URL
https://opencores.org/ocsvn/neorv32/neorv32/trunk
Subversion Repositories neorv32
Compare Revisions
- This comparison shows the changes necessary to convert path
/neorv32/trunk/rtl/core
- from Rev 26 to Rev 27
- ↔ Reverse comparison
Rev 26 → Rev 27
/neorv32_bootloader_image.vhd
974,8 → 974,8
00000963 => x"3e3e2072", |
00000964 => x"4c420a0a", |
00000965 => x"203a5644", |
00000966 => x"20706553", |
00000967 => x"32203631", |
00000966 => x"2074634f", |
00000967 => x"32203120", |
00000968 => x"0a303230", |
00000969 => x"3a565748", |
00000970 => x"00002020", |
986,8 → 986,8
00000975 => x"0000203a", |
00000976 => x"53494d0a", |
00000977 => x"00203a41", |
00000978 => x"4e4f430a", |
00000979 => x"00203a46", |
00000978 => x"4f52500a", |
00000979 => x"00203a43", |
00000980 => x"454d490a", |
00000981 => x"00203a4d", |
00000982 => x"74796220", |
/neorv32_cpu.vhd
132,10 → 132,9
signal be_store : std_ulogic; -- bus error on store data access |
signal fetch_pc : std_ulogic_vector(data_width_c-1 downto 0); -- pc for instruction fetch |
signal curr_pc : std_ulogic_vector(data_width_c-1 downto 0); -- current pc (for current executed instruction) |
signal next_pc : std_ulogic_vector(data_width_c-1 downto 0); -- next pc (for current executed instruction) |
signal next_pc : std_ulogic_vector(data_width_c-1 downto 0); -- next pc (for next to-be-executed instruction) |
|
-- co-processor interface -- |
signal cp_opa, cp_opb : std_ulogic_vector(data_width_c-1 downto 0); |
signal cp0_data, cp1_data : std_ulogic_vector(data_width_c-1 downto 0); |
signal cp0_valid, cp1_valid : std_ulogic; |
signal cp0_start, cp1_start : std_ulogic; |
168,8 → 167,8
neorv32_cpu_control_inst: neorv32_cpu_control |
generic map ( |
-- General -- |
HW_THREAD_ID => HW_THREAD_ID, -- hardware thread id |
CPU_BOOT_ADDR => CPU_BOOT_ADDR, -- cpu boot address |
HW_THREAD_ID => HW_THREAD_ID, -- hardware thread id |
CPU_BOOT_ADDR => CPU_BOOT_ADDR, -- cpu boot address |
-- RISC-V CPU Extensions -- |
CPU_EXTENSION_RISCV_C => CPU_EXTENSION_RISCV_C, -- implement compressed extension? |
CPU_EXTENSION_RISCV_E => CPU_EXTENSION_RISCV_E, -- implement embedded RF extension? |
195,13 → 194,12
instr_i => instr, -- instruction |
cmp_i => alu_cmp, -- comparator status |
alu_add_i => alu_add, -- ALU.add result |
alu_res_i => alu_res, -- ALU processing result |
-- data output -- |
imm_o => imm, -- immediate |
fetch_pc_o => fetch_pc, -- PC for instruction fetch |
curr_pc_o => curr_pc, -- current PC (corresponding to current instruction) |
next_pc_o => next_pc, -- next PC (corresponding to current instruction) |
-- csr interface -- |
csr_wdata_i => alu_res, -- CSR write data |
next_pc_o => next_pc, -- next PC (corresponding to current instruction |
csr_rdata_o => csr_rdata, -- CSR read data |
-- interrupts (risc-v compliant) -- |
msw_irq_i => msw_irq_i, -- machine software interrupt |
263,14 → 261,11
rs2_i => rs2, -- rf source 2 |
pc2_i => curr_pc, -- delayed PC |
imm_i => imm, -- immediate |
csr_i => csr_rdata, -- csr read data |
-- data output -- |
cmp_o => alu_cmp, -- comparator status |
add_o => alu_add, -- OPA + OPB |
res_o => alu_res, -- ALU result |
-- co-processor interface -- |
cp_opa_o => cp_opa, -- co-processor operand a |
cp_opb_o => cp_opb, -- co-processor operand b |
cp0_start_o => cp0_start, -- trigger co-processor 0 |
cp0_data_i => cp0_data, -- co-processor 0 result |
cp0_valid_i => cp0_valid, -- co-processor 0 result valid |
297,8 → 292,8
ctrl_i => ctrl, -- main control bus |
-- data input -- |
start_i => cp0_start, -- trigger operation |
rs1_i => cp_opa, -- rf source 1 |
rs2_i => cp_opb, -- rf source 2 |
rs1_i => rs1, -- rf source 1 |
rs2_i => rs2, -- rf source 2 |
-- result and status -- |
res_o => cp0_data, -- operation result |
valid_o => cp0_valid -- data output valid |
325,9 → 320,9
CPU_EXTENSION_RISCV_C => CPU_EXTENSION_RISCV_C, -- implement compressed extension? |
BUS_TIMEOUT => BUS_TIMEOUT, -- cycles after which a valid bus access will timeout |
-- Physical memory protection (PMP) -- |
PMP_USE => PMP_USE, -- implement physical memory protection? |
PMP_NUM_REGIONS => PMP_NUM_REGIONS, -- number of regions (1..4) |
PMP_GRANULARITY => PMP_GRANULARITY -- granularity (0=none, 1=8B, 2=16B, 3=32B, ...) |
PMP_USE => PMP_USE, -- implement physical memory protection? |
PMP_NUM_REGIONS => PMP_NUM_REGIONS, -- number of regions (1..4) |
PMP_GRANULARITY => PMP_GRANULARITY -- granularity (0=none, 1=8B, 2=16B, 3=32B, ...) |
) |
port map ( |
-- global control -- |
/neorv32_cpu_alu.vhd
56,14 → 56,11
rs2_i : in std_ulogic_vector(data_width_c-1 downto 0); -- rf source 2 |
pc2_i : in std_ulogic_vector(data_width_c-1 downto 0); -- delayed PC |
