OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [external/] [jsr166/] [java/] [util/] [concurrent/] [ConcurrentHashMap.java] - Blame information for rev 768

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 768 jeremybenn
/*
2
 * Written by Doug Lea with assistance from members of JCP JSR-166
3
 * Expert Group and released to the public domain, as explained at
4
 * http://creativecommons.org/licenses/publicdomain
5
 */
6
 
7
package java.util.concurrent;
8
import java.util.concurrent.locks.*;
9
import java.util.*;
10
import java.io.Serializable;
11
import java.io.IOException;
12
import java.io.ObjectInputStream;
13
import java.io.ObjectOutputStream;
14
 
15
/**
16
 * A hash table supporting full concurrency of retrievals and
17
 * adjustable expected concurrency for updates. This class obeys the
18
 * same functional specification as {@link java.util.Hashtable}, and
19
 * includes versions of methods corresponding to each method of
20
 * <tt>Hashtable</tt>. However, even though all operations are
21
 * thread-safe, retrieval operations do <em>not</em> entail locking,
22
 * and there is <em>not</em> any support for locking the entire table
23
 * in a way that prevents all access.  This class is fully
24
 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25
 * thread safety but not on its synchronization details.
26
 *
27
 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28
 * block, so may overlap with update operations (including
29
 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30
 * of the most recently <em>completed</em> update operations holding
31
 * upon their onset.  For aggregate operations such as <tt>putAll</tt>
32
 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33
 * removal of only some entries.  Similarly, Iterators and
34
 * Enumerations return elements reflecting the state of the hash table
35
 * at some point at or since the creation of the iterator/enumeration.
36
 * They do <em>not</em> throw {@link ConcurrentModificationException}.
37
 * However, iterators are designed to be used by only one thread at a time.
38
 *
39
 * <p> The allowed concurrency among update operations is guided by
40
 * the optional <tt>concurrencyLevel</tt> constructor argument
41
 * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
42
 * table is internally partitioned to try to permit the indicated
43
 * number of concurrent updates without contention. Because placement
44
 * in hash tables is essentially random, the actual concurrency will
45
 * vary.  Ideally, you should choose a value to accommodate as many
46
 * threads as will ever concurrently modify the table. Using a
47
 * significantly higher value than you need can waste space and time,
48
 * and a significantly lower value can lead to thread contention. But
49
 * overestimates and underestimates within an order of magnitude do
50
 * not usually have much noticeable impact. A value of one is
51
 * appropriate when it is known that only one thread will modify and
52
 * all others will only read. Also, resizing this or any other kind of
53
 * hash table is a relatively slow operation, so, when possible, it is
54
 * a good idea to provide estimates of expected table sizes in
55
 * constructors.
56
 *
57
 * <p>This class and its views and iterators implement all of the
58
 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59
 * interfaces.
60
 *
61
 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62
 * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63
 *
64
 * <p>This class is a member of the
65
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
66
 * Java Collections Framework</a>.
67
 *
68
 * @since 1.5
69
 * @author Doug Lea
70
 * @param <K> the type of keys maintained by this map
71
 * @param <V> the type of mapped values
72
 */
73
public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74
        implements ConcurrentMap<K, V>, Serializable {
75
    private static final long serialVersionUID = 7249069246763182397L;
76
 
77
    /*
78
     * The basic strategy is to subdivide the table among Segments,
79
     * each of which itself is a concurrently readable hash table.
80
     */
81
 
82
    /* ---------------- Constants -------------- */
83
 
84
    /**
85
     * The default initial capacity for this table,
86
     * used when not otherwise specified in a constructor.
87
     */
88
    static final int DEFAULT_INITIAL_CAPACITY = 16;
89
 
90
    /**
91
     * The default load factor for this table, used when not
92
     * otherwise specified in a constructor.
93
     */
94
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
95
 
96
    /**
97
     * The default concurrency level for this table, used when not
98
     * otherwise specified in a constructor.
99
     */
100
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
101
 
102
    /**
103
     * The maximum capacity, used if a higher value is implicitly
104
     * specified by either of the constructors with arguments.  MUST
105
     * be a power of two <= 1<<30 to ensure that entries are indexable
106
     * using ints.
107
     */
108
    static final int MAXIMUM_CAPACITY = 1 << 30;
109
 
110
    /**
111
     * The maximum number of segments to allow; used to bound
112
     * constructor arguments.
113
     */
114
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
115
 
116
    /**
117
     * Number of unsynchronized retries in size and containsValue
118
     * methods before resorting to locking. This is used to avoid
119
     * unbounded retries if tables undergo continuous modification
120
     * which would make it impossible to obtain an accurate result.
121
     */
122
    static final int RETRIES_BEFORE_LOCK = 2;
123
 
124
    /* ---------------- Fields -------------- */
125
 
126
    /**
127
     * Mask value for indexing into segments. The upper bits of a
128
     * key's hash code are used to choose the segment.
129
     */
130
    final int segmentMask;
131
 
132
    /**
133
     * Shift value for indexing within segments.
134
     */
135
    final int segmentShift;
136
 
137
    /**
138
     * The segments, each of which is a specialized hash table
139
     */
140
    final Segment<K,V>[] segments;
141
 
142
    transient Set<K> keySet;
143
    transient Set<Map.Entry<K,V>> entrySet;
144
    transient Collection<V> values;
145
 
