OpenCores
URL https://opencores.org/ocsvn/s80186/s80186/trunk

Subversion Repositories s80186

[/] [s80186/] [trunk/] [vendor/] [googletest/] [googlemock/] [include/] [gmock/] [gmock-actions.h] - Blame information for rev 2

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 jamieiles
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
//
30
// Author: wan@google.com (Zhanyong Wan)
31
 
32
// Google Mock - a framework for writing C++ mock classes.
33
//
34
// This file implements some commonly used actions.
35
 
36
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
37
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38
 
39
#ifndef _WIN32_WCE
40
# include <errno.h>
41
#endif
42
 
43
#include <algorithm>
44
#include <string>
45
 
46
#include "gmock/internal/gmock-internal-utils.h"
47
#include "gmock/internal/gmock-port.h"
48
 
49
#if GTEST_HAS_STD_TYPE_TRAITS_  // Defined by gtest-port.h via gmock-port.h.
50
#include <type_traits>
51
#endif
52
 
53
namespace testing {
54
 
55
// To implement an action Foo, define:
56
//   1. a class FooAction that implements the ActionInterface interface, and
57
//   2. a factory function that creates an Action object from a
58
//      const FooAction*.
59
//
60
// The two-level delegation design follows that of Matcher, providing
61
// consistency for extension developers.  It also eases ownership
62
// management as Action objects can now be copied like plain values.
63
 
64
namespace internal {
65
 
66
template <typename F1, typename F2>
67
class ActionAdaptor;
68
 
69
// BuiltInDefaultValueGetter<T, true>::Get() returns a
70
// default-constructed T value.  BuiltInDefaultValueGetter<T,
71
// false>::Get() crashes with an error.
72
//
73
// This primary template is used when kDefaultConstructible is true.
74
template <typename T, bool kDefaultConstructible>
75
struct BuiltInDefaultValueGetter {
76
  static T Get() { return T(); }
77
};
78
template <typename T>
79
struct BuiltInDefaultValueGetter<T, false> {
80
  static T Get() {
81
    Assert(false, __FILE__, __LINE__,
82
           "Default action undefined for the function return type.");
83
    return internal::Invalid<T>();
84
    // The above statement will never be reached, but is required in
85
    // order for this function to compile.
86
  }
87
};
88
 
89
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
90
// for type T, which is NULL when T is a raw pointer type, 0 when T is
91
// a numeric type, false when T is bool, or "" when T is string or
92
// std::string.  In addition, in C++11 and above, it turns a
93
// default-constructed T value if T is default constructible.  For any
94
// other type T, the built-in default T value is undefined, and the
95
// function will abort the process.
96
template <typename T>
97
class BuiltInDefaultValue {
98
 public:
99
#if GTEST_HAS_STD_TYPE_TRAITS_
100
  // This function returns true iff type T has a built-in default value.
101
  static bool Exists() {
102
    return ::std::is_default_constructible<T>::value;
103
  }
104
 
105
  static T Get() {
106
    return BuiltInDefaultValueGetter<
107
        T, ::std::is_default_constructible<T>::value>::Get();
108
  }
109
 
110
#else  // GTEST_HAS_STD_TYPE_TRAITS_
111
  // This function returns true iff type T has a built-in default value.
112
  static bool Exists() {
113
    return false;
114
  }
115
 
116
  static T Get() {
117
    return BuiltInDefaultValueGetter<T, false>::Get();
118
  }
119
 
120
#endif  // GTEST_HAS_STD_TYPE_TRAITS_
121
};
122
 
123
// This partial specialization says that we use the same built-in
124
// default value for T and const T.
125
template <typename T>
126
class BuiltInDefaultValue<const T> {
127
 public:
128
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
129
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
130
};
131
 
132
// This partial specialization defines the default values for pointer
133
// types.
134
template <typename T>
135
class BuiltInDefaultValue<T*> {
136
 public:
137
  static bool Exists() { return true; }
138
  static T* Get() { return NULL; }
139
};
140
 
141
// The following specializations define the default values for
142
// specific types we care about.
143
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
144
  template <> \
145
  class BuiltInDefaultValue<type> { \
146
   public: \
147
    static bool Exists() { return true; } \
148
    static type Get() { return value; } \
149
  }
150
 
151
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
152
#if GTEST_HAS_GLOBAL_STRING
153
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
154
#endif  // GTEST_HAS_GLOBAL_STRING
155
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
156
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
157
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
158
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
159
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
160
 
161
// There's no need for a default action for signed wchar_t, as that
162
// type is the same as wchar_t for gcc, and invalid for MSVC.
163
//
164
// There's also no need for a default action for unsigned wchar_t, as
165
// that type is the same as unsigned int for gcc, and invalid for
166
// MSVC.
167
#if GMOCK_WCHAR_T_IS_NATIVE_
168
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
169
#endif
170
 
