OpenCores
URL https://opencores.org/ocsvn/sparc64soc/sparc64soc/trunk

Subversion Repositories sparc64soc

[/] [sparc64soc/] [trunk/] [T1-CPU/] [exu/] [sparc_exu_div.v] - Blame information for rev 2

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 dmitryr
// ========== Copyright Header Begin ==========================================
2
// 
3
// OpenSPARC T1 Processor File: sparc_exu_div.v
4
// Copyright (c) 2006 Sun Microsystems, Inc.  All Rights Reserved.
5
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES.
6
// 
7
// The above named program is free software; you can redistribute it and/or
8
// modify it under the terms of the GNU General Public
9
// License version 2 as published by the Free Software Foundation.
10
// 
11
// The above named program is distributed in the hope that it will be 
12
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
// General Public License for more details.
15
// 
16
// You should have received a copy of the GNU General Public
17
// License along with this work; if not, write to the Free Software
18
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19
// 
20
// ========== Copyright Header End ============================================
21
////////////////////////////////////////////////////////////////////////
22
/*
23
//  Module Name: sparc_exu_div
24
*/
25
module sparc_exu_div (/*AUTOARG*/
26
   // Outputs
27
   so, div_ecl_xin_msb_l, div_ecl_x_msb, div_ecl_d_msb,
28
   div_ecl_cout64, div_ecl_cout32, div_ecl_gencc_in_msb_l,
29
   div_ecl_gencc_in_31, div_ecl_upper32_equal, div_ecl_low32_nonzero,
30
   div_ecl_dividend_msb, div_byp_muldivout_g, div_byp_yreg_e,
31
   div_ecl_yreg_0_l, exu_mul_rs1_data, exu_mul_rs2_data,
32
   div_ecl_adder_out_31, div_ecl_detect_zero_low,
33
   div_ecl_detect_zero_high, div_ecl_d_62,
34
   // Inputs
35
   ecl_div_yreg_wen_w, ecl_div_yreg_wen_l, ecl_div_yreg_wen_g,
36
   ecl_div_yreg_shift_g, ecl_div_yreg_data_31_g, ecl_div_thr_e,
37
   byp_div_yreg_data_w, rclk, se, si, ecl_div_keep_d,
38
   ecl_div_ld_inputs, ecl_div_sel_adder, ecl_div_last_cycle,
39
   ecl_div_almostlast_cycle, ecl_div_div64, ecl_div_sel_u32,
40
   ecl_div_sel_pos32, ecl_div_sel_neg32, ecl_div_sel_64b,
41
   ecl_div_upper32_zero, ecl_div_upper33_one, ecl_div_upper33_zero,
42
   mul_exu_data_g, ecl_div_sel_div, ecl_div_mul_wen,
43
   ecl_div_dividend_sign, ecl_div_subtract_l, ecl_div_cin,
44
   ecl_div_newq, ecl_div_xinmask, ecl_div_keepx,
45
   ecl_div_mul_get_new_data, ecl_div_mul_keep_data,
46
   ecl_div_mul_get_32bit_data, ecl_div_mul_sext_rs2_e,
47
   ecl_div_mul_sext_rs1_e, byp_div_rs1_data_e, byp_div_rs2_data_e,
48
   ecl_div_muls_rs1_31_e_l, ecl_div_muls, ecl_div_zero_rs2_e
49
   ) ;
50
   /*AUTOINPUT*/
51
   // Beginning of automatic inputs (from unused autoinst inputs)
52
   input [31:0]         byp_div_yreg_data_w;    // To yreg of sparc_exu_div_yreg.v
53
   input [3:0]          ecl_div_thr_e;          // To yreg of sparc_exu_div_yreg.v
54
   input                ecl_div_yreg_data_31_g; // To yreg of sparc_exu_div_yreg.v
55
   input [3:0]          ecl_div_yreg_shift_g;   // To yreg of sparc_exu_div_yreg.v
56
   input [3:0]          ecl_div_yreg_wen_g;     // To yreg of sparc_exu_div_yreg.v
57
   input [3:0]          ecl_div_yreg_wen_l;     // To yreg of sparc_exu_div_yreg.v
58
   input [3:0]          ecl_div_yreg_wen_w;     // To yreg of sparc_exu_div_yreg.v
59
   // End of automatics
60
   input rclk;
61
   input se;
62
   input si;
63
   input        ecl_div_keep_d; // d should store (w/ overflow calcs)
64
   input        ecl_div_ld_inputs;// load in d and x
65
   input        ecl_div_sel_adder;// d should use adder output
66
   input        ecl_div_last_cycle;// last cycle of computations
67
   input         ecl_div_almostlast_cycle;// 2nd to last cycle of div
68
   input   ecl_div_div64;
69
   input         ecl_div_sel_u32;
70
   input         ecl_div_sel_pos32;
71
   input         ecl_div_sel_neg32;
72
   input         ecl_div_sel_64b;
73
   input         ecl_div_upper32_zero;
74
   input         ecl_div_upper33_one;
75
   input         ecl_div_upper33_zero;
76
   input [63:0]  mul_exu_data_g;
77
   input         ecl_div_sel_div;
78
   input         ecl_div_mul_wen;
79
   input         ecl_div_dividend_sign;
80
   input         ecl_div_subtract_l;     // add/subtract to adder
81
   input         ecl_div_cin;
82
   input  ecl_div_newq;         // newest q bit
83
   input         ecl_div_xinmask;
84
   input  ecl_div_keepx;
85
   input         ecl_div_mul_get_new_data;
86
   input         ecl_div_mul_keep_data;
87
   input         ecl_div_mul_get_32bit_data;
88
   input         ecl_div_mul_sext_rs2_e;
89
   input         ecl_div_mul_sext_rs1_e;
90
   input [63:0]  byp_div_rs1_data_e;
91
   input [63:0]  byp_div_rs2_data_e;
92
   input         ecl_div_muls_rs1_31_e_l;
93
   input         ecl_div_muls;
94
   input         ecl_div_zero_rs2_e;
95
 