146
    /* ---------------- Small Utilities -------------- */
147
 
148
    /**
149
     * Applies a supplemental hash function to a given hashCode, which
150
     * defends against poor quality hash functions.  This is critical
151
     * because ConcurrentHashMap uses power-of-two length hash tables,
152
     * that otherwise encounter collisions for hashCodes that do not
153
     * differ in lower bits.
154
     */
155
    private static int hash(int h) {
156
        // This function ensures that hashCodes that differ only by
157
        // constant multiples at each bit position have a bounded
158
        // number of collisions (approximately 8 at default load factor).
159
        h ^= (h >>> 20) ^ (h >>> 12);
160
        return h ^ (h >>> 7) ^ (h >>> 4);
161
    }
162
 
163
    /**
164
     * Returns the segment that should be used for key with given hash
165
     * @param hash the hash code for the key
166
     * @return the segment
167
     */
168
    final Segment<K,V> segmentFor(int hash) {
169
        return segments[(hash >>> segmentShift) & segmentMask];
170
    }
171
 
172
    /* ---------------- Inner Classes -------------- */
173
 
174
    /**
175
     * ConcurrentHashMap list entry. Note that this is never exported
176
     * out as a user-visible Map.Entry.
177
     *
178
     * Because the value field is volatile, not final, it is legal wrt
179
     * the Java Memory Model for an unsynchronized reader to see null
180
     * instead of initial value when read via a data race.  Although a
181
     * reordering leading to this is not likely to ever actually
182
     * occur, the Segment.readValueUnderLock method is used as a
183
     * backup in case a null (pre-initialized) value is ever seen in
184
     * an unsynchronized access method.
185
     */
186
    static final class HashEntry<K,V> {
187
        final K key;
188
        final int hash;
189
        volatile V value;
190
        final HashEntry<K,V> next;
191
 
192
        HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193
            this.key = key;
194
            this.hash = hash;
195
            this.next = next;
196
            this.value = value;
197
        }
198
 
199
        @SuppressWarnings("unchecked")
200
        static final <K,V> HashEntry<K,V>[] newArray(int i) {
201
            return new HashEntry[i];
202
        }
203
    }
204
 
205
    /**
206
     * Segments are specialized versions of hash tables.  This
207
     * subclasses from ReentrantLock opportunistically, just to
208
     * simplify some locking and avoid separate construction.
209
     */
210
    static final class Segment<K,V> extends ReentrantLock implements Serializable {
211
        /*
212
         * Segments maintain a table of entry lists that are ALWAYS
213
         * kept in a consistent state, so can be read without locking.
214
         * Next fields of nodes are immutable (final).  All list
215
         * additions are performed at the front of each bin. This
216
         * makes it easy to check changes, and also fast to traverse.
217
         * When nodes would otherwise be changed, new nodes are
218
         * created to replace them. This works well for hash tables
219
         * since the bin lists tend to be short. (The average length
220
         * is less than two for the default load factor threshold.)
221
         *
222
         * Read operations can thus proceed without locking, but rely
223
         * on selected uses of volatiles to ensure that completed
224
         * write operations performed by other threads are
225
         * noticed. For most purposes, the "count" field, tracking the
226
         * number of elements, serves as that volatile variable
227
         * ensuring visibility.  This is convenient because this field
228
         * needs to be read in many read operations anyway:
229
         *
230
         *   - All (unsynchronized) read operations must first read the
231
         *     "count" field, and should not look at table entries if
232
         *     it is 0.
233
         *
234
         *   - All (synchronized) write operations should write to
235
         *     the "count" field after structurally changing any bin.
236
         *     The operations must not take any action that could even
237
         *     momentarily cause a concurrent read operation to see
238
         *     inconsistent data. This is made easier by the nature of
239
         *     the read operations in Map. For example, no operation
240
         *     can reveal that the table has grown but the threshold
241
         *     has not yet been updated, so there are no atomicity
242
         *     requirements for this with respect to reads.
243
         *
244
         * As a guide, all critical volatile reads and writes to the
245
         * count field are marked in code comments.
246
         */
247
 
248
        private static final long serialVersionUID = 2249069246763182397L;
249
 
250
        /**
251
         * The number of elements in this segment's region.
252
         */
253
        transient volatile int count;
254
 
255
        /**
256
         * Number of updates that alter the size of the table. This is
257
         * used during bulk-read methods to make sure they see a
258
         * consistent snapshot: If modCounts change during a traversal
259
         * of segments computing size or checking containsValue, then
260
         * we might have an inconsistent view of state so (usually)
261
         * must retry.
262
         */
263
        transient int modCount;
264
 
265
        /**
266
         * The table is rehashed when its size exceeds this threshold.
267
         * (The value of this field is always <tt>(int)(capacity *
268
         * loadFactor)</tt>.)
269
         */
270
        transient int threshold;
271
 
272
        /**
273
         * The per-segment table.
274
         */
275
        transient volatile HashEntry<K,V>[] table;
276
 
277
        /**
278
         * The load factor for the hash table.  Even though this value
279
         * is same for all segments, it is replicated to avoid needing
280
         * links to outer object.
281
         * @serial
282
         */
283
        final float loadFactor;
284
 
285
        Segment(int initialCapacity, float lf) {
286
            loadFactor = lf;
287
            setTable(HashEntry.<K,V>newArray(initialCapacity));
288
        }
289
 
290
        @SuppressWarnings("unchecked")
291
        static final <K,V> Segment<K,V>[] newArray(int i) {
292
            return new Segment[i];
293
        }
294
 
295
        /**
296
         * Sets table to new HashEntry array.
297
         * Call only while holding lock or in constructor.
298
         */
299
        void setTable(HashEntry<K,V>[] newTable) {
300
            threshold = (int)(newTable.length * loadFactor);
301
            table = newTable;
302
        }
303
 
