URL
https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk
Subversion Repositories mod_sim_exp
Compare Revisions
- This comparison shows the changes necessary to convert path
/mod_sim_exp/trunk/rtl/vhdl/core
- from Rev 60 to Rev 63
- ↔ Reverse comparison
Rev 60 → Rev 63
/mod_sim_exp_pkg.vhd
47,6 → 47,8
use ieee.std_logic_1164.all; |
use ieee.std_logic_unsigned.all; |
|
library mod_sim_exp; |
use mod_sim_exp.std_functions.all; |
|
package mod_sim_exp_pkg is |
-------------------------------------------------------------------- |
53,6 → 55,8
---------------------- COMPONENT DECLARATIONS ---------------------- |
-------------------------------------------------------------------- |
|
--------------------------- MULTIPLIER ----------------------------- |
|
-------------------------------------------------------------------- |
-- d_flip_flop |
-------------------------------------------------------------------- |
282,47 → 286,7
xi : out std_logic |
); |
end component x_shift_reg; |
|
-------------------------------------------------------------------- |
-- mod_sim_exp_core |
-------------------------------------------------------------------- |
-- toplevel of the modular simultaneous exponentiation core |
-- contains an operand and modulus ram, multiplier, an exponent fifo |
-- and control logic |
-- |
component mod_sim_exp_core is |
generic( |
C_NR_BITS_TOTAL : integer := 1536; |
C_NR_STAGES_TOTAL : integer := 96; |
C_NR_STAGES_LOW : integer := 32; |
C_SPLIT_PIPELINE : boolean := true |
); |
port( |
clk : in std_logic; |
reset : in std_logic; |
-- operand memory interface (plb shared memory) |
write_enable : in std_logic; -- write data to operand ram |
data_in : in std_logic_vector (31 downto 0); -- operand ram data in |
rw_address : in std_logic_vector (8 downto 0); -- operand ram address bus |
data_out : out std_logic_vector (31 downto 0); -- operand ram data out |
collision : out std_logic; -- write collision |
-- op_sel fifo interface |
fifo_din : in std_logic_vector (31 downto 0); -- exponent fifo data in |
fifo_push : in std_logic; -- push data in exponent fifo |
fifo_full : out std_logic; -- high if fifo is full |
fifo_nopush : out std_logic; -- high if error during push |
-- control signals |
start : in std_logic; -- start multiplication/exponentiation |
exp_m : in std_logic; -- single multiplication if low, exponentiation if high |
ready : out std_logic; -- calculations done |
x_sel_single : in std_logic_vector (1 downto 0); -- single multiplication x operand selection |
y_sel_single : in std_logic_vector (1 downto 0); -- single multiplication y operand selection |
dest_op_single : in std_logic_vector (1 downto 0); -- result destination operand selection |
p_sel : in std_logic_vector (1 downto 0); -- pipeline part selection |
calc_time : out std_logic |
); |
end component mod_sim_exp_core; |
|
|
component autorun_cntrl is |
port ( |
clk : in std_logic; |
338,31 → 302,6
); |
end component autorun_cntrl; |
|
component fifo_primitive is |
port ( |
clk : in std_logic; |
din : in std_logic_vector (31 downto 0); |
dout : out std_logic_vector (31 downto 0); |
empty : out std_logic; |
full : out std_logic; |
push : in std_logic; |
pop : in std_logic; |
reset : in std_logic; |
nopop : out std_logic; |
nopush : out std_logic |
); |
end component fifo_primitive; |
|
component modulus_ram is |
port( |
clk : in std_logic; |
modulus_addr : in std_logic_vector(5 downto 0); |
write_modulus : in std_logic; |
modulus_in : in std_logic_vector(31 downto 0); |
modulus_out : out std_logic_vector(1535 downto 0) |
); |
end component modulus_ram; |
|
-------------------------------------------------------------------- |
-- mont_ctrl |
-------------------------------------------------------------------- |
392,83 → 331,6
); |
end component mont_ctrl; |
|
component operand_dp is |
port ( |
clka : in std_logic; |
wea : in std_logic_vector(0 downto 0); |
addra : in std_logic_vector(5 downto 0); |
dina : in std_logic_vector(31 downto 0); |
douta : out std_logic_vector(511 downto 0); |
clkb : in std_logic; |
web : in std_logic_vector(0 downto 0); |
addrb : in std_logic_vector(5 downto 0); |
dinb : in std_logic_vector(511 downto 0); |
doutb : out std_logic_vector(31 downto 0) |
); |
end component operand_dp; |
|
component operand_mem is |
generic( |
n : integer := 1536 |
); |
port( |
-- data interface (plb side) |
data_in : in std_logic_vector(31 downto 0); |
data_out : out std_logic_vector(31 downto 0); |
rw_address : in std_logic_vector(8 downto 0); |
write_enable : in std_logic; |
-- address structure: |
-- bit: 8 -> '1': modulus |
-- '0': operands |
-- bits: 7-6 -> operand_in_sel in case of bit 8 = '0' |
-- don't care in case of modulus |
-- bits: 5-0 -> modulus_addr / operand_addr resp. |
|
-- operand interface (multiplier side) |