171
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
172
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
173
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
174
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
175
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
176
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
177
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
178
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
179
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
180
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
181
 
182
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
183
 
184
}  // namespace internal
185
 
186
// When an unexpected function call is encountered, Google Mock will
187
// let it return a default value if the user has specified one for its
188
// return type, or if the return type has a built-in default value;
189
// otherwise Google Mock won't know what value to return and will have
190
// to abort the process.
191
//
192
// The DefaultValue<T> class allows a user to specify the
193
// default value for a type T that is both copyable and publicly
194
// destructible (i.e. anything that can be used as a function return
195
// type).  The usage is:
196
//
197
//   // Sets the default value for type T to be foo.
198
//   DefaultValue<T>::Set(foo);
199
template <typename T>
200
class DefaultValue {
201
 public:
202
  // Sets the default value for type T; requires T to be
203
  // copy-constructable and have a public destructor.
204
  static void Set(T x) {
205
    delete producer_;
206
    producer_ = new FixedValueProducer(x);
207
  }
208
 
209
  // Provides a factory function to be called to generate the default value.
210
  // This method can be used even if T is only move-constructible, but it is not
211
  // limited to that case.
212
  typedef T (*FactoryFunction)();
213
  static void SetFactory(FactoryFunction factory) {
214
    delete producer_;
215
    producer_ = new FactoryValueProducer(factory);
216
  }
217
 
218
  // Unsets the default value for type T.
219
  static void Clear() {
220
    delete producer_;
221
    producer_ = NULL;
222
  }
223
 
224
  // Returns true iff the user has set the default value for type T.
225
  static bool IsSet() { return producer_ != NULL; }
226
 
227
  // Returns true if T has a default return value set by the user or there
228
  // exists a built-in default value.
229
  static bool Exists() {
230
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
231
  }
232
 
233
  // Returns the default value for type T if the user has set one;
234
  // otherwise returns the built-in default value. Requires that Exists()
235
  // is true, which ensures that the return value is well-defined.
236
  static T Get() {
237
    return producer_ == NULL ?
238
        internal::BuiltInDefaultValue<T>::Get() : producer_->Produce();
239
  }
240
 
241
 private:
242
  class ValueProducer {
243
   public:
244
    virtual ~ValueProducer() {}
245
    virtual T Produce() = 0;
246
  };
247
 
248
  class FixedValueProducer : public ValueProducer {
249
   public:
250
    explicit FixedValueProducer(T value) : value_(value) {}
251
    virtual T Produce() { return value_; }
252
 
253
   private:
254
    const T value_;
255
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
256
  };
257
 
258
  class FactoryValueProducer : public ValueProducer {
259
   public:
260
    explicit FactoryValueProducer(FactoryFunction factory)
261
        : factory_(factory) {}
262
    virtual T Produce() { return factory_(); }
263
 
264
   private:
265
    const FactoryFunction factory_;
266
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
267
  };
268
 
269
  static ValueProducer* producer_;
270
};
271
 
272
// This partial specialization allows a user to set default values for
273
// reference types.
274
template <typename T>
275
class DefaultValue<T&> {
276
 public:
277
  // Sets the default value for type T&.
278
  static void Set(T& x) {  // NOLINT
279
    address_ = &x;
280
  }
281
 
282
  // Unsets the default value for type T&.
283
  static void Clear() {
284
    address_ = NULL;
285
  }
286
 
287
  // Returns true iff the user has set the default value for type T&.
288
  static bool IsSet() { return address_ != NULL; }
289
 
290
  // Returns true if T has a default return value set by the user or there
291
  // exists a built-in default value.
292
  static bool Exists() {
293
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
294
  }
295
 
296
  // Returns the default value for type T& if the user has set one;
297
  // otherwise returns the built-in default value if there is one;
298
  // otherwise aborts the process.
299
  static T& Get() {
300
    return address_ == NULL ?
301
        internal::BuiltInDefaultValue<T&>::Get() : *address_;
302
  }
303
 
304
 private:
305
  static T* address_;
306
};
307
 
308
// This specialization allows DefaultValue<void>::Get() to
309
// compile.
310
template <>
311
class DefaultValue<void> {
312
 public:
313
  static bool Exists() { return true; }
314
  static void Get() {}
315
};
316
 
317
// Points to the user-set default value for type T.
318
template <typename T>
319
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;
320
 
321
// Points to the user-set default value for type T&.
322
template <typename T>
323
T* DefaultValue<T&>::address_ = NULL;
324
 
325
// Implement this interface to define an action for function type F.
326
template <typename F>
327
class ActionInterface {
328
 public:
329
  typedef typename internal::Function<F>::Result Result;
330
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
331
 
332
  ActionInterface() {}
333
  virtual ~ActionInterface() {}
334
 
335
  // Performs the action.  This method is not const, as in general an
336
  // action can have side effects and be stateful.  For example, a
337
  // get-the-next-element-from-the-collection action will need to
338
  // remember the current element.
339
  virtual Result Perform(const ArgumentTuple& args) = 0;
340
 