304
        /**
305
         * Returns properly casted first entry of bin for given hash.
306
         */
307
        HashEntry<K,V> getFirst(int hash) {
308
            HashEntry<K,V>[] tab = table;
309
            return tab[hash & (tab.length - 1)];
310
        }
311
 
312
        /**
313
         * Reads value field of an entry under lock. Called if value
314
         * field ever appears to be null. This is possible only if a
315
         * compiler happens to reorder a HashEntry initialization with
316
         * its table assignment, which is legal under memory model
317
         * but is not known to ever occur.
318
         */
319
        V readValueUnderLock(HashEntry<K,V> e) {
320
            lock();
321
            try {
322
                return e.value;
323
            } finally {
324
                unlock();
325
            }
326
        }
327
 
328
        /* Specialized implementations of map methods */
329
 
330
        V get(Object key, int hash) {
331
            if (count != 0) { // read-volatile
332
                HashEntry<K,V> e = getFirst(hash);
333
                while (e != null) {
334
                    if (e.hash == hash && key.equals(e.key)) {
335
                        V v = e.value;
336
                        if (v != null)
337
                            return v;
338
                        return readValueUnderLock(e); // recheck
339
                    }
340
                    e = e.next;
341
                }
342
            }
343
            return null;
344
        }
345
 
346
        boolean containsKey(Object key, int hash) {
347
            if (count != 0) { // read-volatile
348
                HashEntry<K,V> e = getFirst(hash);
349
                while (e != null) {
350
                    if (e.hash == hash && key.equals(e.key))
351
                        return true;
352
                    e = e.next;
353
                }
354
            }
355
            return false;
356
        }
357
 
358
        boolean containsValue(Object value) {
359
            if (count != 0) { // read-volatile
360
                HashEntry<K,V>[] tab = table;
361
                int len = tab.length;
362
                for (int i = 0 ; i < len; i++) {
363
                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
364
                        V v = e.value;
365
                        if (v == null) // recheck
366
                            v = readValueUnderLock(e);
367
                        if (value.equals(v))
368
                            return true;
369
                    }
370
                }
371
            }
372
            return false;
373
        }
374
 
375
        boolean replace(K key, int hash, V oldValue, V newValue) {
376
            lock();
377
            try {
378
                HashEntry<K,V> e = getFirst(hash);
379
                while (e != null && (e.hash != hash || !key.equals(e.key)))
380
                    e = e.next;
381
 
382
                boolean replaced = false;
383
                if (e != null && oldValue.equals(e.value)) {
384
                    replaced = true;
385
                    e.value = newValue;
386
                }
387
                return replaced;
388
            } finally {
389
                unlock();
390
            }
391
        }
392
 
393
        V replace(K key, int hash, V newValue) {
394
            lock();
395
            try {
396
                HashEntry<K,V> e = getFirst(hash);
397
                while (e != null && (e.hash != hash || !key.equals(e.key)))
398
                    e = e.next;
399
 
400
                V oldValue = null;
401
                if (e != null) {
402
                    oldValue = e.value;
403
                    e.value = newValue;
404
                }
405
                return oldValue;
406
            } finally {
407
                unlock();
408
            }
409
        }
410
 
411
 
412
        V put(K key, int hash, V value, boolean onlyIfAbsent) {
413
            lock();
414
            try {
415
                int c = count;
416
                if (c++ > threshold) // ensure capacity
417
                    rehash();
418
                HashEntry<K,V>[] tab = table;
419
                int index = hash & (tab.length - 1);
420
                HashEntry<K,V> first = tab[index];
421
                HashEntry<K,V> e = first;
422
                while (e != null && (e.hash != hash || !key.equals(e.key)))
423
                    e = e.next;
424
 
425
                V oldValue;
426
                if (e != null) {
427
                    oldValue = e.value;
428
                    if (!onlyIfAbsent)
429
                        e.value = value;
430
                }
431
                else {
432
                    oldValue = null;
433
                    ++modCount;
434
                    tab[index] = new HashEntry<K,V>(key, hash, first, value);
435
                    count = c; // write-volatile
436
                }
437
                return oldValue;
438
            } finally {
439
                unlock();
440
            }
441
        }
442
 
443
        void rehash() {
444
            HashEntry<K,V>[] oldTable = table;
445
            int oldCapacity = oldTable.length;
446
            if (oldCapacity >= MAXIMUM_CAPACITY)
447
                return;
448
 
449
            /*
450
             * Reclassify nodes in each list to new Map.  Because we are
451
             * using power-of-two expansion, the elements from each bin
452
             * must either stay at same index, or move with a power of two
453
             * offset. We eliminate unnecessary node creation by catching
454
             * cases where old nodes can be reused because their next
455
             * fields won't change. Statistically, at the default
456
             * threshold, only about one-sixth of them need cloning when
457
             * a table doubles. The nodes they replace will be garbage
458
             * collectable as soon as they are no longer referenced by any
459
             * reader thread that may be in the midst of traversing table
460
             * right now.
461
             */
462
 
463
            HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464
            threshold = (int)(newTable.length * loadFactor);
465
            int sizeMask = newTable.length - 1;
466
            for (int i = 0; i < oldCapacity ; i++) {
467
                // We need to guarantee that any existing reads of old Map can
468
                //  proceed. So we cannot yet null out each bin.
469
                HashEntry<K,V> e = oldTable[i];
470
 
