URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
Compare Revisions
- This comparison shows the changes necessary to convert path
/forwardcom/trunk
- from Rev 18 to Rev 19
- ↔ Reverse comparison
Rev 18 → Rev 19
/dataread.sv
0,0 → 1,664
////////////////////////////////////////////////////////////////////////////////// |
// Engineer: Agner Fog |
// |
// Create Date: 2020-06-06 |
// Last modified: 2021-07-18 |
// Module Name: data read |
// Project Name: ForwardCom soft core |
// Target Devices: Artix 7 |
// Tool Versions: Vivado v. 2020.1 |
// License: CERN-OHL-W v. 2 or later |
// Description: Waiting stage after the address generator. |
// This pipeline stage comes after the address generator. |
// It waits for a clock cycle while data retrieved from the data cache. |
// Checks if a memory address is valid. |
// Converts single format instructions to multiformat instruction code where possible |
// Dispatches the instruction to the right execution unit. |
// |
////////////////////////////////////////////////////////////////////////////////// |
`include "defines.vh" |
|
|
module dataread ( |
input clock, // system clock (100 MHz) |
input clock_enable, // clock enable. Used when single-stepping |
input reset, // system reset |
input valid_in, // data from fetch module ready |
input stall_in, // a later stage in pipeline is stalled |
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction |
input [63:0] instruction_in, // current instruction, up to 3 words long |
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value |
input vector_in, // this is a vector instruction |
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump |
input [1:0] format_in, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder) |
//input rs_status_in, // 1: RS is register operand |
//input rt_status_in, // 1: RT is register operand |
//input ru_status_in, // 1: RU is used |
//input rd_status_in, // 1: RD is used as input |
input mask_status_in, // 1: mask register used |
input mask_alternative_in, // mask register and fallback register used for alternative purposes |
input [1:0] num_operands_in, // number of source operands |
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing |
input [1:0] immediate_field_in, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit |
input memory_operand_in, // The instruction has a memory operand |
input array_error_in, // Array index exceeds limit |
input options3_in, // IM3 containts option bits |
|
// monitor result buses: |
input write_en1, // a result is written to writeport1 |
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1 |
input [`RB1:0] writeport1_in, // result bus 1 |
input write_en2, // a result is written to writeport2 |
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2 |
input [`RB1:0] writeport2_in, // result bus 2 |
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle |
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle |
|
// Register values sampled from result bus in previous stages |
input [`RB:0] operand1_in, // value of first operand |
input [`RB:0] operand2_in, // value of second operand |
input [`RB:0] operand3_in, // value of last operand |
input [`MASKSZ:0] regmask_val_in, // value of mask register |
input [`RB1:0] address_in, // address of memory operand |
input [`RB1:0] ram_data_in, // memory operand from data cache |
|
output reg valid_out, // An instruction is ready for output to next stage |
output reg [`CODE_ADDR_WIDTH-1:0] instruction_pointer_out, // address of current instruction |
output reg [31:0] instruction_out, // first word of instruction |
output reg stall_predict_out, // predict next stage will stall |
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value |
output reg [`RB:0] operand1_out, // value of first operand for 3-op instructions, bit `RB is 0 if valid |
