OpenCores
URL https://opencores.org/ocsvn/wbddr3/wbddr3/trunk

Subversion Repositories wbddr3

[/] [wbddr3/] [trunk/] [rtl/] [wbddrsdram.v] - Blame information for rev 6

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 dgisselq
////////////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    wbddrsdram.v
4
//
5
// Project:     OpenArty, an entirely open SoC based upon the Arty platform
6
//
7
// Purpose:     
8
//
9
// Creator:     Dan Gisselquist, Ph.D.
10
//              Gisselquist Technology, LLC
11
//
12
////////////////////////////////////////////////////////////////////////////////
13
//
14
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
15
//
16
// This program is free software (firmware): you can redistribute it and/or
17
// modify it under the terms of  the GNU General Public License as published
18
// by the Free Software Foundation, either version 3 of the License, or (at
19
// your option) any later version.
20
//
21
// This program is distributed in the hope that it will be useful, but WITHOUT
22
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
23
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
24
// for more details.
25
//
26
// You should have received a copy of the GNU General Public License along
27
// with this program.  (It's in the $(ROOT)/doc directory, run make with no
28
// target there if the PDF file isn't present.)  If not, see
29
// <http://www.gnu.org/licenses/> for a copy.
30
//
31
// License:     GPL, v3, as defined and found on www.gnu.org,
32
//              http://www.gnu.org/licenses/gpl.html
33
//
34
//
35
////////////////////////////////////////////////////////////////////////////////
36
//
37
//
38
 
39
// Possible commands to the DDR3 memory.  These consist of settings for the
40
// bits: o_wb_cs_n, o_wb_ras_n, o_wb_cas_n, and o_wb_we_n, respectively.
41
`define DDR_MRSET       4'b0000
42
`define DDR_REFRESH     4'b0001
43
`define DDR_PRECHARGE   4'b0010
44
`define DDR_ACTIVATE    4'b0011
45
`define DDR_WRITE       4'b0100
46
`define DDR_READ        4'b0101
47 4 dgisselq
`define DDR_ZQS         4'b0110
48 2 dgisselq
`define DDR_NOOP        4'b0111
49
//`define       DDR_DESELECT    4'b1???
50
//
51
// In this controller, 24-bit commands tend to be passed around.  These 
52
// 'commands' are bit fields.  Here we specify the bits associated with
53
// the bit fields.
54 5 dgisselq
`define DDR_RSTDONE     24      // End the reset sequence?
55
`define DDR_RSTTIMER    23      // Does this reset command take multiple clocks?
56
`define DDR_RSTBIT      22      // Value to place on reset_n
57
`define DDR_CKEBIT      21      // Should this reset command set CKE?
58
`define DDR_CMDLEN      21
59
`define DDR_CSBIT       20
60
`define DDR_RASBIT      19
61
`define DDR_CASBIT      18
62
`define DDR_WEBIT       17
63
`define DDR_NOPTIMER    16      // Steal this from BA bits
64 2 dgisselq
`define DDR_BABITS      3       // BABITS are really from 18:16, they are 3 bits
65 3 dgisselq
`define DDR_ADDR_BITS   14
66 2 dgisselq
 
67 3 dgisselq
module  wbddrsdram(i_clk, i_reset,
68 2 dgisselq
                i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
69 3 dgisselq
                        o_wb_ack, o_wb_stall, o_wb_data,
70 2 dgisselq
                o_ddr_reset_n, o_ddr_cke,
71
                o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n,
72 4 dgisselq
                o_ddr_dqs, o_ddr_dm, o_ddr_odt, o_ddr_bus_oe,
73
                o_ddr_addr, o_ddr_ba, o_ddr_data, i_ddr_data,
74
                o_cmd_accepted);
75 3 dgisselq
        parameter       CKREFI4 = 13'd6240, // 4 * 7.8us at 200 MHz clock
76 4 dgisselq
                        CKRFC = 140,
77
                        CKXPR = CKRFC+5+2; // Clocks per tXPR timeout
78 3 dgisselq
        input                   i_clk, i_reset;
79 2 dgisselq
        // Wishbone inputs
80
        input                   i_wb_cyc, i_wb_stb, i_wb_we;
81
        input           [25:0]   i_wb_addr;
82
        input           [31:0]   i_wb_data;
83
        // Wishbone outputs
84
        output  reg             o_wb_ack;
85
        output  reg             o_wb_stall;
86
        output  reg     [31:0]   o_wb_data;
87
        // DDR3 RAM Controller
88 3 dgisselq
        output  wire            o_ddr_reset_n, o_ddr_cke;
89 2 dgisselq
        // Control outputs
90
        output  reg             o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n,o_ddr_we_n;
91
        // DQS outputs:set to 3'b010 when data is active, 3'b100 (i.e. 2'bzz) ow
92 3 dgisselq
        output  wire            o_ddr_dqs;
93 4 dgisselq
        output  reg             o_ddr_dm, o_ddr_odt, o_ddr_bus_oe;
94 2 dgisselq
        // Address outputs
95
        output  reg     [13:0]   o_ddr_addr;
96
        output  reg     [2:0]    o_ddr_ba;
97
        // And the data inputs and outputs
98
        output  reg     [31:0]   o_ddr_data;
99
        input                   i_ddr_data;
100 4 dgisselq
        // And just for the test bench
101
        output  reg             o_cmd_accepted;
102 2 dgisselq
 