96
   output        so;
97
   output div_ecl_xin_msb_l;
98
   output div_ecl_x_msb;
99
   output div_ecl_d_msb;
100
   output div_ecl_cout64;       // cout from adder
101
   output div_ecl_cout32;       // cout from adder
102
   output        div_ecl_gencc_in_msb_l;
103
   output        div_ecl_gencc_in_31;
104
   output        div_ecl_upper32_equal;
105
   output        div_ecl_low32_nonzero;
106
   output        div_ecl_dividend_msb;
107
   output [63:0] div_byp_muldivout_g;
108
   output [31:0] div_byp_yreg_e;
109
   output [3:0]  div_ecl_yreg_0_l;
110
   output [63:0]          exu_mul_rs1_data;
111
   output [63:0]          exu_mul_rs2_data;
112
   output                 div_ecl_adder_out_31;
113
   output        div_ecl_detect_zero_low;
114
   output        div_ecl_detect_zero_high;
115
   output        div_ecl_d_62;
116
 
117
   /*AUTOWIRE*/
118
   // Beginning of automatic wires (for undeclared instantiated-module outputs)
119
   wire [31:0]          yreg_mdq_y_e;           // From yreg of sparc_exu_div_yreg.v
120
   // End of automatics
121
   wire                 clk;
122
   wire [127:0]  din;           // sign extended dividend
123
   wire [127:0]  d;             // current dividend/quotient
124
   wire [63:0]   adder_out;     // output of adder
125
   wire [127:0]  dnext;         // input to d flop
126
   wire [127:0]  adder_dnext;   // combination of adder out and quotient
127
   wire [63:0]   x;             // divisor
128
   wire [63:0]   xin;           // sign extended (for 32bit) divisor
129
   wire [63:0]   xnext;         // input to divisor flop
130
   wire [63:0]   adderin1;      // first input to adder
131
   wire [63:0]   adderin2;      // 2nd input to adder
132
 
