OpenCores
URL https://opencores.org/ocsvn/forwardcom/forwardcom/trunk

Subversion Repositories forwardcom

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /forwardcom
    from Rev 48 to Rev 49
    Reverse comparison

Rev 48 → Rev 49

/bintools/disasm1.cpp
0,0 → 1,1094
/**************************** disasm1.cpp ********************************
* Author: Agner Fog
* Date created: 2017-04-26
* Last modified: 2021-03-30
* Version: 1.11
* Project: Binary tools for ForwardCom instruction set
* Module: disassem.h
* Description: Disassembler
* Disassembler for ForwardCom
*
* Copyright 2007-2021 GNU General Public License http://www.gnu.org/licenses
*****************************************************************************/
#include "stdafx.h"
 
 
uint64_t interpretTemplateVariants(const char * s) {
// Interpret template variants in instruction record
// The return value is a combination of bits for each variant option
// These bits are defined as constants VARIANT_D0, etc., in disassem.h
uint64_t v = 0;
for (int i = 0; i < 8; i++) { // Loop through string
char c = toupper(s[i]), d = toupper(s[i+1]);
switch (c) {
case 0:
return v; // End of string
case 'D':
if (d == '0') v |= VARIANT_D0; // D0
if (d == '1') v |= VARIANT_D1; // D1
if (d == '2') v |= VARIANT_D2; // D2
if (d == '3') v |= VARIANT_D3; // D3
continue;
case 'F':
if (d == '0') v |= VARIANT_F0; // F0
if (d == '1') v |= VARIANT_F1; // F1
continue;
case 'M':
if (d == '0') v |= VARIANT_M0; // M0
//if (d == '1') v |= VARIANT_M1; // M1. No longer used
continue;
case 'R':
if (d == '0') v |= VARIANT_R0; // R0
if (d == '1') v |= VARIANT_R1; // R1
if (d == '2') v |= VARIANT_R2; // R2
if (d == '3') v |= VARIANT_R3; // R3
if (d == 'L') v |= VARIANT_RL; // RL
i++;
continue;
case 'I':
if (d == '2') v |= VARIANT_I2; // I2
continue;
 
case 'O':
if (d > '0' && d < '7') v |= (d - '0') << 24; // O1 - O6
continue;
case 'U':
if (d == '0') v |= VARIANT_U0; // U0
if (d == '3') v |= VARIANT_U3; // U3
continue;
case 'H':
if (d == '0') v |= VARIANT_H0; // H0
continue;
case 'X':
v |= uint64_t(((d-'0') & 0xF) | 0x10) << 32; // X0 - X9
continue;
case 'Y':
v |= uint64_t(((d-'0') & 0xF) | 0x20) << 32; // Y0 - Y9
continue;
}
}
return v;
}
 
 
void CDisassembler::sortSymbolsAndRelocations() {
// Sort symbols by address. This is useful when symbol labels are written out
uint32_t i; // loop counter
// The values of st_reguse1 and st_reguse2 are no longer needed after these values have been written out.
// Save old index in st_reguse1.
// Set st_reguse2 to zero, it is used later for data type
 
for (i = 0; i < symbols.numEntries(); i++) {
symbols[i].st_reguse1 = i;
symbols[i].st_reguse2 = 0;
// symbols are grouped by section in object files, by base pointer in executable files
if (isExecutable) symbolExeAddress(symbols[i]);
}
// Sort symbols by address
symbols.sort();
 
// Add dummy empty symbol number 0
ElfFwcSym nulsymbol = {0,0,0,0,0,0,0,0,0};
symbols.addUnique(nulsymbol);
 
// Update all relocations to the new symbol indexes
// Translate old to new symbol index in all relocation records
// Allocate array for translating old to new symbol index
CDynamicArray<uint32_t> old2newSymbolIndex;
old2newSymbolIndex.setNum(symbols.numEntries());
 
// Make translation table
for (i = 0; i < symbols.numEntries(); i++) {
uint32_t oldindex = symbols[i].st_reguse1;
if (oldindex < symbols.numEntries()) {
old2newSymbolIndex[oldindex] = i;
}
}
 
// Translate all symbol indices in relocation records
for (i = 0; i < relocations.numEntries(); i++) {
if (relocations[i].r_sym < old2newSymbolIndex.numEntries()) {
relocations[i].r_sym = old2newSymbolIndex[relocations[i].r_sym];
}
else relocations[i].r_sym = 0; // index out of range!
if ((relocations[i].r_type & R_FORW_RELTYPEMASK) == R_FORW_REFP) {
// relocation record has an additional reference point
// bit 30 indicates relocation used OK
uint32_t refsym = relocations[i].r_refsym & ~0x40000000;
if (refsym < old2newSymbolIndex.numEntries()) {
relocations[i].r_refsym = old2newSymbolIndex[refsym] | (relocations[i].r_refsym & 0x40000000);
}
else relocations[i].r_refsym = 0; // index out of range
}
}
 
