OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [resolve.cc] - Blame information for rev 166

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 27 khays
// resolve.cc -- symbol resolution for gold
2
 
3 159 khays
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 27 khays
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include "elfcpp.h"
26
#include "target.h"
27
#include "object.h"
28
#include "symtab.h"
29
#include "plugin.h"
30
 
31
namespace gold
32
{
33
 
34
// Symbol methods used in this file.
35
 
36
// This symbol is being overridden by another symbol whose version is
37
// VERSION.  Update the VERSION_ field accordingly.
38
 
39
inline void
40
Symbol::override_version(const char* version)
41
{
42
  if (version == NULL)
43
    {
44
      // This is the case where this symbol is NAME/VERSION, and the
45
      // version was not marked as hidden.  That makes it the default
46
      // version, so we create NAME/NULL.  Later we see another symbol
47
      // NAME/NULL, and that symbol is overriding this one.  In this
48
      // case, since NAME/VERSION is the default, we make NAME/NULL
49
      // override NAME/VERSION as well.  They are already the same
50
      // Symbol structure.  Setting the VERSION_ field to NULL ensures
51
      // that it will be output with the correct, empty, version.
52
      this->version_ = version;
53
    }
54
  else
55
    {
56
      // This is the case where this symbol is NAME/VERSION_ONE, and
57
      // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58
      // overriding NAME.  If VERSION_ONE and VERSION_TWO are
59
      // different, then this can only happen when VERSION_ONE is NULL
60
      // and VERSION_TWO is not hidden.
61
      gold_assert(this->version_ == version || this->version_ == NULL);
62
      this->version_ = version;
63
    }
64
}
65
 
66
// This symbol is being overidden by another symbol whose visibility
67
// is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
68
 
69
inline void
70
Symbol::override_visibility(elfcpp::STV visibility)
71
{
72
  // The rule for combining visibility is that we always choose the
73
  // most constrained visibility.  In order of increasing constraint,
74
  // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
75
  // of the numeric values, so the effect is that we always want the
76
  // smallest non-zero value.
77
  if (visibility != elfcpp::STV_DEFAULT)
78
    {
79
      if (this->visibility_ == elfcpp::STV_DEFAULT)
80
        this->visibility_ = visibility;
81
      else if (this->visibility_ > visibility)
82
        this->visibility_ = visibility;
83
    }
84
}
85
 
86
// Override the fields in Symbol.
87
 
88
template<int size, bool big_endian>
89
void
90
Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91
                      unsigned int st_shndx, bool is_ordinary,
92
                      Object* object, const char* version)
93
{
94
  gold_assert(this->source_ == FROM_OBJECT);
95
  this->u_.from_object.object = object;
96
  this->override_version(version);
97
  this->u_.from_object.shndx = st_shndx;
98
  this->is_ordinary_shndx_ = is_ordinary;
99
  this->type_ = sym.get_st_type();
100
  this->binding_ = sym.get_st_bind();
101
  this->override_visibility(sym.get_st_visibility());
102
  this->nonvis_ = sym.get_st_nonvis();
103
  if (object->is_dynamic())
104
    this->in_dyn_ = true;
105
  else
106
    this->in_reg_ = true;
107
}
108
 
109
// Override the fields in Sized_symbol.
110
 
111
template<int size>
112
template<bool big_endian>
113
void
114
Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115
                             unsigned st_shndx, bool is_ordinary,
116
                             Object* object, const char* version)
117
{
118
  this->override_base(sym, st_shndx, is_ordinary, object, version);
119
  this->value_ = sym.get_st_value();
120
  this->symsize_ = sym.get_st_size();
121
}
122
 
123
// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124
// VERSION.  This handles all aliases of TOSYM.
125
 
126
template<int size, bool big_endian>
127
void
128
Symbol_table::override(Sized_symbol<size>* tosym,
129
                       const elfcpp::Sym<size, big_endian>& fromsym,
130
                       unsigned int st_shndx, bool is_ordinary,
131
                       Object* object, const char* version)
132
{
133
  tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134
  if (tosym->has_alias())
135
    {
136
      Symbol* sym = this->weak_aliases_[tosym];
137
      gold_assert(sym != NULL);
138
      Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
139
      do
140
        {
141
          ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142
          sym = this->weak_aliases_[ssym];
143
          gold_assert(sym != NULL);
144
          ssym = this->get_sized_symbol<size>(sym);
145
        }
146
      while (ssym != tosym);
147
    }
148
}
149
 
150
// The resolve functions build a little code for each symbol.
151
// Bit 0: 0 for global, 1 for weak.
152
// Bit 1: 0 for regular object, 1 for shared object
153
// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154
// This gives us values from 0 to 11.
155
 
156
static const int global_or_weak_shift = 0;
157
static const unsigned int global_flag = 0 << global_or_weak_shift;
158
static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
 
160
static const int regular_or_dynamic_shift = 1;
161
static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162
static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
 