341
 private:
342
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
343
};
344
 
345
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
346
// object that represents an action to be taken when a mock function
347
// of type F is called.  The implementation of Action<T> is just a
348
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
349
// Don't inherit from Action!
350
//
351
// You can view an object implementing ActionInterface<F> as a
352
// concrete action (including its current state), and an Action<F>
353
// object as a handle to it.
354
template <typename F>
355
class Action {
356
 public:
357
  typedef typename internal::Function<F>::Result Result;
358
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
359
 
360
  // Constructs a null Action.  Needed for storing Action objects in
361
  // STL containers.
362
  Action() : impl_(NULL) {}
363
 
364
  // Constructs an Action from its implementation.  A NULL impl is
365
  // used to represent the "do-default" action.
366
  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
367
 
368
  // Copy constructor.
369
  Action(const Action& action) : impl_(action.impl_) {}
370
 
371
  // This constructor allows us to turn an Action<Func> object into an
372
  // Action<F>, as long as F's arguments can be implicitly converted
373
  // to Func's and Func's return type can be implicitly converted to
374
  // F's.
375
  template <typename Func>
376
  explicit Action(const Action<Func>& action);
377
 
378
  // Returns true iff this is the DoDefault() action.
379
  bool IsDoDefault() const { return impl_.get() == NULL; }
380
 
381
  // Performs the action.  Note that this method is const even though
382
  // the corresponding method in ActionInterface is not.  The reason
383
  // is that a const Action<F> means that it cannot be re-bound to
384
  // another concrete action, not that the concrete action it binds to
385
  // cannot change state.  (Think of the difference between a const
386
  // pointer and a pointer to const.)
387
  Result Perform(const ArgumentTuple& args) const {
388
    internal::Assert(
389
        !IsDoDefault(), __FILE__, __LINE__,
390
        "You are using DoDefault() inside a composite action like "
391
        "DoAll() or WithArgs().  This is not supported for technical "
392
        "reasons.  Please instead spell out the default action, or "
393
        "assign the default action to an Action variable and use "
394
        "the variable in various places.");
395
    return impl_->Perform(args);
396
  }
397
 
398
 private:
399
  template <typename F1, typename F2>
400
  friend class internal::ActionAdaptor;
401
 
402
  internal::linked_ptr<ActionInterface<F> > impl_;
403
};
404
 
405
// The PolymorphicAction class template makes it easy to implement a
406
// polymorphic action (i.e. an action that can be used in mock
407
// functions of than one type, e.g. Return()).
408
//
409
// To define a polymorphic action, a user first provides a COPYABLE
410
// implementation class that has a Perform() method template:
411
//
412
//   class FooAction {
413
//    public:
414
//     template <typename Result, typename ArgumentTuple>
415
//     Result Perform(const ArgumentTuple& args) const {
416
//       // Processes the arguments and returns a result, using
417
//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
418
//     }
419
//     ...
420
//   };
421
//
422
// Then the user creates the polymorphic action using
423
// MakePolymorphicAction(object) where object has type FooAction.  See
424
// the definition of Return(void) and SetArgumentPointee<N>(value) for
425
// complete examples.
426
template <typename Impl>
427
class PolymorphicAction {
428
 public:
429
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
430
 
431
  template <typename F>
432
  operator Action<F>() const {
433
    return Action<F>(new MonomorphicImpl<F>(impl_));
434
  }
435
 
436
 private:
437
  template <typename F>
438
  class MonomorphicImpl : public ActionInterface<F> {
439
   public:
440
    typedef typename internal::Function<F>::Result Result;
441
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
442
 
443
    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
444
 
445
    virtual Result Perform(const ArgumentTuple& args) {
446
      return impl_.template Perform<Result>(args);
447
    }
448
 
449
   private:
450
    Impl impl_;
451
 
452
    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
453
  };
454
 
455
  Impl impl_;
456
 
457
  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
458
};
459
 
460
// Creates an Action from its implementation and returns it.  The
461
// created Action object owns the implementation.
462
template <typename F>
463
Action<F> MakeAction(ActionInterface<F>* impl) {
464
  return Action<F>(impl);
465
}
466
 
467
// Creates a polymorphic action from its implementation.  This is
468
// easier to use than the PolymorphicAction<Impl> constructor as it
469
// doesn't require you to explicitly write the template argument, e.g.
470
//
471
//   MakePolymorphicAction(foo);
472
// vs
473
//   PolymorphicAction<TypeOfFoo>(foo);
474
template <typename Impl>
475
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
476
  return PolymorphicAction<Impl>(impl);
477
}
478
 
479
namespace internal {
480
 
481
// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
482
// and F1 are compatible.
483
template <typename F1, typename F2>
484
class ActionAdaptor : public ActionInterface<F1> {
485
 public:
486
  typedef typename internal::Function<F1>::Result Result;
487
  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
488
 