op_sel : in std_logic_vector(1 downto 0); |
xy_out : out std_logic_vector((n-1) downto 0); |
m : out std_logic_vector((n-1) downto 0); |
result_in : in std_logic_vector((n-1) downto 0); |
-- control signals |
load_result : in std_logic; |
result_dest_op : in std_logic_vector(1 downto 0); |
collision : out std_logic; |
-- system clock |
clk : in std_logic |
); |
end component operand_mem; |
|
component operand_ram is |
port( -- write_operand_ack voorzien? |
-- global ports |
clk : in std_logic; |
collision : out std_logic; |
-- bus side connections (32-bit serial) |
operand_addr : in std_logic_vector(5 downto 0); |
operand_in : in std_logic_vector(31 downto 0); |
operand_in_sel : in std_logic_vector(1 downto 0); |
result_out : out std_logic_vector(31 downto 0); |
write_operand : in std_logic; |
-- multiplier side connections (1536 bit parallel) |
result_dest_op : in std_logic_vector(1 downto 0); |
operand_out : out std_logic_vector(1535 downto 0); |
operand_out_sel : in std_logic_vector(1 downto 0); -- controlled by bus side |
write_result : in std_logic; |
result_in : in std_logic_vector(1535 downto 0) |
); |
end component operand_ram; |
|
component operands_sp is |
port ( |
clka : in std_logic; |
wea : in std_logic_vector(0 downto 0); |
addra : in std_logic_vector(4 downto 0); |
dina : in std_logic_vector(31 downto 0); |
douta : out std_logic_vector(511 downto 0) |
); |
end component operands_sp; |
|
|
component sys_stage is |
generic( |
width : integer := 32 -- width of the stage |
601,5 → 463,345
ready : out std_logic |
); |
end component mont_multiplier; |
|
|
------------------------------ MEMORY ------------------------------ |
|
-------------------------------------------------------------------- |
-- operand_dp |
-------------------------------------------------------------------- |
-- true dual port RAM 512x4, uses xilinx primitives |
-- |
component operand_dp is |
port ( |
clka : in std_logic; |
wea : in std_logic_vector(0 downto 0); |
addra : in std_logic_vector(5 downto 0); |
dina : in std_logic_vector(31 downto 0); |
douta : out std_logic_vector(511 downto 0); |
clkb : in std_logic; |
web : in std_logic_vector(0 downto 0); |
addrb : in std_logic_vector(5 downto 0); |
dinb : in std_logic_vector(511 downto 0); |
doutb : out std_logic_vector(31 downto 0) |
); |
end component operand_dp; |
|
-------------------------------------------------------------------- |
-- operand_sp |
-------------------------------------------------------------------- |
-- dual port RAM 512x2, uses xilinx primitives |
-- |
component operands_sp is |
port ( |
clka : in std_logic; |
wea : in std_logic_vector(0 downto 0); |
addra : in std_logic_vector(4 downto 0); |
dina : in std_logic_vector(31 downto 0); |
douta : out std_logic_vector(511 downto 0) |
); |
end component operands_sp; |
|
-------------------------------------------------------------------- |
-- dpram_generic |
-------------------------------------------------------------------- |
-- behavorial description of a dual port ram with one 32-bit |
-- write port and one 32-bit read port |
-- |
component dpram_generic is |
generic ( |
depth : integer := 2 |
); |
port ( |
clk : in std_logic; |
-- write port |
waddr : in std_logic_vector(log2(depth)-1 downto 0); |
we : in std_logic; |
din : in std_logic_vector(31 downto 0); |
-- read port |
raddr : in std_logic_vector(log2(depth)-1 downto 0); |
dout : out std_logic_vector(31 downto 0) |
); |
end component dpram_generic; |
|
-------------------------------------------------------------------- |
-- tdpram_generic |
-------------------------------------------------------------------- |
-- behavorial description of a true dual port ram with 2 |
-- 32-bit write/read ports |
-- |
component tdpram_generic is |
generic ( |
depth : integer := 9 |
); |
port ( |
-- port A |
clkA : in std_logic; |
addrA : in std_logic_vector(log2(depth)-1 downto 0); |
weA : in std_logic; |
dinA : in std_logic_vector(31 downto 0); |
doutA : out std_logic_vector(31 downto 0); |
-- port B |
clkB : in std_logic; |
addrB : in std_logic_vector(log2(depth)-1 downto 0); |
weB : in std_logic; |
dinB : in std_logic_vector(31 downto 0); |
doutB : out std_logic_vector(31 downto 0) |
); |
end component tdpram_generic; |
|
-------------------------------------------------------------------- |
-- fifo_primitive |
-------------------------------------------------------------------- |
-- a xilinx fifo primitive wrapper |
-- |
component fifo_primitive is |
port ( |
clk : in std_logic; |
din : in std_logic_vector (31 downto 0); |
dout : out std_logic_vector (31 downto 0); |
empty : out std_logic; |
full : out std_logic; |
push : in std_logic; |
pop : in std_logic; |
reset : in std_logic; |
nopop : out std_logic; |
nopush : out std_logic |
); |
end component fifo_primitive; |
|
