1 |
2 |
dgisselq |
`timescale 10ns / 100ps
|
2 |
4 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
3 |
|
|
//
|
4 |
|
|
// Filename: toplevel.v
|
5 |
|
|
//
|
6 |
|
|
// Project: CMod S6 System on a Chip, ZipCPU demonstration project
|
7 |
|
|
//
|
8 |
|
|
// Purpose: This is (supposed to be) the one Xilinx specific file in the
|
9 |
|
|
// project. The idea is that all of the board specific logic,
|
10 |
|
|
// the logic used in simulation, is kept in the busmaster.v file. It's
|
11 |
|
|
// not quite true, since rxuart and txuart modules are instantiated here,
|
12 |
|
|
// but it's mostly true.
|
13 |
|
|
//
|
14 |
|
|
// One thing that makes this module unique is that all of its inputs and
|
15 |
|
|
// outputs must match those on the chip, as specified within the cmod.ucf
|
16 |
|
|
// file (up one directory).
|
17 |
|
|
//
|
18 |
|
|
// Within this file you will find specific I/O for output pins, such as
|
19 |
|
|
// the necessary adjustments to make an I2C port from GPIO pins, as well
|
20 |
|
|
// as the clock management approach.
|
21 |
|
|
//
|
22 |
|
|
//
|
23 |
|
|
//
|
24 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
25 |
|
|
// Gisselquist Technology, LLC
|
26 |
|
|
//
|
27 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
28 |
|
|
//
|
29 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
30 |
|
|
//
|
31 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
32 |
|
|
// modify it under the terms of the GNU General Public License as published
|
33 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
34 |
|
|
// your option) any later version.
|
35 |
|
|
//
|
36 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
37 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
38 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
39 |
|
|
// for more details.
|
40 |
|
|
//
|
41 |
|
|
// You should have received a copy of the GNU General Public License along
|
42 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
43 |
|
|
// target there if the PDF file isn't present.) If not, see
|
44 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
45 |
|
|
//
|
46 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
47 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
48 |
|
|
//
|
49 |
|
|
//
|
50 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
51 |
|
|
//
|
52 |
|
|
//
|
53 |
51 |
dgisselq |
`define LOWLOGIC_FLASH
|
54 |
2 |
dgisselq |
module toplevel(i_clk_8mhz,
|
55 |
|
|
o_qspi_cs_n, o_qspi_sck, io_qspi_dat,
|
56 |
|
|
i_btn, o_led, o_pwm, o_pwm_shutdown_n, o_pwm_gain,
|
57 |
46 |
dgisselq |
i_uart, o_uart, o_uart_rts_n, i_uart_cts_n,
|
58 |
2 |
dgisselq |
i_kp_row, o_kp_col,
|
59 |
|
|
i_gpio, o_gpio,
|
60 |
|
|
io_scl, io_sda);
|
61 |
|
|
input i_clk_8mhz;
|
62 |
|
|
//
|
63 |
|
|
// Quad SPI Flash
|
64 |
|
|
output wire o_qspi_cs_n;
|
65 |
|
|
output wire o_qspi_sck;
|
66 |
|
|
inout wire [3:0] io_qspi_dat;
|
67 |
|
|
//
|
68 |
|
|
// General purpose I/O
|
69 |
|
|
input [1:0] i_btn;
|
70 |
|
|
output wire [3:0] o_led;
|
71 |
|
|
output wire o_pwm, o_pwm_shutdown_n, o_pwm_gain;
|
72 |
|
|
//
|
73 |
|
|
// and our serial port
|
74 |
|
|
input i_uart;
|
75 |
|
|
output wire o_uart;
|
76 |
4 |
dgisselq |
// and it's associated control wires
|
77 |
46 |
dgisselq |
output wire o_uart_rts_n;
|
78 |
|
|
input i_uart_cts_n;
|
79 |
2 |
dgisselq |
// Our keypad
|
80 |
|
|
input [3:0] i_kp_row;
|
81 |
|
|
output wire [3:0] o_kp_col;
|
82 |
|
|
// and our GPIO
|
83 |
|
|
input [15:2] i_gpio;
|
84 |
|
|
output wire [15:2] o_gpio;
|
85 |
|
|
// and our I2C port
|
86 |
|
|
inout io_scl, io_sda;
|
87 |
|
|
|
88 |
|
|
|
89 |
4 |
dgisselq |
//
|
90 |
|
|
// Clock management
|
91 |
|
|
//
|
92 |
|
|
// Generate a usable clock for the rest of the board to run at.
