OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [libgfortran/] [generated/] [minloc1_16_r10.c] - Blame information for rev 14

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 14 jlechner
/* Implementation of the MINLOC intrinsic
2
   Copyright 2002 Free Software Foundation, Inc.
3
   Contributed by Paul Brook <paul@nowt.org>
4
 
5
This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
 
7
Libgfortran is free software; you can redistribute it and/or
8
modify it under the terms of the GNU General Public
9
License as published by the Free Software Foundation; either
10
version 2 of the License, or (at your option) any later version.
11
 
12
In addition to the permissions in the GNU General Public License, the
13
Free Software Foundation gives you unlimited permission to link the
14
compiled version of this file into combinations with other programs,
15
and to distribute those combinations without any restriction coming
16
from the use of this file.  (The General Public License restrictions
17
do apply in other respects; for example, they cover modification of
18
the file, and distribution when not linked into a combine
19
executable.)
20
 
21
Libgfortran is distributed in the hope that it will be useful,
22
but WITHOUT ANY WARRANTY; without even the implied warranty of
23
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24
GNU General Public License for more details.
25
 
26
You should have received a copy of the GNU General Public
27
License along with libgfortran; see the file COPYING.  If not,
28
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29
Boston, MA 02110-1301, USA.  */
30
 
31
#include "config.h"
32
#include <stdlib.h>
33
#include <assert.h>
34
#include <float.h>
35
#include <limits.h>
36
#include "libgfortran.h"
37
 
38
 
39
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_16)
40
 
41
 
42
extern void minloc1_16_r10 (gfc_array_i16 *, gfc_array_r10 *, index_type *);
43
export_proto(minloc1_16_r10);
44
 
45
void
46
minloc1_16_r10 (gfc_array_i16 *retarray, gfc_array_r10 *array, index_type *pdim)
47
{
48
  index_type count[GFC_MAX_DIMENSIONS];
49
  index_type extent[GFC_MAX_DIMENSIONS];
50
  index_type sstride[GFC_MAX_DIMENSIONS];
51
  index_type dstride[GFC_MAX_DIMENSIONS];
52
  GFC_REAL_10 *base;
53
  GFC_INTEGER_16 *dest;
54
  index_type rank;
55
  index_type n;
56
  index_type len;
57
  index_type delta;
58
  index_type dim;
59
 
60
  /* Make dim zero based to avoid confusion.  */
61
  dim = (*pdim) - 1;
62
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
63
 
64
  /* TODO:  It should be a front end job to correctly set the strides.  */
65
 
66
  if (array->dim[0].stride == 0)
67
    array->dim[0].stride = 1;
68
 
69
  len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
70
  delta = array->dim[dim].stride;
71
 
72
  for (n = 0; n < dim; n++)
73
    {
74
      sstride[n] = array->dim[n].stride;
75
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
76
    }
77
  for (n = dim; n < rank; n++)
78
    {
79
      sstride[n] = array->dim[n + 1].stride;
80
      extent[n] =
81
        array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
82
    }
83
 
84
  if (retarray->data == NULL)
85
    {
86
      for (n = 0; n < rank; n++)
87
        {
88
          retarray->dim[n].lbound = 0;
89
          retarray->dim[n].ubound = extent[n]-1;
90
          if (n == 0)
91
            retarray->dim[n].stride = 1;
92
          else
93
            retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
94
        }
95
 
96
      retarray->data
97
         = internal_malloc_size (sizeof (GFC_INTEGER_16)
98
                                 * retarray->dim[rank-1].stride
99
                                 * extent[rank-1]);
100
      retarray->offset = 0;
101
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
102
    }
103
  else
104
    {
105
      if (retarray->dim[0].stride == 0)
106
        retarray->dim[0].stride = 1;
107
 
108
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
109
        runtime_error ("rank of return array incorrect");
110
    }
111
 
112
  for (n = 0; n < rank; n++)
113
    {
114
      count[n] = 0;
115
      dstride[n] = retarray->dim[n].stride;
116
      if (extent[n] <= 0)
117
        len = 0;
118
    }
119
 
120
  base = array->data;
121
  dest = retarray->data;
122
 
123
  while (base)
124
    {
125
      GFC_REAL_10 *src;
126
      GFC_INTEGER_16 result;
127
      src = base;
128
      {
129
 