imm_i : in std_ulogic_vector(data_width_c-1 downto 0); -- immediate |
csr_i : in std_ulogic_vector(data_width_c-1 downto 0); -- csr read data |
-- data output -- |
cmp_o : out std_ulogic_vector(1 downto 0); -- comparator status |
add_o : out std_ulogic_vector(data_width_c-1 downto 0); -- OPA + OPB |
res_o : out std_ulogic_vector(data_width_c-1 downto 0); -- ALU result |
-- co-processor interface -- |
cp_opa_o : out std_ulogic_vector(data_width_c-1 downto 0); -- co-processor operand a |
cp_opb_o : out std_ulogic_vector(data_width_c-1 downto 0); -- co-processor operand b |
cp0_start_o : out std_ulogic; -- trigger co-processor 0 |
cp0_data_i : in std_ulogic_vector(data_width_c-1 downto 0); -- co-processor 0 result |
cp0_valid_i : in std_ulogic; -- co-processor 0 result valid |
118,27 → 115,9
|
-- Operand Mux ---------------------------------------------------------------------------- |
-- ------------------------------------------------------------------------------------------- |
input_op_mux: process(ctrl_i, csr_i, pc2_i, rs1_i, rs2_i, imm_i) |
begin |
-- operand a (first ALU input operand) -- |
case ctrl_i(ctrl_alu_opa_mux_msb_c downto ctrl_alu_opa_mux_lsb_c) is |
when "00" => opa <= rs1_i; |
when "01" => opa <= pc2_i; |
when others => opa <= csr_i; |
end case; |
-- operand b (second ALU input operand) -- |
if (ctrl_i(ctrl_alu_opb_mux_c) = '0') then |
opb <= rs2_i; |
else |
opb <= imm_i; |
end if; |
-- operand c (third ALU input operand for comparison and SUB) -- |
if (ctrl_i(ctrl_alu_opc_mux_c) = '0') then |
opc <= rs2_i; |
else |
opc <= imm_i; |
end if; |
end process input_op_mux; |
opa <= rs1_i when (ctrl_i(ctrl_alu_opa_mux_c) = '0') else pc2_i; -- operand a (first ALU input operand) |
opb <= rs2_i when (ctrl_i(ctrl_alu_opb_mux_c) = '0') else imm_i; -- operand b (second ALU input operand) |
opc <= rs2_i when (ctrl_i(ctrl_alu_opc_mux_c) = '0') else imm_i; -- operand c (third ALU input operand for comparison and SUB) |
|
|
-- Comparator Unit ------------------------------------------------------------------------ |
241,12 → 220,8
-- co-processor operation running? -- |
cp_ctrl.halt <= cp_ctrl.busy or cp_ctrl.start; |
|
-- co-processor operands -- |
cp_opa_o <= opa; |
cp_opb_o <= opb; |
|
-- co-processor result -- |
cp_res <= cp0_data_i or cp1_data_i; -- only the selcted cp may output data != 0 |
cp_res <= cp0_data_i or cp1_data_i; -- only the selected cp may output data != 0 |
|
|
-- ALU Function Select -------------------------------------------------------------------- |
257,7 → 232,7
when alu_cmd_xor_c => alu_res <= opa xor opb; |
when alu_cmd_or_c => alu_res <= opa or opb; |
when alu_cmd_and_c => alu_res <= opa and opb; |
when alu_cmd_bclr_c => alu_res <= opa and (not opb); |
when alu_cmd_movb_c => alu_res <= opb; |
when alu_cmd_sub_c => alu_res <= sub_res; |
when alu_cmd_add_c => alu_res <= add_res; |
when alu_cmd_shift_c => alu_res <= shifter.sreg; |
/neorv32_cpu_control.vhd
73,13 → 73,12
instr_i : in std_ulogic_vector(data_width_c-1 downto 0); -- instruction |
cmp_i : in std_ulogic_vector(1 downto 0); -- comparator status |
alu_add_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU.add result |
alu_res_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU processing result |
-- data output -- |
imm_o : out std_ulogic_vector(data_width_c-1 downto 0); -- immediate |
fetch_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- PC for instruction fetch |
curr_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- current PC (corresponding to current instruction) |
next_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- next PC (corresponding to current instruction) |
-- csr data interface -- |
csr_wdata_i : in std_ulogic_vector(data_width_c-1 downto 0); -- CSR write data |
csr_rdata_o : out std_ulogic_vector(data_width_c-1 downto 0); -- CSR read data |
-- interrupts (risc-v compliant) -- |
msw_irq_i : in std_ulogic; -- machine software interrupt |
167,6 → 166,7
pc_nxt : std_ulogic_vector(data_width_c-1 downto 0); |
next_pc : std_ulogic_vector(data_width_c-1 downto 0); -- next PC, corresponding to next instruction to be executed |
last_pc : std_ulogic_vector(data_width_c-1 downto 0); -- PC of last executed instruction |
last_pc_nxt : std_ulogic_vector(data_width_c-1 downto 0); -- PC of last executed instruction |
sleep : std_ulogic; -- CPU in sleep mode |
sleep_nxt : std_ulogic; -- CPU in sleep mode |
if_rst : std_ulogic; -- instruction fetch was reset |
214,6 → 214,8
we_nxt : std_ulogic; |
re : std_ulogic; -- read enable |
re_nxt : std_ulogic; |
wdata : std_ulogic_vector(data_width_c-1 downto 0); -- write data |
rdata : std_ulogic_vector(data_width_c-1 downto 0); -- read data |