103 4 dgisselq
        always @(posedge i_clk)
104
                o_cmd_accepted <= (i_wb_stb)&&(~o_wb_stall);
105
 
106 3 dgisselq
        reg             drive_dqs;
107
 
108
        // The pending transaction
109
        reg     [31:0]   r_data;
110
        reg             r_pending, r_we;
111
        reg     [25:0]   r_addr;
112 5 dgisselq
        reg     [13:0]   r_row;
113 3 dgisselq
        reg     [2:0]    r_bank;
114
        reg     [9:0]    r_col;
115
        reg     [1:0]    r_sub;
116
        reg             r_move; // It was accepted, and can move to next stage
117
 
118
        // Can the pending transaction be satisfied with the current (ongoing)
119
        // transaction?
120
        reg             m_move, m_match, m_continue, m_pending, m_we;
121
        reg     [25:0]   m_addr;
122 5 dgisselq
        reg     [13:0]   m_row;
123 3 dgisselq
        reg     [2:0]    m_bank;
124
        reg     [9:0]    m_col;
125
        reg     [1:0]    m_sub;
126
 
127
        // Can we preload the next bank?
128 5 dgisselq
        reg     [13:0]   r_nxt_row;
129 3 dgisselq
        reg     [2:0]    r_nxt_bank;
130 6 dgisselq
 
131
        reg     need_close_bank, need_close_this_bank,
132
                        last_close_bank, maybe_close_next_bank,
133
                        last_maybe_close,
134
                need_open_bank, last_open_bank, maybe_open_next_bank,
135
                        last_maybe_open,
136
                valid_bank, last_valid_bank;
137
        reg     [(`DDR_CMDLEN-1):0]      close_bank_cmd, activate_bank_cmd,
138
                                        maybe_close_cmd, maybe_open_cmd, rw_cmd;
139 2 dgisselq
//
140
// tWTR = 7.5
141
// tRRD = 7.5
142
// tREFI= 7.8
143
// tFAW = 45
144
// tRTP = 7.5
145
// tCKE = 5.625
146
// tRFC = 160
147
// tRP  = 13.5
148
// tRAS = 36
149
// tRCD = 13.5
150
//
151
// RESET:
152
//      1. Hold o_reset_n = 1'b0; for 200 us, or 40,000 clocks (65536 perhaps?)
153
//              Hold cke low during this time as well
154
//              The clock should be free running into the chip during this time
155
//              Leave command in NOOP state: {cs,ras,cas,we} = 4'h7;
156
//              ODT must be held low
157
//      2. Hold cke low for another 500us, or 100,000 clocks
158
//      3. Raise CKE, continue outputting a NOOP for
159
//              tXPR, tDLLk, and tZQInit
160
//      4. Load MRS2, wait tMRD
161
//      4. Load MRS3, wait tMRD
162
//      4. Load MRS1, wait tMOD
163
// Before using the SDRAM, we'll need to program at least 3 of the mode
164
//      registers, if not all 4. 
165
//   tMOD clocks are required to program the mode registers, during which
166
//      time the RAM must be idle.
167
//
168
// NOOP: CS low, RAS, CAS, and WE high
169
 
170
//
171
// Reset logic should be simple, and is given as follows:
172
// note that it depends upon a ROM memory, reset_mem, and an address into that
173
// memory: reset_address.  Each memory location provides either a "command" to
174
// the DDR3 SDRAM, or a timer to wait until the next command.  Further, the
175
// timer commands indicate whether or not the command during the timer is to
176
// be set to idle, or whether the command is instead left as it was.
177 3 dgisselq
        reg             reset_override, reset_ztimer;
178 6 dgisselq
        reg     [4:0]    reset_address;
179 3 dgisselq
        reg     [(`DDR_CMDLEN-1):0]      reset_cmd, cmd, refresh_cmd;
180 5 dgisselq
        reg     [24:0]   reset_instruction;
181 3 dgisselq
        reg     [16:0]   reset_timer;
182
        initial reset_override = 1'b1;
183 6 dgisselq
        initial reset_address  = 5'h0;
184 2 dgisselq
        always @(posedge i_clk)
185
                if (i_reset)
186
                begin
187
                        reset_override <= 1'b1;
188 5 dgisselq
                        reset_cmd <= { `DDR_NOOP, reset_instruction[16:0]};
189
                end else if (reset_ztimer)
190
                begin
191
                        if (reset_instruction[`DDR_RSTDONE])
192
                                reset_override <= 1'b0;
193
                        reset_cmd <= reset_instruction[20:0];
194
                end
195 2 dgisselq
        always @(posedge i_clk)
196
                if (i_reset)
197
                        o_ddr_cke <= 1'b0;
198 3 dgisselq
                else if ((reset_override)&&(reset_ztimer))
199 2 dgisselq
                        o_ddr_cke <= reset_instruction[`DDR_CKEBIT];
200
 
