OpenCores
URL https://opencores.org/ocsvn/forwardcom/forwardcom/trunk

Subversion Repositories forwardcom

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /forwardcom
    from Rev 32 to Rev 33
    Reverse comparison

Rev 32 → Rev 33

/bintools/emulator.h
0,0 → 1,274
/**************************** emulator.h **********************************
* Author: Agner Fog
* date created: 2018-02-18
* Last modified: 2021-04-02
* Version: 1.11
* Project: Binary tools for ForwardCom instruction set
* Module: emulator.h
* Description:
* Header file for emulator
*
* Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
 
// structure for memory map
struct SMemoryMap {
uint64_t startAddress; // virtual address boundary (must be divisible by 8)
uint64_t access_addend; // (access_addend & 7) is access permission: SHF_READ, SHF_WRITE, SHF_EXEC
// (access_addend & ~7) is added to the virtual address to get physical address
};
 
// union for an operand value of any type
union SNum {
uint64_t q; // 64 bit unsigned integer
int64_t qs; // 64 bit signed integer
uint32_t i; // 32 bit unsigned integer
int32_t is; // 32 bit signed integer
uint16_t s; // 16 bit unsigned integer
int16_t ss; // 16 bit signed integer
uint8_t b; // 8 bit unsigned integer
int8_t bs; // 8 bit signed integer
double d; // double precision float
float f; // single precision float
};
 
// Indexes into perfCounters array
const int perf_cpu_clock_cycles = 1;
const int perf_instructions = 2;
const int perf_2size_instructions = 3;
const int perf_3size_instructions = 4;
const int perf_gp_instructions = 5;
const int perf_gp_instructions_mask0 = 6;
const int perf_vector_instructions = 7;
const int perf_control_transfer_instructions = 8;
const int perf_direct_jumps = 9;
const int perf_indirect_jumps = 10;
const int perf_cond_jumps = 11;
const int perf_unknown_instruction = 12;
const int perf_wrong_operands = 13;
const int perf_array_overflow = 14;
const int perf_read_violation = 15;
const int perf_write_violation = 16;
const int perf_misaligned = 17;
const int perf_address_of_first_error = 18;
const int perf_type_of_first_error = 19;
const int number_of_perf_counters = 20; // number of performance counter registers
 
// Indexes into capabilities registers array
const int disable_errors_capability_register = 2;// register for disabling errors
const int number_of_capability_registers = 16; // number of capability registers
class CEmulator; // preliminary declaration
 
