OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [incremental.cc] - Blame information for rev 159

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// inremental.cc -- incremental linking support for gold
2
 
3 159 khays
// Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 27 khays
// Written by Mikolaj Zalewski <mikolajz@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25 148 khays
#include <set>
26 27 khays
#include <cstdarg>
27
#include "libiberty.h"
28
 
29
#include "elfcpp.h"
30
#include "options.h"
31
#include "output.h"
32
#include "symtab.h"
33
#include "incremental.h"
34
#include "archive.h"
35
#include "object.h"
36
#include "output.h"
37
#include "target-select.h"
38
#include "target.h"
39
#include "fileread.h"
40
#include "script.h"
41
 
42
namespace gold {
43
 
44
// Version information. Will change frequently during the development, later
45
// we could think about backward (and forward?) compatibility.
46
const unsigned int INCREMENTAL_LINK_VERSION = 1;
47
 
48
// This class manages the .gnu_incremental_inputs section, which holds
49
// the header information, a directory of input files, and separate
50
// entries for each input file.
51
 
52
template<int size, bool big_endian>
53
class Output_section_incremental_inputs : public Output_section_data
54
{
55
 public:
56
  Output_section_incremental_inputs(const Incremental_inputs* inputs,
57
                                    const Symbol_table* symtab)
58
    : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
59
  { }
60
 
61
 protected:
62
  // This is called to update the section size prior to assigning
63
  // the address and file offset.
64
  void
65
  update_data_size()
66
  { this->set_final_data_size(); }
67
 
68
  // Set the final data size.
69
  void
70
  set_final_data_size();
71
 
72
  // Write the data to the file.
73
  void
74
  do_write(Output_file*);
75
 
76
  // Write to a map file.
77
  void
78
  do_print_to_mapfile(Mapfile* mapfile) const
79
  { mapfile->print_output_data(this, _("** incremental_inputs")); }
80
 
81
 private:
82
  // Write the section header.
83
  unsigned char*
84
  write_header(unsigned char* pov, unsigned int input_file_count,
85
               section_offset_type command_line_offset);
86
 
87
  // Write the input file entries.
88
  unsigned char*
89
  write_input_files(unsigned char* oview, unsigned char* pov,
90
                    Stringpool* strtab);
91
 
92
  // Write the supplemental information blocks.
93
  unsigned char*
94
  write_info_blocks(unsigned char* oview, unsigned char* pov,
95
                    Stringpool* strtab, unsigned int* global_syms,
96
                    unsigned int global_sym_count);
97
 
98
  // Write the contents of the .gnu_incremental_symtab section.
99
  void
100
  write_symtab(unsigned char* pov, unsigned int* global_syms,
101
               unsigned int global_sym_count);
102
 
103
  // Write the contents of the .gnu_incremental_got_plt section.
104
  void
105
  write_got_plt(unsigned char* pov, off_t view_size);
106
 
107
  // Typedefs for writing the data to the output sections.
108
  typedef elfcpp::Swap<size, big_endian> Swap;
109
  typedef elfcpp::Swap<16, big_endian> Swap16;
110
  typedef elfcpp::Swap<32, big_endian> Swap32;
111
  typedef elfcpp::Swap<64, big_endian> Swap64;
112
 
113
  // Sizes of various structures.
114
  static const int sizeof_addr = size / 8;
115
  static const int header_size = 16;
116
  static const int input_entry_size = 24;
117
 
118
  // The Incremental_inputs object.
119
  const Incremental_inputs* inputs_;
120
 
121
  // The symbol table.
122
  const Symbol_table* symtab_;
123
};
124
 
125
// Inform the user why we don't do an incremental link.  Not called in
126
// the obvious case of missing output file.  TODO: Is this helpful?
127
 
128
void
129
vexplain_no_incremental(const char* format, va_list args)
130
{
131
  char* buf = NULL;
132
  if (vasprintf(&buf, format, args) < 0)
133
    gold_nomem();
134
  gold_info(_("the link might take longer: "
135
              "cannot perform incremental link: %s"), buf);
136
  free(buf);
137
}
138
 
139
void
140
explain_no_incremental(const char* format, ...)
141
{
142
  va_list args;
143
  va_start(args, format);
144
  vexplain_no_incremental(format, args);
145
  va_end(args);
146
}
147
 
148
// Report an error.
149
 
150
void
151
Incremental_binary::error(const char* format, ...) const
152
{
153
  va_list args;
154
  va_start(args, format);
155
  // Current code only checks if the file can be used for incremental linking,
156
  // so errors shouldn't fail the build, but only result in a fallback to a
157
  // full build.
158
  // TODO: when we implement incremental editing of the file, we may need a
159
  // flag that will cause errors to be treated seriously.
160
  vexplain_no_incremental(format, args);
161
  va_end(args);
162
}
163
 
164
// Find the .gnu_incremental_inputs section and related sections.
165
 
166
template<int size, bool big_endian>
167
bool
168
Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
169
    unsigned int* p_inputs_shndx,
170
    unsigned int* p_symtab_shndx,
171
    unsigned int* p_relocs_shndx,
172
    unsigned int* p_got_plt_shndx,
173
    unsigned int* p_strtab_shndx)
174
{
175
  unsigned int inputs_shndx =
176
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
177
  if (inputs_shndx == elfcpp::SHN_UNDEF)  // Not found.
178
    return false;
179
 
180
  unsigned int symtab_shndx =
181
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
182
  if (symtab_shndx == elfcpp::SHN_UNDEF)  // Not found.
183
    return false;
184
  if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
185
    return false;
186
 
187
  unsigned int relocs_shndx =
188
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
189
  if (relocs_shndx == elfcpp::SHN_UNDEF)  // Not found.
190
    return false;
191
  if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
192
    return false;
193
 
194
  unsigned int got_plt_shndx =
195
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
196
  if (got_plt_shndx == elfcpp::SHN_UNDEF)  // Not found.
197
    return false;
198
  if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
199
    return false;
200
 
201
  unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
202
  if (strtab_shndx == elfcpp::SHN_UNDEF
203
      || strtab_shndx > this->elf_file_.shnum()
204
      || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
205
    return false;
206
 
207
  if (p_inputs_shndx != NULL)
208
    *p_inputs_shndx = inputs_shndx;
209
  if (p_symtab_shndx != NULL)
210
    *p_symtab_shndx = symtab_shndx;
211
  if (p_relocs_shndx != NULL)
212
    *p_relocs_shndx = relocs_shndx;
213
  if (p_got_plt_shndx != NULL)
214
    *p_got_plt_shndx = got_plt_shndx;
215
  if (p_strtab_shndx != NULL)
216
    *p_strtab_shndx = strtab_shndx;
217
  return true;
218
}
219
 
220
// Set up the readers into the incremental info sections.
221
 
222
template<int size, bool big_endian>
223
void
224
Sized_incremental_binary<size, big_endian>::setup_readers()
225
{
226
  unsigned int inputs_shndx;
227
  unsigned int symtab_shndx;
228
  unsigned int relocs_shndx;
229
  unsigned int got_plt_shndx;
230
  unsigned int strtab_shndx;
231
 
232
  if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
233
                                              &relocs_shndx, &got_plt_shndx,
234
                                              &strtab_shndx))
235
    return;
236
 
237
  Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
238
  Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
239
  Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
240
  Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
241
  Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
242
 
243
  View inputs_view = this->view(inputs_location);
244
  View symtab_view = this->view(symtab_location);
245
  View relocs_view = this->view(relocs_location);
246
  View got_plt_view = this->view(got_plt_location);
247
  View strtab_view = this->view(strtab_location);
248
 
249
  elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
250
 
251
  this->inputs_reader_ =
252
      Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
253
  this->symtab_reader_ =
254
      Incremental_symtab_reader<big_endian>(symtab_view.data(),
255
                                            symtab_location.data_size);
256
  this->relocs_reader_ =
257
      Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
258
                                                  relocs_location.data_size);
259
  this->got_plt_reader_ =
260
      Incremental_got_plt_reader<big_endian>(got_plt_view.data());
261
 
262
  // Find the main symbol table.
263
  unsigned int main_symtab_shndx =
264
      this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
265
  gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
266
  this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
267
 
268
  // Find the main symbol string table.
269
  unsigned int main_strtab_shndx =
270
      this->elf_file_.section_link(main_symtab_shndx);
271
  gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
272
              && main_strtab_shndx < this->elf_file_.shnum());
273
  this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
274
 
275
  // Walk the list of input files (a) to setup an Input_reader for each
276
  // input file, and (b) to record maps of files added from archive
277
  // libraries and scripts.
278
  Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
279
  unsigned int count = inputs.input_file_count();
280
  this->input_objects_.resize(count);
281
  this->input_entry_readers_.reserve(count);
282
  this->library_map_.resize(count);
283
  this->script_map_.resize(count);
284
  for (unsigned int i = 0; i < count; i++)
285
    {
286
      Input_entry_reader input_file = inputs.input_file(i);
287
      this->input_entry_readers_.push_back(Sized_input_reader(input_file));
288
      switch (input_file.type())
289
        {
290
        case INCREMENTAL_INPUT_OBJECT:
291
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
292
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
293
          // No special treatment necessary.
294
          break;
295
        case INCREMENTAL_INPUT_ARCHIVE:
296
          {
297
            Incremental_library* lib =
298
                new Incremental_library(input_file.filename(), i,
299
                                        &this->input_entry_readers_[i]);
300
            this->library_map_[i] = lib;
301
            unsigned int member_count = input_file.get_member_count();
302
            for (unsigned int j = 0; j < member_count; j++)
303
              {
304
                int member_offset = input_file.get_member_offset(j);
305
                int member_index = inputs.input_file_index(member_offset);
306
                this->library_map_[member_index] = lib;
307
              }
308
          }
309
          break;
310
        case INCREMENTAL_INPUT_SCRIPT:
311
          {
312 159 khays
            Script_info* script = new Script_info(input_file.filename(), i);
313 27 khays
            this->script_map_[i] = script;
314
            unsigned int object_count = input_file.get_object_count();
315
            for (unsigned int j = 0; j < object_count; j++)
316
              {
317
                int object_offset = input_file.get_object_offset(j);
318
                int object_index = inputs.input_file_index(object_offset);
319
                this->script_map_[object_index] = script;
320
              }
321
          }
322
          break;
323
        default:
324
          gold_unreachable();
325
        }
326
    }
327
 
328
  // Initialize the map of global symbols.
329
  unsigned int nglobals = this->symtab_reader_.symbol_count();
330
  this->symbol_map_.resize(nglobals);
331
 
332
  this->has_incremental_info_ = true;
333
}
334
 
335
// Walk the list of input files given on the command line, and build
336
// a direct map of file index to the corresponding input argument.
337
 
338
void
339
check_input_args(std::vector<const Input_argument*>& input_args_map,
340
                 Input_arguments::const_iterator begin,
341
                 Input_arguments::const_iterator end)
342
{
343
  for (Input_arguments::const_iterator p = begin;
344
       p != end;
345
       ++p)
346
    {
347
      if (p->is_group())
348
        {
349
          const Input_file_group* group = p->group();
350
          check_input_args(input_args_map, group->begin(), group->end());
351
        }
352
      else if (p->is_lib())
353
        {
354
          const Input_file_lib* lib = p->lib();
355
          check_input_args(input_args_map, lib->begin(), lib->end());
356
        }
357
      else
358
        {
359
          gold_assert(p->is_file());
360
          unsigned int arg_serial = p->file().arg_serial();
361
          if (arg_serial > 0)
362
            {
363
              gold_assert(arg_serial <= input_args_map.size());
364
              gold_assert(input_args_map[arg_serial - 1] == 0);
365
              input_args_map[arg_serial - 1] = &*p;
366
            }
367
        }
368
    }
369
}
370
 
371
// Determine whether an incremental link based on the existing output file
372
// can be done.
373
 
374
template<int size, bool big_endian>
375
bool
376
Sized_incremental_binary<size, big_endian>::do_check_inputs(
377
    const Command_line& cmdline,
378
    Incremental_inputs* incremental_inputs)
379
{
380
  Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
381
 
382
  if (!this->has_incremental_info_)
383
    {
384
      explain_no_incremental(_("no incremental data from previous build"));
385
      return false;
386
    }
387
 
388
  if (inputs.version() != INCREMENTAL_LINK_VERSION)
389
    {
390
      explain_no_incremental(_("different version of incremental build data"));
391
      return false;
392
    }
393
 
394
  if (incremental_inputs->command_line() != inputs.command_line())
395
    {
396 159 khays
      gold_debug(DEBUG_INCREMENTAL,
397
                 "old command line: %s",
398
                 inputs.command_line());
399
      gold_debug(DEBUG_INCREMENTAL,
400
                 "new command line: %s",
401
                 incremental_inputs->command_line().c_str());
402 27 khays
      explain_no_incremental(_("command line changed"));
403
      return false;
404
    }
405
 
406
  // Walk the list of input files given on the command line, and build
407
  // a direct map of argument serial numbers to the corresponding input
408
  // arguments.
409
  this->input_args_map_.resize(cmdline.number_of_input_files());
410
  check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
411
 
