OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [incremental.cc] - Blame information for rev 163

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// inremental.cc -- incremental linking support for gold
2
 
3 159 khays
// Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4 27 khays
// Written by Mikolaj Zalewski <mikolajz@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25 148 khays
#include <set>
26 27 khays
#include <cstdarg>
27
#include "libiberty.h"
28
 
29
#include "elfcpp.h"
30
#include "options.h"
31
#include "output.h"
32
#include "symtab.h"
33
#include "incremental.h"
34
#include "archive.h"
35
#include "object.h"
36
#include "output.h"
37
#include "target-select.h"
38
#include "target.h"
39
#include "fileread.h"
40
#include "script.h"
41
 
42
namespace gold {
43
 
44
// Version information. Will change frequently during the development, later
45
// we could think about backward (and forward?) compatibility.
46
const unsigned int INCREMENTAL_LINK_VERSION = 1;
47
 
48
// This class manages the .gnu_incremental_inputs section, which holds
49
// the header information, a directory of input files, and separate
50
// entries for each input file.
51
 
52
template<int size, bool big_endian>
53
class Output_section_incremental_inputs : public Output_section_data
54
{
55
 public:
56
  Output_section_incremental_inputs(const Incremental_inputs* inputs,
57
                                    const Symbol_table* symtab)
58
    : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
59
  { }
60
 
61
 protected:
62
  // This is called to update the section size prior to assigning
63
  // the address and file offset.
64
  void
65
  update_data_size()
66
  { this->set_final_data_size(); }
67
 
68
  // Set the final data size.
69
  void
70
  set_final_data_size();
71
 
72
  // Write the data to the file.
73
  void
74
  do_write(Output_file*);
75
 
76
  // Write to a map file.
77
  void
78
  do_print_to_mapfile(Mapfile* mapfile) const
79
  { mapfile->print_output_data(this, _("** incremental_inputs")); }
80
 
81
 private:
82
  // Write the section header.
83
  unsigned char*
84
  write_header(unsigned char* pov, unsigned int input_file_count,
85
               section_offset_type command_line_offset);
86
 
87
  // Write the input file entries.
88
  unsigned char*
89
  write_input_files(unsigned char* oview, unsigned char* pov,
90
                    Stringpool* strtab);
91
 
92
  // Write the supplemental information blocks.
93
  unsigned char*
94
  write_info_blocks(unsigned char* oview, unsigned char* pov,
95
                    Stringpool* strtab, unsigned int* global_syms,
96
                    unsigned int global_sym_count);
97
 
98
  // Write the contents of the .gnu_incremental_symtab section.
99
  void
100
  write_symtab(unsigned char* pov, unsigned int* global_syms,
101
               unsigned int global_sym_count);
102
 
103
  // Write the contents of the .gnu_incremental_got_plt section.
104
  void
105
  write_got_plt(unsigned char* pov, off_t view_size);
106
 
107
  // Typedefs for writing the data to the output sections.
108
  typedef elfcpp::Swap<size, big_endian> Swap;
109
  typedef elfcpp::Swap<16, big_endian> Swap16;
110
  typedef elfcpp::Swap<32, big_endian> Swap32;
111
  typedef elfcpp::Swap<64, big_endian> Swap64;
112
 
113
  // Sizes of various structures.
114
  static const int sizeof_addr = size / 8;
115
  static const int header_size = 16;
116
  static const int input_entry_size = 24;
117
 
118
  // The Incremental_inputs object.
119
  const Incremental_inputs* inputs_;
120
 
121
  // The symbol table.
122
  const Symbol_table* symtab_;
123
};
124
 
125
// Inform the user why we don't do an incremental link.  Not called in
126
// the obvious case of missing output file.  TODO: Is this helpful?
127
 
128
void
129
vexplain_no_incremental(const char* format, va_list args)
130
{
131
  char* buf = NULL;
132
  if (vasprintf(&buf, format, args) < 0)
133
    gold_nomem();
134
  gold_info(_("the link might take longer: "
135
              "cannot perform incremental link: %s"), buf);
136
  free(buf);
137
}
138
 
139
void
140
explain_no_incremental(const char* format, ...)
141
{
142
  va_list args;
143
  va_start(args, format);
144
  vexplain_no_incremental(format, args);
145
  va_end(args);
146
}
147
 
148
// Report an error.
149
 
150
void
151
Incremental_binary::error(const char* format, ...) const
152
{
153
  va_list args;
154
  va_start(args, format);
155
  // Current code only checks if the file can be used for incremental linking,
156
  // so errors shouldn't fail the build, but only result in a fallback to a
157
  // full build.
158
  // TODO: when we implement incremental editing of the file, we may need a
159
  // flag that will cause errors to be treated seriously.
160
  vexplain_no_incremental(format, args);
161
  va_end(args);
162
}
163
 
164 163 khays
// Return TRUE if a section of type SH_TYPE can be updated in place
165
// during an incremental update.  We can update sections of type PROGBITS,
166
// NOBITS, INIT_ARRAY, FINI_ARRAY, PREINIT_ARRAY, and NOTE.  All others
167
// will be regenerated.
168
 
169
bool
170
can_incremental_update(unsigned int sh_type)
171
{
172
  return (sh_type == elfcpp::SHT_PROGBITS
173
          || sh_type == elfcpp::SHT_NOBITS
174
          || sh_type == elfcpp::SHT_INIT_ARRAY
175
          || sh_type == elfcpp::SHT_FINI_ARRAY
176
          || sh_type == elfcpp::SHT_PREINIT_ARRAY
177
          || sh_type == elfcpp::SHT_NOTE);
178
}
179
 
180 27 khays
// Find the .gnu_incremental_inputs section and related sections.
181
 
182
template<int size, bool big_endian>
183
bool
184
Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
185
    unsigned int* p_inputs_shndx,
186
    unsigned int* p_symtab_shndx,
187
    unsigned int* p_relocs_shndx,
188
    unsigned int* p_got_plt_shndx,
189
    unsigned int* p_strtab_shndx)
190
{
191
  unsigned int inputs_shndx =
192
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
193
  if (inputs_shndx == elfcpp::SHN_UNDEF)  // Not found.
194
    return false;
195
 
196
  unsigned int symtab_shndx =
197
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
198
  if (symtab_shndx == elfcpp::SHN_UNDEF)  // Not found.
199
    return false;
200
  if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
201
    return false;
202
 
203
  unsigned int relocs_shndx =
204
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
205
  if (relocs_shndx == elfcpp::SHN_UNDEF)  // Not found.
206
    return false;
207
  if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
208
    return false;
209
 
210
  unsigned int got_plt_shndx =
211
      this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
212
  if (got_plt_shndx == elfcpp::SHN_UNDEF)  // Not found.
213
    return false;
214
  if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
215
    return false;
216
 
217
  unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
218
  if (strtab_shndx == elfcpp::SHN_UNDEF
219
      || strtab_shndx > this->elf_file_.shnum()
220
      || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
221
    return false;
222
 
223
  if (p_inputs_shndx != NULL)
224
    *p_inputs_shndx = inputs_shndx;
225
  if (p_symtab_shndx != NULL)
226
    *p_symtab_shndx = symtab_shndx;
227
  if (p_relocs_shndx != NULL)
228
    *p_relocs_shndx = relocs_shndx;
229
  if (p_got_plt_shndx != NULL)
230
    *p_got_plt_shndx = got_plt_shndx;
231
  if (p_strtab_shndx != NULL)
232
    *p_strtab_shndx = strtab_shndx;
233
  return true;
234
}
235
 
236
// Set up the readers into the incremental info sections.
237
 
238
template<int size, bool big_endian>
239
void
240
Sized_incremental_binary<size, big_endian>::setup_readers()
241
{
242
  unsigned int inputs_shndx;
243
  unsigned int symtab_shndx;
244
  unsigned int relocs_shndx;
245
  unsigned int got_plt_shndx;
246
  unsigned int strtab_shndx;
247
 
248
  if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
249
                                              &relocs_shndx, &got_plt_shndx,
250
                                              &strtab_shndx))
251
    return;
252
 
253
  Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
254
  Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
255
  Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
256
  Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
257
  Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
258
 
259
  View inputs_view = this->view(inputs_location);
260
  View symtab_view = this->view(symtab_location);
261
  View relocs_view = this->view(relocs_location);
262
  View got_plt_view = this->view(got_plt_location);
263
  View strtab_view = this->view(strtab_location);
264
 
265
  elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
266
 
267
  this->inputs_reader_ =
268
      Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
269
  this->symtab_reader_ =
270
      Incremental_symtab_reader<big_endian>(symtab_view.data(),
271
                                            symtab_location.data_size);
272
  this->relocs_reader_ =
273
      Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
274
                                                  relocs_location.data_size);
275
  this->got_plt_reader_ =
276
      Incremental_got_plt_reader<big_endian>(got_plt_view.data());
277
 
278
  // Find the main symbol table.
279
  unsigned int main_symtab_shndx =
280
      this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
281
  gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
282
  this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
283
 
284
  // Find the main symbol string table.
285
  unsigned int main_strtab_shndx =
286
      this->elf_file_.section_link(main_symtab_shndx);
287
  gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
288
              && main_strtab_shndx < this->elf_file_.shnum());
289
  this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
290
 
291
  // Walk the list of input files (a) to setup an Input_reader for each
292
  // input file, and (b) to record maps of files added from archive
293
  // libraries and scripts.
294
  Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
295
  unsigned int count = inputs.input_file_count();
296
  this->input_objects_.resize(count);
297
  this->input_entry_readers_.reserve(count);
298
  this->library_map_.resize(count);
299
  this->script_map_.resize(count);
300
  for (unsigned int i = 0; i < count; i++)
301
    {
302
      Input_entry_reader input_file = inputs.input_file(i);
303
      this->input_entry_readers_.push_back(Sized_input_reader(input_file));
304
      switch (input_file.type())
305
        {
306
        case INCREMENTAL_INPUT_OBJECT:
307
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
308
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
309
          // No special treatment necessary.
310
          break;
311
        case INCREMENTAL_INPUT_ARCHIVE:
312
          {
313
            Incremental_library* lib =
314
                new Incremental_library(input_file.filename(), i,
315
                                        &this->input_entry_readers_[i]);
316
            this->library_map_[i] = lib;
317
            unsigned int member_count = input_file.get_member_count();
318
            for (unsigned int j = 0; j < member_count; j++)
319
              {
320
                int member_offset = input_file.get_member_offset(j);
321
                int member_index = inputs.input_file_index(member_offset);
322
                this->library_map_[member_index] = lib;
323
              }
324
          }
325
          break;
326
        case INCREMENTAL_INPUT_SCRIPT:
327
          {
328 159 khays
            Script_info* script = new Script_info(input_file.filename(), i);
329 27 khays
            this->script_map_[i] = script;
330
            unsigned int object_count = input_file.get_object_count();
331
            for (unsigned int j = 0; j < object_count; j++)
332
              {
333
                int object_offset = input_file.get_object_offset(j);
334
                int object_index = inputs.input_file_index(object_offset);
335
                this->script_map_[object_index] = script;
336
              }
337
          }
338
          break;
339
        default:
340
          gold_unreachable();
341
        }
342
    }
343
 
344
  // Initialize the map of global symbols.
345
  unsigned int nglobals = this->symtab_reader_.symbol_count();
346
  this->symbol_map_.resize(nglobals);
347
 
348
  this->has_incremental_info_ = true;
349
}
350
 
351
// Walk the list of input files given on the command line, and build
352
// a direct map of file index to the corresponding input argument.
353
 
354
void
355
check_input_args(std::vector<const Input_argument*>& input_args_map,
356
                 Input_arguments::const_iterator begin,
357
                 Input_arguments::const_iterator end)
358
{
359
  for (Input_arguments::const_iterator p = begin;
360
       p != end;
361
       ++p)
362
    {
363
      if (p->is_group())
364
        {
365
          const Input_file_group* group = p->group();
366
          check_input_args(input_args_map, group->begin(), group->end());
367
        }
368
      else if (p->is_lib())
369
        {
370
          const Input_file_lib* lib = p->lib();
371
          check_input_args(input_args_map, lib->begin(), lib->end());
372
        }
373
      else
374
        {
375
          gold_assert(p->is_file());
376
          unsigned int arg_serial = p->file().arg_serial();
377
          if (arg_serial > 0)
378
            {
379
              gold_assert(arg_serial <= input_args_map.size());
380
              gold_assert(input_args_map[arg_serial - 1] == 0);
381
              input_args_map[arg_serial - 1] = &*p;
382
            }
383
        }
384
    }
385
}
386
 
387
// Determine whether an incremental link based on the existing output file
388
// can be done.
389
 
390
template<int size, bool big_endian>
391
bool
392
Sized_incremental_binary<size, big_endian>::do_check_inputs(
393
    const Command_line& cmdline,
394
    Incremental_inputs* incremental_inputs)
395
{
396
  Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
397
 
398
  if (!this->has_incremental_info_)
399
    {
400
      explain_no_incremental(_("no incremental data from previous build"));
401
      return false;
402
    }
403
 
404
  if (inputs.version() != INCREMENTAL_LINK_VERSION)
405
    {
406
      explain_no_incremental(_("different version of incremental build data"));
407
      return false;
408
    }
409
 
410
  if (incremental_inputs->command_line() != inputs.command_line())
411
    {
412 159 khays
      gold_debug(DEBUG_INCREMENTAL,
413
                 "old command line: %s",
414
                 inputs.command_line());
415
      gold_debug(DEBUG_INCREMENTAL,
416
                 "new command line: %s",
417
                 incremental_inputs->command_line().c_str());
418 27 khays
      explain_no_incremental(_("command line changed"));
419
      return false;
420
    }
421
 