201 4 dgisselq
        initial reset_ztimer = 1'b0;    // Is the timer zero?
202 5 dgisselq
        initial reset_timer = 17'h02;
203 2 dgisselq
        always @(posedge i_clk)
204
                if (i_reset)
205
                begin
206
                        reset_ztimer <= 1'b0;
207 5 dgisselq
                        reset_timer <= 17'd2;
208 2 dgisselq
                end else if (!reset_ztimer)
209
                begin
210
                        reset_ztimer <= (reset_timer == 17'h01);
211
                        reset_timer <= reset_timer - 17'h01;
212
                end else if (reset_instruction[`DDR_RSTTIMER])
213
                begin
214
                        reset_ztimer <= 1'b0;
215
                        reset_timer <= reset_instruction[16:0];
216
                end
217
 
218 5 dgisselq
        wire    [16:0]   w_ckXPR = CKXPR, w_ckRST = 4, w_ckRP = 3,
219 4 dgisselq
                        w_ckRFC = CKRFC;
220 2 dgisselq
        always @(posedge i_clk)
221 4 dgisselq
                if (i_reset)
222 5 dgisselq
                        reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 };
223
                else if (reset_ztimer) case(reset_address) // RSTDONE, TIMER, CKE, ??
224 4 dgisselq
                // 1. Reset asserted (active low) for 200 us. (@200MHz)
225 6 dgisselq
                5'h0: reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 };
226 4 dgisselq
                // 2. Reset de-asserted, wait 500 us before asserting CKE
227 6 dgisselq
                5'h1: reset_instruction <= { 4'h6, `DDR_NOOP, 17'd100_000 };
228 4 dgisselq
                // 3. Assert CKE, wait minimum of Reset CKE Exit time
229 6 dgisselq
                5'h2: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckXPR };
230 4 dgisselq
                // 4. Look MR2.  (1CK, no TIMER)
231 6 dgisselq
                5'h3: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h2,
232 5 dgisselq
                        3'h0, 2'b00, 1'b0, 1'b0, 1'b1, 3'b0, 3'b0 }; // MRS2
233 4 dgisselq
                // 3. Wait 4 clocks (tMRD)
234 6 dgisselq
                5'h4: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h02 };
235 4 dgisselq
                // 5. Set MR1
236 6 dgisselq
                5'h5: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h1,
237 5 dgisselq
                        1'h0, // Reserved for Future Use (RFU)
238 4 dgisselq
                        1'b0, // Qoff - output buffer enabled
239
                        1'b1, // TDQS ... enabled
240
                        1'b0, // RFU
241
                        1'b0, // High order bit, Rtt_Nom (3'b011)
242
                        1'b0, // RFU
243
                        //
244
                        1'b0, // Disable write-leveling
245
                        1'b1, // Mid order bit of Rtt_Nom
246
                        1'b0, // High order bit of Output Drvr Impedence Ctrl
247
                        2'b0, // Additive latency = 0
248
                        1'b1, // Low order bit of Rtt_Nom
249
                        1'b1, // DIC set to 2'b01
250
                        1'b1 }; // MRS1, DLL enable
251
                // 7. Wait another 4 clocks
252 6 dgisselq
                5'h6: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h02 };
253 4 dgisselq
                // 8. Send MRS0
254 6 dgisselq
                5'h7: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h0,
255 5 dgisselq
                        1'b0, // Reserved for future use
256 4 dgisselq
                        1'b0, // PPD control, (slow exit(DLL off))
257
                        3'b1, // Write recovery for auto precharge
258
                        1'b0, // DLL Reset (No)
259
                        //
260
                        1'b0, // TM mode normal
261
                        3'b01, // High 3-bits, CAS latency (=4'b0010 = 4'd5)
262
                        1'b0, // Read burst type = nibble sequential
263
                        1'b0, // Low bit of cas latency
264
                        2'b0 }; // Burst length = 8 (Fixed)
265
                // 9. Wait tMOD, is max(12 clocks, 15ns)
266 6 dgisselq
                5'h8: reset_instruction <= { 4'h7, `DDR_NOOP, 17'h0a };
267 4 dgisselq
                // 10. Issue a ZQCL command to start ZQ calibration, A10 is high
268 6 dgisselq
                5'h9: reset_instruction <= { 4'h3, `DDR_ZQS, 6'h0, 1'b1, 10'h0};
269 4 dgisselq
                //11.Wait for both tDLLK and tZQinit completed, both are 512 cks
270 6 dgisselq
                5'ha: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd512 };
271 4 dgisselq
                // 12. Precharge all command
272 6 dgisselq
                5'hb: reset_instruction <= { 4'h3, `DDR_PRECHARGE, 6'h0, 1'b1, 10'h0 };
273 4 dgisselq
                // 13. Wait for the precharge to complete
274 6 dgisselq
                5'hc: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRP };
275 4 dgisselq
                // 14. A single Auto Refresh commands
276 6 dgisselq
                5'hd: reset_instruction <= { 4'h3, `DDR_REFRESH, 17'h00 };
277 4 dgisselq
                // 15. Wait for the auto refresh to complete
278 6 dgisselq
                5'he: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRFC };
279 4 dgisselq
                // Two Auto Refresh commands
280 2 dgisselq
                default:
281 5 dgisselq
                        reset_instruction <={4'hb, `DDR_NOOP, 17'd00_000 };
282 2 dgisselq
                endcase
283
                // reset_instruction <= reset_mem[reset_address];
284
 