// Sort relocations by address
relocations.sort();
}
 
// Translate symbol address from section:offset to pointerbase:address
void CDisassembler::symbolExeAddress(ElfFwcSym & sym) {
// use this translation only when disassembling executable files
if (!isExecutable) return;
 
// section
uint32_t sec = sym.st_section;
if (sec && sec < sectionHeaders.numEntries()) {
uint32_t flags = (uint32_t)sectionHeaders[sec].sh_flags;
// get base pointer
switch (flags & SHF_BASEPOINTER) {
case SHF_IP:
sym.st_section = 1; break;
case SHF_DATAP:
sym.st_section = 2; break;
case SHF_THREADP:
sym.st_section = 3; break;
default:
sym.st_section = 0; break;
}
sym.st_value += sectionHeaders[sec].sh_addr;
}
}
 
 
// Join the tables: symbols and newSymbols
void CDisassembler::joinSymbolTables() {
/* There are two symbol tables: 'symbols' and 'newSymbols'.
'symbols' contains the symbols that were in the original file. This table is sorted
by address in sortSymbolsAndRelocations() in order to make it easy to find a symbol
at a given address.
'newSymbols' contains new symbols that were created during pass 1. It is not sorted.
The reason why we have two symbol tables is that the symbol indexes would change if
we add to the 'symbols' table during pass 1 and keep it sorted. We need to have
consistent indexes during pass 1 in order to access symbols by their index. Likewise,
'newSymbols' is not sorted because indexes would change when new symbols are added to it.
'newSymbols' may contain dublets because it is not sorted so dublets are not detected
when new symbols are added.
'joinSymbolTables()' is called after pass 1 when we are finished making new symbols.
This function joins the two tables together, removes any dublets, updates symbol indexes
in all relocation records, and tranfers data type information from relocation records
to symbol records.
*/
uint32_t r; // Relocation index
uint32_t s; // Symbol index
uint32_t newsymi; // Symbol index in newSymbols
uint32_t newsymi2; // Index of new symbol after transfer to symbols table
uint32_t symTempIndex = symbols.numEntries(); // Temporary index of symbol after transfer
 
// Remember index of each symbol before adding new symbols and reordering
for (s = 0; s < symbols.numEntries(); s++) {
symbols[s].st_reguse1 = s;
}
 
// Loop through relocations to find references to new symbols
for (r = 0; r < relocations.numEntries(); r++) {
if (relocations[r].r_sym & 0x80000000) { // Refers to newSymbols table
newsymi = relocations[r].r_sym & ~0x80000000;
if (newsymi < newSymbols.numEntries()) {
// Put symbol into old table if no equivalent symbol exists here
newsymi2 = symbols.addUnique(newSymbols[newsymi]);
// Give it a temporary index if it doesn't have one
if (symbols[newsymi2].st_reguse1 == 0) symbols[newsymi2].st_reguse1 = symTempIndex++;
// update reference in relocation record to temporary index
relocations[r].r_sym = symbols[newsymi2].st_reguse1;
}
}
// Do the same with any reference point
if ((relocations[r].r_type & R_FORW_RELTYPEMASK) == R_FORW_REFP && relocations[r].r_refsym & 0x80000000) {
newsymi = relocations[r].r_refsym & ~0xC0000000;
if (newsymi < newSymbols.numEntries()) {
// Put symbol into old table if no equivalent symbol exists here
newsymi2 = symbols.addUnique(newSymbols[newsymi]);
// Give it a temporary index if it doesn't have one
if (symbols[newsymi2].st_reguse1 == 0) symbols[newsymi2].st_reguse1 = symTempIndex++;
// update reference in relocation record to temporary index
relocations[r].r_refsym = symbols[newsymi2].st_reguse1 | (relocations[r].r_refsym & 0x40000000);
}
}
}
// Make symbol index translation table
CDynamicArray<uint32_t> old2newSymbolIndex;
old2newSymbolIndex.setNum(symbols.numEntries());
for (s = 0; s < symbols.numEntries(); s++) {
uint32_t oldsymi = symbols[s].st_reguse1;
if (oldsymi < old2newSymbolIndex.numEntries()) {
old2newSymbolIndex[oldsymi] = s;
}
}
// Update indexes in relocation records
for (r = 0; r < relocations.numEntries(); r++) {
if (relocations[r].r_sym < old2newSymbolIndex.numEntries()) { // Refers to newSymbols table
relocations[r].r_sym = old2newSymbolIndex[relocations[r].r_sym];
// Give the symbol a data type from relocation record if it doesn't have one
if (symbols[relocations[r].r_sym].st_reguse2 == 0) {
symbols[relocations[r].r_sym].st_reguse2 = relocations[r].r_type >> 8;
}
}
// Do the same with any reference point
uint32_t refsym = relocations[r].r_refsym & ~0xC0000000;
if ((relocations[r].r_type & R_FORW_RELTYPEMASK) == R_FORW_REFP && refsym < old2newSymbolIndex.numEntries()) {
relocations[r].r_refsym = old2newSymbolIndex[refsym] | (relocations[r].r_refsym & 0x40000000);
}
}
}
 
