OpenCores
URL https://opencores.org/ocsvn/openmsp430/openmsp430/trunk

Subversion Repositories openmsp430

[/] [openmsp430/] [trunk/] [core/] [synthesis/] [actel/] [src/] [omsp_execution_unit.v] - Blame information for rev 64

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 64 olivier.gi
//----------------------------------------------------------------------------
2
// Copyright (C) 2001 Authors
3
//
4
// This source file may be used and distributed without restriction provided
5
// that this copyright statement is not removed from the file and that any
6
// derivative work contains the original copyright notice and the associated
7
// disclaimer.
8
//
9
// This source file is free software; you can redistribute it and/or modify
10
// it under the terms of the GNU Lesser General Public License as published
11
// by the Free Software Foundation; either version 2.1 of the License, or
12
// (at your option) any later version.
13
//
14
// This source is distributed in the hope that it will be useful, but WITHOUT
15
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
17
// License for more details.
18
//
19
// You should have received a copy of the GNU Lesser General Public License
20
// along with this source; if not, write to the Free Software Foundation,
21
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
22
//
23
//----------------------------------------------------------------------------
24
//
25
// *File Name: omsp_execution_unit.v
26
// 
27
// *Module Description:
28
//                       openMSP430 Execution unit
29
//
30
// *Author(s):
31
//              - Olivier Girard,    olgirard@gmail.com
32
//
33
//----------------------------------------------------------------------------
34
// $Rev: 34 $
35
// $LastChangedBy: olivier.girard $
36
// $LastChangedDate: 2009-12-29 20:10:34 +0100 (Di, 29 Dez 2009) $
37
//----------------------------------------------------------------------------
38
`include "timescale.v"
39
`include "openMSP430_defines.v"
40
 
41
module  omsp_execution_unit (
42
 
43
// OUTPUTs
44
    cpuoff,                        // Turns off the CPU
45
    dbg_reg_din,                   // Debug unit CPU register data input
46
    gie,                           // General interrupt enable
47
    mab,                           // Memory address bus
48
    mb_en,                         // Memory bus enable
49
    mb_wr,                         // Memory bus write transfer
50
    mdb_out,                       // Memory data bus output
51
    oscoff,                        // Turns off LFXT1 clock input
52
    pc_sw,                         // Program counter software value
53
    pc_sw_wr,                      // Program counter software write
54
    scg1,                          // System clock generator 1. Turns off the SMCLK
55
 
56
// INPUTs
57
    dbg_halt_st,                   // Halt/Run status from CPU
58
    dbg_mem_dout,                  // Debug unit data output
59
    dbg_reg_wr,                    // Debug unit CPU register write
60
    e_state,                       // Execution state
61
    exec_done,                     // Execution completed
62
    inst_ad,                       // Decoded Inst: destination addressing mode
63
    inst_as,                       // Decoded Inst: source addressing mode
64
    inst_alu,                      // ALU control signals
65
    inst_bw,                       // Decoded Inst: byte width
66
    inst_dest,                     // Decoded Inst: destination (one hot)
67
    inst_dext,                     // Decoded Inst: destination extended instruction word
68
    inst_irq_rst,                  // Decoded Inst: reset interrupt
69
    inst_jmp,                      // Decoded Inst: Conditional jump
70
    inst_sext,                     // Decoded Inst: source extended instruction word
71
    inst_so,                       // Decoded Inst: Single-operand arithmetic
72
    inst_src,                      // Decoded Inst: source (one hot)
73
    inst_type,                     // Decoded Instruction type
74
    mclk,                          // Main system clock
75
    mdb_in,                        // Memory data bus input
76
    pc,                            // Program counter
77
    pc_nxt,                        // Next PC value (for CALL & IRQ)
78
    puc                            // Main system reset
79
);
80
 