mstatus_mie : std_ulogic; -- mstatus.MIE: global IRQ enable (R/W) |
mstatus_mpie : std_ulogic; -- mstatus.MPIE: previous global IRQ enable (R/-) |
mie_msie : std_ulogic; -- mie.MSIE: machine software interrupt enable (R/W) |
229,8 → 231,8
mscratch : std_ulogic_vector(data_width_c-1 downto 0); -- mscratch: scratch register (R/W) |
mcycle : std_ulogic_vector(32 downto 0); -- mcycle (R/W), plus carry bit |
minstret : std_ulogic_vector(32 downto 0); -- minstret (R/W), plus carry bit |
mcycleh : std_ulogic_vector(19 downto 0); -- mcycleh (R/W) - REDUCED BIT-WIDTH! |
minstreth : std_ulogic_vector(19 downto 0); -- minstreth (R/W) - REDUCED BIT-WIDTH! |
mcycleh : std_ulogic_vector(31 downto 0); -- mcycleh (R/W) - REDUCED BIT-WIDTH! |
minstreth : std_ulogic_vector(31 downto 0); -- minstreth (R/W) - REDUCED BIT-WIDTH! |
pmpcfg : pmp_ctrl_t; -- physical memory protection - configuration registers |
pmpaddr : pmp_addr_t; -- physical memory protection - address registers |
end record; |
527,13 → 529,11
execute_engine.sleep <= '0'; |
execute_engine.if_rst <= '1'; -- instruction fetch is reset after system reset |
elsif rising_edge(clk_i) then |
execute_engine.pc <= execute_engine.pc_nxt(data_width_c-1 downto 1) & '0'; |
if (execute_engine.state = EXECUTE) then |
execute_engine.last_pc <= execute_engine.pc(data_width_c-1 downto 1) & '0'; |
end if; |
execute_engine.state <= execute_engine.state_nxt; |
execute_engine.sleep <= execute_engine.sleep_nxt; |
execute_engine.if_rst <= execute_engine.if_rst_nxt; |
execute_engine.pc <= execute_engine.pc_nxt(data_width_c-1 downto 1) & '0'; |
execute_engine.last_pc <= execute_engine.last_pc_nxt; |
execute_engine.state <= execute_engine.state_nxt; |
execute_engine.sleep <= execute_engine.sleep_nxt; |
execute_engine.if_rst <= execute_engine.if_rst_nxt; |
end if; |
end process execute_engine_fsm_sync_rst; |
|
586,6 → 586,7
execute_engine.is_jump_nxt <= '0'; |
execute_engine.is_ci_nxt <= execute_engine.is_ci; |
execute_engine.pc_nxt <= execute_engine.pc; |
execute_engine.last_pc_nxt <= execute_engine.last_pc; |
execute_engine.sleep_nxt <= execute_engine.sleep; |
execute_engine.if_rst_nxt <= execute_engine.if_rst; |
|
615,17 → 616,16
else -- branches |
ctrl_nxt(ctrl_alu_unsigned_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1); -- unsigned branches (BLTU, BGEU) |
end if; |
ctrl_nxt(ctrl_bus_unsigned_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- unsigned LOAD (LBU, LHU) |
ctrl_nxt(ctrl_alu_shift_dir_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- shift direction (left/right) |
ctrl_nxt(ctrl_alu_shift_ar_c) <= execute_engine.i_reg(30); -- is arithmetic shift |
ctrl_nxt(ctrl_bus_size_lsb_c) <= execute_engine.i_reg(instr_funct3_lsb_c+0); -- transfer size lsb (00=byte, 01=half-word) |
ctrl_nxt(ctrl_bus_size_msb_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1); -- transfer size msb (10=word, 11=?) |
ctrl_nxt(ctrl_cp_cmd2_c downto ctrl_cp_cmd0_c) <= execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c); -- CP operation |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- default ALU operation: ADD(I) |
ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_muldiv_c; -- only CP0 (=MULDIV) implemented yet |
ctrl_nxt(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c) <= ctrl(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c); -- keep rd addr |
ctrl_nxt(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c) <= ctrl(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c); -- keep rs1 addr |
ctrl_nxt(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c) <= ctrl(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c); -- keep rs2 addr |
ctrl_nxt(ctrl_bus_unsigned_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- unsigned LOAD (LBU, LHU) |
ctrl_nxt(ctrl_alu_shift_dir_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- shift direction (left/right) |
ctrl_nxt(ctrl_alu_shift_ar_c) <= execute_engine.i_reg(30); -- is arithmetic shift |
ctrl_nxt(ctrl_cp_cmd2_c downto ctrl_cp_cmd0_c) <= execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c); -- CP operation |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- default ALU operation: ADD(I) |
ctrl_nxt(ctrl_cp_id_msb_c downto ctrl_cp_id_lsb_c) <= cp_sel_muldiv_c; -- only CP0 (=MULDIV) implemented yet |
ctrl_nxt(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c) <= ctrl(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c); -- keep rd addr |
ctrl_nxt(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c) <= ctrl(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c); -- keep rs1 addr |