471
                if (e != null) {
472
                    HashEntry<K,V> next = e.next;
473
                    int idx = e.hash & sizeMask;
474
 
475
                    //  Single node on list
476
                    if (next == null)
477
                        newTable[idx] = e;
478
 
479
                    else {
480
                        // Reuse trailing consecutive sequence at same slot
481
                        HashEntry<K,V> lastRun = e;
482
                        int lastIdx = idx;
483
                        for (HashEntry<K,V> last = next;
484
                             last != null;
485
                             last = last.next) {
486
                            int k = last.hash & sizeMask;
487
                            if (k != lastIdx) {
488
                                lastIdx = k;
489
                                lastRun = last;
490
                            }
491
                        }
492
                        newTable[lastIdx] = lastRun;
493
 
494
                        // Clone all remaining nodes
495
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
496
                            int k = p.hash & sizeMask;
497
                            HashEntry<K,V> n = newTable[k];
498
                            newTable[k] = new HashEntry<K,V>(p.key, p.hash,
499
                                                             n, p.value);
500
                        }
501
                    }
502
                }
503
            }
504
            table = newTable;
505
        }
506
 
507
        /**
508
         * Remove; match on key only if value null, else match both.
509
         */
510
        V remove(Object key, int hash, Object value) {
511
            lock();
512
            try {
513
                int c = count - 1;
514
                HashEntry<K,V>[] tab = table;
515
                int index = hash & (tab.length - 1);
516
                HashEntry<K,V> first = tab[index];
517
                HashEntry<K,V> e = first;
518
                while (e != null && (e.hash != hash || !key.equals(e.key)))
519
                    e = e.next;
520
 
521
                V oldValue = null;
522
                if (e != null) {
523
                    V v = e.value;
524
                    if (value == null || value.equals(v)) {
525
                        oldValue = v;
526
                        // All entries following removed node can stay
527
                        // in list, but all preceding ones need to be
528
                        // cloned.
529
                        ++modCount;
530
                        HashEntry<K,V> newFirst = e.next;
531
                        for (HashEntry<K,V> p = first; p != e; p = p.next)
532
                            newFirst = new HashEntry<K,V>(p.key, p.hash,
533
                                                          newFirst, p.value);
534
                        tab[index] = newFirst;
535
                        count = c; // write-volatile
536
                    }
537
                }
538
                return oldValue;
539
            } finally {
540
                unlock();
541
            }
542
        }
543
 
544
        void clear() {
545
            if (count != 0) {
546
                lock();
547
                try {
548
                    HashEntry<K,V>[] tab = table;
549
                    for (int i = 0; i < tab.length ; i++)
550
                        tab[i] = null;
551
                    ++modCount;
552
                    count = 0; // write-volatile
553
                } finally {
554
                    unlock();
555
                }
556
            }
557
        }
558
    }
559
 
560
 
561
 
562
    /* ---------------- Public operations -------------- */
563
 
564
    /**
565
     * Creates a new, empty map with the specified initial
566
     * capacity, load factor and concurrency level.
567
     *
568
     * @param initialCapacity the initial capacity. The implementation
569
     * performs internal sizing to accommodate this many elements.
570
     * @param loadFactor  the load factor threshold, used to control resizing.
571
     * Resizing may be performed when the average number of elements per
572
     * bin exceeds this threshold.
573
     * @param concurrencyLevel the estimated number of concurrently
574
     * updating threads. The implementation performs internal sizing
575
     * to try to accommodate this many threads.
576
     * @throws IllegalArgumentException if the initial capacity is
577
     * negative or the load factor or concurrencyLevel are
578
     * nonpositive.
579
     */
580
    public ConcurrentHashMap(int initialCapacity,
581
                             float loadFactor, int concurrencyLevel) {
582
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
583
            throw new IllegalArgumentException();
584
 
585
        if (concurrencyLevel > MAX_SEGMENTS)
586
            concurrencyLevel = MAX_SEGMENTS;
587
 
588
        // Find power-of-two sizes best matching arguments
589
        int sshift = 0;
590
        int ssize = 1;
591
        while (ssize < concurrencyLevel) {
592
            ++sshift;
593
            ssize <<= 1;
594
        }
595
        segmentShift = 32 - sshift;
596
        segmentMask = ssize - 1;
597
        this.segments = Segment.newArray(ssize);
598
 
599
        if (initialCapacity > MAXIMUM_CAPACITY)
600
            initialCapacity = MAXIMUM_CAPACITY;
601
        int c = initialCapacity / ssize;
602
        if (c * ssize < initialCapacity)
603
            ++c;
604
        int cap = 1;
605
        while (cap < c)
606
            cap <<= 1;
607
 
608
        for (int i = 0; i < this.segments.length; ++i)
609
            this.segments[i] = new Segment<K,V>(cap, loadFactor);
610
    }
611
 
612
    /**
613
     * Creates a new, empty map with the specified initial capacity
614
     * and load factor and with the default concurrencyLevel (16).
615
     *
616
     * @param initialCapacity The implementation performs internal
617
     * sizing to accommodate this many elements.
618
     * @param loadFactor  the load factor threshold, used to control resizing.
619
     * Resizing may be performed when the average number of elements per
620
     * bin exceeds this threshold.
621
     * @throws IllegalArgumentException if the initial capacity of
622
     * elements is negative or the load factor is nonpositive
623
     *
624
     * @since 1.6
625
     */
626
    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
627
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
628
    }
629
 
