OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-gcc/] [gcc-4.1.1/] [libstdc++-v3/] [include/] [bits/] [stl_deque.h] - Blame information for rev 17

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 17 jlechner
// Deque implementation -*- C++ -*-
2
 
3
// Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 2, or (at your option)
9
// any later version.
10
 
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
 
16
// You should have received a copy of the GNU General Public License along
17
// with this library; see the file COPYING.  If not, write to the Free
18
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19
// USA.
20
 
21
// As a special exception, you may use this file as part of a free software
22
// library without restriction.  Specifically, if other files instantiate
23
// templates or use macros or inline functions from this file, or you compile
24
// this file and link it with other files to produce an executable, this
25
// file does not by itself cause the resulting executable to be covered by
26
// the GNU General Public License.  This exception does not however
27
// invalidate any other reasons why the executable file might be covered by
28
// the GNU General Public License.
29
 
30
/*
31
 *
32
 * Copyright (c) 1994
33
 * Hewlett-Packard Company
34
 *
35
 * Permission to use, copy, modify, distribute and sell this software
36
 * and its documentation for any purpose is hereby granted without fee,
37
 * provided that the above copyright notice appear in all copies and
38
 * that both that copyright notice and this permission notice appear
39
 * in supporting documentation.  Hewlett-Packard Company makes no
40
 * representations about the suitability of this software for any
41
 * purpose.  It is provided "as is" without express or implied warranty.
42
 *
43
 *
44
 * Copyright (c) 1997
45
 * Silicon Graphics Computer Systems, Inc.
46
 *
47
 * Permission to use, copy, modify, distribute and sell this software
48
 * and its documentation for any purpose is hereby granted without fee,
49
 * provided that the above copyright notice appear in all copies and
50
 * that both that copyright notice and this permission notice appear
51
 * in supporting documentation.  Silicon Graphics makes no
52
 * representations about the suitability of this software for any
53
 * purpose.  It is provided "as is" without express or implied warranty.
54
 */
55
 
56
/** @file stl_deque.h
57
 *  This is an internal header file, included by other library headers.
58
 *  You should not attempt to use it directly.
59
 */
60
 
61
#ifndef _DEQUE_H
62
#define _DEQUE_H 1
63
 
64
#include <bits/concept_check.h>
65
#include <bits/stl_iterator_base_types.h>
66
#include <bits/stl_iterator_base_funcs.h>
67
 
68
namespace _GLIBCXX_STD
69
{
70
  /**
71
   *  @if maint
72
   *  @brief This function controls the size of memory nodes.
73
   *  @param  size  The size of an element.
74
   *  @return   The number (not byte size) of elements per node.
75
   *
76
   *  This function started off as a compiler kludge from SGI, but seems to
77
   *  be a useful wrapper around a repeated constant expression.  The '512' is
78
   *  tuneable (and no other code needs to change), but no investigation has
79
   *  been done since inheriting the SGI code.
80
   *  @endif
81
  */
82
  inline size_t
83
  __deque_buf_size(size_t __size)
84
  { return __size < 512 ? size_t(512 / __size) : size_t(1); }
85
 
86
 
87
  /**
88
   *  @brief A deque::iterator.
89
   *
90
   *  Quite a bit of intelligence here.  Much of the functionality of
91
   *  deque is actually passed off to this class.  A deque holds two
92
   *  of these internally, marking its valid range.  Access to
93
   *  elements is done as offsets of either of those two, relying on
94
   *  operator overloading in this class.
95
   *
96
   *  @if maint
97
   *  All the functions are op overloads except for _M_set_node.
98
   *  @endif
99
  */
100
  template<typename _Tp, typename _Ref, typename _Ptr>
101
    struct _Deque_iterator
102
    {
103
      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
104
      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
105
 
106
      static size_t _S_buffer_size()
107
      { return __deque_buf_size(sizeof(_Tp)); }
108
 
109
      typedef std::random_access_iterator_tag iterator_category;
110
      typedef _Tp                             value_type;
111
      typedef _Ptr                            pointer;
112
      typedef _Ref                            reference;
113
      typedef size_t                          size_type;
114
      typedef ptrdiff_t                       difference_type;
115
      typedef _Tp**                           _Map_pointer;
116
      typedef _Deque_iterator                 _Self;
117
 
118
      _Tp* _M_cur;
119
      _Tp* _M_first;
120
      _Tp* _M_last;
121
      _Map_pointer _M_node;
122
 
123
      _Deque_iterator(_Tp* __x, _Map_pointer __y)
124
      : _M_cur(__x), _M_first(*__y),
125
        _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
126
 
127
      _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
128
 
129
      _Deque_iterator(const iterator& __x)
130
      : _M_cur(__x._M_cur), _M_first(__x._M_first),
131
        _M_last(__x._M_last), _M_node(__x._M_node) {}
132
 
133
      reference
134
      operator*() const
135
      { return *_M_cur; }
136
 
137
      pointer
138
      operator->() const
139
      { return _M_cur; }
140
 
141
      _Self&
142
      operator++()
143
      {
144
        ++_M_cur;
145
        if (_M_cur == _M_last)
146
          {
147
            _M_set_node(_M_node + 1);
148
            _M_cur = _M_first;
149
          }
150
        return *this;
151
      }
152
 
153
      _Self
154
      operator++(int)
155
      {
156
        _Self __tmp = *this;
157
        ++*this;
158
        return __tmp;
159
      }
160
 
161
      _Self&
162
      operator--()
163
      {
164
        if (_M_cur == _M_first)
165
          {
166
            _M_set_node(_M_node - 1);
167
            _M_cur = _M_last;
168
          }
169
        --_M_cur;
170
        return *this;
171
      }
172
 
173
      _Self
174
      operator--(int)
175
      {
176
        _Self __tmp = *this;
177
        --*this;
178
        return __tmp;
179
      }
180
 
181
      _Self&
182
      operator+=(difference_type __n)
183
      {
184
        const difference_type __offset = __n + (_M_cur - _M_first);
185
        if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
186
          _M_cur += __n;
187
        else
188
          {
189
            const difference_type __node_offset =
190
              __offset > 0 ? __offset / difference_type(_S_buffer_size())
191
                           : -difference_type((-__offset - 1)
192
                                              / _S_buffer_size()) - 1;
193
            _M_set_node(_M_node + __node_offset);
194
            _M_cur = _M_first + (__offset - __node_offset
195
                                 * difference_type(_S_buffer_size()));
196
          }
197
        return *this;
198
      }
199
 
200
      _Self
201
      operator+(difference_type __n) const
202
      {
203
        _Self __tmp = *this;
204
        return __tmp += __n;
205
      }
206
 