422
  // Walk the list of input files given on the command line, and build
423
  // a direct map of argument serial numbers to the corresponding input
424
  // arguments.
425
  this->input_args_map_.resize(cmdline.number_of_input_files());
426
  check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
427
 
428
  // Walk the list of input files to check for conditions that prevent
429
  // an incremental update link.
430
  unsigned int count = inputs.input_file_count();
431
  for (unsigned int i = 0; i < count; i++)
432
    {
433
      Input_entry_reader input_file = inputs.input_file(i);
434
      switch (input_file.type())
435
        {
436
        case INCREMENTAL_INPUT_OBJECT:
437
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
438
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
439
        case INCREMENTAL_INPUT_ARCHIVE:
440
          // No special treatment necessary.
441
          break;
442
        case INCREMENTAL_INPUT_SCRIPT:
443
          if (this->do_file_has_changed(i))
444
            {
445
              explain_no_incremental(_("%s: script file changed"),
446
                                     input_file.filename());
447
              return false;
448
            }
449
          break;
450
        default:
451
          gold_unreachable();
452
        }
453
    }
454
 
455
  return true;
456
}
457
 
458
// Return TRUE if input file N has changed since the last incremental link.
459
 
460
template<int size, bool big_endian>
461
bool
462
Sized_incremental_binary<size, big_endian>::do_file_has_changed(
463
    unsigned int n) const
464
{
465
  Input_entry_reader input_file = this->inputs_reader_.input_file(n);
466
  Incremental_disposition disp = INCREMENTAL_CHECK;
467 159 khays
 
468
  // For files named in scripts, find the file that was actually named
469
  // on the command line, so that we can get the incremental disposition
470
  // flag.
471
  Script_info* script = this->get_script_info(n);
472
  if (script != NULL)
473
    n = script->input_file_index();
474
 
475 27 khays
  const Input_argument* input_argument = this->get_input_argument(n);
476
  if (input_argument != NULL)
477
    disp = input_argument->file().options().incremental_disposition();
478
 
479 159 khays
  // For files at the beginning of the command line (i.e., those added
480
  // implicitly by gcc), check whether the --incremental-startup-unchanged
481
  // option was used.
482
  if (disp == INCREMENTAL_STARTUP)
483
    disp = parameters->options().incremental_startup_disposition();
484
 
485 27 khays
  if (disp != INCREMENTAL_CHECK)
486
    return disp == INCREMENTAL_CHANGED;
487
 
488
  const char* filename = input_file.filename();
489
  Timespec old_mtime = input_file.get_mtime();
490
  Timespec new_mtime;
491
  if (!get_mtime(filename, &new_mtime))
492
    {
493
      // If we can't open get the current modification time, assume it has
494
      // changed.  If the file doesn't exist, we'll issue an error when we
495
      // try to open it later.
496
      return true;
497
    }
498
 
499
  if (new_mtime.seconds > old_mtime.seconds)
500
    return true;
501
  if (new_mtime.seconds == old_mtime.seconds
502
      && new_mtime.nanoseconds > old_mtime.nanoseconds)
503
    return true;
504
  return false;
505
}
506
 
507
// Initialize the layout of the output file based on the existing
508
// output file.
509
 
510
template<int size, bool big_endian>
511
void
512
Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
513
{
514
  typedef elfcpp::Shdr<size, big_endian> Shdr;
515
  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
516
 
517
  // Get views of the section headers and the section string table.
518
  const off_t shoff = this->elf_file_.shoff();
519
  const unsigned int shnum = this->elf_file_.shnum();
520
  const unsigned int shstrndx = this->elf_file_.shstrndx();
521
  Location shdrs_location(shoff, shnum * shdr_size);
522
  Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
523
  View shdrs_view = this->view(shdrs_location);
524
  View shstrndx_view = this->view(shstrndx_location);
525
  elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
526
                              shstrndx_location.data_size);
527
 
528
  layout->set_incremental_base(this);
529
 
530
  // Initialize the layout.
531
  this->section_map_.resize(shnum);
532
  const unsigned char* pshdr = shdrs_view.data() + shdr_size;
533
  for (unsigned int i = 1; i < shnum; i++)
534
    {
535
      Shdr shdr(pshdr);
536
      const char* name;
537
      if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
538
        name = NULL;
539
      gold_debug(DEBUG_INCREMENTAL,
540
                 "Output section: %2d %08lx %08lx %08lx %3d %s",
541
                 i,
542
                 static_cast<long>(shdr.get_sh_addr()),
543
                 static_cast<long>(shdr.get_sh_offset()),
544
                 static_cast<long>(shdr.get_sh_size()),
545
                 shdr.get_sh_type(), name ? name : "<null>");
546
      this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
547
      pshdr += shdr_size;
548
    }
549
}
550
 
551
// Mark regions of the input file that must be kept unchanged.
552
 
553
template<int size, bool big_endian>
554
void
555
Sized_incremental_binary<size, big_endian>::do_reserve_layout(
556
    unsigned int input_file_index)
557
{
558 148 khays
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
559
 
560 27 khays
  Input_entry_reader input_file =
561
      this->inputs_reader_.input_file(input_file_index);
562
 
563
  if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
564 148 khays
    {
565
      // Reserve the BSS space used for COPY relocations.
566
      unsigned int nsyms = input_file.get_global_symbol_count();
567
      Incremental_binary::View symtab_view(NULL);
568
      unsigned int symtab_count;
569
      elfcpp::Elf_strtab strtab(NULL, 0);
570
      this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
571
      for (unsigned int i = 0; i < nsyms; ++i)
572
        {
573
          bool is_def;
574
          bool is_copy;
575
          unsigned int output_symndx =
576
              input_file.get_output_symbol_index(i, &is_def, &is_copy);
577
          if (is_copy)
578
            {
579
              const unsigned char* sym_p = (symtab_view.data()
580
                                            + output_symndx * sym_size);
581
              elfcpp::Sym<size, big_endian> gsym(sym_p);
582
              unsigned int shndx = gsym.get_st_shndx();
583
              if (shndx < 1 || shndx >= this->section_map_.size())
584
                continue;
585
              Output_section* os = this->section_map_[shndx];
586
              off_t offset = gsym.get_st_value() - os->address();
587
              os->reserve(offset, gsym.get_st_size());
588
              gold_debug(DEBUG_INCREMENTAL,
589
                         "Reserve for COPY reloc: %s, off %d, size %d",
590
                         os->name(),
591
                         static_cast<int>(offset),
592
                         static_cast<int>(gsym.get_st_size()));
593
            }
594
        }
595
      return;
596
    }
597 27 khays
 
598
  unsigned int shnum = input_file.get_input_section_count();
599
  for (unsigned int i = 0; i < shnum; i++)
600
    {
601
      typename Input_entry_reader::Input_section_info sect =
602
          input_file.get_input_section(i);
603
      if (sect.output_shndx == 0 || sect.sh_offset == -1)
604
        continue;
605
      Output_section* os = this->section_map_[sect.output_shndx];
606
      gold_assert(os != NULL);
607
      os->reserve(sect.sh_offset, sect.sh_size);
608
    }
609
}
610
 
611
// Process the GOT and PLT entries from the existing output file.
612
 
613
template<int size, bool big_endian>
614
void
615
Sized_incremental_binary<size, big_endian>::do_process_got_plt(
616
    Symbol_table* symtab,
617
    Layout* layout)
618
{
619
  Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
620
  Sized_target<size, big_endian>* target =
621
      parameters->sized_target<size, big_endian>();
622
 
623
  // Get the number of symbols in the main symbol table and in the
624
  // incremental symbol table.  The difference between the two counts
625
  // is the index of the first forced-local or global symbol in the
626
  // main symbol table.
627
  unsigned int symtab_count =
628
      this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
629
  unsigned int isym_count = this->symtab_reader_.symbol_count();
630
  unsigned int first_global = symtab_count - isym_count;
631
 
632
  // Tell the target how big the GOT and PLT sections are.
633
  unsigned int got_count = got_plt_reader.get_got_entry_count();
634
  unsigned int plt_count = got_plt_reader.get_plt_entry_count();
635
  Output_data_got<size, big_endian>* got =
636
      target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
637
 
638
  // Read the GOT entries from the base file and build the outgoing GOT.
639
  for (unsigned int i = 0; i < got_count; ++i)
640
    {
641
      unsigned int got_type = got_plt_reader.get_got_type(i);
642
      if ((got_type & 0x7f) == 0x7f)
643
        {
644
          // This is the second entry of a pair.
645
          got->reserve_slot(i);
646
          continue;
647
        }
648
      unsigned int symndx = got_plt_reader.get_got_symndx(i);
649
      if (got_type & 0x80)
650
        {
651
          // This is an entry for a local symbol.  Ignore this entry if
652
          // the object file was replaced.
653
          unsigned int input_index = got_plt_reader.get_got_input_index(i);
654
          gold_debug(DEBUG_INCREMENTAL,
655
                     "GOT entry %d, type %02x: (local symbol)",
656
                     i, got_type & 0x7f);
657
          Sized_relobj_incr<size, big_endian>* obj =
658
              this->input_object(input_index);
659
          if (obj != NULL)
660
            target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
661
        }
662
      else
663
        {
664
          // This is an entry for a global symbol.  GOT_DESC is the symbol
665
          // table index.
666
          // FIXME: This should really be a fatal error (corrupt input).
667
          gold_assert(symndx >= first_global && symndx < symtab_count);
668
          Symbol* sym = this->global_symbol(symndx - first_global);
669 148 khays
          // Add the GOT entry only if the symbol is still referenced.
670
          if (sym != NULL && sym->in_reg())
671
            {
672
              gold_debug(DEBUG_INCREMENTAL,
673
                         "GOT entry %d, type %02x: %s",
674
                         i, got_type, sym->name());
675
              target->reserve_global_got_entry(i, sym, got_type);
676
            }
677 27 khays
        }
678
    }
679
 
680
  // Read the PLT entries from the base file and pass each to the target.
681
  for (unsigned int i = 0; i < plt_count; ++i)
682
    {
683
      unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
684
      // FIXME: This should really be a fatal error (corrupt input).
685
      gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
686
      Symbol* sym = this->global_symbol(plt_desc - first_global);
687 148 khays
      // Add the PLT entry only if the symbol is still referenced.
688 163 khays
      if (sym != NULL && sym->in_reg())
689 148 khays
        {
690
          gold_debug(DEBUG_INCREMENTAL,
691
                     "PLT entry %d: %s",
692
                     i, sym->name());
693 159 khays
          target->register_global_plt_entry(symtab, layout, i, sym);
694 148 khays
        }
695 27 khays
    }
696
}
697
 
698 148 khays
// Emit COPY relocations from the existing output file.
699
 
700
template<int size, bool big_endian>
701
void
702
Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
703
    Symbol_table* symtab)
704
{
705
  Sized_target<size, big_endian>* target =
706
      parameters->sized_target<size, big_endian>();
707
 
708
  for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
709
       p != this->copy_relocs_.end();
710
       ++p)
711
    {
712
      if (!(*p).symbol->is_copied_from_dynobj())
713
        target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
714
                                (*p).offset);
715
    }
716
}
717
 
718 27 khays
// Apply incremental relocations for symbols whose values have changed.
719
 
720
template<int size, bool big_endian>
721
void
722
Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
723
    const Symbol_table* symtab,
724
    Layout* layout,
725
    Output_file* of)
726
{
727
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
728
  typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
729
  Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
730
  Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
731
  unsigned int nglobals = isymtab.symbol_count();
732
  const unsigned int incr_reloc_size = irelocs.reloc_size;
733
 
734
  Relocate_info<size, big_endian> relinfo;
735
  relinfo.symtab = symtab;
736
  relinfo.layout = layout;
737
  relinfo.object = NULL;
738
  relinfo.reloc_shndx = 0;
739
  relinfo.reloc_shdr = NULL;
740
  relinfo.data_shndx = 0;
741
  relinfo.data_shdr = NULL;
742
 
743
  Sized_target<size, big_endian>* target =
744
      parameters->sized_target<size, big_endian>();
745
 
746
  for (unsigned int i = 0; i < nglobals; i++)
747
    {
748
      const Symbol* gsym = this->global_symbol(i);
749
 
750
      // If the symbol is not referenced from any unchanged input files,
751
      // we do not need to reapply any of its relocations.
752
      if (gsym == NULL)
753
        continue;
754
 
755
      // If the symbol is defined in an unchanged file, we do not need to
756
      // reapply any of its relocations.
757
      if (gsym->source() == Symbol::FROM_OBJECT
758
          && gsym->object()->is_incremental())
759
        continue;
760
 
761
      gold_debug(DEBUG_INCREMENTAL,
762
                 "Applying incremental relocations for global symbol %s [%d]",
763
                 gsym->name(), i);
764
 
765
      // Follow the linked list of input symbol table entries for this symbol.
766
      // We don't bother to figure out whether the symbol table entry belongs
767
      // to a changed or unchanged file because it's easier just to apply all
768
      // the relocations -- although we might scribble over an area that has
769
      // been reallocated, we do this before copying any new data into the
770
      // output file.
771
      unsigned int offset = isymtab.get_list_head(i);
772
      while (offset > 0)
773
        {
774
          Incremental_global_symbol_reader<big_endian> sym_info =
775
              this->inputs_reader().global_symbol_reader_at_offset(offset);
776
          unsigned int r_base = sym_info.reloc_offset();
777
          unsigned int r_count = sym_info.reloc_count();
778
 