630
    /**
631
     * Creates a new, empty map with the specified initial capacity,
632
     * and with default load factor (0.75) and concurrencyLevel (16).
633
     *
634
     * @param initialCapacity the initial capacity. The implementation
635
     * performs internal sizing to accommodate this many elements.
636
     * @throws IllegalArgumentException if the initial capacity of
637
     * elements is negative.
638
     */
639
    public ConcurrentHashMap(int initialCapacity) {
640
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
641
    }
642
 
643
    /**
644
     * Creates a new, empty map with a default initial capacity (16),
645
     * load factor (0.75) and concurrencyLevel (16).
646
     */
647
    public ConcurrentHashMap() {
648
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
649
    }
650
 
651
    /**
652
     * Creates a new map with the same mappings as the given map.
653
     * The map is created with a capacity of 1.5 times the number
654
     * of mappings in the given map or 16 (whichever is greater),
655
     * and a default load factor (0.75) and concurrencyLevel (16).
656
     *
657
     * @param m the map
658
     */
659
    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
660
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
661
                      DEFAULT_INITIAL_CAPACITY),
662
             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
663
        putAll(m);
664
    }
665
 
666
    /**
667
     * Returns <tt>true</tt> if this map contains no key-value mappings.
668
     *
669
     * @return <tt>true</tt> if this map contains no key-value mappings
670
     */
671
    public boolean isEmpty() {
672
        final Segment<K,V>[] segments = this.segments;
673
        /*
674
         * We keep track of per-segment modCounts to avoid ABA
675
         * problems in which an element in one segment was added and
676
         * in another removed during traversal, in which case the
677
         * table was never actually empty at any point. Note the
678
         * similar use of modCounts in the size() and containsValue()
679
         * methods, which are the only other methods also susceptible
680
         * to ABA problems.
681
         */
682
        int[] mc = new int[segments.length];
683
        int mcsum = 0;
684
        for (int i = 0; i < segments.length; ++i) {
685
            if (segments[i].count != 0)
686
                return false;
687
            else
688
                mcsum += mc[i] = segments[i].modCount;
689
        }
690
        // If mcsum happens to be zero, then we know we got a snapshot
691
        // before any modifications at all were made.  This is
692
        // probably common enough to bother tracking.
693
        if (mcsum != 0) {
694
            for (int i = 0; i < segments.length; ++i) {
695
                if (segments[i].count != 0 ||
696
                    mc[i] != segments[i].modCount)
697
                    return false;
698
            }
699
        }
700
        return true;
701
    }
702
 
703
    /**
704
     * Returns the number of key-value mappings in this map.  If the
705
     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
706
     * <tt>Integer.MAX_VALUE</tt>.
707
     *
708
     * @return the number of key-value mappings in this map
709
     */
710
    public int size() {
711
        final Segment<K,V>[] segments = this.segments;
712
        long sum = 0;
713
        long check = 0;
714
        int[] mc = new int[segments.length];
715
        // Try a few times to get accurate count. On failure due to
716
        // continuous async changes in table, resort to locking.
717
        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
718
            check = 0;
719
            sum = 0;
720
            int mcsum = 0;
721
            for (int i = 0; i < segments.length; ++i) {
722
                sum += segments[i].count;
723
                mcsum += mc[i] = segments[i].modCount;
724
            }
725
            if (mcsum != 0) {
726
                for (int i = 0; i < segments.length; ++i) {
727
                    check += segments[i].count;
728
                    if (mc[i] != segments[i].modCount) {
729
                        check = -1; // force retry
730
                        break;
731
                    }
732
                }
733
            }
734
            if (check == sum)
735
                break;
736
        }
737
        if (check != sum) { // Resort to locking all segments
738
            sum = 0;
739
            for (int i = 0; i < segments.length; ++i)
740
                segments[i].lock();
741
            for (int i = 0; i < segments.length; ++i)
742
                sum += segments[i].count;
743
            for (int i = 0; i < segments.length; ++i)
744
                segments[i].unlock();
745
        }
746
        if (sum > Integer.MAX_VALUE)
747
            return Integer.MAX_VALUE;
748
        else
749
            return (int)sum;
750
    }
751
 
752
    /**
753
     * Returns the value to which the specified key is mapped,
754
     * or {@code null} if this map contains no mapping for the key.
755
     *
756
     * <p>More formally, if this map contains a mapping from a key
757
     * {@code k} to a value {@code v} such that {@code key.equals(k)},
758
     * then this method returns {@code v}; otherwise it returns
759
     * {@code null}.  (There can be at most one such mapping.)
760
     *
761
     * @throws NullPointerException if the specified key is null
762
     */
763
    public V get(Object key) {
764
        int hash = hash(key.hashCode());
765
        return segmentFor(hash).get(key, hash);
766
    }
767
 
768
    /**
769
     * Tests if the specified object is a key in this table.
770
     *
771
     * @param  key   possible key
772
     * @return <tt>true</tt> if and only if the specified object
773
     *         is a key in this table, as determined by the
774
     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
775
     * @throws NullPointerException if the specified key is null
776
     */
777
    public boolean containsKey(Object key) {
778
        int hash = hash(key.hashCode());
779
        return segmentFor(hash).containsKey(key, hash);
780
    }
781
 
782
    /**
783
     * Returns <tt>true</tt> if this map maps one or more keys to the
784
     * specified value. Note: This method requires a full internal
785
     * traversal of the hash table, and so is much slower than
786
     * method <tt>containsKey</tt>.
787
     *
788
     * @param value value whose presence in this map is to be tested
789
     * @return <tt>true</tt> if this map maps one or more keys to the
790
     *         specified value
791
     * @throws NullPointerException if the specified value is null
792
     */
793
    public boolean containsValue(Object value) {
794
        if (value == null)
795
            throw new NullPointerException();
796
 