207
      _Self&
208
      operator-=(difference_type __n)
209
      { return *this += -__n; }
210
 
211
      _Self
212
      operator-(difference_type __n) const
213
      {
214
        _Self __tmp = *this;
215
        return __tmp -= __n;
216
      }
217
 
218
      reference
219
      operator[](difference_type __n) const
220
      { return *(*this + __n); }
221
 
222
      /** @if maint
223
       *  Prepares to traverse new_node.  Sets everything except
224
       *  _M_cur, which should therefore be set by the caller
225
       *  immediately afterwards, based on _M_first and _M_last.
226
       *  @endif
227
       */
228
      void
229
      _M_set_node(_Map_pointer __new_node)
230
      {
231
        _M_node = __new_node;
232
        _M_first = *__new_node;
233
        _M_last = _M_first + difference_type(_S_buffer_size());
234
      }
235
    };
236
 
237
  // Note: we also provide overloads whose operands are of the same type in
238
  // order to avoid ambiguous overload resolution when std::rel_ops operators
239
  // are in scope (for additional details, see libstdc++/3628)
240
  template<typename _Tp, typename _Ref, typename _Ptr>
241
    inline bool
242
    operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
243
               const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
244
    { return __x._M_cur == __y._M_cur; }
245
 
246
  template<typename _Tp, typename _RefL, typename _PtrL,
247
           typename _RefR, typename _PtrR>
248
    inline bool
249
    operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
250
               const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
251
    { return __x._M_cur == __y._M_cur; }
252
 
253
  template<typename _Tp, typename _Ref, typename _Ptr>
254
    inline bool
255
    operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
256
               const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
257
    { return !(__x == __y); }
258
 
259
  template<typename _Tp, typename _RefL, typename _PtrL,
260
           typename _RefR, typename _PtrR>
261
    inline bool
262
    operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
263
               const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
264
    { return !(__x == __y); }
265
 
266
  template<typename _Tp, typename _Ref, typename _Ptr>
267
    inline bool
268
    operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
269
              const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
270
    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
271
                                          : (__x._M_node < __y._M_node); }
272
 
273
  template<typename _Tp, typename _RefL, typename _PtrL,
274
           typename _RefR, typename _PtrR>
275
    inline bool
276
    operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
277
              const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
278
    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
279
                                          : (__x._M_node < __y._M_node); }
280
 
281
  template<typename _Tp, typename _Ref, typename _Ptr>
282
    inline bool
283
    operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
284
              const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
285
    { return __y < __x; }
286
 
287
  template<typename _Tp, typename _RefL, typename _PtrL,
288
           typename _RefR, typename _PtrR>
289
    inline bool
290
    operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
291
              const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
292
    { return __y < __x; }
293
 
294
  template<typename _Tp, typename _Ref, typename _Ptr>
295
    inline bool
296
    operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
297
               const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
298
    { return !(__y < __x); }
299
 
300
  template<typename _Tp, typename _RefL, typename _PtrL,
301
           typename _RefR, typename _PtrR>
302
    inline bool
303
    operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
304
               const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
305
    { return !(__y < __x); }
306
 
307
  template<typename _Tp, typename _Ref, typename _Ptr>
308
    inline bool
309
    operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
310
               const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
311
    { return !(__x < __y); }
312
 
313
  template<typename _Tp, typename _RefL, typename _PtrL,
314
           typename _RefR, typename _PtrR>
315
    inline bool
316
    operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
317
               const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
318
    { return !(__x < __y); }
319
 
320
  // _GLIBCXX_RESOLVE_LIB_DEFECTS
321
  // According to the resolution of DR179 not only the various comparison
322
  // operators but also operator- must accept mixed iterator/const_iterator
323
  // parameters.
324
  template<typename _Tp, typename _RefL, typename _PtrL,
325
           typename _RefR, typename _PtrR>
326
    inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
327
    operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
328
              const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
329
    {
330
      return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
331
        (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
332
        * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
333
        + (__y._M_last - __y._M_cur);
334
    }
335
 
336
  template<typename _Tp, typename _Ref, typename _Ptr>
337
    inline _Deque_iterator<_Tp, _Ref, _Ptr>
338
    operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
339
    { return __x + __n; }
340
 
341
  /**
342
   *  @if maint
343
   *  Deque base class.  This class provides the unified face for %deque's
344
   *  allocation.  This class's constructor and destructor allocate and
345
   *  deallocate (but do not initialize) storage.  This makes %exception
346
   *  safety easier.
347
   *
348
   *  Nothing in this class ever constructs or destroys an actual Tp element.
349
   *  (Deque handles that itself.)  Only/All memory management is performed
350
   *  here.
351
   *  @endif
352
  */
353
  template<typename _Tp, typename _Alloc>
354
    class _Deque_base
355
    {
356
    public:
357
      typedef _Alloc                  allocator_type;
358
 
359
      allocator_type
360
      get_allocator() const
361
      { return _M_get_Tp_allocator(); }
362
 
363
      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
364
      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
365
 
366
      _Deque_base(const allocator_type& __a, size_t __num_elements)
367
      : _M_impl(__a)
368
      { _M_initialize_map(__num_elements); }
369
 
370
      _Deque_base(const allocator_type& __a)
371
      : _M_impl(__a)
372
      { }
373
 
374
      ~_Deque_base();
375
 
376
    protected:
377
      //This struct encapsulates the implementation of the std::deque
378
      //standard container and at the same time makes use of the EBO
379
      //for empty allocators.
380
      typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
381
 
382
      typedef typename _Alloc::template rebind<_Tp>::other  _Tp_alloc_type;
383
 
384
      struct _Deque_impl
385
      : public _Tp_alloc_type
386
      {
387
        _Tp** _M_map;
388
        size_t _M_map_size;
389
        iterator _M_start;
390
        iterator _M_finish;
391
 
392
        _Deque_impl(const _Tp_alloc_type& __a)
393
        : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
394
          _M_start(), _M_finish()
395
        { }
396
      };
397
 
398
      _Tp_alloc_type&
399
      _M_get_Tp_allocator()
400
      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
401
 
402
      const _Tp_alloc_type&
403
      _M_get_Tp_allocator() const
404
      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
405
 
406
      _Map_alloc_type
407
      _M_get_map_allocator() const
408
      { return _M_get_Tp_allocator(); }
409
 
410
      _Tp*
411
      _M_allocate_node()
412
      {
413
        return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
414
      }
415
 
416
      void
417
      _M_deallocate_node(_Tp* __p)
418
      {
419
        _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
420
      }
421
 
422
      _Tp**
423
      _M_allocate_map(size_t __n)
424
      { return _M_get_map_allocator().allocate(__n); }
425
 