|
93 |
|
|
//
|
94 |
51 |
dgisselq |
wire ck_zero_0, clk_s, clk_sn;
|
95 |
4 |
dgisselq |
|
96 |
|
|
// Clock frequency = (20 / 2) * 8Mhz = 80 MHz
|
97 |
|
|
// Clock period = 12.5 ns
|
98 |
2 |
dgisselq |
DCM_SP #(
|
99 |
|
|
.CLKDV_DIVIDE(2.0),
|
100 |
4 |
dgisselq |
.CLKFX_DIVIDE(2), // Here's the divide by two
|
101 |
|
|
.CLKFX_MULTIPLY(20), // and here's the multiply by 20
|
102 |
2 |
dgisselq |
.CLKIN_DIVIDE_BY_2("FALSE"),
|
103 |
|
|
.CLKIN_PERIOD(125.0),
|
104 |
|
|
.CLKOUT_PHASE_SHIFT("NONE"),
|
105 |
|
|
.CLK_FEEDBACK("1X"),
|
106 |
|
|
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"),
|
107 |
|
|
.DLL_FREQUENCY_MODE("LOW"),
|
108 |
|
|
.DUTY_CYCLE_CORRECTION("TRUE"),
|
109 |
|
|
.PHASE_SHIFT(0),
|
110 |
|
|
.STARTUP_WAIT("TRUE")
|
111 |
|
|
) u0( .CLKIN(i_clk_8mhz),
|
112 |
|
|
.CLK0(ck_zero_0),
|
113 |
|
|
.CLKFB(ck_zero_0),
|
114 |
|
|
.CLKFX(clk_s),
|
115 |
51 |
dgisselq |
.CLKFX180(clk_sn),
|
116 |
2 |
dgisselq |
.PSEN(1'b0),
|
117 |
|
|
.RST(1'b0));
|
118 |
|
|
|
119 |
46 |
dgisselq |
// Baud rate is set by clock rate / baud rate desired. Thus,
|
120 |
|
|
// 80 MHz / 9600 Baud = 8333, or about 0x208d. We choose a slow
|
121 |
|
|
// speed such as 9600 Baud to help the CPU keep up with the serial
|
122 |
|
|
// port rate.
|
123 |
|
|
localparam [30:0] UART_SETUP = 31'h4000208d;
|
124 |
2 |
dgisselq |
|
125 |
4 |
dgisselq |
//
|
126 |
|
|
// BUSMASTER
|
127 |
|
|
//
|
128 |
|
|
// Busmaster is so named because it contains the wishbone
|
129 |
|
|
// interconnect that all of the internal devices are hung off of.
|
130 |
|
|
// To reconfigure this device for another purpose, usually
|
131 |
|
|
// the busmaster module (i.e. the interconnect) is all that needs
|
132 |
|
|
// to be changed: either to add more devices, or to remove them.
|
133 |
|
|
//
|
134 |
51 |
dgisselq |
`ifdef LOWLOGIC_FLASH
|
135 |
|
|
wire [1:0] qspi_sck;
|
136 |
|
|
`else
|
137 |
|
|
wire qspi_sck;
|
138 |
|
|
`endif
|
139 |
|
|
wire qspi_cs_n;
|
140 |
2 |
dgisselq |
wire [3:0] qspi_dat;
|
141 |
|
|
wire [1:0] qspi_bmod;
|
142 |
|
|
wire [15:0] w_gpio;
|
143 |
|
|
|
144 |
46 |
dgisselq |
wire w_uart_rts_n;
|
145 |
|
|
busmaster #(.UART_SETUP(UART_SETUP))
|
146 |
|
|
masterbus(clk_s, 1'b0,
|
147 |
|
|
// Serial port wires
|
148 |
|
|
i_uart, o_uart_rts_n, o_uart, i_uart_cts_n,
|
149 |
2 |
dgisselq |
// SPI/SD-card flash
|
150 |
51 |
dgisselq |
qspi_cs_n, qspi_sck, qspi_dat, io_qspi_dat, qspi_bmod,
|
151 |
2 |
dgisselq |
// Board lights and switches
|
152 |
|
|
i_btn, o_led, o_pwm, { o_pwm_shutdown_n, o_pwm_gain },
|
153 |
|
|
// Keypad connections
|
154 |
|
|
i_kp_row, o_kp_col,
|
155 |
|
|
// GPIO lines
|
156 |
|
|
{ i_gpio, io_scl, io_sda }, w_gpio
|
157 |
|
|
);
|
158 |
|
|
|
159 |
4 |
dgisselq |
//
|
160 |
|
|
// Quad SPI support
|
161 |
|
|
//
|
162 |
|
|
// Supporting a Quad SPI port requires knowing which direction the
|
163 |
|
|
// wires are going at each instant, whether the device is in full
|
164 |
|
|
// Quad mode in, full quad mode out, or simply the normal SPI
|
165 |
|
|
// port with one wire in and one wire out. This utilizes our
|
166 |
|
|
// control wires (qspi_bmod) to set the output lines appropriately.