779
          // Apply each relocation for this symbol table entry.
780
          for (unsigned int j = 0; j < r_count;
781
               ++j, r_base += incr_reloc_size)
782
            {
783
              unsigned int r_type = irelocs.get_r_type(r_base);
784
              unsigned int r_shndx = irelocs.get_r_shndx(r_base);
785
              Address r_offset = irelocs.get_r_offset(r_base);
786
              Addend r_addend = irelocs.get_r_addend(r_base);
787
              Output_section* os = this->output_section(r_shndx);
788
              Address address = os->address();
789
              off_t section_offset = os->offset();
790
              size_t view_size = os->data_size();
791
              unsigned char* const view = of->get_output_view(section_offset,
792
                                                              view_size);
793
 
794
              gold_debug(DEBUG_INCREMENTAL,
795
                         "  %08lx: %s + %d: type %d addend %ld",
796
                         (long)(section_offset + r_offset),
797
                         os->name(),
798
                         (int)r_offset,
799
                         r_type,
800
                         (long)r_addend);
801
 
802
              target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
803
                                       gsym, view, address, view_size);
804
 
805
              // FIXME: Do something more efficient if write_output_view
806
              // ever becomes more than a no-op.
807
              of->write_output_view(section_offset, view_size, view);
808
            }
809
          offset = sym_info.next_offset();
810
        }
811
    }
812
}
813
 
814
// Get a view of the main symbol table and the symbol string table.
815
 
816
template<int size, bool big_endian>
817
void
818
Sized_incremental_binary<size, big_endian>::get_symtab_view(
819
    View* symtab_view,
820
    unsigned int* nsyms,
821
    elfcpp::Elf_strtab* strtab)
822
{
823
  *symtab_view = this->view(this->main_symtab_loc_);
824
  *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
825
 
826
  View strtab_view(this->view(this->main_strtab_loc_));
827
  *strtab = elfcpp::Elf_strtab(strtab_view.data(),
828
                               this->main_strtab_loc_.data_size);
829
}
830
 
831
namespace
832
{
833
 
834
// Create a Sized_incremental_binary object of the specified size and
835
// endianness. Fails if the target architecture is not supported.
836
 
837
template<int size, bool big_endian>
838
Incremental_binary*
839
make_sized_incremental_binary(Output_file* file,
840
                              const elfcpp::Ehdr<size, big_endian>& ehdr)
841
{
842
  Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
843
                                 ehdr.get_e_ident()[elfcpp::EI_OSABI],
844
                                 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
845
  if (target == NULL)
846
    {
847
      explain_no_incremental(_("unsupported ELF machine number %d"),
848
               ehdr.get_e_machine());
849
      return NULL;
850
    }
851
 
852
  if (!parameters->target_valid())
853
    set_parameters_target(target);
854
  else if (target != &parameters->target())
855
    gold_error(_("%s: incompatible target"), file->filename());
856
 
857
  return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
858
}
859
 
860
}  // End of anonymous namespace.
861
 
862
// Create an Incremental_binary object for FILE.  Returns NULL is this is not
863
// possible, e.g. FILE is not an ELF file or has an unsupported target.  FILE
864
// should be opened.
865
 
866
Incremental_binary*
867
open_incremental_binary(Output_file* file)
868
{
869
  off_t filesize = file->filesize();
870
  int want = elfcpp::Elf_recognizer::max_header_size;
871
  if (filesize < want)
872
    want = filesize;
873
 
874
  const unsigned char* p = file->get_input_view(0, want);
875
  if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
876
    {
877
      explain_no_incremental(_("output is not an ELF file."));
878
      return NULL;
879
    }
880
 
881
  int size = 0;
882
  bool big_endian = false;
883
  std::string error;
884
  if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
885
                                               &error))
886
    {
887
      explain_no_incremental(error.c_str());
888
      return NULL;
889
    }
890
 
891
  Incremental_binary* result = NULL;
892
  if (size == 32)
893
    {
894
      if (big_endian)
895
        {
896
#ifdef HAVE_TARGET_32_BIG
897
          result = make_sized_incremental_binary<32, true>(
898
              file, elfcpp::Ehdr<32, true>(p));
899
#else
900
          explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
901
#endif
902
        }
903
      else
904
        {
905
#ifdef HAVE_TARGET_32_LITTLE
906
          result = make_sized_incremental_binary<32, false>(
907
              file, elfcpp::Ehdr<32, false>(p));
908
#else
909
          explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
910
#endif
911
        }
912
    }
913
  else if (size == 64)
914
    {
915
      if (big_endian)
916
        {
917
#ifdef HAVE_TARGET_64_BIG
918
          result = make_sized_incremental_binary<64, true>(
919
              file, elfcpp::Ehdr<64, true>(p));
920
#else
921
          explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
922
#endif
923
        }
924
      else
925
        {
926
#ifdef HAVE_TARGET_64_LITTLE
927
          result = make_sized_incremental_binary<64, false>(
928
              file, elfcpp::Ehdr<64, false>(p));
929
#else
930
          explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
931
#endif
932
        }
933
    }
934
  else
935
    gold_unreachable();
936
 
937
  return result;
938
}
939
 
940
// Class Incremental_inputs.
941
 
942
// Add the command line to the string table, setting
943
// command_line_key_.  In incremental builds, the command line is
944
// stored in .gnu_incremental_inputs so that the next linker run can
945
// check if the command line options didn't change.
946
 
947
void
948
Incremental_inputs::report_command_line(int argc, const char* const* argv)
949
{
950
  // Always store 'gold' as argv[0] to avoid a full relink if the user used a
951
  // different path to the linker.
952
  std::string args("gold");
953
  // Copied from collect_argv in main.cc.
954
  for (int i = 1; i < argc; ++i)
955
    {
956
      // Adding/removing these options should not result in a full relink.
957
      if (strcmp(argv[i], "--incremental") == 0
958
          || strcmp(argv[i], "--incremental-full") == 0
959
          || strcmp(argv[i], "--incremental-update") == 0
960
          || strcmp(argv[i], "--incremental-changed") == 0
961
          || strcmp(argv[i], "--incremental-unchanged") == 0
962
          || strcmp(argv[i], "--incremental-unknown") == 0
963 159 khays
          || strcmp(argv[i], "--incremental-startup-unchanged") == 0
964 27 khays
          || is_prefix_of("--incremental-base=", argv[i])
965 159 khays
          || is_prefix_of("--incremental-patch=", argv[i])
966 27 khays
          || is_prefix_of("--debug=", argv[i]))
967
        continue;
968
      if (strcmp(argv[i], "--incremental-base") == 0
969 159 khays
          || strcmp(argv[i], "--incremental-patch") == 0
970 27 khays
          || strcmp(argv[i], "--debug") == 0)
971
        {
972
          // When these options are used without the '=', skip the
973
          // following parameter as well.
974
          ++i;
975
          continue;
976
        }
977
 
978
      args.append(" '");
979
      // Now append argv[i], but with all single-quotes escaped
980
      const char* argpos = argv[i];
981
      while (1)
982
        {
983
          const int len = strcspn(argpos, "'");
984
          args.append(argpos, len);
985
          if (argpos[len] == '\0')
986
            break;
987
          args.append("'\"'\"'");
988
          argpos += len + 1;
989
        }
990
      args.append("'");
991
    }
992
 
993
  this->command_line_ = args;
994
  this->strtab_->add(this->command_line_.c_str(), false,
995
                     &this->command_line_key_);
996
}
997
 
998
// Record the input archive file ARCHIVE.  This is called by the
999
// Add_archive_symbols task before determining which archive members
1000
// to include.  We create the Incremental_archive_entry here and
1001
// attach it to the Archive, but we do not add it to the list of
1002
// input objects until report_archive_end is called.
1003
 
1004
void
1005
Incremental_inputs::report_archive_begin(Library_base* arch,
1006
                                         unsigned int arg_serial,
1007
                                         Script_info* script_info)
1008
{
1009
  Stringpool::Key filename_key;
1010
  Timespec mtime = arch->get_mtime();
1011
 
1012
  // For a file loaded from a script, don't record its argument serial number.
1013
  if (script_info != NULL)
1014
    arg_serial = 0;
1015
 
1016
  this->strtab_->add(arch->filename().c_str(), false, &filename_key);
1017
  Incremental_archive_entry* entry =
1018
      new Incremental_archive_entry(filename_key, arg_serial, mtime);
1019
  arch->set_incremental_info(entry);
1020
 
1021
  if (script_info != NULL)
1022
    {
1023
      Incremental_script_entry* script_entry = script_info->incremental_info();
1024
      gold_assert(script_entry != NULL);
1025
      script_entry->add_object(entry);
1026
    }
1027
}
1028
 
1029
// Visitor class for processing the unused global symbols in a library.
1030
// An instance of this class is passed to the library's
1031
// for_all_unused_symbols() iterator, which will call the visit()
1032
// function for each global symbol defined in each unused library
1033
// member.  We add those symbol names to the incremental info for the
1034
// library.
1035
 
1036
class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
1037
{
1038
 public:
1039
  Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
1040
    : entry_(entry), strtab_(strtab)
1041
  { }
1042
 
1043
  void
1044
  visit(const char* sym)
1045
  {
1046
    Stringpool::Key symbol_key;
1047
    this->strtab_->add(sym, true, &symbol_key);
1048
    this->entry_->add_unused_global_symbol(symbol_key);
1049
  }
1050
 
1051
 private:
1052
  Incremental_archive_entry* entry_;
1053
  Stringpool* strtab_;
1054
};
1055
 
1056
// Finish recording the input archive file ARCHIVE.  This is called by the
1057
// Add_archive_symbols task after determining which archive members
1058
// to include.
1059
 
1060
void
1061
Incremental_inputs::report_archive_end(Library_base* arch)
1062
{
1063
  Incremental_archive_entry* entry = arch->incremental_info();
1064
 
1065
  gold_assert(entry != NULL);
1066
  this->inputs_.push_back(entry);
1067
 
1068
  // Collect unused global symbols.
1069
  Unused_symbol_visitor v(entry, this->strtab_);
1070
  arch->for_all_unused_symbols(&v);
1071
}
1072
 
1073
// Record the input object file OBJ.  If ARCH is not NULL, attach
1074
// the object file to the archive.  This is called by the
1075
// Add_symbols task after finding out the type of the file.
1076
 
1077
void
1078
Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
1079
                                  Library_base* arch, Script_info* script_info)
1080
{
1081
  Stringpool::Key filename_key;
1082
  Timespec mtime = obj->get_mtime();
1083
 
1084
  // For a file loaded from a script, don't record its argument serial number.
1085
  if (script_info != NULL)
1086
    arg_serial = 0;
1087
 
1088
  this->strtab_->add(obj->name().c_str(), false, &filename_key);
1089
 
1090
  Incremental_input_entry* input_entry;
1091
 
1092
  this->current_object_ = obj;
1093
 
1094
  if (!obj->is_dynamic())
1095
    {
1096
      this->current_object_entry_ =
1097
          new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
1098
      input_entry = this->current_object_entry_;
1099
      if (arch != NULL)
1100
        {
1101
          Incremental_archive_entry* arch_entry = arch->incremental_info();
1102
          gold_assert(arch_entry != NULL);
1103
          arch_entry->add_object(this->current_object_entry_);
1104
        }
1105
    }
1106
  else
1107
    {
1108
      this->current_object_entry_ = NULL;
1109
      Stringpool::Key soname_key;
1110
      Dynobj* dynobj = obj->dynobj();
1111
      gold_assert(dynobj != NULL);
1112
      this->strtab_->add(dynobj->soname(), false, &soname_key);
1113
      input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
1114
                                                 arg_serial, mtime);
1115
    }
1116
 
1117
  if (obj->is_in_system_directory())
1118
    input_entry->set_is_in_system_directory();
1119
 
1120
  if (obj->as_needed())
1121
    input_entry->set_as_needed();
1122
 
1123
  this->inputs_.push_back(input_entry);
1124
 
1125
  if (script_info != NULL)
1126
    {
1127
      Incremental_script_entry* script_entry = script_info->incremental_info();
1128
      gold_assert(script_entry != NULL);
1129
      script_entry->add_object(input_entry);
1130
    }
1131
}
1132
 
1133
// Record an input section SHNDX from object file OBJ.
1134
 
1135
void
1136
Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
1137
                                         const char* name, off_t sh_size)
1138
{
1139
  Stringpool::Key key = 0;
1140
 
1141
  if (name != NULL)
1142
    this->strtab_->add(name, true, &key);
1143
 
1144
  gold_assert(obj == this->current_object_);
1145
  gold_assert(this->current_object_entry_ != NULL);
1146
  this->current_object_entry_->add_input_section(shndx, key, sh_size);
1147
}
1148
 
1149
// Record a kept COMDAT group belonging to object file OBJ.
1150
 
1151
void
1152
Incremental_inputs::report_comdat_group(Object* obj, const char* name)
1153
{
1154
  Stringpool::Key key = 0;
1155
 
1156
  if (name != NULL)
1157
    this->strtab_->add(name, true, &key);
1158
  gold_assert(obj == this->current_object_);
1159
  gold_assert(this->current_object_entry_ != NULL);
1160
  this->current_object_entry_->add_comdat_group(key);
1161
}
1162
 
1163
// Record that the input argument INPUT is a script SCRIPT.  This is
1164
// called by read_script after parsing the script and reading the list
1165
// of inputs added by this script.
1166
 