164
static const int def_undef_or_common_shift = 2;
165
static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166
static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167
static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
 
169
// This convenience function combines all the flags based on facts
170
// about the symbol.
171
 
172
static unsigned int
173
symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174
               unsigned int shndx, bool is_ordinary, elfcpp::STT type)
175
{
176
  unsigned int bits;
177
 
178
  switch (binding)
179
    {
180
    case elfcpp::STB_GLOBAL:
181
    case elfcpp::STB_GNU_UNIQUE:
182
      bits = global_flag;
183
      break;
184
 
185
    case elfcpp::STB_WEAK:
186
      bits = weak_flag;
187
      break;
188
 
189
    case elfcpp::STB_LOCAL:
190
      // We should only see externally visible symbols in the symbol
191
      // table.
192
      gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193
      bits = global_flag;
194
 
195
    default:
196
      // Any target which wants to handle STB_LOOS, etc., needs to
197
      // define a resolve method.
198
      gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
199
      bits = global_flag;
200
    }
201
 
202
  if (is_dynamic)
203
    bits |= dynamic_flag;
204
  else
205
    bits |= regular_flag;
206
 
207
  switch (shndx)
208
    {
209
    case elfcpp::SHN_UNDEF:
210
      bits |= undef_flag;
211
      break;
212
 
213
    case elfcpp::SHN_COMMON:
214
      if (!is_ordinary)
215
        bits |= common_flag;
216
      break;
217
 
218
    default:
219
      if (type == elfcpp::STT_COMMON)
220
        bits |= common_flag;
221
      else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222
        bits |= common_flag;
223
      else
224
        bits |= def_flag;
225
      break;
226
    }
227
 
228
  return bits;
229
}
230
 
231
// Resolve a symbol.  This is called the second and subsequent times
232
// we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
233
// section index for SYM, possibly adjusted for many sections.
234
// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235
// than a special code.  ORIG_ST_SHNDX is the original section index,
236
// before any munging because of discarded sections, except that all
237
// non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
238
// the version of SYM.
239
 
240
template<int size, bool big_endian>
241
void
242
Symbol_table::resolve(Sized_symbol<size>* to,
243
                      const elfcpp::Sym<size, big_endian>& sym,
244
                      unsigned int st_shndx, bool is_ordinary,
245
                      unsigned int orig_st_shndx,
246
                      Object* object, const char* version)
247
{
248 159 khays
  // It's possible for a symbol to be defined in an object file
249
  // using .symver to give it a version, and for there to also be
250
  // a linker script giving that symbol the same version.  We
251
  // don't want to give a multiple-definition error for this
252
  // harmless redefinition.
253
  bool to_is_ordinary;
254
  if (to->source() == Symbol::FROM_OBJECT
255
      && to->object() == object
256
      && is_ordinary
257
      && to->is_defined()
258
      && to->shndx(&to_is_ordinary) == st_shndx
259
      && to_is_ordinary
260
      && to->value() == sym.get_st_value())
261
    return;
262
 
263 27 khays
  if (parameters->target().has_resolve())
264
    {
265
      Sized_target<size, big_endian>* sized_target;
266
      sized_target = parameters->sized_target<size, big_endian>();
267
      sized_target->resolve(to, sym, object, version);
268
      return;
269
    }
270
 
271
  if (!object->is_dynamic())
272
    {
273
      // Record that we've seen this symbol in a regular object.
274
      to->set_in_reg();
275
    }
276
  else if (st_shndx == elfcpp::SHN_UNDEF
277
           && (to->visibility() == elfcpp::STV_HIDDEN
278
               || to->visibility() == elfcpp::STV_INTERNAL))
279
    {
280
      // A dynamic object cannot reference a hidden or internal symbol
281
      // defined in another object.
282
      gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
283
                   (to->visibility() == elfcpp::STV_HIDDEN
284
                    ? "hidden"
285
                    : "internal"),
286
                   to->demangled_name().c_str(),
287
                   to->object()->name().c_str(),
288
                   object->name().c_str());
289
      return;
290
    }
291
  else
292
    {
293
      // Record that we've seen this symbol in a dynamic object.
294
      to->set_in_dyn();
295
    }
296
 
297
  // Record if we've seen this symbol in a real ELF object (i.e., the
298
  // symbol is referenced from outside the world known to the plugin).
299 163 khays
  if (object->pluginobj() == NULL && !object->is_dynamic())
300 27 khays
    to->set_in_real_elf();
301
 
302
  // If we're processing replacement files, allow new symbols to override
303
  // the placeholders from the plugin objects.
304
  if (to->source() == Symbol::FROM_OBJECT)
305
    {
306
      Pluginobj* obj = to->object()->pluginobj();
307
      if (obj != NULL
308
          && parameters->options().plugins()->in_replacement_phase())
309
        {
310
          this->override(to, sym, st_shndx, is_ordinary, object, version);
311
          return;
312
        }
313
    }
314
 