130
  GFC_REAL_10 minval;
131
  minval = GFC_REAL_10_HUGE;
132
  result = 0;
133
        if (len <= 0)
134
          *dest = 0;
135
        else
136
          {
137
            for (n = 0; n < len; n++, src += delta)
138
              {
139
 
140
  if (*src < minval || !result)
141
    {
142
      minval = *src;
143
      result = (GFC_INTEGER_16)n + 1;
144
    }
145
          }
146
            *dest = result;
147
          }
148
      }
149
      /* Advance to the next element.  */
150
      count[0]++;
151
      base += sstride[0];
152
      dest += dstride[0];
153
      n = 0;
154
      while (count[n] == extent[n])
155
        {
156
          /* When we get to the end of a dimension, reset it and increment
157
             the next dimension.  */
158
          count[n] = 0;
159
          /* We could precalculate these products, but this is a less
160
             frequently used path so proabably not worth it.  */
161
          base -= sstride[n] * extent[n];
162
          dest -= dstride[n] * extent[n];
163
          n++;
164
          if (n == rank)
165
            {
166
              /* Break out of the look.  */
167
              base = NULL;
168
              break;
169
            }
170
          else
171
            {
172
              count[n]++;
173
              base += sstride[n];
174
              dest += dstride[n];
175
            }
176
        }
177
    }
178
}
179
 
180
 
181
extern void mminloc1_16_r10 (gfc_array_i16 *, gfc_array_r10 *, index_type *,
182
                                               gfc_array_l4 *);
183
export_proto(mminloc1_16_r10);
184
 
185
void
186
mminloc1_16_r10 (gfc_array_i16 * retarray, gfc_array_r10 * array,
187
                                  index_type *pdim, gfc_array_l4 * mask)
188
{
189
  index_type count[GFC_MAX_DIMENSIONS];
190
  index_type extent[GFC_MAX_DIMENSIONS];
191
  index_type sstride[GFC_MAX_DIMENSIONS];
192
  index_type dstride[GFC_MAX_DIMENSIONS];
193
  index_type mstride[GFC_MAX_DIMENSIONS];
194
  GFC_INTEGER_16 *dest;
195
  GFC_REAL_10 *base;
196
  GFC_LOGICAL_4 *mbase;
197
  int rank;
198
  int dim;
199
  index_type n;
200
  index_type len;
201
  index_type delta;
202
  index_type mdelta;
203
 
204
  dim = (*pdim) - 1;
205
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
206
 
207
  /* TODO:  It should be a front end job to correctly set the strides.  */
208
 
209
  if (array->dim[0].stride == 0)
210
    array->dim[0].stride = 1;
211
 
212
  if (mask->dim[0].stride == 0)
213
    mask->dim[0].stride = 1;
214
 
215
  len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
216
  if (len <= 0)
217
    return;
218
  delta = array->dim[dim].stride;
219
  mdelta = mask->dim[dim].stride;
220
 
221
  for (n = 0; n < dim; n++)
222
    {
223
      sstride[n] = array->dim[n].stride;
224
      mstride[n] = mask->dim[n].stride;
225
      extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
226
    }
227
  for (n = dim; n < rank; n++)
228
    {
229
      sstride[n] = array->dim[n + 1].stride;
230
      mstride[n] = mask->dim[n + 1].stride;
231
      extent[n] =
232
        array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
233
    }
234
 
235
  if (retarray->data == NULL)
236
    {
237
      for (n = 0; n < rank; n++)
238
        {
239
          retarray->dim[n].lbound = 0;
240
          retarray->dim[n].ubound = extent[n]-1;
241
          if (n == 0)
242
            retarray->dim[n].stride = 1;
243
          else
244
            retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
245
        }
246
 
247
      retarray->data
248
         = internal_malloc_size (sizeof (GFC_INTEGER_16)
249
                                 * retarray->dim[rank-1].stride
250
                                 * extent[rank-1]);
251
      retarray->offset = 0;
252
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
253
    }
254
  else
255
    {
256
      if (retarray->dim[0].stride == 0)
257
        retarray->dim[0].stride = 1;
258
 
259
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
260
        runtime_error ("rank of return array incorrect");
261
    }
262
 