133
   wire [63:0]   curr_q;        // current quotient
134
   wire [63:0]   out64;         // 64 bit result
135
   wire [63:0]   pos32;         // positive 32 bit result w/ ovfl
136
   wire [63:0]   neg32;         // negative 32 bit result w/ ovfl
137
   wire [63:0]   u32;           // unsigned 32 bit result w/ ovfl
138
   wire [63:0]   gencc_in;
139
   wire [63:0]   mul_result;
140
   wire [63:0]   mul_result_next;
141
   wire [127:0]  input_data_e;
142
   wire [63:0]   dividend;
143
   wire [63:0]   divisor;
144
   wire [127:0]  next_mul_data;
145
   wire [127:0]  mul_data_out;
146
   wire [127:0]  mul32_input_data_e;
147
   wire          subtract;
148
   wire [63:0]   spr_out;
149
   wire [63:0]   z_in;
150
 
151
   assign        clk = rclk;
152
   ///////////////////////////////////////
153
   // Input masking for 32 bit operations
154
   ///////////////////////////////////////
155
   dp_buffer #(128) buf_input_data(.dout(input_data_e[127:0]),
156
                                   .in({byp_div_rs2_data_e[63:0], byp_div_rs1_data_e[63:0]}));
157
   // Mux in yreg into upper 32 bits on 32 bit divides
158
   dp_mux2es #(32) dividendmux(.dout(dividend[63:32]),
159
                             .in0(yreg_mdq_y_e[31:0]),
160
                             .in1(input_data_e[63:32]),
161
                             .sel(ecl_div_div64));
162
   assign        dividend[31:0] = input_data_e[31:0];
163
   assign        divisor[63:0] = input_data_e[127:64];
164
 
165
 
166
   /////////////////////
167
   // Output assignment
168
   /////////////////////
169
   dp_mux2es #(64) output_mux(.dout(div_byp_muldivout_g[63:0]), .in1(d[63:0]),
170
                         .in0(mul_result[63:0]),
171
                         .sel(ecl_div_sel_div));
172
   ///////////////////////////
173
   // Generate Condition Codes and divide by zero exception and overflow
174
   ///////////////////////////
175
   dp_mux2es #(64) gencc_mux(.dout(gencc_in[63:0]),
176
                          .in0(mul_result[63:0]),
177
                          .in1(curr_q[63:0]),
178
                          .sel(ecl_div_sel_div));
179
   sparc_exu_div_32eql u32eql(.in(gencc_in[63:32]), .equal(div_ecl_upper32_equal));
180
   sparc_exu_aluor32 low32or(// Outputs
181
                             .out  (div_ecl_low32_nonzero),
182
                             // Inputs
183
                             .in    (gencc_in[31:0]));
184
   assign        div_ecl_gencc_in_msb_l = ~gencc_in[63];
185
   assign        div_ecl_gencc_in_31 = gencc_in[31];
186
 
187
 
188
   // Division overflow calculations
189
   assign        curr_q = d[127:64];
190
   assign        u32 = {32'b0, (curr_q[31:0] | {32{~ecl_div_upper32_zero}})};
191
   assign        pos32 = {33'b0, (curr_q[30:0] | {31{~ecl_div_upper33_zero}})};
192
   assign        neg32 = {{33{1'b1}}, (curr_q[30:0] & {31{ecl_div_upper33_one}})};
193
 
194
   mux4ds #(64) result_mux(.dout(out64[63:0]), .in0(curr_q[63:0]), .in1(u32[63:0]),
195
                         .in2(pos32[63:0]), .in3(neg32[63:0]), .sel0(ecl_div_sel_64b),
196
                         .sel1(ecl_div_sel_u32), .sel2(ecl_div_sel_pos32),
197
                         .sel3(ecl_div_sel_neg32));
198
 