489
  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
490
 
491
  virtual Result Perform(const ArgumentTuple& args) {
492
    return impl_->Perform(args);
493
  }
494
 
495
 private:
496
  const internal::linked_ptr<ActionInterface<F2> > impl_;
497
 
498
  GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
499
};
500
 
501
// Helper struct to specialize ReturnAction to execute a move instead of a copy
502
// on return. Useful for move-only types, but could be used on any type.
503
template <typename T>
504
struct ByMoveWrapper {
505
  explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
506
  T payload;
507
};
508
 
509
// Implements the polymorphic Return(x) action, which can be used in
510
// any function that returns the type of x, regardless of the argument
511
// types.
512
//
513
// Note: The value passed into Return must be converted into
514
// Function<F>::Result when this action is cast to Action<F> rather than
515
// when that action is performed. This is important in scenarios like
516
//
517
// MOCK_METHOD1(Method, T(U));
518
// ...
519
// {
520
//   Foo foo;
521
//   X x(&foo);
522
//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
523
// }
524
//
525
// In the example above the variable x holds reference to foo which leaves
526
// scope and gets destroyed.  If copying X just copies a reference to foo,
527
// that copy will be left with a hanging reference.  If conversion to T
528
// makes a copy of foo, the above code is safe. To support that scenario, we
529
// need to make sure that the type conversion happens inside the EXPECT_CALL
530
// statement, and conversion of the result of Return to Action<T(U)> is a
531
// good place for that.
532
//
533
template <typename R>
534
class ReturnAction {
535
 public:
536
  // Constructs a ReturnAction object from the value to be returned.
537
  // 'value' is passed by value instead of by const reference in order
538
  // to allow Return("string literal") to compile.
539
  explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}
540
 
541
  // This template type conversion operator allows Return(x) to be
542
  // used in ANY function that returns x's type.
543
  template <typename F>
544
  operator Action<F>() const {
545
    // Assert statement belongs here because this is the best place to verify
546
    // conditions on F. It produces the clearest error messages
547
    // in most compilers.
548
    // Impl really belongs in this scope as a local class but can't
549
    // because MSVC produces duplicate symbols in different translation units
550
    // in this case. Until MS fixes that bug we put Impl into the class scope
551
    // and put the typedef both here (for use in assert statement) and
552
    // in the Impl class. But both definitions must be the same.
553
    typedef typename Function<F>::Result Result;
554
    GTEST_COMPILE_ASSERT_(
555
        !is_reference<Result>::value,
556
        use_ReturnRef_instead_of_Return_to_return_a_reference);
557
    return Action<F>(new Impl<R, F>(value_));
558
  }
559
 
560
 private:
561
  // Implements the Return(x) action for a particular function type F.
562
  template <typename R_, typename F>
563
  class Impl : public ActionInterface<F> {
564
   public:
565
    typedef typename Function<F>::Result Result;
566
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
567
 
568
    // The implicit cast is necessary when Result has more than one
569
    // single-argument constructor (e.g. Result is std::vector<int>) and R
570
    // has a type conversion operator template.  In that case, value_(value)
571
    // won't compile as the compiler doesn't known which constructor of
572
    // Result to call.  ImplicitCast_ forces the compiler to convert R to
573
    // Result without considering explicit constructors, thus resolving the
574
    // ambiguity. value_ is then initialized using its copy constructor.
575
    explicit Impl(const linked_ptr<R>& value)
576
        : value_before_cast_(*value),
577
          value_(ImplicitCast_<Result>(value_before_cast_)) {}
578
 
579
    virtual Result Perform(const ArgumentTuple&) { return value_; }
580
 
581
   private:
582
    GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
583
                          Result_cannot_be_a_reference_type);
584
    // We save the value before casting just in case it is being cast to a
585
    // wrapper type.
586
    R value_before_cast_;
587
    Result value_;
588
 
589
    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
590
  };
591
 
592
  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
593
  // move its contents instead.
594
  template <typename R_, typename F>
595
  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
596
   public:
597
    typedef typename Function<F>::Result Result;
598
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
599
 
600
    explicit Impl(const linked_ptr<R>& wrapper)
601
        : performed_(false), wrapper_(wrapper) {}
602
 
603
    virtual Result Perform(const ArgumentTuple&) {
604
      GTEST_CHECK_(!performed_)
605
          << "A ByMove() action should only be performed once.";
606
      performed_ = true;
607
      return internal::move(wrapper_->payload);
608
    }
609
 
610
   private:
611
    bool performed_;
612
    const linked_ptr<R> wrapper_;
613
 