426
      void
427
      _M_deallocate_map(_Tp** __p, size_t __n)
428
      { _M_get_map_allocator().deallocate(__p, __n); }
429
 
430
    protected:
431
      void _M_initialize_map(size_t);
432
      void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
433
      void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
434
      enum { _S_initial_map_size = 8 };
435
 
436
      _Deque_impl _M_impl;
437
    };
438
 
439
  template<typename _Tp, typename _Alloc>
440
    _Deque_base<_Tp, _Alloc>::
441
    ~_Deque_base()
442
    {
443
      if (this->_M_impl._M_map)
444
        {
445
          _M_destroy_nodes(this->_M_impl._M_start._M_node,
446
                           this->_M_impl._M_finish._M_node + 1);
447
          _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
448
        }
449
    }
450
 
451
  /**
452
   *  @if maint
453
   *  @brief Layout storage.
454
   *  @param  num_elements  The count of T's for which to allocate space
455
   *                        at first.
456
   *  @return   Nothing.
457
   *
458
   *  The initial underlying memory layout is a bit complicated...
459
   *  @endif
460
  */
461
  template<typename _Tp, typename _Alloc>
462
    void
463
    _Deque_base<_Tp, _Alloc>::
464
    _M_initialize_map(size_t __num_elements)
465
    {
466
      const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
467
                                  + 1);
468
 
469
      this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
470
                                           size_t(__num_nodes + 2));
471
      this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
472
 
473
      // For "small" maps (needing less than _M_map_size nodes), allocation
474
      // starts in the middle elements and grows outwards.  So nstart may be
475
      // the beginning of _M_map, but for small maps it may be as far in as
476
      // _M_map+3.
477
 
478
      _Tp** __nstart = (this->_M_impl._M_map
479
                        + (this->_M_impl._M_map_size - __num_nodes) / 2);
480
      _Tp** __nfinish = __nstart + __num_nodes;
481
 
482
      try
483
        { _M_create_nodes(__nstart, __nfinish); }
484
      catch(...)
485
        {
486
          _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
487
          this->_M_impl._M_map = 0;
488
          this->_M_impl._M_map_size = 0;
489
          __throw_exception_again;
490
        }
491
 
492
      this->_M_impl._M_start._M_set_node(__nstart);
493
      this->_M_impl._M_finish._M_set_node(__nfinish - 1);
494
      this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
495
      this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
496
                                        + __num_elements
497
                                        % __deque_buf_size(sizeof(_Tp)));
498
    }
499
 
500
  template<typename _Tp, typename _Alloc>
501
    void
502
    _Deque_base<_Tp, _Alloc>::
503
    _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
504
    {
505
      _Tp** __cur;
506
      try
507
        {
508
          for (__cur = __nstart; __cur < __nfinish; ++__cur)
509
            *__cur = this->_M_allocate_node();
510
        }
511
      catch(...)
512
        {
513
          _M_destroy_nodes(__nstart, __cur);
514
          __throw_exception_again;
515
        }
516
    }
517
 
518
  template<typename _Tp, typename _Alloc>
519
    void
520
    _Deque_base<_Tp, _Alloc>::
521
    _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
522
    {
523
      for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
524
        _M_deallocate_node(*__n);
525
    }
526
 
527
  /**
528
   *  @brief  A standard container using fixed-size memory allocation and
529
   *  constant-time manipulation of elements at either end.
530
   *
531
   *  @ingroup Containers
532
   *  @ingroup Sequences
533
   *
534
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
535
   *  <a href="tables.html#66">reversible container</a>, and a
536
   *  <a href="tables.html#67">sequence</a>, including the
537
   *  <a href="tables.html#68">optional sequence requirements</a>.
538
   *
539
   *  In previous HP/SGI versions of deque, there was an extra template
540
   *  parameter so users could control the node size.  This extension turned
541
   *  out to violate the C++ standard (it can be detected using template
542
   *  template parameters), and it was removed.
543
   *
544
   *  @if maint
545
   *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
546
   *
547
   *  - Tp**        _M_map
548
   *  - size_t      _M_map_size
549
   *  - iterator    _M_start, _M_finish
550
   *
551
   *  map_size is at least 8.  %map is an array of map_size
552
   *  pointers-to-"nodes".  (The name %map has nothing to do with the
553
   *  std::map class, and "nodes" should not be confused with
554
   *  std::list's usage of "node".)
555
   *
556
   *  A "node" has no specific type name as such, but it is referred
557
   *  to as "node" in this file.  It is a simple array-of-Tp.  If Tp
558
   *  is very large, there will be one Tp element per node (i.e., an
559
   *  "array" of one).  For non-huge Tp's, node size is inversely
560
   *  related to Tp size: the larger the Tp, the fewer Tp's will fit
561
   *  in a node.  The goal here is to keep the total size of a node
562
   *  relatively small and constant over different Tp's, to improve
563
   *  allocator efficiency.
564
   *
565
   *  Not every pointer in the %map array will point to a node.  If
566
   *  the initial number of elements in the deque is small, the
567
   *  /middle/ %map pointers will be valid, and the ones at the edges
568
   *  will be unused.  This same situation will arise as the %map
569
   *  grows: available %map pointers, if any, will be on the ends.  As
570
   *  new nodes are created, only a subset of the %map's pointers need
571
   *  to be copied "outward".
572
   *
573
   *  Class invariants:
574
   * - For any nonsingular iterator i:
575
   *    - i.node points to a member of the %map array.  (Yes, you read that
576
   *      correctly:  i.node does not actually point to a node.)  The member of
577
   *      the %map array is what actually points to the node.
578
   *    - i.first == *(i.node)    (This points to the node (first Tp element).)
579
   *    - i.last  == i.first + node_size
580
   *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
581
   *      the implication of this is that i.cur is always a dereferenceable
582
   *      pointer, even if i is a past-the-end iterator.
583
   * - Start and Finish are always nonsingular iterators.  NOTE: this
584
   * means that an empty deque must have one node, a deque with <N
585
   * elements (where N is the node buffer size) must have one node, a
586
   * deque with N through (2N-1) elements must have two nodes, etc.
587
   * - For every node other than start.node and finish.node, every
588
   * element in the node is an initialized object.  If start.node ==
589
   * finish.node, then [start.cur, finish.cur) are initialized
590
   * objects, and the elements outside that range are uninitialized
591
   * storage.  Otherwise, [start.cur, start.last) and [finish.first,
592
   * finish.cur) are initialized objects, and [start.first, start.cur)
593
   * and [finish.cur, finish.last) are uninitialized storage.
594
   * - [%map, %map + map_size) is a valid, non-empty range.
595
   * - [start.node, finish.node] is a valid range contained within
596
   *   [%map, %map + map_size).
597
   * - A pointer in the range [%map, %map + map_size) points to an allocated
598
   *   node if and only if the pointer is in the range
599
   *   [start.node, finish.node].
600
   *
601
   *  Here's the magic:  nothing in deque is "aware" of the discontiguous
602
   *  storage!
603
   *
604
   *  The memory setup and layout occurs in the parent, _Base, and the iterator
605
   *  class is entirely responsible for "leaping" from one node to the next.
606
   *  All the implementation routines for deque itself work only through the
607
   *  start and finish iterators.  This keeps the routines simple and sane,
608
   *  and we can use other standard algorithms as well.
609
   *  @endif
610
  */
611
  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
612
    class deque : protected _Deque_base<_Tp, _Alloc>
613
    {
614
      // concept requirements
615
      typedef typename _Alloc::value_type        _Alloc_value_type;
616
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
617
      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
618
 