285 6 dgisselq
        initial reset_address = 5'h0;
286 2 dgisselq
        always @(posedge i_clk)
287
                if (i_reset)
288 6 dgisselq
                        reset_address <= 5'h1;
289
                else if ((reset_ztimer)&&(reset_override))
290
                        reset_address <= reset_address + 5'h1;
291 2 dgisselq
//
292
// initial reset_mem =
293
//       0.     !DONE, TIMER,RESET_N=0, CKE=0, CMD = NOOP, TIMER = 200us ( 40,000)
294
//       1.     !DONE, TIMER,RESET_N=1, CKE=0, CMD = NOOP, TIMER = 500us (100,000)
295
//       2.     !DONE, TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = (Look me up)
296
//       3.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS
297
//       4.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
298
//       5.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS3
299
//       6.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
300
//       7.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS1
301
//       8.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMRS
302
//       9.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = MODE, MRS1
303
//      10.     !DONE,!TIMER,RESET_N=1, CKE=1, CMD = NOOP, TIMER = tMOD
304
//      11.     !DONE,!TIMER,RESET_N=1, CKE=1, (Pre-charge all)
305
//      12.     !DONE,!TIMER,RESET_N=1, CKE=1, (wait)
306
//      13.     !DONE,!TIMER,RESET_N=1, CKE=1, (Auto-refresh)
307
//      14.     !DONE,!TIMER,RESET_N=1, CKE=1, (Auto-refresh)
308
//      15.     !DONE,!TIMER,RESET_N=1, CKE=1, (wait)
309
 
310
 
311
//
312
//
313
// Let's keep track of any open banks.  There are 8 of them to keep track of.
314
//
315
//      A precharge requires 3 clocks at 200MHz to complete, 2 clocks at 100MHz.
316
//      
317
//
318
//
319 3 dgisselq
        reg     need_refresh;
320 2 dgisselq
 
321 3 dgisselq
        wire    w_precharge_all;
322
        reg     banks_are_closing, all_banks_closed;
323 6 dgisselq
        reg     [3:0]    bank_status     [0:7];
324
        reg     [13:0]   bank_address    [0:7];
325
 