ctrl_nxt(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c) <= ctrl(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c); -- keep rs2 addr |
ctrl_nxt(ctrl_bus_size_msb_c downto ctrl_bus_size_lsb_c) <= execute_engine.i_reg(instr_funct3_lsb_c+1 downto instr_funct3_lsb_c); -- mem transfer size |
|
-- is immediate ALU operation? -- |
alu_immediate_v := not execute_engine.i_reg(instr_opcode_msb_c-1); |
651,22 → 651,22
|
when DISPATCH => -- Get new command from instruction prefetch buffer (IPB) |
-- ------------------------------------------------------------ |
ctrl_nxt(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c) <= ipb.rdata(instr_rd_msb_c downto instr_rd_lsb_c); -- rd addr |
ctrl_nxt(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c) <= ipb.rdata(instr_rs1_msb_c downto instr_rs1_lsb_c); -- rs1 addr |
ctrl_nxt(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c) <= ipb.rdata(instr_rs2_msb_c downto instr_rs2_lsb_c); -- rs2 addr |
-- |
if (ipb.avail = '1') then -- instruction available? |
ipb.re <= '1'; |
-- |
execute_engine.is_ci_nxt <= ipb.rdata(32); -- flag to indicate this is a de-compressed instruction beeing executed |
execute_engine.i_reg_nxt <= ipb.rdata(31 downto 0); |
execute_engine.if_rst_nxt <= '0'; |
-- |
trap_ctrl.instr_ma <= ipb.rdata(33); -- misaligned instruction fetch address |
trap_ctrl.instr_be <= ipb.rdata(34); -- bus access fault during instrucion fetch |
illegal_compressed <= ipb.rdata(35); -- invalid decompressed instruction |
-- |
ctrl_nxt(ctrl_rf_rd_adr4_c downto ctrl_rf_rd_adr0_c) <= ipb.rdata(instr_rd_msb_c downto instr_rd_lsb_c); -- rd addr |
ctrl_nxt(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c) <= ipb.rdata(instr_rs1_msb_c downto instr_rs1_lsb_c); -- rs1 addr |
ctrl_nxt(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c) <= ipb.rdata(instr_rs2_msb_c downto instr_rs2_lsb_c); -- rs2 addr |
-- |
execute_engine.is_ci_nxt <= ipb.rdata(32); -- flag to indicate this is a compressed instruction beeing executed |
execute_engine.i_reg_nxt <= ipb.rdata(31 downto 0); |
execute_engine.if_rst_nxt <= '0'; |
-- |
if (execute_engine.if_rst = '0') then -- if there was no non-linear PC modification |
if (execute_engine.if_rst = '0') then -- if there was NO non-linear PC modification |
execute_engine.pc_nxt <= execute_engine.next_pc; |
end if; |
-- |
690,13 → 690,15
|
when EXECUTE => -- Decode and execute instruction |
-- ------------------------------------------------------------ |
execute_engine.last_pc_nxt <= execute_engine.pc; -- store address of current instruction for commit |
-- |
case execute_engine.i_reg(instr_opcode_msb_c downto instr_opcode_lsb_c) is |
|
when opcode_alu_c | opcode_alui_c => -- (immediate) ALU operation |
-- ------------------------------------------------------------ |
ctrl_nxt(ctrl_alu_opa_mux_lsb_c) <= '0'; -- use RS1 as ALU.OPA |
ctrl_nxt(ctrl_alu_opb_mux_c) <= alu_immediate_v; -- use IMM as ALU.OPB for immediate operations |
ctrl_nxt(ctrl_alu_opc_mux_c) <= alu_immediate_v; -- use IMM as ALU.OPC for immediate operations (SLT(I)(U)) |
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA |
ctrl_nxt(ctrl_alu_opb_mux_c) <= alu_immediate_v; -- use IMM as ALU.OPB for immediate operations |
ctrl_nxt(ctrl_alu_opc_mux_c) <= alu_immediate_v; -- use IMM as ALU.OPC for immediate operations (SLT(I)(U)) |
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "00"; -- RF input = ALU result |
|
-- actual ALU operation (re-coding) -- |
734,12 → 736,13
|
when opcode_lui_c | opcode_auipc_c => -- load upper immediate / add upper immediate to PC |
-- ------------------------------------------------------------ |
ctrl_nxt(ctrl_alu_opa_mux_lsb_c) <= '1'; -- ALU.OPA = PC (for AUIPC only) |
ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- ALU.OPA = PC (for AUIPC only) |
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB |
if (execute_engine.i_reg(instr_opcode_lsb_c+5) = opcode_lui_c(5)) then -- LUI |
ctrl_nxt(ctrl_alu_opa_mux_msb_c) <= '1'; -- ALU.OPA = CSR = 0 (hacky: csr.result is 0 since there is no csr_read_request) |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_movb_c; -- actual ALU operation = MOVB |
else -- AUIPC |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- actual ALU operation = ADD |
end if; |
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- actual ALU operation = ADD |
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "00"; -- RF input = ALU result |
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back |
execute_engine.state_nxt <= DISPATCH; |
746,8 → 749,8
|
when opcode_load_c | opcode_store_c => -- load/store |
-- ------------------------------------------------------------ |