1167
void
1168
Incremental_inputs::report_script(Script_info* script,
1169
                                  unsigned int arg_serial,
1170
                                  Timespec mtime)
1171
{
1172
  Stringpool::Key filename_key;
1173
 
1174
  this->strtab_->add(script->filename().c_str(), false, &filename_key);
1175
  Incremental_script_entry* entry =
1176
      new Incremental_script_entry(filename_key, arg_serial, script, mtime);
1177
  this->inputs_.push_back(entry);
1178
  script->set_incremental_info(entry);
1179
}
1180
 
1181
// Finalize the incremental link information.  Called from
1182
// Layout::finalize.
1183
 
1184
void
1185
Incremental_inputs::finalize()
1186
{
1187
  // Finalize the string table.
1188
  this->strtab_->set_string_offsets();
1189
}
1190
 
1191
// Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
1192
 
1193
void
1194
Incremental_inputs::create_data_sections(Symbol_table* symtab)
1195
{
1196
  switch (parameters->size_and_endianness())
1197
    {
1198
#ifdef HAVE_TARGET_32_LITTLE
1199
    case Parameters::TARGET_32_LITTLE:
1200
      this->inputs_section_ =
1201
          new Output_section_incremental_inputs<32, false>(this, symtab);
1202
      break;
1203
#endif
1204
#ifdef HAVE_TARGET_32_BIG
1205
    case Parameters::TARGET_32_BIG:
1206
      this->inputs_section_ =
1207
          new Output_section_incremental_inputs<32, true>(this, symtab);
1208
      break;
1209
#endif
1210
#ifdef HAVE_TARGET_64_LITTLE
1211
    case Parameters::TARGET_64_LITTLE:
1212
      this->inputs_section_ =
1213
          new Output_section_incremental_inputs<64, false>(this, symtab);
1214
      break;
1215
#endif
1216
#ifdef HAVE_TARGET_64_BIG
1217
    case Parameters::TARGET_64_BIG:
1218
      this->inputs_section_ =
1219
          new Output_section_incremental_inputs<64, true>(this, symtab);
1220
      break;
1221
#endif
1222
    default:
1223
      gold_unreachable();
1224
    }
1225
  this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
1226
  this->relocs_section_ = new Output_data_space(4, "** incremental_relocs");
1227
  this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
1228
}
1229
 
1230
// Return the sh_entsize value for the .gnu_incremental_relocs section.
1231
unsigned int
1232
Incremental_inputs::relocs_entsize() const
1233
{
1234
  return 8 + 2 * parameters->target().get_size() / 8;
1235
}
1236
 
1237
// Class Output_section_incremental_inputs.
1238
 
1239
// Finalize the offsets for each input section and supplemental info block,
1240
// and set the final data size of the incremental output sections.
1241
 
1242
template<int size, bool big_endian>
1243
void
1244
Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
1245
{
1246
  const Incremental_inputs* inputs = this->inputs_;
1247
  const unsigned int sizeof_addr = size / 8;
1248
  const unsigned int rel_size = 8 + 2 * sizeof_addr;
1249
 
1250
  // Offset of each input entry.
1251
  unsigned int input_offset = this->header_size;
1252
 
1253
  // Offset of each supplemental info block.
1254
  unsigned int file_index = 0;
1255
  unsigned int info_offset = this->header_size;
1256
  info_offset += this->input_entry_size * inputs->input_file_count();
1257
 
1258
  // Count each input file and its supplemental information block.
1259
  for (Incremental_inputs::Input_list::const_iterator p =
1260
           inputs->input_files().begin();
1261
       p != inputs->input_files().end();
1262
       ++p)
1263
    {
1264
      // Set the index and offset of the input file entry.
1265
      (*p)->set_offset(file_index, input_offset);
1266
      ++file_index;
1267
      input_offset += this->input_entry_size;
1268
 
1269
      // Set the offset of the supplemental info block.
1270
      switch ((*p)->type())
1271
        {
1272
        case INCREMENTAL_INPUT_SCRIPT:
1273
          {
1274
            Incremental_script_entry *entry = (*p)->script_entry();
1275
            gold_assert(entry != NULL);
1276
            (*p)->set_info_offset(info_offset);
1277
            // Object count.
1278
            info_offset += 4;
1279
            // Each member.
1280
            info_offset += (entry->get_object_count() * 4);
1281
          }
1282
          break;
1283
        case INCREMENTAL_INPUT_OBJECT:
1284
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1285
          {
1286
            Incremental_object_entry* entry = (*p)->object_entry();
1287
            gold_assert(entry != NULL);
1288
            (*p)->set_info_offset(info_offset);
1289
            // Input section count, global symbol count, local symbol offset,
1290
            // local symbol count, first dynamic reloc, dynamic reloc count,
1291
            // comdat group count.
1292
            info_offset += 28;
1293
            // Each input section.
1294
            info_offset += (entry->get_input_section_count()
1295
                            * (8 + 2 * sizeof_addr));
1296
            // Each global symbol.
1297
            const Object::Symbols* syms = entry->object()->get_global_symbols();
1298
            info_offset += syms->size() * 20;
1299
            // Each comdat group.
1300
            info_offset += entry->get_comdat_group_count() * 4;
1301
          }
1302
          break;
1303
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
1304
          {
1305
            Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1306
            gold_assert(entry != NULL);
1307
            (*p)->set_info_offset(info_offset);
1308
            // Global symbol count, soname index.
1309
            info_offset += 8;
1310
            // Each global symbol.
1311
            const Object::Symbols* syms = entry->object()->get_global_symbols();
1312
            gold_assert(syms != NULL);
1313
            unsigned int nsyms = syms->size();
1314
            unsigned int nsyms_out = 0;
1315
            for (unsigned int i = 0; i < nsyms; ++i)
1316
              {
1317
                const Symbol* sym = (*syms)[i];
1318
                if (sym == NULL)
1319
                  continue;
1320
                if (sym->is_forwarder())
1321
                  sym = this->symtab_->resolve_forwards(sym);
1322
                if (sym->symtab_index() != -1U)
1323
                  ++nsyms_out;
1324
              }
1325
            info_offset += nsyms_out * 4;
1326
          }
1327
          break;
1328
        case INCREMENTAL_INPUT_ARCHIVE:
1329
          {
1330
            Incremental_archive_entry* entry = (*p)->archive_entry();
1331
            gold_assert(entry != NULL);
1332
            (*p)->set_info_offset(info_offset);
1333
            // Member count + unused global symbol count.
1334
            info_offset += 8;
1335
            // Each member.
1336
            info_offset += (entry->get_member_count() * 4);
1337
            // Each global symbol.
1338
            info_offset += (entry->get_unused_global_symbol_count() * 4);
1339
          }
1340
          break;
1341
        default:
1342
          gold_unreachable();
1343
        }
1344
    }
1345
 
1346
  this->set_data_size(info_offset);
1347
 
1348
  // Set the size of the .gnu_incremental_symtab section.
1349
  inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
1350
                                                  * sizeof(unsigned int));
1351
 
1352
  // Set the size of the .gnu_incremental_relocs section.
1353
  inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
1354
                                                  * rel_size);
1355
 
1356
  // Set the size of the .gnu_incremental_got_plt section.
1357
  Sized_target<size, big_endian>* target =
1358
    parameters->sized_target<size, big_endian>();
1359
  unsigned int got_count = target->got_entry_count();
1360
  unsigned int plt_count = target->plt_entry_count();
1361
  unsigned int got_plt_size = 8;  // GOT entry count, PLT entry count.
1362
  got_plt_size = (got_plt_size + got_count + 3) & ~3;  // GOT type array.
1363
  got_plt_size += got_count * 8 + plt_count * 4;  // GOT array, PLT array.
1364
  inputs->got_plt_section()->set_current_data_size(got_plt_size);
1365
}
1366
 
1367
// Write the contents of the .gnu_incremental_inputs and
1368
// .gnu_incremental_symtab sections.
1369
 
1370
template<int size, bool big_endian>
1371
void
1372
Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
1373
{
1374
  const Incremental_inputs* inputs = this->inputs_;
1375
  Stringpool* strtab = inputs->get_stringpool();
1376
 
1377
  // Get a view into the .gnu_incremental_inputs section.
1378
  const off_t off = this->offset();
1379
  const off_t oview_size = this->data_size();
1380
  unsigned char* const oview = of->get_output_view(off, oview_size);
1381
  unsigned char* pov = oview;
1382
 
1383
  // Get a view into the .gnu_incremental_symtab section.
1384
  const off_t symtab_off = inputs->symtab_section()->offset();
1385
  const off_t symtab_size = inputs->symtab_section()->data_size();
1386
  unsigned char* const symtab_view = of->get_output_view(symtab_off,
1387
                                                         symtab_size);
1388
 
1389
  // Allocate an array of linked list heads for the .gnu_incremental_symtab
1390
  // section.  Each element corresponds to a global symbol in the output
1391
  // symbol table, and points to the head of the linked list that threads
1392
  // through the object file input entries.  The value of each element
1393
  // is the section-relative offset to a global symbol entry in a
1394
  // supplemental information block.
1395
  unsigned int global_sym_count = this->symtab_->output_count();
1396
  unsigned int* global_syms = new unsigned int[global_sym_count];
1397
  memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
1398
 
1399
  // Write the section header.
1400
  Stringpool::Key command_line_key = inputs->command_line_key();
1401
  pov = this->write_header(pov, inputs->input_file_count(),
1402
                           strtab->get_offset_from_key(command_line_key));
1403
 
1404
  // Write the list of input files.
1405
  pov = this->write_input_files(oview, pov, strtab);
1406
 
1407
  // Write the supplemental information blocks for each input file.
1408
  pov = this->write_info_blocks(oview, pov, strtab, global_syms,
1409
                                global_sym_count);
1410
 
1411
  gold_assert(pov - oview == oview_size);
1412
 
1413
  // Write the .gnu_incremental_symtab section.
1414
  gold_assert(global_sym_count * 4 == symtab_size);
1415
  this->write_symtab(symtab_view, global_syms, global_sym_count);
1416
 
1417
  delete[] global_syms;
1418
 
1419
  // Write the .gnu_incremental_got_plt section.
1420
  const off_t got_plt_off = inputs->got_plt_section()->offset();
1421
  const off_t got_plt_size = inputs->got_plt_section()->data_size();
1422
  unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
1423
                                                          got_plt_size);
1424
  this->write_got_plt(got_plt_view, got_plt_size);
1425
 
1426
  of->write_output_view(off, oview_size, oview);
1427
  of->write_output_view(symtab_off, symtab_size, symtab_view);
1428
  of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
1429
}
1430
 
1431
// Write the section header: version, input file count, offset of command line
1432
// in the string table, and 4 bytes of padding.
1433
 
1434
template<int size, bool big_endian>
1435
unsigned char*
1436
Output_section_incremental_inputs<size, big_endian>::write_header(
1437
    unsigned char* pov,
1438
    unsigned int input_file_count,
1439
    section_offset_type command_line_offset)
1440
{
1441
  Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
1442
  Swap32::writeval(pov + 4, input_file_count);
1443
  Swap32::writeval(pov + 8, command_line_offset);
1444
  Swap32::writeval(pov + 12, 0);
1445
  return pov + this->header_size;
1446
}
1447
 
1448
// Write the input file entries.
1449
 
1450
template<int size, bool big_endian>
1451
unsigned char*
1452
Output_section_incremental_inputs<size, big_endian>::write_input_files(
1453
    unsigned char* oview,
1454
    unsigned char* pov,
1455
    Stringpool* strtab)
1456
{
1457
  const Incremental_inputs* inputs = this->inputs_;
1458
 
1459
  for (Incremental_inputs::Input_list::const_iterator p =
1460
           inputs->input_files().begin();
1461
       p != inputs->input_files().end();
1462
       ++p)
1463
    {
1464
      gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
1465
      section_offset_type filename_offset =
1466
          strtab->get_offset_from_key((*p)->get_filename_key());
1467
      const Timespec& mtime = (*p)->get_mtime();
1468
      unsigned int flags = (*p)->type();
1469
      if ((*p)->is_in_system_directory())
1470
        flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
1471
      if ((*p)->as_needed())
1472
        flags |= INCREMENTAL_INPUT_AS_NEEDED;
1473
      Swap32::writeval(pov, filename_offset);
1474
      Swap32::writeval(pov + 4, (*p)->get_info_offset());
1475
      Swap64::writeval(pov + 8, mtime.seconds);
1476
      Swap32::writeval(pov + 16, mtime.nanoseconds);
1477
      Swap16::writeval(pov + 20, flags);
1478
      Swap16::writeval(pov + 22, (*p)->arg_serial());
1479
      pov += this->input_entry_size;
1480
    }
1481
  return pov;
1482
}
1483
 
1484
// Write the supplemental information blocks.
1485
 
1486
template<int size, bool big_endian>
1487
unsigned char*
1488
Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
1489
    unsigned char* oview,
1490
    unsigned char* pov,
1491
    Stringpool* strtab,
1492
    unsigned int* global_syms,
1493
    unsigned int global_sym_count)
1494
{
1495
  const Incremental_inputs* inputs = this->inputs_;
1496
  unsigned int first_global_index = this->symtab_->first_global_index();
1497
 
1498
  for (Incremental_inputs::Input_list::const_iterator p =
1499
           inputs->input_files().begin();
1500
       p != inputs->input_files().end();
1501
       ++p)
1502
    {
1503
      switch ((*p)->type())
1504
        {
1505
        case INCREMENTAL_INPUT_SCRIPT:
1506
          {
1507
            gold_assert(static_cast<unsigned int>(pov - oview)
1508
                        == (*p)->get_info_offset());
1509
            Incremental_script_entry* entry = (*p)->script_entry();
1510
            gold_assert(entry != NULL);
1511
 