output reg [`RB:0] operand2_out, // value of second operand, bit `RB is 0 if valid |
output reg [`RB:0] operand3_out, // value of last operand, bit `RB is 0 if valid |
output reg [`MASKSZ:0] mask_val_out, // value of mask, bit 32 is 0 if valid |
output reg opr2_from_ram_out, // value of operand 2 comes from data cache |
output reg opr3_from_ram_out, // value of last operand comes from data cache |
output reg vector_out, // this is a vector instruction |
output reg [1:0] category_out, // 00: multiformat, 01: single format, 10: jump |
output reg [1:0] format_out, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder) |
output reg [1:0] num_operands_out, // number of source operands |
output reg [1:0] result_type_out, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing |
output reg opr1_used_out, // opr1_val_out is needed |
output reg opr2_used_out, // opr2_val_out is needed |
output reg opr3_used_out, // opr3_val_out is needed |
output reg regmask_used_out, // regmask_val_out is needed |
output reg mask_alternative_out,// mask register and fallback register used for alternative purposes |
output reg [3:0] exe_unit_out, // each bit enables a particular execution unit: |
// 1: ALU, 10: MUL, 100: DIV, 1000: IN/OUT |
output reg [6:0] opx_out, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions |
output reg [5:0] opj_out, // operation ID for conditional jump instructions |
output reg [2:0] ot_out, // operand type |
output reg [5:0] option_bits_out, // option bits from IM3 or mask |
output reg [15:0] im2_bits_out, // constant bits from IM2 as extra operand |
output reg trap_out, // trap instruction detected |
output reg array_error_out, // array index out of bounds |
output reg read_address_error_out, // invalid read memory address |
output reg write_address_error_out, // invalid write memory address |
output reg misaligned_address_error_out, // misaligned read/write memory address |
output reg [31:0] debug_out // output for debugging |
); |
|
// instruction components |
logic [1:0] il; // instruction length |
logic [2:0] mode; // instruction mode |
logic [2:0] mode2; // mode2 in format E |
logic M; // M bit |
logic [2:0] otype; // operand type in instruction |
logic [5:0] op1; // OP1 in instruction |
logic [1:0] op2; // OP2 in instruction |
logic is_addr_instr; // this is an address instruction |
logic [5:0] option_bits; // option bits |
logic [15:0] im2_bits; // constant bits from IM2 as extra operand |
logic [1:0] last_operand; // 0: last operand is a register, |
// 1: last operand i an immediate constant |
// 2: last operand is memory |
// 3: both memory and immediate operands |
logic half_precision; // half precision float |
logic swap_operands; // swap last two operands |
logic [3:0] exe_unit; |
|
// operand values. Extra bit is 1 if not found |
logic [`RB:0] opr1_val; // first operand if 3 operands |
logic [`RB:0] opr2_val; // first operand if 2 operands, second operand if 3 operands |
logic [`RB:0] opr3_val; // last operand |
logic [`MASKSZ:0] regmask_val; // value of mask register, bit 32 indicates missing |
logic opr2_from_ram; // value of operand 2 comes from data ram |
logic opr3_from_ram; // value of last operand comes from data ram |
logic opr1_used; // operand 1 is used |
logic opr2_used; // operand 2 is used |
logic opr3_used; // operand 3 is used |
logic mask_off; // mask is zero |
logic stall_predict; // predict that alu will stall in next clock cycle |
logic read_address_error; // invalid read memory address |
logic write_address_error; // invalid write memory address |
logic misaligned_address_error; // misaligned read/write memory address |
logic [31:0] jump_offset; // relative jump offset |
|
// converted operation id |
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions |
logic [5:0] opj; // operation ID for conditional jump instructions |