412
  // Walk the list of input files to check for conditions that prevent
413
  // an incremental update link.
414
  unsigned int count = inputs.input_file_count();
415
  for (unsigned int i = 0; i < count; i++)
416
    {
417
      Input_entry_reader input_file = inputs.input_file(i);
418
      switch (input_file.type())
419
        {
420
        case INCREMENTAL_INPUT_OBJECT:
421
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
422
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
423
        case INCREMENTAL_INPUT_ARCHIVE:
424
          // No special treatment necessary.
425
          break;
426
        case INCREMENTAL_INPUT_SCRIPT:
427
          if (this->do_file_has_changed(i))
428
            {
429
              explain_no_incremental(_("%s: script file changed"),
430
                                     input_file.filename());
431
              return false;
432
            }
433
          break;
434
        default:
435
          gold_unreachable();
436
        }
437
    }
438
 
439
  return true;
440
}
441
 
442
// Return TRUE if input file N has changed since the last incremental link.
443
 
444
template<int size, bool big_endian>
445
bool
446
Sized_incremental_binary<size, big_endian>::do_file_has_changed(
447
    unsigned int n) const
448
{
449
  Input_entry_reader input_file = this->inputs_reader_.input_file(n);
450
  Incremental_disposition disp = INCREMENTAL_CHECK;
451 159 khays
 
452
  // For files named in scripts, find the file that was actually named
453
  // on the command line, so that we can get the incremental disposition
454
  // flag.
455
  Script_info* script = this->get_script_info(n);
456
  if (script != NULL)
457
    n = script->input_file_index();
458
 
459 27 khays
  const Input_argument* input_argument = this->get_input_argument(n);
460
  if (input_argument != NULL)
461
    disp = input_argument->file().options().incremental_disposition();
462
 
463 159 khays
  // For files at the beginning of the command line (i.e., those added
464
  // implicitly by gcc), check whether the --incremental-startup-unchanged
465
  // option was used.
466
  if (disp == INCREMENTAL_STARTUP)
467
    disp = parameters->options().incremental_startup_disposition();
468
 
469 27 khays
  if (disp != INCREMENTAL_CHECK)
470
    return disp == INCREMENTAL_CHANGED;
471
 
472
  const char* filename = input_file.filename();
473
  Timespec old_mtime = input_file.get_mtime();
474
  Timespec new_mtime;
475
  if (!get_mtime(filename, &new_mtime))
476
    {
477
      // If we can't open get the current modification time, assume it has
478
      // changed.  If the file doesn't exist, we'll issue an error when we
479
      // try to open it later.
480
      return true;
481
    }
482
 
483
  if (new_mtime.seconds > old_mtime.seconds)
484
    return true;
485
  if (new_mtime.seconds == old_mtime.seconds
486
      && new_mtime.nanoseconds > old_mtime.nanoseconds)
487
    return true;
488
  return false;
489
}
490
 
491
// Initialize the layout of the output file based on the existing
492
// output file.
493
 
494
template<int size, bool big_endian>
495
void
496
Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
497
{
498
  typedef elfcpp::Shdr<size, big_endian> Shdr;
499
  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
500
 
501
  // Get views of the section headers and the section string table.
502
  const off_t shoff = this->elf_file_.shoff();
503
  const unsigned int shnum = this->elf_file_.shnum();
504
  const unsigned int shstrndx = this->elf_file_.shstrndx();
505
  Location shdrs_location(shoff, shnum * shdr_size);
506
  Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
507
  View shdrs_view = this->view(shdrs_location);
508
  View shstrndx_view = this->view(shstrndx_location);
509
  elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
510
                              shstrndx_location.data_size);
511
 
512
  layout->set_incremental_base(this);
513
 
514
  // Initialize the layout.
515
  this->section_map_.resize(shnum);
516
  const unsigned char* pshdr = shdrs_view.data() + shdr_size;
517
  for (unsigned int i = 1; i < shnum; i++)
518
    {
519
      Shdr shdr(pshdr);
520
      const char* name;
521
      if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
522
        name = NULL;
523
      gold_debug(DEBUG_INCREMENTAL,
524
                 "Output section: %2d %08lx %08lx %08lx %3d %s",
525
                 i,
526
                 static_cast<long>(shdr.get_sh_addr()),
527
                 static_cast<long>(shdr.get_sh_offset()),
528
                 static_cast<long>(shdr.get_sh_size()),
529
                 shdr.get_sh_type(), name ? name : "<null>");
530
      this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
531
      pshdr += shdr_size;
532
    }
533
}
534
 
535
// Mark regions of the input file that must be kept unchanged.
536
 
537
template<int size, bool big_endian>
538
void
539
Sized_incremental_binary<size, big_endian>::do_reserve_layout(
540
    unsigned int input_file_index)
541
{
542 148 khays
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
543
 
544 27 khays
  Input_entry_reader input_file =
545
      this->inputs_reader_.input_file(input_file_index);
546
 
547
  if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
548 148 khays
    {
549
      // Reserve the BSS space used for COPY relocations.
550
      unsigned int nsyms = input_file.get_global_symbol_count();
551
      Incremental_binary::View symtab_view(NULL);
552
      unsigned int symtab_count;
553
      elfcpp::Elf_strtab strtab(NULL, 0);
554
      this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
555
      for (unsigned int i = 0; i < nsyms; ++i)
556
        {
557
          bool is_def;
558
          bool is_copy;
559
          unsigned int output_symndx =
560
              input_file.get_output_symbol_index(i, &is_def, &is_copy);
561
          if (is_copy)
562
            {
563
              const unsigned char* sym_p = (symtab_view.data()
564
                                            + output_symndx * sym_size);
565
              elfcpp::Sym<size, big_endian> gsym(sym_p);
566
              unsigned int shndx = gsym.get_st_shndx();
567
              if (shndx < 1 || shndx >= this->section_map_.size())
568
                continue;
569
              Output_section* os = this->section_map_[shndx];
570
              off_t offset = gsym.get_st_value() - os->address();
571
              os->reserve(offset, gsym.get_st_size());
572
              gold_debug(DEBUG_INCREMENTAL,
573
                         "Reserve for COPY reloc: %s, off %d, size %d",
574
                         os->name(),
575
                         static_cast<int>(offset),
576
                         static_cast<int>(gsym.get_st_size()));
577
            }
578
        }
579
      return;
580
    }
581 27 khays
 
582
  unsigned int shnum = input_file.get_input_section_count();
583
  for (unsigned int i = 0; i < shnum; i++)
584
    {
585
      typename Input_entry_reader::Input_section_info sect =
586
          input_file.get_input_section(i);
587
      if (sect.output_shndx == 0 || sect.sh_offset == -1)
588
        continue;
589
      Output_section* os = this->section_map_[sect.output_shndx];
590
      gold_assert(os != NULL);
591
      os->reserve(sect.sh_offset, sect.sh_size);
592
    }
593
}
594
 
595
// Process the GOT and PLT entries from the existing output file.
596
 
597
template<int size, bool big_endian>
598
void
599
Sized_incremental_binary<size, big_endian>::do_process_got_plt(
600
    Symbol_table* symtab,
601
    Layout* layout)
602
{
603
  Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
604
  Sized_target<size, big_endian>* target =
605
      parameters->sized_target<size, big_endian>();
606
 
607
  // Get the number of symbols in the main symbol table and in the
608
  // incremental symbol table.  The difference between the two counts
609
  // is the index of the first forced-local or global symbol in the
610
  // main symbol table.
611
  unsigned int symtab_count =
612
      this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
613
  unsigned int isym_count = this->symtab_reader_.symbol_count();
614
  unsigned int first_global = symtab_count - isym_count;
615
 
616
  // Tell the target how big the GOT and PLT sections are.
617
  unsigned int got_count = got_plt_reader.get_got_entry_count();
618
  unsigned int plt_count = got_plt_reader.get_plt_entry_count();
619
  Output_data_got<size, big_endian>* got =
620
      target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
621
 
622
  // Read the GOT entries from the base file and build the outgoing GOT.
623
  for (unsigned int i = 0; i < got_count; ++i)
624
    {
625
      unsigned int got_type = got_plt_reader.get_got_type(i);
626
      if ((got_type & 0x7f) == 0x7f)
627
        {
628
          // This is the second entry of a pair.
629
          got->reserve_slot(i);
630
          continue;
631
        }
632
      unsigned int symndx = got_plt_reader.get_got_symndx(i);
633
      if (got_type & 0x80)
634
        {
635
          // This is an entry for a local symbol.  Ignore this entry if
636
          // the object file was replaced.
637
          unsigned int input_index = got_plt_reader.get_got_input_index(i);
638
          gold_debug(DEBUG_INCREMENTAL,
639
                     "GOT entry %d, type %02x: (local symbol)",
640
                     i, got_type & 0x7f);
641
          Sized_relobj_incr<size, big_endian>* obj =
642
              this->input_object(input_index);
643
          if (obj != NULL)
644
            target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
645
        }
646
      else
647
        {
648
          // This is an entry for a global symbol.  GOT_DESC is the symbol
649
          // table index.
650
          // FIXME: This should really be a fatal error (corrupt input).
651
          gold_assert(symndx >= first_global && symndx < symtab_count);
652
          Symbol* sym = this->global_symbol(symndx - first_global);
653 148 khays
          // Add the GOT entry only if the symbol is still referenced.
654
          if (sym != NULL && sym->in_reg())
655
            {
656
              gold_debug(DEBUG_INCREMENTAL,
657
                         "GOT entry %d, type %02x: %s",
658
                         i, got_type, sym->name());
659
              target->reserve_global_got_entry(i, sym, got_type);
660
            }
661 27 khays
        }
662
    }
663
 
664
  // Read the PLT entries from the base file and pass each to the target.
665
  for (unsigned int i = 0; i < plt_count; ++i)
666
    {
667
      unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
668
      // FIXME: This should really be a fatal error (corrupt input).
669
      gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
670
      Symbol* sym = this->global_symbol(plt_desc - first_global);
671 148 khays
      // Add the PLT entry only if the symbol is still referenced.
672
      if (sym->in_reg())
673
        {
674
          gold_debug(DEBUG_INCREMENTAL,
675
                     "PLT entry %d: %s",
676
                     i, sym->name());
677 159 khays
          target->register_global_plt_entry(symtab, layout, i, sym);
678 148 khays
        }
679 27 khays
    }
680
}
681
 
682 148 khays
// Emit COPY relocations from the existing output file.
683
 
684
template<int size, bool big_endian>
685
void
686
Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
687
    Symbol_table* symtab)
688
{
689
  Sized_target<size, big_endian>* target =
690
      parameters->sized_target<size, big_endian>();
691
 
692
  for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
693
       p != this->copy_relocs_.end();
694
       ++p)
695
    {
696
      if (!(*p).symbol->is_copied_from_dynobj())
697
        target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
698
                                (*p).offset);
699
    }
700
}
701
 
702 27 khays
// Apply incremental relocations for symbols whose values have changed.
703
 
704
template<int size, bool big_endian>
705
void
706
Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
707
    const Symbol_table* symtab,
708
    Layout* layout,
709
    Output_file* of)
710
{
711
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
712
  typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
713
  Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
714
  Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
715
  unsigned int nglobals = isymtab.symbol_count();
716
  const unsigned int incr_reloc_size = irelocs.reloc_size;
717
 
718
  Relocate_info<size, big_endian> relinfo;
719
  relinfo.symtab = symtab;
720
  relinfo.layout = layout;
721
  relinfo.object = NULL;
722
  relinfo.reloc_shndx = 0;
723
  relinfo.reloc_shdr = NULL;
724
  relinfo.data_shndx = 0;
725
  relinfo.data_shdr = NULL;
726
 
727
  Sized_target<size, big_endian>* target =
728
      parameters->sized_target<size, big_endian>();
729
 
730
  for (unsigned int i = 0; i < nglobals; i++)
731
    {
732
      const Symbol* gsym = this->global_symbol(i);
733
 
734
      // If the symbol is not referenced from any unchanged input files,
735
      // we do not need to reapply any of its relocations.
736
      if (gsym == NULL)
737
        continue;
738
 
739
      // If the symbol is defined in an unchanged file, we do not need to
740
      // reapply any of its relocations.
741
      if (gsym->source() == Symbol::FROM_OBJECT
742
          && gsym->object()->is_incremental())
743
        continue;
744
 
745
      gold_debug(DEBUG_INCREMENTAL,
746
                 "Applying incremental relocations for global symbol %s [%d]",
747
                 gsym->name(), i);
748
 
749
      // Follow the linked list of input symbol table entries for this symbol.
750
      // We don't bother to figure out whether the symbol table entry belongs
751
      // to a changed or unchanged file because it's easier just to apply all
752
      // the relocations -- although we might scribble over an area that has
753
      // been reallocated, we do this before copying any new data into the
754
      // output file.
755
      unsigned int offset = isymtab.get_list_head(i);
756
      while (offset > 0)
757
        {
758
          Incremental_global_symbol_reader<big_endian> sym_info =
759
              this->inputs_reader().global_symbol_reader_at_offset(offset);
760
          unsigned int r_base = sym_info.reloc_offset();
761
          unsigned int r_count = sym_info.reloc_count();
762
 