315
  // A new weak undefined reference, merging with an old weak
316
  // reference, could be a One Definition Rule (ODR) violation --
317
  // especially if the types or sizes of the references differ.  We'll
318
  // store such pairs and look them up later to make sure they
319
  // actually refer to the same lines of code.  We also check
320
  // combinations of weak and strong, which might occur if one case is
321
  // inline and the other is not.  (Note: not all ODR violations can
322
  // be found this way, and not everything this finds is an ODR
323
  // violation.  But it's helpful to warn about.)
324
  if (parameters->options().detect_odr_violations()
325
      && (sym.get_st_bind() == elfcpp::STB_WEAK
326
          || to->binding() == elfcpp::STB_WEAK)
327
      && orig_st_shndx != elfcpp::SHN_UNDEF
328
      && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
329
      && to_is_ordinary
330
      && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
331
      && to->symsize() != 0
332
      && (sym.get_st_type() != to->type()
333
          || sym.get_st_size() != to->symsize())
334
      // C does not have a concept of ODR, so we only need to do this
335
      // on C++ symbols.  These have (mangled) names starting with _Z.
336
      && to->name()[0] == '_' && to->name()[1] == 'Z')
337
    {
338
      Symbol_location fromloc
339 166 khays
          = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
340 27 khays
      Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
341 166 khays
                                static_cast<off_t>(to->value()) };
342 27 khays
      this->candidate_odr_violations_[to->name()].insert(fromloc);
343
      this->candidate_odr_violations_[to->name()].insert(toloc);
344
    }
345
 
346
  unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
347
                                         object->is_dynamic(),
348
                                         st_shndx, is_ordinary,
349
                                         sym.get_st_type());
350
 
351
  bool adjust_common_sizes;
352
  bool adjust_dyndef;
353
  typename Sized_symbol<size>::Size_type tosize = to->symsize();
354 159 khays
  if (Symbol_table::should_override(to, frombits, sym.get_st_type(), OBJECT,
355
                                    object, &adjust_common_sizes,
356 27 khays
                                    &adjust_dyndef))
357
    {
358
      elfcpp::STB tobinding = to->binding();
359
      this->override(to, sym, st_shndx, is_ordinary, object, version);
360
      if (adjust_common_sizes && tosize > to->symsize())
361
        to->set_symsize(tosize);
362
      if (adjust_dyndef)
363
        {
364
          // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
365
          // Remember which kind of UNDEF it was for future reference.
366
          to->set_undef_binding(tobinding);
367
        }
368
    }
369
  else
370
    {
371
      if (adjust_common_sizes && sym.get_st_size() > tosize)
372
        to->set_symsize(sym.get_st_size());
373
      if (adjust_dyndef)
374
        {
375
          // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
376
          // Remember which kind of UNDEF it was.
377
          to->set_undef_binding(sym.get_st_bind());
378
        }
379
      // The ELF ABI says that even for a reference to a symbol we
380
      // merge the visibility.
381
      to->override_visibility(sym.get_st_visibility());
382
    }
383
 
384
  if (adjust_common_sizes && parameters->options().warn_common())
385
    {
386
      if (tosize > sym.get_st_size())
387
        Symbol_table::report_resolve_problem(false,
388
                                             _("common of '%s' overriding "
389
                                               "smaller common"),
390
                                             to, OBJECT, object);
391
      else if (tosize < sym.get_st_size())
392
        Symbol_table::report_resolve_problem(false,
393
                                             _("common of '%s' overidden by "
394
                                               "larger common"),
395
                                             to, OBJECT, object);
396
      else
397
        Symbol_table::report_resolve_problem(false,
398
                                             _("multiple common of '%s'"),
399
                                             to, OBJECT, object);
400
    }
401
}
402
 
403
// Handle the core of symbol resolution.  This is called with the
404
// existing symbol, TO, and a bitflag describing the new symbol.  This
405
// returns true if we should override the existing symbol with the new
406
// one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
407
// true if we should set the symbol size to the maximum of the TO and
408
// FROM sizes.  It handles error conditions.
409
 
410
bool
411
Symbol_table::should_override(const Symbol* to, unsigned int frombits,
412 159 khays
                              elfcpp::STT fromtype, Defined defined,
413
                              Object* object, bool* adjust_common_sizes,
414 27 khays
                              bool* adjust_dyndef)
415
{
416
  *adjust_common_sizes = false;
417
  *adjust_dyndef = false;
418
 
419
  unsigned int tobits;
420
  if (to->source() == Symbol::IS_UNDEFINED)
421
    tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
422
                            to->type());
423
  else if (to->source() != Symbol::FROM_OBJECT)
424
    tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
425
                            to->type());
426
  else
427
    {
428
      bool is_ordinary;
429
      unsigned int shndx = to->shndx(&is_ordinary);
430
      tobits = symbol_to_bits(to->binding(),
431
                              to->object()->is_dynamic(),
432
                              shndx,
433
                              is_ordinary,
434
                              to->type());
435
    }
436
 