 
void CDisassembler::assignSymbolNames() {
// Assign names to symbols that do not have a name
uint32_t i; // New symbol index
uint32_t numDigits; // Number of digits in new symbol names
char name[64]; // sectionBuffer for making symbol name
static char format[64];
uint32_t unnamedNum = 0; // Number of unnamed symbols
//uint32_t addMoreSymbols = 0; // More symbols need to be added
 
// Find necessary number of digits
numDigits = 3; i = symbols.numEntries();
while (i >= 1000) {
i /= 10;
numDigits++;
}
 
// format string for symbol names
sprintf(format, "%s%c0%i%c", "@_", '%', numDigits, 'i');
 
// Loop through symbols
for (i = 1; i < symbols.numEntries(); i++) {
if (symbols[i].st_name == 0 ) {
// Symbol has no name. Make one
sprintf(name, format, ++unnamedNum);
// Store new name
symbols[i].st_name = stringBuffer.pushString(name);
}
}
 
#if 0 //!!
// For debugging: list all symbols
printf("\n\nSymbols:");
for (i = 0; i < symbols.numEntries(); i++) {
printf("\n%3X %3X %s sect %i offset %X type %X size %i Scope %i",
i, symbols[i].st_name, stringBuffer.buf() + symbols[i].st_name,
symbols[i].st_section, (uint32_t)symbols[i].st_value, symbols[i].st_type,
(uint32_t)symbols[i].st_unitsize, symbols[i].st_other);
if (symbols[i].st_reguse2) printf(" Type %X", symbols[i].st_reguse2);
}
#endif
#if 0
// For debugging: list all relocations
printf("\n\nRelocations:");
for (uint32_t i = 0; i < relocations.numEntries(); i++) {
printf("\nsect %i, os %X, type %X, sym %i, add %X, refsym %X",
(uint32_t)(relocations[i].r_section), (uint32_t)relocations[i].r_offset, relocations[i].r_type,
relocations[i].r_sym, relocations[i].r_addend, relocations[i].r_refsym);
}
#endif
}
 
 
 
/************************** class CDisassembler *****************************
Members of class CDisassembler
Members that relate to file output are in disasm2.cpp
******************************************************************************/
 
CDisassembler::CDisassembler() {
// Constructor. Initialize variables
pass = 0;
nextSymbol = 0;
currentFunction = 0;
currentFunctionEnd = 0;
debugMode = 0;
outputFile = cmd.outputFile;
checkFormatListIntegrity();
};
 
void CDisassembler::initializeInstructionList() {
// Read and initialize instruction list and sort it by category, format, and op1
CCSVFile instructionListFile;
instructionListFile.read(cmd.getFilename(cmd.instructionListFile), CMDL_FILE_SEARCH_PATH); // Filename of list of instructions
instructionListFile.parse(); // Read and interpret instruction list file
instructionlist << instructionListFile.instructionlist; // Transfer instruction list to my own container
instructionlist.sort(); // Sort list, using sort order defined by SInstruction2
}
 
// Read instruction list, split ELF file into components
void CDisassembler::getComponents1() {
// Check code integrity
checkFormatListIntegrity();
 
// Read instruction list
initializeInstructionList();
 
// Split ELF file into containers
split();
}
 
// Read instruction list, get ELF components for assembler output listing
void CDisassembler::getComponents2(CELF const & assembler, CMemoryBuffer const & instructList) {
// This function replaces getComponents1() when making an output listing for the assembler
// list file name from command line
 
// copy containers from assembler outFile
sectionHeaders.copy(assembler.getSectionHeaders());
symbols.copy(assembler.getSymbols());
relocations.copy(assembler.getRelocations());
stringBuffer.copy(assembler.getStringBuffer());
dataBuffer.copy(assembler.getDataBuffer());
// Copy instruction list from assembler to avoid reading the csv file again.
// Use the unsorted list to make sure the preferred name for an instuction comes first, in case there are alias names
instructionlist.copy(instructList);
instructionlist.sort(); // Sort list, using the sort order needed by the disassembler as defined by SInstruction2
}
 
 
// Do the disassembly
void CDisassembler::go() {
// set tabulator stops
setTabStops();
 
// write feedback to console
feedBackText1();
 