-------------------------------------------------------------------- |
-- fifo_generic |
-------------------------------------------------------------------- |
-- a behavorial implementation of a fifo that is designed to |
-- infer blockram |
-- |
component fifo_generic is |
generic ( |
depth : integer := 32 |
); |
port ( |
clk : in std_logic; -- clock input |
din : in std_logic_vector (31 downto 0); -- 32 bit input data for push |
dout : out std_logic_vector (31 downto 0); -- 32 bit output data for pop |
empty : out std_logic; -- empty flag, 1 when FIFO is empty |
full : out std_logic; -- full flag, 1 when FIFO is full |
push : in std_logic; |
pop : in std_logic; |
reset : in std_logic; |
nopop : out std_logic; |
nopush : out std_logic |
); |
end component fifo_generic; |
|
-------------------------------------------------------------------- |
-- modulus_ram |
-------------------------------------------------------------------- |
-- RAM for the modulus, fixed width of 1536-bit, uses xilinx primitives |
-- |
component modulus_ram is |
port( |
clk : in std_logic; |
modulus_addr : in std_logic_vector(5 downto 0); |
write_modulus : in std_logic; |
modulus_in : in std_logic_vector(31 downto 0); |
modulus_out : out std_logic_vector(1535 downto 0) |
); |
end component modulus_ram; |
|
-------------------------------------------------------------------- |
-- modulus_ram_gen |
-------------------------------------------------------------------- |
-- behavorial description of a RAM to hold the modulus, with |
-- adjustable width and depth(nr of moduluses) |
-- |
component modulus_ram_gen is |
generic( |
width : integer := 1536; -- must be a multiple of 32 |
depth : integer := 2 -- nr of moduluses |
); |
port( |
clk : in std_logic; |
-- bus side |
write_modulus : in std_logic; -- write enable |
modulus_in_sel : in std_logic_vector(log2(depth)-1 downto 0); -- modulus operand to write to |
modulus_addr : in std_logic_vector(log2((width)/32)-1 downto 0); -- modulus word(32-bit) address |
modulus_in : in std_logic_vector(31 downto 0); -- modulus word data in |
modulus_sel : in std_logic_vector(log2(depth)-1 downto 0); -- selects the modulus to use for multiplications |
-- multiplier side |
modulus_out : out std_logic_vector(width-1 downto 0) |
); |
end component modulus_ram_gen; |
|
-------------------------------------------------------------------- |
-- operand_ram_gen |
-------------------------------------------------------------------- |
-- behavorial description of a RAM to hold the operands, with |
-- adjustable width and depth(nr of operands) |
-- |
component operand_ram_gen is |
generic( |
width : integer := 1536; -- width of the operands |
depth : integer := 4 -- nr of operands |
); |
port( |
-- global ports |
clk : in std_logic; |
collision : out std_logic; -- 1 if simultaneous write on RAM |
-- bus side connections (32-bit serial) |
write_operand : in std_logic; -- write_enable |
operand_in_sel : in std_logic_vector(log2(depth)-1 downto 0); -- operand to write to |
operand_addr : in std_logic_vector(log2(width/32)-1 downto 0); -- address of operand word to write |
operand_in : in std_logic_vector(31 downto 0); -- operand word(32-bit) to write |
result_out : out std_logic_vector(31 downto 0); -- operand out, reading is always result operand |
operand_out_sel : in std_logic_vector(log2(depth)-1 downto 0); -- operand to give to multiplier |
-- multiplier side connections (width-bit parallel) |
result_dest_op : in std_logic_vector(log2(depth)-1 downto 0); -- operand select for result |
operand_out : out std_logic_vector(width-1 downto 0); -- operand out to multiplier |
write_result : in std_logic; -- write enable for multiplier side |
result_in : in std_logic_vector(width-1 downto 0) -- result to write from multiplier |
); |
end component operand_ram_gen; |
|
-------------------------------------------------------------------- |
-- operand_ram |
-------------------------------------------------------------------- |
-- RAM for the operands, fixed width of 1536-bit and depth of 4 |
-- uses xilinx primitives |
-- |
component operand_ram is |
port( -- write_operand_ack voorzien? |
-- global ports |
clk : in std_logic; |
collision : out std_logic; |
-- bus side connections (32-bit serial) |
operand_addr : in std_logic_vector(5 downto 0); |
operand_in : in std_logic_vector(31 downto 0); |
operand_in_sel : in std_logic_vector(1 downto 0); |
result_out : out std_logic_vector(31 downto 0); |
write_operand : in std_logic; |
-- multiplier side connections (1536 bit parallel) |
result_dest_op : in std_logic_vector(1 downto 0); |
operand_out : out std_logic_vector(1535 downto 0); |
operand_out_sel : in std_logic_vector(1 downto 0); -- controlled by bus side |
write_result : in std_logic; |
result_in : in std_logic_vector(1535 downto 0) |