437 159 khays
  if (to->type() == elfcpp::STT_TLS
438
      ? fromtype != elfcpp::STT_TLS
439
      : fromtype == elfcpp::STT_TLS)
440
    Symbol_table::report_resolve_problem(true,
441
                                         _("symbol '%s' used as both __thread "
442
                                           "and non-__thread"),
443
                                         to, defined, object);
444 27 khays
 
445
  // We use a giant switch table for symbol resolution.  This code is
446
  // unwieldy, but: 1) it is efficient; 2) we definitely handle all
447
  // cases; 3) it is easy to change the handling of a particular case.
448
  // The alternative would be a series of conditionals, but it is easy
449
  // to get the ordering wrong.  This could also be done as a table,
450
  // but that is no easier to understand than this large switch
451
  // statement.
452
 
453
  // These are the values generated by the bit codes.
454
  enum
455
  {
456
    DEF =              global_flag | regular_flag | def_flag,
457
    WEAK_DEF =         weak_flag   | regular_flag | def_flag,
458
    DYN_DEF =          global_flag | dynamic_flag | def_flag,
459
    DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
460
    UNDEF =            global_flag | regular_flag | undef_flag,
461
    WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
462
    DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
463
    DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
464
    COMMON =           global_flag | regular_flag | common_flag,
465
    WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
466
    DYN_COMMON =       global_flag | dynamic_flag | common_flag,
467
    DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
468
  };
469
 
470
  switch (tobits * 16 + frombits)
471
    {
472
    case DEF * 16 + DEF:
473
      // Two definitions of the same symbol.
474
 
475
      // If either symbol is defined by an object included using
476
      // --just-symbols, then don't warn.  This is for compatibility
477
      // with the GNU linker.  FIXME: This is a hack.
478
      if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
479
          || (object != NULL && object->just_symbols()))
480
        return false;
481
 
482
      if (!parameters->options().muldefs())
483
        Symbol_table::report_resolve_problem(true,
484
                                             _("multiple definition of '%s'"),
485
                                             to, defined, object);
486
      return false;
487
 
488
    case WEAK_DEF * 16 + DEF:
489
      // We've seen a weak definition, and now we see a strong
490
      // definition.  In the original SVR4 linker, this was treated as
491
      // a multiple definition error.  In the Solaris linker and the
492
      // GNU linker, a weak definition followed by a regular
493
      // definition causes the weak definition to be overridden.  We
494
      // are currently compatible with the GNU linker.  In the future
495
      // we should add a target specific option to change this.
496
      // FIXME.
497
      return true;
498
 
499
    case DYN_DEF * 16 + DEF:
500
    case DYN_WEAK_DEF * 16 + DEF:
501
      // We've seen a definition in a dynamic object, and now we see a
502
      // definition in a regular object.  The definition in the
503
      // regular object overrides the definition in the dynamic
504
      // object.
505
      return true;
506
 
507
    case UNDEF * 16 + DEF:
508
    case WEAK_UNDEF * 16 + DEF:
509
    case DYN_UNDEF * 16 + DEF:
510
    case DYN_WEAK_UNDEF * 16 + DEF:
511
      // We've seen an undefined reference, and now we see a
512
      // definition.  We use the definition.
513
      return true;
514
 
515
    case COMMON * 16 + DEF:
516
    case WEAK_COMMON * 16 + DEF:
517
    case DYN_COMMON * 16 + DEF:
518
    case DYN_WEAK_COMMON * 16 + DEF:
519
      // We've seen a common symbol and now we see a definition.  The
520
      // definition overrides.
521
      if (parameters->options().warn_common())
522
        Symbol_table::report_resolve_problem(false,
523
                                             _("definition of '%s' overriding "
524
                                               "common"),
525
                                             to, defined, object);
526
      return true;
527
 
528
    case DEF * 16 + WEAK_DEF:
529
    case WEAK_DEF * 16 + WEAK_DEF:
530
      // We've seen a definition and now we see a weak definition.  We
531
      // ignore the new weak definition.
532
      return false;
533
 
534
    case DYN_DEF * 16 + WEAK_DEF:
535
    case DYN_WEAK_DEF * 16 + WEAK_DEF:
536
      // We've seen a dynamic definition and now we see a regular weak
537
      // definition.  The regular weak definition overrides.
538
      return true;
539
 
540
    case UNDEF * 16 + WEAK_DEF:
541
    case WEAK_UNDEF * 16 + WEAK_DEF:
542
    case DYN_UNDEF * 16 + WEAK_DEF:
543
    case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
544
      // A weak definition of a currently undefined symbol.
545
      return true;
546
 
547
    case COMMON * 16 + WEAK_DEF:
548
    case WEAK_COMMON * 16 + WEAK_DEF:
549
      // A weak definition does not override a common definition.
550
      return false;
551
 