614
    GTEST_DISALLOW_ASSIGN_(Impl);
615
  };
616
 
617
  const linked_ptr<R> value_;
618
 
619
  GTEST_DISALLOW_ASSIGN_(ReturnAction);
620
};
621
 
622
// Implements the ReturnNull() action.
623
class ReturnNullAction {
624
 public:
625
  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
626
  // this is enforced by returning nullptr, and in non-C++11 by asserting a
627
  // pointer type on compile time.
628
  template <typename Result, typename ArgumentTuple>
629
  static Result Perform(const ArgumentTuple&) {
630
#if GTEST_LANG_CXX11
631
    return nullptr;
632
#else
633
    GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
634
                          ReturnNull_can_be_used_to_return_a_pointer_only);
635
    return NULL;
636
#endif  // GTEST_LANG_CXX11
637
  }
638
};
639
 
640
// Implements the Return() action.
641
class ReturnVoidAction {
642
 public:
643
  // Allows Return() to be used in any void-returning function.
644
  template <typename Result, typename ArgumentTuple>
645
  static void Perform(const ArgumentTuple&) {
646
    CompileAssertTypesEqual<void, Result>();
647
  }
648
};
649
 
650
// Implements the polymorphic ReturnRef(x) action, which can be used
651
// in any function that returns a reference to the type of x,
652
// regardless of the argument types.
653
template <typename T>
654
class ReturnRefAction {
655
 public:
656
  // Constructs a ReturnRefAction object from the reference to be returned.
657
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
658
 
659
  // This template type conversion operator allows ReturnRef(x) to be
660
  // used in ANY function that returns a reference to x's type.
661
  template <typename F>
662
  operator Action<F>() const {
663
    typedef typename Function<F>::Result Result;
664
    // Asserts that the function return type is a reference.  This
665
    // catches the user error of using ReturnRef(x) when Return(x)
666
    // should be used, and generates some helpful error message.
667
    GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
668
                          use_Return_instead_of_ReturnRef_to_return_a_value);
669
    return Action<F>(new Impl<F>(ref_));
670
  }
671
 
672
 private:
673
  // Implements the ReturnRef(x) action for a particular function type F.
674
  template <typename F>
675
  class Impl : public ActionInterface<F> {
676
   public:
677
    typedef typename Function<F>::Result Result;
678
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
679
 
680
    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
681
 
682
    virtual Result Perform(const ArgumentTuple&) {
683
      return ref_;
684
    }
685
 
686
   private:
687
    T& ref_;
688
 
689
    GTEST_DISALLOW_ASSIGN_(Impl);
690
  };
691
 
692
  T& ref_;
693
 
694
  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
695
};
696
 
697
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
698
// used in any function that returns a reference to the type of x,
699
// regardless of the argument types.
700
template <typename T>
701
class ReturnRefOfCopyAction {
702
 public:
703
  // Constructs a ReturnRefOfCopyAction object from the reference to
704
  // be returned.
705
  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
706
 
707
  // This template type conversion operator allows ReturnRefOfCopy(x) to be
708
  // used in ANY function that returns a reference to x's type.
709
  template <typename F>
710
  operator Action<F>() const {
711
    typedef typename Function<F>::Result Result;
712
    // Asserts that the function return type is a reference.  This
713
    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
714
    // should be used, and generates some helpful error message.
715
    GTEST_COMPILE_ASSERT_(
716
        internal::is_reference<Result>::value,
717
        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
718
    return Action<F>(new Impl<F>(value_));
719
  }
720
 
721
 private:
722
  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
723
  template <typename F>
724
  class Impl : public ActionInterface<F> {
725
   public:
726
    typedef typename Function<F>::Result Result;
727
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
728
 
729
    explicit Impl(const T& value) : value_(value) {}  // NOLINT
730
 
731
    virtual Result Perform(const ArgumentTuple&) {
732
      return value_;
733
    }
734
 
735
   private:
736
    T value_;
737
 
738
    GTEST_DISALLOW_ASSIGN_(Impl);
739
  };
740
 
741
  const T value_;
742
 
743
  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
744
};
745
 
746
// Implements the polymorphic DoDefault() action.
747
class DoDefaultAction {
748
 public:
749
  // This template type conversion operator allows DoDefault() to be
750
  // used in any function.
751
  template <typename F>
752
  operator Action<F>() const { return Action<F>(NULL); }
753
};
754
 
755
// Implements the Assign action to set a given pointer referent to a
756
// particular value.
757
template <typename T1, typename T2>
758
class AssignAction {
759
 public:
760
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
761
 
762
  template <typename Result, typename ArgumentTuple>
763
  void Perform(const ArgumentTuple& /* args */) const {
764
    *ptr_ = value_;
765
  }
766
 
767
 private:
768
  T1* const ptr_;
769
  const T2 value_;
770
 
771
  GTEST_DISALLOW_ASSIGN_(AssignAction);
772
};
773
 
774
#if !GTEST_OS_WINDOWS_MOBILE
775
 
776
// Implements the SetErrnoAndReturn action to simulate return from
777
// various system calls and libc functions.
778
template <typename T>
779
class SetErrnoAndReturnAction {
780
 public:
781
  SetErrnoAndReturnAction(int errno_value, T result)
782
      : errno_(errno_value),
783
        result_(result) {}
784
  template <typename Result, typename ArgumentTuple>
785
  Result Perform(const ArgumentTuple& /* args */) const {
786
    errno = errno_;
787
    return result_;
788
  }
789
 
