URL
https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk
Subversion Repositories mod_sim_exp
Compare Revisions
- This comparison shows the changes necessary to convert path
/mod_sim_exp/trunk/bench
- from Rev 24 to Rev 3
- ↔ Reverse comparison
Rev 24 → Rev 3
/vhdl/mod_sim_exp_core_tb.vhd
File deleted
/vhdl/tb_multiplier_core.vhd
0,0 → 1,684
---------------------------------------------------------------------- |
---- testbenchtrl ---- |
---- ---- |
---- This file is part of the ---- |
---- Modular Simultaneous Exponentiation Core project ---- |
---- http://www.opencores.org/cores/mod_sim_exp/ ---- |
---- ---- |
---- Description ---- |
---- testbench for the modular simultaneous exponentiation ---- |
---- core. Performs some exponentiations to verify the design ---- |
---- Takes input parameters from sim_input.txt en writes ---- |
---- result and output to sim_output.txt ---- |
---- ---- |
---- Dependencies: ---- |
---- - multiplier_core ---- |
---- ---- |
---- Authors: ---- |
---- - Geoffrey Ottoy, DraMCo research group ---- |
---- - Jonas De Craene, JonasDC@opencores.org ---- |
---- ---- |
---------------------------------------------------------------------- |
---- ---- |
---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG ---- |
---- ---- |
---- This source file may be used and distributed without ---- |
---- restriction provided that this copyright statement is not ---- |
---- removed from the file and that any derivative work contains ---- |
---- the original copyright notice and the associated disclaimer. ---- |
---- ---- |
---- This source file is free software; you can redistribute it ---- |
---- and/or modify it under the terms of the GNU Lesser General ---- |
---- Public License as published by the Free Software Foundation; ---- |
---- either version 2.1 of the License, or (at your option) any ---- |
---- later version. ---- |
---- ---- |
---- This source is distributed in the hope that it will be ---- |
---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- |
---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- |
---- PURPOSE. See the GNU Lesser General Public License for more ---- |
---- details. ---- |
---- ---- |
---- You should have received a copy of the GNU Lesser General ---- |
---- Public License along with this source; if not, download it ---- |
---- from http://www.opencores.org/lgpl.shtml ---- |
---- ---- |
---------------------------------------------------------------------- |
|
library ieee; |
use ieee.std_logic_1164.all; |
use ieee.std_logic_unsigned.all; |
use ieee.std_logic_arith.all; |
|
library std; |
use std.textio.all; |
|
library ieee; |
use ieee.std_logic_textio.all; |
|
library mod_sim_exp; |
use mod_sim_exp.mod_sim_exp_pkg.all; |
|
entity tb_multiplier_core is |
end tb_multiplier_core; |
|
architecture test of tb_multiplier_core is |
constant nr_stages : integer := 96; |
constant clk_period : time := 10 ns; |
signal clk : std_logic := '0'; |
signal reset : std_logic := '1'; |
file input : text open read_mode is "src/sim_input.txt"; |
file output : text open write_mode is "out/sim_output.txt"; |
|
------------------------------------------------------------------ |
-- Signals for multiplier core memory space |
------------------------------------------------------------------ |
signal core_rw_address : std_logic_vector (8 downto 0); |
signal core_data_in : std_logic_vector(31 downto 0); |
signal core_fifo_din : std_logic_vector(31 downto 0); |
signal core_data_out : std_logic_vector(31 downto 0); |
signal core_write_enable : std_logic; |
signal core_fifo_push : std_logic; |
------------------------------------------------------------------ |
-- Signals for multiplier core control |
------------------------------------------------------------------ |
signal core_start : std_logic; |
signal core_run_auto : std_logic; |
signal core_p_sel : std_logic_vector(1 downto 0); |