763
          // Apply each relocation for this symbol table entry.
764
          for (unsigned int j = 0; j < r_count;
765
               ++j, r_base += incr_reloc_size)
766
            {
767
              unsigned int r_type = irelocs.get_r_type(r_base);
768
              unsigned int r_shndx = irelocs.get_r_shndx(r_base);
769
              Address r_offset = irelocs.get_r_offset(r_base);
770
              Addend r_addend = irelocs.get_r_addend(r_base);
771
              Output_section* os = this->output_section(r_shndx);
772
              Address address = os->address();
773
              off_t section_offset = os->offset();
774
              size_t view_size = os->data_size();
775
              unsigned char* const view = of->get_output_view(section_offset,
776
                                                              view_size);
777
 
778
              gold_debug(DEBUG_INCREMENTAL,
779
                         "  %08lx: %s + %d: type %d addend %ld",
780
                         (long)(section_offset + r_offset),
781
                         os->name(),
782
                         (int)r_offset,
783
                         r_type,
784
                         (long)r_addend);
785
 
786
              target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
787
                                       gsym, view, address, view_size);
788
 
789
              // FIXME: Do something more efficient if write_output_view
790
              // ever becomes more than a no-op.
791
              of->write_output_view(section_offset, view_size, view);
792
            }
793
          offset = sym_info.next_offset();
794
        }
795
    }
796
}
797
 
798
// Get a view of the main symbol table and the symbol string table.
799
 
800
template<int size, bool big_endian>
801
void
802
Sized_incremental_binary<size, big_endian>::get_symtab_view(
803
    View* symtab_view,
804
    unsigned int* nsyms,
805
    elfcpp::Elf_strtab* strtab)
806
{
807
  *symtab_view = this->view(this->main_symtab_loc_);
808
  *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
809
 
810
  View strtab_view(this->view(this->main_strtab_loc_));
811
  *strtab = elfcpp::Elf_strtab(strtab_view.data(),
812
                               this->main_strtab_loc_.data_size);
813
}
814
 
815
namespace
816
{
817
 
818
// Create a Sized_incremental_binary object of the specified size and
819
// endianness. Fails if the target architecture is not supported.
820
 
821
template<int size, bool big_endian>
822
Incremental_binary*
823
make_sized_incremental_binary(Output_file* file,
824
                              const elfcpp::Ehdr<size, big_endian>& ehdr)
825
{
826
  Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
827
                                 ehdr.get_e_ident()[elfcpp::EI_OSABI],
828
                                 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
829
  if (target == NULL)
830
    {
831
      explain_no_incremental(_("unsupported ELF machine number %d"),
832
               ehdr.get_e_machine());
833
      return NULL;
834
    }
835
 
836
  if (!parameters->target_valid())
837
    set_parameters_target(target);
838
  else if (target != &parameters->target())
839
    gold_error(_("%s: incompatible target"), file->filename());
840
 
841
  return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
842
}
843
 
844
}  // End of anonymous namespace.
845
 
846
// Create an Incremental_binary object for FILE.  Returns NULL is this is not
847
// possible, e.g. FILE is not an ELF file or has an unsupported target.  FILE
848
// should be opened.
849
 
850
Incremental_binary*
851
open_incremental_binary(Output_file* file)
852
{
853
  off_t filesize = file->filesize();
854
  int want = elfcpp::Elf_recognizer::max_header_size;
855
  if (filesize < want)
856
    want = filesize;
857
 
858
  const unsigned char* p = file->get_input_view(0, want);
859
  if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
860
    {
861
      explain_no_incremental(_("output is not an ELF file."));
862
      return NULL;
863
    }
864
 
865
  int size = 0;
866
  bool big_endian = false;
867
  std::string error;
868
  if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
869
                                               &error))
870
    {
871
      explain_no_incremental(error.c_str());
872
      return NULL;
873
    }
874
 
875
  Incremental_binary* result = NULL;
876
  if (size == 32)
877
    {
878
      if (big_endian)
879
        {
880
#ifdef HAVE_TARGET_32_BIG
881
          result = make_sized_incremental_binary<32, true>(
882
              file, elfcpp::Ehdr<32, true>(p));
883
#else
884
          explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
885
#endif
886
        }
887
      else
888
        {
889
#ifdef HAVE_TARGET_32_LITTLE
890
          result = make_sized_incremental_binary<32, false>(
891
              file, elfcpp::Ehdr<32, false>(p));
892
#else
893
          explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
894
#endif
895
        }
896
    }
897
  else if (size == 64)
898
    {
899
      if (big_endian)
900
        {
901
#ifdef HAVE_TARGET_64_BIG
902
          result = make_sized_incremental_binary<64, true>(
903
              file, elfcpp::Ehdr<64, true>(p));
904
#else
905
          explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
906
#endif
907
        }
908
      else
909
        {
910
#ifdef HAVE_TARGET_64_LITTLE
911
          result = make_sized_incremental_binary<64, false>(
912
              file, elfcpp::Ehdr<64, false>(p));
913
#else
914
          explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
915
#endif
916
        }
917
    }
918
  else
919
    gold_unreachable();
920
 
921
  return result;
922
}
923
 
924
// Class Incremental_inputs.
925
 
926
// Add the command line to the string table, setting
927
// command_line_key_.  In incremental builds, the command line is
928
// stored in .gnu_incremental_inputs so that the next linker run can
929
// check if the command line options didn't change.
930
 
931
void
932
Incremental_inputs::report_command_line(int argc, const char* const* argv)
933
{
934
  // Always store 'gold' as argv[0] to avoid a full relink if the user used a
935
  // different path to the linker.
936
  std::string args("gold");
937
  // Copied from collect_argv in main.cc.
938
  for (int i = 1; i < argc; ++i)
939
    {
940
      // Adding/removing these options should not result in a full relink.
941
      if (strcmp(argv[i], "--incremental") == 0
942
          || strcmp(argv[i], "--incremental-full") == 0
943
          || strcmp(argv[i], "--incremental-update") == 0
944
          || strcmp(argv[i], "--incremental-changed") == 0
945
          || strcmp(argv[i], "--incremental-unchanged") == 0
946
          || strcmp(argv[i], "--incremental-unknown") == 0
947 159 khays
          || strcmp(argv[i], "--incremental-startup-unchanged") == 0
948 27 khays
          || is_prefix_of("--incremental-base=", argv[i])
949 159 khays
          || is_prefix_of("--incremental-patch=", argv[i])
950 27 khays
          || is_prefix_of("--debug=", argv[i]))
951
        continue;
952
      if (strcmp(argv[i], "--incremental-base") == 0
953 159 khays
          || strcmp(argv[i], "--incremental-patch") == 0
954 27 khays
          || strcmp(argv[i], "--debug") == 0)
955
        {
956
          // When these options are used without the '=', skip the
957
          // following parameter as well.
958
          ++i;
959
          continue;
960
        }
961
 
962
      args.append(" '");
963
      // Now append argv[i], but with all single-quotes escaped
964
      const char* argpos = argv[i];
965
      while (1)
966
        {
967
          const int len = strcspn(argpos, "'");
968
          args.append(argpos, len);
969
          if (argpos[len] == '\0')
970
            break;
971
          args.append("'\"'\"'");
972
          argpos += len + 1;
973
        }
974
      args.append("'");
975
    }
976
 
977
  this->command_line_ = args;
978
  this->strtab_->add(this->command_line_.c_str(), false,
979
                     &this->command_line_key_);
980
}
981
 
982
// Record the input archive file ARCHIVE.  This is called by the
983
// Add_archive_symbols task before determining which archive members
984
// to include.  We create the Incremental_archive_entry here and
985
// attach it to the Archive, but we do not add it to the list of
986
// input objects until report_archive_end is called.
987
 
988
void
989
Incremental_inputs::report_archive_begin(Library_base* arch,
990
                                         unsigned int arg_serial,
991
                                         Script_info* script_info)
992
{
993
  Stringpool::Key filename_key;
994
  Timespec mtime = arch->get_mtime();
995
 
996
  // For a file loaded from a script, don't record its argument serial number.
997
  if (script_info != NULL)
998
    arg_serial = 0;
999
 
1000
  this->strtab_->add(arch->filename().c_str(), false, &filename_key);
1001
  Incremental_archive_entry* entry =
1002
      new Incremental_archive_entry(filename_key, arg_serial, mtime);
1003
  arch->set_incremental_info(entry);
1004
 
1005
  if (script_info != NULL)
1006
    {
1007
      Incremental_script_entry* script_entry = script_info->incremental_info();
1008
      gold_assert(script_entry != NULL);
1009
      script_entry->add_object(entry);
1010
    }
1011
}
1012
 
1013
// Visitor class for processing the unused global symbols in a library.
1014
// An instance of this class is passed to the library's
1015
// for_all_unused_symbols() iterator, which will call the visit()
1016
// function for each global symbol defined in each unused library
1017
// member.  We add those symbol names to the incremental info for the
1018
// library.
1019
 
1020
class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
1021
{
1022
 public:
1023
  Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
1024
    : entry_(entry), strtab_(strtab)
1025
  { }
1026
 
1027
  void
1028
  visit(const char* sym)
1029
  {
1030
    Stringpool::Key symbol_key;
1031
    this->strtab_->add(sym, true, &symbol_key);
1032
    this->entry_->add_unused_global_symbol(symbol_key);
1033
  }
1034
 
1035
 private:
1036
  Incremental_archive_entry* entry_;
1037
  Stringpool* strtab_;
1038
};
1039
 
1040
// Finish recording the input archive file ARCHIVE.  This is called by the
1041
// Add_archive_symbols task after determining which archive members
1042
// to include.
1043
 
1044
void
1045
Incremental_inputs::report_archive_end(Library_base* arch)
1046
{
1047
  Incremental_archive_entry* entry = arch->incremental_info();
1048
 
1049
  gold_assert(entry != NULL);
1050
  this->inputs_.push_back(entry);
1051
 
1052
  // Collect unused global symbols.
1053
  Unused_symbol_visitor v(entry, this->strtab_);
1054
  arch->for_all_unused_symbols(&v);
1055
}
1056
 
1057
// Record the input object file OBJ.  If ARCH is not NULL, attach
1058
// the object file to the archive.  This is called by the
1059
// Add_symbols task after finding out the type of the file.
1060
 
1061
void
1062
Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
1063
                                  Library_base* arch, Script_info* script_info)
1064
{
1065
  Stringpool::Key filename_key;
1066
  Timespec mtime = obj->get_mtime();
1067
 
1068
  // For a file loaded from a script, don't record its argument serial number.
1069
  if (script_info != NULL)
1070
    arg_serial = 0;
1071
 
1072
  this->strtab_->add(obj->name().c_str(), false, &filename_key);
1073
 
1074
  Incremental_input_entry* input_entry;
1075
 
1076
  this->current_object_ = obj;
1077
 
1078
  if (!obj->is_dynamic())
1079
    {
1080
      this->current_object_entry_ =
1081
          new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
1082
      input_entry = this->current_object_entry_;
1083
      if (arch != NULL)
1084
        {
1085
          Incremental_archive_entry* arch_entry = arch->incremental_info();
1086
          gold_assert(arch_entry != NULL);
1087
          arch_entry->add_object(this->current_object_entry_);
1088
        }
1089
    }
1090
  else
1091
    {
1092
      this->current_object_entry_ = NULL;
1093
      Stringpool::Key soname_key;
1094
      Dynobj* dynobj = obj->dynobj();
1095
      gold_assert(dynobj != NULL);
1096
      this->strtab_->add(dynobj->soname(), false, &soname_key);
1097
      input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
1098
                                                 arg_serial, mtime);
1099
    }
1100
 
1101
  if (obj->is_in_system_directory())
1102
    input_entry->set_is_in_system_directory();
1103
 
1104
  if (obj->as_needed())
1105
    input_entry->set_as_needed();
1106
 
1107
  this->inputs_.push_back(input_entry);
1108
 
1109
  if (script_info != NULL)
1110
    {
1111
      Incremental_script_entry* script_entry = script_info->incremental_info();
1112
      gold_assert(script_entry != NULL);
1113
      script_entry->add_object(input_entry);
1114
    }
1115
}
1116
 
1117
// Record an input section SHNDX from object file OBJ.
1118
 
1119
void
1120
Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
1121
                                         const char* name, off_t sh_size)
1122
{
1123
  Stringpool::Key key = 0;
1124
 
1125
  if (name != NULL)
1126
    this->strtab_->add(name, true, &key);
1127
 
1128
  gold_assert(obj == this->current_object_);
1129
  gold_assert(this->current_object_entry_ != NULL);
1130
  this->current_object_entry_->add_input_section(shndx, key, sh_size);
1131
}
1132
 
1133
// Record a kept COMDAT group belonging to object file OBJ.
1134
 
1135
void
1136
Incremental_inputs::report_comdat_group(Object* obj, const char* name)
1137
{
1138
  Stringpool::Key key = 0;
1139
 
1140
  if (name != NULL)
1141
    this->strtab_->add(name, true, &key);
1142
  gold_assert(obj == this->current_object_);
1143
  gold_assert(this->current_object_entry_ != NULL);
1144
  this->current_object_entry_->add_comdat_group(key);
1145
}
1146
 
1147
// Record that the input argument INPUT is a script SCRIPT.  This is
1148
// called by read_script after parsing the script and reading the list
1149
// of inputs added by this script.
1150
 