ctrl_nxt(ctrl_alu_opa_mux_lsb_c) <= '0'; -- use RS1 as ALU.OPA |
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB |
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA |
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_add_c; -- actual ALU operation = ADD |
ctrl_nxt(ctrl_bus_mar_we_c) <= '1'; -- write to MAR |
ctrl_nxt(ctrl_bus_mdo_we_c) <= '1'; -- write to MDO (only relevant for stores) |
755,30 → 758,29
|
when opcode_branch_c => -- branch instruction |
-- ------------------------------------------------------------ |
ctrl_nxt(ctrl_alu_opa_mux_lsb_c) <= '1'; -- use PC as ALU.OPA (branch target address base) |
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB (branch target address offset) |
ctrl_nxt(ctrl_alu_opc_mux_c) <= '0'; -- use RS2 as ALU.OPC (for branch condition check) |
execute_engine.state_nxt <= BRANCH; |
ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- use PC as ALU.OPA (branch target address base) |
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB (branch target address offset) |
ctrl_nxt(ctrl_alu_opc_mux_c) <= '0'; -- use RS2 as ALU.OPC (for branch condition check) |
execute_engine.state_nxt <= BRANCH; |
|
when opcode_jal_c | opcode_jalr_c => -- jump and link (with register) |
-- ------------------------------------------------------------ |
-- compute target address -- |
if (execute_engine.i_reg(instr_opcode_lsb_c+3) = opcode_jal_c(3)) then -- JAL |
ctrl_nxt(ctrl_alu_opa_mux_lsb_c) <= '1'; -- use PC as ALU.OPA |
ctrl_nxt(ctrl_alu_opa_mux_c) <= '1'; -- use PC as ALU.OPA |
else -- JALR |
ctrl_nxt(ctrl_alu_opa_mux_lsb_c) <= '0'; -- use RS1 as ALU.OPA |
ctrl_nxt(ctrl_alu_opa_mux_c) <= '0'; -- use RS1 as ALU.OPA |
end if; |
ctrl_nxt(ctrl_alu_opb_mux_c) <= '1'; -- use IMM as ALU.OPB |
-- save return address -- |
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "10"; -- RF input = next PC (save return address) |
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back |
-- |
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back |
execute_engine.is_jump_nxt <= '1'; -- this is a jump operation |
execute_engine.state_nxt <= BRANCH; |
|
when opcode_fence_c => -- fence operations |
-- ------------------------------------------------------------ |
-- foe simplicity: internally, fence and fence.i perform the same operations ;) |
-- for simplicity: internally, fence and fence.i perform the same operations (flush and reload of instruction prefetch buffer) |
-- FENCE.I -- |
if (CPU_EXTENSION_RISCV_Zifencei = true) then |
execute_engine.pc_nxt <= execute_engine.next_pc; -- "refetch" next instruction |
797,8 → 799,6
|
when opcode_syscsr_c => -- system/csr access |
-- ------------------------------------------------------------ |
csr.re_nxt <= csr_acc_valid; -- always read CSR if valid access |
ctrl_nxt(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c) <= (others => '0'); -- set rs1_addr to r0 (zero) (for CSR mod) |
ctrl_nxt(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c) <= ctrl(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c); -- copy rs1_addr to rs2_addr (for CSR mod) |
-- |
if (execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) = funct3_env_c) then -- system |
813,12 → 813,13
fetch_engine.reset <= '1'; |
execute_engine.if_rst_nxt <= '1'; -- this is a non-linear PC modification |
when funct12_wfi_c => -- WFI (CPU sleep) |
execute_engine.sleep_nxt <= '1'; -- sleep well |
execute_engine.sleep_nxt <= '1'; -- good night |
when others => -- undefined |
NULL; |
end case; |
execute_engine.state_nxt <= SYS_WAIT; |
else -- CSR access |
csr.re_nxt <= '1'; -- always read CSR (internally) |
execute_engine.state_nxt <= CSR_ACCESS; |
end if; |
|
831,24 → 832,20
when CSR_ACCESS => -- write CSR data to RF, write ALU.res to CSR |
-- ------------------------------------------------------------ |
ctrl_nxt(ctrl_alu_opb_mux_c) <= execute_engine.i_reg(instr_funct3_msb_c); -- OPB = rs2 (which is rs1 here) / immediate |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_movb_c; -- actual ALU operation = MOVB |
-- CSR write access -- |
case execute_engine.i_reg(instr_funct3_msb_c downto instr_funct3_lsb_c) is |
when funct3_csrrw_c | funct3_csrrwi_c => -- CSRRW(I) |
ctrl_nxt(ctrl_alu_opa_mux_msb_c downto ctrl_alu_opa_mux_lsb_c) <= "00"; -- OPA = rs1 (which is zero here) |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_or_c; -- actual ALU operation = OR |
csr.we_nxt <= csr_acc_valid; -- always write CSR if valid access |
when funct3_csrrs_c | funct3_csrrsi_c => -- CSRRS(I) |
ctrl_nxt(ctrl_alu_opa_mux_msb_c downto ctrl_alu_opa_mux_lsb_c) <= "10"; -- OPA = CSR |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_or_c; -- actual ALU operation = OR |