326 2 dgisselq
        always @(posedge i_clk)
327
        begin
328 6 dgisselq
                bank_status[0] <= { bank_status[0][2:0], bank_status[0][0] };
329
                bank_status[1] <= { bank_status[1][2:0], bank_status[1][0] };
330
                bank_status[2] <= { bank_status[2][2:0], bank_status[2][0] };
331
                bank_status[3] <= { bank_status[3][2:0], bank_status[3][0] };
332
                bank_status[4] <= { bank_status[4][2:0], bank_status[4][0] };
333
                bank_status[5] <= { bank_status[5][2:0], bank_status[5][0] };
334
                bank_status[6] <= { bank_status[6][2:0], bank_status[6][0] };
335
                bank_status[7] <= { bank_status[7][2:0], bank_status[7][0] };
336
                all_banks_closed <= (bank_status[0][2:0] == 3'b00)
337
                                        &&(bank_status[1][2:0] == 3'b00)
338
                                        &&(bank_status[2][2:0] == 3'b00)
339
                                        &&(bank_status[3][2:0] == 3'b00)
340
                                        &&(bank_status[4][2:0] == 3'b00)
341
                                        &&(bank_status[5][2:0] == 3'b00)
342
                                        &&(bank_status[6][2:0] == 3'b00)
343
                                        &&(bank_status[7][2:0] == 3'b00);
344 2 dgisselq
                if ((!reset_override)&&(need_refresh)||(w_precharge_all))
345
                begin
346 6 dgisselq
                        bank_status[0][0] <= 1'b0;
347
                        bank_status[1][0] <= 1'b0;
348
                        bank_status[2][0] <= 1'b0;
349
                        bank_status[3][0] <= 1'b0;
350
                        bank_status[4][0] <= 1'b0;
351
                        bank_status[5][0] <= 1'b0;
352
                        bank_status[6][0] <= 1'b0;
353
                        bank_status[7][0] <= 1'b0;
354 2 dgisselq
                        banks_are_closing <= 1'b1;
355
                end else if (need_close_bank)
356
                begin
357 6 dgisselq
                        bank_status[close_bank_cmd[16:14]]
358
                                <= { bank_status[close_bank_cmd[16:14]][2:0], 1'b1 };
359
                        // bank_status[close_bank_cmd[16:14]][0] <= 1'b0;
360 2 dgisselq
                end else if (need_open_bank)
361
                begin
362 6 dgisselq
                        bank_status[activate_bank_cmd[16:14]]
363
                                <= { bank_status[activate_bank_cmd[16:14]][2:0], 1'b1 };
364
                        // bank_status[activate_bank_cmd[16:14]][0] <= 1'b1;
365 2 dgisselq
                        all_banks_closed <= 1'b0;
366
                        banks_are_closing <= 1'b0;
367 6 dgisselq
                end else if ((valid_bank)&&(!r_move))
368
                        ;
369
                else if (maybe_close_next_bank)
370
                begin
371
                        bank_status[maybe_close_cmd[16:14]]
372
                                <= { bank_status[maybe_close_cmd[16:14]][2:0], 1'b1 };
373
                end else if (maybe_open_next_bank)
374
                begin
375
                        bank_status[maybe_open_cmd[16:14]]
376
                                <= { bank_status[maybe_open_cmd[16:14]][2:0], 1'b1 };
377
                        // bank_status[activate_bank_cmd[16:14]][0] <= 1'b1;
378
                        all_banks_closed <= 1'b0;
379
                        banks_are_closing <= 1'b0;
380 2 dgisselq
                end
381
        end
382
 
383
        always @(posedge i_clk)
384 3 dgisselq
                // if (cmd[22:19] == `DDR_ACTIVATE)
385
                if (need_open_bank)
386 5 dgisselq
                        bank_address[activate_bank_cmd[16:14]]
387
                                <= activate_bank_cmd[13:0];
388 2 dgisselq
 
389
//
390
//
391
// Okay, let's investigate when we need to do a refresh.  Our plan will be to
392
// do 4 refreshes every tREFI*4 seconds.  tREFI = 7.8us, but its a parameter
393
// in the number of clocks so that we can handle both 100MHz and 200MHz clocks.
394
//
395
// Note that 160ns are needed between refresh commands (JEDEC, p172), or
396
// 320 clocks @200MHz, or equivalently 160 clocks @100MHz.  Thus to issue 4
397
// of these refresh cycles will require 4*320=1280 clocks@200 MHz.  After this
398
// time, no more refreshes will be needed for 6240 clocks.
399
//
400
// Let's think this through:
401
//      REFRESH_COST = (n*(320)+24)/(n*1560)
402
// 
403
//
404
//
405 3 dgisselq
        reg             midrefresh, refresh_clear, endrefresh;
406 2 dgisselq
        reg     [12:0]   refresh_clk;
407 3 dgisselq
        reg     [2:0]    midrefresh_hctr; // How many refresh cycles?
408
        reg     [8:0]    midrefresh_lctr; // How many clks in this refresh cycle
409 2 dgisselq
        always @(posedge i_clk)
410 3 dgisselq
                if ((reset_override)||(refresh_clear))
411 2 dgisselq
                        refresh_clk <= CKREFI4;
412
                else if (|refresh_clk)
413
                        refresh_clk <= refresh_clk-1;
414
        always @(posedge i_clk)
415 6 dgisselq
                if (refresh_clk == 0)
416
                        need_refresh <= 1'b1;
417
                else if (endrefresh)
418
                        need_refresh <= 1'b0;
419
 
420 2 dgisselq
        always @(posedge i_clk)
421
                if (!need_refresh)
422 5 dgisselq
                        refresh_cmd <= { `DDR_NOOP, 17'h00 };
423 2 dgisselq
                else if (~banks_are_closing)
424 5 dgisselq
                        refresh_cmd <= { `DDR_PRECHARGE, 3'h0, 3'h0, 1'b1, 10'h00 };
425 2 dgisselq
                else if (~all_banks_closed)
426 5 dgisselq
                        refresh_cmd <= { `DDR_NOOP, 17'h00 };
427 2 dgisselq
                else
428 5 dgisselq
                        refresh_cmd <= { `DDR_REFRESH, 17'h00 };
429 2 dgisselq
        always @(posedge i_clk)
430 3 dgisselq
                midrefresh <= (need_refresh)&&(all_banks_closed)&&(~refresh_clear);
431 2 dgisselq
 