// Class for a thread or CPU core in the emulator
class CThread {
public:
CThread(); // constructor
~CThread(); // destructor
void run(); // start running
void setRegisters(CEmulator * emulator); // initialize registers etc.
uint64_t ip; // instruction pointer
uint64_t ip0; // address base for code and read-only data
uint64_t datap; // base pointer for writeable data
uint64_t threadp; // base pointer for thread-local data
uint64_t ninstructions; // number of instructions executed
uint32_t numContr; // numeric control register
uint32_t lastMask; // shows last status of subnormal support
uint32_t options; // option bits in instruction
uint32_t exception; // exception or jump caused by current instruction
STemplate const * pInstr; // current instruction code
SFormat const * fInstr; // format of current instruction
SNum parm[6]; // parm[0] = value of first operand if 3 operands
// parm[1] = value of first operand if 2 operands or second operand if 3 operands
// parm[2] = value of last operand
// parm[3] = value of mask register or NUMCONTR
// parm[4] = value of immediate operand without shift or conversion
// parm[5] = high part of double size return value
uint8_t operands[6]; // instruction operands. 0x00-0x1F = register. 0x20 = immediate, 0x40 = memory
// operands[0] is destination register
// operands[1] is mask register
// operands[2] is fallback register
// two-operand instructions use operands[4-5]
// three-operand instructions use operands[3-5]
uint8_t op; // operation code
uint8_t operandType; // operand type for current instruction
uint8_t nOperands; // number of source operands for current instruction
uint8_t vect; // instruction uses vector registers
uint8_t running; // thread is running. 0 = stop, 1 = save RD, 2 = don't save RD
bool readonly; // expect memory address to be in read-only section
bool ignoreMask; // call execution function even if mask is zero
bool doubleStep; // execution function will process two vector elements at a time
bool noVectorLength; // RS is not a vector register, or vector length is determined by execution function
bool dontRead; // don't read source operand before execution
bool unchangedRd; // store instruction: RD is not destination
bool terminate; // stop execution
bool memory_error; // memory address error
CMemoryBuffer vectors; // vector register i is at offset i*MaxVectorLength
uint64_t registers[32]; // value of register r0 - r31
uint32_t vectorLength[32]; // length of vector registers v0 - v31
uint32_t vectorLengthM; // vector length of memory operand
uint32_t vectorLengthR; // vector length of result
uint32_t vectorOffset; // offset to current element within vector
uint32_t MaxVectorLength; // maximum vector length
uint32_t returnType; // debug return output. bit 0-3: operand type (8 = half precision). bit 4: register. bit 5: memory. //(bit6: one extra element save_cp)
// bit 8: vector. bit 12: jump. bit 13: jump taken
int8_t * memory; // program memory
int8_t * tempBuffer; // temporary buffer for vector operand
uint64_t memAddress; // address of memory operand
int64_t addrOperand; // relative address of memory operand or jump target
uint64_t readVectorElement(uint32_t v, uint32_t vectorOffset); // read vector element
void writeVectorElement(uint32_t v, uint64_t value, uint32_t vectorOffset); // write vector element
uint64_t getMemoryAddress(); // get address of a memory operand
uint64_t readMemoryOperand(uint64_t address);// read a memory operand
void writeMemoryOperand(uint64_t val, uint64_t address); // write a memory operand
void interrupt(uint32_t n); // interrupt or trap
uint64_t checkSysMemAccess(uint64_t address, uint64_t size, uint8_t rd, uint8_t rs, uint8_t mode);
int fprintfEmulated(FILE * stream, const char * format, uint64_t * argumentList); // emulate fprintf with ForwardCom argument list
// check if system function has access to a particular address
void systemCall(uint32_t mod, uint32_t funcid, uint8_t rd, uint8_t rs); // entry for system calls
uint64_t makeNan(uint32_t code, uint32_t operandType);// make a NAN with exception code and address in payload
CDynamicArray<uint64_t> callStack; // stack of return addresses
uint32_t callDept; // maximum number of entries observed in callStack
uint64_t entry_point; // program entry point
uint64_t perfCounters[number_of_perf_counters];// performance counters
uint64_t capabilyReg[number_of_capability_registers];// capability registers
protected:
uint32_t mapIndex1; // last memory map index for code
uint32_t mapIndex2; // last memory map index for read-only data
uint32_t mapIndex3; // last memory map index for writeable data
CEmulator * emulator; // pointer to owner
CDynamicArray<SMemoryMap> memoryMap; // memory map
CTextFileBuffer listOut; // output debug listing
uint32_t listFileName; // file name for listOut (index into cmd.fileNameBuffer)
uint32_t listLines; // line counter
void fetch(); // fetch next instruction
void decode(); // decode current instruction
void execute(); // execute current instruction
void listStart(); // start writing debug list
void listInstruction(uint64_t address); // write current instruction to debug list
public:
void listResult(uint64_t result); // write result of current instruction to debug list
void performanceCounters(); // update performance counters
uint64_t readRegister(uint8_t reg) { // read register value
if (vect) { // this function is inlined for performance reasons
uint64_t val = vectors.get<uint64_t>(reg*MaxVectorLength);
if (vectorLength[reg] < 8) {
// vector is less than 8 bytes. zero-extend to 8 bytes
val &= ((uint64_t)1 << vectorLength[reg]) - 1;
}
return val;
}
else {
return registers[reg];
}
}
};
 
// Class for the whole emulator
class CEmulator : public CELF {
public:
CEmulator(); // constructor
~CEmulator(); // destructor
void go(); // start
protected:
void load(); // load executable file into memory
void relocate(); // relocate any absolute addresses and system function id's
void disassemble(); // make disassembly listing for debug output
uint32_t MaxVectorLength; // maximum vector length
int8_t * memory; // program memory
uint64_t memsize; // total allocated memory size
uint32_t maxNumThreads; // maximum number of threads
uint64_t ip0; // address base for code and read-only data
uint64_t datap0; // address base for writeable data
uint64_t threadp0; // address base for thread data of main thread
uint64_t stackp; // pointer to stack
uint64_t stackSize; // data stack size for main thread
uint64_t callStackSize; // call stack size for main thread
uint64_t heapSize; // heap size for main thread
uint32_t environmentSize; // maximum size of environment and command line data
CMetaBuffer<CThread> threads; // one or more threads
CDynamicArray<SMemoryMap> memoryMap; // main memory map
CDynamicArray<SLineRef> lineList; // Cross reference of code addresses to lines in dissassembler output
CTextFileBuffer disassemOut; // Output file from disassembler
CDisassembler disassembler; // disassembler for producing output list
friend class CThread;
};
 