csr.we_nxt <= (not rs1_is_r0_v) and csr_acc_valid; -- write CSR if rs1 is not zero_reg and if valid access |
when others => -- CSRRC(I) -- FIXME?! |
ctrl_nxt(ctrl_alu_opa_mux_msb_c downto ctrl_alu_opa_mux_lsb_c) <= "10"; -- OPA = CSR |
ctrl_nxt(ctrl_alu_cmd2_c downto ctrl_alu_cmd0_c) <= alu_cmd_bclr_c; -- actual ALU operation = bit clear |
csr.we_nxt <= (not rs1_is_r0_v) and csr_acc_valid; -- write CSR if rs1 is not zero_reg and if valid access |
when funct3_csrrs_c | funct3_csrrsi_c | funct3_csrrc_c | funct3_csrrci_c => -- CSRRS(I) / CSRRC(I) |
csr.we_nxt <= (not rs1_is_r0_v) and csr_acc_valid; -- write CSR if rs1/imm is not zero and if valid access |
when others => |
csr.we_nxt <= '0'; |
end case; |
-- RF write back -- |
-- register file write back -- |
ctrl_nxt(ctrl_rf_in_mux_msb_c downto ctrl_rf_in_mux_lsb_c) <= "11"; -- RF input = CSR output |
ctrl_nxt(ctrl_rf_wb_en_c) <= '1'; -- valid RF write-back |
execute_engine.state_nxt <= SYS_WAIT; -- have another cycle to let side-effects kick in |
execute_engine.state_nxt <= SYS_WAIT; -- have another cycle to let side-effects kick in (FIXME?) |
|
when ALU_WAIT => -- wait for multi-cycle ALU operation (shifter or CP) to finish |
-- ------------------------------------------------------------ |
921,9 → 918,10
variable is_m_mode_v : std_ulogic; |
begin |
-- are we in machine mode? -- |
is_m_mode_v := '0'; |
if (csr.privilege = m_priv_mode_c) then |
is_m_mode_v := '1'; |
else |
is_m_mode_v := '0'; |
end if; |
|
-- check CSR access -- |
1210,8 → 1208,8
end process trap_controller; |
|
-- any exception/interrupt? -- |
trap_ctrl.exc_fire <= or_all_f(trap_ctrl.exc_buf); -- exceptions/faults cannot be masked |
trap_ctrl.irq_fire <= or_all_f(trap_ctrl.irq_buf) and csr.mstatus_mie; -- interrupts can be masked |
trap_ctrl.exc_fire <= or_all_f(trap_ctrl.exc_buf); -- exceptions/faults CANNOT be masked |
trap_ctrl.irq_fire <= or_all_f(trap_ctrl.irq_buf) and csr.mstatus_mie; -- interrupts CAN be masked |
|
|
-- Trap Priority Detector ----------------------------------------------------------------- |
1316,6 → 1314,18
-- Control and Status Registers (CSRs) |
-- **************************************************************************************************************************** |
|
-- Control and Status Registers Write Data ------------------------------------------------ |
-- ------------------------------------------------------------------------------------------- |
csr_write_data: process(execute_engine.i_reg, csr.rdata, alu_res_i) |
begin |
case execute_engine.i_reg(instr_funct3_lsb_c+1 downto instr_funct3_lsb_c) is |
when "10" => csr.wdata <= csr.rdata or alu_res_i; -- CSRRS(I) |
when "11" => csr.wdata <= csr.rdata and (not alu_res_i); -- CSRRC(I) |
when others => csr.wdata <= alu_res_i; -- CSRRW(I) |
end case; |
end process csr_write_data; |
|
|
-- Control and Status Registers Write Access ---------------------------------------------- |
-- ------------------------------------------------------------------------------------------- |
csr_write_access: process(rstn_i, clk_i) |
1354,24 → 1364,24
if (execute_engine.i_reg(27 downto 24) = x"0") then |
case execute_engine.i_reg(23 downto 20) is |
when x"0" => -- R/W: mstatus - machine status register |
csr.mstatus_mie <= csr_wdata_i(03); |
csr.mstatus_mpie <= csr_wdata_i(07); |
csr.mstatus_mie <= csr.wdata(03); |
csr.mstatus_mpie <= csr.wdata(07); |
-- |
if (CPU_EXTENSION_RISCV_U = true) then -- user mode implemented |
csr.mpp(0) <= csr_wdata_i(11) and csr_wdata_i(12); |
csr.mpp(1) <= csr_wdata_i(11) and csr_wdata_i(12); |
csr.mpp(0) <= csr.wdata(11) and csr.wdata(12); |
csr.mpp(1) <= csr.wdata(11) and csr.wdata(12); |
end if; |
when x"4" => -- R/W: mie - machine interrupt-enable register |
csr.mie_msie <= csr_wdata_i(03); -- machine SW IRQ enable |
csr.mie_mtie <= csr_wdata_i(07); -- machine TIMER IRQ enable |
csr.mie_meie <= csr_wdata_i(11); -- machine EXT IRQ enable |
csr.mie_msie <= csr.wdata(03); -- machine SW IRQ enable |
csr.mie_mtie <= csr.wdata(07); -- machine TIMER IRQ enable |
csr.mie_meie <= csr.wdata(11); -- machine EXT IRQ enable |
-- |
csr.mie_firqe(0) <= csr_wdata_i(16); -- fast interrupt channel 0 |
csr.mie_firqe(1) <= csr_wdata_i(17); -- fast interrupt channel 1 |
csr.mie_firqe(2) <= csr_wdata_i(18); -- fast interrupt channel 2 |
csr.mie_firqe(3) <= csr_wdata_i(19); -- fast interrupt channel 3 |
csr.mie_firqe(0) <= csr.wdata(16); -- fast interrupt channel 0 |
csr.mie_firqe(1) <= csr.wdata(17); -- fast interrupt channel 1 |
csr.mie_firqe(2) <= csr.wdata(18); -- fast interrupt channel 2 |
csr.mie_firqe(3) <= csr.wdata(19); -- fast interrupt channel 3 |