|
// temporary storage of register values if found during stall. High bit is zero if valid |
reg [`RB:0] opr1_val_temp; // value of first operand, bit `RB indicates missing |
reg [`RB:0] opr2_val_temp; // value of second operand, bit `RB indicates missing |
reg [`RB:0] opr3_val_temp; // value of last operand, bit `RB indicates missing |
reg [`MASKSZ:0] regmask_val_temp; // value of mask register, bit 32 indicates missing |
reg last_stall; // was stalled in last clock cycle. May obtain register values from the temporary registers |
reg last_valid; // input was valid in last clock cycle. May obtain memory input |
|
always_comb begin |
il = instruction_in[`IL]; // instruction length |
mode = instruction_in[`MODE]; // format mode |
mode2 = instruction_in[`MODE2]; // format mode2 |
M = instruction_in[`M]; // M bit |
op1 = instruction_in[`OP1]; // op1 operation |
op2 = instruction_in[`OP2]; // op2 operation |
option_bits = 0; // option bits from IM3 etc. |
opr1_used = 0; // operand 1 used |
opr2_used = 0; // operand 2 used |
opr3_used = 0; // operand 3 used |
half_precision = 0; // float16. not implemented yet |
swap_operands = 0; // swap operands 2 and 3 |
mask_off = 0; // mask known to be zero |
stall_predict = 0; // predict stall in next clock |
read_address_error = 0; // read address out of range |
write_address_error = 0; // write address out of range |
misaligned_address_error = 0; // read or write to misaligned address |
opr2_from_ram = 0; // value of operand 2 comes from data memory |
opr3_from_ram = 0; // value of last operand comes from data memory |
im2_bits = instruction_in[`IM2E]; // IM2 may be used as extra immediate operand |
// look for address instruction in format 2.9A: |
is_addr_instr = (il == 2 && mode == 1 && M && op1 == `II_ADDRESS_29); |
|
// Detect operand type |
if (format_in == `FORMAT_C) begin |
otype = 2; // default operand type in format C is int32. |
// Exceptions to format C operand type: |
if (mode == 1) begin // format 1.1C. |
if (op1[0]) otype = 3; // optype is int64 when op1 is odd |
end |
if (mode == 4) begin // format 1.4C. |
if (op1 < 8) begin |
otype = 1; // optype is int16 when op1 < 8 |
end else if (op1 < 32) begin |
otype = 2 | op1[0]; // optype is int32 for even op1, int64 for odd op1 |
end else if (op1 < `II_ADD_H14) begin |
otype = 5 + op1[0]; // optype is float32 for even op1, float64 for odd op1 |
end else begin |
otype = 1; // 16 bits or float16 |
half_precision = 1; // half precision single format instructions |
end |
end |
if (mode == 7) begin // format 1.7C |
if ((op1 & -2) == `IJ_SUB_MAXLEN_JPOS) otype = 3; // sub_maxlen/jump instruction has int64 |
end |
end else if (vector_in) begin |
otype = instruction_in[`OT]; |
end else begin |
otype = instruction_in[`OT] & 3'b011; |
end |
|
/* |
// detect if half precision |
if (category_in == `CAT_MULTI && op1 >= `II_ADD_FLOAT16 && op1 <= `II_MUL_ADD_FLOAT16) |
half_precision = 1; // half precision multiformat instructions |
if (category_in == `CAT_SINGLE && il == 1 && mode == 4 && op1 >= `II_ADD_H14 && op1 <= `II_MUL_H14) |
half_precision = 1; // half precision single format instructions |
*/ |
// detect if last two operands should be swapped |
if (category_in == `CAT_MULTI && (op1 == `II_SUB_REV || op1 == `II_DIV_REV || op1 == `II_MUL_ADD2)) |
swap_operands = 1; |
|
// look for register values in result buses |
if (last_stall && opr1_val_temp[`RB] == 0) opr1_val = opr1_val_temp; // obtained during stall |
else if (operand1_in[`RB] == 1 && write_en1 && operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) opr1_val = {1'b0, writeport1_in}; // obtained from result bus 1 |
else if (operand1_in[`RB] == 1 && write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) opr1_val = {1'b0, writeport2_in}; // obtained from result bus 2 |
else opr1_val = operand1_in; |
|