signal core_dest_op_single : std_logic_vector(1 downto 0); |
signal core_x_sel_single : std_logic_vector(1 downto 0); |
signal core_y_sel_single : std_logic_vector(1 downto 0); |
signal calc_time : std_logic; |
------------------------------------------------------------------ |
-- Signals for multiplier core interrupt |
------------------------------------------------------------------ |
signal core_fifo_full : std_logic; |
signal core_fifo_nopush : std_logic; |
signal core_ready : std_logic; |
signal core_mem_collision : std_logic; |
|
begin |
|
------------------------------------------ |
-- Generate clk |
------------------------------------------ |
clk_process : process |
begin |
while (true) loop |
clk <= '0'; |
wait for clk_period/2; |
clk <= '1'; |
wait for clk_period/2; |
end loop; |
end process; |
|
------------------------------------------ |
-- Stimulus Process |
------------------------------------------ |
stim_proc : process |
procedure waitclk(n : natural := 1) is |
begin |
for i in 1 to n loop |
wait until rising_edge(clk); |
end loop; |
end waitclk; |
|
procedure loadOp(constant op_sel : std_logic_vector(2 downto 0); |
variable op_data : std_logic_vector(2047 downto 0)) is |
begin |
wait until rising_edge(clk); |
core_rw_address <= op_sel & "000000"; |
wait until rising_edge(clk); |
core_write_enable <= '1'; |
for i in 0 to (1536/32)-1 loop |
assert (core_mem_collision='0') |
report "collision detected while writing operand!!" severity failure; |
case (core_p_sel) is |
when "11" => |
core_data_in <= op_data(((i+1)*32)-1 downto (i*32)); |
when "01" => |
if (i < 16) then core_data_in <= op_data(((i+1)*32)-1 downto (i*32)); |
else core_data_in <= x"00000000"; end if; |
when "10" => |
if (i >= 16) then core_data_in <= op_data(((i-15)*32)-1 downto ((i-16)*32)); |
else core_data_in <= x"00000000"; end if; |
when others => |
core_data_in <= x"00000000"; |
end case; |
|
wait until rising_edge(clk); |
core_rw_address <= core_rw_address+"000000001"; |
end loop; |
core_write_enable <= '0'; |
wait until rising_edge(clk); |
end loadOp; |
|
procedure readOp(constant op_sel : std_logic_vector(2 downto 0); |
variable op_data : out std_logic_vector(2047 downto 0); |
variable op_width : integer) is |
begin |
wait until rising_edge(clk); |
core_dest_op_single <= op_sel(1 downto 0); |
if (core_p_sel = "10") then |
core_rw_address <= op_sel & "010000"; |
else |
core_rw_address <= op_sel & "000000"; |
end if; |
waitclk(2); |
|
for i in 0 to (op_width/32)-2 loop |
op_data(((i+1)*32)-1 downto (i*32)) := core_data_out; |
core_rw_address <= core_rw_address+"000000001"; |
waitclk(2); |
end loop; |
op_data(op_width-1 downto op_width-32) := core_data_out; |
wait until rising_edge(clk); |
end readOp; |
|
function ToString(constant Timeval : time) return string is |
variable StrPtr : line; |
begin |
write(StrPtr,Timeval); |
return StrPtr.all; |
end ToString; |
|
-- variables to read file |
variable L : line; |
variable Lw : line; |
variable base_width : integer; |
variable exponent_width : integer; |
variable g0 : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable g1 : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable e0 : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable e1 : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable m : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable R2 : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable R : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable gt0 : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable gt1 : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable gt01 : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable one : std_logic_vector(2047 downto 0) := std_logic_vector(conv_unsigned(1, 2048)); |
variable result : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable data_read : std_logic_vector(2047 downto 0) := (others=>'0'); |
variable good_value : boolean; |
variable param_count : integer := 0; |