619
      typedef _Deque_base<_Tp, _Alloc>           _Base;
620
      typedef typename _Base::_Tp_alloc_type     _Tp_alloc_type;
621
 
622
    public:
623
      typedef _Tp                                        value_type;
624
      typedef typename _Tp_alloc_type::pointer           pointer;
625
      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
626
      typedef typename _Tp_alloc_type::reference         reference;
627
      typedef typename _Tp_alloc_type::const_reference   const_reference;
628
      typedef typename _Base::iterator                   iterator;
629
      typedef typename _Base::const_iterator             const_iterator;
630
      typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
631
      typedef std::reverse_iterator<iterator>            reverse_iterator;
632
      typedef size_t                             size_type;
633
      typedef ptrdiff_t                          difference_type;
634
      typedef _Alloc                             allocator_type;
635
 
636
    protected:
637
      typedef pointer*                           _Map_pointer;
638
 
639
      static size_t _S_buffer_size()
640
      { return __deque_buf_size(sizeof(_Tp)); }
641
 
642
      // Functions controlling memory layout, and nothing else.
643
      using _Base::_M_initialize_map;
644
      using _Base::_M_create_nodes;
645
      using _Base::_M_destroy_nodes;
646
      using _Base::_M_allocate_node;
647
      using _Base::_M_deallocate_node;
648
      using _Base::_M_allocate_map;
649
      using _Base::_M_deallocate_map;
650
      using _Base::_M_get_Tp_allocator;
651
 
652
      /** @if maint
653
       *  A total of four data members accumulated down the heirarchy.
654
       *  May be accessed via _M_impl.*
655
       *  @endif
656
       */
657
      using _Base::_M_impl;
658
 
659
    public:
660
      // [23.2.1.1] construct/copy/destroy
661
      // (assign() and get_allocator() are also listed in this section)
662
      /**
663
       *  @brief  Default constructor creates no elements.
664
       */
665
      explicit
666
      deque(const allocator_type& __a = allocator_type())
667
      : _Base(__a, 0) {}
668
 
669
      /**
670
       *  @brief  Create a %deque with copies of an exemplar element.
671
       *  @param  n  The number of elements to initially create.
672
       *  @param  value  An element to copy.
673
       *
674
       *  This constructor fills the %deque with @a n copies of @a value.
675
       */
676
      explicit
677
      deque(size_type __n, const value_type& __value = value_type(),
678
            const allocator_type& __a = allocator_type())
679
      : _Base(__a, __n)
680
      { _M_fill_initialize(__value); }
681
 
682
      /**
683
       *  @brief  %Deque copy constructor.
684
       *  @param  x  A %deque of identical element and allocator types.
685
       *
686
       *  The newly-created %deque uses a copy of the allocation object used
687
       *  by @a x.
688
       */
689
      deque(const deque& __x)
690
      : _Base(__x.get_allocator(), __x.size())
691
      { std::__uninitialized_copy_a(__x.begin(), __x.end(),
692
                                    this->_M_impl._M_start,
693
                                    _M_get_Tp_allocator()); }
694
 
695
      /**
696
       *  @brief  Builds a %deque from a range.
697
       *  @param  first  An input iterator.
698
       *  @param  last  An input iterator.
699
       *
700
       *  Create a %deque consisting of copies of the elements from [first,
701
       *  last).
702
       *
703
       *  If the iterators are forward, bidirectional, or random-access, then
704
       *  this will call the elements' copy constructor N times (where N is
705
       *  distance(first,last)) and do no memory reallocation.  But if only
706
       *  input iterators are used, then this will do at most 2N calls to the
707
       *  copy constructor, and logN memory reallocations.
708
       */
709
      template<typename _InputIterator>
710
        deque(_InputIterator __first, _InputIterator __last,
711
              const allocator_type& __a = allocator_type())
712
        : _Base(__a)
713
        {
714
          // Check whether it's an integral type.  If so, it's not an iterator.
715
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
716
          _M_initialize_dispatch(__first, __last, _Integral());
717
        }
718
 
719
      /**
720
       *  The dtor only erases the elements, and note that if the elements
721
       *  themselves are pointers, the pointed-to memory is not touched in any
722
       *  way.  Managing the pointer is the user's responsibilty.
723
       */
724
      ~deque()
725
      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
726
                      _M_get_Tp_allocator()); }
727
 
728
      /**
729
       *  @brief  %Deque assignment operator.
730
       *  @param  x  A %deque of identical element and allocator types.
731
       *
732
       *  All the elements of @a x are copied, but unlike the copy constructor,
733
       *  the allocator object is not copied.
734
       */
735
      deque&
736
      operator=(const deque& __x);
737
 
738
      /**
739
       *  @brief  Assigns a given value to a %deque.
740
       *  @param  n  Number of elements to be assigned.
741
       *  @param  val  Value to be assigned.
742
       *
743
       *  This function fills a %deque with @a n copies of the given
744
       *  value.  Note that the assignment completely changes the
745
       *  %deque and that the resulting %deque's size is the same as
746
       *  the number of elements assigned.  Old data may be lost.
747
       */
748
      void
749
      assign(size_type __n, const value_type& __val)
750
      { _M_fill_assign(__n, __val); }
751
 
752
      /**
753
       *  @brief  Assigns a range to a %deque.
754
       *  @param  first  An input iterator.
755
       *  @param  last   An input iterator.
756
       *
757
       *  This function fills a %deque with copies of the elements in the
758
       *  range [first,last).
759
       *
760
       *  Note that the assignment completely changes the %deque and that the
761
       *  resulting %deque's size is the same as the number of elements
762
       *  assigned.  Old data may be lost.
763
       */
764
      template<typename _InputIterator>
765
        void
766
        assign(_InputIterator __first, _InputIterator __last)
767
        {
768
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
769
          _M_assign_dispatch(__first, __last, _Integral());
770
        }
771
 