1512
            // Write the object count.
1513
            unsigned int nobjects = entry->get_object_count();
1514
            Swap32::writeval(pov, nobjects);
1515
            pov += 4;
1516
 
1517
            // For each object, write the offset to its input file entry.
1518
            for (unsigned int i = 0; i < nobjects; ++i)
1519
              {
1520
                Incremental_input_entry* obj = entry->get_object(i);
1521
                Swap32::writeval(pov, obj->get_offset());
1522
                pov += 4;
1523
              }
1524
          }
1525
          break;
1526
 
1527
        case INCREMENTAL_INPUT_OBJECT:
1528
        case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
1529
          {
1530
            gold_assert(static_cast<unsigned int>(pov - oview)
1531
                        == (*p)->get_info_offset());
1532
            Incremental_object_entry* entry = (*p)->object_entry();
1533
            gold_assert(entry != NULL);
1534
            const Object* obj = entry->object();
1535
            const Relobj* relobj = static_cast<const Relobj*>(obj);
1536
            const Object::Symbols* syms = obj->get_global_symbols();
1537
            // Write the input section count and global symbol count.
1538
            unsigned int nsections = entry->get_input_section_count();
1539
            unsigned int nsyms = syms->size();
1540
            off_t locals_offset = relobj->local_symbol_offset();
1541
            unsigned int nlocals = relobj->output_local_symbol_count();
1542
            unsigned int first_dynrel = relobj->first_dyn_reloc();
1543
            unsigned int ndynrel = relobj->dyn_reloc_count();
1544
            unsigned int ncomdat = entry->get_comdat_group_count();
1545
            Swap32::writeval(pov, nsections);
1546
            Swap32::writeval(pov + 4, nsyms);
1547
            Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
1548
            Swap32::writeval(pov + 12, nlocals);
1549
            Swap32::writeval(pov + 16, first_dynrel);
1550
            Swap32::writeval(pov + 20, ndynrel);
1551
            Swap32::writeval(pov + 24, ncomdat);
1552
            pov += 28;
1553
 
1554
            // Build a temporary array to map input section indexes
1555
            // from the original object file index to the index in the
1556
            // incremental info table.
1557
            unsigned int* index_map = new unsigned int[obj->shnum()];
1558
            memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
1559
 
1560
            // For each input section, write the name, output section index,
1561
            // offset within output section, and input section size.
1562
            for (unsigned int i = 0; i < nsections; i++)
1563
              {
1564
                unsigned int shndx = entry->get_input_section_index(i);
1565
                index_map[shndx] = i + 1;
1566
                Stringpool::Key key = entry->get_input_section_name_key(i);
1567
                off_t name_offset = 0;
1568
                if (key != 0)
1569
                  name_offset = strtab->get_offset_from_key(key);
1570
                int out_shndx = 0;
1571
                off_t out_offset = 0;
1572
                off_t sh_size = 0;
1573
                Output_section* os = obj->output_section(shndx);
1574
                if (os != NULL)
1575
                  {
1576
                    out_shndx = os->out_shndx();
1577
                    out_offset = obj->output_section_offset(shndx);
1578
                    sh_size = entry->get_input_section_size(i);
1579
                  }
1580
                Swap32::writeval(pov, name_offset);
1581
                Swap32::writeval(pov + 4, out_shndx);
1582
                Swap::writeval(pov + 8, out_offset);
1583
                Swap::writeval(pov + 8 + sizeof_addr, sh_size);
1584
                pov += 8 + 2 * sizeof_addr;
1585
              }
1586
 
1587
            // For each global symbol, write its associated relocations,
1588
            // add it to the linked list of globals, then write the
1589
            // supplemental information:  global symbol table index,
1590
            // input section index, linked list chain pointer, relocation
1591
            // count, and offset to the relocations.
1592
            for (unsigned int i = 0; i < nsyms; i++)
1593
              {
1594
                const Symbol* sym = (*syms)[i];
1595
                if (sym->is_forwarder())
1596
                  sym = this->symtab_->resolve_forwards(sym);
1597
                unsigned int shndx = 0;
1598 148 khays
                if (sym->source() != Symbol::FROM_OBJECT)
1599 27 khays
                  {
1600 148 khays
                    // The symbol was defined by the linker (e.g., common).
1601
                    // We mark these symbols with a special SHNDX of -1,
1602
                    // but exclude linker-predefined symbols and symbols
1603
                    // copied from shared objects.
1604
                    if (!sym->is_predefined()
1605
                        && !sym->is_copied_from_dynobj())
1606
                      shndx = -1U;
1607
                  }
1608
                else if (sym->object() == obj && sym->is_defined())
1609
                  {
1610 27 khays
                    bool is_ordinary;
1611
                    unsigned int orig_shndx = sym->shndx(&is_ordinary);
1612
                    if (is_ordinary)
1613
                      shndx = index_map[orig_shndx];
1614 148 khays
                    else
1615
                      shndx = 1;
1616 27 khays
                  }
1617
                unsigned int symtab_index = sym->symtab_index();
1618
                unsigned int chain = 0;
1619
                unsigned int first_reloc = 0;
1620
                unsigned int nrelocs = obj->get_incremental_reloc_count(i);
1621
                if (nrelocs > 0)
1622
                  {
1623
                    gold_assert(symtab_index != -1U
1624
                                && (symtab_index - first_global_index
1625
                                    < global_sym_count));
1626
                    first_reloc = obj->get_incremental_reloc_base(i);
1627
                    chain = global_syms[symtab_index - first_global_index];
1628
                    global_syms[symtab_index - first_global_index] =
1629
                        pov - oview;
1630
                  }
1631
                Swap32::writeval(pov, symtab_index);
1632
                Swap32::writeval(pov + 4, shndx);
1633
                Swap32::writeval(pov + 8, chain);
1634
                Swap32::writeval(pov + 12, nrelocs);
1635
                Swap32::writeval(pov + 16, first_reloc * 3 * sizeof_addr);
1636
                pov += 20;
1637
              }
1638
 
1639
            // For each kept COMDAT group, write the group signature.
1640
            for (unsigned int i = 0; i < ncomdat; i++)
1641
              {
1642
                Stringpool::Key key = entry->get_comdat_signature_key(i);
1643
                off_t name_offset = 0;
1644
                if (key != 0)
1645
                  name_offset = strtab->get_offset_from_key(key);
1646
                Swap32::writeval(pov, name_offset);
1647
                pov += 4;
1648
              }
1649
 
1650
            delete[] index_map;
1651
          }
1652
          break;
1653
 
1654
        case INCREMENTAL_INPUT_SHARED_LIBRARY:
1655
          {
1656
            gold_assert(static_cast<unsigned int>(pov - oview)
1657
                        == (*p)->get_info_offset());
1658
            Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
1659
            gold_assert(entry != NULL);
1660 148 khays
            Object* obj = entry->object();
1661
            Dynobj* dynobj = obj->dynobj();
1662
            gold_assert(dynobj != NULL);
1663 27 khays
            const Object::Symbols* syms = obj->get_global_symbols();
1664
 
1665
            // Write the soname string table index.
1666
            section_offset_type soname_offset =
1667
                strtab->get_offset_from_key(entry->get_soname_key());
1668
            Swap32::writeval(pov, soname_offset);
1669
            pov += 4;
1670
 
1671
            // Skip the global symbol count for now.
1672
            unsigned char* orig_pov = pov;
1673
            pov += 4;
1674
 
1675
            // For each global symbol, write the global symbol table index.
1676
            unsigned int nsyms = syms->size();
1677
            unsigned int nsyms_out = 0;
1678
            for (unsigned int i = 0; i < nsyms; i++)
1679
              {
1680
                const Symbol* sym = (*syms)[i];
1681
                if (sym == NULL)
1682
                  continue;
1683
                if (sym->is_forwarder())
1684
                  sym = this->symtab_->resolve_forwards(sym);
1685
                if (sym->symtab_index() == -1U)
1686
                  continue;
1687 148 khays
                unsigned int flags = 0;
1688 159 khays
                // If the symbol has hidden or internal visibility, we
1689
                // mark it as defined in the shared object so we don't
1690
                // try to resolve it during an incremental update.
1691
                if (sym->visibility() == elfcpp::STV_HIDDEN
1692
                    || sym->visibility() == elfcpp::STV_INTERNAL)
1693 148 khays
                  flags = INCREMENTAL_SHLIB_SYM_DEF;
1694 159 khays
                else if (sym->source() == Symbol::FROM_OBJECT
1695
                         && sym->object() == obj
1696
                         && sym->is_defined())
1697
                  flags = INCREMENTAL_SHLIB_SYM_DEF;
1698 148 khays
                else if (sym->is_copied_from_dynobj()
1699
                         && this->symtab_->get_copy_source(sym) == dynobj)
1700
                  flags = INCREMENTAL_SHLIB_SYM_COPY;
1701
                flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
1702
                Swap32::writeval(pov, sym->symtab_index() | flags);
1703 27 khays
                pov += 4;
1704
                ++nsyms_out;
1705
              }
1706
 
1707
            // Now write the global symbol count.
1708
            Swap32::writeval(orig_pov, nsyms_out);
1709
          }
1710
          break;
1711
 
1712
        case INCREMENTAL_INPUT_ARCHIVE:
1713
          {
1714
            gold_assert(static_cast<unsigned int>(pov - oview)
1715
                        == (*p)->get_info_offset());
1716
            Incremental_archive_entry* entry = (*p)->archive_entry();
1717
            gold_assert(entry != NULL);
1718
 
1719
            // Write the member count and unused global symbol count.
1720
            unsigned int nmembers = entry->get_member_count();
1721
            unsigned int nsyms = entry->get_unused_global_symbol_count();
1722
            Swap32::writeval(pov, nmembers);
1723
            Swap32::writeval(pov + 4, nsyms);
1724
            pov += 8;
1725
 
1726
            // For each member, write the offset to its input file entry.
1727
            for (unsigned int i = 0; i < nmembers; ++i)
1728
              {
1729
                Incremental_object_entry* member = entry->get_member(i);
1730
                Swap32::writeval(pov, member->get_offset());
1731
                pov += 4;
1732
              }
1733
 
1734
            // For each global symbol, write the name offset.
1735
            for (unsigned int i = 0; i < nsyms; ++i)
1736
              {
1737
                Stringpool::Key key = entry->get_unused_global_symbol(i);
1738
                Swap32::writeval(pov, strtab->get_offset_from_key(key));
1739
                pov += 4;
1740
              }
1741
          }
1742
          break;
1743
 
1744
        default:
1745
          gold_unreachable();
1746
        }
1747
    }
1748
  return pov;
1749
}
1750
 
1751
// Write the contents of the .gnu_incremental_symtab section.
1752
 
1753
template<int size, bool big_endian>
1754
void
1755
Output_section_incremental_inputs<size, big_endian>::write_symtab(
1756
    unsigned char* pov,
1757
    unsigned int* global_syms,
1758
    unsigned int global_sym_count)
1759
{
1760
  for (unsigned int i = 0; i < global_sym_count; ++i)
1761
    {
1762
      Swap32::writeval(pov, global_syms[i]);
1763
      pov += 4;
1764
    }
1765
}
1766
 
1767
// This struct holds the view information needed to write the
1768
// .gnu_incremental_got_plt section.
1769
 
1770
struct Got_plt_view_info
1771
{
1772
  // Start of the GOT type array in the output view.
1773
  unsigned char* got_type_p;
1774
  // Start of the GOT descriptor array in the output view.
1775
  unsigned char* got_desc_p;
1776
  // Start of the PLT descriptor array in the output view.
1777
  unsigned char* plt_desc_p;
1778
  // Number of GOT entries.
1779
  unsigned int got_count;
1780
  // Number of PLT entries.
1781
  unsigned int plt_count;
1782
  // Offset of the first non-reserved PLT entry (this is a target-dependent value).
1783
  unsigned int first_plt_entry_offset;
1784
  // Size of a PLT entry (this is a target-dependent value).
1785
  unsigned int plt_entry_size;
1786
  // Symbol index to write in the GOT descriptor array.  For global symbols,
1787
  // this is the global symbol table index; for local symbols, it is the
1788
  // local symbol table index.
1789
  unsigned int sym_index;
1790
  // Input file index to write in the GOT descriptor array.  For global
1791
  // symbols, this is 0; for local symbols, it is the index of the input
1792
  // file entry in the .gnu_incremental_inputs section.
1793
  unsigned int input_index;
1794
};
1795
 
1796
// Functor class for processing a GOT offset list for local symbols.
1797
// Writes the GOT type and symbol index into the GOT type and descriptor
1798
// arrays in the output section.
1799
 
1800
template<int size, bool big_endian>
1801
class Local_got_offset_visitor : public Got_offset_list::Visitor
1802
{
1803
 public:
1804
  Local_got_offset_visitor(struct Got_plt_view_info& info)
1805
    : info_(info)
1806
  { }
1807
 
1808
  void
1809
  visit(unsigned int got_type, unsigned int got_offset)
1810
  {
1811
    unsigned int got_index = got_offset / this->got_entry_size_;
1812
    gold_assert(got_index < this->info_.got_count);
1813
    // We can only handle GOT entry types in the range 0..0x7e
1814
    // because we use a byte array to store them, and we use the
1815
    // high bit to flag a local symbol.
1816
    gold_assert(got_type < 0x7f);
1817
    this->info_.got_type_p[got_index] = got_type | 0x80;
1818
    unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1819
    elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1820
    elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
1821
  }
1822
 