1151
void
1152
Incremental_inputs::report_script(Script_info* script,
1153
                                  unsigned int arg_serial,
1154
                                  Timespec mtime)
1155
{
1156
  Stringpool::Key filename_key;
1157
 
1158
  this->strtab_->add(script->filename().c_str(), false, &filename_key);
1159
  Incremental_script_entry* entry =
1160
      new Incremental_script_entry(filename_key, arg_serial, script, mtime);
1161
  this->inputs_.push_back(entry);
1162
  script->set_incremental_info(entry);
1163
}
1164
 
1165
// Finalize the incremental link information.  Called from
1166
// Layout::finalize.
1167
 
1168
void
1169
Incremental_inputs::finalize()
1170
{
1171
  // Finalize the string table.
1172
  this->strtab_->set_string_offsets();
1173
}
1174
 
1175
// Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
1176
 
1177
void
1178
Incremental_inputs::create_data_sections(Symbol_table* symtab)
1179
{
1180
  switch (parameters->size_and_endianness())
1181
    {
1182
#ifdef HAVE_TARGET_32_LITTLE
1183
    case Parameters::TARGET_32_LITTLE:
1184
      this->inputs_section_ =
1185
          new Output_section_incremental_inputs<32, false>(this, symtab);
1186
      break;
1187
#endif
1188
#ifdef HAVE_TARGET_32_BIG
1189
    case Parameters::TARGET_32_BIG:
1190
      this->inputs_section_ =
1191
          new Output_section_incremental_inputs<32, true>(this, symtab);
1192
      break;
1193
#endif
1194
#ifdef HAVE_TARGET_64_LITTLE
1195
    case Parameters::TARGET_64_LITTLE:
1196
      this->inputs_section_ =
1197
          new Output_section_incremental_inputs<64, false>(this, symtab);
1198
      break;
1199
#endif
1200
#ifdef HAVE_TARGET_64_BIG
1201
    case Parameters::TARGET_64_BIG:
1202
      this->inputs_section_ =
1203
          new Output_section_incremental_inputs<64, true>(this, symtab);
1204
      break;
1205
#endif
1206
    default:
1207
      gold_unreachable();
1208
    }
1209
  this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
1210
  this->relocs_section_ = new Output_data_space(4, "** incremental_relocs");
1211
  this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
1212
}
1213
 
1214
// Return the sh_entsize value for the .gnu_incremental_relocs section.
1215
unsigned int
1216
Incremental_inputs::relocs_entsize() const
1217
{
1218
  return 8 + 2 * parameters->target().get_size() / 8;
1219
}
1220
 
1221
// Class Output_section_incremental_inputs.
1222
 
1223
// Finalize the offsets for each input section and supplemental info block,
1224
// and set the final data size of the incremental output sections.
1225
 
1226
template<int size, bool big_endian>
1227
void
1228
Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
1229
{
1230
  const Incremental_inputs* inputs = this->inputs_;
1231
  const unsigned int sizeof_addr = size / 8;
1232
  const unsigned int rel_size = 8 + 2 * sizeof_addr;
1233
 
1234
  // Offset of each input entry.
1235
  unsigned int input_offset = this->header_size;
1236
 
1237
  // Offset of each supplemental info block.
1238
  unsigned int file_index = 0;
1239
  unsigned int info_offset = this->header_size;
1240
  info_offset += this->input_entry_size * inputs->input_file_count();
1241
 
1242
  // Count each input file and its supplemental information block.
1243
  for (Incremental_inputs::Input_list::const_iterator p =
1244
           inputs->input_files().begin();
1245
       p != inputs->input_files().end();
1246
       ++p)
1247
    {
1248
      // Set the index and offset of the input file entry.
1249
      (*p)->set_offset(file_index, input_offset);
1250
      ++file_index;
1251
      input_offset += this->input_entry_size;
1252
 
1253
      // Set the offset of the supplemental info block.
1254
      switch ((*p)->type())
1255
        {
1256
        case INCREMENTAL_INPUT_SCRIPT:
1257
          {
1258
            Incremental_script_entry *entry = (*p)->script_entry();
1259
            gold_assert(entry != NULL);
1260
            (*p)->set_info_offset(info_offset);
1261
            // Object count.
1262
            info_offset += 4;
1263
            // Each member.
1264
            info_offset += (entry->get_object_count() * 4);
1265
          }
1266
          break;
1267
        case INCREMENTAL_INPUT_OBJECT:
1268
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1269
          {
1270
            Incremental_object_entry* entry = (*p)->object_entry();
1271
            gold_assert(entry != NULL);
1272
            (*p)->set_info_offset(info_offset);
1273
            // Input section count, global symbol count, local symbol offset,
1274
            // local symbol count, first dynamic reloc, dynamic reloc count,
1275
            // comdat group count.
1276
            info_offset += 28;
1277
            // Each input section.
1278
            info_offset += (entry->get_input_section_count()
1279
                            * (8 + 2 * sizeof_addr));
1280
            // Each global symbol.
1281
            const Object::Symbols* syms = entry->object()->get_global_symbols();
1282
            info_offset += syms->size() * 20;
1283
            // Each comdat group.
1284
            info_offset += entry->get_comdat_group_count() * 4;
1285
          }
1286
          break;
1287
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
1288
          {
1289
            Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1290
            gold_assert(entry != NULL);
1291
            (*p)->set_info_offset(info_offset);
1292
            // Global symbol count, soname index.
1293
            info_offset += 8;
1294
            // Each global symbol.
1295
            const Object::Symbols* syms = entry->object()->get_global_symbols();
1296
            gold_assert(syms != NULL);
1297
            unsigned int nsyms = syms->size();
1298
            unsigned int nsyms_out = 0;
1299
            for (unsigned int i = 0; i < nsyms; ++i)
1300
              {
1301
                const Symbol* sym = (*syms)[i];
1302
                if (sym == NULL)
1303
                  continue;
1304
                if (sym->is_forwarder())
1305
                  sym = this->symtab_->resolve_forwards(sym);
1306
                if (sym->symtab_index() != -1U)
1307
                  ++nsyms_out;
1308
              }
1309
            info_offset += nsyms_out * 4;
1310
          }
1311
          break;
1312
        case INCREMENTAL_INPUT_ARCHIVE:
1313
          {
1314
            Incremental_archive_entry* entry = (*p)->archive_entry();
1315
            gold_assert(entry != NULL);
1316
            (*p)->set_info_offset(info_offset);
1317
            // Member count + unused global symbol count.
1318
            info_offset += 8;
1319
            // Each member.
1320
            info_offset += (entry->get_member_count() * 4);
1321
            // Each global symbol.
1322
            info_offset += (entry->get_unused_global_symbol_count() * 4);
1323
          }
1324
          break;
1325
        default:
1326
          gold_unreachable();
1327
        }
1328
    }
1329
 
1330
  this->set_data_size(info_offset);
1331
 
1332
  // Set the size of the .gnu_incremental_symtab section.
1333
  inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
1334
                                                  * sizeof(unsigned int));
1335
 
1336
  // Set the size of the .gnu_incremental_relocs section.
1337
  inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
1338
                                                  * rel_size);
1339
 
1340
  // Set the size of the .gnu_incremental_got_plt section.
1341
  Sized_target<size, big_endian>* target =
1342
    parameters->sized_target<size, big_endian>();
1343
  unsigned int got_count = target->got_entry_count();
1344
  unsigned int plt_count = target->plt_entry_count();
1345
  unsigned int got_plt_size = 8;  // GOT entry count, PLT entry count.
1346
  got_plt_size = (got_plt_size + got_count + 3) & ~3;  // GOT type array.
1347
  got_plt_size += got_count * 8 + plt_count * 4;  // GOT array, PLT array.
1348
  inputs->got_plt_section()->set_current_data_size(got_plt_size);
1349
}
1350
 
1351
// Write the contents of the .gnu_incremental_inputs and
1352
// .gnu_incremental_symtab sections.
1353
 
1354
template<int size, bool big_endian>
1355
void
1356
Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
1357
{
1358
  const Incremental_inputs* inputs = this->inputs_;
1359
  Stringpool* strtab = inputs->get_stringpool();
1360
 
1361
  // Get a view into the .gnu_incremental_inputs section.
1362
  const off_t off = this->offset();
1363
  const off_t oview_size = this->data_size();
1364
  unsigned char* const oview = of->get_output_view(off, oview_size);
1365
  unsigned char* pov = oview;
1366
 
1367
  // Get a view into the .gnu_incremental_symtab section.
1368
  const off_t symtab_off = inputs->symtab_section()->offset();
1369
  const off_t symtab_size = inputs->symtab_section()->data_size();
1370
  unsigned char* const symtab_view = of->get_output_view(symtab_off,
1371
                                                         symtab_size);
1372
 
1373
  // Allocate an array of linked list heads for the .gnu_incremental_symtab
1374
  // section.  Each element corresponds to a global symbol in the output
1375
  // symbol table, and points to the head of the linked list that threads
1376
  // through the object file input entries.  The value of each element
1377
  // is the section-relative offset to a global symbol entry in a
1378
  // supplemental information block.
1379
  unsigned int global_sym_count = this->symtab_->output_count();
1380
  unsigned int* global_syms = new unsigned int[global_sym_count];
1381
  memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
1382
 
1383
  // Write the section header.
1384
  Stringpool::Key command_line_key = inputs->command_line_key();
1385
  pov = this->write_header(pov, inputs->input_file_count(),
1386
                           strtab->get_offset_from_key(command_line_key));
1387
 
1388
  // Write the list of input files.
1389
  pov = this->write_input_files(oview, pov, strtab);
1390
 
1391
  // Write the supplemental information blocks for each input file.
1392
  pov = this->write_info_blocks(oview, pov, strtab, global_syms,
1393
                                global_sym_count);
1394
 
1395
  gold_assert(pov - oview == oview_size);
1396
 
1397
  // Write the .gnu_incremental_symtab section.
1398
  gold_assert(global_sym_count * 4 == symtab_size);
1399
  this->write_symtab(symtab_view, global_syms, global_sym_count);
1400
 
1401
  delete[] global_syms;
1402
 
1403
  // Write the .gnu_incremental_got_plt section.
1404
  const off_t got_plt_off = inputs->got_plt_section()->offset();
1405
  const off_t got_plt_size = inputs->got_plt_section()->data_size();
1406
  unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
1407
                                                          got_plt_size);
1408
  this->write_got_plt(got_plt_view, got_plt_size);
1409
 
1410
  of->write_output_view(off, oview_size, oview);
1411
  of->write_output_view(symtab_off, symtab_size, symtab_view);
1412
  of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
1413
}
1414
 
1415
// Write the section header: version, input file count, offset of command line
1416
// in the string table, and 4 bytes of padding.
1417
 
1418
template<int size, bool big_endian>
1419
unsigned char*
1420
Output_section_incremental_inputs<size, big_endian>::write_header(
1421
    unsigned char* pov,
1422
    unsigned int input_file_count,
1423
    section_offset_type command_line_offset)
1424
{
1425
  Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
1426
  Swap32::writeval(pov + 4, input_file_count);
1427
  Swap32::writeval(pov + 8, command_line_offset);
1428
  Swap32::writeval(pov + 12, 0);
1429
  return pov + this->header_size;
1430
}
1431
 
1432
// Write the input file entries.
1433
 
1434
template<int size, bool big_endian>
1435
unsigned char*
1436
Output_section_incremental_inputs<size, big_endian>::write_input_files(
1437
    unsigned char* oview,
1438
    unsigned char* pov,
1439
    Stringpool* strtab)
1440
{
1441
  const Incremental_inputs* inputs = this->inputs_;
1442
 
1443
  for (Incremental_inputs::Input_list::const_iterator p =
1444
           inputs->input_files().begin();
1445
       p != inputs->input_files().end();
1446
       ++p)
1447
    {
1448
      gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
1449
      section_offset_type filename_offset =
1450
          strtab->get_offset_from_key((*p)->get_filename_key());
1451
      const Timespec& mtime = (*p)->get_mtime();
1452
      unsigned int flags = (*p)->type();
1453
      if ((*p)->is_in_system_directory())
1454
        flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
1455
      if ((*p)->as_needed())
1456
        flags |= INCREMENTAL_INPUT_AS_NEEDED;
1457
      Swap32::writeval(pov, filename_offset);
1458
      Swap32::writeval(pov + 4, (*p)->get_info_offset());
1459
      Swap64::writeval(pov + 8, mtime.seconds);
1460
      Swap32::writeval(pov + 16, mtime.nanoseconds);
1461
      Swap16::writeval(pov + 20, flags);
1462
      Swap16::writeval(pov + 22, (*p)->arg_serial());
1463
      pov += this->input_entry_size;
1464
    }
1465
  return pov;
1466
}
1467
 
1468
// Write the supplemental information blocks.
1469
 
1470
template<int size, bool big_endian>
1471
unsigned char*
1472
Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
1473
    unsigned char* oview,
1474
    unsigned char* pov,
1475
    Stringpool* strtab,
1476
    unsigned int* global_syms,
1477
    unsigned int global_sym_count)
1478
{
1479
  const Incremental_inputs* inputs = this->inputs_;
1480
  unsigned int first_global_index = this->symtab_->first_global_index();
1481
 