81
// OUTPUTs
82
//=========
83
output              cpuoff;        // Turns off the CPU
84
output       [15:0] dbg_reg_din;   // Debug unit CPU register data input
85
output              gie;           // General interrupt enable
86
output       [15:0] mab;           // Memory address bus
87
output              mb_en;         // Memory bus enable
88
output        [1:0] mb_wr;         // Memory bus write transfer
89
output       [15:0] mdb_out;       // Memory data bus output
90
output              oscoff;        // Turns off LFXT1 clock input
91
output       [15:0] pc_sw;         // Program counter software value
92
output              pc_sw_wr;      // Program counter software write
93
output              scg1;          // System clock generator 1. Turns off the SMCLK
94
 
95
// INPUTs
96
//=========
97
input               dbg_halt_st;   // Halt/Run status from CPU
98
input        [15:0] dbg_mem_dout;  // Debug unit data output
99
input               dbg_reg_wr;    // Debug unit CPU register write
100
input         [3:0] e_state;       // Execution state
101
input               exec_done;     // Execution completed
102
input         [7:0] inst_ad;       // Decoded Inst: destination addressing mode
103
input         [7:0] inst_as;       // Decoded Inst: source addressing mode
104
input        [11:0] inst_alu;      // ALU control signals
105
input               inst_bw;       // Decoded Inst: byte width
106
input        [15:0] inst_dest;     // Decoded Inst: destination (one hot)
107
input        [15:0] inst_dext;     // Decoded Inst: destination extended instruction word
108
input               inst_irq_rst;  // Decoded Inst: reset interrupt
109
input         [7:0] inst_jmp;      // Decoded Inst: Conditional jump
110
input        [15:0] inst_sext;     // Decoded Inst: source extended instruction word
111
input         [7:0] inst_so;       // Decoded Inst: Single-operand arithmetic
112
input        [15:0] inst_src;      // Decoded Inst: source (one hot)
113
input         [2:0] inst_type;     // Decoded Instruction type
114
input               mclk;          // Main system clock
115
input        [15:0] mdb_in;        // Memory data bus input
116
input        [15:0] pc;            // Program counter
117
input        [15:0] pc_nxt;        // Next PC value (for CALL & IRQ)
118
input               puc;           // Main system reset
119
 
120
 
121
//=============================================================================
122
// 1)  INTERNAL WIRES/REGISTERS/PARAMETERS DECLARATION
123
//=============================================================================
124
 
125
wire         [15:0] alu_out;
126
wire         [15:0] alu_out_add;
127
wire          [3:0] alu_stat;
128
wire          [3:0] alu_stat_wr;
129
wire         [15:0] op_dst;
130
wire         [15:0] op_src;
131
wire         [15:0] reg_dest;
132
wire         [15:0] reg_src;
133
wire         [15:0] mdb_in_bw;
134
wire         [15:0] mdb_in_val;
135
wire          [3:0] status;
136
 
137
 
138
//=============================================================================
139
// 2)  REGISTER FILE
140
//=============================================================================
141
 
142
wire reg_dest_wr  = ((e_state==`E_EXEC) & (
143
                     (inst_type[`INST_TO] & inst_ad[`DIR] & ~inst_alu[`EXEC_NO_WR])  |
144
                     (inst_type[`INST_SO] & inst_as[`DIR] & ~(inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI])) |
145
                      inst_type[`INST_JMP])) | dbg_reg_wr;
146
 
147
wire reg_sp_wr    = (((e_state==`E_IRQ_1) | (e_state==`E_IRQ_3)) & ~inst_irq_rst) |
148
                     ((e_state==`E_DST_RD) & (inst_so[`PUSH] | inst_so[`CALL]));
149
 
150
wire reg_sr_wr    =  (e_state==`E_DST_RD) & inst_so[`RETI];
151
 
152
wire reg_sr_clr   =  (e_state==`E_IRQ_2);
153
 
154
wire reg_pc_call  = ((e_state==`E_EXEC)   & inst_so[`CALL]) |
155
                    ((e_state==`E_DST_WR) & inst_so[`RETI]);
156
 
157
wire reg_incr     =  (exec_done          & inst_as[`INDIR_I]) |
158
                    ((e_state==`E_SRC_RD) & inst_so[`RETI])    |
159
                    ((e_state==`E_EXEC)   & inst_so[`RETI]);
160
 