// is this an executable or object file
isExecutable = fileHeader.e_type == ET_EXEC;
 
// Begin writing output file
writeFileBegin();
 
// Sort symbols by address
sortSymbolsAndRelocations();
 
// pass 1: Find symbols types and unnamed symbols
pass = 1;
pass1();
 
if (pass & 0x10) {
// Repetition of pass 1 requested
pass = 2;
pass1();
}
 
// Join the tables: symbols and newSymbols;
joinSymbolTables();
 
// put names on unnamed symbols
assignSymbolNames();
 
// pass 2: Write all sections to output file
pass = 0x100;
pass2();
 
// Check for illegal entries in symbol table and relocations table
finalErrorCheck();
 
// Finish writing output file
writeFileEnd();
 
// write output file
if (outputFile && !debugMode) outFile.write(cmd.getFilename(outputFile));
}
 
// write feedback text on stdout
void CDisassembler::feedBackText1() {
if (cmd.verbose && cmd.job == CMDL_JOB_DIS) {
// Tell what we are doing:
printf("\nDisassembling %s to %s", cmd.getFilename(cmd.inputFile), cmd.getFilename(outputFile));
}
}
 
 
void CDisassembler::pass1() {
 
/* pass 1: does the following jobs:
--------------------------------
 
* Scans all code sections, instruction by instruction.
 
* Follows all references to data in order to determine data type for
each data symbol.
 
* Assigns symbol table entries for all jump and call targets that do not
allready have a name.
 
* Identifies and analyzes tables of jump addresses and call addresses,
e.g. switch/case tables and virtual function tables. (to do !)
 
* Tries to identify any data in the code section.
 
*/
//uint32_t sectionType;
 
// Loop through sections, pass 1
for (section = 1; section < sectionHeaders.numEntries(); section++) {
 
// Get section type
//sectionType = sectionHeaders[section].sh_type;
codeMode = (sectionHeaders[section].sh_flags & SHF_EXEC) ? 1 : 4;
 
sectionBuffer = dataBuffer.buf() + sectionHeaders[section].sh_offset;
sectionEnd = (uint32_t)sectionHeaders[section].sh_size;
 
if (codeMode < 4) {
// This is a code section
 
sectionAddress = sectionHeaders[section].sh_addr;
if (sectionEnd == 0) continue;
 
iInstr = 0;
 
// Loop through instructions
while (iInstr < sectionEnd) {
 
// Check if code not dubious
if (codeMode == 1) {
 
parseInstruction(); // Parse instruction
 
updateSymbols(); // Detect symbol types for operands of this instruction
 
updateTracer(); // Trace register values
 
iInstr += instrLength * 4; // Next instruction
}
else {
// iEnd = labelEnd;
}
}
}
}
}
 
 
void CDisassembler::pass2() {
 
/* pass 2: does the following jobs:
--------------------------------
 
* Scans through all sections, code and data.
 
* Outputs warnings for suboptimal instruction codes and error messages
for erroneous code and erroneous relocations.
 
* Outputs disassembly of all instructions, operands and relocations,
followed by the binary code listing as comment.
 
* Outputs disassembly of all data, followed by alternative representations
as comment.
*/
 
//uint32_t sectionType;
 
// Loop through sections, pass 2
for (section = 1; section < sectionHeaders.numEntries(); section++) {
 
// Get section type
//sectionType = sectionHeaders[section].sh_type;
codeMode = (sectionHeaders[section].sh_flags & SHF_EXEC) ? 1 : 4;
 
// Initialize code parser
sectionBuffer = dataBuffer.buf() + sectionHeaders[section].sh_offset;
sectionEnd = (uint32_t)sectionHeaders[section].sh_size;
sectionAddress = sectionHeaders[section].sh_addr;
 
writeSectionBegin(); // Write segment directive
 
if (codeMode < 4) {
// This is a code section
if (sectionEnd == 0) continue;
iInstr = 0;
 
// Loop through instructions
while (iInstr < sectionEnd) {
 
if (debugMode) {
// save cross reference
SLineRef xref = { iInstr + sectionAddress, 1, outFile.dataSize() };
lineList.push(xref);
writeAddress();
}
writeLabels(); // Find any label here
 
// Check if code not dubious
if (codeMode == 1) {
parseInstruction(); // Parse instruction
 
writeInstruction(); // Write instruction
 
iInstr += instrLength * 4; // Next instruction
 
}
else {
// This is data Skip to next label
}
}
writeSectionEnd(); // Write segment directive
}
else {
// This is a data section
pInstr = 0; iRecord = 0; fInstr = 0; // Set invalid pointers to zero
operandType = 2; // Default data type is int32
instrLength = 4; // Default data size is 4 bytes
iInstr = 0; // Instruction position
nextSymbol = 0;
writeDataItems(); // Loop through data. Write data
 
writeSectionEnd(); // Write segment directive
}
}
}
 
 
 