1823
 private:
1824
  static const unsigned int got_entry_size_ = size / 8;
1825
  struct Got_plt_view_info& info_;
1826
};
1827
 
1828
// Functor class for processing a GOT offset list.  Writes the GOT type
1829
// and symbol index into the GOT type and descriptor arrays in the output
1830
// section.
1831
 
1832
template<int size, bool big_endian>
1833
class Global_got_offset_visitor : public Got_offset_list::Visitor
1834
{
1835
 public:
1836
  Global_got_offset_visitor(struct Got_plt_view_info& info)
1837
    : info_(info)
1838
  { }
1839
 
1840
  void
1841
  visit(unsigned int got_type, unsigned int got_offset)
1842
  {
1843
    unsigned int got_index = got_offset / this->got_entry_size_;
1844
    gold_assert(got_index < this->info_.got_count);
1845
    // We can only handle GOT entry types in the range 0..0x7e
1846
    // because we use a byte array to store them, and we use the
1847
    // high bit to flag a local symbol.
1848
    gold_assert(got_type < 0x7f);
1849
    this->info_.got_type_p[got_index] = got_type;
1850
    unsigned char* pov = this->info_.got_desc_p + got_index * 8;
1851
    elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
1852
    elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
1853
  }
1854
 
1855
 private:
1856
  static const unsigned int got_entry_size_ = size / 8;
1857
  struct Got_plt_view_info& info_;
1858
};
1859
 
1860
// Functor class for processing the global symbol table.  Processes the
1861
// GOT offset list for the symbol, and writes the symbol table index
1862
// into the PLT descriptor array in the output section.
1863
 
1864
template<int size, bool big_endian>
1865
class Global_symbol_visitor_got_plt
1866
{
1867
 public:
1868
  Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
1869
    : info_(info)
1870
  { }
1871
 
1872
  void
1873
  operator()(const Sized_symbol<size>* sym)
1874
  {
1875
    typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
1876
    const Got_offset_list* got_offsets = sym->got_offset_list();
1877
    if (got_offsets != NULL)
1878
      {
1879
        this->info_.sym_index = sym->symtab_index();
1880
        this->info_.input_index = 0;
1881
        Got_visitor v(this->info_);
1882
        got_offsets->for_all_got_offsets(&v);
1883
      }
1884
    if (sym->has_plt_offset())
1885
      {
1886
        unsigned int plt_index =
1887
            ((sym->plt_offset() - this->info_.first_plt_entry_offset)
1888
             / this->info_.plt_entry_size);
1889
        gold_assert(plt_index < this->info_.plt_count);
1890
        unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
1891
        elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
1892
      }
1893
  }
1894
 
1895
 private:
1896
  struct Got_plt_view_info& info_;
1897
};
1898
 
1899
// Write the contents of the .gnu_incremental_got_plt section.
1900
 
1901
template<int size, bool big_endian>
1902
void
1903
Output_section_incremental_inputs<size, big_endian>::write_got_plt(
1904
    unsigned char* pov,
1905
    off_t view_size)
1906
{
1907
  Sized_target<size, big_endian>* target =
1908
    parameters->sized_target<size, big_endian>();
1909
 
1910
  // Set up the view information for the functors.
1911
  struct Got_plt_view_info view_info;
1912
  view_info.got_count = target->got_entry_count();
1913
  view_info.plt_count = target->plt_entry_count();
1914
  view_info.first_plt_entry_offset = target->first_plt_entry_offset();
1915
  view_info.plt_entry_size = target->plt_entry_size();
1916
  view_info.got_type_p = pov + 8;
1917
  view_info.got_desc_p = (view_info.got_type_p
1918
                          + ((view_info.got_count + 3) & ~3));
1919
  view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
1920
 
1921
  gold_assert(pov + view_size ==
1922
              view_info.plt_desc_p + view_info.plt_count * 4);
1923
 
1924
  // Write the section header.
1925
  Swap32::writeval(pov, view_info.got_count);
1926
  Swap32::writeval(pov + 4, view_info.plt_count);
1927
 
1928
  // Initialize the GOT type array to 0xff (reserved).
1929
  memset(view_info.got_type_p, 0xff, view_info.got_count);
1930
 
1931
  // Write the incremental GOT descriptors for local symbols.
1932
  typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
1933
  for (Incremental_inputs::Input_list::const_iterator p =
1934
           this->inputs_->input_files().begin();
1935
       p != this->inputs_->input_files().end();
1936
       ++p)
1937
    {
1938
      if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
1939
          && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
1940
        continue;
1941
      Incremental_object_entry* entry = (*p)->object_entry();
1942
      gold_assert(entry != NULL);
1943
      const Object* obj = entry->object();
1944
      gold_assert(obj != NULL);
1945
      view_info.input_index = (*p)->get_file_index();
1946
      Got_visitor v(view_info);
1947
      obj->for_all_local_got_entries(&v);
1948
    }
1949
 
1950
  // Write the incremental GOT and PLT descriptors for global symbols.
1951
  typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
1952
  symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
1953
}
1954
 
1955
// Class Sized_relobj_incr.  Most of these methods are not used for
1956
// Incremental objects, but are required to be implemented by the
1957
// base class Object.
1958
 
1959
template<int size, bool big_endian>
1960
Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
1961
    const std::string& name,
1962
    Sized_incremental_binary<size, big_endian>* ibase,
1963
    unsigned int input_file_index)
1964
  : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
1965
    input_file_index_(input_file_index),
1966
    input_reader_(ibase->inputs_reader().input_file(input_file_index)),
1967
    local_symbol_count_(0), output_local_dynsym_count_(0),
1968
    local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
1969 163 khays
    symbols_(), defined_count_(0), incr_reloc_offset_(-1U),
1970
    incr_reloc_count_(0), incr_reloc_output_index_(0), incr_relocs_(NULL),
1971
    local_symbols_()
1972 27 khays
{
1973
  if (this->input_reader_.is_in_system_directory())
1974
    this->set_is_in_system_directory();
1975
  const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
1976
  this->set_shnum(shnum);
1977
  ibase->set_input_object(input_file_index, this);
1978
}
1979
 
1980
// Read the symbols.
1981
 
1982
template<int size, bool big_endian>
1983
void
1984
Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
1985
{
1986
  gold_unreachable();
1987
}
1988
 
1989
// Lay out the input sections.
1990
 
1991
template<int size, bool big_endian>
1992
void
1993
Sized_relobj_incr<size, big_endian>::do_layout(
1994
    Symbol_table*,
1995
    Layout* layout,
1996
    Read_symbols_data*)
1997
{
1998
  const unsigned int shnum = this->shnum();
1999
  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
2000
  gold_assert(incremental_inputs != NULL);
2001
  Output_sections& out_sections(this->output_sections());
2002
  out_sections.resize(shnum);
2003
  this->section_offsets().resize(shnum);
2004
  for (unsigned int i = 1; i < shnum; i++)
2005
    {
2006
      typename Input_entry_reader::Input_section_info sect =
2007
          this->input_reader_.get_input_section(i - 1);
2008
      // Add the section to the incremental inputs layout.
2009
      incremental_inputs->report_input_section(this, i, sect.name,
2010
                                               sect.sh_size);
2011
      if (sect.output_shndx == 0 || sect.sh_offset == -1)
2012
        continue;
2013
      Output_section* os = this->ibase_->output_section(sect.output_shndx);
2014
      gold_assert(os != NULL);
2015
      out_sections[i] = os;
2016
      this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
2017
    }
2018
 
2019
  // Process the COMDAT groups.
2020
  unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
2021
  for (unsigned int i = 0; i < ncomdat; i++)
2022
    {
2023
      const char* signature = this->input_reader_.get_comdat_group_signature(i);
2024
      if (signature == NULL || signature[0] == '\0')
2025
        this->error(_("COMDAT group has no signature"));
2026
      bool keep = layout->find_or_add_kept_section(signature, this, i, true,
2027
                                                   true, NULL);
2028 163 khays
      if (keep)
2029
        incremental_inputs->report_comdat_group(this, signature);
2030
      else
2031 27 khays
        this->error(_("COMDAT group %s included twice in incremental link"),
2032
                    signature);
2033
    }
2034
}
2035
 
2036
// Layout sections whose layout was deferred while waiting for
2037
// input files from a plugin.
2038
template<int size, bool big_endian>
2039
void
2040
Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
2041
{
2042
}
2043
 
2044
// Add the symbols to the symbol table.
2045
 
2046
template<int size, bool big_endian>
2047
void
2048
Sized_relobj_incr<size, big_endian>::do_add_symbols(
2049
    Symbol_table* symtab,
2050
    Read_symbols_data*,
2051
    Layout*)
2052
{
2053
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2054
  unsigned char symbuf[sym_size];
2055
  elfcpp::Sym<size, big_endian> sym(symbuf);
2056
  elfcpp::Sym_write<size, big_endian> osym(symbuf);
2057
 
2058
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2059
 
2060
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2061
  this->symbols_.resize(nsyms);
2062
 
2063
  Incremental_binary::View symtab_view(NULL);
2064
  unsigned int symtab_count;
2065
  elfcpp::Elf_strtab strtab(NULL, 0);
2066
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2067
 
2068
  Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2069
  unsigned int isym_count = isymtab.symbol_count();
2070
  unsigned int first_global = symtab_count - isym_count;
2071
 
2072
  const unsigned char* sym_p;
2073
  for (unsigned int i = 0; i < nsyms; ++i)
2074
    {
2075
      Incremental_global_symbol_reader<big_endian> info =
2076
          this->input_reader_.get_global_symbol_reader(i);
2077
      unsigned int output_symndx = info.output_symndx();
2078
      sym_p = symtab_view.data() + output_symndx * sym_size;
2079
      elfcpp::Sym<size, big_endian> gsym(sym_p);
2080
      const char* name;
2081
      if (!strtab.get_c_string(gsym.get_st_name(), &name))
2082
        name = "";
2083
 
2084
      typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
2085
      unsigned int shndx = gsym.get_st_shndx();
2086
      elfcpp::STB st_bind = gsym.get_st_bind();
2087
      elfcpp::STT st_type = gsym.get_st_type();
2088
 
2089
      // Local hidden symbols start out as globals, but get converted to
2090
      // to local during output.
2091
      if (st_bind == elfcpp::STB_LOCAL)
2092
        st_bind = elfcpp::STB_GLOBAL;
2093
 
2094
      unsigned int input_shndx = info.shndx();
2095 148 khays
      if (input_shndx == 0 || input_shndx == -1U)
2096 27 khays
        {
2097
          shndx = elfcpp::SHN_UNDEF;
2098
          v = 0;
2099
        }
2100
      else if (shndx != elfcpp::SHN_ABS)
2101
        {
2102
          // Find the input section and calculate the section-relative value.
2103
          gold_assert(shndx != elfcpp::SHN_UNDEF);
2104
          Output_section* os = this->ibase_->output_section(shndx);
2105
          gold_assert(os != NULL && os->has_fixed_layout());
2106
          typename Input_entry_reader::Input_section_info sect =
2107
              this->input_reader_.get_input_section(input_shndx - 1);
2108
          gold_assert(sect.output_shndx == shndx);
2109
          if (st_type != elfcpp::STT_TLS)
2110
            v -= os->address();
2111
          v -= sect.sh_offset;
2112
          shndx = input_shndx;
2113
        }
2114
 
2115
      osym.put_st_name(0);
2116
      osym.put_st_value(v);
2117
      osym.put_st_size(gsym.get_st_size());
2118
      osym.put_st_info(st_bind, st_type);
2119
      osym.put_st_other(gsym.get_st_other());
2120
      osym.put_st_shndx(shndx);
2121
 
2122 148 khays
      Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);
2123
 
2124 163 khays
      if (shndx != elfcpp::SHN_UNDEF)
2125
        ++this->defined_count_;
2126
 
2127 148 khays
      // If this is a linker-defined symbol that hasn't yet been defined,
2128
      // define it now.
2129
      if (input_shndx == -1U && !res->is_defined())
2130
        {
2131
          shndx = gsym.get_st_shndx();
2132
          v = gsym.get_st_value();
2133
          Elf_size_type symsize = gsym.get_st_size();
2134
          if (shndx == elfcpp::SHN_ABS)
2135
            {
2136
              symtab->define_as_constant(name, NULL,
2137
                                         Symbol_table::INCREMENTAL_BASE,
2138
                                         v, symsize, st_type, st_bind,
2139
                                         gsym.get_st_visibility(), 0,
2140
                                         false, false);
2141
            }
2142
          else
2143
            {
2144
              Output_section* os = this->ibase_->output_section(shndx);
2145
              gold_assert(os != NULL && os->has_fixed_layout());
2146
              v -= os->address();
2147
              if (symsize > 0)
2148
                os->reserve(v, symsize);
2149
              symtab->define_in_output_data(name, NULL,
2150
                                            Symbol_table::INCREMENTAL_BASE,
2151
                                            os, v, symsize, st_type, st_bind,
2152
                                            gsym.get_st_visibility(), 0,
2153
                                            false, false);
2154
            }
2155
        }
2156
 
2157
      this->symbols_[i] = res;
2158
      this->ibase_->add_global_symbol(output_symndx - first_global, res);
2159 27 khays
    }
2160
}
2161
 
2162
// Return TRUE if we should include this object from an archive library.
2163
 