432
        always @(posedge i_clk)
433 6 dgisselq
                if (!need_refresh)
434
                        midrefresh_hctr <= 3'h0;
435
                else if ((midrefresh_lctr == 0)&&(!midrefresh_hctr[2]))
436
                        midrefresh_hctr <= midrefresh_hctr + 3'h1;
437 2 dgisselq
        always @(posedge i_clk)
438 3 dgisselq
                if ((!need_refresh)||(!midrefresh))
439 2 dgisselq
                        endrefresh <= 1'b0;
440
                else if (midrefresh_hctr == 3'h0)
441
                        endrefresh <= 1'b1;
442
        always @(posedge i_clk)
443 6 dgisselq
                if (!need_refresh)
444 2 dgisselq
                        midrefresh_lctr <= CKRFC;
445
                else if (midrefresh_lctr == 0)
446 6 dgisselq
                        midrefresh_lctr <= CKRFC;
447 2 dgisselq
                else
448 6 dgisselq
                        midrefresh_lctr <= midrefresh_lctr-1;
449 2 dgisselq
 
450
        always @(posedge i_clk)
451 3 dgisselq
                refresh_clear <= (need_refresh)&&(endrefresh)&&(midrefresh_lctr == 0);
452 2 dgisselq
 
453
 
454
//
455
//
456
//      Let's track: when will our bus be active?  When will we be reading or
457
//      writing?
458
//
459
//
460 3 dgisselq
        reg     [8:0]    bus_active, bus_read;
461 2 dgisselq
        reg     [1:0]    bus_subaddr     [8:0];
462 3 dgisselq
        initial bus_active = 0;
463 2 dgisselq
        always @(posedge i_clk)
464
        begin
465
                bus_active[8:0] <= { bus_active[7:0], 1'b0 };
466
                bus_read[8:0]   <= { bus_read[7:0], 1'b0 }; // Drive the d-bus?
467 3 dgisselq
                //bus_mask[8:0] <= { bus_mask[7:0], 1'b1 }; // Write this value?
468 2 dgisselq
                bus_subaddr[8]  <= bus_subaddr[7];
469
                bus_subaddr[7]  <= bus_subaddr[6];
470
                bus_subaddr[6]  <= bus_subaddr[5];
471
                bus_subaddr[5]  <= bus_subaddr[4];
472
                bus_subaddr[4]  <= bus_subaddr[3];
473
                bus_subaddr[3]  <= bus_subaddr[2];
474
                bus_subaddr[2]  <= bus_subaddr[1];
475
                bus_subaddr[1]  <= bus_subaddr[0];
476
                bus_subaddr[0]  <= 2'h3;
477 4 dgisselq
                if ((!reset_override)&&(!need_refresh)&&(!need_close_bank)
478
                        &&(!need_open_bank)&&(valid_bank))
479 2 dgisselq
                begin
480
                        bus_active[3:0]<= 4'hf; // Once per clock
481
                        bus_read[3:0]  <= 4'hf; // These will be reads
482
                        bus_subaddr[3] <= 2'h0;
483
                        bus_subaddr[2] <= 2'h1;
484
                        bus_subaddr[1] <= 2'h2;
485 4 dgisselq
 
486
                        bus_read[3:0] <= (r_we)? 4'h0:4'hf;
487 2 dgisselq
                end
488
        end
489
 
490
        always @(posedge i_clk)
491 3 dgisselq
                drive_dqs <= (~bus_read[8])&&(|bus_active[8:7]);
492 2 dgisselq
 
493
//
494
//
495
// Now, let's see, can we issue a read command?
496
//
497
//
498
        always @(posedge i_clk)
499
        begin
500
                if ((i_wb_stb)&&(~o_wb_stall))
501
                begin
502 3 dgisselq
                        r_pending <= 1'b1;
503 2 dgisselq
                        o_wb_stall <= 1'b1;
504
                end else if ((r_move)||(m_move))
505
                begin
506 3 dgisselq
                        r_pending <= 1'b0;
507 2 dgisselq
                        o_wb_stall <= 1'b0;
508
                end
509
 
510
                if (~o_wb_stall)
511
                begin
512
                        r_we   <= i_wb_we;
513
                        r_addr <= i_wb_addr;
514
                        r_data <= i_wb_data;
515 5 dgisselq
                        r_row  <= i_wb_addr[25:12];
516
                        r_bank <= i_wb_addr[11:9];
517
                        r_col  <= { i_wb_addr[8:2], 3'b000 }; // 9:2
518 2 dgisselq
                        r_sub  <= i_wb_addr[1:0];
519
 