1482
  for (Incremental_inputs::Input_list::const_iterator p =
1483
           inputs->input_files().begin();
1484
       p != inputs->input_files().end();
1485
       ++p)
1486
    {
1487
      switch ((*p)->type())
1488
        {
1489
        case INCREMENTAL_INPUT_SCRIPT:
1490
          {
1491
            gold_assert(static_cast<unsigned int>(pov - oview)
1492
                        == (*p)->get_info_offset());
1493
            Incremental_script_entry* entry = (*p)->script_entry();
1494
            gold_assert(entry != NULL);
1495
 
1496
            // Write the object count.
1497
            unsigned int nobjects = entry->get_object_count();
1498
            Swap32::writeval(pov, nobjects);
1499
            pov += 4;
1500
 
1501
            // For each object, write the offset to its input file entry.
1502
            for (unsigned int i = 0; i < nobjects; ++i)
1503
              {
1504
                Incremental_input_entry* obj = entry->get_object(i);
1505
                Swap32::writeval(pov, obj->get_offset());
1506
                pov += 4;
1507
              }
1508
          }
1509
          break;
1510
 
1511
        case INCREMENTAL_INPUT_OBJECT:
1512
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1513
          {
1514
            gold_assert(static_cast<unsigned int>(pov - oview)
1515
                        == (*p)->get_info_offset());
1516
            Incremental_object_entry* entry = (*p)->object_entry();
1517
            gold_assert(entry != NULL);
1518
            const Object* obj = entry->object();
1519
            const Relobj* relobj = static_cast<const Relobj*>(obj);
1520
            const Object::Symbols* syms = obj->get_global_symbols();
1521
            // Write the input section count and global symbol count.
1522
            unsigned int nsections = entry->get_input_section_count();
1523
            unsigned int nsyms = syms->size();
1524
            off_t locals_offset = relobj->local_symbol_offset();
1525
            unsigned int nlocals = relobj->output_local_symbol_count();
1526
            unsigned int first_dynrel = relobj->first_dyn_reloc();
1527
            unsigned int ndynrel = relobj->dyn_reloc_count();
1528
            unsigned int ncomdat = entry->get_comdat_group_count();
1529
            Swap32::writeval(pov, nsections);
1530
            Swap32::writeval(pov + 4, nsyms);
1531
            Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
1532
            Swap32::writeval(pov + 12, nlocals);
1533
            Swap32::writeval(pov + 16, first_dynrel);
1534
            Swap32::writeval(pov + 20, ndynrel);
1535
            Swap32::writeval(pov + 24, ncomdat);
1536
            pov += 28;
1537
 
1538
            // Build a temporary array to map input section indexes
1539
            // from the original object file index to the index in the
1540
            // incremental info table.
1541
            unsigned int* index_map = new unsigned int[obj->shnum()];
1542
            memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
1543
 
1544
            // For each input section, write the name, output section index,
1545
            // offset within output section, and input section size.
1546
            for (unsigned int i = 0; i < nsections; i++)
1547
              {
1548
                unsigned int shndx = entry->get_input_section_index(i);
1549
                index_map[shndx] = i + 1;
1550
                Stringpool::Key key = entry->get_input_section_name_key(i);
1551
                off_t name_offset = 0;
1552
                if (key != 0)
1553
                  name_offset = strtab->get_offset_from_key(key);
1554
                int out_shndx = 0;
1555
                off_t out_offset = 0;
1556
                off_t sh_size = 0;
1557
                Output_section* os = obj->output_section(shndx);
1558
                if (os != NULL)
1559
                  {
1560
                    out_shndx = os->out_shndx();
1561
                    out_offset = obj->output_section_offset(shndx);
1562
                    sh_size = entry->get_input_section_size(i);
1563
                  }
1564
                Swap32::writeval(pov, name_offset);
1565
                Swap32::writeval(pov + 4, out_shndx);
1566
                Swap::writeval(pov + 8, out_offset);
1567
                Swap::writeval(pov + 8 + sizeof_addr, sh_size);
1568
                pov += 8 + 2 * sizeof_addr;
1569
              }
1570
 
1571
            // For each global symbol, write its associated relocations,
1572
            // add it to the linked list of globals, then write the
1573
            // supplemental information:  global symbol table index,
1574
            // input section index, linked list chain pointer, relocation
1575
            // count, and offset to the relocations.
1576
            for (unsigned int i = 0; i < nsyms; i++)
1577
              {
1578
                const Symbol* sym = (*syms)[i];
1579
                if (sym->is_forwarder())
1580
                  sym = this->symtab_->resolve_forwards(sym);
1581
                unsigned int shndx = 0;
1582 148 khays
                if (sym->source() != Symbol::FROM_OBJECT)
1583 27 khays
                  {
1584 148 khays
                    // The symbol was defined by the linker (e.g., common).
1585
                    // We mark these symbols with a special SHNDX of -1,
1586
                    // but exclude linker-predefined symbols and symbols
1587
                    // copied from shared objects.
1588
                    if (!sym->is_predefined()
1589
                        && !sym->is_copied_from_dynobj())
1590
                      shndx = -1U;
1591
                  }
1592
                else if (sym->object() == obj && sym->is_defined())
1593
                  {
1594 27 khays
                    bool is_ordinary;
1595
                    unsigned int orig_shndx = sym->shndx(&is_ordinary);
1596
                    if (is_ordinary)
1597
                      shndx = index_map[orig_shndx];
1598 148 khays
                    else
1599
                      shndx = 1;
1600 27 khays
                  }
1601
                unsigned int symtab_index = sym->symtab_index();
1602
                unsigned int chain = 0;
1603
                unsigned int first_reloc = 0;
1604
                unsigned int nrelocs = obj->get_incremental_reloc_count(i);
1605
                if (nrelocs > 0)
1606
                  {
1607
                    gold_assert(symtab_index != -1U
1608
                                && (symtab_index - first_global_index
1609
                                    < global_sym_count));
1610
                    first_reloc = obj->get_incremental_reloc_base(i);
1611
                    chain = global_syms[symtab_index - first_global_index];
1612
                    global_syms[symtab_index - first_global_index] =
1613
                        pov - oview;
1614
                  }
1615
                Swap32::writeval(pov, symtab_index);
1616
                Swap32::writeval(pov + 4, shndx);
1617
                Swap32::writeval(pov + 8, chain);
1618
                Swap32::writeval(pov + 12, nrelocs);
1619
                Swap32::writeval(pov + 16, first_reloc * 3 * sizeof_addr);
1620
                pov += 20;
1621
              }
1622
 
1623
            // For each kept COMDAT group, write the group signature.
1624
            for (unsigned int i = 0; i < ncomdat; i++)
1625
              {
1626
                Stringpool::Key key = entry->get_comdat_signature_key(i);
1627
                off_t name_offset = 0;
1628
                if (key != 0)
1629
                  name_offset = strtab->get_offset_from_key(key);
1630
                Swap32::writeval(pov, name_offset);
1631
                pov += 4;
1632
              }
1633
 
1634
            delete[] index_map;
1635
          }
1636
          break;
1637
 
1638
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
1639
          {
1640
            gold_assert(static_cast<unsigned int>(pov - oview)
1641
                        == (*p)->get_info_offset());
1642
            Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1643
            gold_assert(entry != NULL);
1644 148 khays
            Object* obj = entry->object();
1645
            Dynobj* dynobj = obj->dynobj();
1646
            gold_assert(dynobj != NULL);
1647 27 khays
            const Object::Symbols* syms = obj->get_global_symbols();
1648
 
1649
            // Write the soname string table index.
1650
            section_offset_type soname_offset =
1651
                strtab->get_offset_from_key(entry->get_soname_key());
1652
            Swap32::writeval(pov, soname_offset);
1653
            pov += 4;
1654
 
1655
            // Skip the global symbol count for now.
1656
            unsigned char* orig_pov = pov;
1657
            pov += 4;
1658
 
1659
            // For each global symbol, write the global symbol table index.
1660
            unsigned int nsyms = syms->size();
1661
            unsigned int nsyms_out = 0;
1662
            for (unsigned int i = 0; i < nsyms; i++)
1663
              {
1664
                const Symbol* sym = (*syms)[i];
1665
                if (sym == NULL)
1666
                  continue;
1667
                if (sym->is_forwarder())
1668
                  sym = this->symtab_->resolve_forwards(sym);
1669
                if (sym->symtab_index() == -1U)
1670
                  continue;
1671 148 khays
                unsigned int flags = 0;
1672 159 khays
                // If the symbol has hidden or internal visibility, we
1673
                // mark it as defined in the shared object so we don't
1674
                // try to resolve it during an incremental update.
1675
                if (sym->visibility() == elfcpp::STV_HIDDEN
1676
                    || sym->visibility() == elfcpp::STV_INTERNAL)
1677 148 khays
                  flags = INCREMENTAL_SHLIB_SYM_DEF;
1678 159 khays
                else if (sym->source() == Symbol::FROM_OBJECT
1679
                         && sym->object() == obj
1680
                         && sym->is_defined())
1681
                  flags = INCREMENTAL_SHLIB_SYM_DEF;
1682 148 khays
                else if (sym->is_copied_from_dynobj()
1683
                         && this->symtab_->get_copy_source(sym) == dynobj)
1684
                  flags = INCREMENTAL_SHLIB_SYM_COPY;
1685
                flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
1686
                Swap32::writeval(pov, sym->symtab_index() | flags);
1687 27 khays
                pov += 4;
1688
                ++nsyms_out;
1689
              }
1690
 
1691
            // Now write the global symbol count.
1692
            Swap32::writeval(orig_pov, nsyms_out);
1693
          }
1694
          break;
1695
 
1696
        case INCREMENTAL_INPUT_ARCHIVE:
1697
          {
1698
            gold_assert(static_cast<unsigned int>(pov - oview)
1699
                        == (*p)->get_info_offset());
1700
            Incremental_archive_entry* entry = (*p)->archive_entry();
1701
            gold_assert(entry != NULL);
1702
 
1703
            // Write the member count and unused global symbol count.
1704
            unsigned int nmembers = entry->get_member_count();
1705
            unsigned int nsyms = entry->get_unused_global_symbol_count();
1706
            Swap32::writeval(pov, nmembers);
1707
            Swap32::writeval(pov + 4, nsyms);
1708
            pov += 8;
1709
 
1710
            // For each member, write the offset to its input file entry.
1711
            for (unsigned int i = 0; i < nmembers; ++i)
1712
              {
1713
                Incremental_object_entry* member = entry->get_member(i);
1714
                Swap32::writeval(pov, member->get_offset());
1715
                pov += 4;
1716
              }
1717
 
1718
            // For each global symbol, write the name offset.
1719
            for (unsigned int i = 0; i < nsyms; ++i)
1720
              {
1721
                Stringpool::Key key = entry->get_unused_global_symbol(i);
1722
                Swap32::writeval(pov, strtab->get_offset_from_key(key));
1723
                pov += 4;
1724
              }
1725
          }
1726
          break;
1727
 
1728
        default:
1729
          gold_unreachable();
1730
        }
1731
    }
1732
  return pov;
1733
}
1734
 
1735
// Write the contents of the .gnu_incremental_symtab section.
1736
 
1737
template<int size, bool big_endian>
1738
void
1739
Output_section_incremental_inputs<size, big_endian>::write_symtab(
1740
    unsigned char* pov,
1741
    unsigned int* global_syms,
1742
    unsigned int global_sym_count)
1743
{
1744
  for (unsigned int i = 0; i < global_sym_count; ++i)
1745
    {
1746
      Swap32::writeval(pov, global_syms[i]);
1747
      pov += 4;
1748
    }
1749
}
1750
 
1751
// This struct holds the view information needed to write the
1752
// .gnu_incremental_got_plt section.
1753
 
1754
struct Got_plt_view_info
1755
{
1756
  // Start of the GOT type array in the output view.
1757
  unsigned char* got_type_p;
1758
  // Start of the GOT descriptor array in the output view.
1759
  unsigned char* got_desc_p;
1760
  // Start of the PLT descriptor array in the output view.
1761
  unsigned char* plt_desc_p;
1762
  // Number of GOT entries.
1763
  unsigned int got_count;
1764
  // Number of PLT entries.
1765
  unsigned int plt_count;
1766
  // Offset of the first non-reserved PLT entry (this is a target-dependent value).
1767
  unsigned int first_plt_entry_offset;
1768
  // Size of a PLT entry (this is a target-dependent value).
1769
  unsigned int plt_entry_size;
1770
  // Symbol index to write in the GOT descriptor array.  For global symbols,
1771
  // this is the global symbol table index; for local symbols, it is the
1772
  // local symbol table index.
1773
  unsigned int sym_index;
1774
  // Input file index to write in the GOT descriptor array.  For global
1775
  // symbols, this is 0; for local symbols, it is the index of the input
1776
  // file entry in the .gnu_incremental_inputs section.
1777
  unsigned int input_index;
1778
};
1779
 
1780
// Functor class for processing a GOT offset list for local symbols.
1781
// Writes the GOT type and symbol index into the GOT type and descriptor
1782
// arrays in the output section.
1783
 
