OpenCores
URL https://opencores.org/ocsvn/xulalx25soc/xulalx25soc/trunk

Subversion Repositories xulalx25soc

[/] [xulalx25soc/] [trunk/] [rtl/] [txuart.v] - Blame information for rev 7

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 7 dgisselq
////////////////////////////////////////////////////////////////////////////////
2 2 dgisselq
//
3
// Filename:    txuart.v
4
//
5 7 dgisselq
// Project:     XuLA2 board
6 2 dgisselq
//
7
// Purpose:     Transmit outputs over a single UART line.
8
//
9
//      To interface with this module, connect it to your system clock,
10
//      pass it the 32 bit setup register (defined below) and the byte
11
//      of data you wish to transmit.  Strobe the i_wr line high for one
12
//      clock cycle, and your data will be off.  Wait until the 'o_busy'
13
//      line is low before strobing the i_wr line again--this implementation
14
//      has NO BUFFER, so strobing i_wr while the core is busy will just
15
//      cause your data to be lost.  The output will be placed on the o_txuart
16
//      output line.  If you wish to set/send a break condition, assert the
17
//      i_break line otherwise leave it low.
18
//
19
//      There is a synchronous reset line, logic high.
20
//
21
//      Now for the setup register.  The register is 32 bits, so that this
22
//      UART may be set up over a 32-bit bus.
23
//
24
//      i_setup[29:28]  Indicates the number of data bits per word.  This will
25
//      either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10
26
//      for a six bit word, or 2'b11 for a five bit word.
27
//
28
//      i_setup[27]     Indicates whether or not to use one or two stop bits.
29
//              Set this to one to expect two stop bits, zero for one.
30
//
31
//      i_setup[26]     Indicates whether or not a parity bit exists.  Set this
32
//              to 1'b1 to include parity.
33
//
34
//      i_setup[25]     Indicates whether or not the parity bit is fixed.  Set
35
//              to 1'b1 to include a fixed bit of parity, 1'b0 to allow the
36
//              parity to be set based upon data.  (Both assume the parity
37
//              enable value is set.)
38
//
39
//      i_setup[24]     This bit is ignored if parity is not used.  Otherwise,
40
//              in the case of a fixed parity bit, this bit indicates whether
41
//              mark (1'b1) or space (1'b0) parity is used.  Likewise if the
42
//              parity is not fixed, a 1'b1 selects even parity, and 1'b0
43
//              selects odd.
44
//
45
//      i_setup[23:0]   Indicates the speed of the UART in terms of clocks.
46
//              So, for example, if you have a 200 MHz clock and wish to
47
//              run your UART at 9600 baud, you would take 200 MHz and divide
48
//              by 9600 to set this value to 24'd20834.  Likewise if you wished
49
//              to run this serial port at 115200 baud from a 200 MHz clock,
50
//              you would set the value to 24'd1736
51
//
52
//      Thus, to set the UART for the common setting of an 8-bit word, 
53
//      one stop bit, no parity, and 115200 baud over a 200 MHz clock, you
54
//      would want to set the setup value to:
55
//
56
//      32'h0006c8              // For 115,200 baud, 8 bit, no parity
57
//      32'h005161              // For 9600 baud, 8 bit, no parity
58
//      
59 7 dgisselq
//
60
//
61
// Creator:     Dan Gisselquist, Ph.D.
62 2 dgisselq
//              Gisselquist Technology, LLC
63
//
64 7 dgisselq
////////////////////////////////////////////////////////////////////////////////
65 2 dgisselq
//
66 7 dgisselq
// Copyright (C) 2015, Gisselquist Technology, LLC
67 2 dgisselq
//
68 7 dgisselq
// This program is free software (firmware): you can redistribute it and/or
69
// modify it under the terms of  the GNU General Public License as published
70
// by the Free Software Foundation, either version 3 of the License, or (at
71
// your option) any later version.
72 2 dgisselq
//
73 7 dgisselq
// This program is distributed in the hope that it will be useful, but WITHOUT
74
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
75
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
76
// for more details.
77 2 dgisselq
//
78 7 dgisselq
// License:     GPL, v3, as defined and found on www.gnu.org,
79
//              http://www.gnu.org/licenses/gpl.html
80 2 dgisselq
//
81 7 dgisselq
//
82
////////////////////////////////////////////////////////////////////////////////
83
//
84
//
85
//
86 2 dgisselq
`define TXU_BIT_ZERO    4'h0
87
`define TXU_BIT_ONE     4'h1
88
`define TXU_BIT_TWO     4'h2
89
`define TXU_BIT_THREE   4'h3
90
`define TXU_BIT_FOUR    4'h4
91
`define TXU_BIT_FIVE    4'h5
92
`define TXU_BIT_SIX     4'h6
93
`define TXU_BIT_SEVEN   4'h7
94
`define TXU_PARITY      4'h8    // Constant 1
95
`define TXU_STOP        4'h9    // Constant 1
96
`define TXU_SECOND_STOP 4'ha
97
// 4'hb // Unused
98
// 4'hc // Unused
99
// `define      TXU_START       4'hd    // An unused state
100
`define TXU_BREAK       4'he
101
`define TXU_IDLE        4'hf
102
 