); |
end component operand_ram; |
|
|
component operand_mem is |
generic( |
n : integer := 1536 |
); |
port( |
-- data interface (plb side) |
data_in : in std_logic_vector(31 downto 0); |
data_out : out std_logic_vector(31 downto 0); |
rw_address : in std_logic_vector(8 downto 0); |
write_enable : in std_logic; |
-- address structure: |
-- bit: 8 -> '1': modulus |
-- '0': operands |
-- bits: 7-6 -> operand_in_sel in case of bit 8 = '0' |
-- don't care in case of modulus |
-- bits: 5-0 -> modulus_addr / operand_addr resp. |
|
-- operand interface (multiplier side) |
op_sel : in std_logic_vector(1 downto 0); |
xy_out : out std_logic_vector((n-1) downto 0); |
m : out std_logic_vector((n-1) downto 0); |
result_in : in std_logic_vector((n-1) downto 0); |
-- control signals |
load_result : in std_logic; |
result_dest_op : in std_logic_vector(1 downto 0); |
collision : out std_logic; |
-- system clock |
clk : in std_logic |
); |
end component operand_mem; |
|
-------------------------------------------------------------------- |
-- operand_mem_gen |
-------------------------------------------------------------------- |
-- generic description of the cores memory, places the modulus |
-- and operands in one addres and data bus |
-- |
-- address structure: |
-- bit: highest -> '1': modulus |
-- '0': operands |
-- bits: (highest-1)-log2(width/32) -> operand_in_sel in case of highest bit = '0' |
-- modulus_in_sel in case of highest bit = '1' |
-- bits: (log2(width/32)-1)-0 -> modulus_addr / operand_addr resp. |
-- |
component operand_mem_gen is |
generic( |
width : integer := 1536; -- width of the operands |
nr_op : integer := 4; -- nr of operand storages, has to be greater than nr_m |
nr_m : integer := 2 -- nr of modulus storages |
); |
port( |
-- system clock |
clk : in std_logic; |
-- data interface (plb side) |
data_in : in std_logic_vector(31 downto 0); |
data_out : out std_logic_vector(31 downto 0); |
rw_address : in std_logic_vector(log2(nr_op)+log2(width/32) downto 0); |
write_enable : in std_logic; |
-- operand interface (multiplier side) |
op_sel : in std_logic_vector(log2(nr_op)-1 downto 0); |
xy_out : out std_logic_vector((width-1) downto 0); |
m : out std_logic_vector((width-1) downto 0); |
result_in : in std_logic_vector((width-1) downto 0); |
-- control signals |
load_result : in std_logic; |
result_dest_op : in std_logic_vector(log2(nr_op)-1 downto 0); |
collision : out std_logic; |
modulus_sel : in std_logic_vector(log2(nr_m)-1 downto 0) |
); |
end component operand_mem_gen; |
|
|
---------------------------- TOP LEVEL ----------------------------- |
|
-------------------------------------------------------------------- |
-- mod_sim_exp_core |
-------------------------------------------------------------------- |
-- toplevel of the modular simultaneous exponentiation core |
-- contains an operand and modulus ram, multiplier, an exponent fifo |
-- and control logic |
-- |
component mod_sim_exp_core is |
generic( |
C_NR_BITS_TOTAL : integer := 1536; |
C_NR_STAGES_TOTAL : integer := 96; |
C_NR_STAGES_LOW : integer := 32; |
C_SPLIT_PIPELINE : boolean := true |
); |
port( |
clk : in std_logic; |
reset : in std_logic; |
-- operand memory interface (plb shared memory) |
write_enable : in std_logic; -- write data to operand ram |
data_in : in std_logic_vector (31 downto 0); -- operand ram data in |
rw_address : in std_logic_vector (8 downto 0); -- operand ram address bus |
data_out : out std_logic_vector (31 downto 0); -- operand ram data out |
collision : out std_logic; -- write collision |
-- op_sel fifo interface |
fifo_din : in std_logic_vector (31 downto 0); -- exponent fifo data in |
fifo_push : in std_logic; -- push data in exponent fifo |
fifo_full : out std_logic; -- high if fifo is full |
fifo_nopush : out std_logic; -- high if error during push |
-- control signals |
start : in std_logic; -- start multiplication/exponentiation |
exp_m : in std_logic; -- single multiplication if low, exponentiation if high |
ready : out std_logic; -- calculations done |
x_sel_single : in std_logic_vector (1 downto 0); -- single multiplication x operand selection |
y_sel_single : in std_logic_vector (1 downto 0); -- single multiplication y operand selection |
dest_op_single : in std_logic_vector (1 downto 0); -- result destination operand selection |
p_sel : in std_logic_vector (1 downto 0); -- pipeline part selection |
calc_time : out std_logic |
); |
end component mod_sim_exp_core; |
|
end package mod_sim_exp_pkg; |
/mod_sim_exp_core.vhd
54,6 → 54,7
|
library mod_sim_exp; |
use mod_sim_exp.mod_sim_exp_pkg.all; |
use mod_sim_exp.std_functions.all; |
|
-- toplevel of the modular simultaneous exponentiation core |
-- contains an operand and modulus ram, multiplier, an exponent fifo |
63,7 → 64,10
C_NR_BITS_TOTAL : integer := 1536; |
