OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [gnu/] [javax/] [imageio/] [jpeg/] [JPEGComponent.java] - Blame information for rev 769

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 769 jeremybenn
/* JPEGComponent.java --
2
   Copyright (C)  2005  Free Software Foundation, Inc.
3
 
4
This file is part of GNU Classpath.
5
 
6
GNU Classpath is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2, or (at your option)
9
any later version.
10
 
11
GNU Classpath is distributed in the hope that it will be useful, but
12
WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GNU Classpath; see the file COPYING.  If not, write to the
18
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19
02110-1301 USA.
20
 
21
Linking this library statically or dynamically with other modules is
22
making a combined work based on this library.  Thus, the terms and
23
conditions of the GNU General Public License cover the whole
24
combination.
25
 
26
As a special exception, the copyright holders of this library give you
27
permission to link this library with independent modules to produce an
28
executable, regardless of the license terms of these independent
29
modules, and to copy and distribute the resulting executable under
30
terms of your choice, provided that you also meet, for each linked
31
independent module, the terms and conditions of the license of that
32
module.  An independent module is a module which is not derived from
33
or based on this library.  If you modify this library, you may extend
34
this exception to your version of the library, but you are not
35
obligated to do so.  If you do not wish to do so, delete this
36
exception statement from your version. */
37
 
38
package gnu.javax.imageio.jpeg;
39
 
40
import java.util.ArrayList;
41
import java.io.IOException;
42
import java.awt.image.WritableRaster;
43
 
44
import javax.imageio.plugins.jpeg.JPEGHuffmanTable;
45
 
46
/**
47
 * This class holds the methods to decode and write a component information to
48
 * a raster.
49
 */
50
public class JPEGComponent
51
{
52
  public byte factorH, factorV, component_id, quant_id;
53
  public int width = 0, height = 0, maxV = 0, maxH = 0;
54
  public HuffmanTable ACTable;
55
  public HuffmanTable DCTable;
56
  public int[] quantizationTable;
57
  public double previousDC = 0;
58
  ArrayList data = new ArrayList();
59
 
60
  /**
61
   * Initializes the component
62
   *
63
   * @param id
64
   * @param factorHorizontal
65
   * @param factorVertical
66
   * @param quantizationID
67
   */
68
  public JPEGComponent(byte id, byte factorHorizontal, byte factorVertical,
69
                       byte quantizationID)
70
  {
71
    component_id = id;
72
    factorH = factorHorizontal;
73
    factorV = factorVertical;
74
    quant_id = quantizationID;
75
  }
76
 
77
  /**
78
   * If a restart marker is found with too little of an MCU count (i.e. our
79
   * Restart Interval is 63 and we have 61 we copy the last MCU until it's
80
   * full)
81
   *
82
   * @param index
83
   * @param length
84
   */
85
  public void padMCU(int index, int length)
86
  {
87
    double[] src = (double[]) data.get(index - 1);
88
    for (int i = 0; i < length; i++)
89
      data.add(index, src);
90
  }
91
 
92
  /**
93
   * Reset the interval by setting the previous DC value
94
   */
95
  public void resetInterval()
96
  {
97
    previousDC = 0;
98
  }
99
 
100
  /**
101
   * Run the Quantization backward method on all of the block data.
102
   */
103
  public void quantitizeData()
104
  {
105
    for (int i = 0; i < data.size(); i++)
106
      {
107
        double[] mydata = (double[]) data.get(i);
108
        for (int j = 0; j < mydata.length; j++)
109
          mydata[j] *= quantizationTable[j];
110
      }
111
  }
112
 
113
  public void setDCTable(JPEGHuffmanTable table)
114
  {
115
    DCTable = new HuffmanTable(table);
116
  }
117
 
118
  public void setACTable(JPEGHuffmanTable table)
119
  {
120
    ACTable = new HuffmanTable(table);
121
  }
122
 
123
  /**
124
   * Run the Inverse DCT method on all of the block data
125
   */
126
  public void idctData(DCT myDCT)
127
  {
128
    for (int i = 0; i < data.size(); i++)
129
      data.add(i,myDCT.fast_idct(ZigZag.decode8x8_map((double[]) data.remove(i))));
130
  }
131
 
132
  /**
133
   * This scales up the component size based on the factor size. This
134
   * calculates everyting up automatically so it's simply ran at the end of
135
   * the frame to normalize the size of all of the components.
136
   */
137
  public void scaleByFactors()
138
  {
139
    int factorUpVertical = maxV / factorV;
140
    int factorUpHorizontal = maxH / factorH;
141
 
142
    if (factorUpVertical > 1)
143
      {
144
        for (int i = 0; i < data.size(); i++)
145
          {
146
            double[][] src = (double[][]) data.remove(i);
147
            double[][] dest =
148
              new double[src.length * factorUpVertical][src[0].length];
149
            for (int j = 0; j < src.length; j++)
150
              {
151
                for (int u = 0; u < factorUpVertical; u++)
152
                  {
153
                    dest[j * factorUpVertical + u] = src[j];
154
                  }
155
              }
156
            data.add(i, dest);
157
          }
158
      }
159
 
160
    if (factorUpHorizontal > 1)
161
      {
162
        for (int i = 0; i < data.size(); i++)
163
          {
164
            double[][] src = (double[][]) data.remove(i);
165
            double[][] dest =
166
              new double[src.length][src[0].length * factorUpHorizontal];
167
            for (int j = 0; j < src.length; j++)
168
              {
169
                for (int u = 0; u < src[0].length; u++)
170
                  {
171
                    for (int v = 0; v < factorUpHorizontal; v++)
172
                      dest[j][u * factorUpHorizontal + v] = src[j][u];
173
                  }
174
              }
175
            data.add(i, dest);
176
          }
177
      }
178
  }
179
 