552
    case DYN_COMMON * 16 + WEAK_DEF:
553
    case DYN_WEAK_COMMON * 16 + WEAK_DEF:
554
      // A weak definition does override a definition in a dynamic
555
      // object.
556
      if (parameters->options().warn_common())
557
        Symbol_table::report_resolve_problem(false,
558
                                             _("definition of '%s' overriding "
559
                                               "dynamic common definition"),
560
                                             to, defined, object);
561
      return true;
562
 
563
    case DEF * 16 + DYN_DEF:
564
    case WEAK_DEF * 16 + DYN_DEF:
565
    case DYN_DEF * 16 + DYN_DEF:
566
    case DYN_WEAK_DEF * 16 + DYN_DEF:
567
      // Ignore a dynamic definition if we already have a definition.
568
      return false;
569
 
570
    case UNDEF * 16 + DYN_DEF:
571
    case DYN_UNDEF * 16 + DYN_DEF:
572
    case DYN_WEAK_UNDEF * 16 + DYN_DEF:
573
      // Use a dynamic definition if we have a reference.
574
      return true;
575
 
576
    case WEAK_UNDEF * 16 + DYN_DEF:
577
      // When overriding a weak undef by a dynamic definition,
578
      // we need to remember that the original undef was weak.
579
      *adjust_dyndef = true;
580
      return true;
581
 
582
    case COMMON * 16 + DYN_DEF:
583
    case WEAK_COMMON * 16 + DYN_DEF:
584
    case DYN_COMMON * 16 + DYN_DEF:
585
    case DYN_WEAK_COMMON * 16 + DYN_DEF:
586
      // Ignore a dynamic definition if we already have a common
587
      // definition.
588
      return false;
589
 
590
    case DEF * 16 + DYN_WEAK_DEF:
591
    case WEAK_DEF * 16 + DYN_WEAK_DEF:
592
    case DYN_DEF * 16 + DYN_WEAK_DEF:
593
    case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
594
      // Ignore a weak dynamic definition if we already have a
595
      // definition.
596
      return false;
597
 
598
    case UNDEF * 16 + DYN_WEAK_DEF:
599
      // When overriding an undef by a dynamic weak definition,
600
      // we need to remember that the original undef was not weak.
601
      *adjust_dyndef = true;
602
      return true;
603
 
604
    case DYN_UNDEF * 16 + DYN_WEAK_DEF:
605
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
606
      // Use a weak dynamic definition if we have a reference.
607
      return true;
608
 
609
    case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
610
      // When overriding a weak undef by a dynamic definition,
611
      // we need to remember that the original undef was weak.
612
      *adjust_dyndef = true;
613
      return true;
614
 
615
    case COMMON * 16 + DYN_WEAK_DEF:
616
    case WEAK_COMMON * 16 + DYN_WEAK_DEF:
617
    case DYN_COMMON * 16 + DYN_WEAK_DEF:
618
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
619
      // Ignore a weak dynamic definition if we already have a common
620
      // definition.
621
      return false;
622
 
623
    case DEF * 16 + UNDEF:
624
    case WEAK_DEF * 16 + UNDEF:
625
    case UNDEF * 16 + UNDEF:
626
      // A new undefined reference tells us nothing.
627
      return false;
628
 
629
    case DYN_DEF * 16 + UNDEF:
630
    case DYN_WEAK_DEF * 16 + UNDEF:
631
      // For a dynamic def, we need to remember which kind of undef we see.
632
      *adjust_dyndef = true;
633
      return false;
634
 
635
    case WEAK_UNDEF * 16 + UNDEF:
636
    case DYN_UNDEF * 16 + UNDEF:
637
    case DYN_WEAK_UNDEF * 16 + UNDEF:
638
      // A strong undef overrides a dynamic or weak undef.
639
      return true;
640
 
641
    case COMMON * 16 + UNDEF:
642
    case WEAK_COMMON * 16 + UNDEF:
643
    case DYN_COMMON * 16 + UNDEF:
644
    case DYN_WEAK_COMMON * 16 + UNDEF:
645
      // A new undefined reference tells us nothing.
646
      return false;
647
 
648
    case DEF * 16 + WEAK_UNDEF:
649
    case WEAK_DEF * 16 + WEAK_UNDEF:
650
    case UNDEF * 16 + WEAK_UNDEF:
651
    case WEAK_UNDEF * 16 + WEAK_UNDEF:
652
    case DYN_UNDEF * 16 + WEAK_UNDEF:
653
    case COMMON * 16 + WEAK_UNDEF:
654
    case WEAK_COMMON * 16 + WEAK_UNDEF:
655
    case DYN_COMMON * 16 + WEAK_UNDEF:
656
    case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
657
      // A new weak undefined reference tells us nothing unless the
658
      // exisiting symbol is a dynamic weak reference.
659
      return false;
660
 