|
-- constants for operand selection |
constant op_modulus : std_logic_vector(2 downto 0) := "100"; |
constant op_0 : std_logic_vector(2 downto 0) := "000"; |
constant op_1 : std_logic_vector(2 downto 0) := "001"; |
constant op_2 : std_logic_vector(2 downto 0) := "010"; |
constant op_3 : std_logic_vector(2 downto 0) := "011"; |
|
variable timer : time; |
begin |
-- initialisation |
-- memory |
core_write_enable <= '0'; |
core_data_in <= x"00000000"; |
core_rw_address <= "000000000"; |
-- fifo |
core_fifo_din <= x"00000000"; |
core_fifo_push <= '0'; |
-- control |
core_start <= '0'; |
core_run_auto <= '0'; |
core_x_sel_single <= "00"; |
core_y_sel_single <= "01"; |
core_dest_op_single <= "01"; |
core_p_sel <= "11"; |
|
-- Generate active high reset signal |
reset <= '1'; |
waitclk(100); |
reset <= '0'; |
waitclk(100); |
|
while not endfile(input) loop |
readline(input, L); -- read next line |
next when L(1)='-'; -- skip comment lines |
-- read input values |
case param_count is |
when 0 => -- base width |
read(L, base_width, good_value); |
assert good_value report "Can not read base width" severity failure; |
assert false report "Simulating exponentiation" severity note; |
write(Lw, string'("----------------------------------------------")); |
writeline(output, Lw); |
write(Lw, string'("-- EXPONENTIATION --")); |
writeline(output, Lw); |
write(Lw, string'("----------------------------------------------")); |
writeline(output, Lw); |
write(Lw, string'("----- Variables used:")); |
writeline(output, Lw); |
write(Lw, string'("base width: ")); |
write(Lw, base_width); |
writeline(output, Lw); |
case (base_width) is |
when 1536 => when 1024 => when 512 => |
when others => |
write(Lw, string'("=> incompatible base width!!!")); writeline(output, Lw); |
assert false report "incompatible base width!!!" severity failure; |
end case; |
|
when 1 => -- exponent width |
read(L, exponent_width, good_value); |
assert good_value report "Can not read exponent width" severity failure; |
write(Lw, string'("exponent width: ")); |
write(Lw, exponent_width); |
writeline(output, Lw); |
|
when 2 => -- g0 |
hread(L, g0(base_width-1 downto 0), good_value); |
assert good_value report "Can not read g0! (wrong lenght?)" severity failure; |
write(Lw, string'("g0: ")); |
hwrite(Lw, g0(base_width-1 downto 0)); |
writeline(output, Lw); |
|
when 3 => -- g1 |
hread(L, g1(base_width-1 downto 0), good_value); |
assert good_value report "Can not read g1! (wrong lenght?)" severity failure; |
write(Lw, string'("g1: ")); |
hwrite(Lw, g1(base_width-1 downto 0)); |
writeline(output, Lw); |
|
when 4 => -- e0 |
hread(L, e0(exponent_width-1 downto 0), good_value); |
assert good_value report "Can not read e0! (wrong lenght?)" severity failure; |
write(Lw, string'("e0: ")); |
hwrite(Lw, e0(exponent_width-1 downto 0)); |
writeline(output, Lw); |
|
when 5 => -- e1 |
hread(L, e1(exponent_width-1 downto 0), good_value); |
assert good_value report "Can not read e1! (wrong lenght?)" severity failure; |
write(Lw, string'("e1: ")); |
hwrite(Lw, e1(exponent_width-1 downto 0)); |
writeline(output, Lw); |
|
when 6 => -- m |
hread(L, m(base_width-1 downto 0), good_value); |
assert good_value report "Can not read m! (wrong lenght?)" severity failure; |
write(Lw, string'("m: ")); |
hwrite(Lw, m(base_width-1 downto 0)); |
writeline(output, Lw); |
|
when 7 => -- R^2 |
hread(L, R2(base_width-1 downto 0), good_value); |
assert good_value report "Can not read R2! (wrong lenght?)" severity failure; |
write(Lw, string'("R2: ")); |
hwrite(Lw, R2(base_width-1 downto 0)); |
writeline(output, Lw); |
|
when 8 => -- R |
hread(L, R(base_width-1 downto 0), good_value); |
assert good_value report "Can not read R! (wrong lenght?)" severity failure; |
|
when 9 => -- gt0 |
hread(L, gt0(base_width-1 downto 0), good_value); |
assert good_value report "Can not read gt0! (wrong lenght?)" severity failure; |
|
when 10 => -- gt1 |