when x"5" => -- R/W: mtvec - machine trap-handler base address (for ALL exceptions) |
csr.mtvec <= csr_wdata_i(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0 |
csr.mtvec <= csr.wdata(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0 |
when others => |
NULL; |
end case; |
1380,11 → 1390,11
if (execute_engine.i_reg(27 downto 24) = x"4") then |
case execute_engine.i_reg(23 downto 20) is |
when x"0" => -- R/W: mscratch - machine scratch register |
csr.mscratch <= csr_wdata_i; |
csr.mscratch <= csr.wdata; |
when x"1" => -- R/W: mepc - machine exception program counter |
csr.mepc <= csr_wdata_i(data_width_c-1 downto 1) & '0'; |
csr.mepc <= csr.wdata(data_width_c-1 downto 1) & '0'; |
when x"3" => -- R/W: mtval - machine bad address or instruction |
csr.mtval <= csr_wdata_i; |
csr.mtval <= csr.wdata; |
when others => |
NULL; |
end case; |
1398,14 → 1408,14
for j in 0 to 3 loop -- bytes in pmpcfg CSR |
if ((j+1) <= PMP_NUM_REGIONS) then |
if (csr.pmpcfg(0+j)(7) = '0') then -- unlocked pmpcfg access |
csr.pmpcfg(0+j)(0) <= csr_wdata_i(j*8+0); -- R |
csr.pmpcfg(0+j)(1) <= csr_wdata_i(j*8+1); -- W |
csr.pmpcfg(0+j)(2) <= csr_wdata_i(j*8+2); -- X |
csr.pmpcfg(0+j)(3) <= csr_wdata_i(j*8+3) and csr_wdata_i(j*8+4); -- A_L |
csr.pmpcfg(0+j)(4) <= csr_wdata_i(j*8+3) and csr_wdata_i(j*8+4); -- A_H - NAPOT/OFF only |
csr.pmpcfg(0+j)(0) <= csr.wdata(j*8+0); -- R |
csr.pmpcfg(0+j)(1) <= csr.wdata(j*8+1); -- W |
csr.pmpcfg(0+j)(2) <= csr.wdata(j*8+2); -- X |
csr.pmpcfg(0+j)(3) <= csr.wdata(j*8+3) and csr.wdata(j*8+4); -- A_L |
csr.pmpcfg(0+j)(4) <= csr.wdata(j*8+3) and csr.wdata(j*8+4); -- A_H - NAPOT/OFF only |
csr.pmpcfg(0+j)(5) <= '0'; -- reserved |
csr.pmpcfg(0+j)(6) <= '0'; -- reserved |
csr.pmpcfg(0+j)(7) <= csr_wdata_i(j*8+7); -- L |
csr.pmpcfg(0+j)(7) <= csr.wdata(j*8+7); -- L |
end if; |
end if; |
end loop; -- j (bytes in CSR) |
1416,14 → 1426,14
for j in 0 to 3 loop -- bytes in pmpcfg CSR |
if ((j+1+4) <= PMP_NUM_REGIONS) then |
if (csr.pmpcfg(4+j)(7) = '0') then -- unlocked pmpcfg access |
csr.pmpcfg(4+j)(0) <= csr_wdata_i(j*8+0); -- R |
csr.pmpcfg(4+j)(1) <= csr_wdata_i(j*8+1); -- W |
csr.pmpcfg(4+j)(2) <= csr_wdata_i(j*8+2); -- X |
csr.pmpcfg(4+j)(3) <= csr_wdata_i(j*8+3) and csr_wdata_i(j*8+4); -- A_L |
csr.pmpcfg(4+j)(4) <= csr_wdata_i(j*8+3) and csr_wdata_i(j*8+4); -- A_H - NAPOT/OFF only |
csr.pmpcfg(4+j)(0) <= csr.wdata(j*8+0); -- R |
csr.pmpcfg(4+j)(1) <= csr.wdata(j*8+1); -- W |
csr.pmpcfg(4+j)(2) <= csr.wdata(j*8+2); -- X |
csr.pmpcfg(4+j)(3) <= csr.wdata(j*8+3) and csr.wdata(j*8+4); -- A_L |
csr.pmpcfg(4+j)(4) <= csr.wdata(j*8+3) and csr.wdata(j*8+4); -- A_H - NAPOT/OFF only |
csr.pmpcfg(4+j)(5) <= '0'; -- reserved |
csr.pmpcfg(4+j)(6) <= '0'; -- reserved |
csr.pmpcfg(4+j)(7) <= csr_wdata_i(j*8+7); -- L |
csr.pmpcfg(4+j)(7) <= csr.wdata(j*8+7); -- L |
end if; |
end if; |
end loop; -- j (bytes in CSR) |
1434,7 → 1444,7
if (execute_engine.i_reg(27 downto 24) = x"b") then |
for i in 0 to PMP_NUM_REGIONS-1 loop |
if (execute_engine.i_reg(23 downto 20) = std_ulogic_vector(to_unsigned(i, 4))) and (csr.pmpcfg(i)(7) = '0') then -- unlocked pmpaddr access |
csr.pmpaddr(i) <= csr_wdata_i(31 downto 1) & '0'; -- min granularity is 8 bytes -> bit zero cannot be configured |
csr.pmpaddr(i) <= csr.wdata(31 downto 1) & '0'; -- min granularity is 8 bytes -> bit zero cannot be configured |
end if; |
end loop; -- i (CSRs) |
end if; |
1446,8 → 1456,11
|
-- machine exception PC & machine trap value register -- |
if (trap_ctrl.env_start_ack = '1') then -- trap handler starting? |
csr.mcause <= trap_ctrl.cause(trap_ctrl.cause'left) & "000" & x"00000" & "000" & trap_ctrl.cause(4 downto 0); |
if (trap_ctrl.cause(trap_ctrl.cause'left) = '1') then -- for INTERRUPTS only (is mcause(31)) |
-- trap ID code -- |
csr.mcause <= (others => '0'); |
csr.mcause(csr.mcause'left) <= trap_ctrl.cause(trap_ctrl.cause'left); -- 1: interrupt, 0: exception |
csr.mcause(4 downto 0) <= trap_ctrl.cause(4 downto 0); -- identifier |
if (trap_ctrl.cause(trap_ctrl.cause'left) = '1') then -- for INTERRUPTS (is mcause(31)) |
csr.mepc <= execute_engine.pc(data_width_c-1 downto 1) & '0'; -- this is the CURRENT pc = interrupted instruction |
csr.mtval <= (others => '0'); -- mtval is zero for interrupts |
else -- for EXCEPTIONS (according to their priority) |
1498,201 → 1511,204
csr_read_access: process(clk_i) |
begin |
if rising_edge(clk_i) then |
csr_rdata_o <= (others => '0'); -- default |
csr.rdata <= (others => '0'); -- default |
if (CPU_EXTENSION_RISCV_Zicsr = true) and (csr.re = '1') then |
case execute_engine.i_reg(31 downto 20) is |
|
-- machine trap setup -- |
when x"300" => -- R/W: mstatus - machine status register |