C_NR_STAGES_TOTAL : integer := 96; |
C_NR_STAGES_LOW : integer := 32; |
C_SPLIT_PIPELINE : boolean := true |
C_SPLIT_PIPELINE : boolean := true; |
C_NR_OP : integer := 4; |
C_NR_M : integer := 2; |
C_FIFO_DEPTH : integer := 32 |
); |
port( |
clk : in std_logic; |
71,7 → 75,7
-- operand memory interface (plb shared memory) |
write_enable : in std_logic; -- write data to operand ram |
data_in : in std_logic_vector (31 downto 0); -- operand ram data in |
rw_address : in std_logic_vector (8 downto 0); -- operand ram address bus |
rw_address : in std_logic_vector (log2(C_NR_OP)+log2(C_NR_BITS_TOTAL/32) downto 0); -- operand ram address bus |
data_out : out std_logic_vector (31 downto 0); -- operand ram data out |
collision : out std_logic; -- write collision |
-- op_sel fifo interface |
83,11 → 87,12
start : in std_logic; -- start multiplication/exponentiation |
exp_m : in std_logic; -- single multiplication if low, exponentiation if high |
ready : out std_logic; -- calculations done |
x_sel_single : in std_logic_vector (1 downto 0); -- single multiplication x operand selection |
y_sel_single : in std_logic_vector (1 downto 0); -- single multiplication y operand selection |
dest_op_single : in std_logic_vector (1 downto 0); -- result destination operand selection |
x_sel_single : in std_logic_vector (log2(C_NR_OP)-1 downto 0); -- single multiplication x operand selection |
y_sel_single : in std_logic_vector (log2(C_NR_OP)-1 downto 0); -- single multiplication y operand selection |
dest_op_single : in std_logic_vector (log2(C_NR_OP)-1 downto 0); -- result destination operand selection |
p_sel : in std_logic_vector (1 downto 0); -- pipeline part selection |
calc_time : out std_logic |
calc_time : out std_logic; |
modulus_sel : in std_logic_vector(log2(C_NR_M)-1 downto 0) |
); |
end mod_sim_exp_core; |
|
134,9 → 139,11
); |
|
-- Block ram memory for storing the operands and the modulus |
the_memory : operand_mem |
the_memory : operand_mem_gen |
generic map( |
n => C_NR_BITS_TOTAL |
width => C_NR_BITS_TOTAL, |
nr_op => C_NR_OP, |
nr_m => C_NR_M |
) |
port map( |
data_in => data_in, |
150,13 → 157,17
load_result => load_result, |
result_dest_op => result_dest_op, |
collision => collision, |
clk => clk |
clk => clk, |
modulus_sel => modulus_sel |
); |
|
result_dest_op <= dest_op_single when exp_m = '0' else "11"; -- in autorun mode we always store the result in operand3 |
|
-- A fifo for auto-run operand selection |
the_exponent_fifo : fifo_primitive |
the_exponent_fifo : fifo_generic |
generic map( |
depth => C_FIFO_DEPTH |
) |
port map( |
clk => clk, |
din => fifo_din, |
/operand_mem_gen.vhd
0,0 → 1,157
---------------------------------------------------------------------- |
---- operand_mem_gen ---- |
---- ---- |
---- This file is part of the ---- |
---- Modular Simultaneous Exponentiation Core project ---- |
---- http://www.opencores.org/cores/mod_sim_exp/ ---- |
---- ---- |
---- Description ---- |
---- BRAM memory and logic to the store 4 (1536-bit) operands ---- |
---- and the modulus for the montgomery multiplier ---- |
---- ---- |
---- Dependencies: ---- |
---- - operand_ram_gen ---- |
---- - modulus_ram_gen ---- |
---- ---- |
---- Authors: ---- |
---- - Geoffrey Ottoy, DraMCo research group ---- |
---- - Jonas De Craene, JonasDC@opencores.org ---- |
---- ---- |
---------------------------------------------------------------------- |
---- ---- |
---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG ---- |
---- ---- |
---- This source file may be used and distributed without ---- |
---- restriction provided that this copyright statement is not ---- |
---- removed from the file and that any derivative work contains ---- |
---- the original copyright notice and the associated disclaimer. ---- |
---- ---- |
---- This source file is free software; you can redistribute it ---- |
---- and/or modify it under the terms of the GNU Lesser General ---- |
---- Public License as published by the Free Software Foundation; ---- |
---- either version 2.1 of the License, or (at your option) any ---- |
---- later version. ---- |
---- ---- |
---- This source is distributed in the hope that it will be ---- |
---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- |
---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- |
---- PURPOSE. See the GNU Lesser General Public License for more ---- |
---- details. ---- |
---- ---- |
---- You should have received a copy of the GNU Lesser General ---- |
---- Public License along with this source; if not, download it ---- |
---- from http://www.opencores.org/lgpl.shtml ---- |
---- ---- |
---------------------------------------------------------------------- |
|
library ieee; |
use ieee.std_logic_1164.all; |
use ieee.std_logic_arith.all; |
use ieee.std_logic_unsigned.all; |
|
library mod_sim_exp; |