hread(L, gt1(base_width-1 downto 0), good_value); |
assert good_value report "Can not read gt1! (wrong lenght?)" severity failure; |
|
when 11 => -- gt01 |
hread(L, gt01(base_width-1 downto 0), good_value); |
assert good_value report "Can not read gt01! (wrong lenght?)" severity failure; |
|
-- select pipeline for all computations |
---------------------------------------- |
writeline(output, Lw); |
write(Lw, string'("----- Selecting pipeline: ")); |
writeline(output, Lw); |
case (base_width) is |
when 1536 => core_p_sel <= "11"; write(Lw, string'(" Full pipeline selected")); |
when 1024 => core_p_sel <= "10"; write(Lw, string'(" Upper pipeline selected")); |
when 512 => core_p_sel <= "01"; write(Lw, string'(" Lower pipeline selected")); |
when others => |
write(Lw, string'(" Invallid bitwidth for design")); |
assert false report "impossible basewidth!" severity failure; |
end case; |
writeline(output, Lw); |
|
writeline(output, Lw); |
write(Lw, string'("----- Writing operands:")); |
writeline(output, Lw); |
|
-- load the modulus |
-------------------- |
loadOp(op_modulus, m); -- visual check needed |
write(Lw, string'(" m written")); |
writeline(output, Lw); |
|
-- load g0 |
----------- |
loadOp(op_0, g0); |
-- verify |
readOp(op_0, data_read, base_width); |
if (g0(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" g0 written in operand_0")); writeline(output, Lw); |
else |
write(Lw, string'(" failed to write g0 to operand_0!")); writeline(output, Lw); |
assert false report "Load g0 to op0 data verify failed!!" severity failure; |
end if; |
|
-- load g1 |
----------- |
loadOp(op_1, g1); |
-- verify |
readOp(op_1, data_read, base_width); |
if (g1(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" g1 written in operand_1")); writeline(output, Lw); |
else |
write(Lw, string'(" failed to write g1 to operand_1!")); writeline(output, Lw); |
assert false report "Load g1 to op1 data verify failed!!" severity failure; |
end if; |
|
-- load R2 |
----------- |
loadOp(op_2, R2); |
-- verify |
readOp(op_2, data_read, base_width); |
if (R2(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" R^2 written in operand_2")); writeline(output, Lw); |
else |
write(Lw, string'(" failed to write R^2 to operand_2!")); writeline(output, Lw); |
assert false report "Load R2 to op2 data verify failed!!" severity failure; |
end if; |
|
-- load a=1 |
------------ |
loadOp(op_3, one); |
-- verify |
readOp(op_3, data_read, base_width); |
if (one(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" 1 written in operand_3")); writeline(output, Lw); |
else |
write(Lw, string'(" failed to write 1 to operand_3!")); writeline(output, Lw); |
assert false report "Load 1 to op3 data verify failed!!" severity failure; |
end if; |
|
writeline(output, Lw); |
write(Lw, string'("----- Pre-computations: ")); |
writeline(output, Lw); |
|
-- compute gt0 |
--------------- |
core_x_sel_single <= "00"; -- g0 |
core_y_sel_single <= "10"; -- R^2 |
core_dest_op_single <= "00"; -- op_0 = (g0 * R) mod m |
wait until rising_edge(clk); |
timer := NOW; |
core_start <= '1'; |
wait until rising_edge(clk); |
core_start <= '0'; |
wait until core_ready = '1'; |
timer := NOW-timer; |
waitclk(10); |
readOp(op_0, data_read, base_width); |
write(Lw, string'(" Computed gt0: ")); |
hwrite(Lw, data_read(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" Read gt0: ")); |
hwrite(Lw, gt0(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" => calc time is ")); |
write(Lw, string'(ToString(timer))); |
writeline(output, Lw); |
write(Lw, string'(" => expected time is ")); |
write(Lw, (nr_stages+(2*(base_width-1)))*clk_period); |
writeline(output, Lw); |
if (gt0(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" => gt0 is correct!")); writeline(output, Lw); |
else |
write(Lw, string'(" => Error: gt0 is incorrect!!!")); writeline(output, Lw); |
assert false report "gt0 is incorrect!!!" severity failure; |