661
    case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
662
      // A new weak reference overrides an existing dynamic weak reference.
663
      // This is necessary because a dynamic weak reference remembers
664
      // the old binding, which may not be weak.  If we keeps the existing
665
      // dynamic weak reference, the weakness may be dropped in the output.
666
      return true;
667
 
668
    case DYN_DEF * 16 + WEAK_UNDEF:
669
    case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
670
      // For a dynamic def, we need to remember which kind of undef we see.
671
      *adjust_dyndef = true;
672
      return false;
673
 
674
    case DEF * 16 + DYN_UNDEF:
675
    case WEAK_DEF * 16 + DYN_UNDEF:
676
    case DYN_DEF * 16 + DYN_UNDEF:
677
    case DYN_WEAK_DEF * 16 + DYN_UNDEF:
678
    case UNDEF * 16 + DYN_UNDEF:
679
    case WEAK_UNDEF * 16 + DYN_UNDEF:
680
    case DYN_UNDEF * 16 + DYN_UNDEF:
681
    case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
682
    case COMMON * 16 + DYN_UNDEF:
683
    case WEAK_COMMON * 16 + DYN_UNDEF:
684
    case DYN_COMMON * 16 + DYN_UNDEF:
685
    case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
686
      // A new dynamic undefined reference tells us nothing.
687
      return false;
688
 
689
    case DEF * 16 + DYN_WEAK_UNDEF:
690
    case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
691
    case DYN_DEF * 16 + DYN_WEAK_UNDEF:
692
    case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
693
    case UNDEF * 16 + DYN_WEAK_UNDEF:
694
    case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
695
    case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
696
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
697
    case COMMON * 16 + DYN_WEAK_UNDEF:
698
    case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
699
    case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
700
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
701
      // A new weak dynamic undefined reference tells us nothing.
702
      return false;
703
 
704
    case DEF * 16 + COMMON:
705
      // A common symbol does not override a definition.
706
      if (parameters->options().warn_common())
707
        Symbol_table::report_resolve_problem(false,
708
                                             _("common '%s' overridden by "
709
                                               "previous definition"),
710
                                             to, defined, object);
711
      return false;
712
 
713
    case WEAK_DEF * 16 + COMMON:
714
    case DYN_DEF * 16 + COMMON:
715
    case DYN_WEAK_DEF * 16 + COMMON:
716
      // A common symbol does override a weak definition or a dynamic
717
      // definition.
718
      return true;
719
 
720
    case UNDEF * 16 + COMMON:
721
    case WEAK_UNDEF * 16 + COMMON:
722
    case DYN_UNDEF * 16 + COMMON:
723
    case DYN_WEAK_UNDEF * 16 + COMMON:
724
      // A common symbol is a definition for a reference.
725
      return true;
726
 
727
    case COMMON * 16 + COMMON:
728
      // Set the size to the maximum.
729
      *adjust_common_sizes = true;
730
      return false;
731
 
732
    case WEAK_COMMON * 16 + COMMON:
733
      // I'm not sure just what a weak common symbol means, but
734
      // presumably it can be overridden by a regular common symbol.
735
      return true;
736
 
737
    case DYN_COMMON * 16 + COMMON:
738
    case DYN_WEAK_COMMON * 16 + COMMON:
739
      // Use the real common symbol, but adjust the size if necessary.
740
      *adjust_common_sizes = true;
741
      return true;
742
 
743
    case DEF * 16 + WEAK_COMMON:
744
    case WEAK_DEF * 16 + WEAK_COMMON:
745
    case DYN_DEF * 16 + WEAK_COMMON:
746
    case DYN_WEAK_DEF * 16 + WEAK_COMMON:
747
      // Whatever a weak common symbol is, it won't override a
748
      // definition.
749
      return false;
750
 
751
    case UNDEF * 16 + WEAK_COMMON:
752
    case WEAK_UNDEF * 16 + WEAK_COMMON:
753
    case DYN_UNDEF * 16 + WEAK_COMMON:
754
    case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
755
      // A weak common symbol is better than an undefined symbol.
756
      return true;
757
 
758
    case COMMON * 16 + WEAK_COMMON:
759
    case WEAK_COMMON * 16 + WEAK_COMMON:
760
    case DYN_COMMON * 16 + WEAK_COMMON:
761
    case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
762
      // Ignore a weak common symbol in the presence of a real common
763
      // symbol.
764
      return false;
765
 
766
    case DEF * 16 + DYN_COMMON:
767
    case WEAK_DEF * 16 + DYN_COMMON:
768
    case DYN_DEF * 16 + DYN_COMMON:
769
    case DYN_WEAK_DEF * 16 + DYN_COMMON:
770
      // Ignore a dynamic common symbol in the presence of a
771
      // definition.
772
      return false;
773
 
774
    case UNDEF * 16 + DYN_COMMON:
775
    case WEAK_UNDEF * 16 + DYN_COMMON:
776
    case DYN_UNDEF * 16 + DYN_COMMON:
777
    case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
778
      // A dynamic common symbol is a definition of sorts.
779
      return true;
780
 