if (last_stall && opr2_val_temp[`RB] == 0) opr2_val = opr2_val_temp; // obtained during stall |
else if (operand2_in[`RB] == 1 && write_en1 && operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) opr2_val = {1'b0, writeport1_in}; // obtained from result bus 1 |
else if (operand2_in[`RB] == 1 && write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) opr2_val = {1'b0, writeport2_in}; // obtained from result bus 2 |
else opr2_val = operand2_in; |
|
if (operand3_in[`RB] == 1 && write_en1 && operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) opr3_val = {1'b0, writeport1_in}; // obtained from result bus 1 |
else if (operand3_in[`RB] == 1 && write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) opr3_val = {1'b0, writeport2_in}; // obtained from result bus 2 |
else if (last_stall && opr3_val_temp[`RB] == 0) opr3_val = opr3_val_temp; // obtained during stall |
else opr3_val = operand3_in; |
|
if (last_stall && regmask_val_temp[`MASKSZ] == 0) regmask_val = regmask_val_temp; // obtained during stall |
if (regmask_val_in[`MASKSZ] == 1 && write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) regmask_val = {1'b0, writeport1_in[`MASKSZ-1:0]}; // obtained from result bus 1 |
else if (regmask_val_in[`MASKSZ] == 1 && write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) regmask_val = {1'b0, writeport2_in[`MASKSZ-1:0]}; // obtained from result bus 2 |
else regmask_val = regmask_val_in; |
|
// look for memory operand |
if (memory_operand_in) begin |
if (last_stall && last_valid) begin |
// value from data memory is available early because of stall |
if (immediate_field_in != `IMMED_NONE) begin |
opr2_val = ram_data_in; |
end else begin |
opr3_val = ram_data_in; |
end |
end else begin |
if (immediate_field_in != `IMMED_NONE) begin |
opr2_from_ram = 1; |
end else begin |
opr3_from_ram = 1; |
end |
end |
end |
|
// check if memory operand is valid |
// (this check is not placed in the address generator stage because of timing constraints) |
if (valid_in && memory_operand_in && !is_addr_instr) begin |
|
// invalid read memory address: |
read_address_error = result_type_in != `RESULT_MEM && |
address_in >= 2**`DATA_ADDR_WIDTH; // can read from data only |
|
// Invalid write memory address: |
// To do: fix this when write access to code memory is removed. |
// Note: The calculation of write_address_error is not done in the address generator |
// stage because of critical timing. It is too late to disable illegal writes in this |
// stage. We must find a solution to this in future versions with memory protection. |
// For now, we will be satisfied with program halt. |
write_address_error = result_type_in == `RESULT_MEM && |
address_in >= 2**`COMMON_ADDR_WIDTH; // can write to data or code |
|
// misaligned read/write memory address: |
case (otype) |
0: // int8 |
misaligned_address_error = 0; |
1: // int16 |
misaligned_address_error = address_in[0]; |
2, 5: // int32, float32 |
misaligned_address_error = address_in[1:0] != 0; |
3, 6: // int64, float64 |
misaligned_address_error = address_in[2:0] != 0; |
4, 7: // int128, float128 |
misaligned_address_error = address_in[3:0] != 0; |
endcase |
end |
|
// find jump offset |
jump_offset = 0; |
|
if (category_in == `CAT_JUMP) begin |
if (il == 1 && mode == 6) begin |
// 1.6 B: Short jump with two register operands and 8 bit offset (IM1). |
jump_offset = {{24{instruction_in[`IM1S]}},instruction_in[`IM1]}; // sign extend |
|
end else if (il == 1 && mode == 7) begin |
// 1.7 C: Short jump with one register operand, an 8-bit immediate constant (IM2) and 8 bit offset (IM1), |
jump_offset = {{24{instruction_in[`IM1S]}},instruction_in[`IM1]}; // sign extend |
|
end else if (il == 2 && mode == 5) begin |
if (op1 == 0) begin |
// 2.5.0A: Double size jump with three register operands and 24 bit jump offset |