161
assign dbg_reg_din = reg_dest;
162
 
163
 
164
omsp_register_file register_file_0 (
165
 
166
// OUTPUTs
167
    .cpuoff       (cpuoff),       // Turns off the CPU
168
    .gie          (gie),          // General interrupt enable
169
    .oscoff       (oscoff),       // Turns off LFXT1 clock input
170
    .pc_sw        (pc_sw),        // Program counter software value
171
    .pc_sw_wr     (pc_sw_wr),     // Program counter software write
172
    .reg_dest     (reg_dest),     // Selected register destination content
173
    .reg_src      (reg_src),      // Selected register source content
174
    .scg1         (scg1),         // System clock generator 1. Turns off the SMCLK
175
    .status       (status),       // R2 Status {V,N,Z,C}
176
 
177
// INPUTs
178
    .alu_stat     (alu_stat),     // ALU Status {V,N,Z,C}
179
    .alu_stat_wr  (alu_stat_wr),  // ALU Status write {V,N,Z,C}
180
    .inst_bw      (inst_bw),      // Decoded Inst: byte width
181
    .inst_dest    (inst_dest),    // Register destination selection
182
    .inst_src     (inst_src),     // Register source selection
183
    .mclk         (mclk),         // Main system clock
184
    .pc           (pc),           // Program counter
185
    .puc          (puc),          // Main system reset
186
    .reg_dest_val (alu_out),      // Selected register destination value
187
    .reg_dest_wr  (reg_dest_wr),  // Write selected register destination
188
    .reg_pc_call  (reg_pc_call),  // Trigger PC update for a CALL instruction
189
    .reg_sp_val   (alu_out_add),  // Stack Pointer next value
190
    .reg_sp_wr    (reg_sp_wr),    // Stack Pointer write
191
    .reg_sr_clr   (reg_sr_clr),   // Status register clear for interrupts
192
    .reg_sr_wr    (reg_sr_wr),    // Status Register update for RETI instruction
193
    .reg_incr     (reg_incr)      // Increment source register
194
);
195
 
196
 
197
//=============================================================================
198
// 3)  SOURCE OPERAND MUXING
199
//=============================================================================
200
// inst_as[`DIR]    : Register direct.   -> Source is in register
201
// inst_as[`IDX]    : Register indexed.  -> Source is in memory, address is register+offset
202
// inst_as[`INDIR]  : Register indirect.
203
// inst_as[`INDIR_I]: Register indirect autoincrement.
204
// inst_as[`SYMB]   : Symbolic (operand is in memory at address PC+x).
205
// inst_as[`IMM]    : Immediate (operand is next word in the instruction stream).
206
// inst_as[`ABS]    : Absolute (operand is in memory at address x).
207
// inst_as[`CONST]  : Constant.
208
 
209
wire src_reg_src_sel    =  (e_state==`E_IRQ_0)                    |
210
                           (e_state==`E_IRQ_2)                    |
211
                          ((e_state==`E_SRC_RD) & ~inst_as[`ABS]) |
212
                          ((e_state==`E_SRC_WR) & ~inst_as[`ABS]) |
213
                          ((e_state==`E_EXEC)   &  inst_as[`DIR] & ~inst_type[`INST_JMP]);
214
 
215
wire src_reg_dest_sel   =  (e_state==`E_IRQ_1)                    |
216
                           (e_state==`E_IRQ_3)                    |
217
                          ((e_state==`E_DST_RD) & (inst_so[`PUSH] | inst_so[`CALL]));
218
 
219
wire src_mdb_in_val_sel = ((e_state==`E_DST_RD) &  inst_so[`RETI])                     |
220
                          ((e_state==`E_EXEC)   & (inst_as[`INDIR] | inst_as[`INDIR_I] |
221
                                                   inst_as[`IDX]   | inst_as[`SYMB]    |
222
                                                   inst_as[`ABS]));
223
 