180
  /**
181
   * This write the block of data to the raster throwing out anything that
182
   * spills over the raster width or height.
183
   *
184
   * @param raster
185
   * @param data
186
   * @param compIndex
187
   * @param x
188
   * @param y
189
   */
190
  public void writeBlock(WritableRaster raster, double[][] data,
191
                         int compIndex, int x, int y)
192
  {
193
    for (int yIndex = 0; yIndex < data.length; yIndex++)
194
      {
195
        for (int xIndex = 0; xIndex < data[yIndex].length; xIndex++)
196
          {
197
            // The if statement is needed because blocks can spill over the
198
            // frame width because they are padded to make sure we keep the
199
            // height of the block the same as the width of the block
200
            if (x + xIndex < raster.getWidth()
201
                && y + yIndex < raster.getHeight())
202
              raster.setSample(x + xIndex, y + yIndex, compIndex,
203
                               data[yIndex][xIndex]);
204
          }
205
      }
206
  }
207
 
208
  /**
209
   * This writes data to a raster block, so really it's reading not writing
210
   * but it writes the data to the raster block by factor size in a zig zag
211
   * fashion. This has the helper function writeBlock which does the actual
212
   * writing.
213
   *
214
   * @param raster
215
   * @param componentIndex
216
   */
217
  public void writeData(WritableRaster raster, int componentIndex)
218
  {
219
    int x = 0, y = 0, lastblockheight = 0, incrementblock = 0;
220
 
221
    // Keep looping through all of the blocks until there are no more.
222
    while(data.size() > 0)
223
      {
224
        int blockwidth = 0;
225
        int blockheight = 0;
226
 
227
        if (x >= raster.getWidth())
228
          {
229
            x = 0;
230
            y += incrementblock;
231
          }
232
 
233
        // Loop through the horizontal component blocks of the MCU first
234
        // then for each horizontal line write out all of the vertical
235
        // components
236
        for (int factorVIndex = 0; factorVIndex < factorV; factorVIndex++)
237
          {
238
            blockwidth = 0;
239
 
240
            for (int factorHIndex = 0; factorHIndex < factorH; factorHIndex++)
241
              {
242
                // Captures the width of this block so we can increment the
243
                // X coordinate
244
                double[][] blockdata = (double[][]) data.remove(0);
245
 
246
                // Writes the data at the specific X and Y coordinate of
247
                // this component
248
                writeBlock(raster, blockdata, componentIndex, x, y);
249
                blockwidth += blockdata[0].length;
250
                x += blockdata[0].length;
251
                blockheight = blockdata.length;
252
              }
253
            y += blockheight;
254
            x -= blockwidth;
255
            lastblockheight += blockheight;
256
          }
257
        y -= lastblockheight;
258
        incrementblock = lastblockheight;
259
        lastblockheight = 0;
260
        x += blockwidth;
261
      }
262
  }
263
 
264
  /**
265
   * Set the quantization table for this component.
266
   *
267
   * @param quanttable
268
   */
269
  public void setQuantizationTable(int[] quanttable)
270
  {
271
    quantizationTable = quanttable;
272
  }
273
 
274
  /**
275
   * Read in a partial MCU for this component
276
   *
277
   * @param stream TODO
278
   * @throws JPEGException TODO
279
   * @throws IOException TODO
280
   */
281
  public void readComponentMCU(JPEGImageInputStream stream)
282
    throws JPEGException, IOException
283
  {
284
    for (int i = 0; i < factorH * factorV; i++)
285
      {
286
        double dc = decode_dc_coefficient(stream);
287
        double[] datablock = decode_ac_coefficients(stream);
288
        datablock[0] = dc;
289
        data.add(datablock);
290
      }
291
  }
292
 
293
  /**
294
   * Generated from text on F-22, F.2.2.1 - Huffman decoding of DC
295
   * coefficients on ISO DIS 10918-1. Requirements and Guidelines.
296
   *
297
   * @param JPEGStream TODO
298
   *
299
   * @return TODO
300
   * @throws JPEGException TODO
301
   * @throws IOException TODO
302
   */
303
  public double decode_dc_coefficient(JPEGImageInputStream JPEGStream)
304
        throws JPEGException, IOException
305
  {
306
    int t = DCTable.decode(JPEGStream);
307
    double diff = JPEGStream.readBits(t);
308
    diff = HuffmanTable.extend((int) diff, t);
309
    diff = (previousDC + diff);
310
    previousDC = diff;
311
    return diff;
312
  }
313
 
314
  /**
315
   * Generated from text on F-23, F.13 - Huffman decoded of AC coefficients
316
   * on ISO DIS 10918-1. Requirements and Guidelines.
317
   *
318
   * @param JPEGStream TODO
319
   * @return TODO
320
   *
321
   * @throws JPEGException TODO
322
   * @throws IOException TODO
323
   */
324
  public double[] decode_ac_coefficients(JPEGImageInputStream JPEGStream)
325
    throws JPEGException, IOException
326
  {
327
    double[] zz = new double[64];
328
 
329
    for (int k = 1; k < 64; k++)
330
      {
331
        int s = ACTable.decode(JPEGStream);
332
        int r = s >> 4;
333
        s &= 15;
334
 
335
        if (s != 0)
336
          {
337
            k += r;
338
            r = (int) JPEGStream.readBits(s);
339
            s = HuffmanTable.extend(r, s);
340
            zz[k] = s;
341
          }
342
        else
343
          {
344
            if (r != 15)
345
              return (zz);
346
            k += 15;
347
          }
348
      }
349
    return zz;
350
  }
351
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.