jump_offset = {{8{instruction_in[55]}},instruction_in[55:32]}; // sign extend 24 bit offset |
|
end else if (op1 == 1) begin |
// format 2.5.1B: jump with one register, one 16 bit operand, and 16 bit offset |
jump_offset = {{16{instruction_in[63]}},instruction_in[63:48]}; // sign extend 16 bit offset |
|
end else if (op1 == 2) begin |
// format 2.5.2B: jump with one register, a memory operand with 16 bit address, and 16 bit offset |
jump_offset = {{16{instruction_in[63]}},instruction_in[63:48]}; // sign extend 16 bit offset |
|
end else if (op1 == 4) begin |
// format 2.5.4C: jump with one register, one 8 bit operand, and 32 bit offset |
jump_offset = instruction_in[63:32]; // 32 bit offset |
|
end else if (op1 == 5) begin |
// format 2.5.5C: jump with one register, one 32 bit operand, and 8 bit offset |
jump_offset = {{24{instruction_in[15]}},instruction_in[15:8]}; // sign extend 8 bit offset |
|
end |
|
end else if (il == 3 && mode == 1) begin |
if (op1 == 0) begin |
// 3.1.0A: Triple size jump with two register operands and 24 bit jump offset and 32 bit address |
jump_offset = {{8{instruction_in[55]}},instruction_in[55:32]}; // sign extend 24 bit offset |
end else if (op1 == 1) begin |
// 3.1.1B: Jump with two registers, a 32 bit operand, and 32 bit jump offset |
jump_offset = instruction_in[63:32]; // 32 bit jump offset |
end |
end |
end |
|
// get condition code for jump instructions |
opj = 0; |
if (category_in == `CAT_JUMP) begin |
if (il == 1) begin |
if (mode == 7 && op1 <= `II_UNCOND_JUMP) opj = 0; // unconditional jump or call handled by fetch unit |
else if (op1 == `II_RETURN) opj = 0; // return handled by fetch unit |
else opj = op1; |
end else if (il == 2 && mode == 5 && op1 == 0) begin |
opj = instruction_in[61:56]; // format 2.5.0A: opj in upper part of IM2 |
end else if (il == 2 && mode == 5 && op1 == 7) begin // system call |
opj = `IJ_SYSCALL; |
end else if (il == 3 && mode == 1 && op1 == 0) begin |
opj = instruction_in[61:56]; // format 3.1.0A: opj in upper part of IM2 |
end else if (op1 < 8) begin // other jump formats have opj in IM1 |
opj = instruction_in[5:0]; |
end else begin |
opj = 56; // unknown |
end |
end |
|
// get option bits |
if (options3_in && format_in == `FORMAT_E) begin |
option_bits = instruction_in[`IM3E]; // option bits in IM3 |
end else if (category_in == `CAT_JUMP) begin |
// imitate compare instruction option bits for compare/jump |
case (opj[5:1]) |
// ignore bit 0 of opj here: it is inserted in the alu stage |
`IJ_COMPARE_JEQ>>1: option_bits = 4'b0000; |
`IJ_COMPARE_JSB>>1: option_bits = 4'b0010; |
`IJ_COMPARE_JSA>>1: option_bits = 4'b0100; |
`IJ_COMPARE_JUB>>1: option_bits = 4'b1010; |
`IJ_COMPARE_JUA>>1: option_bits = 4'b1100; |
endcase |
end else if (category_in == `CAT_MULTI && op1 >= `II_MIN && op1 <= `II_MAX_U) begin |
// use compare unit to implement max and min |
case (op1[1:0]) |
0: option_bits = 4'b0010; // min, signed |
1: option_bits = 4'b1010; // min, unsigned |
2: option_bits = 4'b0100; // max, signed |
3: option_bits = 4'b1100; // max, unsigned |
endcase |
end |
|
// convert op1 to opx: operation id in execution unit |
opx = `IX_UNDEF; // default is undefined |
if (category_in == `CAT_MULTI) begin |
opx = op1; // mostly same id for multiformat instructions |
if (op1 == `II_SUB_REV) opx = `II_SUB; // operands have been swapped |
if (op1 == `II_DIV_REV) opx = `II_DIV; // operands have been swapped |
|
end else if (category_in == `CAT_JUMP) begin |
// convert jump instructions to corresponding general ALU instructions |
if (opj <= `IJ_SUB_JBORROW + 1) opx = `II_SUB; |
else if (opj <= `IJ_AND_JZ + 1) opx = `II_AND; |
else if (opj <= `IJ_OR_JZ + 1) opx = `II_OR; |
else if (opj <= `IJ_XOR_JZ + 1) opx = `II_XOR; |
else if (opj <= `IJ_ADD_JCARRY + 1) opx = `II_ADD; |
else if (opj <= `IJ_AND_JZ + 1) opx = `II_AND; |