|
167 |
|
|
//
|
168 |
51 |
dgisselq |
//
|
169 |
|
|
// 2'b0? -- Normal SPI
|
170 |
|
|
// 2'b10 -- Quad Output
|
171 |
|
|
// 2'b11 -- Quad Input
|
172 |
|
|
`ifdef LOWLOGIC_FLASH
|
173 |
|
|
reg r_qspi_cs_n;
|
174 |
|
|
reg [1:0] r_qspi_bmod;
|
175 |
|
|
reg [3:0] r_qspi_dat, r_qspi_z;
|
176 |
|
|
reg [1:0] r_qspi_sck;
|
177 |
|
|
always @(posedge clk_s)
|
178 |
|
|
r_qspi_sck <= qspi_sck;
|
179 |
|
|
xoddr xqspi_sck({clk_s, clk_sn}, r_qspi_sck, o_qspi_sck);
|
180 |
|
|
initial r_qspi_cs_n = 1'b1;
|
181 |
|
|
initial r_qspi_z = 4'b1101;
|
182 |
|
|
always @(posedge clk_s)
|
183 |
|
|
begin
|
184 |
|
|
r_qspi_dat <= (qspi_bmod[1]) ? qspi_dat:{ 3'b111, qspi_dat[0]};
|
185 |
|
|
r_qspi_z <= (!qspi_bmod[1])? 4'b1101
|
186 |
|
|
: ((qspi_bmod[0]) ? 4'h0 : 4'hf);
|
187 |
|
|
r_qspi_cs_n <= qspi_cs_n;
|
188 |
|
|
end
|
189 |
|
|
|
190 |
|
|
assign o_qspi_cs_n = r_qspi_cs_n;
|
191 |
|
|
assign io_qspi_dat[0] = (r_qspi_z[0]) ? r_qspi_dat[0] : 1'bz;
|
192 |
|
|
assign io_qspi_dat[1] = (r_qspi_z[1]) ? r_qspi_dat[1] : 1'bz;
|
193 |
|
|
assign io_qspi_dat[2] = (r_qspi_z[2]) ? r_qspi_dat[2] : 1'bz;
|
194 |
|
|
assign io_qspi_dat[3] = (r_qspi_z[3]) ? r_qspi_dat[3] : 1'bz;
|
195 |
|
|
`else
|
196 |
|
|
assign io_qspi_dat = (!qspi_bmod[1])?({2'b11,1'bz,qspi_dat[0]})
|
197 |
2 |
dgisselq |
:((qspi_bmod[0])?(4'bzzzz):(qspi_dat[3:0]));
|
198 |
|
|
|
199 |
51 |
dgisselq |
assign o_qspi_cs_n = qspi_cs_n;
|
200 |
|
|
assign o_qspi_sck = qspi_sck;
|
201 |
|
|
`endif // LOWLOGIC_FLASH
|
202 |
|
|
|
203 |
4 |
dgisselq |
//
|
204 |
|
|
// I2C support
|
205 |
|
|
//
|
206 |
|
|
// Supporting I2C requires a couple quick adjustments to our
|
207 |
|
|
// GPIO lines. Specifically, we'll allow that when the output
|
208 |
|
|
// (i.e. w_gpio) pins are high, then the I2C lines float. They
|
209 |
46 |
dgisselq |
// will be (need to be) pulled up by a resistor in order to
|
210 |
4 |
dgisselq |
// match the I2C protocol, but this change makes them look/act
|
211 |
|
|
// more like GPIO pins.
|
212 |
|
|
//
|
213 |
2 |
dgisselq |
assign io_sda = (w_gpio[0]) ? 1'bz : 1'b0;
|
214 |
|
|
assign io_scl = (w_gpio[1]) ? 1'bz : 1'b0;
|
215 |
|
|
assign o_gpio[15:2] = w_gpio[15:2];
|
216 |
|
|
|
217 |
|
|
endmodule
|