263
  for (n = 0; n < rank; n++)
264
    {
265
      count[n] = 0;
266
      dstride[n] = retarray->dim[n].stride;
267
      if (extent[n] <= 0)
268
        return;
269
    }
270
 
271
  dest = retarray->data;
272
  base = array->data;
273
  mbase = mask->data;
274
 
275
  if (GFC_DESCRIPTOR_SIZE (mask) != 4)
276
    {
277
      /* This allows the same loop to be used for all logical types.  */
278
      assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
279
      for (n = 0; n < rank; n++)
280
        mstride[n] <<= 1;
281
      mdelta <<= 1;
282
      mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
283
    }
284
 
285
  while (base)
286
    {
287
      GFC_REAL_10 *src;
288
      GFC_LOGICAL_4 *msrc;
289
      GFC_INTEGER_16 result;
290
      src = base;
291
      msrc = mbase;
292
      {
293
 
294
  GFC_REAL_10 minval;
295
  minval = GFC_REAL_10_HUGE;
296
  result = 0;
297
        if (len <= 0)
298
          *dest = 0;
299
        else
300
          {
301
            for (n = 0; n < len; n++, src += delta, msrc += mdelta)
302
              {
303
 
304
  if (*msrc && (*src < minval || !result))
305
    {
306
      minval = *src;
307
      result = (GFC_INTEGER_16)n + 1;
308
    }
309
              }
310
            *dest = result;
311
          }
312
      }
313
      /* Advance to the next element.  */
314
      count[0]++;
315
      base += sstride[0];
316
      mbase += mstride[0];
317
      dest += dstride[0];
318
      n = 0;
319
      while (count[n] == extent[n])
320
        {
321
          /* When we get to the end of a dimension, reset it and increment
322
             the next dimension.  */
323
          count[n] = 0;
324
          /* We could precalculate these products, but this is a less
325
             frequently used path so proabably not worth it.  */
326
          base -= sstride[n] * extent[n];
327
          mbase -= mstride[n] * extent[n];
328
          dest -= dstride[n] * extent[n];
329
          n++;
330
          if (n == rank)
331
            {
332
              /* Break out of the look.  */
333
              base = NULL;
334
              break;
335
            }
336
          else
337
            {
338
              count[n]++;
339
              base += sstride[n];
340
              mbase += mstride[n];
341
              dest += dstride[n];
342
            }
343
        }
344
    }
345
}
346
 
347
 
348
extern void sminloc1_16_r10 (gfc_array_i16 * const restrict,
349
        gfc_array_r10 * const restrict, const index_type * const restrict,
350
        GFC_LOGICAL_4 *);
351
export_proto(sminloc1_16_r10);
352
 
353
void
354
sminloc1_16_r10 (gfc_array_i16 * const restrict retarray,
355
        gfc_array_r10 * const restrict array,
356
        const index_type * const restrict pdim,
357
        GFC_LOGICAL_4 * mask)
358
{
359
  index_type rank;
360
  index_type n;
361
  index_type dstride;
362
  GFC_INTEGER_16 *dest;
363
 
364
  if (*mask)
365
    {
366
      minloc1_16_r10 (retarray, array, pdim);
367
      return;
368
    }
369
    rank = GFC_DESCRIPTOR_RANK (array);
370
  if (rank <= 0)
371
    runtime_error ("Rank of array needs to be > 0");
372
 
373
  if (retarray->data == NULL)
374
    {
375
      retarray->dim[0].lbound = 0;
376
      retarray->dim[0].ubound = rank-1;
377
      retarray->dim[0].stride = 1;
378
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
379
      retarray->offset = 0;
380
      retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
381
    }
382
  else
383
    {
384
      if (GFC_DESCRIPTOR_RANK (retarray) != 1)
385
        runtime_error ("rank of return array does not equal 1");
386
 
387
      if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
388
        runtime_error ("dimension of return array incorrect");
389
 
390
      if (retarray->dim[0].stride == 0)
391
        retarray->dim[0].stride = 1;
392
    }
393
 
394
    dstride = retarray->dim[0].stride;
395
    dest = retarray->data;
396
 
397
    for (n = 0; n < rank; n++)
398
      dest[n * dstride] = 0 ;
399
}
400
 
401
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.