224
wire src_inst_dext_sel =  ((e_state==`E_DST_RD) & ~(inst_so[`PUSH] | inst_so[`CALL])) |
225
                          ((e_state==`E_DST_WR) & ~(inst_so[`PUSH] | inst_so[`CALL]   |
226
                                                    inst_so[`RETI]));
227
 
228
wire src_inst_sext_sel =  ((e_state==`E_EXEC)   &  (inst_type[`INST_JMP] | inst_as[`IMM] |
229
                                                    inst_as[`CONST]      | inst_so[`RETI]));
230
 
231
 
232
assign op_src = src_reg_src_sel     ?  reg_src    :
233
                src_reg_dest_sel    ?  reg_dest   :
234
                src_mdb_in_val_sel  ?  mdb_in_val :
235
                src_inst_dext_sel   ?  inst_dext  :
236
                src_inst_sext_sel   ?  inst_sext  : 16'h0000;
237
 
238
 
239
//=============================================================================
240
// 4)  DESTINATION OPERAND MUXING
241
//=============================================================================
242
// inst_ad[`DIR]    : Register direct.
243
// inst_ad[`IDX]    : Register indexed.
244
// inst_ad[`SYMB]   : Symbolic (operand is in memory at address PC+x).
245
// inst_ad[`ABS]    : Absolute (operand is in memory at address x).
246
 
247
 
248
wire dst_inst_sext_sel  = ((e_state==`E_SRC_RD) & (inst_as[`IDX] | inst_as[`SYMB] |
249
                                                   inst_as[`ABS]))                |
250
                          ((e_state==`E_SRC_WR) & (inst_as[`IDX] | inst_as[`SYMB] |
251
                                                   inst_as[`ABS]));
252
 
253
wire dst_mdb_in_bw_sel  = ((e_state==`E_DST_WR) &   inst_so[`RETI]) |
254
                          ((e_state==`E_EXEC)   & ~(inst_ad[`DIR] | inst_type[`INST_JMP] |
255
                                                    inst_type[`INST_SO]) & ~inst_so[`RETI]);
256
 
257
wire dst_fffe_sel       =  (e_state==`E_IRQ_0)  |
258
                           (e_state==`E_IRQ_1)  |
259
                           (e_state==`E_IRQ_3)  |
260
                          ((e_state==`E_DST_RD) & (inst_so[`PUSH] | inst_so[`CALL]) & ~inst_so[`RETI]);
261
 
262
wire dst_reg_dest_sel   = ((e_state==`E_DST_RD) & ~(inst_so[`PUSH] | inst_so[`CALL] | inst_ad[`ABS] | inst_so[`RETI])) |
263
                          ((e_state==`E_DST_WR) &  ~inst_ad[`ABS]) |
264
                          ((e_state==`E_EXEC)   &  (inst_ad[`DIR] | inst_type[`INST_JMP] |
265
                                                    inst_type[`INST_SO]) & ~inst_so[`RETI]);
266
 
267
 
268
assign op_dst = dbg_halt_st        ? dbg_mem_dout  :
269
                dst_inst_sext_sel  ? inst_sext     :
270
                dst_mdb_in_bw_sel  ? mdb_in_bw     :
271
                dst_reg_dest_sel   ? reg_dest      :
272
                dst_fffe_sel       ? 16'hfffe      : 16'h0000;
273
 
274
 
275
//=============================================================================
276
// 5)  ALU
277
//=============================================================================
278
 
279
wire exec_cycle = (e_state==`E_EXEC);
280
 
281
omsp_alu alu_0 (
282
 
283
// OUTPUTs
284
    .alu_out      (alu_out),      // ALU output value
285
    .alu_out_add  (alu_out_add),  // ALU adder output value
286
    .alu_stat     (alu_stat),     // ALU Status {V,N,Z,C}
287
    .alu_stat_wr  (alu_stat_wr),  // ALU Status write {V,N,Z,C}
288
 