else if (opj <= `IJ_TEST_BIT_JTRUE + 1) opx = `II_TEST_BIT; |
else if (opj <= `IJ_TEST_BITS_AND + 1) opx = `II_TEST_BITS_AND; |
else if (opj <= `IJ_TEST_BITS_OR + 1) opx = `II_TEST_BITS_OR; |
else if (opj <= `IJ_COMPARE_JUA + 1) opx = `II_COMPARE; |
else if ((opj & ~1) == `II_INDIRECT_JUMP) begin // 58 |
if ((il == 1 && mode == 6) || (il == 2 && mode == 5 && op1[2:0] == 2)) |
opx = `IX_INDIRECT_JUMP; // indirect jump w memory operand, format 1.6 and 2.5.2 |
else opx = `IX_UNCOND_JUMP; // unconditional jump format 2.5.4 and 3.1.1 |
end else if ((opj & ~1) == `II_JUMP_RELATIVE) begin // 60 |
if (il == 1 && mode == 7) opx = `IX_INDIRECT_JUMP; |
else opx = `IX_RELATIVE_JUMP; |
end |
else opx = 0; |
|
end else if (il == 1 && mode == 1) begin |
// format 1.1 C. single format instructions with 16 bit constant |
case (op1[5:1]) // even and odd op1 values treated together, they differ only by operand type |
`II_ADD11 >> 1: opx = `II_ADD; |
`II_MUL11 >> 1: opx = `II_MUL; |
`II_ADDSHIFT16_11 >> 1: opx = `II_ADD; |
`II_SHIFT_ADD_11 >> 1: opx = `II_ADD; |
`II_SHIFT_AND_11 >> 1: opx = `II_AND; |
`II_SHIFT_OR_11 >> 1: opx = `II_OR; |
`II_SHIFT_XOR_11 >> 1: opx = `II_XOR; |
default: opx = `IX_UNDEF; |
endcase |
if (op1 <= `II_MOVE11_LAST) opx = `II_MOVE; // five different move instructions |
|
end else if (il == 1 && mode == 0 && M) begin |
// format 1.8 B. single format instructions with 8 bit constant |
case (op1) |
`II_SHIFT_ABS18: opx = `IX_ABS; |
`II_BITSCAN_18: opx = `IX_BIT_SCAN; |
`II_ROUNDP2_18: opx = `IX_ROUNDP2; |
`II_POPCOUNT_18: opx = `IX_POPCOUNT; |
`II_READ_SPEC18: opx = `IX_READ_SPEC; |
`II_WRITE_SPEC18: opx = `IX_WRITE_SPEC; |
`II_READ_CAP18: opx = `IX_READ_CAPABILITIES; |
`II_WRITE_CAP18: opx = `IX_WRITE_CAPABILITIES; |
`II_READ_PERF18: opx = `IX_READ_PERF; |
`II_READ_PERFS18: opx = `IX_READ_PERFS; |
`II_READ_SYS18: opx = `IX_READ_SYS; |
`II_WRITE_SYS18: opx = `IX_WRITE_SYS; |
`II_INPUT_18: opx = `IX_INPUT; |
`II_OUTPUT_18: opx = `IX_OUTPUT; |
endcase |
|
end else if (il == 2 && (mode == 0 && !M || mode == 2) && mode2 == 6) begin // format 2.0.6 and 2.2.6 |
if (op1 == `II_TRUTH_TAB3 && op2 == `II2_TRUTH_TAB3) opx = `IX_TRUTH_TAB3; |
|
end else if (il == 2 && (mode == 0 && !M || mode == 2) && mode2 == 7) begin |
// format 2.0.7 and 2.2.7 single format |
if (op1 == `II_MOVE_BITS && op2 == `II2_MOVE_BITS) begin // move_bits instruction. |
// Do calculations on constant operands here to save critical time in the alu stage |
logic [5:0] move_from; // bit position to move from |
logic [5:0] move_to; // bit position to move to |
logic [5:0] num_bits; // number of bits to move |
logic [6:0] end_to; // end of destination bit field |
move_from = instruction_in[37:32]; // low part of im2 |
move_to = instruction_in[45:40]; // high part of im2 |
num_bits = instruction_in[`IM3E]; // number of bits to move |
if (move_from > move_to) begin // IX_MOVE_BITS2 if shifting right |
opx = `IX_MOVE_BITS2; |
end else begin |
opx = `IX_MOVE_BITS1; // IX_MOVE_BITS1 if shifting left |
end |
end_to = {1'b0,move_to} + num_bits - 1;// end of destination bit field. |
if (end_to[6]) option_bits[5:0] = 6'b111111; // saturate on overflow |
else option_bits = end_to[5:0]; |
// begin of destination bit field is in im2_bits[13:8] |
// end of destination bit field is in option_bits |
opr3_val[7:0] = move_from - move_to; // shift right count, or -(shift left count) |
end |
|
end else if (il == 2 && mode == 5) begin |
// format 2.5 B. single format instructions with 32 bit constant |
if (op1 == `II_STOREI) opx = `II_STORE; |
|
end else if (il == 2 && mode == 1 && M) begin |
// format 2.9A. single format instructions with 32 bit constant |
case (op1) |
`II_MOVE_HI_29: opx = `II_MOVE; // shifted left by 32 here. just store result |
`II_INSERT_HI_29: opx = `IX_INSERT_HI; |
`II_ADDU_29: opx = `II_ADD; |