/******************** Explanation of tracer: ***************************
 
This is a machine which can trace the contents of each register in certain
situations. It is currently used for recognizing pointers to jump tables
in order to identify jump tables (to do!)
*/
void CDisassembler::updateTracer() {
// Trace register values. See explanation above
}
 
 
void CDisassembler::updateSymbols() {
// Find unnamed symbols, determine symbol types,
// update symbol list, call checkJumpTarget if jump/call.
// This function is called during pass 1 for every instruction
uint32_t relSource = 0; // Position of relocated field
 
if (fInstr->category == 4 && fInstr->jumpSize) {
// Self-relative jump instruction. Check OPJ
// uint32_t opj = (instrLength == 1) ? pInstr->a.op1 : pInstr->b[0]; // Jump instruction opcode
// Check if there is a relocation here
relSource = iInstr + (fInstr->jumpPos); // Position of relocated field
ElfFwcReloc rel;
rel.r_offset = relSource;
rel.r_section = section;
rel.r_addend = 0;
if (relocations.findFirst(rel) < 0) {
// There is no relocation. Target must be in the same section. Find target
int32_t offset = 0;
switch (fInstr->jumpSize) { // Read offset of correct size
case 1: // 8 bit
offset = *(int8_t*)(sectionBuffer + relSource);
rel.r_type = R_FORW_8 | 0x80000000; // add 0x80000000 to remember that this is not a real relocation
break;
case 2: // 16 bit
offset = *(int16_t*)(sectionBuffer + relSource);
rel.r_type = R_FORW_16 | 0x80000000;
break;
case 3: // 24 bit. Sign extend to 32 bits
offset = *(int32_t*)(sectionBuffer + relSource) << 8 >> 8;
rel.r_type = R_FORW_24 | 0x80000000;
break;
case 4: // 32 bit
offset = *(int32_t*)(sectionBuffer + relSource);
rel.r_type = R_FORW_32 | 0x80000000;
break;
}
// Scale offset by 4 and add offset to end of instruction
int32_t target = iInstr + instrLength * 4 + offset * 4;
 
// Add a symbol at target address if none exists
ElfFwcSym sym;
zeroAllMembers(sym);
sym.st_bind = STB_LOCAL;
sym.st_other = STV_EXEC;
sym.st_section = section;
sym.st_value = (uint64_t)(int64_t)target;
symbolExeAddress(sym);
int32_t symi = symbols.findFirst(sym);
if (symi < 0) {
symi = newSymbols.push(sym); // Add symbol to new symbols table
symi |= 0x80000000; // Upper bit means index refers to newSymbols
}
// Add a dummy relocation record for this symbol.
// This relocation does not need type, scale, or addend because the only purpose is to identify the symbol.
// It does have a size, though, because this is checked later in writeRelocationTarget()
rel.r_sym = (uint32_t)symi;
relocations.addUnique(rel);
}
}
 
// Check if instruction has a memory reference relative to IP, DATAP, or THREADP
uint32_t basePointer = 0;
if (fInstr->mem & 2) basePointer = pInstr->a.rs;
relSource = iInstr + fInstr->addrPos; // Position of relocated field
 
if (fInstr->addrSize > 1 && basePointer >= 28 && basePointer <= 30 && !(fInstr->mem & 0x20)) {
// Memory operand is relative to THREADP, DATAP or IP
// Check if there is a relocation here
uint32_t relpos = iInstr + fInstr->addrPos;
ElfFwcReloc rel;
rel.r_offset = relpos;
rel.r_section = section;
rel.r_type = (operandType | 0x80) << 24;
uint32_t nrel, irel = 0;
nrel = relocations.findAll(&irel, rel);
if (nrel > 1) writeWarning("Overlapping relocations here");
if (nrel) {
// Relocation found. Put the data type into the relocation record.
// The data type will later be transferred to the symbol record in joinSymbolTables()
if (!(relocations[irel].r_type & 0x80000000)) {
// Save target data type in upper 8 bits of r_type
relocations[irel].r_type = (relocations[irel].r_type & 0x00FFFFFF) | (operandType /*| 0x80*/) << 24;
}
// Check if the target is a section + offset
uint32_t symi = relocations[irel].r_sym;
if (symi < symbols.numEntries() && symbols[symi].st_type == STT_SECTION && relocations[irel].r_addend > 0) {
// Add a new symbol at this address
ElfFwcSym sym;
zeroAllMembers(sym);
sym.st_bind = STB_LOCAL;
sym.st_other = STT_OBJECT;
sym.st_section = symbols[symi].st_section;
sym.st_value = symbols[symi].st_value + (int64_t)relocations[irel].r_addend;
symbolExeAddress(sym);
uint32_t symi2 = newSymbols.push(sym);
relocations[irel].r_sym = symi2 | 0x80000000; // Upper bit means index refers to newSymbols
relocations[irel].r_addend = 0;
}
}
else if (basePointer == REG_IP >> 16 && fInstr->addrSize > 1 && !(fInstr->mem & 0x20)) {
// No relocation found. Insert new relocation and new symbol
// This fits the address instruction with a local IP target.
// to do: Make it work for other cases
 