199
   //////////////////////////
200
   // Logic for D (dividend)
201
   //////////////////////////
202
 
203
   // If signed div sign extend dividend to 127 bits
204
   assign        div_ecl_dividend_msb = dividend[63];
205
   assign        din[62:0] = dividend[62:0];
206
   dp_mux2es #(32) din_mux(.dout(din[94:63]),
207
                           .in0({{31{ecl_div_dividend_sign}}, dividend[63]}),
208
                           .in1({~ecl_div_muls_rs1_31_e_l, dividend[31:1]}),
209
                           .sel(ecl_div_muls));
210
   assign        din[127:95] = {33{ecl_div_dividend_sign}};
211
//   assign        din = {{64{ecl_div_dividend_sign}}, dividend[63:0]};
212
 
213
 
214
   // Select input to FF for d
215
   mux3ds #(128) d_mux(.dout(dnext[127:0]), .in0({d[127:64], out64[63:0]}),
216
                     .in1(adder_dnext[127:0]), .in2(din[127:0]),
217
                     .sel0(ecl_div_keep_d),
218
                     .sel1(ecl_div_sel_adder),
219
                     .sel2(ecl_div_ld_inputs));
220
   assign        div_ecl_d_62 = d[62];
221
 
222
   // FF for d
223
   dff_s #(128) d_dff(.din(dnext[127:0]), .clk(clk), .q(d[127:0]), .se(se), .si(), .so());
224
 
225
   ////////////////////////////
226
   // Logic for X (divisor)
227
   ////////////////////////////
228
   // if signed div and 32 bits sign extend to upper 32 bits
229
   dp_mux2es #(32) xin_mux(.dout(xin[63:32]), .in1(divisor[63:32]),
230
                      .in0({32{ecl_div_xinmask}}),
231
                      .sel(ecl_div_div64));
232
   assign        xin[31:0] = divisor[31:0] & {32{~ecl_div_zero_rs2_e}};
233
   //assign xin[31:0] = divisor[31:0];
234
 
235
   // Pick between x and divisor and 1 (use divisor on first cycle, 1 last cycle)
236
   mux3ds #(64) x_mux(.dout(xnext[63:0]), .in0(x[63:0]), .in1(xin[63:0]), .in2({64'b0}),
237
                    .sel0(ecl_div_keepx),
238
                    .sel1(ecl_div_ld_inputs),
239
                    .sel2(ecl_div_almostlast_cycle));
240
 
241
   // FF for x
242
   dff_s #(64) x_dff(.din(xnext[63:0]), .clk(clk), .q(x[63:0]), .se(se), .si(), .so());
243
 
244
 
245
   ///////////////////////////
246
   // Logic for inputs to adder
247
   //////////////////////////
248
   assign div_ecl_xin_msb_l = ~xin[63];
249
   assign div_ecl_x_msb = x[63];
250
   assign div_ecl_d_msb = d[127];
251
   dp_mux2es #(64) in1_mux(.dout(adderin1[63:0]), .in0(d[126:63]),
252
                      .in1({d[62:0], ecl_div_newq}), .sel(ecl_div_last_cycle));
253
 
254
   assign subtract = ~ecl_div_subtract_l;
255
   assign        adderin2[63:0] = x[63:0] ^ {64{subtract}};
256
 
257
   //////////////////////////
258
   //  Adder
259
   /////////////////////////
260
   sparc_exu_aluadder64 add64(// Outputs
261
                              .adder_out(adder_out[63:0]),
262
                              .cout32   (div_ecl_cout32),
263
                              .cout64   (div_ecl_cout64),
264
                              // Inputs
265
                              .rs1_data (adderin1[63:0]),
266
                              .rs2_data (adderin2[63:0]),
267
                              .cin      (ecl_div_cin));
268
 
269
   assign        adder_dnext = {adder_out[63:0], d[62:0], ecl_div_newq};
270
   assign        div_ecl_adder_out_31 = adder_out[31];
271
 
