OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [external/] [jsr166/] [java/] [util/] [concurrent/] [SynchronousQueue.java] - Blame information for rev 768

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 768 jeremybenn
/*
2
 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3
 * assistance from members of JCP JSR-166 Expert Group and released to
4
 * the public domain, as explained at
5
 * http://creativecommons.org/licenses/publicdomain
6
 */
7
 
8
package java.util.concurrent;
9
import java.util.concurrent.locks.*;
10
import java.util.concurrent.atomic.*;
11
import java.util.*;
12
 
13
/**
14
 * A {@linkplain BlockingQueue blocking queue} in which each insert
15
 * operation must wait for a corresponding remove operation by another
16
 * thread, and vice versa.  A synchronous queue does not have any
17
 * internal capacity, not even a capacity of one.  You cannot
18
 * <tt>peek</tt> at a synchronous queue because an element is only
19
 * present when you try to remove it; you cannot insert an element
20
 * (using any method) unless another thread is trying to remove it;
21
 * you cannot iterate as there is nothing to iterate.  The
22
 * <em>head</em> of the queue is the element that the first queued
23
 * inserting thread is trying to add to the queue; if there is no such
24
 * queued thread then no element is available for removal and
25
 * <tt>poll()</tt> will return <tt>null</tt>.  For purposes of other
26
 * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
27
 * <tt>SynchronousQueue</tt> acts as an empty collection.  This queue
28
 * does not permit <tt>null</tt> elements.
29
 *
30
 * <p>Synchronous queues are similar to rendezvous channels used in
31
 * CSP and Ada. They are well suited for handoff designs, in which an
32
 * object running in one thread must sync up with an object running
33
 * in another thread in order to hand it some information, event, or
34
 * task.
35
 *
36
 * <p> This class supports an optional fairness policy for ordering
37
 * waiting producer and consumer threads.  By default, this ordering
38
 * is not guaranteed. However, a queue constructed with fairness set
39
 * to <tt>true</tt> grants threads access in FIFO order.
40
 *
41
 * <p>This class and its iterator implement all of the
42
 * <em>optional</em> methods of the {@link Collection} and {@link
43
 * Iterator} interfaces.
44
 *
45
 * <p>This class is a member of the
46
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
47
 * Java Collections Framework</a>.
48
 *
49
 * @since 1.5
50
 * @author Doug Lea and Bill Scherer and Michael Scott
51
 * @param <E> the type of elements held in this collection
52
 */
53
public class SynchronousQueue<E> extends AbstractQueue<E>
54
    implements BlockingQueue<E>, java.io.Serializable {
55
    private static final long serialVersionUID = -3223113410248163686L;
56
 
57
    /*
58
     * This class implements extensions of the dual stack and dual
59
     * queue algorithms described in "Nonblocking Concurrent Objects
60
     * with Condition Synchronization", by W. N. Scherer III and
61
     * M. L. Scott.  18th Annual Conf. on Distributed Computing,
62
     * Oct. 2004 (see also
63
     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64
     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65
     * queue for fair mode. The performance of the two is generally
66
     * similar. Fifo usually supports higher throughput under
67
     * contention but Lifo maintains higher thread locality in common
68
     * applications.
69
     *
70
     * A dual queue (and similarly stack) is one that at any given
71
     * time either holds "data" -- items provided by put operations,
72
     * or "requests" -- slots representing take operations, or is
73
     * empty. A call to "fulfill" (i.e., a call requesting an item
74
     * from a queue holding data or vice versa) dequeues a
75
     * complementary node.  The most interesting feature of these
76
     * queues is that any operation can figure out which mode the
77
     * queue is in, and act accordingly without needing locks.
78
     *
79
     * Both the queue and stack extend abstract class Transferer
80
     * defining the single method transfer that does a put or a
81
     * take. These are unified into a single method because in dual
82
     * data structures, the put and take operations are symmetrical,
83
     * so nearly all code can be combined. The resulting transfer
84
     * methods are on the long side, but are easier to follow than
85
     * they would be if broken up into nearly-duplicated parts.
86
     *
87
     * The queue and stack data structures share many conceptual
88
     * similarities but very few concrete details. For simplicity,
89
     * they are kept distinct so that they can later evolve
90
     * separately.
91
     *
92
     * The algorithms here differ from the versions in the above paper
93
     * in extending them for use in synchronous queues, as well as
94
     * dealing with cancellation. The main differences include:
95
     *
96
     *  1. The original algorithms used bit-marked pointers, but
97
     *     the ones here use mode bits in nodes, leading to a number
98
     *     of further adaptations.
99
     *  2. SynchronousQueues must block threads waiting to become
100
     *     fulfilled.
101
     *  3. Support for cancellation via timeout and interrupts,
102
     *     including cleaning out cancelled nodes/threads
103
     *     from lists to avoid garbage retention and memory depletion.
104
     *
105
     * Blocking is mainly accomplished using LockSupport park/unpark,
106
     * except that nodes that appear to be the next ones to become
107
     * fulfilled first spin a bit (on multiprocessors only). On very
108
     * busy synchronous queues, spinning can dramatically improve
109
     * throughput. And on less busy ones, the amount of spinning is
110
     * small enough not to be noticeable.
111
     *
112
     * Cleaning is done in different ways in queues vs stacks.  For
113
     * queues, we can almost always remove a node immediately in O(1)
114
     * time (modulo retries for consistency checks) when it is
115
     * cancelled. But if it may be pinned as the current tail, it must
116
     * wait until some subsequent cancellation. For stacks, we need a
117
     * potentially O(n) traversal to be sure that we can remove the
118
     * node, but this can run concurrently with other threads
119
     * accessing the stack.
120
     *
121
     * While garbage collection takes care of most node reclamation
122
     * issues that otherwise complicate nonblocking algorithms, care
123
     * is taken to "forget" references to data, other nodes, and
124
     * threads that might be held on to long-term by blocked
125
     * threads. In cases where setting to null would otherwise
126
     * conflict with main algorithms, this is done by changing a
127
     * node's link to now point to the node itself. This doesn't arise
128
     * much for Stack nodes (because blocked threads do not hang on to
129
     * old head pointers), but references in Queue nodes must be
130
     * aggressively forgotten to avoid reachability of everything any
131
     * node has ever referred to since arrival.
132
     */
133
 