// Functions for floating point exception and rounding control
void setRoundingMode(uint8_t r);
void clearExceptionFlags();
uint32_t getExceptionFlags();
void enableSubnormals(uint32_t e);
 
// universal function type for execution function
// all operands and option bits are accessed via *thread
typedef uint64_t (*PFunc)(CThread * thread);
 
// Tables of execution functions
extern PFunc funcTab1[64]; // multiformat instructions
extern PFunc funcTab2[64]; // jump instructions
extern PFunc funcTab3[16]; // jump instructions with 24 bit offset
// single format instructions:
extern PFunc funcTab4[64]; // format 1.0
extern PFunc funcTab5[64]; // format 1.1
extern PFunc funcTab6[64]; // format 1.2
extern PFunc funcTab7[64]; // format 1.3
extern PFunc funcTab8[64]; // format 1.4
extern PFunc funcTab9[64]; // format 1.8
extern PFunc funcTab10[64]; // format 2.5
extern PFunc funcTab11[64]; // format 2.6
extern PFunc funcTab12[64]; // format 2.9
extern PFunc funcTab13[64]; // format 3.1
 
// Table of execution function tables, indexed by fInstr->exeTable
extern PFunc * metaFunctionTable[];
// Table of dispatch functions for single format instructions with E template
extern PFunc EDispatchTable[];
 
// Table of number of operands for each instruction
extern uint8_t numOperands[15][64];
extern uint8_t numOperands2071[64];
extern uint8_t numOperands2261[64];
extern uint8_t numOperands2271[64];
 
// Execution functions shared between multiple cpp files
uint64_t f_nop(CThread * thread);
uint64_t f_add(CThread * thread);
uint64_t f_sub(CThread * thread);
uint64_t f_mul(CThread * thread);
uint64_t f_div(CThread * thread);
uint64_t f_mul_add(CThread * thread);
uint64_t f_add_h(CThread * thread);
uint64_t f_mul_h(CThread * thread);
uint64_t insert_(CThread * t);
uint64_t extract_(CThread * t);
uint64_t bitscan_(CThread * t);
uint64_t popcount_(CThread * t);
int64_t mul64_128s(uint64_t * low, int64_t a, int64_t b);
uint64_t mul64_128u(uint64_t * low, uint64_t a, uint64_t b);
 
// constants and functions for detecting NAN and infinity
const uint16_t inf_h = 0x7C00; // float16 infinity
const uint16_t inf2h = inf_h*2; // for detecting infinity when sign bit has been shifted out
const uint32_t inf_f = 0x7F800000; // float infinity
const uint32_t inf2f = inf_f*2; // for detecting infinity when sign bit has been shifted out
const uint32_t nan_f = 0x7FC00000; // float nan
const uint32_t sign_f = 0x80000000; // float sign bit
const uint32_t nsign_f = 0x7FFFFFFF; // float not sign bit
const uint64_t inf_d = 0x7FF0000000000000; // double infinity
const uint64_t inf2d = inf_d*2; // for detecting infinity when sign bit has been shifted out
const uint64_t nan_d = 0x7FF8000000000000; // double nan
const uint64_t nsign_d = 0x7FFFFFFFFFFFFFFF; // double not sign bit
const uint64_t sign_d = 0x8000000000000000; // double sign bit
 
// functions applied to the bit representations of floating point numbers to detect NAN and infinity:
static inline bool isnan_h(uint16_t x) {return uint16_t(x << 1) > inf2h;}
static inline bool isnan_f(uint32_t x) {return (x << 1) > inf2f;}
static inline bool isnan_d(uint64_t x) {return (x << 1) > inf2d;}
static inline bool isinf_h(uint16_t x) {return uint16_t(x << 1) == inf2h;}
static inline bool isinf_f(uint32_t x) {return (x << 1) == inf2f;}
static inline bool isinf_d(uint64_t x) {return (x << 1) == inf2d;}
static inline bool isnan_or_inf_h(uint16_t x) {return uint16_t(x << 1) >= inf2h;}
static inline bool isnan_or_inf_f(uint32_t x) {return (x << 1) >= inf2f;}
static inline bool isnan_or_inf_d(uint64_t x) {return (x << 1) >= inf2d;}
static inline bool is_zero_or_subnormal_h(uint16_t x) {return (x & 0x7C00) == 0;}
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.