772
      /// Get a copy of the memory allocation object.
773
      allocator_type
774
      get_allocator() const
775
      { return _Base::get_allocator(); }
776
 
777
      // iterators
778
      /**
779
       *  Returns a read/write iterator that points to the first element in the
780
       *  %deque.  Iteration is done in ordinary element order.
781
       */
782
      iterator
783
      begin()
784
      { return this->_M_impl._M_start; }
785
 
786
      /**
787
       *  Returns a read-only (constant) iterator that points to the first
788
       *  element in the %deque.  Iteration is done in ordinary element order.
789
       */
790
      const_iterator
791
      begin() const
792
      { return this->_M_impl._M_start; }
793
 
794
      /**
795
       *  Returns a read/write iterator that points one past the last
796
       *  element in the %deque.  Iteration is done in ordinary
797
       *  element order.
798
       */
799
      iterator
800
      end()
801
      { return this->_M_impl._M_finish; }
802
 
803
      /**
804
       *  Returns a read-only (constant) iterator that points one past
805
       *  the last element in the %deque.  Iteration is done in
806
       *  ordinary element order.
807
       */
808
      const_iterator
809
      end() const
810
      { return this->_M_impl._M_finish; }
811
 
812
      /**
813
       *  Returns a read/write reverse iterator that points to the
814
       *  last element in the %deque.  Iteration is done in reverse
815
       *  element order.
816
       */
817
      reverse_iterator
818
      rbegin()
819
      { return reverse_iterator(this->_M_impl._M_finish); }
820
 
821
      /**
822
       *  Returns a read-only (constant) reverse iterator that points
823
       *  to the last element in the %deque.  Iteration is done in
824
       *  reverse element order.
825
       */
826
      const_reverse_iterator
827
      rbegin() const
828
      { return const_reverse_iterator(this->_M_impl._M_finish); }
829
 
830
      /**
831
       *  Returns a read/write reverse iterator that points to one
832
       *  before the first element in the %deque.  Iteration is done
833
       *  in reverse element order.
834
       */
835
      reverse_iterator
836
      rend() { return reverse_iterator(this->_M_impl._M_start); }
837
 
838
      /**
839
       *  Returns a read-only (constant) reverse iterator that points
840
       *  to one before the first element in the %deque.  Iteration is
841
       *  done in reverse element order.
842
       */
843
      const_reverse_iterator
844
      rend() const
845
      { return const_reverse_iterator(this->_M_impl._M_start); }
846
 
847
      // [23.2.1.2] capacity
848
      /**  Returns the number of elements in the %deque.  */
849
      size_type
850
      size() const
851
      { return this->_M_impl._M_finish - this->_M_impl._M_start; }
852
 
853
      /**  Returns the size() of the largest possible %deque.  */
854
      size_type
855
      max_size() const
856
      { return size_type(-1); }
857
 
858
      /**
859
       *  @brief  Resizes the %deque to the specified number of elements.
860
       *  @param  new_size  Number of elements the %deque should contain.
861
       *  @param  x  Data with which new elements should be populated.
862
       *
863
       *  This function will %resize the %deque to the specified
864
       *  number of elements.  If the number is smaller than the
865
       *  %deque's current size the %deque is truncated, otherwise the
866
       *  %deque is extended and new elements are populated with given
867
       *  data.
868
       */
869
      void
870
      resize(size_type __new_size, value_type __x = value_type())
871
      {
872
        const size_type __len = size();
873
        if (__new_size < __len)
874
          erase(this->_M_impl._M_start + __new_size, this->_M_impl._M_finish);
875
        else
876
          insert(this->_M_impl._M_finish, __new_size - __len, __x);
877
      }
878
 
879
      /**
880
       *  Returns true if the %deque is empty.  (Thus begin() would
881
       *  equal end().)
882
       */
883
      bool
884
      empty() const
885
      { return this->_M_impl._M_finish == this->_M_impl._M_start; }
886
 
887
      // element access
888
      /**
889
       *  @brief Subscript access to the data contained in the %deque.
890
       *  @param n The index of the element for which data should be
891
       *  accessed.
892
       *  @return  Read/write reference to data.
893
       *
894
       *  This operator allows for easy, array-style, data access.
895
       *  Note that data access with this operator is unchecked and
896
       *  out_of_range lookups are not defined. (For checked lookups
897
       *  see at().)
898
       */
899
      reference
900
      operator[](size_type __n)
901
      { return this->_M_impl._M_start[difference_type(__n)]; }
902
 
903
      /**
904
       *  @brief Subscript access to the data contained in the %deque.
905
       *  @param n The index of the element for which data should be
906
       *  accessed.
907
       *  @return  Read-only (constant) reference to data.
908
       *
909
       *  This operator allows for easy, array-style, data access.
910
       *  Note that data access with this operator is unchecked and
911
       *  out_of_range lookups are not defined. (For checked lookups
912
       *  see at().)
913
       */
914
      const_reference
915
      operator[](size_type __n) const
916
      { return this->_M_impl._M_start[difference_type(__n)]; }
917
 
918
    protected:
919
      /// @if maint Safety check used only from at().  @endif
920
      void
921
      _M_range_check(size_type __n) const
922
      {
923
        if (__n >= this->size())
924
          __throw_out_of_range(__N("deque::_M_range_check"));
925
      }
926
 
927
    public:
928
      /**
929
       *  @brief  Provides access to the data contained in the %deque.
930
       *  @param n The index of the element for which data should be
931
       *  accessed.
932
       *  @return  Read/write reference to data.
933
       *  @throw  std::out_of_range  If @a n is an invalid index.
934
       *
935
       *  This function provides for safer data access.  The parameter
936
       *  is first checked that it is in the range of the deque.  The
937
       *  function throws out_of_range if the check fails.
938
       */
939
      reference
940
      at(size_type __n)
941
      {
942
        _M_range_check(__n);
943
        return (*this)[__n];
944
      }
945
 
946
      /**
947
       *  @brief  Provides access to the data contained in the %deque.
948
       *  @param n The index of the element for which data should be
949
       *  accessed.
950
       *  @return  Read-only (constant) reference to data.
951
       *  @throw  std::out_of_range  If @a n is an invalid index.
952
       *
953
       *  This function provides for safer data access.  The parameter is first
954
       *  checked that it is in the range of the deque.  The function throws
955
       *  out_of_range if the check fails.
956
       */
957
      const_reference
958
      at(size_type __n) const
959
      {
960
        _M_range_check(__n);
961
        return (*this)[__n];
962
      }
963
 