134
    /**
135
     * Shared internal API for dual stacks and queues.
136
     */
137
    static abstract class Transferer {
138
        /**
139
         * Performs a put or take.
140
         *
141
         * @param e if non-null, the item to be handed to a consumer;
142
         *          if null, requests that transfer return an item
143
         *          offered by producer.
144
         * @param timed if this operation should timeout
145
         * @param nanos the timeout, in nanoseconds
146
         * @return if non-null, the item provided or received; if null,
147
         *         the operation failed due to timeout or interrupt --
148
         *         the caller can distinguish which of these occurred
149
         *         by checking Thread.interrupted.
150
         */
151
        abstract Object transfer(Object e, boolean timed, long nanos);
152
    }
153
 
154
    /** The number of CPUs, for spin control */
155
    static final int NCPUS = Runtime.getRuntime().availableProcessors();
156
 
157
    /**
158
     * The number of times to spin before blocking in timed waits.
159
     * The value is empirically derived -- it works well across a
160
     * variety of processors and OSes. Empirically, the best value
161
     * seems not to vary with number of CPUs (beyond 2) so is just
162
     * a constant.
163
     */
164
    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
165
 
166
    /**
167
     * The number of times to spin before blocking in untimed waits.
168
     * This is greater than timed value because untimed waits spin
169
     * faster since they don't need to check times on each spin.
170
     */
171
    static final int maxUntimedSpins = maxTimedSpins * 16;
172
 
173
    /**
174
     * The number of nanoseconds for which it is faster to spin
175
     * rather than to use timed park. A rough estimate suffices.
176
     */
177
    static final long spinForTimeoutThreshold = 1000L;
178
 
179
    /** Dual stack */
180
    static final class TransferStack extends Transferer {
181
        /*
182
         * This extends Scherer-Scott dual stack algorithm, differing,
183
         * among other ways, by using "covering" nodes rather than
184
         * bit-marked pointers: Fulfilling operations push on marker
185
         * nodes (with FULFILLING bit set in mode) to reserve a spot
186
         * to match a waiting node.
187
         */
188
 
189
        /* Modes for SNodes, ORed together in node fields */
190
        /** Node represents an unfulfilled consumer */
191
        static final int REQUEST    = 0;
192
        /** Node represents an unfulfilled producer */
193
        static final int DATA       = 1;
194
        /** Node is fulfilling another unfulfilled DATA or REQUEST */
195
        static final int FULFILLING = 2;
196
 
197
        /** Return true if m has fulfilling bit set */
198
        static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199
 
200
        /** Node class for TransferStacks. */
201
        static final class SNode {
202
            volatile SNode next;        // next node in stack
203
            volatile SNode match;       // the node matched to this
204
            volatile Thread waiter;     // to control park/unpark
205
            Object item;                // data; or null for REQUESTs
206
            int mode;
207
            // Note: item and mode fields don't need to be volatile
208
            // since they are always written before, and read after,
209
            // other volatile/atomic operations.
210
 
211
            SNode(Object item) {
212
                this.item = item;
213
            }
214
 
215
            static final AtomicReferenceFieldUpdater<SNode, SNode>
216
                nextUpdater = AtomicReferenceFieldUpdater.newUpdater
217
                (SNode.class, SNode.class, "next");
218
 
219
            boolean casNext(SNode cmp, SNode val) {
220
                return (cmp == next &&
221
                        nextUpdater.compareAndSet(this, cmp, val));
222
            }
223
 
224
            static final AtomicReferenceFieldUpdater<SNode, SNode>
225
                matchUpdater = AtomicReferenceFieldUpdater.newUpdater
226
                (SNode.class, SNode.class, "match");
227
 