289
// INPUTs
290
    .dbg_halt_st  (dbg_halt_st),  // Halt/Run status from CPU
291
    .exec_cycle   (exec_cycle),   // Instruction execution cycle
292
    .inst_alu     (inst_alu),     // ALU control signals
293
    .inst_bw      (inst_bw),      // Decoded Inst: byte width
294
    .inst_jmp     (inst_jmp),     // Decoded Inst: Conditional jump
295
    .inst_so      (inst_so),      // Single-operand arithmetic
296
    .op_dst       (op_dst),       // Destination operand
297
    .op_src       (op_src),       // Source operand
298
    .status       (status)        // R2 Status {V,N,Z,C}
299
);
300
 
301
 
302
//=============================================================================
303
// 6)  MEMORY INTERFACE
304
//=============================================================================
305
 
306
// Detect memory read/write access
307
assign      mb_en     = ((e_state==`E_IRQ_1)  & ~inst_irq_rst)      |
308
                        ((e_state==`E_IRQ_3)  & ~inst_irq_rst)      |
309
                        ((e_state==`E_SRC_RD) & ~inst_as[`IMM])     |
310
                         (e_state==`E_SRC_WR)                       |
311
                        ((e_state==`E_EXEC)   & inst_so[`RETI])     |
312
                         (e_state==`E_DST_RD)                       |
313
                         (e_state==`E_DST_WR);
314
 
315
wire  [1:0] mb_wr_msk =  inst_alu[`EXEC_NO_WR]  ? 2'b00 :
316
                        ~inst_bw                ? 2'b11 :
317
                         alu_out_add[0]         ? 2'b10 : 2'b01;
318
assign      mb_wr     = ({2{(e_state==`E_IRQ_1)}}  |
319
                         {2{(e_state==`E_IRQ_3)}}  |
320
                         {2{(e_state==`E_DST_WR)}} |
321
                         {2{(e_state==`E_SRC_WR)}}) & mb_wr_msk;
322
 
323
// Memory address bus
324
assign      mab       = alu_out_add[15:0];
325
 
326
// Memory data bus output
327
reg  [15:0] mdb_out_nxt;
328
always @(posedge mclk or posedge puc)
329
  if (puc)                                            mdb_out_nxt <= 16'h0000;
330
  else if (e_state==`E_DST_RD)                        mdb_out_nxt <= pc_nxt;
331
  else if ((e_state==`E_EXEC & ~inst_so[`CALL]) |
332
           (e_state==`E_IRQ_0) | (e_state==`E_IRQ_2)) mdb_out_nxt <= alu_out;
333
 
334
assign      mdb_out = inst_bw ? {2{mdb_out_nxt[7:0]}} : mdb_out_nxt;
335
 
336
// Format memory data bus input depending on BW
337
reg        mab_lsb;
338
always @(posedge mclk or posedge puc)
339
  if (puc)        mab_lsb <= 1'b0;
340
  else if (mb_en) mab_lsb <= alu_out_add[0];
341
 
342
assign mdb_in_bw  = ~inst_bw ? mdb_in :
343
                     mab_lsb ? {2{mdb_in[15:8]}} : mdb_in;
344
 
345
// Memory data bus input buffer (buffer after a source read)
346
reg         mdb_in_buf_en;
347
always @(posedge mclk or posedge puc)
348
  if (puc)  mdb_in_buf_en <= 1'b0;
349
  else      mdb_in_buf_en <= (e_state==`E_SRC_RD);
350
 
351
reg         mdb_in_buf_valid;
352
always @(posedge mclk or posedge puc)
353
  if (puc)                   mdb_in_buf_valid <= 1'b0;
354
  else if (e_state==`E_EXEC) mdb_in_buf_valid <= 1'b0;
355
  else if (mdb_in_buf_en)    mdb_in_buf_valid <= 1'b1;
356
 
357
reg  [15:0] mdb_in_buf;
358
always @(posedge mclk or posedge puc)
359
  if (puc)                mdb_in_buf <= 16'h0000;
360
  else if (mdb_in_buf_en) mdb_in_buf <= mdb_in_bw;
361
 
362
assign mdb_in_val = mdb_in_buf_valid ? mdb_in_buf : mdb_in_bw;
363
 
364
 
365
endmodule // omsp_execution_unit
366
 
367
`include "openMSP430_undefines.v"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.