1784
template<int size, bool big_endian>
1785
class Local_got_offset_visitor : public Got_offset_list::Visitor
1786
{
1787
 public:
1788
  Local_got_offset_visitor(struct Got_plt_view_info& info)
1789
    : info_(info)
1790
  { }
1791
 
1792
  void
1793
  visit(unsigned int got_type, unsigned int got_offset)
1794
  {
1795
    unsigned int got_index = got_offset / this->got_entry_size_;
1796
    gold_assert(got_index < this->info_.got_count);
1797
    // We can only handle GOT entry types in the range 0..0x7e
1798
    // because we use a byte array to store them, and we use the
1799
    // high bit to flag a local symbol.
1800
    gold_assert(got_type < 0x7f);
1801
    this->info_.got_type_p[got_index] = got_type | 0x80;
1802
    unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1803
    elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1804
    elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
1805
  }
1806
 
1807
 private:
1808
  static const unsigned int got_entry_size_ = size / 8;
1809
  struct Got_plt_view_info& info_;
1810
};
1811
 
1812
// Functor class for processing a GOT offset list.  Writes the GOT type
1813
// and symbol index into the GOT type and descriptor arrays in the output
1814
// section.
1815
 
1816
template<int size, bool big_endian>
1817
class Global_got_offset_visitor : public Got_offset_list::Visitor
1818
{
1819
 public:
1820
  Global_got_offset_visitor(struct Got_plt_view_info& info)
1821
    : info_(info)
1822
  { }
1823
 
1824
  void
1825
  visit(unsigned int got_type, unsigned int got_offset)
1826
  {
1827
    unsigned int got_index = got_offset / this->got_entry_size_;
1828
    gold_assert(got_index < this->info_.got_count);
1829
    // We can only handle GOT entry types in the range 0..0x7e
1830
    // because we use a byte array to store them, and we use the
1831
    // high bit to flag a local symbol.
1832
    gold_assert(got_type < 0x7f);
1833
    this->info_.got_type_p[got_index] = got_type;
1834
    unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1835
    elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1836
    elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
1837
  }
1838
 
1839
 private:
1840
  static const unsigned int got_entry_size_ = size / 8;
1841
  struct Got_plt_view_info& info_;
1842
};
1843
 
1844
// Functor class for processing the global symbol table.  Processes the
1845
// GOT offset list for the symbol, and writes the symbol table index
1846
// into the PLT descriptor array in the output section.
1847
 
1848
template<int size, bool big_endian>
1849
class Global_symbol_visitor_got_plt
1850
{
1851
 public:
1852
  Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
1853
    : info_(info)
1854
  { }
1855
 
1856
  void
1857
  operator()(const Sized_symbol<size>* sym)
1858
  {
1859
    typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
1860
    const Got_offset_list* got_offsets = sym->got_offset_list();
1861
    if (got_offsets != NULL)
1862
      {
1863
        this->info_.sym_index = sym->symtab_index();
1864
        this->info_.input_index = 0;
1865
        Got_visitor v(this->info_);
1866
        got_offsets->for_all_got_offsets(&v);
1867
      }
1868
    if (sym->has_plt_offset())
1869
      {
1870
        unsigned int plt_index =
1871
            ((sym->plt_offset() - this->info_.first_plt_entry_offset)
1872
             / this->info_.plt_entry_size);
1873
        gold_assert(plt_index < this->info_.plt_count);
1874
        unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
1875
        elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
1876
      }
1877
  }
1878
 
1879
 private:
1880
  struct Got_plt_view_info& info_;
1881
};
1882
 
1883
// Write the contents of the .gnu_incremental_got_plt section.
1884
 
1885
template<int size, bool big_endian>
1886
void
1887
Output_section_incremental_inputs<size, big_endian>::write_got_plt(
1888
    unsigned char* pov,
1889
    off_t view_size)
1890
{
1891
  Sized_target<size, big_endian>* target =
1892
    parameters->sized_target<size, big_endian>();
1893
 
1894
  // Set up the view information for the functors.
1895
  struct Got_plt_view_info view_info;
1896
  view_info.got_count = target->got_entry_count();
1897
  view_info.plt_count = target->plt_entry_count();
1898
  view_info.first_plt_entry_offset = target->first_plt_entry_offset();
1899
  view_info.plt_entry_size = target->plt_entry_size();
1900
  view_info.got_type_p = pov + 8;
1901
  view_info.got_desc_p = (view_info.got_type_p
1902
                          + ((view_info.got_count + 3) & ~3));
1903
  view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
1904
 
1905
  gold_assert(pov + view_size ==
1906
              view_info.plt_desc_p + view_info.plt_count * 4);
1907
 
1908
  // Write the section header.
1909
  Swap32::writeval(pov, view_info.got_count);
1910
  Swap32::writeval(pov + 4, view_info.plt_count);
1911
 
1912
  // Initialize the GOT type array to 0xff (reserved).
1913
  memset(view_info.got_type_p, 0xff, view_info.got_count);
1914
 
1915
  // Write the incremental GOT descriptors for local symbols.
1916
  typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
1917
  for (Incremental_inputs::Input_list::const_iterator p =
1918
           this->inputs_->input_files().begin();
1919
       p != this->inputs_->input_files().end();
1920
       ++p)
1921
    {
1922
      if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
1923
          && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
1924
        continue;
1925
      Incremental_object_entry* entry = (*p)->object_entry();
1926
      gold_assert(entry != NULL);
1927
      const Object* obj = entry->object();
1928
      gold_assert(obj != NULL);
1929
      view_info.input_index = (*p)->get_file_index();
1930
      Got_visitor v(view_info);
1931
      obj->for_all_local_got_entries(&v);
1932
    }
1933
 
1934
  // Write the incremental GOT and PLT descriptors for global symbols.
1935
  typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
1936
  symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
1937
}
1938
 
1939
// Class Sized_relobj_incr.  Most of these methods are not used for
1940
// Incremental objects, but are required to be implemented by the
1941
// base class Object.
1942
 
1943
template<int size, bool big_endian>
1944
Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
1945
    const std::string& name,
1946
    Sized_incremental_binary<size, big_endian>* ibase,
1947
    unsigned int input_file_index)
1948
  : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
1949
    input_file_index_(input_file_index),
1950
    input_reader_(ibase->inputs_reader().input_file(input_file_index)),
1951
    local_symbol_count_(0), output_local_dynsym_count_(0),
1952
    local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
1953
    symbols_(), incr_reloc_offset_(-1U), incr_reloc_count_(0),
1954
    incr_reloc_output_index_(0), incr_relocs_(NULL), local_symbols_()
1955
{
1956
  if (this->input_reader_.is_in_system_directory())
1957
    this->set_is_in_system_directory();
1958
  const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
1959
  this->set_shnum(shnum);
1960
  ibase->set_input_object(input_file_index, this);
1961
}
1962
 
1963
// Read the symbols.
1964
 
1965
template<int size, bool big_endian>
1966
void
1967
Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
1968
{
1969
  gold_unreachable();
1970
}
1971
 
1972
// Lay out the input sections.
1973
 
1974
template<int size, bool big_endian>
1975
void
1976
Sized_relobj_incr<size, big_endian>::do_layout(
1977
    Symbol_table*,
1978
    Layout* layout,
1979
    Read_symbols_data*)
1980
{
1981
  const unsigned int shnum = this->shnum();
1982
  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1983
  gold_assert(incremental_inputs != NULL);
1984
  Output_sections& out_sections(this->output_sections());
1985
  out_sections.resize(shnum);
1986
  this->section_offsets().resize(shnum);
1987
  for (unsigned int i = 1; i < shnum; i++)
1988
    {
1989
      typename Input_entry_reader::Input_section_info sect =
1990
          this->input_reader_.get_input_section(i - 1);
1991
      // Add the section to the incremental inputs layout.
1992
      incremental_inputs->report_input_section(this, i, sect.name,
1993
                                               sect.sh_size);
1994
      if (sect.output_shndx == 0 || sect.sh_offset == -1)
1995
        continue;
1996
      Output_section* os = this->ibase_->output_section(sect.output_shndx);
1997
      gold_assert(os != NULL);
1998
      out_sections[i] = os;
1999
      this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
2000
    }
2001
 
2002
  // Process the COMDAT groups.
2003
  unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
2004
  for (unsigned int i = 0; i < ncomdat; i++)
2005
    {
2006
      const char* signature = this->input_reader_.get_comdat_group_signature(i);
2007
      if (signature == NULL || signature[0] == '\0')
2008
        this->error(_("COMDAT group has no signature"));
2009
      bool keep = layout->find_or_add_kept_section(signature, this, i, true,
2010
                                                   true, NULL);
2011
      if (!keep)
2012
        this->error(_("COMDAT group %s included twice in incremental link"),
2013
                    signature);
2014
    }
2015
}
2016
 
2017
// Layout sections whose layout was deferred while waiting for
2018
// input files from a plugin.
2019
template<int size, bool big_endian>
2020
void
2021
Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
2022
{
2023
}
2024
 
2025
// Add the symbols to the symbol table.
2026
 
2027
template<int size, bool big_endian>
2028
void
2029
Sized_relobj_incr<size, big_endian>::do_add_symbols(
2030
    Symbol_table* symtab,
2031
    Read_symbols_data*,
2032
    Layout*)
2033
{
2034
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2035
  unsigned char symbuf[sym_size];
2036
  elfcpp::Sym<size, big_endian> sym(symbuf);
2037
  elfcpp::Sym_write<size, big_endian> osym(symbuf);
2038
 
2039
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2040
 
2041
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2042
  this->symbols_.resize(nsyms);
2043
 
2044
  Incremental_binary::View symtab_view(NULL);
2045
  unsigned int symtab_count;
2046
  elfcpp::Elf_strtab strtab(NULL, 0);
2047
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2048
 
2049
  Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2050
  unsigned int isym_count = isymtab.symbol_count();
2051
  unsigned int first_global = symtab_count - isym_count;
2052
 
2053
  const unsigned char* sym_p;
2054
  for (unsigned int i = 0; i < nsyms; ++i)
2055
    {
2056
      Incremental_global_symbol_reader<big_endian> info =
2057
          this->input_reader_.get_global_symbol_reader(i);
2058
      unsigned int output_symndx = info.output_symndx();
2059
      sym_p = symtab_view.data() + output_symndx * sym_size;
2060
      elfcpp::Sym<size, big_endian> gsym(sym_p);
2061
      const char* name;
2062
      if (!strtab.get_c_string(gsym.get_st_name(), &name))
2063
        name = "";
2064
 
2065
      typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
2066
      unsigned int shndx = gsym.get_st_shndx();
2067
      elfcpp::STB st_bind = gsym.get_st_bind();
2068
      elfcpp::STT st_type = gsym.get_st_type();
2069
 
2070
      // Local hidden symbols start out as globals, but get converted to
2071
      // to local during output.
2072
      if (st_bind == elfcpp::STB_LOCAL)
2073
        st_bind = elfcpp::STB_GLOBAL;
2074
 
2075
      unsigned int input_shndx = info.shndx();
2076 148 khays
      if (input_shndx == 0 || input_shndx == -1U)
2077 27 khays
        {
2078
          shndx = elfcpp::SHN_UNDEF;
2079
          v = 0;
2080
        }
2081
      else if (shndx != elfcpp::SHN_ABS)
2082
        {
2083
          // Find the input section and calculate the section-relative value.
2084
          gold_assert(shndx != elfcpp::SHN_UNDEF);
2085
          Output_section* os = this->ibase_->output_section(shndx);
2086
          gold_assert(os != NULL && os->has_fixed_layout());
2087
          typename Input_entry_reader::Input_section_info sect =
2088
              this->input_reader_.get_input_section(input_shndx - 1);
2089
          gold_assert(sect.output_shndx == shndx);
2090
          if (st_type != elfcpp::STT_TLS)
2091
            v -= os->address();
2092
          v -= sect.sh_offset;
2093
          shndx = input_shndx;
2094
        }
2095
 
2096
      osym.put_st_name(0);
2097
      osym.put_st_value(v);
2098
      osym.put_st_size(gsym.get_st_size());
2099
      osym.put_st_info(st_bind, st_type);
2100
      osym.put_st_other(gsym.get_st_other());
2101
      osym.put_st_shndx(shndx);
2102
 
2103 148 khays
      Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);
2104
 
2105
      // If this is a linker-defined symbol that hasn't yet been defined,
2106
      // define it now.
2107
      if (input_shndx == -1U && !res->is_defined())
2108
        {
2109
          shndx = gsym.get_st_shndx();
2110
          v = gsym.get_st_value();
2111
          Elf_size_type symsize = gsym.get_st_size();
2112
          if (shndx == elfcpp::SHN_ABS)
2113
            {
2114
              symtab->define_as_constant(name, NULL,
2115
                                         Symbol_table::INCREMENTAL_BASE,
2116
                                         v, symsize, st_type, st_bind,
2117
                                         gsym.get_st_visibility(), 0,
2118
                                         false, false);
2119
            }
2120
          else
2121
            {
2122
              Output_section* os = this->ibase_->output_section(shndx);
2123
              gold_assert(os != NULL && os->has_fixed_layout());
2124
              v -= os->address();
2125
              if (symsize > 0)
2126
                os->reserve(v, symsize);
2127
              symtab->define_in_output_data(name, NULL,
2128
                                            Symbol_table::INCREMENTAL_BASE,
2129
                                            os, v, symsize, st_type, st_bind,
2130
                                            gsym.get_st_visibility(), 0,
2131
                                            false, false);
2132
            }
2133
        }
2134
 