790
 private:
791
  const int errno_;
792
  const T result_;
793
 
794
  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
795
};
796
 
797
#endif  // !GTEST_OS_WINDOWS_MOBILE
798
 
799
// Implements the SetArgumentPointee<N>(x) action for any function
800
// whose N-th argument (0-based) is a pointer to x's type.  The
801
// template parameter kIsProto is true iff type A is ProtocolMessage,
802
// proto2::Message, or a sub-class of those.
803
template <size_t N, typename A, bool kIsProto>
804
class SetArgumentPointeeAction {
805
 public:
806
  // Constructs an action that sets the variable pointed to by the
807
  // N-th function argument to 'value'.
808
  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
809
 
810
  template <typename Result, typename ArgumentTuple>
811
  void Perform(const ArgumentTuple& args) const {
812
    CompileAssertTypesEqual<void, Result>();
813
    *::testing::get<N>(args) = value_;
814
  }
815
 
816
 private:
817
  const A value_;
818
 
819
  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
820
};
821
 
822
template <size_t N, typename Proto>
823
class SetArgumentPointeeAction<N, Proto, true> {
824
 public:
825
  // Constructs an action that sets the variable pointed to by the
826
  // N-th function argument to 'proto'.  Both ProtocolMessage and
827
  // proto2::Message have the CopyFrom() method, so the same
828
  // implementation works for both.
829
  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
830
    proto_->CopyFrom(proto);
831
  }
832
 
833
  template <typename Result, typename ArgumentTuple>
834
  void Perform(const ArgumentTuple& args) const {
835
    CompileAssertTypesEqual<void, Result>();
836
    ::testing::get<N>(args)->CopyFrom(*proto_);
837
  }
838
 
839
 private:
840
  const internal::linked_ptr<Proto> proto_;
841
 
842
  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
843
};
844
 
845
// Implements the InvokeWithoutArgs(f) action.  The template argument
846
// FunctionImpl is the implementation type of f, which can be either a
847
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
848
// Action<F> as long as f's type is compatible with F (i.e. f can be
849
// assigned to a tr1::function<F>).
850
template <typename FunctionImpl>
851
class InvokeWithoutArgsAction {
852
 public:
853
  // The c'tor makes a copy of function_impl (either a function
854
  // pointer or a functor).
855
  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
856
      : function_impl_(function_impl) {}
857
 
858
  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
859
  // compatible with f.
860
  template <typename Result, typename ArgumentTuple>
861
  Result Perform(const ArgumentTuple&) { return function_impl_(); }
862
 
863
 private:
864
  FunctionImpl function_impl_;
865
 
866
  GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
867
};
868
 
869
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
870
template <class Class, typename MethodPtr>
871
class InvokeMethodWithoutArgsAction {
872
 public:
873
  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
874
      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
875
 
876
  template <typename Result, typename ArgumentTuple>
877
  Result Perform(const ArgumentTuple&) const {
878
    return (obj_ptr_->*method_ptr_)();
879
  }
880
 
881
 private:
882
  Class* const obj_ptr_;
883
  const MethodPtr method_ptr_;
884
 
885
  GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
886
};
887
 
888
// Implements the IgnoreResult(action) action.
889
template <typename A>
890
class IgnoreResultAction {
891
 public:
892
  explicit IgnoreResultAction(const A& action) : action_(action) {}
893
 
894
  template <typename F>
895
  operator Action<F>() const {
896
    // Assert statement belongs here because this is the best place to verify
897
    // conditions on F. It produces the clearest error messages
898
    // in most compilers.
899
    // Impl really belongs in this scope as a local class but can't
900
    // because MSVC produces duplicate symbols in different translation units
901
    // in this case. Until MS fixes that bug we put Impl into the class scope
902
    // and put the typedef both here (for use in assert statement) and
903
    // in the Impl class. But both definitions must be the same.
904
    typedef typename internal::Function<F>::Result Result;
905
 
906
    // Asserts at compile time that F returns void.
907
    CompileAssertTypesEqual<void, Result>();
908
 
909
    return Action<F>(new Impl<F>(action_));
910
  }
911
 
912
 private:
913
  template <typename F>
914
  class Impl : public ActionInterface<F> {
915
   public:
916
    typedef typename internal::Function<F>::Result Result;
917
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
918
 
919
    explicit Impl(const A& action) : action_(action) {}
920
 
921
    virtual void Perform(const ArgumentTuple& args) {
922
      // Performs the action and ignores its result.
923
      action_.Perform(args);
924
    }
925
 