228
            /**
229
             * Tries to match node s to this node, if so, waking up thread.
230
             * Fulfillers call tryMatch to identify their waiters.
231
             * Waiters block until they have been matched.
232
             *
233
             * @param s the node to match
234
             * @return true if successfully matched to s
235
             */
236
            boolean tryMatch(SNode s) {
237
                if (match == null &&
238
                    matchUpdater.compareAndSet(this, null, s)) {
239
                    Thread w = waiter;
240
                    if (w != null) {    // waiters need at most one unpark
241
                        waiter = null;
242
                        LockSupport.unpark(w);
243
                    }
244
                    return true;
245
                }
246
                return match == s;
247
            }
248
 
249
            /**
250
             * Tries to cancel a wait by matching node to itself.
251
             */
252
            void tryCancel() {
253
                matchUpdater.compareAndSet(this, null, this);
254
            }
255
 
256
            boolean isCancelled() {
257
                return match == this;
258
            }
259
        }
260
 
261
        /** The head (top) of the stack */
262
        volatile SNode head;
263
 
264
        static final AtomicReferenceFieldUpdater<TransferStack, SNode>
265
            headUpdater = AtomicReferenceFieldUpdater.newUpdater
266
            (TransferStack.class,  SNode.class, "head");
267
 
268
        boolean casHead(SNode h, SNode nh) {
269
            return h == head && headUpdater.compareAndSet(this, h, nh);
270
        }
271
 
272
        /**
273
         * Creates or resets fields of a node. Called only from transfer
274
         * where the node to push on stack is lazily created and
275
         * reused when possible to help reduce intervals between reads
276
         * and CASes of head and to avoid surges of garbage when CASes
277
         * to push nodes fail due to contention.
278
         */
279
        static SNode snode(SNode s, Object e, SNode next, int mode) {
280
            if (s == null) s = new SNode(e);
281
            s.mode = mode;
282
            s.next = next;
283
            return s;
284
        }
285
 
286
        /**
287
         * Puts or takes an item.
288
         */
289
        Object transfer(Object e, boolean timed, long nanos) {
290
            /*
291
             * Basic algorithm is to loop trying one of three actions:
292
             *
293
             * 1. If apparently empty or already containing nodes of same
294
             *    mode, try to push node on stack and wait for a match,
295
             *    returning it, or null if cancelled.
296
             *
297
             * 2. If apparently containing node of complementary mode,
298
             *    try to push a fulfilling node on to stack, match
299
             *    with corresponding waiting node, pop both from
300
             *    stack, and return matched item. The matching or
301
             *    unlinking might not actually be necessary because of
302
             *    other threads performing action 3:
303
             *
304
             * 3. If top of stack already holds another fulfilling node,
305
             *    help it out by doing its match and/or pop
306
             *    operations, and then continue. The code for helping
307
             *    is essentially the same as for fulfilling, except
308
             *    that it doesn't return the item.
309
             */
310
 
311
            SNode s = null; // constructed/reused as needed
312
            int mode = (e == null)? REQUEST : DATA;
313
 
314
            for (;;) {
315
                SNode h = head;
316
                if (h == null || h.mode == mode) {  // empty or same-mode
317
                    if (timed && nanos <= 0) {      // can't wait
318
                        if (h != null && h.isCancelled())
319
                            casHead(h, h.next);     // pop cancelled node
320
                        else
321
                            return null;
322
                    } else if (casHead(h, s = snode(s, e, h, mode))) {
323
                        SNode m = awaitFulfill(s, timed, nanos);
324
                        if (m == s) {               // wait was cancelled
325
                            clean(s);
326
                            return null;
327
                        }
328
                        if ((h = head) != null && h.next == s)
329
                            casHead(h, s.next);     // help s's fulfiller
330
                        return mode == REQUEST? m.item : s.item;
331
                    }
332
                } else if (!isFulfilling(h.mode)) { // try to fulfill
333
                    if (h.isCancelled())            // already cancelled
334
                        casHead(h, h.next);         // pop and retry
335
                    else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
336
                        for (;;) { // loop until matched or waiters disappear
337
                            SNode m = s.next;       // m is s's match
338
                            if (m == null) {        // all waiters are gone
339
                                casHead(s, null);   // pop fulfill node
340
                                s = null;           // use new node next time
341
                                break;              // restart main loop
342
                            }
343
                            SNode mn = m.next;
344
                            if (m.tryMatch(s)) {
345
                                casHead(s, mn);     // pop both s and m
346
                                return (mode == REQUEST)? m.item : s.item;
347
                            } else                  // lost match
348
                                s.casNext(m, mn);   // help unlink
349
                        }
350
                    }
351
                } else {                            // help a fulfiller
352
                    SNode m = h.next;               // m is h's match
353
                    if (m == null)                  // waiter is gone
354
                        casHead(h, null);           // pop fulfilling node
355
                    else {
356
                        SNode mn = m.next;
357
                        if (m.tryMatch(h))          // help match
358
                            casHead(h, mn);         // pop both h and m
359
                        else                        // lost match
360
                            h.casNext(m, mn);       // help unlink
361
                    }
362
                }
363
            }
364
        }
365
 