`II_SUBU_29: opx = `II_SUB; |
`II_ADD_HI_29: opx = `II_ADD; |
`II_AND_HI_29: opx = `II_SUB; |
`II_OR_HI_29: opx = `II_OR; |
`II_XOR_HI_29: opx = `II_XOR; |
`II_ADDRESS_29: opx = `II_MOVE; // address instruction. resolved in this state. just store result |
endcase |
end |
|
// select execution unit |
if (opx == `IX_INPUT || opx == `IX_OUTPUT || (opx >= `IX_READ_CAPABILITIES && opx <= `IX_WRITE_SYS+1)) begin |
exe_unit = 4'b1000; // input/output unit. also handles system registers |
end else if (opx >= `II_DIV && opx <= `II_REM_U) begin |
exe_unit = 4'b0100; // division unit |
end else if ((opx >= `II_MUL && opx <= `II_MUL_HI_U) || opx == `II_MUL_ADD || opx == `II_MUL_ADD2) begin |
exe_unit = 4'b0010; // multiplication unit |
end else begin |
exe_unit = 4'b0001; // general ALU unit |
end |
|
// find which operands are used |
mask_off = result_type_in != `RESULT_MEM && mask_status_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in && !vector_in; |
|
if (mask_status_in) begin |
if (regmask_val[`MASKSZ] == 0) begin |
// a mask is used and the value is already available |
if (regmask_val[0]) begin |
// mask is 1. operands are needed. fallback not needed |
if (num_operands_in > 0) opr3_used = 1; |
if (num_operands_in > 1) opr2_used = 1; |
if (num_operands_in > 2) opr1_used = 1; |
end else begin |
// mask is 0. operands are not needed. fallback is needed |
opr1_used = 1; |
end |
end else begin |
// a mask is used. The value is not available yet. operands and fallback are needed |
if (num_operands_in > 0) opr3_used = 1; |
if (num_operands_in > 1) opr2_used = 1; |
opr1_used = 1; |
end |
end else begin |
// mask not used. fallback not needed |
if (num_operands_in > 0) opr3_used = 1; |
if (num_operands_in > 1) opr2_used = 1; |
if (num_operands_in > 2) opr1_used = 1; |
end |
|
if (mask_alternative_in) opr1_used = 1; // alternative use of fallback register |
|
// predict stall in ALU |
stall_predict = |
(opr1_used && opr1_val[`RB] && predict_tag1_in != opr1_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr1_val[`TAG_WIDTH-1:0]) || |
(opr2_used && opr2_val[`RB] && predict_tag1_in != opr2_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr2_val[`TAG_WIDTH-1:0] && !mask_off) || |
(opr3_used && opr3_val[`RB] && predict_tag1_in != opr3_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr3_val[`TAG_WIDTH-1:0] && !mask_off) || |
(mask_status_in && regmask_val[`MASKSZ] && predict_tag1_in != regmask_val[`TAG_WIDTH-1:0] && predict_tag2_in != regmask_val[`TAG_WIDTH-1:0]); |
end |
|
// save values from result bus during stall |
always_ff @(posedge clock) if (clock_enable) begin |
if (stall_in) begin |
opr1_val_temp <= opr1_val; // temporary save during stall |
opr2_val_temp <= opr2_val; // temporary save during stall |
opr3_val_temp <= opr3_val; // temporary save during stall |
regmask_val_temp <= regmask_val; // temporary save during stall |
end else begin |
opr1_val_temp <= {1'b1,`RB'b0}; // reset when not stalled |
opr2_val_temp <= {1'b1,`RB'b0}; // reset when not stalled |
opr3_val_temp <= {1'b1,`RB'b0}; // reset when not stalled |
regmask_val_temp <= {1'b1,`MASKSZ'b0}; // reset when not stalled |
end |
end |
|
// output operands |
always_ff @(posedge clock) if (clock_enable && !stall_in) begin |
if (!swap_operands) begin // normal operand order |
|
// jump instructions |
if (category_in == `CAT_JUMP) begin |
if (opj < `IJ_JUMP_INDIRECT_MEM || opx == `IX_UNCOND_JUMP) begin |
// calculate jump target = ip + il + offset (il cannot be 0 for jump instructions) |
operand1_out[`RB1:0] <= instruction_pointer_in + {{32{jump_offset[31]}},jump_offset} + il; |
operand1_out[`RB] <= 0; // indicate not missing |
end else begin |
// target address not known yet. Make sure we don't accidentally assume no jump |
operand1_out <= ~(`RB'b0); // -1 for unknown target address |
end |
end else begin |