964
      /**
965
       *  Returns a read/write reference to the data at the first
966
       *  element of the %deque.
967
       */
968
      reference
969
      front()
970
      { return *begin(); }
971
 
972
      /**
973
       *  Returns a read-only (constant) reference to the data at the first
974
       *  element of the %deque.
975
       */
976
      const_reference
977
      front() const
978
      { return *begin(); }
979
 
980
      /**
981
       *  Returns a read/write reference to the data at the last element of the
982
       *  %deque.
983
       */
984
      reference
985
      back()
986
      {
987
        iterator __tmp = end();
988
        --__tmp;
989
        return *__tmp;
990
      }
991
 
992
      /**
993
       *  Returns a read-only (constant) reference to the data at the last
994
       *  element of the %deque.
995
       */
996
      const_reference
997
      back() const
998
      {
999
        const_iterator __tmp = end();
1000
        --__tmp;
1001
        return *__tmp;
1002
      }
1003
 
1004
      // [23.2.1.2] modifiers
1005
      /**
1006
       *  @brief  Add data to the front of the %deque.
1007
       *  @param  x  Data to be added.
1008
       *
1009
       *  This is a typical stack operation.  The function creates an
1010
       *  element at the front of the %deque and assigns the given
1011
       *  data to it.  Due to the nature of a %deque this operation
1012
       *  can be done in constant time.
1013
       */
1014
      void
1015
      push_front(const value_type& __x)
1016
      {
1017
        if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1018
          {
1019
            this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1020
            --this->_M_impl._M_start._M_cur;
1021
          }
1022
        else
1023
          _M_push_front_aux(__x);
1024
      }
1025
 
1026
      /**
1027
       *  @brief  Add data to the end of the %deque.
1028
       *  @param  x  Data to be added.
1029
       *
1030
       *  This is a typical stack operation.  The function creates an
1031
       *  element at the end of the %deque and assigns the given data
1032
       *  to it.  Due to the nature of a %deque this operation can be
1033
       *  done in constant time.
1034
       */
1035
      void
1036
      push_back(const value_type& __x)
1037
      {
1038
        if (this->_M_impl._M_finish._M_cur
1039
            != this->_M_impl._M_finish._M_last - 1)
1040
          {
1041
            this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1042
            ++this->_M_impl._M_finish._M_cur;
1043
          }
1044
        else
1045
          _M_push_back_aux(__x);
1046
      }
1047
 
1048
      /**
1049
       *  @brief  Removes first element.
1050
       *
1051
       *  This is a typical stack operation.  It shrinks the %deque by one.
1052
       *
1053
       *  Note that no data is returned, and if the first element's data is
1054
       *  needed, it should be retrieved before pop_front() is called.
1055
       */
1056
      void
1057
      pop_front()
1058
      {
1059
        if (this->_M_impl._M_start._M_cur
1060
            != this->_M_impl._M_start._M_last - 1)
1061
          {
1062
            this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1063
            ++this->_M_impl._M_start._M_cur;
1064
          }
1065
        else
1066
          _M_pop_front_aux();
1067
      }
1068
 
1069
      /**
1070
       *  @brief  Removes last element.
1071
       *
1072
       *  This is a typical stack operation.  It shrinks the %deque by one.
1073
       *
1074
       *  Note that no data is returned, and if the last element's data is
1075
       *  needed, it should be retrieved before pop_back() is called.
1076
       */
1077
      void
1078
      pop_back()
1079
      {
1080
        if (this->_M_impl._M_finish._M_cur
1081
            != this->_M_impl._M_finish._M_first)
1082
          {
1083
            --this->_M_impl._M_finish._M_cur;
1084
            this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1085
          }
1086
        else
1087
          _M_pop_back_aux();
1088
      }
1089
 
1090
      /**
1091
       *  @brief  Inserts given value into %deque before specified iterator.
1092
       *  @param  position  An iterator into the %deque.
1093
       *  @param  x  Data to be inserted.
1094
       *  @return  An iterator that points to the inserted data.
1095
       *
1096
       *  This function will insert a copy of the given value before the
1097
       *  specified location.
1098
       */
1099
      iterator
1100
      insert(iterator position, const value_type& __x);
1101
 
1102
      /**
1103
       *  @brief  Inserts a number of copies of given data into the %deque.
1104
       *  @param  position  An iterator into the %deque.
1105
       *  @param  n  Number of elements to be inserted.
1106
       *  @param  x  Data to be inserted.
1107
       *
1108
       *  This function will insert a specified number of copies of the given
1109
       *  data before the location specified by @a position.
1110
       */
1111
      void
1112
      insert(iterator __position, size_type __n, const value_type& __x)
1113
      { _M_fill_insert(__position, __n, __x); }
1114
 
1115
      /**
1116
       *  @brief  Inserts a range into the %deque.
1117
       *  @param  position  An iterator into the %deque.
1118
       *  @param  first  An input iterator.
1119
       *  @param  last   An input iterator.
1120
       *
1121
       *  This function will insert copies of the data in the range
1122
       *  [first,last) into the %deque before the location specified
1123
       *  by @a pos.  This is known as "range insert."
1124
       */
1125
      template<typename _InputIterator>
1126
        void
1127
        insert(iterator __position, _InputIterator __first,
1128
               _InputIterator __last)
1129
        {
1130
          // Check whether it's an integral type.  If so, it's not an iterator.
1131
          typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1132
          _M_insert_dispatch(__position, __first, __last, _Integral());
1133
        }
1134
 
1135
      /**
1136
       *  @brief  Remove element at given position.
1137
       *  @param  position  Iterator pointing to element to be erased.
1138
       *  @return  An iterator pointing to the next element (or end()).
1139
       *
1140
       *  This function will erase the element at the given position and thus
1141
       *  shorten the %deque by one.
1142
       *
1143
       *  The user is cautioned that
1144
       *  this function only erases the element, and that if the element is
1145
       *  itself a pointer, the pointed-to memory is not touched in any way.
1146
       *  Managing the pointer is the user's responsibilty.
1147
       */
1148
      iterator
1149
      erase(iterator __position);
1150
 
1151
      /**
1152
       *  @brief  Remove a range of elements.
1153
       *  @param  first  Iterator pointing to the first element to be erased.
1154
       *  @param  last  Iterator pointing to one past the last element to be
1155
       *                erased.
1156
       *  @return  An iterator pointing to the element pointed to by @a last
1157
       *           prior to erasing (or end()).
1158
       *
1159
       *  This function will erase the elements in the range [first,last) and
1160
       *  shorten the %deque accordingly.
1161
       *
1162
       *  The user is cautioned that
1163
       *  this function only erases the elements, and that if the elements
1164
       *  themselves are pointers, the pointed-to memory is not touched in any
1165
       *  way.  Managing the pointer is the user's responsibilty.
1166
       */
1167
      iterator
1168
      erase(iterator __first, iterator __last);
1169
 