// Add a symbol at target address if none exists
int32_t target = iInstr + instrLength * 4;
switch (fInstr->addrSize) { // Read offset of correct size
/* case 1: // 8 bit. cannot use IP
target += *(int8_t*)(sectionBuffer + relSource) << (operandType & 7);
rel.r_type = R_FORW_8 | R_FORW_SELFREL | 0x80000000;
break;*/
case 2: // 16 bit
target += *(int16_t*)(sectionBuffer + relSource);
rel.r_type = R_FORW_16 | R_FORW_SELFREL | 0x80000000;
break;
case 4: // 32 bit
target += *(int32_t*)(sectionBuffer + relSource);
rel.r_type = R_FORW_32 | R_FORW_SELFREL | 0x80000000;
break;
}
ElfFwcSym sym;
zeroAllMembers(sym);
sym.st_bind = STB_LOCAL;
sym.st_other = STV_EXEC;
sym.st_section = section;
sym.st_value = (uint64_t)(int64_t)target;
 
symbolExeAddress(sym);
int32_t symi = symbols.findFirst(sym);
if (symi < 0) {
symi = newSymbols.push(sym); // Add symbol to new symbols table
symi |= 0x80000000; // Upper bit means index refers to newSymbols
}
// Add a dummy relocation record for this symbol.
// This relocation does not need type, scale, or addend because the only purpose is to identify the symbol.
// It does have a size, though, because this is checked later in writeRelocationTarget()
rel.r_offset = (uint64_t)iInstr + fInstr->addrPos; // Position of relocated field
rel.r_section = section;
rel.r_addend = -4;
rel.r_sym = (uint32_t)symi;
relocations.addUnique(rel);
}
else if ((basePointer == REG_DATAP >> 16 || basePointer == REG_THREADP >> 16)
&& fInstr->addrSize > 1 && !(fInstr->mem & 0x20) && isExecutable) {
// No relocation found. Insert new relocation and new symbol. datap or threadp based
 
// Add a symbol at target address if none exists
int64_t target = fileHeader.e_datap_base;
rel.r_type = R_FORW_DATAP;
uint32_t dom = 2;
uint32_t st_other = STV_DATAP;
if (basePointer == REG_THREADP >> 16) {
target = fileHeader.e_threadp_base;
rel.r_type = R_FORW_THREADP;
dom = 3;
st_other = STV_THREADP;
}
switch (fInstr->addrSize) { // Read offset of correct size
case 1: // 8 bit
target += *(int8_t*)(sectionBuffer + relSource);
rel.r_type |= R_FORW_8 | 0x80000000;
break;
case 2: // 16 bit
target += *(int16_t*)(sectionBuffer + relSource);
rel.r_type |= R_FORW_16 | 0x80000000;
break;
case 4: // 32 bit
target += *(int32_t*)(sectionBuffer + relSource);
rel.r_type |= R_FORW_32 | 0x80000000;
break;
}
ElfFwcSym sym;
zeroAllMembers(sym);
sym.st_type = STT_OBJECT;
sym.st_bind = STB_WEAK;
sym.st_other = st_other;
sym.st_section = dom;
sym.st_value = (uint64_t)target;
 
int32_t symi = symbols.findFirst(sym);
if (symi < 0) {
symi = newSymbols.push(sym); // Add symbol to new symbols table
symi |= 0x80000000; // Upper bit means index refers to newSymbols
}
// Add a dummy relocation record for this symbol.
// This relocation does not need type, scale, or addend because the only purpose is to identify the symbol.
// It does have a size, though, because this is checked later in writeRelocationTarget()
rel.r_offset = iInstr + fInstr->addrPos; // Position of relocated field
rel.r_section = section;
rel.r_addend = 0;
rel.r_sym = (uint32_t)symi;
relocations.addUnique(rel);
}
}
}
 
 
void CDisassembler::followJumpTable(uint32_t symi, uint32_t RelType) {
// Check jump/call table and its targets
// to do !
}
 
 
void CDisassembler::markCodeAsDubious() {
// Remember that this may be data in a code segment
}
 
 
// List of instructionlengths, used in parseInstruction
static const uint8_t lengthList[8] = {1,1,1,1,2,2,3,4};
 
 
void CDisassembler::parseInstruction() {
// Parse one opcode at position iInstr
instructionWarning = 0;
 