end if; |
|
-- compute gt1 |
--------------- |
core_x_sel_single <= "01"; -- g1 |
core_y_sel_single <= "10"; -- R^2 |
core_dest_op_single <= "01"; -- op_1 = (g1 * R) mod m |
wait until rising_edge(clk); |
timer := NOW; |
core_start <= '1'; |
wait until rising_edge(clk); |
core_start <= '0'; |
wait until core_ready = '1'; |
timer := NOW-timer; |
waitclk(10); |
readOp(op_1, data_read, base_width); |
write(Lw, string'(" Computed gt1: ")); |
hwrite(Lw, data_read(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" Read gt1: ")); |
hwrite(Lw, gt1(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" => calc time is ")); |
write(Lw, string'(ToString(timer))); |
writeline(output, Lw); |
write(Lw, string'(" => expected time is ")); |
write(Lw, (nr_stages+(2*(base_width-1)))*clk_period); |
writeline(output, Lw); |
if (gt1(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" => gt1 is correct!")); writeline(output, Lw); |
else |
write(Lw, string'(" => Error: gt1 is incorrect!!!")); writeline(output, Lw); |
assert false report "gt1 is incorrect!!!" severity failure; |
end if; |
|
-- compute a |
------------- |
core_x_sel_single <= "10"; -- R^2 |
core_y_sel_single <= "11"; -- 1 |
core_dest_op_single <= "11"; -- op_3 = (R) mod m |
wait until rising_edge(clk); |
core_start <= '1'; |
timer := NOW; |
wait until rising_edge(clk); |
core_start <= '0'; |
wait until core_ready = '1'; |
timer := NOW-timer; |
waitclk(10); |
readOp(op_3, data_read, base_width); |
write(Lw, string'(" Computed a=(R)mod m: ")); |
hwrite(Lw, data_read(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" Read (R)mod m: ")); |
hwrite(Lw, R(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" => calc time is ")); |
write(Lw, string'(ToString(timer))); |
writeline(output, Lw); |
write(Lw, string'(" => expected time is ")); |
write(Lw, (nr_stages+(2*(base_width-1)))*clk_period); |
writeline(output, Lw); |
if (R(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" => (R)mod m is correct!")); writeline(output, Lw); |
else |
write(Lw, string'(" => Error: (R)mod m is incorrect!!!")); writeline(output, Lw); |
assert false report "(R)mod m is incorrect!!!" severity failure; |
end if; |
|
-- compute gt01 |
--------------- |
core_x_sel_single <= "00"; -- gt0 |
core_y_sel_single <= "01"; -- gt1 |
core_dest_op_single <= "10"; -- op_2 = (gt0 * gt1) mod m |
wait until rising_edge(clk); |
core_start <= '1'; |
timer := NOW; |
wait until rising_edge(clk); |
core_start <= '0'; |
wait until core_ready = '1'; |
timer := NOW-timer; |
waitclk(10); |
readOp(op_2, data_read, base_width); |
write(Lw, string'(" Computed gt01: ")); |
hwrite(Lw, data_read(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" Read gt01: ")); |
hwrite(Lw, gt01(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" => calc time is ")); |
write(Lw, string'(ToString(timer))); |
writeline(output, Lw); |
write(Lw, string'(" => expected time is ")); |
write(Lw, (nr_stages+(2*(base_width-1)))*clk_period); |
writeline(output, Lw); |
if (gt01(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" => gt01 is correct!")); writeline(output, Lw); |
else |
write(Lw, string'(" => Error: gt01 is incorrect!!!")); writeline(output, Lw); |
assert false report "gt01 is incorrect!!!" severity failure; |
end if; |
|
-- load exponent fifo |
---------------------- |
writeline(output, Lw); |
write(Lw, string'("----- Loading exponent fifo: ")); |
writeline(output, Lw); |
for i in (exponent_width/16)-1 downto 0 loop |
core_fifo_din <= e1((i*16)+15 downto (i*16)) & e0((i*16)+15 downto (i*16)); |
wait until rising_edge(clk); |
core_fifo_push <= '1'; |
wait until rising_edge(clk); |
assert (core_fifo_full='0' and core_fifo_nopush='0') |
report "Fifo error, full or nopush" severity failure; |
core_fifo_push <= '0'; |
wait until rising_edge(clk); |
end loop; |
waitclk(10); |
write(Lw, string'(" => Done")); |
writeline(output, Lw); |
|
-- start exponentiation |