1170
      /**
1171
       *  @brief  Swaps data with another %deque.
1172
       *  @param  x  A %deque of the same element and allocator types.
1173
       *
1174
       *  This exchanges the elements between two deques in constant time.
1175
       *  (Four pointers, so it should be quite fast.)
1176
       *  Note that the global std::swap() function is specialized such that
1177
       *  std::swap(d1,d2) will feed to this function.
1178
       */
1179
      void
1180
      swap(deque& __x)
1181
      {
1182
        std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1183
        std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1184
        std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1185
        std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1186
      }
1187
 
1188
      /**
1189
       *  Erases all the elements.  Note that this function only erases the
1190
       *  elements, and that if the elements themselves are pointers, the
1191
       *  pointed-to memory is not touched in any way.  Managing the pointer is
1192
       *  the user's responsibilty.
1193
       */
1194
      void clear();
1195
 
1196
    protected:
1197
      // Internal constructor functions follow.
1198
 
1199
      // called by the range constructor to implement [23.1.1]/9
1200
      template<typename _Integer>
1201
        void
1202
        _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1203
        {
1204
          _M_initialize_map(__n);
1205
          _M_fill_initialize(__x);
1206
        }
1207
 
1208
      // called by the range constructor to implement [23.1.1]/9
1209
      template<typename _InputIterator>
1210
        void
1211
        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1212
                               __false_type)
1213
        {
1214
          typedef typename std::iterator_traits<_InputIterator>::
1215
            iterator_category _IterCategory;
1216
          _M_range_initialize(__first, __last, _IterCategory());
1217
        }
1218
 
1219
      // called by the second initialize_dispatch above
1220
      //@{
1221
      /**
1222
       *  @if maint
1223
       *  @brief Fills the deque with whatever is in [first,last).
1224
       *  @param  first  An input iterator.
1225
       *  @param  last  An input iterator.
1226
       *  @return   Nothing.
1227
       *
1228
       *  If the iterators are actually forward iterators (or better), then the
1229
       *  memory layout can be done all at once.  Else we move forward using
1230
       *  push_back on each value from the iterator.
1231
       *  @endif
1232
       */
1233
      template<typename _InputIterator>
1234
        void
1235
        _M_range_initialize(_InputIterator __first, _InputIterator __last,
1236
                            std::input_iterator_tag);
1237
 
1238
      // called by the second initialize_dispatch above
1239
      template<typename _ForwardIterator>
1240
        void
1241
        _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1242
                            std::forward_iterator_tag);
1243
      //@}
1244
 
1245
      /**
1246
       *  @if maint
1247
       *  @brief Fills the %deque with copies of value.
1248
       *  @param  value  Initial value.
1249
       *  @return   Nothing.
1250
       *  @pre _M_start and _M_finish have already been initialized,
1251
       *  but none of the %deque's elements have yet been constructed.
1252
       *
1253
       *  This function is called only when the user provides an explicit size
1254
       *  (with or without an explicit exemplar value).
1255
       *  @endif
1256
       */
1257
      void
1258
      _M_fill_initialize(const value_type& __value);
1259
 
1260
      // Internal assign functions follow.  The *_aux functions do the actual
1261
      // assignment work for the range versions.
1262
 
1263
      // called by the range assign to implement [23.1.1]/9
1264
      template<typename _Integer>
1265
        void
1266
        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1267
        {
1268
          _M_fill_assign(static_cast<size_type>(__n),
1269
                         static_cast<value_type>(__val));
1270
        }
1271
 
1272
      // called by the range assign to implement [23.1.1]/9
1273
      template<typename _InputIterator>
1274
        void
1275
        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1276
                           __false_type)
1277
        {
1278
          typedef typename std::iterator_traits<_InputIterator>::
1279
            iterator_category _IterCategory;
1280
          _M_assign_aux(__first, __last, _IterCategory());
1281
        }
1282
 
1283
      // called by the second assign_dispatch above
1284
      template<typename _InputIterator>
1285
        void
1286
        _M_assign_aux(_InputIterator __first, _InputIterator __last,
1287
                      std::input_iterator_tag);
1288
 
1289
      // called by the second assign_dispatch above
1290
      template<typename _ForwardIterator>
1291
        void
1292
        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1293
                      std::forward_iterator_tag)
1294
        {
1295
          const size_type __len = std::distance(__first, __last);
1296
          if (__len > size())
1297
            {
1298
              _ForwardIterator __mid = __first;
1299
              std::advance(__mid, size());
1300
              std::copy(__first, __mid, begin());
1301
              insert(end(), __mid, __last);
1302
            }
1303
          else
1304
            erase(std::copy(__first, __last, begin()), end());
1305
        }
1306
 
1307
      // Called by assign(n,t), and the range assign when it turns out
1308
      // to be the same thing.
1309
      void
1310
      _M_fill_assign(size_type __n, const value_type& __val)
1311
      {
1312
        if (__n > size())
1313
          {
1314
            std::fill(begin(), end(), __val);
1315
            insert(end(), __n - size(), __val);
1316
          }
1317
        else
1318
          {
1319
            erase(begin() + __n, end());
1320
            std::fill(begin(), end(), __val);
1321
          }
1322
      }
1323
 
1324
      //@{
1325
      /**
1326
       *  @if maint
1327
       *  @brief Helper functions for push_* and pop_*.
1328
       *  @endif
1329
       */
1330
      void _M_push_back_aux(const value_type&);
1331
      void _M_push_front_aux(const value_type&);
1332
      void _M_pop_back_aux();
1333
      void _M_pop_front_aux();
1334
      //@}
1335
 
1336
      // Internal insert functions follow.  The *_aux functions do the actual
1337
      // insertion work when all shortcuts fail.
1338
 
1339
      // called by the range insert to implement [23.1.1]/9
1340
      template<typename _Integer>
1341
        void
1342
        _M_insert_dispatch(iterator __pos,
1343
                           _Integer __n, _Integer __x, __true_type)
1344
        {
1345
          _M_fill_insert(__pos, static_cast<size_type>(__n),
1346
                         static_cast<value_type>(__x));
1347
        }
1348
 
1349
      // called by the range insert to implement [23.1.1]/9
1350
      template<typename _InputIterator>
1351
        void
1352
        _M_insert_dispatch(iterator __pos,
1353
                           _InputIterator __first, _InputIterator __last,
1354
                           __false_type)
1355
        {
1356
          typedef typename std::iterator_traits<_InputIterator>::
1357
            iterator_category _IterCategory;
1358
          _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1359
        }
1360
 
