indntpoff
843
The @@gotntpoff and @@indntpoff modifier can be used for .long and .quad.
844
The symbol is added to the static TLS block and the negated offset to the
845
symbol in the static TLS block is added to the GOT. For @@gotntpoff the
846
symbol term is replaced with the offset from the start of the GOT to the
847
GOT slot, for @@indntpoff the symbol term is replaced with the address
848
of the GOT slot.
849
@item @@dtpoff
850
The @@dtpoff modifier can be used for .long and .quad. The symbol term
851
is replaced with the offset of the symbol relative to the start of the
852
TLS block it is contained in.
853
@item @@ntpoff
854
The @@ntpoff modifier can be used for .long and .quad. The symbol term
855
is replaced with the offset of the symbol relative to the TCB pointer.
856
@end table
857
 
858
For more information about the thread local storage modifiers see the
859
ELF extension documentation @samp{ELF Handling For Thread-Local Storage}.
860
 
861
@cindex @code{.ltorg} directive, s390
862
@item .ltorg
863
This directive causes the current contents of the literal pool to be
864
dumped to the current location (@ref{s390 Literal Pool Entries}).
865
 
866
@cindex @code{.machine} directive, s390
867
@item .machine string
868
This directive allows you to change the machine for which code is
869
generated.  @code{string} may be any of the @code{-march=} selection
870
options (without the -march=), @code{push}, or @code{pop}.
871
@code{.machine push} saves the currently selected cpu, which may be
872
restored with @code{.machine pop}.  Be aware that the cpu string has
873
to be put into double quotes in case it contains characters not
874
appropriate for identifiers.  So you have to write @code{"z9-109"}
875
instead of just @code{z9-109}.
876
@end table
877
 
878
@node s390 Floating Point
879
@section Floating Point
880
@cindex floating point, s390
881
@cindex s390 floating point
882
 
883
The assembler recognizes both the @sc{ieee} floating-point instruction and
884
the hexadecimal floating-point instructions. The floating-point constructors
885
@samp{.float}, @samp{.single}, and @samp{.double} always emit the
886
@sc{ieee} format. To assemble hexadecimal floating-point constants the
887
@samp{.long} and @samp{.quad} directives must be used.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.