2135
      this->symbols_[i] = res;
2136
      this->ibase_->add_global_symbol(output_symndx - first_global, res);
2137 27 khays
    }
2138
}
2139
 
2140
// Return TRUE if we should include this object from an archive library.
2141
 
2142
template<int size, bool big_endian>
2143
Archive::Should_include
2144
Sized_relobj_incr<size, big_endian>::do_should_include_member(
2145
    Symbol_table*,
2146
    Layout*,
2147
    Read_symbols_data*,
2148
    std::string*)
2149
{
2150
  gold_unreachable();
2151
}
2152
 
2153
// Iterate over global symbols, calling a visitor class V for each.
2154
 
2155
template<int size, bool big_endian>
2156
void
2157
Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
2158
    Read_symbols_data*,
2159
    Library_base::Symbol_visitor_base*)
2160
{
2161
  // This routine is not used for incremental objects.
2162
}
2163
 
2164
// Get the size of a section.
2165
 
2166
template<int size, bool big_endian>
2167
uint64_t
2168
Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
2169
{
2170
  gold_unreachable();
2171
}
2172
 
2173
// Get the name of a section.
2174
 
2175
template<int size, bool big_endian>
2176
std::string
2177
Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int)
2178
{
2179
  gold_unreachable();
2180
}
2181
 
2182
// Return a view of the contents of a section.
2183
 
2184
template<int size, bool big_endian>
2185
Object::Location
2186
Sized_relobj_incr<size, big_endian>::do_section_contents(unsigned int)
2187
{
2188
  gold_unreachable();
2189
}
2190
 
2191
// Return section flags.
2192
 
2193
template<int size, bool big_endian>
2194
uint64_t
2195
Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
2196
{
2197
  gold_unreachable();
2198
}
2199
 
2200
// Return section entsize.
2201
 
2202
template<int size, bool big_endian>
2203
uint64_t
2204
Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
2205
{
2206
  gold_unreachable();
2207
}
2208
 
2209
// Return section address.
2210
 
2211
template<int size, bool big_endian>
2212
uint64_t
2213
Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
2214
{
2215
  gold_unreachable();
2216
}
2217
 
2218
// Return section type.
2219
 
2220
template<int size, bool big_endian>
2221
unsigned int
2222
Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
2223
{
2224
  gold_unreachable();
2225
}
2226
 
2227
// Return the section link field.
2228
 
2229
template<int size, bool big_endian>
2230
unsigned int
2231
Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
2232
{
2233
  gold_unreachable();
2234
}
2235
 
2236
// Return the section link field.
2237
 
2238
template<int size, bool big_endian>
2239
unsigned int
2240
Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
2241
{
2242
  gold_unreachable();
2243
}
2244
 
2245
// Return the section alignment.
2246
 
2247
template<int size, bool big_endian>
2248
uint64_t
2249
Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
2250
{
2251
  gold_unreachable();
2252
}
2253
 
2254
// Return the Xindex structure to use.
2255
 
2256
template<int size, bool big_endian>
2257
Xindex*
2258
Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
2259
{
2260
  gold_unreachable();
2261
}
2262
 
2263
// Get symbol counts.
2264
 
2265
template<int size, bool big_endian>
2266
void
2267
Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
2268
    const Symbol_table*, size_t*, size_t*) const
2269
{
2270
  gold_unreachable();
2271
}
2272
 
2273
// Read the relocs.
2274
 
2275
template<int size, bool big_endian>
2276
void
2277
Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
2278
{
2279
}
2280
 
2281
// Process the relocs to find list of referenced sections. Used only
2282
// during garbage collection.
2283
 
2284
template<int size, bool big_endian>
2285
void
2286
Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
2287
                                                          Layout*,
2288
                                                          Read_relocs_data*)
2289
{
2290
  gold_unreachable();
2291
}
2292
 
2293
// Scan the relocs and adjust the symbol table.
2294
 
2295
template<int size, bool big_endian>
2296
void
2297
Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
2298
                                                    Layout* layout,
2299
                                                    Read_relocs_data*)
2300
{
2301
  // Count the incremental relocations for this object.
2302
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2303
  this->allocate_incremental_reloc_counts();
2304
  for (unsigned int i = 0; i < nsyms; i++)
2305
    {
2306
      Incremental_global_symbol_reader<big_endian> sym =
2307
          this->input_reader_.get_global_symbol_reader(i);
2308
      unsigned int reloc_count = sym.reloc_count();
2309
      if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
2310
        this->incr_reloc_offset_ = sym.reloc_offset();
2311
      this->incr_reloc_count_ += reloc_count;
2312
      for (unsigned int j = 0; j < reloc_count; j++)
2313
        this->count_incremental_reloc(i);
2314
    }
2315
  this->incr_reloc_output_index_ =
2316
      layout->incremental_inputs()->get_reloc_count();
2317
  this->finalize_incremental_relocs(layout, false);
2318
 
2319
  // The incoming incremental relocations may not end up in the same
2320
  // location after the incremental update, because the incremental info
2321
  // is regenerated in each link.  Because the new location may overlap
2322
  // with other data in the updated output file, we need to copy the
2323
  // relocations into a buffer so that we can still read them safely
2324
  // after we start writing updates to the output file.
2325
  if (this->incr_reloc_count_ > 0)
2326
    {
2327
      const Incremental_relocs_reader<size, big_endian>& relocs_reader =
2328
          this->ibase_->relocs_reader();
2329
      const unsigned int incr_reloc_size = relocs_reader.reloc_size;
2330
      unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2331
      this->incr_relocs_ = new unsigned char[len];
2332
      memcpy(this->incr_relocs_,
2333
             relocs_reader.data(this->incr_reloc_offset_),
2334
             len);
2335
    }
2336
}
2337
 
2338
// Count the local symbols.
2339
 
2340
template<int size, bool big_endian>
2341
void
2342
Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
2343
    Stringpool_template<char>* pool,
2344
    Stringpool_template<char>*)
2345
{
2346
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2347
 
2348
  // Set the count of local symbols based on the incremental info.
2349
  unsigned int nlocals = this->input_reader_.get_local_symbol_count();
2350
  this->local_symbol_count_ = nlocals;
2351
  this->local_symbols_.reserve(nlocals);
2352
 
2353
  // Get views of the base file's symbol table and string table.
2354
  Incremental_binary::View symtab_view(NULL);
2355
  unsigned int symtab_count;
2356
  elfcpp::Elf_strtab strtab(NULL, 0);
2357
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2358
 
2359
  // Read the local symbols from the base file's symbol table.
2360
  off_t off = this->input_reader_.get_local_symbol_offset();
2361
  const unsigned char* symp = symtab_view.data() + off;
2362
  for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
2363
    {
2364
      elfcpp::Sym<size, big_endian> sym(symp);
2365
      const char* name;
2366
      if (!strtab.get_c_string(sym.get_st_name(), &name))
2367
        name = "";
2368
      gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
2369
      name = pool->add(name, true, NULL);
2370
      this->local_symbols_.push_back(Local_symbol(name,
2371
                                                  sym.get_st_value(),
2372
                                                  sym.get_st_size(),
2373
                                                  sym.get_st_shndx(),
2374
                                                  sym.get_st_type(),
2375
                                                  false));
2376
    }
2377
}
2378
 
2379
// Finalize the local symbols.
2380
 
2381
template<int size, bool big_endian>
2382
unsigned int
2383
Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
2384
    unsigned int index,
2385
    off_t off,
2386
    Symbol_table*)
2387
{
2388
  this->local_symbol_index_ = index;
2389
  this->local_symbol_offset_ = off;
2390
  return index + this->local_symbol_count_;
2391
}
2392
 
2393
// Set the offset where local dynamic symbol information will be stored.
2394
 
2395
template<int size, bool big_endian>
2396
unsigned int
2397
Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
2398
    unsigned int index)
2399
{
2400
  // FIXME: set local dynsym indexes.
2401
  return index;
2402
}
2403
 
2404
// Set the offset where local dynamic symbol information will be stored.
2405
 
2406
template<int size, bool big_endian>
2407
unsigned int
2408
Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
2409
{
2410
  return 0;
2411
}
2412
 
2413
// Relocate the input sections and write out the local symbols.
2414
// We don't actually do any relocation here.  For unchanged input files,
2415
// we reapply relocations only for symbols that have changed; that happens
2416
// in queue_final_tasks.  We do need to rewrite the incremental relocations
2417
// for this object.
2418
 
2419
template<int size, bool big_endian>
2420
void
2421
Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
2422
                                                 const Layout* layout,
2423
                                                 Output_file* of)
2424
{
2425
  if (this->incr_reloc_count_ == 0)
2426
    return;
2427
 
2428
  const unsigned int incr_reloc_size =
2429
      Incremental_relocs_reader<size, big_endian>::reloc_size;
2430
 
2431
  // Get a view for the .gnu_incremental_relocs section.
2432
  Incremental_inputs* inputs = layout->incremental_inputs();
2433
  gold_assert(inputs != NULL);
2434
  const off_t relocs_off = inputs->relocs_section()->offset();
2435
  const off_t relocs_size = inputs->relocs_section()->data_size();
2436
  unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
2437
 
2438
  // Copy the relocations from the buffer.
2439
  off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
2440
  unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2441
  memcpy(view + off, this->incr_relocs_, len);
2442
 
2443
  // The output section table may have changed, so we need to map
2444
  // the old section index to the new section index for each relocation.
2445
  for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
2446
    {
2447
      unsigned char* pov = view + off + i * incr_reloc_size;
2448
      unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
2449
      Output_section* os = this->ibase_->output_section(shndx);
2450
      gold_assert(os != NULL);
2451
      shndx = os->out_shndx();
2452
      elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
2453
    }
2454
 
2455
  of->write_output_view(off, len, view);
2456
 
2457
  // Get views into the output file for the portions of the symbol table
2458
  // and the dynamic symbol table that we will be writing.
2459
  off_t symtab_off = layout->symtab_section()->offset();
2460
  off_t output_size = this->local_symbol_count_ * This::sym_size;
2461
  unsigned char* oview = NULL;
2462
  if (output_size > 0)
2463
    oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2464
                                output_size);
2465
 
2466
  off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2467
  unsigned char* dyn_oview = NULL;
2468
  if (dyn_output_size > 0)
2469
    dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2470
                                    dyn_output_size);
2471
 
2472
  // Write the local symbols.
2473
  unsigned char* ov = oview;
2474
  unsigned char* dyn_ov = dyn_oview;
2475
  const Stringpool* sympool = layout->sympool();
2476
  const Stringpool* dynpool = layout->dynpool();
2477
  Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
2478
  Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
2479
  for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
2480
    {
2481
      Local_symbol& lsym(this->local_symbols_[i]);
2482
 
2483
      bool is_ordinary;
2484
      unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
2485
                                                     &is_ordinary);
2486
      if (is_ordinary)
2487
        {
2488
          Output_section* os = this->ibase_->output_section(st_shndx);
2489
          st_shndx = os->out_shndx();
2490
          if (st_shndx >= elfcpp::SHN_LORESERVE)
2491
            {
2492
              symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
2493
              if (lsym.needs_dynsym_entry)
2494
                dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
2495
              st_shndx = elfcpp::SHN_XINDEX;
2496
            }
2497
        }
2498
 
2499
      // Write the symbol to the output symbol table.
2500
      {
2501
        elfcpp::Sym_write<size, big_endian> osym(ov);
2502
        osym.put_st_name(sympool->get_offset(lsym.name));
2503
        osym.put_st_value(lsym.st_value);
2504
        osym.put_st_size(lsym.st_size);
2505
        osym.put_st_info(elfcpp::STB_LOCAL,
2506
                         static_cast<elfcpp::STT>(lsym.st_type));
2507
        osym.put_st_other(0);
2508
        osym.put_st_shndx(st_shndx);
2509
        ov += sym_size;
2510
      }
2511
 
2512
      // Write the symbol to the output dynamic symbol table.
2513
      if (lsym.needs_dynsym_entry)
2514
        {
2515
          gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2516
          elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2517
          osym.put_st_name(dynpool->get_offset(lsym.name));
2518
          osym.put_st_value(lsym.st_value);
2519
          osym.put_st_size(lsym.st_size);
2520
          osym.put_st_info(elfcpp::STB_LOCAL,
2521
                           static_cast<elfcpp::STT>(lsym.st_type));
2522
          osym.put_st_other(0);
2523
          osym.put_st_shndx(st_shndx);
2524
          dyn_ov += sym_size;
2525
        }
2526
    }
2527
 
2528
  if (output_size > 0)
2529
    {
2530
      gold_assert(ov - oview == output_size);
2531
      of->write_output_view(symtab_off + this->local_symbol_offset_,
2532
                            output_size, oview);
2533
    }
2534
 
2535
  if (dyn_output_size > 0)
2536
    {
2537
      gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2538
      of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2539
                            dyn_oview);
2540
    }
2541
}
2542
 