// Get instruction
pInstr = (STemplate*)(sectionBuffer + iInstr);
 
// Get op1
uint8_t op = pInstr->a.op1;
 
// Get format
format = (pInstr->a.il << 8) + (pInstr->a.mode << 4); // Construct format = (il,mode,submode)
// Get submode
switch (format) {
case 0x200: case 0x220: case 0x300: case 0x320: // submode in mode2
format += pInstr->a.mode2;
break;
case 0x250: case 0x310: // Submode for jump instructions etc.
if (op < 8) {
format += op; op = pInstr->b[0] & 0x3F;
}
else {
format += 8;
}
break;
}
 
// Look up format details
static SFormat form;
fInstr = &formatList[lookupFormat(pInstr->q)]; // lookupFormat is in emulator2.cpp
format = fInstr->format2; // Include subformat depending on op1
if (fInstr->tmplate == 0xE && pInstr->a.op2 && !(fInstr->imm2 & 0x100)) {
// Single format instruction if op2 != 0 and op2 not used as immediate operand
form = *fInstr;
form.category = 1;
fInstr = &form;
}
 
// Get operand type
if (fInstr->ot == 0) { // Operand type determined by OT field
operandType = pInstr->a.ot; // Operand type
if (!(pInstr->a.mode & 6) && !(fInstr->vect & 0x11)) {
// Check use of M bit
format |= (operandType & 4) << 5; // Add M bit to format
operandType &= ~4; // Remove M bit from operand type
}
}
else if ((fInstr->ot & 0xF0) == 0x10) { // Operand type fixed. Value in formatList
operandType = fInstr->ot & 7;
}
else if (fInstr->ot == 0x32) { // int32 for even op1, int64 for odd op1
operandType = 2 + (pInstr->a.op1 & 1);
}
else if (fInstr->ot == 0x35) { // Float for even op1, double for odd op1
operandType = 5 + (pInstr->a.op1 & 1);
}
else {
operandType = 0; // Error in formatList. Should not occur
}
 
// Find instruction length
instrLength = lengthList[pInstr->i[0] >> 29]; // Length up to 3 determined by il. Length 4 by upper bit of mode
 
// Find any reasons for warnings
//findWarnings(p);
 
// Find any errors
//findErrors(p);
}
 
 
 
/*****************************************************************************
Functions for reading instruction list from comma-separated file,
sorting, and searching
*****************************************************************************/
 
// Members of class CCSVFile for reading comma-separated file
 
// Read and parse file
void CCSVFile::parse() {
// Sorry for the ugly code!
 
const char * fields[numInstructionColumns]; // pointer to each field in line
int fi = 0; // field index
uint32_t i, j; // loop counters
char * s, * t = 0; // point to begin and end of field
char c;
char separator = 0; // separator character, preferably comma
int line = 1; // line number
SInstruction record; // record constructed from line
zeroAllMembers(fields);
if (data_size==0) read(cmd.getFilename(cmd.instructionListFile), 2); // read file if it has not already been read
if (err.number()) return;
 
// loop through file
for (i = 0; i < data_size; i++) {
// find begin of field, quoted or not
s = (char*)buf() + i;
c = *s;
if (c == ' ') continue; // skip leading spaces
 
if (c == '"' || c == 0x27) { // single or double quote
fields[fi] = s+1; // begin of quoted string
for (i++; i < data_size; i++) { // search for matching end quote
t = (char*)buf() + i;
if (*t == c) {
*t = 0; i++; // End quote found. Put end of string here
goto SEARCHFORCOMMA;
}
if (*t == '\n') break; // end of line found before end quote
}
// end quote not found
err.submit(ERR_INSTRUCTION_LIST_QUOTE, line);
return;
}
if (c == '\r' || c == '\n')
goto NEXTLINE; // end of line found
if (c == separator || c == ',') {
// empty field
fields[fi] = "";
goto SEARCHFORCOMMA;
}
 
// Anything else: begin of unquoted string
fields[fi] = s;
// search for end of field
 
SEARCHFORCOMMA:
for (; i < data_size; i++) { // search for comma after field
t = (char*)buf() + i;
if (*t == separator || (separator == 0 && (*t == ',' || *t == ';' || *t == '\t'))) {
separator = *t; // separator set to the first comma, semicolon or tabulator
*t = 0; // put end of string here
goto NEXTFIELD;
}
if (*t == '\n') break; // end of line found before comma
}
fi++;
goto NEXTLINE;
 
NEXTFIELD:
// next field
fi++;
if (fi != numInstructionColumns) continue;
// end of last field
 
NEXTLINE:
for (; i < data_size; i++) { // search for end. of line
t = (char*)buf() + i;
// accept newlines as "\r", "\n", or "\r\n"
if (*t == '\r' || *t == '\n') break;
}
if (*t == '\r' && *(t+1) == '\n') i++; // end of line is two characters
*t = 0; // terminate line
 