926
   private:
927
    // Type OriginalFunction is the same as F except that its return
928
    // type is IgnoredValue.
929
    typedef typename internal::Function<F>::MakeResultIgnoredValue
930
        OriginalFunction;
931
 
932
    const Action<OriginalFunction> action_;
933
 
934
    GTEST_DISALLOW_ASSIGN_(Impl);
935
  };
936
 
937
  const A action_;
938
 
939
  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
940
};
941
 
942
// A ReferenceWrapper<T> object represents a reference to type T,
943
// which can be either const or not.  It can be explicitly converted
944
// from, and implicitly converted to, a T&.  Unlike a reference,
945
// ReferenceWrapper<T> can be copied and can survive template type
946
// inference.  This is used to support by-reference arguments in the
947
// InvokeArgument<N>(...) action.  The idea was from "reference
948
// wrappers" in tr1, which we don't have in our source tree yet.
949
template <typename T>
950
class ReferenceWrapper {
951
 public:
952
  // Constructs a ReferenceWrapper<T> object from a T&.
953
  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
954
 
955
  // Allows a ReferenceWrapper<T> object to be implicitly converted to
956
  // a T&.
957
  operator T&() const { return *pointer_; }
958
 private:
959
  T* pointer_;
960
};
961
 
962
// Allows the expression ByRef(x) to be printed as a reference to x.
963
template <typename T>
964
void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
965
  T& value = ref;
966
  UniversalPrinter<T&>::Print(value, os);
967
}
968
 
969
// Does two actions sequentially.  Used for implementing the DoAll(a1,
970
// a2, ...) action.
971
template <typename Action1, typename Action2>
972
class DoBothAction {
973
 public:
974
  DoBothAction(Action1 action1, Action2 action2)
975
      : action1_(action1), action2_(action2) {}
976
 
977
  // This template type conversion operator allows DoAll(a1, ..., a_n)
978
  // to be used in ANY function of compatible type.
979
  template <typename F>
980
  operator Action<F>() const {
981
    return Action<F>(new Impl<F>(action1_, action2_));
982
  }
983
 
984
 private:
985
  // Implements the DoAll(...) action for a particular function type F.
986
  template <typename F>
987
  class Impl : public ActionInterface<F> {
988
   public:
989
    typedef typename Function<F>::Result Result;
990
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
991
    typedef typename Function<F>::MakeResultVoid VoidResult;
992
 
993
    Impl(const Action<VoidResult>& action1, const Action<F>& action2)
994
        : action1_(action1), action2_(action2) {}
995
 
996
    virtual Result Perform(const ArgumentTuple& args) {
997
      action1_.Perform(args);
998
      return action2_.Perform(args);
999
    }
1000
 
1001
   private:
1002
    const Action<VoidResult> action1_;
1003
    const Action<F> action2_;
1004
 
1005
    GTEST_DISALLOW_ASSIGN_(Impl);
1006
  };
1007
 
1008
  Action1 action1_;
1009
  Action2 action2_;
1010
 
1011
  GTEST_DISALLOW_ASSIGN_(DoBothAction);
1012
};
1013
 
1014
}  // namespace internal
1015
 
1016
// An Unused object can be implicitly constructed from ANY value.
1017
// This is handy when defining actions that ignore some or all of the
1018
// mock function arguments.  For example, given
1019
//
1020
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1021
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
1022
//
1023
// instead of
1024
//
1025
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
1026
//     return sqrt(x*x + y*y);
1027
//   }
1028
//   double DistanceToOriginWithIndex(int index, double x, double y) {
1029
//     return sqrt(x*x + y*y);
1030
//   }
1031
//   ...
1032
//   EXEPCT_CALL(mock, Foo("abc", _, _))
1033
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
1034
//   EXEPCT_CALL(mock, Bar(5, _, _))
1035
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
1036
//
1037
// you could write
1038
//
1039
//   // We can declare any uninteresting argument as Unused.
1040
//   double DistanceToOrigin(Unused, double x, double y) {
1041
//     return sqrt(x*x + y*y);
1042
//   }
1043
//   ...
1044
//   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1045
//   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1046
typedef internal::IgnoredValue Unused;
1047
 
1048
// This constructor allows us to turn an Action<From> object into an
1049
// Action<To>, as long as To's arguments can be implicitly converted
1050
// to From's and From's return type cann be implicitly converted to
1051
// To's.
1052
template <typename To>
1053
template <typename From>
1054
Action<To>::Action(const Action<From>& from)
1055
    : impl_(new internal::ActionAdaptor<To, From>(from)) {}
1056
 
1057
// Creates an action that returns 'value'.  'value' is passed by value
1058
// instead of const reference - otherwise Return("string literal")
1059
// will trigger a compiler error about using array as initializer.
1060
template <typename R>
1061
internal::ReturnAction<R> Return(R value) {
1062
  return internal::ReturnAction<R>(internal::move(value));
1063
}
1064
 
