OpenCores
URL https://opencores.org/ocsvn/async_sdm_noc/async_sdm_noc/trunk

Subversion Repositories async_sdm_noc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /
    from Rev 35 to Rev 36
    Reverse comparison

Rev 35 → Rev 36

/async_sdm_noc/branches/init/TODO
0,0 → 1,9
01/06/2011 Urgent Clean up the VC router
01/06/2011 Urgent Provide better documents
01/06/2011 Support other routing algorithms
01/06/2011 Long time Support QoS ?? (necessary?) who needs it pls contact me
01/06/2011 Keep channel slicing inside routers
01/06/2011 Provide network interface
01/06/2011 Lookahead routing
01/06/2011 Support variable number of ports
01/06/2011 Unify local port by serialization/parallelization
/async_sdm_noc/branches/init/README
0,0 → 1,103
 
Asynchronous Spatial Division Multiplexing Router for On-Chip Networks
 
Version: 0.1
 
On-chip networks or networks-on-chip (NoCs) are the on-chip communication fabric for
current and future multiprocessor SoCs (MPSoCs) and chip multiprocessors (CMPs).
Compared with synchronous NoCs, asynchronous NoCs have following benefits:
* Tolerance to all kinds of delay variations caused by process, power and temperature
variations.
* Low transmission latency.
* Zero dynamic power when idle.
* Unified sync/async interface and easy clock domain integration.
 
Most NoCs use the wormhole flow control method. Many complex flow control methods are
built upon the wormhole method, such as virtual channel (VC), TDMA, and SDM. VC is the
most utilized flow control in both sync and async NoCs. However, it is found VC
compromises the throughput performance of asynchronous NoCs. This project provides a new
asynchronous router structure which use SDM rather than VC. It has been shown that SDM
achieve better throughput than VC in the same router configuration.
 
This project provide a reconfigurable asynchronous SDM router which can be configured
into a basic wormhole router or an SDM router with multiple virtual circuits in every
direction.
 
Features:
* 5-port router for mesh network (0 south, 1 west, 2 north, 3 east, 4 local)
* The dimension order routing (XY routing)
* Available flow control methods: wormhole, SDM
* Reconfigurable number of virtual circuits, buffer size, data width
* Fully synthesizable router implementation
* SystemC testbench provided
 
Languages:
* Routers are written in synthesizable SystemVerilog
* Test benches are provided by SystemC
 
Software requirements:
* The open source Nangate 45nm cell library
* Synopsys Design Compiler (Synthesis)
* Cadence IUS -- NC Simulator (for SystemC/Verilog co-simulation)
 
File structure:
* common files needed for both SDM and VC routers
\- script synthesis scripts for all routers
|- src HDL for all routers
\- tb test bench files for all routers
* doc documents
* lib minimal Nangate 45nm cell lib
* sdm SDM/wormhole router design
\- define.v HDL configuration file
|- define.h test bench configuration
|- sim simulation run dir
|- src HDL
|- syn synthesis run dir
\- script synthesis script
\- tb test bench
* vc VC router (ongoing)
 
How to run:
* to synthesize a router
1. set up your design compiler enviornment and your cell library.
2. modify the "define.v" configuration file for the strcture your want.
currently including:
ENABLE_CLOS use the 2-stage Clos switch instead of crossbar
ENABLE_CRRD use the CRRD dispatching algorithm for the Clos
ENABLE_MRMA use the multi-resource matching arbiter instead of MNMA
ENABLE_CHANNEL_SLICING use channel slicing
ENABLE_LOOKAHEAD use the lookahead pipelines
ENABLE_EOF router use eof bit to indicate end-of-frame
3. modify the "compile.tcl" scription for the design parameters.
currently including:
VCN number of virtual circuits
DW the data width of a single virtual circuit
IPD the depth of input buffers
OPD the depth of putput buffers
4. if another cell lib is used, change "cell_lib.v" in common\src and other related
files. (very likely you need to email me for further instructions :-) )
5. modify the "tech.tcl" in common/script for your cell library.
6. run the synthesis at [sdm/vc]/syn
dc_shell -f script/compile.tcl
7. the synthesized netlist is inside [sdm/vc]/syn/file/
 
* to run post-synthesis simulation
1. check the netlists in [sdm/vc]/syn/file/
2. modify the testbench configuration "define.h" according to your requirements.
3. make sure your NC-Simulator is installed alright (proper SystemC support).
4. run the compilation at [sdm/vc]/sim
compile.tcl
5. run the simulation at [sdm/vc]/sim
ncsim -tcl noctb
6. the simulation output files are *.ana at [sdm/vc]/sim
"throughput.ana":
{simulation time in ps} TAB {throughput in bytes}
"delay.ana":
{simulation time in ps} TAB {avg. frame latency} TAB {avg. path setup delay}
 
For any questions and bug reports,
please email to Wei Song from wsong83@gmail.com
 
Wei Song
01/06/2011

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.