2164
template<int size, bool big_endian>
2165
Archive::Should_include
2166
Sized_relobj_incr<size, big_endian>::do_should_include_member(
2167
    Symbol_table*,
2168
    Layout*,
2169
    Read_symbols_data*,
2170
    std::string*)
2171
{
2172
  gold_unreachable();
2173
}
2174
 
2175
// Iterate over global symbols, calling a visitor class V for each.
2176
 
2177
template<int size, bool big_endian>
2178
void
2179
Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
2180
    Read_symbols_data*,
2181
    Library_base::Symbol_visitor_base*)
2182
{
2183
  // This routine is not used for incremental objects.
2184
}
2185
 
2186
// Get the size of a section.
2187
 
2188
template<int size, bool big_endian>
2189
uint64_t
2190
Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
2191
{
2192
  gold_unreachable();
2193
}
2194
 
2195
// Get the name of a section.
2196
 
2197
template<int size, bool big_endian>
2198
std::string
2199
Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int)
2200
{
2201
  gold_unreachable();
2202
}
2203
 
2204
// Return a view of the contents of a section.
2205
 
2206
template<int size, bool big_endian>
2207
Object::Location
2208
Sized_relobj_incr<size, big_endian>::do_section_contents(unsigned int)
2209
{
2210
  gold_unreachable();
2211
}
2212
 
2213
// Return section flags.
2214
 
2215
template<int size, bool big_endian>
2216
uint64_t
2217
Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
2218
{
2219
  gold_unreachable();
2220
}
2221
 
2222
// Return section entsize.
2223
 
2224
template<int size, bool big_endian>
2225
uint64_t
2226
Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
2227
{
2228
  gold_unreachable();
2229
}
2230
 
2231
// Return section address.
2232
 
2233
template<int size, bool big_endian>
2234
uint64_t
2235
Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
2236
{
2237
  gold_unreachable();
2238
}
2239
 
2240
// Return section type.
2241
 
2242
template<int size, bool big_endian>
2243
unsigned int
2244
Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
2245
{
2246
  gold_unreachable();
2247
}
2248
 
2249
// Return the section link field.
2250
 
2251
template<int size, bool big_endian>
2252
unsigned int
2253
Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
2254
{
2255
  gold_unreachable();
2256
}
2257
 
2258
// Return the section link field.
2259
 
2260
template<int size, bool big_endian>
2261
unsigned int
2262
Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
2263
{
2264
  gold_unreachable();
2265
}
2266
 
2267
// Return the section alignment.
2268
 
2269
template<int size, bool big_endian>
2270
uint64_t
2271
Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
2272
{
2273
  gold_unreachable();
2274
}
2275
 
2276
// Return the Xindex structure to use.
2277
 
2278
template<int size, bool big_endian>
2279
Xindex*
2280
Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
2281
{
2282
  gold_unreachable();
2283
}
2284
 
2285
// Get symbol counts.
2286
 
2287
template<int size, bool big_endian>
2288
void
2289
Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
2290 163 khays
    const Symbol_table*,
2291
    size_t* defined,
2292
    size_t* used) const
2293 27 khays
{
2294 163 khays
  *defined = this->defined_count_;
2295
  size_t count = 0;
2296
  for (typename Symbols::const_iterator p = this->symbols_.begin();
2297
       p != this->symbols_.end();
2298
       ++p)
2299
    if (*p != NULL
2300
        && (*p)->source() == Symbol::FROM_OBJECT
2301
        && (*p)->object() == this
2302
        && (*p)->is_defined())
2303
      ++count;
2304
  *used = count;
2305 27 khays
}
2306
 
2307
// Read the relocs.
2308
 
2309
template<int size, bool big_endian>
2310
void
2311
Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
2312
{
2313
}
2314
 
2315
// Process the relocs to find list of referenced sections. Used only
2316
// during garbage collection.
2317
 
2318
template<int size, bool big_endian>
2319
void
2320
Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
2321
                                                          Layout*,
2322
                                                          Read_relocs_data*)
2323
{
2324
  gold_unreachable();
2325
}
2326
 
2327
// Scan the relocs and adjust the symbol table.
2328
 
2329
template<int size, bool big_endian>
2330
void
2331
Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
2332
                                                    Layout* layout,
2333
                                                    Read_relocs_data*)
2334
{
2335
  // Count the incremental relocations for this object.
2336
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2337
  this->allocate_incremental_reloc_counts();
2338
  for (unsigned int i = 0; i < nsyms; i++)
2339
    {
2340
      Incremental_global_symbol_reader<big_endian> sym =
2341
          this->input_reader_.get_global_symbol_reader(i);
2342
      unsigned int reloc_count = sym.reloc_count();
2343
      if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
2344
        this->incr_reloc_offset_ = sym.reloc_offset();
2345
      this->incr_reloc_count_ += reloc_count;
2346
      for (unsigned int j = 0; j < reloc_count; j++)
2347
        this->count_incremental_reloc(i);
2348
    }
2349
  this->incr_reloc_output_index_ =
2350
      layout->incremental_inputs()->get_reloc_count();
2351
  this->finalize_incremental_relocs(layout, false);
2352
 
2353
  // The incoming incremental relocations may not end up in the same
2354
  // location after the incremental update, because the incremental info
2355
  // is regenerated in each link.  Because the new location may overlap
2356
  // with other data in the updated output file, we need to copy the
2357
  // relocations into a buffer so that we can still read them safely
2358
  // after we start writing updates to the output file.
2359
  if (this->incr_reloc_count_ > 0)
2360
    {
2361
      const Incremental_relocs_reader<size, big_endian>& relocs_reader =
2362
          this->ibase_->relocs_reader();
2363
      const unsigned int incr_reloc_size = relocs_reader.reloc_size;
2364
      unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2365
      this->incr_relocs_ = new unsigned char[len];
2366
      memcpy(this->incr_relocs_,
2367
             relocs_reader.data(this->incr_reloc_offset_),
2368
             len);
2369
    }
2370
}
2371
 
2372
// Count the local symbols.
2373
 
2374
template<int size, bool big_endian>
2375
void
2376
Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
2377
    Stringpool_template<char>* pool,
2378
    Stringpool_template<char>*)
2379
{
2380
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2381
 
2382
  // Set the count of local symbols based on the incremental info.
2383
  unsigned int nlocals = this->input_reader_.get_local_symbol_count();
2384
  this->local_symbol_count_ = nlocals;
2385
  this->local_symbols_.reserve(nlocals);
2386
 
2387
  // Get views of the base file's symbol table and string table.
2388
  Incremental_binary::View symtab_view(NULL);
2389
  unsigned int symtab_count;
2390
  elfcpp::Elf_strtab strtab(NULL, 0);
2391
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2392
 
2393
  // Read the local symbols from the base file's symbol table.
2394
  off_t off = this->input_reader_.get_local_symbol_offset();
2395
  const unsigned char* symp = symtab_view.data() + off;
2396
  for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
2397
    {
2398
      elfcpp::Sym<size, big_endian> sym(symp);
2399
      const char* name;
2400
      if (!strtab.get_c_string(sym.get_st_name(), &name))
2401
        name = "";
2402
      gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
2403
      name = pool->add(name, true, NULL);
2404
      this->local_symbols_.push_back(Local_symbol(name,
2405
                                                  sym.get_st_value(),
2406
                                                  sym.get_st_size(),
2407
                                                  sym.get_st_shndx(),
2408
                                                  sym.get_st_type(),
2409
                                                  false));
2410
    }
2411
}
2412
 
2413
// Finalize the local symbols.
2414
 
2415
template<int size, bool big_endian>
2416
unsigned int
2417
Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
2418
    unsigned int index,
2419
    off_t off,
2420
    Symbol_table*)
2421
{
2422
  this->local_symbol_index_ = index;
2423
  this->local_symbol_offset_ = off;
2424
  return index + this->local_symbol_count_;
2425
}
2426
 
2427
// Set the offset where local dynamic symbol information will be stored.
2428
 
2429
template<int size, bool big_endian>
2430
unsigned int
2431
Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
2432
    unsigned int index)
2433
{
2434
  // FIXME: set local dynsym indexes.
2435
  return index;
2436
}
2437
 
2438
// Set the offset where local dynamic symbol information will be stored.
2439
 
2440
template<int size, bool big_endian>
2441
unsigned int
2442
Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
2443
{
2444
  return 0;
2445
}
2446
 
2447
// Relocate the input sections and write out the local symbols.
2448
// We don't actually do any relocation here.  For unchanged input files,
2449
// we reapply relocations only for symbols that have changed; that happens
2450
// in queue_final_tasks.  We do need to rewrite the incremental relocations
2451
// for this object.
2452
 
2453
template<int size, bool big_endian>
2454
void
2455
Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
2456
                                                 const Layout* layout,
2457
                                                 Output_file* of)
2458
{
2459
  if (this->incr_reloc_count_ == 0)
2460
    return;
2461
 
2462
  const unsigned int incr_reloc_size =
2463
      Incremental_relocs_reader<size, big_endian>::reloc_size;
2464
 
2465
  // Get a view for the .gnu_incremental_relocs section.
2466
  Incremental_inputs* inputs = layout->incremental_inputs();
2467
  gold_assert(inputs != NULL);
2468
  const off_t relocs_off = inputs->relocs_section()->offset();
2469
  const off_t relocs_size = inputs->relocs_section()->data_size();
2470
  unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
2471
 
2472
  // Copy the relocations from the buffer.
2473
  off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
2474
  unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
2475
  memcpy(view + off, this->incr_relocs_, len);
2476
 
2477
  // The output section table may have changed, so we need to map
2478
  // the old section index to the new section index for each relocation.
2479
  for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
2480
    {
2481
      unsigned char* pov = view + off + i * incr_reloc_size;
2482
      unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
2483
      Output_section* os = this->ibase_->output_section(shndx);
2484
      gold_assert(os != NULL);
2485
      shndx = os->out_shndx();
2486
      elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
2487
    }
2488
 
2489
  of->write_output_view(off, len, view);
2490
 
2491
  // Get views into the output file for the portions of the symbol table
2492
  // and the dynamic symbol table that we will be writing.
2493
  off_t symtab_off = layout->symtab_section()->offset();
2494
  off_t output_size = this->local_symbol_count_ * This::sym_size;
2495
  unsigned char* oview = NULL;
2496
  if (output_size > 0)
2497
    oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2498
                                output_size);
2499
 
2500
  off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2501
  unsigned char* dyn_oview = NULL;
2502
  if (dyn_output_size > 0)
2503
    dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2504
                                    dyn_output_size);
2505
 
2506
  // Write the local symbols.
2507
  unsigned char* ov = oview;
2508
  unsigned char* dyn_ov = dyn_oview;
2509
  const Stringpool* sympool = layout->sympool();
2510
  const Stringpool* dynpool = layout->dynpool();
2511
  Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
2512
  Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
2513
  for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
2514
    {
2515
      Local_symbol& lsym(this->local_symbols_[i]);
2516
 
2517
      bool is_ordinary;
2518
      unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
2519
                                                     &is_ordinary);
2520
      if (is_ordinary)
2521
        {
2522
          Output_section* os = this->ibase_->output_section(st_shndx);
2523
          st_shndx = os->out_shndx();
2524
          if (st_shndx >= elfcpp::SHN_LORESERVE)
2525
            {
2526
              symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
2527
              if (lsym.needs_dynsym_entry)
2528
                dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
2529
              st_shndx = elfcpp::SHN_XINDEX;
2530
            }
2531
        }
2532
 
2533
      // Write the symbol to the output symbol table.
2534
      {
2535
        elfcpp::Sym_write<size, big_endian> osym(ov);
2536
        osym.put_st_name(sympool->get_offset(lsym.name));
2537
        osym.put_st_value(lsym.st_value);
2538
        osym.put_st_size(lsym.st_size);
2539
        osym.put_st_info(elfcpp::STB_LOCAL,
2540
                         static_cast<elfcpp::STT>(lsym.st_type));
2541
        osym.put_st_other(0);
2542
        osym.put_st_shndx(st_shndx);
2543
        ov += sym_size;
2544
      }
2545
 
2546
      // Write the symbol to the output dynamic symbol table.
2547
      if (lsym.needs_dynsym_entry)
2548
        {
2549
          gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2550
          elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2551
          osym.put_st_name(dynpool->get_offset(lsym.name));
2552
          osym.put_st_value(lsym.st_value);
2553
          osym.put_st_size(lsym.st_size);
2554
          osym.put_st_info(elfcpp::STB_LOCAL,
2555
                           static_cast<elfcpp::STT>(lsym.st_type));
2556
          osym.put_st_other(0);
2557
          osym.put_st_shndx(st_shndx);
2558
          dyn_ov += sym_size;
2559
        }
2560
    }
2561
 
2562
  if (output_size > 0)
2563
    {
2564
      gold_assert(ov - oview == output_size);
2565
      of->write_output_view(symtab_off + this->local_symbol_offset_,
2566
                            output_size, oview);
2567
    }
2568
 
2569
  if (dyn_output_size > 0)
2570
    {
2571
      gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2572
      of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2573
                            dyn_oview);
2574
    }
2575
}
2576
 
2577
// Set the offset of a section.
2578
 
2579
template<int size, bool big_endian>
2580
void
2581
Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
2582
                                                           uint64_t)
2583
{
2584
}
2585
 
2586
// Class Sized_incr_dynobj.  Most of these methods are not used for
2587
// Incremental objects, but are required to be implemented by the
2588
// base class Object.
2589
 