520
                        // pre-emptive work
521 6 dgisselq
                        r_nxt_row  <= (i_wb_addr[11:9]==3'h7)?i_wb_addr[25:12]+14'h1:i_wb_addr[25:12];
522 5 dgisselq
                        r_nxt_bank <= i_wb_addr[11:9]+3'h1;
523 2 dgisselq
                end
524
        end
525
 
526 6 dgisselq
        wire    w_need_close_this_bank, w_need_open_bank;
527
        assign  w_need_close_this_bank = (r_pending)&&(bank_status[r_bank][0])
528
                        &&(r_row != bank_address[r_bank]);
529
        assign  w_need_open_bank = (r_pending)&&(bank_status[r_bank][1:0]==2'b00);
530 3 dgisselq
 
531 6 dgisselq
        wire    w_this_closing_bank, w_this_opening_bank,
532
                w_this_maybe_close, w_this_maybe_open;
533
        reg     last_closing_bank, last_opening_bank;
534 2 dgisselq
        always @(posedge i_clk)
535
        begin
536 6 dgisselq
                need_close_bank <= (w_need_close_this_bank)
537
                                &&(!w_this_closing_bank)&&(!last_closing_bank);
538 2 dgisselq
 
539
                maybe_close_next_bank <= (r_pending)
540 6 dgisselq
                        &&(bank_status[r_nxt_bank][0])
541 2 dgisselq
                        &&(r_nxt_row != bank_address[r_nxt_bank])
542 6 dgisselq
                        &&(!w_this_maybe_close)&&(!last_maybe_close);
543 2 dgisselq
 
544 6 dgisselq
                close_bank_cmd <= { `DDR_PRECHARGE, r_bank, r_row[13:11], 1'b0, r_row[9:0] };
545
                maybe_close_cmd <= { `DDR_PRECHARGE, r_nxt_bank, r_nxt_row[13:11], 1'b0, r_nxt_row[9:0] };
546 2 dgisselq
 
547
 
548 6 dgisselq
                need_open_bank <= (w_need_open_bank)
549
                                &&(!w_this_opening_bank)&&(!last_opening_bank);
550
                last_open_bank <= (w_this_opening_bank);
551 2 dgisselq
 
552
                maybe_open_next_bank <= (r_pending)
553 6 dgisselq
                        &&(bank_status[r_bank][0] == 1'b1)
554
                        &&(bank_status[r_nxt_bank][1:0] == 2'b00)
555
                        &&(!w_this_maybe_open)&&(!last_maybe_open);
556
                last_maybe_open <= (w_this_maybe_open);
557 2 dgisselq
 
558 6 dgisselq
                activate_bank_cmd<= { `DDR_ACTIVATE,  r_bank,     r_row[13:0] };
559
                maybe_open_cmd <= { `DDR_ACTIVATE,r_nxt_bank, r_nxt_row[13:0] };
560 2 dgisselq
 
561
 
562
 
563 6 dgisselq
                valid_bank <= (r_pending)&&(bank_status[r_bank][3])
564 2 dgisselq
                                &&(bank_address[r_bank]==r_row)
565 6 dgisselq
                                &&(!last_valid_bank)&&(!r_move)
566
                                &&(!bus_active[0]);
567
                last_valid_bank <= r_move;
568 2 dgisselq
 
569
                rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (~r_pending)?`DDR_NOOP:((r_we)?`DDR_WRITE:`DDR_READ);
570 5 dgisselq
                rw_cmd[`DDR_WEBIT-1:0] <= { r_bank, 3'h0, 1'b0, r_col };
571 2 dgisselq
        end
572
 
573
 
574
        // Match registers, to see if we can move forward without sending a
575
        // new command
576
        always @(posedge i_clk)
577
        begin
578
                if (r_move)
579
                begin
580
                        m_pending <= r_pending;
581
                        m_we   <= r_we;
582
                        m_addr <= r_addr;
583
                        m_row  <= r_row;
584
                        m_bank <= r_bank;
585
                        m_col  <= r_col;
586
                        m_sub  <= r_sub;
587
                end else if (m_match)
588
                        m_sub <= r_sub;
589
 
590 3 dgisselq
                m_match <= (m_pending)&&(r_pending)&&(r_we == m_we)
591 2 dgisselq
                                &&(r_row == m_row)&&(r_bank == m_bank)
592
                                &&(r_col == m_col)
593
                                &&(r_sub > m_sub);
594 3 dgisselq
                m_continue <= (m_pending)&&(r_pending)&&(r_we == m_we)
595 2 dgisselq
                                &&(r_row == m_row)&&(r_bank == m_bank)
596 3 dgisselq
                                &&(r_col == m_col+10'h1);
597
                // m_nextbank <= (m_pending)&&(r_pending)&&(r_we == m_we)
598
                //              &&(r_row == m_row)&&(r_bank == m_bank);
599 2 dgisselq
        end
600
 