1361
      // called by the second insert_dispatch above
1362
      template<typename _InputIterator>
1363
        void
1364
        _M_range_insert_aux(iterator __pos, _InputIterator __first,
1365
                            _InputIterator __last, std::input_iterator_tag);
1366
 
1367
      // called by the second insert_dispatch above
1368
      template<typename _ForwardIterator>
1369
        void
1370
        _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1371
                            _ForwardIterator __last, std::forward_iterator_tag);
1372
 
1373
      // Called by insert(p,n,x), and the range insert when it turns out to be
1374
      // the same thing.  Can use fill functions in optimal situations,
1375
      // otherwise passes off to insert_aux(p,n,x).
1376
      void
1377
      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1378
 
1379
      // called by insert(p,x)
1380
      iterator
1381
      _M_insert_aux(iterator __pos, const value_type& __x);
1382
 
1383
      // called by insert(p,n,x) via fill_insert
1384
      void
1385
      _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1386
 
1387
      // called by range_insert_aux for forward iterators
1388
      template<typename _ForwardIterator>
1389
        void
1390
        _M_insert_aux(iterator __pos,
1391
                      _ForwardIterator __first, _ForwardIterator __last,
1392
                      size_type __n);
1393
 
1394
      //@{
1395
      /**
1396
       *  @if maint
1397
       *  @brief Memory-handling helpers for the previous internal insert
1398
       *         functions.
1399
       *  @endif
1400
       */
1401
      iterator
1402
      _M_reserve_elements_at_front(size_type __n)
1403
      {
1404
        const size_type __vacancies = this->_M_impl._M_start._M_cur
1405
                                      - this->_M_impl._M_start._M_first;
1406
        if (__n > __vacancies)
1407
          _M_new_elements_at_front(__n - __vacancies);
1408
        return this->_M_impl._M_start - difference_type(__n);
1409
      }
1410
 
1411
      iterator
1412
      _M_reserve_elements_at_back(size_type __n)
1413
      {
1414
        const size_type __vacancies = (this->_M_impl._M_finish._M_last
1415
                                       - this->_M_impl._M_finish._M_cur) - 1;
1416
        if (__n > __vacancies)
1417
          _M_new_elements_at_back(__n - __vacancies);
1418
        return this->_M_impl._M_finish + difference_type(__n);
1419
      }
1420
 
1421
      void
1422
      _M_new_elements_at_front(size_type __new_elements);
1423
 
1424
      void
1425
      _M_new_elements_at_back(size_type __new_elements);
1426
      //@}
1427
 
1428
 
1429
      //@{
1430
      /**
1431
       *  @if maint
1432
       *  @brief Memory-handling helpers for the major %map.
1433
       *
1434
       *  Makes sure the _M_map has space for new nodes.  Does not
1435
       *  actually add the nodes.  Can invalidate _M_map pointers.
1436
       *  (And consequently, %deque iterators.)
1437
       *  @endif
1438
       */
1439
      void
1440
      _M_reserve_map_at_back (size_type __nodes_to_add = 1)
1441
      {
1442
        if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1443
            - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1444
          _M_reallocate_map(__nodes_to_add, false);
1445
      }
1446
 
1447
      void
1448
      _M_reserve_map_at_front (size_type __nodes_to_add = 1)
1449
      {
1450
        if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1451
                                       - this->_M_impl._M_map))
1452
          _M_reallocate_map(__nodes_to_add, true);
1453
      }
1454
 
1455
      void
1456
      _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1457
      //@}
1458
    };
1459
 
1460
 
1461
  /**
1462
   *  @brief  Deque equality comparison.
1463
   *  @param  x  A %deque.
1464
   *  @param  y  A %deque of the same type as @a x.
1465
   *  @return  True iff the size and elements of the deques are equal.
1466
   *
1467
   *  This is an equivalence relation.  It is linear in the size of the
1468
   *  deques.  Deques are considered equivalent if their sizes are equal,
1469
   *  and if corresponding elements compare equal.
1470
  */
1471
  template<typename _Tp, typename _Alloc>
1472
    inline bool
1473
    operator==(const deque<_Tp, _Alloc>& __x,
1474
                         const deque<_Tp, _Alloc>& __y)
1475
    { return __x.size() == __y.size()
1476
             && std::equal(__x.begin(), __x.end(), __y.begin()); }
1477
 
1478
  /**
1479
   *  @brief  Deque ordering relation.
1480
   *  @param  x  A %deque.
1481
   *  @param  y  A %deque of the same type as @a x.
1482
   *  @return  True iff @a x is lexicographically less than @a y.
1483
   *
1484
   *  This is a total ordering relation.  It is linear in the size of the
1485
   *  deques.  The elements must be comparable with @c <.
1486
   *
1487
   *  See std::lexicographical_compare() for how the determination is made.
1488
  */
1489
  template<typename _Tp, typename _Alloc>
1490
    inline bool
1491
    operator<(const deque<_Tp, _Alloc>& __x,
1492
              const deque<_Tp, _Alloc>& __y)
1493
    { return lexicographical_compare(__x.begin(), __x.end(),
1494
                                     __y.begin(), __y.end()); }
1495
 
1496
  /// Based on operator==
1497
  template<typename _Tp, typename _Alloc>
1498
    inline bool
1499
    operator!=(const deque<_Tp, _Alloc>& __x,
1500
               const deque<_Tp, _Alloc>& __y)
1501
    { return !(__x == __y); }
1502
 
1503
  /// Based on operator<
1504
  template<typename _Tp, typename _Alloc>
1505
    inline bool
1506
    operator>(const deque<_Tp, _Alloc>& __x,
1507
              const deque<_Tp, _Alloc>& __y)
1508
    { return __y < __x; }
1509
 
1510
  /// Based on operator<
1511
  template<typename _Tp, typename _Alloc>
1512
    inline bool
1513
    operator<=(const deque<_Tp, _Alloc>& __x,
1514
               const deque<_Tp, _Alloc>& __y)
1515
    { return !(__y < __x); }
1516
 
1517
  /// Based on operator<
1518
  template<typename _Tp, typename _Alloc>
1519
    inline bool
1520
    operator>=(const deque<_Tp, _Alloc>& __x,
1521
               const deque<_Tp, _Alloc>& __y)
1522
    { return !(__x < __y); }
1523
 
1524
  /// See std::deque::swap().
1525
  template<typename _Tp, typename _Alloc>
1526
    inline void
1527
    swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1528
    { __x.swap(__y); }
1529
} // namespace std
1530
 
1531
#endif /* _DEQUE_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.