use mod_sim_exp.mod_sim_exp_pkg.all; |
use mod_sim_exp.std_functions.all; |
|
-- address structure: |
-- bit: highest -> '1': modulus |
-- '0': operands |
-- bits: (highest-1)-log2(width/32) -> operand_in_sel in case of highest bit = '0' |
-- modulus_in_sel in case of highest bit = '1' |
-- bits: (log2(width/32)-1)-0 -> modulus_addr / operand_addr resp. |
-- |
entity operand_mem_gen is |
generic( |
width : integer := 1536; -- width of the operands |
nr_op : integer := 4; -- nr of operand storages, has to be greater than nr_m |
nr_m : integer := 2 -- nr of modulus storages |
); |
port( |
-- system clock |
clk : in std_logic; |
-- data interface (plb side) |
data_in : in std_logic_vector(31 downto 0); |
data_out : out std_logic_vector(31 downto 0); |
rw_address : in std_logic_vector(log2(nr_op)+log2(width/32) downto 0); |
write_enable : in std_logic; |
-- operand interface (multiplier side) |
op_sel : in std_logic_vector(log2(nr_op)-1 downto 0); |
xy_out : out std_logic_vector((width-1) downto 0); |
m : out std_logic_vector((width-1) downto 0); |
result_in : in std_logic_vector((width-1) downto 0); |
-- control signals |
load_result : in std_logic; |
result_dest_op : in std_logic_vector(log2(nr_op)-1 downto 0); |
collision : out std_logic; |
modulus_sel : in std_logic_vector(log2(nr_m)-1 downto 0) |
); |
end operand_mem_gen; |
|
architecture Behavioral of operand_mem_gen is |
constant wordaddr_aw : integer := log2(width/32); |
constant opaddr_aw : integer := log2(nr_op); |
constant maddr_aw : integer := log2(nr_m); |
constant total_aw : integer := 1+opaddr_aw+wordaddr_aw; |
|
signal xy_data_i : std_logic_vector(31 downto 0); |
signal xy_addr_i : std_logic_vector(wordaddr_aw-1 downto 0); |
signal operand_in_sel_i : std_logic_vector(opaddr_aw-1 downto 0); |
signal modulus_in_sel_i : std_logic_vector(maddr_aw-1 downto 0); |
|
signal load_op : std_logic; |
|
signal m_addr_i : std_logic_vector(wordaddr_aw-1 downto 0); |
signal load_m : std_logic; |
signal m_data_i : std_logic_vector(31 downto 0); |
|
begin |
|
-- map inputs |
xy_addr_i <= rw_address(wordaddr_aw-1 downto 0); |
m_addr_i <= rw_address(wordaddr_aw-1 downto 0); |
operand_in_sel_i <= rw_address(total_aw-2 downto wordaddr_aw); |
modulus_in_sel_i <= rw_address(wordaddr_aw+maddr_aw-1 downto wordaddr_aw); |
xy_data_i <= data_in; |
m_data_i <= data_in; |
|
load_op <= write_enable when (rw_address(total_aw-1) = '0') else '0'; |
load_m <= write_enable when (rw_address(total_aw-1) = '1') else '0'; |
|
-- xy operand storage |
xy_ram : operand_ram_gen |
generic map( |
width => width, |
depth => nr_op |
) |
port map( |
clk => clk, |
collision => collision, |
operand_addr => xy_addr_i, |
operand_in => xy_data_i, |
operand_in_sel => operand_in_sel_i, |
result_out => data_out, |
write_operand => load_op, |
operand_out => xy_out, |
operand_out_sel => op_sel, |
result_dest_op => result_dest_op, |
write_result => load_result, |
result_in => result_in |
); |
|
-- modulus storage |
m_ram : modulus_ram_gen |
generic map( |
width => width, |
depth => nr_m |
) |
port map( |
clk => clk, |
modulus_in_sel => modulus_in_sel_i, |
modulus_addr => m_addr_i, |
write_modulus => load_m, |
modulus_in => m_data_i, |
modulus_out => m, |
modulus_sel => modulus_sel |
); |
|
end Behavioral; |
/modulus_ram_gen.vhd
0,0 → 1,120
---------------------------------------------------------------------- |
---- modulus_ram_gen ---- |
---- ---- |
---- This file is part of the ---- |
---- Modular Simultaneous Exponentiation Core project ---- |
---- http://www.opencores.org/cores/mod_sim_exp/ ---- |
---- ---- |
---- Description ---- |
---- BRAM memory and logic to store the modulus, due to the ---- |
---- achitecture, a minimum depth of 2 is needed for this ---- |
---- module to be inferred into blockram ---- |
---- ---- |
---- Dependencies: ---- |
---- - dpram_generic ---- |
---- ---- |
---- Authors: ---- |
---- - Geoffrey Ottoy, DraMCo research group ---- |
---- - Jonas De Craene, JonasDC@opencores.org ---- |
---- ---- |
---------------------------------------------------------------------- |
---- ---- |
---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG ---- |
---- ---- |
---- This source file may be used and distributed without ---- |
---- restriction provided that this copyright statement is not ---- |
---- removed from the file and that any derivative work contains ---- |
---- the original copyright notice and the associated disclaimer. ---- |
---- ---- |
---- This source file is free software; you can redistribute it ---- |
---- and/or modify it under the terms of the GNU Lesser General ---- |
---- Public License as published by the Free Software Foundation; ---- |
---- either version 2.1 of the License, or (at your option) any ---- |
---- later version. ---- |
---- ---- |