366
        /**
367
         * Spins/blocks until node s is matched by a fulfill operation.
368
         *
369
         * @param s the waiting node
370
         * @param timed true if timed wait
371
         * @param nanos timeout value
372
         * @return matched node, or s if cancelled
373
         */
374
        SNode awaitFulfill(SNode s, boolean timed, long nanos) {
375
            /*
376
             * When a node/thread is about to block, it sets its waiter
377
             * field and then rechecks state at least one more time
378
             * before actually parking, thus covering race vs
379
             * fulfiller noticing that waiter is non-null so should be
380
             * woken.
381
             *
382
             * When invoked by nodes that appear at the point of call
383
             * to be at the head of the stack, calls to park are
384
             * preceded by spins to avoid blocking when producers and
385
             * consumers are arriving very close in time.  This can
386
             * happen enough to bother only on multiprocessors.
387
             *
388
             * The order of checks for returning out of main loop
389
             * reflects fact that interrupts have precedence over
390
             * normal returns, which have precedence over
391
             * timeouts. (So, on timeout, one last check for match is
392
             * done before giving up.) Except that calls from untimed
393
             * SynchronousQueue.{poll/offer} don't check interrupts
394
             * and don't wait at all, so are trapped in transfer
395
             * method rather than calling awaitFulfill.
396
             */
397
            long lastTime = (timed)? System.nanoTime() : 0;
398
            Thread w = Thread.currentThread();
399
            SNode h = head;
400
            int spins = (shouldSpin(s)?
401
                         (timed? maxTimedSpins : maxUntimedSpins) : 0);
402
            for (;;) {
403
                if (w.isInterrupted())
404
                    s.tryCancel();
405
                SNode m = s.match;
406
                if (m != null)
407
                    return m;
408
                if (timed) {
409
                    long now = System.nanoTime();
410
                    nanos -= now - lastTime;
411
                    lastTime = now;
412
                    if (nanos <= 0) {
413
                        s.tryCancel();
414
                        continue;
415
                    }
416
                }
417
                if (spins > 0)
418
                    spins = shouldSpin(s)? (spins-1) : 0;
419
                else if (s.waiter == null)
420
                    s.waiter = w; // establish waiter so can park next iter
421
                else if (!timed)
422
                    LockSupport.park(this);
423
                else if (nanos > spinForTimeoutThreshold)
424
                    LockSupport.parkNanos(this, nanos);
425
            }
426
        }
427
 
428
        /**
429
         * Returns true if node s is at head or there is an active
430
         * fulfiller.
431
         */
432
        boolean shouldSpin(SNode s) {
433
            SNode h = head;
434
            return (h == s || h == null || isFulfilling(h.mode));
435
        }
436
 
437
        /**
438
         * Unlinks s from the stack.
439
         */
440
        void clean(SNode s) {
441
            s.item = null;   // forget item
442
            s.waiter = null; // forget thread
443
 
444
            /*
445
             * At worst we may need to traverse entire stack to unlink
446
             * s. If there are multiple concurrent calls to clean, we
447
             * might not see s if another thread has already removed
448
             * it. But we can stop when we see any node known to
449
             * follow s. We use s.next unless it too is cancelled, in
450
             * which case we try the node one past. We don't check any
451
             * further because we don't want to doubly traverse just to
452
             * find sentinel.
453
             */
454
 
455
            SNode past = s.next;
456
            if (past != null && past.isCancelled())
457
                past = past.next;
458
 
459
            // Absorb cancelled nodes at head
460
            SNode p;
461
            while ((p = head) != null && p != past && p.isCancelled())
462
                casHead(p, p.next);
463
 
464
            // Unsplice embedded nodes
465
            while (p != null && p != past) {
466
                SNode n = p.next;
467
                if (n != null && n.isCancelled())
468
                    p.casNext(n, n.next);
469
                else
470
                    p = n;
471
            }
472
        }
473
    }
474
 
475
    /** Dual Queue */
476
    static final class TransferQueue extends Transferer {
477
        /*
478
         * This extends Scherer-Scott dual queue algorithm, differing,
479
         * among other ways, by using modes within nodes rather than
480
         * marked pointers. The algorithm is a little simpler than
481
         * that for stacks because fulfillers do not need explicit
482
         * nodes, and matching is done by CAS'ing QNode.item field
483
         * from non-null to null (for put) or vice versa (for take).
484
         */
485
 
486
        /** Node class for TransferQueue. */
487
        static final class QNode {
488
            volatile QNode next;          // next node in queue
489
            volatile Object item;         // CAS'ed to or from null
490
            volatile Thread waiter;       // to control park/unpark
491
            final boolean isData;
492
 
493
            QNode(Object item, boolean isData) {
494
                this.item = item;
495
                this.isData = isData;
496
            }
497
 
498
            static final AtomicReferenceFieldUpdater<QNode, QNode>
499
                nextUpdater = AtomicReferenceFieldUpdater.newUpdater
500
                (QNode.class, QNode.class, "next");
501
 
502
            boolean casNext(QNode cmp, QNode val) {
503
                return (next == cmp &&
504
                        nextUpdater.compareAndSet(this, cmp, val));
505
            }
506
 
507
            static final AtomicReferenceFieldUpdater<QNode, Object>
508
                itemUpdater = AtomicReferenceFieldUpdater.newUpdater
509
                (QNode.class, Object.class, "item");
510
 