103
module txuart(i_clk, i_reset, i_setup, i_break, i_wr, i_data, o_uart, o_busy);
104
        input                   i_clk, i_reset;
105
        input           [29:0]   i_setup;
106
        input                   i_break;
107
        input                   i_wr;
108
        input           [7:0]    i_data;
109
        output  reg             o_uart, o_busy;
110
 
111
        wire    [27:0]   clocks_per_baud, break_condition;
112
        wire    [1:0]    data_bits;
113
        wire            use_parity, parity_even, dblstop, fixd_parity;
114
        reg     [29:0]   r_setup;
115
        assign  clocks_per_baud = { 4'h0, r_setup[23:0] };
116
        assign  break_condition = { r_setup[23:0], 4'h0 };
117
        assign  data_bits   = r_setup[29:28];
118
        assign  dblstop     = r_setup[27];
119
        assign  use_parity  = r_setup[26];
120
        assign  fixd_parity = r_setup[25];
121
        assign  parity_even = r_setup[24];
122
 
123
        reg     [27:0]   baud_counter;
124
        reg     [3:0]    state;
125
        reg     [7:0]    lcl_data;
126
        reg             calc_parity;
127
 
128
        initial o_uart = 1'b1;
129
        initial o_busy = 1'b1;
130
        initial state  = `TXU_IDLE;
131
        // initial      baud_counter = clocks_per_baud;
132
        always @(posedge i_clk)
133
        begin
134
                if (i_reset)
135
                begin
136
                        baud_counter <= clocks_per_baud;
137
                        o_uart <= 1'b1;
138
                        o_busy <= 1'b1;
139
                        state <= `TXU_IDLE;
140
                        lcl_data <= 8'h0;
141
                        calc_parity <= 1'b0;
142
                end else if (i_break)
143
                begin
144
                        baud_counter <= break_condition;
145
                        o_uart <= 1'b0;
146
                        state <= `TXU_BREAK;
147
                        calc_parity <= 1'b0;
148
                        o_busy <= 1'b1;
149
                end else if (baud_counter != 0)
150
                begin // o_busy needs to be set coming into here
151
                        baud_counter <= baud_counter - 1;
152
                        o_busy <= 1'b1;
153
                end else if (state == `TXU_BREAK)
154
                begin
155
                        state <= `TXU_IDLE;
156
                        o_busy <= 1'b1;
157
                        o_uart <= 1'b1;
158
                        calc_parity <= 1'b0;
159
                        // Give us two stop bits before becoming available
160
                        baud_counter <= clocks_per_baud<<2;
161
                end else if (state == `TXU_IDLE)        // STATE_IDLE
162
                begin
163
                        // baud_counter <= 0;
164
                        r_setup <= i_setup;
165
                        calc_parity <= 1'b0;
166
                        if ((i_wr)&&(~o_busy))
167
                        begin   // Immediately start us off with a start bit
168
                                o_uart <= 1'b0;
169
                                o_busy <= 1'b1;
170
                                case(data_bits)
171
                                2'b00: state <= `TXU_BIT_ZERO;
172
                                2'b01: state <= `TXU_BIT_ONE;
173
                                2'b10: state <= `TXU_BIT_TWO;
174
                                2'b11: state <= `TXU_BIT_THREE;
175
                                endcase
176
                                lcl_data <= i_data;
177
                                baud_counter <= clocks_per_baud-28'h01;
178
                        end else begin // Stay in idle
179
                                o_uart <= 1'b1;
180
                                o_busy <= 0;
181
                                // lcl_data is irrelevant
182
                                // state <= state;
183
                        end
184
                end else begin
185
                        // One clock tick in each of these states ...
186
                        baud_counter <= clocks_per_baud - 28'h01;
187
                        o_busy <= 1'b1;
188
                        if (state[3] == 0) // First 8 bits
189
                        begin
190
                                o_uart <= lcl_data[0];
191
                                calc_parity <= calc_parity ^ lcl_data[0];
192
                                if (state == `TXU_BIT_SEVEN)
193
                                        state <= (use_parity)?`TXU_PARITY:`TXU_STOP;
194
                                else
195
                                        state <= state + 1;
196
                                lcl_data <= { 1'b0, lcl_data[7:1] };
197
                        end else if (state == `TXU_PARITY)
198
                        begin
199
                                state <= `TXU_STOP;
200
                                if (fixd_parity)
201
                                        o_uart <= parity_even;
202
                                else
203
                                        o_uart <= calc_parity^((parity_even)? 1'b1:1'b0);
204
                        end else if (state == `TXU_STOP)
205
                        begin // two stop bit(s)
206
                                o_uart <= 1'b1;
207
                                if (dblstop)
208
                                        state <= `TXU_SECOND_STOP;
209
                                else
210
                                        state <= `TXU_IDLE;
211
                                calc_parity <= 1'b0;
212
                        end else // `TXU_SECOND_STOP and default:
213
                        begin
214
                                state <= `TXU_IDLE; // Go back to idle
215
                                o_uart <= 1'b1;
216
                                // Still o_busy, since we need to wait
217
                                // for the baud clock to finish counting
218
                                // out this last bit.
219
                        end
220
                end
221
        end
222
 
223
endmodule
224
 
225
 
226
 
227
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.