781
    case COMMON * 16 + DYN_COMMON:
782
    case WEAK_COMMON * 16 + DYN_COMMON:
783
    case DYN_COMMON * 16 + DYN_COMMON:
784
    case DYN_WEAK_COMMON * 16 + DYN_COMMON:
785
      // Set the size to the maximum.
786
      *adjust_common_sizes = true;
787
      return false;
788
 
789
    case DEF * 16 + DYN_WEAK_COMMON:
790
    case WEAK_DEF * 16 + DYN_WEAK_COMMON:
791
    case DYN_DEF * 16 + DYN_WEAK_COMMON:
792
    case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
793
      // A common symbol is ignored in the face of a definition.
794
      return false;
795
 
796
    case UNDEF * 16 + DYN_WEAK_COMMON:
797
    case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
798
    case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
799
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
800
      // I guess a weak common symbol is better than a definition.
801
      return true;
802
 
803
    case COMMON * 16 + DYN_WEAK_COMMON:
804
    case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
805
    case DYN_COMMON * 16 + DYN_WEAK_COMMON:
806
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
807
      // Set the size to the maximum.
808
      *adjust_common_sizes = true;
809
      return false;
810
 
811
    default:
812
      gold_unreachable();
813
    }
814
}
815
 
816
// Issue an error or warning due to symbol resolution.  IS_ERROR
817
// indicates an error rather than a warning.  MSG is the error
818
// message; it is expected to have a %s for the symbol name.  TO is
819
// the existing symbol.  DEFINED/OBJECT is where the new symbol was
820
// found.
821
 
822
// FIXME: We should have better location information here.  When the
823
// symbol is defined, we should be able to pull the location from the
824
// debug info if there is any.
825
 
826
void
827
Symbol_table::report_resolve_problem(bool is_error, const char* msg,
828
                                     const Symbol* to, Defined defined,
829
                                     Object* object)
830
{
831
  std::string demangled(to->demangled_name());
832
  size_t len = strlen(msg) + demangled.length() + 10;
833
  char* buf = new char[len];
834
  snprintf(buf, len, msg, demangled.c_str());
835
 
836
  const char* objname;
837
  switch (defined)
838
    {
839
    case OBJECT:
840
      objname = object->name().c_str();
841
      break;
842
    case COPY:
843
      objname = _("COPY reloc");
844
      break;
845
    case DEFSYM:
846
    case UNDEFINED:
847
      objname = _("command line");
848
      break;
849
    case SCRIPT:
850
      objname = _("linker script");
851
      break;
852
    case PREDEFINED:
853 148 khays
    case INCREMENTAL_BASE:
854 27 khays
      objname = _("linker defined");
855
      break;
856
    default:
857
      gold_unreachable();
858
    }
859
 
860
  if (is_error)
861
    gold_error("%s: %s", objname, buf);
862
  else
863
    gold_warning("%s: %s", objname, buf);
864
 
865
  delete[] buf;
866
 
867
  if (to->source() == Symbol::FROM_OBJECT)
868
    objname = to->object()->name().c_str();
869
  else
870
    objname = _("command line");
871
  gold_info("%s: %s: previous definition here", program_name, objname);
872
}
873
 
874
// A special case of should_override which is only called for a strong
875
// defined symbol from a regular object file.  This is used when
876
// defining special symbols.
877
 
878
bool
879 159 khays
Symbol_table::should_override_with_special(const Symbol* to,
880
                                           elfcpp::STT fromtype,
881
                                           Defined defined)
882 27 khays
{
883
  bool adjust_common_sizes;
884
  bool adjust_dyn_def;
885
  unsigned int frombits = global_flag | regular_flag | def_flag;
886 159 khays
  bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
887
                                           NULL, &adjust_common_sizes,
888 27 khays
                                           &adjust_dyn_def);
889
  gold_assert(!adjust_common_sizes && !adjust_dyn_def);
890
  return ret;
891
}
892
 
893
// Override symbol base with a special symbol.
894
 
895
void
896
Symbol::override_base_with_special(const Symbol* from)
897
{
898 159 khays
  bool same_name = this->name_ == from->name_;
899
  gold_assert(same_name || this->has_alias());
900 27 khays
 
901
  this->source_ = from->source_;
902
  switch (from->source_)
903
    {
904
    case FROM_OBJECT:
905
      this->u_.from_object = from->u_.from_object;
906
      break;
907
    case IN_OUTPUT_DATA:
908
      this->u_.in_output_data = from->u_.in_output_data;
909
      break;
910
    case IN_OUTPUT_SEGMENT:
911
      this->u_.in_output_segment = from->u_.in_output_segment;
912
      break;
913
    case IS_CONSTANT:
914
    case IS_UNDEFINED:
915
      break;
916
    default:
917
      gold_unreachable();
918
      break;
919
    }
920
 