511
            boolean casItem(Object cmp, Object val) {
512
                return (item == cmp &&
513
                        itemUpdater.compareAndSet(this, cmp, val));
514
            }
515
 
516
            /**
517
             * Tries to cancel by CAS'ing ref to this as item.
518
             */
519
            void tryCancel(Object cmp) {
520
                itemUpdater.compareAndSet(this, cmp, this);
521
            }
522
 
523
            boolean isCancelled() {
524
                return item == this;
525
            }
526
 
527
            /**
528
             * Returns true if this node is known to be off the queue
529
             * because its next pointer has been forgotten due to
530
             * an advanceHead operation.
531
             */
532
            boolean isOffList() {
533
                return next == this;
534
            }
535
        }
536
 
537
        /** Head of queue */
538
        transient volatile QNode head;
539
        /** Tail of queue */
540
        transient volatile QNode tail;
541
        /**
542
         * Reference to a cancelled node that might not yet have been
543
         * unlinked from queue because it was the last inserted node
544
         * when it cancelled.
545
         */
546
        transient volatile QNode cleanMe;
547
 
548
        TransferQueue() {
549
            QNode h = new QNode(null, false); // initialize to dummy node.
550
            head = h;
551
            tail = h;
552
        }
553
 
554
        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
555
            headUpdater = AtomicReferenceFieldUpdater.newUpdater
556
            (TransferQueue.class,  QNode.class, "head");
557
 
558
        /**
559
         * Tries to cas nh as new head; if successful, unlink
560
         * old head's next node to avoid garbage retention.
561
         */
562
        void advanceHead(QNode h, QNode nh) {
563
            if (h == head && headUpdater.compareAndSet(this, h, nh))
564
                h.next = h; // forget old next
565
        }
566
 
567
        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
568
            tailUpdater = AtomicReferenceFieldUpdater.newUpdater
569
            (TransferQueue.class, QNode.class, "tail");
570
 
571
        /**
572
         * Tries to cas nt as new tail.
573
         */
574
        void advanceTail(QNode t, QNode nt) {
575
            if (tail == t)
576
                tailUpdater.compareAndSet(this, t, nt);
577
        }
578
 
579
        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
580
            cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
581
            (TransferQueue.class, QNode.class, "cleanMe");
582
 
583
        /**
584
         * Tries to CAS cleanMe slot.
585
         */
586
        boolean casCleanMe(QNode cmp, QNode val) {
587
            return (cleanMe == cmp &&
588
                    cleanMeUpdater.compareAndSet(this, cmp, val));
589
        }
590
 
591
        /**
592
         * Puts or takes an item.
593
         */
594
        Object transfer(Object e, boolean timed, long nanos) {
595
            /* Basic algorithm is to loop trying to take either of
596
             * two actions:
597
             *
598
             * 1. If queue apparently empty or holding same-mode nodes,
599
             *    try to add node to queue of waiters, wait to be
600
             *    fulfilled (or cancelled) and return matching item.
601
             *
602
             * 2. If queue apparently contains waiting items, and this
603
             *    call is of complementary mode, try to fulfill by CAS'ing
604
             *    item field of waiting node and dequeuing it, and then
605
             *    returning matching item.
606
             *
607
             * In each case, along the way, check for and try to help
608
             * advance head and tail on behalf of other stalled/slow
609
             * threads.
610
             *
611
             * The loop starts off with a null check guarding against
612
             * seeing uninitialized head or tail values. This never
613
             * happens in current SynchronousQueue, but could if
614
             * callers held non-volatile/final ref to the
615
             * transferer. The check is here anyway because it places
616
             * null checks at top of loop, which is usually faster
617
             * than having them implicitly interspersed.
618
             */
619
 
620
            QNode s = null; // constructed/reused as needed
621
            boolean isData = (e != null);
622
 
623
            for (;;) {
624
                QNode t = tail;
625
                QNode h = head;
626
                if (t == null || h == null)         // saw uninitialized value
627
                    continue;                       // spin
628
 
629
                if (h == t || t.isData == isData) { // empty or same-mode
630
                    QNode tn = t.next;
631
                    if (t != tail)                  // inconsistent read
632
                        continue;
633
                    if (tn != null) {               // lagging tail
634
                        advanceTail(t, tn);
635
                        continue;
636
                    }
637
                    if (timed && nanos <= 0)        // can't wait
638
                        return null;
639
                    if (s == null)
640
                        s = new QNode(e, isData);
641
                    if (!t.casNext(null, s))        // failed to link in
642
                        continue;
643
 
644
                    advanceTail(t, s);              // swing tail and wait
645
                    Object x = awaitFulfill(s, e, timed, nanos);
646
                    if (x == s) {                   // wait was cancelled
647
                        clean(t, s);
648
                        return null;
649
                    }
650
 
651
                    if (!s.isOffList()) {           // not already unlinked
652
                        advanceHead(t, s);          // unlink if head
653
                        if (x != null)              // and forget fields
654
                            s.item = s;
655
                        s.waiter = null;
656
                    }
657
                    return (x != null)? x : e;
658
 
659
                } else {                            // complementary-mode
660
                    QNode m = h.next;               // node to fulfill
661
                    if (t != tail || m == null || h != head)
662
                        continue;                   // inconsistent read
663
 