797
        // See explanation of modCount use above
798
 
799
        final Segment<K,V>[] segments = this.segments;
800
        int[] mc = new int[segments.length];
801
 
802
        // Try a few times without locking
803
        for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
804
            int sum = 0;
805
            int mcsum = 0;
806
            for (int i = 0; i < segments.length; ++i) {
807
                int c = segments[i].count;
808
                mcsum += mc[i] = segments[i].modCount;
809
                if (segments[i].containsValue(value))
810
                    return true;
811
            }
812
            boolean cleanSweep = true;
813
            if (mcsum != 0) {
814
                for (int i = 0; i < segments.length; ++i) {
815
                    int c = segments[i].count;
816
                    if (mc[i] != segments[i].modCount) {
817
                        cleanSweep = false;
818
                        break;
819
                    }
820
                }
821
            }
822
            if (cleanSweep)
823
                return false;
824
        }
825
        // Resort to locking all segments
826
        for (int i = 0; i < segments.length; ++i)
827
            segments[i].lock();
828
        boolean found = false;
829
        try {
830
            for (int i = 0; i < segments.length; ++i) {
831
                if (segments[i].containsValue(value)) {
832
                    found = true;
833
                    break;
834
                }
835
            }
836
        } finally {
837
            for (int i = 0; i < segments.length; ++i)
838
                segments[i].unlock();
839
        }
840
        return found;
841
    }
842
 
843
    /**
844
     * Legacy method testing if some key maps into the specified value
845
     * in this table.  This method is identical in functionality to
846
     * {@link #containsValue}, and exists solely to ensure
847
     * full compatibility with class {@link java.util.Hashtable},
848
     * which supported this method prior to introduction of the
849
     * Java Collections framework.
850
 
851
     * @param  value a value to search for
852
     * @return <tt>true</tt> if and only if some key maps to the
853
     *         <tt>value</tt> argument in this table as
854
     *         determined by the <tt>equals</tt> method;
855
     *         <tt>false</tt> otherwise
856
     * @throws NullPointerException if the specified value is null
857
     */
858
    public boolean contains(Object value) {
859
        return containsValue(value);
860
    }
861
 
862
    /**
863
     * Maps the specified key to the specified value in this table.
864
     * Neither the key nor the value can be null.
865
     *
866
     * <p> The value can be retrieved by calling the <tt>get</tt> method
867
     * with a key that is equal to the original key.
868
     *
869
     * @param key key with which the specified value is to be associated
870
     * @param value value to be associated with the specified key
871
     * @return the previous value associated with <tt>key</tt>, or
872
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
873
     * @throws NullPointerException if the specified key or value is null
874
     */
875
    public V put(K key, V value) {
876
        if (value == null)
877
            throw new NullPointerException();
878
        int hash = hash(key.hashCode());
879
        return segmentFor(hash).put(key, hash, value, false);
880
    }
881
 
882
    /**
883
     * {@inheritDoc}
884
     *
885
     * @return the previous value associated with the specified key,
886
     *         or <tt>null</tt> if there was no mapping for the key
887
     * @throws NullPointerException if the specified key or value is null
888
     */
889
    public V putIfAbsent(K key, V value) {
890
        if (value == null)
891
            throw new NullPointerException();
892
        int hash = hash(key.hashCode());
893
        return segmentFor(hash).put(key, hash, value, true);
894
    }
895
 
896
    /**
897
     * Copies all of the mappings from the specified map to this one.
898
     * These mappings replace any mappings that this map had for any of the
899
     * keys currently in the specified map.
900
     *
901
     * @param m mappings to be stored in this map
902
     */
903
    public void putAll(Map<? extends K, ? extends V> m) {
904
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
905
            put(e.getKey(), e.getValue());
906
    }
907
 
908
    /**
909
     * Removes the key (and its corresponding value) from this map.
910
     * This method does nothing if the key is not in the map.
911
     *
912
     * @param  key the key that needs to be removed
913
     * @return the previous value associated with <tt>key</tt>, or
914
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
915
     * @throws NullPointerException if the specified key is null
916
     */
917
    public V remove(Object key) {
918
        int hash = hash(key.hashCode());
919
        return segmentFor(hash).remove(key, hash, null);
920
    }
921
 
922
    /**
923
     * {@inheritDoc}
924
     *
925
     * @throws NullPointerException if the specified key is null
926
     */
927
    public boolean remove(Object key, Object value) {
928
        int hash = hash(key.hashCode());
929
        if (value == null)
930
            return false;
931
        return segmentFor(hash).remove(key, hash, value) != null;
932
    }
933
 
934
    /**
935
     * {@inheritDoc}
936
     *
937
     * @throws NullPointerException if any of the arguments are null
938
     */
939
    public boolean replace(K key, V oldValue, V newValue) {
940
        if (oldValue == null || newValue == null)
941
            throw new NullPointerException();
942
        int hash = hash(key.hashCode());
943
        return segmentFor(hash).replace(key, hash, oldValue, newValue);
944
    }
945
 
946
    /**
947
     * {@inheritDoc}
948
     *
949
     * @return the previous value associated with the specified key,
950
     *         or <tt>null</tt> if there was no mapping for the key
951
     * @throws NullPointerException if the specified key or value is null
952
     */
953
    public V replace(K key, V value) {
954
        if (value == null)
955
            throw new NullPointerException();
956
        int hash = hash(key.hashCode());
957
        return segmentFor(hash).replace(key, hash, value);
958
    }
959
 