601
//
602
//
603
// Okay, let's look at the last assignment in our chain.  It should look
604
// something like:
605
        always @(posedge i_clk)
606 4 dgisselq
                if (i_reset)
607
                        o_ddr_reset_n <= 1'b0;
608
                else if (reset_ztimer)
609
                        o_ddr_reset_n <= reset_instruction[`DDR_RSTBIT];
610 2 dgisselq
        always @(posedge i_clk)
611 4 dgisselq
                if (i_reset)
612
                        o_ddr_cke <= 1'b0;
613
                else if (reset_ztimer)
614
                        o_ddr_cke <= reset_instruction[`DDR_CKEBIT];
615 6 dgisselq
 
616
        assign  w_this_closing_bank = (!reset_override)&&(!need_refresh)
617
                                &&(need_close_bank);
618
        assign  w_this_opening_bank = (!reset_override)&&(!need_refresh)
619
                                &&(!need_close_bank)&&(need_open_bank);
620
        assign  w_this_maybe_close = (!reset_override)&&(!need_refresh)
621
                                &&(!need_close_bank)&&(!need_open_bank)
622
                                &&((!valid_bank)||(r_move))
623
                                &&(maybe_close_next_bank);
624
        assign  w_this_maybe_open = (!reset_override)&&(!need_refresh)
625
                                &&(!need_close_bank)&&(!need_open_bank)
626
                                &&((!valid_bank)||(r_move))
627
                                &&(!maybe_close_next_bank)
628
                                &&(maybe_open_next_bank);
629 2 dgisselq
        always @(posedge i_clk)
630
        begin
631 6 dgisselq
                last_opening_bank <= 1'b0;
632
                last_closing_bank <= 1'b0;
633
                last_maybe_open   <= 1'b0;
634
                last_maybe_close  <= 1'b0;
635 2 dgisselq
                r_move <= 1'b0;
636
                if (reset_override)
637 3 dgisselq
                        cmd <= reset_cmd[`DDR_CSBIT:0];
638 2 dgisselq
                else if (need_refresh)
639
                begin
640
                        cmd <= refresh_cmd; // The command from the refresh logc
641
                end else if (need_close_bank)
642 6 dgisselq
                begin
643 2 dgisselq
                        cmd <= close_bank_cmd;
644 6 dgisselq
                        last_closing_bank <= 1'b1;
645
                end else if (need_open_bank)
646
                begin
647 2 dgisselq
                        cmd <= activate_bank_cmd;
648 6 dgisselq
                        last_opening_bank <= 1'b1;
649
                end else if ((valid_bank)&&(!r_move))
650 2 dgisselq
                begin
651
                        cmd <= rw_cmd;
652
                        r_move <= 1'b1;
653 6 dgisselq
                end else if (maybe_close_next_bank)
654
                begin
655
                        cmd <= maybe_close_cmd;
656
                        last_maybe_close <= 1'b1;
657
                end else if (maybe_open_next_bank)
658
                begin
659
                        cmd <= maybe_open_cmd;
660
                        last_maybe_open <= 1'b1;
661 2 dgisselq
                end else
662 4 dgisselq
                        cmd <= { `DDR_NOOP, rw_cmd[(`DDR_WEBIT-1):0] };
663 2 dgisselq
        end
664
 
665 3 dgisselq
        reg     [31:0]   bus_data[8:0];
666
 
667
        assign  o_ddr_cs_n  = cmd[`DDR_CSBIT];
668
        assign  o_ddr_ras_n = cmd[`DDR_RASBIT];
669
        assign  o_ddr_cas_n = cmd[`DDR_CASBIT];
670
        assign  o_ddr_we_n  = cmd[`DDR_WEBIT];
671 2 dgisselq
        assign  o_ddr_dqs   = drive_dqs;
672 3 dgisselq
        assign  o_ddr_addr  = cmd[(`DDR_ADDR_BITS-1):0];
673
        assign  o_ddr_ba    = cmd[(`DDR_BABITS+`DDR_ADDR_BITS-1):`DDR_ADDR_BITS];
674 2 dgisselq
        assign  o_ddr_data  = bus_data[8];
675 3 dgisselq
        assign  w_precharge_all = (cmd[`DDR_CSBIT:`DDR_WEBIT]==`DDR_PRECHARGE)
676 2 dgisselq
                                &&(o_ddr_addr[10]); // 5 bits
677
 
678
        // Need to set o_wb_dqs high one clock prior to any read.
679
        // As per spec, ODT = 0 during reads
680 4 dgisselq
        assign  o_ddr_bus_oe = ~bus_read[8];
681 2 dgisselq
 
682 4 dgisselq
        // ODT must be in high impedence while reset_n=0, then it can be set
683
        // to low or high.
684
        assign  o_ddr_odt = o_ddr_bus_oe;
685 2 dgisselq
 
686 4 dgisselq
 
687 2 dgisselq
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.