272
   // sum predict and zero detection
273
   sparc_exu_aluspr spr(.rs1_data(adderin1[63:0]), .rs2_data(adderin2[63:0]), .cin(ecl_div_cin),
274
                        .spr_out(spr_out[63:0]));
275
   dp_mux2es #(64) zero_detect_mux(.dout(z_in[63:0]),
276
                                   .in0(spr_out[63:0]),
277
                                   .in1(xin[63:0]),
278
                                   .sel(ecl_div_ld_inputs));
279
   //sparc_exu_aluzcmp64 regzcmp(.in(z_in[63:0]), .zero64(div_ecl_detect_zero));
280
   assign        div_ecl_detect_zero_low = ~(|z_in[31:0]);
281
   assign        div_ecl_detect_zero_high = ~(|z_in[63:32]);
282
 
283
 
284
   // y register
285
   assign        div_byp_yreg_e = yreg_mdq_y_e;
286
   sparc_exu_div_yreg yreg(.mul_div_yreg_data_g(mul_exu_data_g[63:32]),
287
                           /*AUTOINST*/
288
                           // Outputs
289
                           .yreg_mdq_y_e(yreg_mdq_y_e[31:0]),
290
                           .div_ecl_yreg_0_l(div_ecl_yreg_0_l[3:0]),
291
                           // Inputs
292
                           .clk         (clk),
293
                           .se          (se),
294
                           .byp_div_yreg_data_w(byp_div_yreg_data_w[31:0]),
295
                           .ecl_div_thr_e(ecl_div_thr_e[3:0]),
296
                           .ecl_div_yreg_wen_w(ecl_div_yreg_wen_w[3:0]),
297
                           .ecl_div_yreg_wen_g(ecl_div_yreg_wen_g[3:0]),
298
                           .ecl_div_yreg_wen_l(ecl_div_yreg_wen_l[3:0]),
299
                           .ecl_div_yreg_data_31_g(ecl_div_yreg_data_31_g),
300
                           .ecl_div_yreg_shift_g(ecl_div_yreg_shift_g[3:0]));
301
 
302
 
303
   //////////////////////////////////
304
   // MULTIPLIER inputs
305
   //////////////////////////////////                  
306
   assign        mul32_input_data_e[127:64] = {{32{ecl_div_mul_sext_rs2_e}}, input_data_e[95:64]};
307
   assign        mul32_input_data_e[63:0] = {{32{ecl_div_mul_sext_rs1_e}}, input_data_e[31:0]};
308
   mux3ds #(128) mul_data_mux(.dout(next_mul_data[127:0]),
309
                              .in0(input_data_e[127:0]),
310
                              .in1(mul32_input_data_e[127:0]),
311
                              .in2(mul_data_out[127:0]),
312
                              .sel0(ecl_div_mul_get_new_data),
313
                              .sel1(ecl_div_mul_get_32bit_data),
314
                              .sel2(ecl_div_mul_keep_data));
315
   dff_s #(128) mul_data_dff(.din(next_mul_data[127:0]), .clk(clk), .q(mul_data_out[127:0]),
316
                           .se(se), .si(), .so());
317
   assign        exu_mul_rs1_data = mul_data_out[63:0];
318
   assign        exu_mul_rs2_data = mul_data_out[127:64];
319
 
320
   ///////////////////////////////////
321
   // Store output from mul
322
   //////////////////////////////////
323
   dp_mux2es #(64) mul_result_mux(.dout(mul_result_next[63:0]), .in0(mul_result[63:0]),
324
                           .in1(mul_exu_data_g[63:0]),
325
                           .sel(ecl_div_mul_wen));
326
   dff_s #(64) mul_result_dff(.din(mul_result_next[63:0]), .clk(clk), .q(mul_result[63:0]),
327
                        .se(se), .si(), .so());
328
 
329
 
330
endmodule // sparc_exu_div

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.