operand1_out <= opr1_val; |
end |
operand2_out <= opr2_val; |
operand3_out <= opr3_val; |
opr2_from_ram_out <= opr2_from_ram; // value of operand 2 comes from data cache |
opr3_from_ram_out <= opr3_from_ram; // value of last operand comes from data cache |
opr1_used_out <= opr1_used; |
opr2_used_out <= opr2_used; |
opr3_used_out <= opr3_used; |
// disable ram input if error (removed because of critical timing): |
/* |
if (array_error_in || read_address_error) begin |
opr2_from_ram_out <= 0; |
opr3_from_ram_out <= 0; |
if (opr2_from_ram) operand2_out <= 0; |
if (opr3_from_ram) operand3_out <= 0; |
end*/ |
|
end else begin // swap last two operands |
operand1_out <= opr1_val; |
operand2_out <= opr3_val; |
operand3_out <= opr2_val; |
opr2_from_ram_out <= opr3_from_ram; // value of operand 2 comes from data cache |
opr3_from_ram_out <= opr2_from_ram; // value of last operand comes from data cache |
opr1_used_out <= opr1_used; |
opr2_used_out <= opr3_used; |
opr3_used_out <= opr2_used; |
// disable ram input if error (removed because of critical timing): |
/* |
if (array_error_in || read_address_error) begin |
opr2_from_ram_out <= 0; |
opr3_from_ram_out <= 0; |
if (opr2_from_ram) operand3_out <= 0; |
if (opr3_from_ram) operand2_out <= 0; |
end*/ |
end |
|
mask_val_out <= regmask_val; |
|
// other outputs |
regmask_used_out <= mask_status_in; |
instruction_pointer_out <= instruction_pointer_in; // address of current instruction |
instruction_out <= instruction_in[31:0]; |
tag_val_out <= tag_val_in; // instruction tag value |
vector_out <= vector_in; // this is a vector instruction |
mask_alternative_out <= mask_alternative_in; |
opx_out <= opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions |
opj_out <= opj; // operation ID for conditional jump instructions |
ot_out <= otype; // operand type |
option_bits_out <= option_bits; // option bits in format E |
im2_bits_out <= im2_bits; // constant bits from IM2 as extra operand |
|
result_type_out <= result_type_in; // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing |
num_operands_out <= num_operands_in; // number of source operands |
category_out <= category_in; // 00: multiformat, 01: single format, 10: jump |
format_out <= format_in; // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder) |
|
// choose which execution unit to use |
exe_unit_out <= exe_unit; |
// detect trap instruction. will enable single step mode in next clock cycle |
trap_out <= (il == 1 && mode == 7 && op1 == `IJ_TRAP && valid_in); |
end |
|
always_ff @(posedge clock) if (clock_enable) begin |
|
if (reset) valid_out <= 0; |
else if (!stall_in) valid_out <= valid_in; |
|
last_stall <= stall_in & valid_in; |
last_valid <= valid_in; |
array_error_out <= array_error_in & valid_in; // array index out of bounds |
read_address_error_out <= read_address_error & valid_in; // invalid read memory address |
write_address_error_out <= write_address_error & valid_in; // invalid write memory address |
misaligned_address_error_out <= misaligned_address_error & valid_in; // misaligned read/write memory address |
|
// predict stall |
if (exe_unit[2] && 0) begin |
stall_predict_out <= valid_in; // To do: stall if div unit busy |
end else begin |
stall_predict_out <= stall_predict && valid_in && !stall_in; // not all operands and units are ready |
end |
|
// debug output |
debug_out <= 0; |
debug_out[1:0] <= result_type_in; |
debug_out[5:4] <= num_operands_in; |
debug_out[9:8] <= mask_status_in; |
debug_out[10] <= mask_alternative_in; |
debug_out[11] <= mask_off; |
|
debug_out[12] <= regmask_val[0]; |
debug_out[15] <= regmask_val[`MASKSZ]; |
|
debug_out[16] <= opr1_used; |
debug_out[17] <= opr2_used; |
debug_out[18] <= opr3_used; |
debug_out[19] <= swap_operands; |
|
debug_out[20] <= stall_predict; |
|
debug_out[25:24] <= il; |
|
|
end |
|
endmodule |