664
                    Object x = m.item;
665
                    if (isData == (x != null) ||    // m already fulfilled
666
                        x == m ||                   // m cancelled
667
                        !m.casItem(x, e)) {         // lost CAS
668
                        advanceHead(h, m);          // dequeue and retry
669
                        continue;
670
                    }
671
 
672
                    advanceHead(h, m);              // successfully fulfilled
673
                    LockSupport.unpark(m.waiter);
674
                    return (x != null)? x : e;
675
                }
676
            }
677
        }
678
 
679
        /**
680
         * Spins/blocks until node s is fulfilled.
681
         *
682
         * @param s the waiting node
683
         * @param e the comparison value for checking match
684
         * @param timed true if timed wait
685
         * @param nanos timeout value
686
         * @return matched item, or s if cancelled
687
         */
688
        Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
689
            /* Same idea as TransferStack.awaitFulfill */
690
            long lastTime = (timed)? System.nanoTime() : 0;
691
            Thread w = Thread.currentThread();
692
            int spins = ((head.next == s) ?
693
                         (timed? maxTimedSpins : maxUntimedSpins) : 0);
694
            for (;;) {
695
                if (w.isInterrupted())
696
                    s.tryCancel(e);
697
                Object x = s.item;
698
                if (x != e)
699
                    return x;
700
                if (timed) {
701
                    long now = System.nanoTime();
702
                    nanos -= now - lastTime;
703
                    lastTime = now;
704
                    if (nanos <= 0) {
705
                        s.tryCancel(e);
706
                        continue;
707
                    }
708
                }
709
                if (spins > 0)
710
                    --spins;
711
                else if (s.waiter == null)
712
                    s.waiter = w;
713
                else if (!timed)
714
                    LockSupport.park(this);
715
                else if (nanos > spinForTimeoutThreshold)
716
                    LockSupport.parkNanos(this, nanos);
717
            }
718
        }
719
 
720
        /**
721
         * Gets rid of cancelled node s with original predecessor pred.
722
         */
723
        void clean(QNode pred, QNode s) {
724
            s.waiter = null; // forget thread
725
            /*
726
             * At any given time, exactly one node on list cannot be
727
             * deleted -- the last inserted node. To accommodate this,
728
             * if we cannot delete s, we save its predecessor as
729
             * "cleanMe", deleting the previously saved version
730
             * first. At least one of node s or the node previously
731
             * saved can always be deleted, so this always terminates.
732
             */
733
            while (pred.next == s) { // Return early if already unlinked
734
                QNode h = head;
735
                QNode hn = h.next;   // Absorb cancelled first node as head
736
                if (hn != null && hn.isCancelled()) {
737
                    advanceHead(h, hn);
738
                    continue;
739
                }
740
                QNode t = tail;      // Ensure consistent read for tail
741
                if (t == h)
742
                    return;
743
                QNode tn = t.next;
744
                if (t != tail)
745
                    continue;
746
                if (tn != null) {
747
                    advanceTail(t, tn);
748
                    continue;
749
                }
750
                if (s != t) {        // If not tail, try to unsplice
751
                    QNode sn = s.next;
752
                    if (sn == s || pred.casNext(s, sn))
753
                        return;
754
                }
755
                QNode dp = cleanMe;
756
                if (dp != null) {    // Try unlinking previous cancelled node
757
                    QNode d = dp.next;
758
                    QNode dn;
759
                    if (d == null ||               // d is gone or
760
                        d == dp ||                 // d is off list or
761
                        !d.isCancelled() ||        // d not cancelled or
762
                        (d != t &&                 // d not tail and
763
                         (dn = d.next) != null &&  //   has successor
764
                         dn != d &&                //   that is on list
765
                         dp.casNext(d, dn)))       // d unspliced
766
                        casCleanMe(dp, null);
767
                    if (dp == pred)
768
                        return;      // s is already saved node
769
                } else if (casCleanMe(null, pred))
770
                    return;          // Postpone cleaning s
771
            }
772
        }
773
    }
774
 
775
    /**
776
     * The transferer. Set only in constructor, but cannot be declared
777
     * as final without further complicating serialization.  Since
778
     * this is accessed only at most once per public method, there
779
     * isn't a noticeable performance penalty for using volatile
780
     * instead of final here.
781
     */
782
    private transient volatile Transferer transferer;
783
 
784
    /**
785
     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
786
     */
787
    public SynchronousQueue() {
788
        this(false);
789
    }
790
 
791
    /**
792
     * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
793
     *
794
     * @param fair if true, waiting threads contend in FIFO order for
795
     *        access; otherwise the order is unspecified.
796
     */
797
    public SynchronousQueue(boolean fair) {
798
        transferer = (fair)? new TransferQueue() : new TransferStack();
799
    }
800
 
801
    /**
802
     * Adds the specified element to this queue, waiting if necessary for
803
     * another thread to receive it.
804
     *
805
     * @throws InterruptedException {@inheritDoc}
806
     * @throws NullPointerException {@inheritDoc}
807
     */
808
    public void put(E o) throws InterruptedException {
809
        if (o == null) throw new NullPointerException();
810
        if (transferer.transfer(o, false, 0) == null) {
811
            Thread.interrupted();
812
            throw new InterruptedException();
813
        }
814
    }
815
 