1065
// Creates an action that returns NULL.
1066
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1067
  return MakePolymorphicAction(internal::ReturnNullAction());
1068
}
1069
 
1070
// Creates an action that returns from a void function.
1071
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1072
  return MakePolymorphicAction(internal::ReturnVoidAction());
1073
}
1074
 
1075
// Creates an action that returns the reference to a variable.
1076
template <typename R>
1077
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1078
  return internal::ReturnRefAction<R>(x);
1079
}
1080
 
1081
// Creates an action that returns the reference to a copy of the
1082
// argument.  The copy is created when the action is constructed and
1083
// lives as long as the action.
1084
template <typename R>
1085
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1086
  return internal::ReturnRefOfCopyAction<R>(x);
1087
}
1088
 
1089
// Modifies the parent action (a Return() action) to perform a move of the
1090
// argument instead of a copy.
1091
// Return(ByMove()) actions can only be executed once and will assert this
1092
// invariant.
1093
template <typename R>
1094
internal::ByMoveWrapper<R> ByMove(R x) {
1095
  return internal::ByMoveWrapper<R>(internal::move(x));
1096
}
1097
 
1098
// Creates an action that does the default action for the give mock function.
1099
inline internal::DoDefaultAction DoDefault() {
1100
  return internal::DoDefaultAction();
1101
}
1102
 
1103
// Creates an action that sets the variable pointed by the N-th
1104
// (0-based) function argument to 'value'.
1105
template <size_t N, typename T>
1106
PolymorphicAction<
1107
  internal::SetArgumentPointeeAction<
1108
    N, T, internal::IsAProtocolMessage<T>::value> >
1109
SetArgPointee(const T& x) {
1110
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1111
      N, T, internal::IsAProtocolMessage<T>::value>(x));
1112
}
1113
 
1114
#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
1115
// This overload allows SetArgPointee() to accept a string literal.
1116
// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
1117
// this overload from the templated version and emit a compile error.
1118
template <size_t N>
1119
PolymorphicAction<
1120
  internal::SetArgumentPointeeAction<N, const char*, false> >
1121
SetArgPointee(const char* p) {
1122
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1123
      N, const char*, false>(p));
1124
}
1125
 
1126
template <size_t N>
1127
PolymorphicAction<
1128
  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1129
SetArgPointee(const wchar_t* p) {
1130
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1131
      N, const wchar_t*, false>(p));
1132
}
1133
#endif
1134
 
1135
// The following version is DEPRECATED.
1136
template <size_t N, typename T>
1137
PolymorphicAction<
1138
  internal::SetArgumentPointeeAction<
1139
    N, T, internal::IsAProtocolMessage<T>::value> >
1140
SetArgumentPointee(const T& x) {
1141
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1142
      N, T, internal::IsAProtocolMessage<T>::value>(x));
1143
}
1144
 
1145
// Creates an action that sets a pointer referent to a given value.
1146
template <typename T1, typename T2>
1147
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1148
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1149
}
1150
 
1151
#if !GTEST_OS_WINDOWS_MOBILE
1152
 
1153
// Creates an action that sets errno and returns the appropriate error.
1154
template <typename T>
1155
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1156
SetErrnoAndReturn(int errval, T result) {
1157
  return MakePolymorphicAction(
1158
      internal::SetErrnoAndReturnAction<T>(errval, result));
1159
}
1160
 
1161
#endif  // !GTEST_OS_WINDOWS_MOBILE
1162
 
1163
// Various overloads for InvokeWithoutArgs().
1164
 
1165
// Creates an action that invokes 'function_impl' with no argument.
1166
template <typename FunctionImpl>
1167
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1168
InvokeWithoutArgs(FunctionImpl function_impl) {
1169
  return MakePolymorphicAction(
1170
      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
1171
}
1172
 
1173
// Creates an action that invokes the given method on the given object
1174
// with no argument.
1175
template <class Class, typename MethodPtr>
1176
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1177
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1178
  return MakePolymorphicAction(
1179
      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1180
          obj_ptr, method_ptr));
1181
}
1182
 
1183
// Creates an action that performs an_action and throws away its
1184
// result.  In other words, it changes the return type of an_action to
1185
// void.  an_action MUST NOT return void, or the code won't compile.
1186
template <typename A>
1187
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1188
  return internal::IgnoreResultAction<A>(an_action);
1189
}
1190
 
1191
// Creates a reference wrapper for the given L-value.  If necessary,
1192
// you can explicitly specify the type of the reference.  For example,
1193
// suppose 'derived' is an object of type Derived, ByRef(derived)
1194
// would wrap a Derived&.  If you want to wrap a const Base& instead,
1195
// where Base is a base class of Derived, just write:
1196
//
1197
//   ByRef<const Base>(derived)
1198
template <typename T>
1199
inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
1200
  return internal::ReferenceWrapper<T>(l_value);
1201
}
1202
 
1203
}  // namespace testing
1204
 
1205
#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.