960
    /**
961
     * Removes all of the mappings from this map.
962
     */
963
    public void clear() {
964
        for (int i = 0; i < segments.length; ++i)
965
            segments[i].clear();
966
    }
967
 
968
    /**
969
     * Returns a {@link Set} view of the keys contained in this map.
970
     * The set is backed by the map, so changes to the map are
971
     * reflected in the set, and vice-versa.  The set supports element
972
     * removal, which removes the corresponding mapping from this map,
973
     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
974
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
975
     * operations.  It does not support the <tt>add</tt> or
976
     * <tt>addAll</tt> operations.
977
     *
978
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
979
     * that will never throw {@link ConcurrentModificationException},
980
     * and guarantees to traverse elements as they existed upon
981
     * construction of the iterator, and may (but is not guaranteed to)
982
     * reflect any modifications subsequent to construction.
983
     */
984
    public Set<K> keySet() {
985
        Set<K> ks = keySet;
986
        return (ks != null) ? ks : (keySet = new KeySet());
987
    }
988
 
989
    /**
990
     * Returns a {@link Collection} view of the values contained in this map.
991
     * The collection is backed by the map, so changes to the map are
992
     * reflected in the collection, and vice-versa.  The collection
993
     * supports element removal, which removes the corresponding
994
     * mapping from this map, via the <tt>Iterator.remove</tt>,
995
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
996
     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
997
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
998
     *
999
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1000
     * that will never throw {@link ConcurrentModificationException},
1001
     * and guarantees to traverse elements as they existed upon
1002
     * construction of the iterator, and may (but is not guaranteed to)
1003
     * reflect any modifications subsequent to construction.
1004
     */
1005
    public Collection<V> values() {
1006
        Collection<V> vs = values;
1007
        return (vs != null) ? vs : (values = new Values());
1008
    }
1009
 
1010
    /**
1011
     * Returns a {@link Set} view of the mappings contained in this map.
1012
     * The set is backed by the map, so changes to the map are
1013
     * reflected in the set, and vice-versa.  The set supports element
1014
     * removal, which removes the corresponding mapping from the map,
1015
     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1016
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1017
     * operations.  It does not support the <tt>add</tt> or
1018
     * <tt>addAll</tt> operations.
1019
     *
1020
     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1021
     * that will never throw {@link ConcurrentModificationException},
1022
     * and guarantees to traverse elements as they existed upon
1023
     * construction of the iterator, and may (but is not guaranteed to)
1024
     * reflect any modifications subsequent to construction.
1025
     */
1026
    public Set<Map.Entry<K,V>> entrySet() {
1027
        Set<Map.Entry<K,V>> es = entrySet;
1028
        return (es != null) ? es : (entrySet = new EntrySet());
1029
    }
1030
 
1031
    /**
1032
     * Returns an enumeration of the keys in this table.
1033
     *
1034
     * @return an enumeration of the keys in this table
1035
     * @see #keySet
1036
     */
1037
    public Enumeration<K> keys() {
1038
        return new KeyIterator();
1039
    }
1040
 
1041
    /**
1042
     * Returns an enumeration of the values in this table.
1043
     *
1044
     * @return an enumeration of the values in this table
1045
     * @see #values
1046
     */
1047
    public Enumeration<V> elements() {
1048
        return new ValueIterator();
1049
    }
1050
 
1051
    /* ---------------- Iterator Support -------------- */
1052
 
1053
    abstract class HashIterator {
1054
        int nextSegmentIndex;
1055
        int nextTableIndex;
1056
        HashEntry<K,V>[] currentTable;
1057
        HashEntry<K, V> nextEntry;
1058
        HashEntry<K, V> lastReturned;
1059
 
1060
        HashIterator() {
1061
            nextSegmentIndex = segments.length - 1;
1062
            nextTableIndex = -1;
1063
            advance();
1064
        }
1065
 
1066
        public boolean hasMoreElements() { return hasNext(); }
1067
 
1068
        final void advance() {
1069
            if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1070
                return;
1071
 
1072
            while (nextTableIndex >= 0) {
1073
                if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1074
                    return;
1075
            }
1076
 
1077
            while (nextSegmentIndex >= 0) {
1078
                Segment<K,V> seg = segments[nextSegmentIndex--];
1079
                if (seg.count != 0) {
1080
                    currentTable = seg.table;
1081
                    for (int j = currentTable.length - 1; j >= 0; --j) {
1082
                        if ( (nextEntry = currentTable[j]) != null) {
1083
                            nextTableIndex = j - 1;
1084
                            return;
1085
                        }
1086
                    }
1087
                }
1088
            }
1089
        }
1090
 
1091
        public boolean hasNext() { return nextEntry != null; }
1092
 
1093
        HashEntry<K,V> nextEntry() {
1094
            if (nextEntry == null)
1095
                throw new NoSuchElementException();
1096
            lastReturned = nextEntry;
1097
            advance();
1098
            return lastReturned;
1099
        }
1100
 
1101
        public void remove() {
1102
            if (lastReturned == null)
1103
                throw new IllegalStateException();
1104
            ConcurrentHashMap.this.remove(lastReturned.key);
1105
            lastReturned = null;
1106
        }
1107
    }
1108
 
1109
    final class KeyIterator
1110
        extends HashIterator
1111
        implements Iterator<K>, Enumeration<K>
1112
    {
1113
        public K next()        { return super.nextEntry().key; }
1114
        public K nextElement() { return super.nextEntry().key; }
1115
    }
1116
 