816
    /**
817
     * Inserts the specified element into this queue, waiting if necessary
818
     * up to the specified wait time for another thread to receive it.
819
     *
820
     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
821
     *         specified waiting time elapses before a consumer appears.
822
     * @throws InterruptedException {@inheritDoc}
823
     * @throws NullPointerException {@inheritDoc}
824
     */
825
    public boolean offer(E o, long timeout, TimeUnit unit)
826
        throws InterruptedException {
827
        if (o == null) throw new NullPointerException();
828
        if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
829
            return true;
830
        if (!Thread.interrupted())
831
            return false;
832
        throw new InterruptedException();
833
    }
834
 
835
    /**
836
     * Inserts the specified element into this queue, if another thread is
837
     * waiting to receive it.
838
     *
839
     * @param e the element to add
840
     * @return <tt>true</tt> if the element was added to this queue, else
841
     *         <tt>false</tt>
842
     * @throws NullPointerException if the specified element is null
843
     */
844
    public boolean offer(E e) {
845
        if (e == null) throw new NullPointerException();
846
        return transferer.transfer(e, true, 0) != null;
847
    }
848
 
849
    /**
850
     * Retrieves and removes the head of this queue, waiting if necessary
851
     * for another thread to insert it.
852
     *
853
     * @return the head of this queue
854
     * @throws InterruptedException {@inheritDoc}
855
     */
856
    public E take() throws InterruptedException {
857
        Object e = transferer.transfer(null, false, 0);
858
        if (e != null)
859
            return (E)e;
860
        Thread.interrupted();
861
        throw new InterruptedException();
862
    }
863
 
864
    /**
865
     * Retrieves and removes the head of this queue, waiting
866
     * if necessary up to the specified wait time, for another thread
867
     * to insert it.
868
     *
869
     * @return the head of this queue, or <tt>null</tt> if the
870
     *         specified waiting time elapses before an element is present.
871
     * @throws InterruptedException {@inheritDoc}
872
     */
873
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
874
        Object e = transferer.transfer(null, true, unit.toNanos(timeout));
875
        if (e != null || !Thread.interrupted())
876
            return (E)e;
877
        throw new InterruptedException();
878
    }
879
 
880
    /**
881
     * Retrieves and removes the head of this queue, if another thread
882
     * is currently making an element available.
883
     *
884
     * @return the head of this queue, or <tt>null</tt> if no
885
     *         element is available.
886
     */
887
    public E poll() {
888
        return (E)transferer.transfer(null, true, 0);
889
    }
890
 
891
    /**
892
     * Always returns <tt>true</tt>.
893
     * A <tt>SynchronousQueue</tt> has no internal capacity.
894
     *
895
     * @return <tt>true</tt>
896
     */
897
    public boolean isEmpty() {
898
        return true;
899
    }
900
 
901
    /**
902
     * Always returns zero.
903
     * A <tt>SynchronousQueue</tt> has no internal capacity.
904
     *
905
     * @return zero.
906
     */
907
    public int size() {
908
        return 0;
909
    }
910
 
911
    /**
912
     * Always returns zero.
913
     * A <tt>SynchronousQueue</tt> has no internal capacity.
914
     *
915
     * @return zero.
916
     */
917
    public int remainingCapacity() {
918
        return 0;
919
    }
920
 
921
    /**
922
     * Does nothing.
923
     * A <tt>SynchronousQueue</tt> has no internal capacity.
924
     */
925
    public void clear() {
926
    }
927
 
928
    /**
929
     * Always returns <tt>false</tt>.
930
     * A <tt>SynchronousQueue</tt> has no internal capacity.
931
     *
932
     * @param o the element
933
     * @return <tt>false</tt>
934
     */
935
    public boolean contains(Object o) {
936
        return false;
937
    }
938
 
939
    /**
940
     * Always returns <tt>false</tt>.
941
     * A <tt>SynchronousQueue</tt> has no internal capacity.
942
     *
943
     * @param o the element to remove
944
     * @return <tt>false</tt>
945
     */
946
    public boolean remove(Object o) {
947
        return false;
948
    }
949
 
950
    /**
951
     * Returns <tt>false</tt> unless the given collection is empty.
952
     * A <tt>SynchronousQueue</tt> has no internal capacity.
953
     *
954
     * @param c the collection
955
     * @return <tt>false</tt> unless given collection is empty
956
     */
957
    public boolean containsAll(Collection<?> c) {
958
        return c.isEmpty();
959
    }
960
 
961
    /**
962
     * Always returns <tt>false</tt>.
963
     * A <tt>SynchronousQueue</tt> has no internal capacity.
964
     *
965
     * @param c the collection
966
     * @return <tt>false</tt>
967
     */
968
    public boolean removeAll(Collection<?> c) {
969
        return false;
970
    }
971
 
972
    /**
973
     * Always returns <tt>false</tt>.
974
     * A <tt>SynchronousQueue</tt> has no internal capacity.
975
     *
976
     * @param c the collection
977
     * @return <tt>false</tt>
978
     */
979
    public boolean retainAll(Collection<?> c) {
980
        return false;
981
    }
982
 