------------------------ |
writeline(output, Lw); |
write(Lw, string'("----- Starting exponentiation: ")); |
writeline(output, Lw); |
core_run_auto <= '1'; |
wait until rising_edge(clk); |
timer := NOW; |
core_start <= '1'; |
wait until rising_edge(clk); |
core_start <= '0'; |
wait until core_ready='1'; |
timer := NOW-timer; |
waitclk(10); |
write(Lw, string'(" => calc time is ")); |
write(Lw, string'(ToString(timer))); |
writeline(output, Lw); |
write(Lw, string'(" => expected time is ")); |
write(Lw, ((nr_stages+(2*(base_width-1)))*clk_period*7*exponent_width)/4); |
writeline(output, Lw); |
write(Lw, string'(" => Done")); |
core_run_auto <= '0'; |
writeline(output, Lw); |
|
-- post-computations |
--------------------- |
writeline(output, Lw); |
write(Lw, string'("----- Post-computations: ")); |
writeline(output, Lw); |
-- load in 1 to operand 2 |
loadOp(op_2, one); |
-- verify |
readOp(op_2, data_read, base_width); |
if (one(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" 1 written in operand_2")); writeline(output, Lw); |
else |
write(Lw, string'(" failed to write 1 to operand_2!")); writeline(output, Lw); |
assert false report "Load 1 to op2 data verify failed!!" severity failure; |
end if; |
-- compute result |
core_x_sel_single <= "11"; -- a |
core_y_sel_single <= "10"; -- 1 |
core_dest_op_single <= "11"; -- op_3 = (a) mod m |
wait until rising_edge(clk); |
timer := NOW; |
core_start <= '1'; |
wait until rising_edge(clk); |
core_start <= '0'; |
wait until core_ready = '1'; |
timer := NOW-timer; |
waitclk(10); |
readOp(op_3, data_read, base_width); |
write(Lw, string'(" Computed result: ")); |
hwrite(Lw, data_read(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" => calc time is ")); |
write(Lw, string'(ToString(timer))); |
writeline(output, Lw); |
write(Lw, string'(" => expected time is ")); |
write(Lw, (nr_stages+(2*(base_width-1)))*clk_period); |
writeline(output, Lw); |
|
when 12 => -- check with result |
hread(L, result(base_width-1 downto 0), good_value); |
assert good_value report "Can not read result! (wrong lenght?)" severity failure; |
writeline(output, Lw); |
write(Lw, string'("----- verifying result: ")); |
writeline(output, Lw); |
write(Lw, string'(" Read result: ")); |
hwrite(Lw, result(base_width-1 downto 0)); |
writeline(output, Lw); |
write(Lw, string'(" Computed result: ")); |
hwrite(Lw, data_read(base_width-1 downto 0)); |
writeline(output, Lw); |
if (result(base_width-1 downto 0) = data_read(base_width-1 downto 0)) then |
write(Lw, string'(" => Result is correct!")); writeline(output, Lw); |
else |
write(Lw, string'(" Error: result is incorrect!!!")); writeline(output, Lw); |
assert false report "result is incorrect!!!" severity failure; |
end if; |
writeline(output, Lw); |
|
when others => |
assert false report "undefined state!" severity failure; |
end case; |
|
if (param_count = 12) then |
param_count := 0; |
else |
param_count := param_count+1; |
end if; |
end loop; |
|
wait for 1 us; |
assert false report "End of simulation" severity failure; |
|
end process; |
|
------------------------------------------ |
-- Multiplier core instance |
------------------------------------------ |
the_multiplier : mod_sim_exp.mod_sim_exp_pkg.multiplier_core |
port map( |
clk => clk, |
reset => reset, |
-- operand memory interface (plb shared memory) |
write_enable => core_write_enable, |
data_in => core_data_in, |
rw_address => core_rw_address, |
data_out => core_data_out, |
collision => core_mem_collision, |
-- op_sel fifo interface |
fifo_din => core_fifo_din, |
fifo_push => core_fifo_push, |
fifo_full => core_fifo_full, |
fifo_nopush => core_fifo_nopush, |
-- ctrl signals |
start => core_start, |
run_auto => core_run_auto, |
ready => core_ready, |
x_sel_single => core_x_sel_single, |
y_sel_single => core_y_sel_single, |
dest_op_single => core_dest_op_single, |
p_sel => core_p_sel, |
calc_time => calc_time |
); |
|
end test; |