---- This source is distributed in the hope that it will be ---- |
---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- |
---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- |
---- PURPOSE. See the GNU Lesser General Public License for more ---- |
---- details. ---- |
---- ---- |
---- You should have received a copy of the GNU Lesser General ---- |
---- Public License along with this source; if not, download it ---- |
---- from http://www.opencores.org/lgpl.shtml ---- |
---- ---- |
---------------------------------------------------------------------- |
|
library ieee; |
use ieee.std_logic_1164.all; |
use ieee.std_logic_arith.all; |
use ieee.std_logic_unsigned.all; |
|
library mod_sim_exp; |
use mod_sim_exp.mod_sim_exp_pkg.all; |
use mod_sim_exp.std_functions.all; |
|
-- behavorial description of a RAM to hold the modulus, with |
-- adjustable width and depth(nr of moduluses) |
entity modulus_ram_gen is |
generic( |
width : integer := 1536; -- must be a multiple of 32 |
depth : integer := 2 -- nr of moduluses |
); |
port( |
clk : in std_logic; |
-- bus side |
write_modulus : in std_logic; -- write enable |
modulus_in_sel : in std_logic_vector(log2(depth)-1 downto 0); -- modulus operand to write to |
modulus_addr : in std_logic_vector(log2((width)/32)-1 downto 0); -- modulus word(32-bit) address |
modulus_in : in std_logic_vector(31 downto 0); -- modulus word data in |
modulus_sel : in std_logic_vector(log2(depth)-1 downto 0); -- selects the modulus to use for multiplications |
-- multiplier side |
modulus_out : out std_logic_vector(width-1 downto 0) |
); |
end modulus_ram_gen; |
|
architecture Behavioral of modulus_ram_gen is |
--- constants |
constant nrRAMs : integer := width/32; |
constant RAMselect_aw : integer := log2(nrRAMs); |
constant RAMdepth_aw : integer := log2(depth); |
constant total_aw : integer := RAMdepth_aw+RAMselect_aw; |
|
-- interconnection signals |
signal modulus_rdaddr : std_logic_vector(RAMdepth_aw-1 downto 0); |
signal modulus_wraddr : std_logic_vector(total_aw-1 downto 0); |
signal we : std_logic_vector(nrRAMs-1 downto 0); |
begin |
modulus_wraddr(RAMselect_aw-1 downto 0) <= modulus_addr; |
modulus_wraddr(total_aw-1 downto RAMselect_aw) <= modulus_in_sel; |
|
-- generate (width/32) blocks of 32-bit ram with a given depth |
-- these rams outputs are concatenated to a width-bit signal |
ramblocks : for i in 0 to nrRAMs-1 generate |
ramblock: dpram_generic |
generic map( |
depth => depth |
) |
port map( |
clk => clk, |
-- write port |
waddr => modulus_wraddr(total_aw-1 downto RAMselect_aw), |
we => we(i), |
din => modulus_in, |
-- read port |
raddr => modulus_rdaddr, |
dout => modulus_out(((i+1)*32)-1 downto i*32) |
); |
-- connect the w |
process (write_modulus, modulus_wraddr) |
begin |
if modulus_wraddr(RAMselect_aw-1 downto 0) = conv_std_logic_vector(i,RAMselect_aw) then |
we(i) <= write_modulus; |
else |
we(i) <= '0'; |
end if; |
end process; |
end generate; |
modulus_rdaddr <= modulus_sel; |
|
end Behavioral; |
/operand_ram_gen.vhd
0,0 → 1,177
---------------------------------------------------------------------- |
---- operand_ram_gen ---- |
---- ---- |
---- This file is part of the ---- |
---- Modular Simultaneous Exponentiation Core project ---- |
---- http://www.opencores.org/cores/mod_sim_exp/ ---- |
---- ---- |
---- Description ---- |
---- BRAM memory and logic to the store the operands ---- |
---- for the montgomery multiplier ---- |
---- ---- |
---- Dependencies: ---- |
---- - tdpram_generic ---- |
---- ---- |
---- Authors: ---- |
---- - Geoffrey Ottoy, DraMCo research group ---- |
---- - Jonas De Craene, JonasDC@opencores.org ---- |
---- ---- |
---------------------------------------------------------------------- |
---- ---- |
---- Copyright (C) 2011 DraMCo research group and OPENCORES.ORG ---- |
---- ---- |
---- This source file may be used and distributed without ---- |
---- restriction provided that this copyright statement is not ---- |
---- removed from the file and that any derivative work contains ---- |
---- the original copyright notice and the associated disclaimer. ---- |
---- ---- |
---- This source file is free software; you can redistribute it ---- |
---- and/or modify it under the terms of the GNU Lesser General ---- |
---- Public License as published by the Free Software Foundation; ---- |
---- either version 2.1 of the License, or (at your option) any ---- |
---- later version. ---- |
---- ---- |
---- This source is distributed in the hope that it will be ---- |
---- useful, but WITHOUT ANY WARRANTY; without even the implied ---- |
---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ---- |
---- PURPOSE. See the GNU Lesser General Public License for more ---- |
---- details. ---- |
---- ---- |
---- You should have received a copy of the GNU Lesser General ---- |