983
    /**
984
     * Always returns <tt>null</tt>.
985
     * A <tt>SynchronousQueue</tt> does not return elements
986
     * unless actively waited on.
987
     *
988
     * @return <tt>null</tt>
989
     */
990
    public E peek() {
991
        return null;
992
    }
993
 
994
    static class EmptyIterator<E> implements Iterator<E> {
995
        public boolean hasNext() {
996
            return false;
997
        }
998
        public E next() {
999
            throw new NoSuchElementException();
1000
        }
1001
        public void remove() {
1002
            throw new IllegalStateException();
1003
        }
1004
    }
1005
 
1006
    /**
1007
     * Returns an empty iterator in which <tt>hasNext</tt> always returns
1008
     * <tt>false</tt>.
1009
     *
1010
     * @return an empty iterator
1011
     */
1012
    public Iterator<E> iterator() {
1013
        return new EmptyIterator<E>();
1014
    }
1015
 
1016
    /**
1017
     * Returns a zero-length array.
1018
     * @return a zero-length array
1019
     */
1020
    public Object[] toArray() {
1021
        return new Object[0];
1022
    }
1023
 
1024
    /**
1025
     * Sets the zeroeth element of the specified array to <tt>null</tt>
1026
     * (if the array has non-zero length) and returns it.
1027
     *
1028
     * @param a the array
1029
     * @return the specified array
1030
     * @throws NullPointerException if the specified array is null
1031
     */
1032
    public <T> T[] toArray(T[] a) {
1033
        if (a.length > 0)
1034
            a[0] = null;
1035
        return a;
1036
    }
1037
 
1038
    /**
1039
     * @throws UnsupportedOperationException {@inheritDoc}
1040
     * @throws ClassCastException            {@inheritDoc}
1041
     * @throws NullPointerException          {@inheritDoc}
1042
     * @throws IllegalArgumentException      {@inheritDoc}
1043
     */
1044
    public int drainTo(Collection<? super E> c) {
1045
        if (c == null)
1046
            throw new NullPointerException();
1047
        if (c == this)
1048
            throw new IllegalArgumentException();
1049
        int n = 0;
1050
        E e;
1051
        while ( (e = poll()) != null) {
1052
            c.add(e);
1053
            ++n;
1054
        }
1055
        return n;
1056
    }
1057
 
1058
    /**
1059
     * @throws UnsupportedOperationException {@inheritDoc}
1060
     * @throws ClassCastException            {@inheritDoc}
1061
     * @throws NullPointerException          {@inheritDoc}
1062
     * @throws IllegalArgumentException      {@inheritDoc}
1063
     */
1064
    public int drainTo(Collection<? super E> c, int maxElements) {
1065
        if (c == null)
1066
            throw new NullPointerException();
1067
        if (c == this)
1068
            throw new IllegalArgumentException();
1069
        int n = 0;
1070
        E e;
1071
        while (n < maxElements && (e = poll()) != null) {
1072
            c.add(e);
1073
            ++n;
1074
        }
1075
        return n;
1076
    }
1077
 
1078
    /*
1079
     * To cope with serialization strategy in the 1.5 version of
1080
     * SynchronousQueue, we declare some unused classes and fields
1081
     * that exist solely to enable serializability across versions.
1082
     * These fields are never used, so are initialized only if this
1083
     * object is ever serialized or deserialized.
1084
     */
1085
 
1086
    static class WaitQueue implements java.io.Serializable { }
1087
    static class LifoWaitQueue extends WaitQueue {
1088
        private static final long serialVersionUID = -3633113410248163686L;
1089
    }
1090
    static class FifoWaitQueue extends WaitQueue {
1091
        private static final long serialVersionUID = -3623113410248163686L;
1092
    }
1093
    private ReentrantLock qlock;
1094
    private WaitQueue waitingProducers;
1095
    private WaitQueue waitingConsumers;
1096
 
1097
    /**
1098
     * Save the state to a stream (that is, serialize it).
1099
     *
1100
     * @param s the stream
1101
     */
1102
    private void writeObject(java.io.ObjectOutputStream s)
1103
        throws java.io.IOException {
1104
        boolean fair = transferer instanceof TransferQueue;
1105
        if (fair) {
1106
            qlock = new ReentrantLock(true);
1107
            waitingProducers = new FifoWaitQueue();
1108
            waitingConsumers = new FifoWaitQueue();
1109
        }
1110
        else {
1111
            qlock = new ReentrantLock();
1112
            waitingProducers = new LifoWaitQueue();
1113
            waitingConsumers = new LifoWaitQueue();
1114
        }
1115
        s.defaultWriteObject();
1116
    }
1117
 
1118
    private void readObject(final java.io.ObjectInputStream s)
1119
        throws java.io.IOException, ClassNotFoundException {
1120
        s.defaultReadObject();
1121
        if (waitingProducers instanceof FifoWaitQueue)
1122
            transferer = new TransferQueue();
1123
        else
1124
            transferer = new TransferStack();
1125
    }
1126
 
1127
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.