2543
// Set the offset of a section.
2544
 
2545
template<int size, bool big_endian>
2546
void
2547
Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
2548
                                                           uint64_t)
2549
{
2550
}
2551
 
2552
// Class Sized_incr_dynobj.  Most of these methods are not used for
2553
// Incremental objects, but are required to be implemented by the
2554
// base class Object.
2555
 
2556
template<int size, bool big_endian>
2557
Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
2558
    const std::string& name,
2559
    Sized_incremental_binary<size, big_endian>* ibase,
2560
    unsigned int input_file_index)
2561
  : Dynobj(name, NULL), ibase_(ibase),
2562
    input_file_index_(input_file_index),
2563
    input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2564
    symbols_()
2565
{
2566
  if (this->input_reader_.is_in_system_directory())
2567
    this->set_is_in_system_directory();
2568
  if (this->input_reader_.as_needed())
2569
    this->set_as_needed();
2570
  this->set_soname_string(this->input_reader_.get_soname());
2571
  this->set_shnum(0);
2572
}
2573
 
2574
// Read the symbols.
2575
 
2576
template<int size, bool big_endian>
2577
void
2578
Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
2579
{
2580
  gold_unreachable();
2581
}
2582
 
2583
// Lay out the input sections.
2584
 
2585
template<int size, bool big_endian>
2586
void
2587
Sized_incr_dynobj<size, big_endian>::do_layout(
2588
    Symbol_table*,
2589
    Layout*,
2590
    Read_symbols_data*)
2591
{
2592
}
2593
 
2594
// Add the symbols to the symbol table.
2595
 
2596
template<int size, bool big_endian>
2597
void
2598
Sized_incr_dynobj<size, big_endian>::do_add_symbols(
2599
    Symbol_table* symtab,
2600
    Read_symbols_data*,
2601
    Layout*)
2602
{
2603
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2604
  unsigned char symbuf[sym_size];
2605
  elfcpp::Sym<size, big_endian> sym(symbuf);
2606
  elfcpp::Sym_write<size, big_endian> osym(symbuf);
2607
 
2608
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2609
 
2610
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2611
  this->symbols_.resize(nsyms);
2612
 
2613
  Incremental_binary::View symtab_view(NULL);
2614
  unsigned int symtab_count;
2615
  elfcpp::Elf_strtab strtab(NULL, 0);
2616
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2617
 
2618
  Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2619
  unsigned int isym_count = isymtab.symbol_count();
2620
  unsigned int first_global = symtab_count - isym_count;
2621
 
2622 148 khays
  // We keep a set of symbols that we have generated COPY relocations
2623
  // for, indexed by the symbol value. We do not need more than one
2624
  // COPY relocation per address.
2625
  typedef typename std::set<Address> Copied_symbols;
2626
  Copied_symbols copied_symbols;
2627
 
2628 27 khays
  const unsigned char* sym_p;
2629
  for (unsigned int i = 0; i < nsyms; ++i)
2630
    {
2631
      bool is_def;
2632 148 khays
      bool is_copy;
2633 27 khays
      unsigned int output_symndx =
2634 148 khays
          this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
2635 27 khays
      sym_p = symtab_view.data() + output_symndx * sym_size;
2636
      elfcpp::Sym<size, big_endian> gsym(sym_p);
2637
      const char* name;
2638
      if (!strtab.get_c_string(gsym.get_st_name(), &name))
2639
        name = "";
2640
 
2641 148 khays
      Address v;
2642 27 khays
      unsigned int shndx;
2643
      elfcpp::STB st_bind = gsym.get_st_bind();
2644
      elfcpp::STT st_type = gsym.get_st_type();
2645
 
2646
      // Local hidden symbols start out as globals, but get converted to
2647
      // to local during output.
2648
      if (st_bind == elfcpp::STB_LOCAL)
2649
        st_bind = elfcpp::STB_GLOBAL;
2650
 
2651
      if (!is_def)
2652
        {
2653
          shndx = elfcpp::SHN_UNDEF;
2654
          v = 0;
2655
        }
2656
      else
2657
        {
2658
          // For a symbol defined in a shared object, the section index
2659
          // is meaningless, as long as it's not SHN_UNDEF.
2660
          shndx = 1;
2661
          v = gsym.get_st_value();
2662
        }
2663
 
2664
      osym.put_st_name(0);
2665
      osym.put_st_value(v);
2666
      osym.put_st_size(gsym.get_st_size());
2667
      osym.put_st_info(st_bind, st_type);
2668
      osym.put_st_other(gsym.get_st_other());
2669
      osym.put_st_shndx(shndx);
2670
 
2671 148 khays
      Sized_symbol<size>* res =
2672
          symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
2673
      this->symbols_[i] = res;
2674 27 khays
      this->ibase_->add_global_symbol(output_symndx - first_global,
2675
                                      this->symbols_[i]);
2676 148 khays
 
2677
      if (is_copy)
2678
        {
2679
          std::pair<typename Copied_symbols::iterator, bool> ins =
2680
              copied_symbols.insert(v);
2681
          if (ins.second)
2682
            {
2683
              unsigned int shndx = gsym.get_st_shndx();
2684
              Output_section* os = this->ibase_->output_section(shndx);
2685
              off_t offset = v - os->address();
2686
              this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
2687
            }
2688
        }
2689 27 khays
    }
2690
}
2691
 
2692
// Return TRUE if we should include this object from an archive library.
2693
 
2694
template<int size, bool big_endian>
2695
Archive::Should_include
2696
Sized_incr_dynobj<size, big_endian>::do_should_include_member(
2697
    Symbol_table*,
2698
    Layout*,
2699
    Read_symbols_data*,
2700
    std::string*)
2701
{
2702
  gold_unreachable();
2703
}
2704
 
2705
// Iterate over global symbols, calling a visitor class V for each.
2706
 
2707
template<int size, bool big_endian>
2708
void
2709
Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
2710
    Read_symbols_data*,
2711
    Library_base::Symbol_visitor_base*)
2712
{
2713
  // This routine is not used for dynamic libraries.
2714
}
2715
 
2716
// Iterate over local symbols, calling a visitor class V for each GOT offset
2717
// associated with a local symbol.
2718
 
2719
template<int size, bool big_endian>
2720
void
2721
Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
2722
    Got_offset_list::Visitor*) const
2723
{
2724
}
2725
 
2726
// Get the size of a section.
2727
 
2728
template<int size, bool big_endian>
2729
uint64_t
2730
Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
2731
{
2732
  gold_unreachable();
2733
}
2734
 
2735
// Get the name of a section.
2736
 
2737
template<int size, bool big_endian>
2738
std::string
2739
Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int)
2740
{
2741
  gold_unreachable();
2742
}
2743
 
2744
// Return a view of the contents of a section.
2745
 
2746
template<int size, bool big_endian>
2747
Object::Location
2748
Sized_incr_dynobj<size, big_endian>::do_section_contents(unsigned int)
2749
{
2750
  gold_unreachable();
2751
}
2752
 
2753
// Return section flags.
2754
 
2755
template<int size, bool big_endian>
2756
uint64_t
2757
Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
2758
{
2759
  gold_unreachable();
2760
}
2761
 
2762
// Return section entsize.
2763
 
2764
template<int size, bool big_endian>
2765
uint64_t
2766
Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
2767
{
2768
  gold_unreachable();
2769
}
2770
 
2771
// Return section address.
2772
 
2773
template<int size, bool big_endian>
2774
uint64_t
2775
Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
2776
{
2777
  gold_unreachable();
2778
}
2779
 
2780
// Return section type.
2781
 
2782
template<int size, bool big_endian>
2783
unsigned int
2784
Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
2785
{
2786
  gold_unreachable();
2787
}
2788
 
2789
// Return the section link field.
2790
 
2791
template<int size, bool big_endian>
2792
unsigned int
2793
Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
2794
{
2795
  gold_unreachable();
2796
}
2797
 
2798
// Return the section link field.
2799
 
2800
template<int size, bool big_endian>
2801
unsigned int
2802
Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
2803
{
2804
  gold_unreachable();
2805
}
2806
 
2807
// Return the section alignment.
2808
 
2809
template<int size, bool big_endian>
2810
uint64_t
2811
Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
2812
{
2813
  gold_unreachable();
2814
}
2815
 
2816
// Return the Xindex structure to use.
2817
 
2818
template<int size, bool big_endian>
2819
Xindex*
2820
Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
2821
{
2822
  gold_unreachable();
2823
}
2824
 
2825
// Get symbol counts.
2826
 
2827
template<int size, bool big_endian>
2828
void
2829
Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
2830
    const Symbol_table*, size_t*, size_t*) const
2831
{
2832
  gold_unreachable();
2833
}
2834
 
2835
// Allocate an incremental object of the appropriate size and endianness.
2836
 
2837
Object*
2838
make_sized_incremental_object(
2839
    Incremental_binary* ibase,
2840
    unsigned int input_file_index,
2841
    Incremental_input_type input_type,
2842
    const Incremental_binary::Input_reader* input_reader)
2843
{
2844
  Object* obj = NULL;
2845
  std::string name(input_reader->filename());
2846
 
2847
  switch (parameters->size_and_endianness())
2848
    {
2849
#ifdef HAVE_TARGET_32_LITTLE
2850
    case Parameters::TARGET_32_LITTLE:
2851
      {
2852
        Sized_incremental_binary<32, false>* sized_ibase =
2853
            static_cast<Sized_incremental_binary<32, false>*>(ibase);
2854
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2855
          obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
2856
                                                 input_file_index);
2857
        else
2858
          obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
2859
                                                 input_file_index);
2860
      }
2861
      break;
2862
#endif
2863
#ifdef HAVE_TARGET_32_BIG
2864
    case Parameters::TARGET_32_BIG:
2865
      {
2866
        Sized_incremental_binary<32, true>* sized_ibase =
2867
            static_cast<Sized_incremental_binary<32, true>*>(ibase);
2868
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2869
          obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
2870
                                                input_file_index);
2871
        else
2872
          obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
2873
                                                input_file_index);
2874
      }
2875
      break;
2876
#endif
2877
#ifdef HAVE_TARGET_64_LITTLE
2878
    case Parameters::TARGET_64_LITTLE:
2879
      {
2880
        Sized_incremental_binary<64, false>* sized_ibase =
2881
            static_cast<Sized_incremental_binary<64, false>*>(ibase);
2882
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2883
          obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
2884
                                                 input_file_index);
2885
        else
2886
          obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
2887
                                                 input_file_index);
2888
     }
2889
      break;
2890
#endif
2891
#ifdef HAVE_TARGET_64_BIG
2892
    case Parameters::TARGET_64_BIG:
2893
      {
2894
        Sized_incremental_binary<64, true>* sized_ibase =
2895
            static_cast<Sized_incremental_binary<64, true>*>(ibase);
2896
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2897
          obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
2898
                                                input_file_index);
2899
        else
2900
          obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
2901
                                                input_file_index);
2902
      }
2903
      break;
2904
#endif
2905
    default:
2906
      gold_unreachable();
2907
    }
2908
 
2909
  gold_assert(obj != NULL);
2910
  return obj;
2911
}
2912
 
2913
// Copy the unused symbols from the incremental input info.
2914
// We need to do this because we may be overwriting the incremental
2915
// input info in the base file before we write the new incremental
2916
// info.
2917
void
2918
Incremental_library::copy_unused_symbols()
2919
{
2920
  unsigned int symcount = this->input_reader_->get_unused_symbol_count();
2921
  this->unused_symbols_.reserve(symcount);
2922
  for (unsigned int i = 0; i < symcount; ++i)
2923
    {
2924
      std::string name(this->input_reader_->get_unused_symbol(i));
2925
      this->unused_symbols_.push_back(name);
2926
    }
2927
}
2928
 
2929
// Iterator for unused global symbols in the library.
2930
void
2931
Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
2932
{
2933
  for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
2934
       p != this->unused_symbols_.end();
2935
       ++p)
2936
  v->visit(p->c_str());
2937
}
2938
 
2939
// Instantiate the templates we need.
2940
 
2941
#ifdef HAVE_TARGET_32_LITTLE
2942
template
2943
class Sized_incremental_binary<32, false>;
2944
 
2945
template
2946
class Sized_relobj_incr<32, false>;
2947
 
2948
template
2949
class Sized_incr_dynobj<32, false>;
2950
#endif
2951
 
2952
#ifdef HAVE_TARGET_32_BIG
2953
template
2954
class Sized_incremental_binary<32, true>;
2955
 
2956
template
2957
class Sized_relobj_incr<32, true>;
2958
 
2959
template
2960
class Sized_incr_dynobj<32, true>;
2961
#endif
2962
 
2963
#ifdef HAVE_TARGET_64_LITTLE
2964
template
2965
class Sized_incremental_binary<64, false>;
2966
 
2967
template
2968
class Sized_relobj_incr<64, false>;
2969
 
2970
template
2971
class Sized_incr_dynobj<64, false>;
2972
#endif
2973
 
2974
#ifdef HAVE_TARGET_64_BIG
2975
template
2976
class Sized_incremental_binary<64, true>;
2977
 
2978
template
2979
class Sized_relobj_incr<64, true>;
2980
 
2981
template
2982
class Sized_incr_dynobj<64, true>;
2983
#endif
2984
 
2985
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.