---- Public License along with this source; if not, download it ---- |
---- from http://www.opencores.org/lgpl.shtml ---- |
---- ---- |
---------------------------------------------------------------------- |
|
library ieee; |
use ieee.std_logic_1164.all; |
use ieee.std_logic_arith.all; |
use ieee.std_logic_unsigned.all; |
|
library mod_sim_exp; |
use mod_sim_exp.mod_sim_exp_pkg.all; |
use mod_sim_exp.std_functions.all; |
|
-- behavorial description of a RAM to hold the operands, with |
-- adjustable width and depth(nr of operands) |
entity operand_ram_gen is |
generic( |
width : integer := 1536; -- width of the operands |
depth : integer := 4 -- nr of operands |
); |
port( |
-- global ports |
clk : in std_logic; |
collision : out std_logic; -- 1 if simultaneous write on RAM |
-- bus side connections (32-bit serial) |
write_operand : in std_logic; -- write_enable |
operand_in_sel : in std_logic_vector(log2(depth)-1 downto 0); -- operand to write to |
operand_addr : in std_logic_vector(log2(width/32)-1 downto 0); -- address of operand word to write |
operand_in : in std_logic_vector(31 downto 0); -- operand word(32-bit) to write |
result_out : out std_logic_vector(31 downto 0); -- operand out, reading is always result operand |
operand_out_sel : in std_logic_vector(log2(depth)-1 downto 0); -- operand to give to multiplier |
-- multiplier side connections (width-bit parallel) |
result_dest_op : in std_logic_vector(log2(depth)-1 downto 0); -- operand select for result |
operand_out : out std_logic_vector(width-1 downto 0); -- operand out to multiplier |
write_result : in std_logic; -- write enable for multiplier side |
result_in : in std_logic_vector(width-1 downto 0) -- result to write from multiplier |
); |
end operand_ram_gen; |
|
|
architecture Behavioral of operand_ram_gen is |
constant nrRAMs : integer := width/32; |
constant RAMselect_aw : integer := log2(nrRAMs); |
constant RAMdepth_aw : integer := log2(depth); |
constant total_aw : integer := RAMdepth_aw+RAMselect_aw; |
|
-- total RAM structure signals |
signal weA_RAM : std_logic_vector(nrRAMs-1 downto 0); |
type wordsplit is array (nrRAMs-1 downto 0) of std_logic_vector(31 downto 0); |
signal doutB_RAM : wordsplit; |
--- PORT A : 32-bit write | (width)-bit read |
signal dinA : std_logic_vector(31 downto 0); |
signal doutA : std_logic_vector(width-1 downto 0); |
signal weA : std_logic; |
signal addrA : std_logic_vector(RAMselect_aw-1 downto 0); |
signal op_selA : std_logic_vector(RAMdepth_aw-1 downto 0); |
--- PORT B : 32-bit read | (width)-bit write |
signal dinB : std_logic_vector(width-1 downto 0); |
signal doutB : std_logic_vector(31 downto 0); |
signal weB : std_logic; |
signal addrB : std_logic_vector(RAMselect_aw-1 downto 0); |
signal op_selB : std_logic_vector(RAMdepth_aw-1 downto 0); |
|
signal write_operand_i : std_logic; |
signal op_selA_i : std_logic_vector(RAMdepth_aw-1 downto 0); |
begin |
|
-- WARNING: Very Important! |
-- wea & web signals must never be high at the same time !! |
-- web has priority |
write_operand_i <= write_operand and not write_result; -- portB has write priority |
collision <= write_operand and write_result; |
|
-- the dual port ram has a depth of 4 (each layer contains an operand) |
-- result is always stored in position 3 |
-- doutb is always result |
with write_operand_i select |
op_selA_i <= operand_in_sel when '1', |
operand_out_sel when others; |
|
-- map signals to RAM |
-- PORTA |
weA <= write_operand_i; |
op_selA <= op_selA_i; |
addrA <= operand_addr; |
dinA <= operand_in; |
operand_out <= doutA; |
-- PORT B |
weB <= write_result; |
op_selB <= result_dest_op; -- portB locked to result operand |
addrB <= operand_addr; |
dinB <= result_in; |
result_out <= doutB; |
|
-- generate (width/32) blocks of 32-bit ram with a given depth |
-- these rams are tyed together to form the following structure |
-- True dual port ram: |
-- - PORT A : 32-bit write | (width)-bit read |
-- - PORT B : 32-bit read | (width)-bit write |
-- ^ ^ |
-- addres addr op_sel |
-- |
ramblocks : for i in 0 to nrRAMs-1 generate |
ramblock: tdpram_generic |
generic map( |
depth => depth |
) |
port map( |
-- port A : 32-bit |
clkA => clk, |
addrA => op_selA, |
weA => weA_RAM(i), |
dinA => dinA, |
doutA => doutA(((i+1)*32)-1 downto i*32), |
-- port B : 32-bit |
clkB => clk, |
addrB => op_selB, |
weB => weB, |
dinB => dinB(((i+1)*32)-1 downto i*32), |
doutB => doutB_RAM(i) |
); |
-- demultiplexer for write enable A signal |
process (addrA, weA) |
begin |
if addrA(RAMselect_aw-1 downto 0) = conv_std_logic_vector(i,RAMselect_aw) then |
weA_RAM(i) <= weA; |
else |
weA_RAM(i) <= '0'; |
end if; |
end process; |
end generate; |
-- PORTB 32-bit read |
doutB <= doutB_RAM(conv_integer(addrB)) when (conv_integer(addrB)<nrRAMs) |
else (others=>'0'); |
|
end Behavioral; |