1117
    final class ValueIterator
1118
        extends HashIterator
1119
        implements Iterator<V>, Enumeration<V>
1120
    {
1121
        public V next()        { return super.nextEntry().value; }
1122
        public V nextElement() { return super.nextEntry().value; }
1123
    }
1124
 
1125
    /**
1126
     * Custom Entry class used by EntryIterator.next(), that relays
1127
     * setValue changes to the underlying map.
1128
     */
1129
    final class WriteThroughEntry
1130
        extends AbstractMap.SimpleEntry<K,V>
1131
    {
1132
        WriteThroughEntry(K k, V v) {
1133
            super(k,v);
1134
        }
1135
 
1136
        /**
1137
         * Set our entry's value and write through to the map. The
1138
         * value to return is somewhat arbitrary here. Since a
1139
         * WriteThroughEntry does not necessarily track asynchronous
1140
         * changes, the most recent "previous" value could be
1141
         * different from what we return (or could even have been
1142
         * removed in which case the put will re-establish). We do not
1143
         * and cannot guarantee more.
1144
         */
1145
        public V setValue(V value) {
1146
            if (value == null) throw new NullPointerException();
1147
            V v = super.setValue(value);
1148
            ConcurrentHashMap.this.put(getKey(), value);
1149
            return v;
1150
        }
1151
    }
1152
 
1153
    final class EntryIterator
1154
        extends HashIterator
1155
        implements Iterator<Entry<K,V>>
1156
    {
1157
        public Map.Entry<K,V> next() {
1158
            HashEntry<K,V> e = super.nextEntry();
1159
            return new WriteThroughEntry(e.key, e.value);
1160
        }
1161
    }
1162
 
1163
    final class KeySet extends AbstractSet<K> {
1164
        public Iterator<K> iterator() {
1165
            return new KeyIterator();
1166
        }
1167
        public int size() {
1168
            return ConcurrentHashMap.this.size();
1169
        }
1170
        public boolean contains(Object o) {
1171
            return ConcurrentHashMap.this.containsKey(o);
1172
        }
1173
        public boolean remove(Object o) {
1174
            return ConcurrentHashMap.this.remove(o) != null;
1175
        }
1176
        public void clear() {
1177
            ConcurrentHashMap.this.clear();
1178
        }
1179
    }
1180
 
1181
    final class Values extends AbstractCollection<V> {
1182
        public Iterator<V> iterator() {
1183
            return new ValueIterator();
1184
        }
1185
        public int size() {
1186
            return ConcurrentHashMap.this.size();
1187
        }
1188
        public boolean contains(Object o) {
1189
            return ConcurrentHashMap.this.containsValue(o);
1190
        }
1191
        public void clear() {
1192
            ConcurrentHashMap.this.clear();
1193
        }
1194
    }
1195
 
1196
    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1197
        public Iterator<Map.Entry<K,V>> iterator() {
1198
            return new EntryIterator();
1199
        }
1200
        public boolean contains(Object o) {
1201
            if (!(o instanceof Map.Entry))
1202
                return false;
1203
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1204
            V v = ConcurrentHashMap.this.get(e.getKey());
1205
            return v != null && v.equals(e.getValue());
1206
        }
1207
        public boolean remove(Object o) {
1208
            if (!(o instanceof Map.Entry))
1209
                return false;
1210
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1211
            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1212
        }
1213
        public int size() {
1214
            return ConcurrentHashMap.this.size();
1215
        }
1216
        public void clear() {
1217
            ConcurrentHashMap.this.clear();
1218
        }
1219
    }
1220
 
1221
    /* ---------------- Serialization Support -------------- */
1222
 
1223
    /**
1224
     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1225
     * stream (i.e., serialize it).
1226
     * @param s the stream
1227
     * @serialData
1228
     * the key (Object) and value (Object)
1229
     * for each key-value mapping, followed by a null pair.
1230
     * The key-value mappings are emitted in no particular order.
1231
     */
1232
    private void writeObject(java.io.ObjectOutputStream s) throws IOException  {
1233
        s.defaultWriteObject();
1234
 
1235
        for (int k = 0; k < segments.length; ++k) {
1236
            Segment<K,V> seg = segments[k];
1237
            seg.lock();
1238
            try {
1239
                HashEntry<K,V>[] tab = seg.table;
1240
                for (int i = 0; i < tab.length; ++i) {
1241
                    for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1242
                        s.writeObject(e.key);
1243
                        s.writeObject(e.value);
1244
                    }
1245
                }
1246
            } finally {
1247
                seg.unlock();
1248
            }
1249
        }
1250
        s.writeObject(null);
1251
        s.writeObject(null);
1252
    }
1253
 
1254
    /**
1255
     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1256
     * stream (i.e., deserialize it).
1257
     * @param s the stream
1258
     */
1259
    private void readObject(java.io.ObjectInputStream s)
1260
        throws IOException, ClassNotFoundException  {
1261
        s.defaultReadObject();
1262
 
1263
        // Initialize each segment to be minimally sized, and let grow.
1264
        for (int i = 0; i < segments.length; ++i) {
1265
            segments[i].setTable(new HashEntry[1]);
1266
        }
1267
 
1268
        // Read the keys and values, and put the mappings in the table
1269
        for (;;) {
1270
            K key = (K) s.readObject();
1271
            V value = (V) s.readObject();
1272
            if (key == null)
1273
                break;
1274
            put(key, value);
1275
        }
1276
    }
1277
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.