2590
template<int size, bool big_endian>
2591
Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
2592
    const std::string& name,
2593
    Sized_incremental_binary<size, big_endian>* ibase,
2594
    unsigned int input_file_index)
2595
  : Dynobj(name, NULL), ibase_(ibase),
2596
    input_file_index_(input_file_index),
2597
    input_reader_(ibase->inputs_reader().input_file(input_file_index)),
2598 163 khays
    symbols_(), defined_count_(0)
2599 27 khays
{
2600
  if (this->input_reader_.is_in_system_directory())
2601
    this->set_is_in_system_directory();
2602
  if (this->input_reader_.as_needed())
2603
    this->set_as_needed();
2604
  this->set_soname_string(this->input_reader_.get_soname());
2605
  this->set_shnum(0);
2606
}
2607
 
2608
// Read the symbols.
2609
 
2610
template<int size, bool big_endian>
2611
void
2612
Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
2613
{
2614
  gold_unreachable();
2615
}
2616
 
2617
// Lay out the input sections.
2618
 
2619
template<int size, bool big_endian>
2620
void
2621
Sized_incr_dynobj<size, big_endian>::do_layout(
2622
    Symbol_table*,
2623
    Layout*,
2624
    Read_symbols_data*)
2625
{
2626
}
2627
 
2628
// Add the symbols to the symbol table.
2629
 
2630
template<int size, bool big_endian>
2631
void
2632
Sized_incr_dynobj<size, big_endian>::do_add_symbols(
2633
    Symbol_table* symtab,
2634
    Read_symbols_data*,
2635
    Layout*)
2636
{
2637
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2638
  unsigned char symbuf[sym_size];
2639
  elfcpp::Sym<size, big_endian> sym(symbuf);
2640
  elfcpp::Sym_write<size, big_endian> osym(symbuf);
2641
 
2642
  typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
2643
 
2644
  unsigned int nsyms = this->input_reader_.get_global_symbol_count();
2645
  this->symbols_.resize(nsyms);
2646
 
2647
  Incremental_binary::View symtab_view(NULL);
2648
  unsigned int symtab_count;
2649
  elfcpp::Elf_strtab strtab(NULL, 0);
2650
  this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
2651
 
2652
  Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
2653
  unsigned int isym_count = isymtab.symbol_count();
2654
  unsigned int first_global = symtab_count - isym_count;
2655
 
2656 148 khays
  // We keep a set of symbols that we have generated COPY relocations
2657
  // for, indexed by the symbol value. We do not need more than one
2658
  // COPY relocation per address.
2659
  typedef typename std::set<Address> Copied_symbols;
2660
  Copied_symbols copied_symbols;
2661
 
2662 27 khays
  const unsigned char* sym_p;
2663
  for (unsigned int i = 0; i < nsyms; ++i)
2664
    {
2665
      bool is_def;
2666 148 khays
      bool is_copy;
2667 27 khays
      unsigned int output_symndx =
2668 148 khays
          this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
2669 27 khays
      sym_p = symtab_view.data() + output_symndx * sym_size;
2670
      elfcpp::Sym<size, big_endian> gsym(sym_p);
2671
      const char* name;
2672
      if (!strtab.get_c_string(gsym.get_st_name(), &name))
2673
        name = "";
2674
 
2675 148 khays
      Address v;
2676 27 khays
      unsigned int shndx;
2677
      elfcpp::STB st_bind = gsym.get_st_bind();
2678
      elfcpp::STT st_type = gsym.get_st_type();
2679
 
2680
      // Local hidden symbols start out as globals, but get converted to
2681
      // to local during output.
2682
      if (st_bind == elfcpp::STB_LOCAL)
2683
        st_bind = elfcpp::STB_GLOBAL;
2684
 
2685
      if (!is_def)
2686
        {
2687
          shndx = elfcpp::SHN_UNDEF;
2688
          v = 0;
2689
        }
2690
      else
2691
        {
2692
          // For a symbol defined in a shared object, the section index
2693
          // is meaningless, as long as it's not SHN_UNDEF.
2694
          shndx = 1;
2695
          v = gsym.get_st_value();
2696 163 khays
          ++this->defined_count_;
2697 27 khays
        }
2698
 
2699
      osym.put_st_name(0);
2700
      osym.put_st_value(v);
2701
      osym.put_st_size(gsym.get_st_size());
2702
      osym.put_st_info(st_bind, st_type);
2703
      osym.put_st_other(gsym.get_st_other());
2704
      osym.put_st_shndx(shndx);
2705
 
2706 148 khays
      Sized_symbol<size>* res =
2707
          symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
2708
      this->symbols_[i] = res;
2709 27 khays
      this->ibase_->add_global_symbol(output_symndx - first_global,
2710
                                      this->symbols_[i]);
2711 148 khays
 
2712
      if (is_copy)
2713
        {
2714
          std::pair<typename Copied_symbols::iterator, bool> ins =
2715
              copied_symbols.insert(v);
2716
          if (ins.second)
2717
            {
2718
              unsigned int shndx = gsym.get_st_shndx();
2719
              Output_section* os = this->ibase_->output_section(shndx);
2720
              off_t offset = v - os->address();
2721
              this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
2722
            }
2723
        }
2724 27 khays
    }
2725
}
2726
 
2727
// Return TRUE if we should include this object from an archive library.
2728
 
2729
template<int size, bool big_endian>
2730
Archive::Should_include
2731
Sized_incr_dynobj<size, big_endian>::do_should_include_member(
2732
    Symbol_table*,
2733
    Layout*,
2734
    Read_symbols_data*,
2735
    std::string*)
2736
{
2737
  gold_unreachable();
2738
}
2739
 
2740
// Iterate over global symbols, calling a visitor class V for each.
2741
 
2742
template<int size, bool big_endian>
2743
void
2744
Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
2745
    Read_symbols_data*,
2746
    Library_base::Symbol_visitor_base*)
2747
{
2748
  // This routine is not used for dynamic libraries.
2749
}
2750
 
2751
// Iterate over local symbols, calling a visitor class V for each GOT offset
2752
// associated with a local symbol.
2753
 
2754
template<int size, bool big_endian>
2755
void
2756
Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
2757
    Got_offset_list::Visitor*) const
2758
{
2759
}
2760
 
2761
// Get the size of a section.
2762
 
2763
template<int size, bool big_endian>
2764
uint64_t
2765
Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
2766
{
2767
  gold_unreachable();
2768
}
2769
 
2770
// Get the name of a section.
2771
 
2772
template<int size, bool big_endian>
2773
std::string
2774
Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int)
2775
{
2776
  gold_unreachable();
2777
}
2778
 
2779
// Return a view of the contents of a section.
2780
 
2781
template<int size, bool big_endian>
2782
Object::Location
2783
Sized_incr_dynobj<size, big_endian>::do_section_contents(unsigned int)
2784
{
2785
  gold_unreachable();
2786
}
2787
 
2788
// Return section flags.
2789
 
2790
template<int size, bool big_endian>
2791
uint64_t
2792
Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
2793
{
2794
  gold_unreachable();
2795
}
2796
 
2797
// Return section entsize.
2798
 
2799
template<int size, bool big_endian>
2800
uint64_t
2801
Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
2802
{
2803
  gold_unreachable();
2804
}
2805
 
2806
// Return section address.
2807
 
2808
template<int size, bool big_endian>
2809
uint64_t
2810
Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
2811
{
2812
  gold_unreachable();
2813
}
2814
 
2815
// Return section type.
2816
 
2817
template<int size, bool big_endian>
2818
unsigned int
2819
Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
2820
{
2821
  gold_unreachable();
2822
}
2823
 
2824
// Return the section link field.
2825
 
2826
template<int size, bool big_endian>
2827
unsigned int
2828
Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
2829
{
2830
  gold_unreachable();
2831
}
2832
 
2833
// Return the section link field.
2834
 
2835
template<int size, bool big_endian>
2836
unsigned int
2837
Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
2838
{
2839
  gold_unreachable();
2840
}
2841
 
2842
// Return the section alignment.
2843
 
2844
template<int size, bool big_endian>
2845
uint64_t
2846
Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
2847
{
2848
  gold_unreachable();
2849
}
2850
 
2851
// Return the Xindex structure to use.
2852
 
2853
template<int size, bool big_endian>
2854
Xindex*
2855
Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
2856
{
2857
  gold_unreachable();
2858
}
2859
 
2860
// Get symbol counts.
2861
 
2862
template<int size, bool big_endian>
2863
void
2864
Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
2865 163 khays
    const Symbol_table*,
2866
    size_t* defined,
2867
    size_t* used) const
2868 27 khays
{
2869 163 khays
  *defined = this->defined_count_;
2870
  size_t count = 0;
2871
  for (typename Symbols::const_iterator p = this->symbols_.begin();
2872
       p != this->symbols_.end();
2873
       ++p)
2874
    if (*p != NULL
2875
        && (*p)->source() == Symbol::FROM_OBJECT
2876
        && (*p)->object() == this
2877
        && (*p)->is_defined()
2878
        && (*p)->dynsym_index() != -1U)
2879
      ++count;
2880
  *used = count;
2881 27 khays
}
2882
 
2883
// Allocate an incremental object of the appropriate size and endianness.
2884
 
2885
Object*
2886
make_sized_incremental_object(
2887
    Incremental_binary* ibase,
2888
    unsigned int input_file_index,
2889
    Incremental_input_type input_type,
2890
    const Incremental_binary::Input_reader* input_reader)
2891
{
2892
  Object* obj = NULL;
2893
  std::string name(input_reader->filename());
2894
 
2895
  switch (parameters->size_and_endianness())
2896
    {
2897
#ifdef HAVE_TARGET_32_LITTLE
2898
    case Parameters::TARGET_32_LITTLE:
2899
      {
2900
        Sized_incremental_binary<32, false>* sized_ibase =
2901
            static_cast<Sized_incremental_binary<32, false>*>(ibase);
2902
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2903
          obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
2904
                                                 input_file_index);
2905
        else
2906
          obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
2907
                                                 input_file_index);
2908
      }
2909
      break;
2910
#endif
2911
#ifdef HAVE_TARGET_32_BIG
2912
    case Parameters::TARGET_32_BIG:
2913
      {
2914
        Sized_incremental_binary<32, true>* sized_ibase =
2915
            static_cast<Sized_incremental_binary<32, true>*>(ibase);
2916
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2917
          obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
2918
                                                input_file_index);
2919
        else
2920
          obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
2921
                                                input_file_index);
2922
      }
2923
      break;
2924
#endif
2925
#ifdef HAVE_TARGET_64_LITTLE
2926
    case Parameters::TARGET_64_LITTLE:
2927
      {
2928
        Sized_incremental_binary<64, false>* sized_ibase =
2929
            static_cast<Sized_incremental_binary<64, false>*>(ibase);
2930
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2931
          obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
2932
                                                 input_file_index);
2933
        else
2934
          obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
2935
                                                 input_file_index);
2936
     }
2937
      break;
2938
#endif
2939
#ifdef HAVE_TARGET_64_BIG
2940
    case Parameters::TARGET_64_BIG:
2941
      {
2942
        Sized_incremental_binary<64, true>* sized_ibase =
2943
            static_cast<Sized_incremental_binary<64, true>*>(ibase);
2944
        if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
2945
          obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
2946
                                                input_file_index);
2947
        else
2948
          obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
2949
                                                input_file_index);
2950
      }
2951
      break;
2952
#endif
2953
    default:
2954
      gold_unreachable();
2955
    }
2956
 
2957
  gold_assert(obj != NULL);
2958
  return obj;
2959
}
2960
 
2961
// Copy the unused symbols from the incremental input info.
2962
// We need to do this because we may be overwriting the incremental
2963
// input info in the base file before we write the new incremental
2964
// info.
2965
void
2966
Incremental_library::copy_unused_symbols()
2967
{
2968
  unsigned int symcount = this->input_reader_->get_unused_symbol_count();
2969
  this->unused_symbols_.reserve(symcount);
2970
  for (unsigned int i = 0; i < symcount; ++i)
2971
    {
2972
      std::string name(this->input_reader_->get_unused_symbol(i));
2973
      this->unused_symbols_.push_back(name);
2974
    }
2975
}
2976
 
2977
// Iterator for unused global symbols in the library.
2978
void
2979
Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
2980
{
2981
  for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
2982
       p != this->unused_symbols_.end();
2983
       ++p)
2984
  v->visit(p->c_str());
2985
}
2986
 
2987
// Instantiate the templates we need.
2988
 
2989
#ifdef HAVE_TARGET_32_LITTLE
2990
template
2991
class Sized_incremental_binary<32, false>;
2992
 
2993
template
2994
class Sized_relobj_incr<32, false>;
2995
 
2996
template
2997
class Sized_incr_dynobj<32, false>;
2998
#endif
2999
 
3000
#ifdef HAVE_TARGET_32_BIG
3001
template
3002
class Sized_incremental_binary<32, true>;
3003
 
3004
template
3005
class Sized_relobj_incr<32, true>;
3006
 
3007
template
3008
class Sized_incr_dynobj<32, true>;
3009
#endif
3010
 
3011
#ifdef HAVE_TARGET_64_LITTLE
3012
template
3013
class Sized_incremental_binary<64, false>;
3014
 
3015
template
3016
class Sized_relobj_incr<64, false>;
3017
 
3018
template
3019
class Sized_incr_dynobj<64, false>;
3020
#endif
3021
 
3022
#ifdef HAVE_TARGET_64_BIG
3023
template
3024
class Sized_incremental_binary<64, true>;
3025
 
3026
template
3027
class Sized_relobj_incr<64, true>;
3028
 
3029
template
3030
class Sized_incr_dynobj<64, true>;
3031
#endif
3032
 
3033
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.