921 159 khays
  if (same_name)
922
    {
923
      // When overriding a versioned symbol with a special symbol, we
924
      // may be changing the version.  This will happen if we see a
925
      // special symbol such as "_end" defined in a shared object with
926
      // one version (from a version script), but we want to define it
927
      // here with a different version (from a different version
928
      // script).
929
      this->version_ = from->version_;
930
    }
931 27 khays
  this->type_ = from->type_;
932
  this->binding_ = from->binding_;
933
  this->override_visibility(from->visibility_);
934
  this->nonvis_ = from->nonvis_;
935
 
936
  // Special symbols are always considered to be regular symbols.
937
  this->in_reg_ = true;
938
 
939
  if (from->needs_dynsym_entry_)
940
    this->needs_dynsym_entry_ = true;
941
  if (from->needs_dynsym_value_)
942
    this->needs_dynsym_value_ = true;
943
 
944 148 khays
  this->is_predefined_ = from->is_predefined_;
945
 
946 27 khays
  // We shouldn't see these flags.  If we do, we need to handle them
947
  // somehow.
948
  gold_assert(!from->is_forwarder_);
949
  gold_assert(!from->has_plt_offset());
950
  gold_assert(!from->has_warning_);
951
  gold_assert(!from->is_copied_from_dynobj_);
952
  gold_assert(!from->is_forced_local_);
953
}
954
 
955
// Override a symbol with a special symbol.
956
 
957
template<int size>
958
void
959
Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
960
{
961
  this->override_base_with_special(from);
962
  this->value_ = from->value_;
963
  this->symsize_ = from->symsize_;
964
}
965
 
966
// Override TOSYM with the special symbol FROMSYM.  This handles all
967
// aliases of TOSYM.
968
 
969
template<int size>
970
void
971
Symbol_table::override_with_special(Sized_symbol<size>* tosym,
972
                                    const Sized_symbol<size>* fromsym)
973
{
974
  tosym->override_with_special(fromsym);
975
  if (tosym->has_alias())
976
    {
977
      Symbol* sym = this->weak_aliases_[tosym];
978
      gold_assert(sym != NULL);
979
      Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
980
      do
981
        {
982
          ssym->override_with_special(fromsym);
983
          sym = this->weak_aliases_[ssym];
984
          gold_assert(sym != NULL);
985
          ssym = this->get_sized_symbol<size>(sym);
986
        }
987
      while (ssym != tosym);
988
    }
989
  if (tosym->binding() == elfcpp::STB_LOCAL
990
      || ((tosym->visibility() == elfcpp::STV_HIDDEN
991
           || tosym->visibility() == elfcpp::STV_INTERNAL)
992
          && (tosym->binding() == elfcpp::STB_GLOBAL
993
              || tosym->binding() == elfcpp::STB_GNU_UNIQUE
994
              || tosym->binding() == elfcpp::STB_WEAK)
995
          && !parameters->options().relocatable()))
996
    this->force_local(tosym);
997
}
998
 
999
// Instantiate the templates we need.  We could use the configure
1000
// script to restrict this to only the ones needed for implemented
1001
// targets.
1002
 
1003
// We have to instantiate both big and little endian versions because
1004
// these are used by other templates that depends on size only.
1005
 
1006
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1007
template
1008
void
1009
Symbol_table::resolve<32, false>(
1010
    Sized_symbol<32>* to,
1011
    const elfcpp::Sym<32, false>& sym,
1012
    unsigned int st_shndx,
1013
    bool is_ordinary,
1014
    unsigned int orig_st_shndx,
1015
    Object* object,
1016
    const char* version);
1017
 
1018
template
1019
void
1020
Symbol_table::resolve<32, true>(
1021
    Sized_symbol<32>* to,
1022
    const elfcpp::Sym<32, true>& sym,
1023
    unsigned int st_shndx,
1024
    bool is_ordinary,
1025
    unsigned int orig_st_shndx,
1026
    Object* object,
1027
    const char* version);
1028
#endif
1029
 
1030
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1031
template
1032
void
1033
Symbol_table::resolve<64, false>(
1034
    Sized_symbol<64>* to,
1035
    const elfcpp::Sym<64, false>& sym,
1036
    unsigned int st_shndx,
1037
    bool is_ordinary,
1038
    unsigned int orig_st_shndx,
1039
    Object* object,
1040
    const char* version);
1041
 
1042
template
1043
void
1044
Symbol_table::resolve<64, true>(
1045
    Sized_symbol<64>* to,
1046
    const elfcpp::Sym<64, true>& sym,
1047
    unsigned int st_shndx,
1048
    bool is_ordinary,
1049
    unsigned int orig_st_shndx,
1050
    Object* object,
1051
    const char* version);
1052
#endif
1053
 
1054
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1055
template
1056
void
1057
Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1058
                                        const Sized_symbol<32>*);
1059
#endif
1060
 
1061
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1062
template
1063
void
1064
Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1065
                                        const Sized_symbol<64>*);
1066
#endif
1067
 
1068
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.