// make any remaining fields blank
for (; fi < numInstructionColumns; fi++) {
fields[fi] = "";
}
// Begin next line
line++;
fi = 0;
 
// Check if blank or heading record
if (fields[2][0] < '0' || fields[2][0] > '9') continue;
 
// save values to record
// most fields are decimal or hexadecimal numbers
record.id = (uint32_t)interpretNumber(fields[1]);
record.category = (uint32_t)interpretNumber(fields[2]);
record.format = interpretNumber(fields[3]);
record.templt = (uint32_t)interpretNumber(fields[4]);
record.sourceoperands = (uint32_t)interpretNumber(fields[6]);
record.op1 = (uint32_t)interpretNumber(fields[7]);
record.op2 = (uint32_t)interpretNumber(fields[8]);
record.optypesgp = (uint32_t)interpretNumber(fields[9]);
record.optypesscalar = (uint32_t)interpretNumber(fields[10]);
record.optypesvector = (uint32_t)interpretNumber(fields[11]);
// interpret immediate operand
if (tolower(fields[12][0]) == 'i') {
// implicit immediate operand. value is prefixed by 'i'. Get value
record.implicit_imm = (uint32_t)interpretNumber(fields[12]+1);
record.opimmediate = OPI_IMPLICIT;
}
else {
// immediate operand type
record.opimmediate = (uint8_t)interpretNumber(fields[12]);
}
// interpret template variant
record.variant = interpretTemplateVariants(fields[5]);
// copy instruction name
for (j = 0; j < sizeof(record.name)-1; j++) {
c = fields[0][j];
if (c == 0) break;
record.name[j] = tolower(c);
}
record.name[j] = 0;
 
// add record to list
instructionlist.push(record);
}
}
 
// Interpret number in instruction list
uint64_t CCSVFile::interpretNumber(const char * text) {
uint32_t error = 0;
uint64_t result = uint64_t(::interpretNumber(text, 64, &error));
if (error) err.submit(ERR_INSTRUCTION_LIST_SYNTAX, text);
return result;
}
 
 
// Interpret a string with a decimal, binary, octal, or hexadecimal number
int64_t interpretNumber(const char * text, uint32_t maxLength, uint32_t * error) {
int state = 0; // 0: begin, 1: after 0,
// 2: after 0x, 3: after 0b, 4: after 0o
// 5: after decimal digit, 6: trailing space
uint64_t number = 0;
uint8_t c, clower, digit;
bool sign = false;
uint32_t i;
*error = 0;
if (text == 0) {
*error = 1; return number;
}
 
for (i = 0; i < maxLength; i++) {
c = text[i]; // read character
clower = c | 0x20; // convert to lower case
if (clower == 'x') {
if (state != 1) {
*error = 1; return 0;
}
state = 2;
}
else if (clower == 'o') {
if (state != 1) {
*error = 1; return 0;
}
state = 4;
}
else if (clower == 'b' && state == 1) {
state = 3;
}
else if (c >= '0' && c <= '9') {
// digit 0 - 9
digit = c - '0';
switch (state) {
case 0:
state = (digit == 0) ? 1 : 5;
number = digit;
break;
case 1:
state = 5;
// continue in case 5:
case 5:
// decimal
number = number * 10 + digit;
break;
case 2:
// hexadecimal
number = number * 16 + digit;
break;
case 3:
// binary
if (digit > 1) {
*error = 1; return 0;
}
number = number * 2 + digit;
break;
case 4:
// octal
if (digit > 7) {
*error = 1; return 0;
}
number = number * 8 + digit;
break;
default:
*error = 1;
return 0;
}
}
else if (clower >= 'a' && clower <= 'f') {
// hexadecimal digit
digit = clower - ('a' - 10);
if (state != 2) {
*error = 1; return 0;
}
number = number * 16 + digit;
}
else if (c == ' ' || c == '+') {
// ignore leading or trailing blank or plus
if (state > 0) state = 6;
}
else if (c == '-') {
// change sign
if (state != 0) {
*error = 1; return 0;
}
sign = ! sign;
}
else if (c == 0) break; // end of string
else if (c == ',') {
*error = i | 0x1000; // end with comma. return position in error
break;
}
else {
// illegal character
*error = 1; return 0;
}
}
if (sign) number = uint64_t(-int64_t(number));
return (int64_t)number;
}
 
void CDisassembler::getLineList(CDynamicArray<SLineRef> & list) {
// transfer lineList to debugger
list << lineList;
}
 
void CDisassembler::getOutFile(CTextFileBuffer & buffer) {
// transfer outFile to debugger
buffer.copy(outFile);
}
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.