csr_rdata_o(03) <= csr.mstatus_mie; -- MIE |
csr_rdata_o(07) <= csr.mstatus_mpie; -- MPIE |
csr_rdata_o(11) <= csr.mpp(0); -- MPP: machine previous privilege mode low |
csr_rdata_o(12) <= csr.mpp(1); -- MPP: machine previous privilege mode high |
csr.rdata(03) <= csr.mstatus_mie; -- MIE |
csr.rdata(07) <= csr.mstatus_mpie; -- MPIE |
csr.rdata(11) <= csr.mpp(0); -- MPP: machine previous privilege mode low |
csr.rdata(12) <= csr.mpp(1); -- MPP: machine previous privilege mode high |
when x"301" => -- R/-: misa - ISA and extensions |
csr_rdata_o(02) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_C); -- C CPU extension |
csr_rdata_o(04) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- E CPU extension |
csr_rdata_o(08) <= not bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- I CPU extension (if not E) |
csr_rdata_o(12) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_M); -- M CPU extension |
csr_rdata_o(20) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- U CPU extension |
csr_rdata_o(23) <= '1'; -- X CPU extension (non-std extensions) |
csr_rdata_o(30) <= '1'; -- 32-bit architecture (MXL lo) |
csr_rdata_o(31) <= '0'; -- 32-bit architecture (MXL hi) |
csr.rdata(02) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_C); -- C CPU extension |
csr.rdata(04) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- E CPU extension |
csr.rdata(08) <= not bool_to_ulogic_f(CPU_EXTENSION_RISCV_E); -- I CPU extension (if not E) |
csr.rdata(12) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_M); -- M CPU extension |
csr.rdata(20) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_U); -- U CPU extension |
csr.rdata(23) <= '1'; -- X CPU extension (non-std extensions) |
csr.rdata(30) <= '1'; -- 32-bit architecture (MXL lo) |
csr.rdata(31) <= '0'; -- 32-bit architecture (MXL hi) |
when x"304" => -- R/W: mie - machine interrupt-enable register |
csr_rdata_o(03) <= csr.mie_msie; -- machine software IRQ enable |
csr_rdata_o(07) <= csr.mie_mtie; -- machine timer IRQ enable |
csr_rdata_o(11) <= csr.mie_meie; -- machine external IRQ enable |
csr.rdata(03) <= csr.mie_msie; -- machine software IRQ enable |
csr.rdata(07) <= csr.mie_mtie; -- machine timer IRQ enable |
csr.rdata(11) <= csr.mie_meie; -- machine external IRQ enable |
-- |
csr_rdata_o(16) <= csr.mie_firqe(0); -- fast interrupt channel 0 |
csr_rdata_o(17) <= csr.mie_firqe(1); -- fast interrupt channel 1 |
csr_rdata_o(18) <= csr.mie_firqe(2); -- fast interrupt channel 2 |
csr_rdata_o(19) <= csr.mie_firqe(3); -- fast interrupt channel 3 |
csr.rdata(16) <= csr.mie_firqe(0); -- fast interrupt channel 0 |
csr.rdata(17) <= csr.mie_firqe(1); -- fast interrupt channel 1 |
csr.rdata(18) <= csr.mie_firqe(2); -- fast interrupt channel 2 |
csr.rdata(19) <= csr.mie_firqe(3); -- fast interrupt channel 3 |
when x"305" => -- R/W: mtvec - machine trap-handler base address (for ALL exceptions) |
csr_rdata_o <= csr.mtvec(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0 |
csr.rdata <= csr.mtvec(data_width_c-1 downto 2) & "00"; -- mtvec.MODE=0 |
|
-- machine trap handling -- |
when x"340" => -- R/W: mscratch - machine scratch register |
csr_rdata_o <= csr.mscratch; |
csr.rdata <= csr.mscratch; |
when x"341" => -- R/W: mepc - machine exception program counter |
csr_rdata_o <= csr.mepc(data_width_c-1 downto 1) & '0'; |
csr.rdata <= csr.mepc(data_width_c-1 downto 1) & '0'; |
when x"342" => -- R/-: mcause - machine trap cause |
csr_rdata_o <= csr.mcause; |
csr.rdata <= csr.mcause; |
when x"343" => -- R/W: mtval - machine bad address or instruction |
csr_rdata_o <= csr.mtval; |
csr.rdata <= csr.mtval; |
when x"344" => -- R/W: mip - machine interrupt pending |
csr_rdata_o(03) <= trap_ctrl.irq_buf(interrupt_msw_irq_c); |
csr_rdata_o(07) <= trap_ctrl.irq_buf(interrupt_mtime_irq_c); |
csr_rdata_o(11) <= trap_ctrl.irq_buf(interrupt_mext_irq_c); |
csr.rdata(03) <= trap_ctrl.irq_buf(interrupt_msw_irq_c); |
csr.rdata(07) <= trap_ctrl.irq_buf(interrupt_mtime_irq_c); |
csr.rdata(11) <= trap_ctrl.irq_buf(interrupt_mext_irq_c); |
-- |
csr_rdata_o(16) <= trap_ctrl.irq_buf(interrupt_firq_0_c); |
csr_rdata_o(17) <= trap_ctrl.irq_buf(interrupt_firq_1_c); |
csr_rdata_o(18) <= trap_ctrl.irq_buf(interrupt_firq_2_c); |
csr_rdata_o(19) <= trap_ctrl.irq_buf(interrupt_firq_3_c); |
csr.rdata(16) <= trap_ctrl.irq_buf(interrupt_firq_0_c); |
csr.rdata(17) <= trap_ctrl.irq_buf(interrupt_firq_1_c); |
csr.rdata(18) <= trap_ctrl.irq_buf(interrupt_firq_2_c); |
csr.rdata(19) <= trap_ctrl.irq_buf(interrupt_firq_3_c); |
|
-- physical memory protection -- |
when x"3a0" => -- R/W: pmpcfg0 - physical memory protection configuration register 0 |
if (PMP_USE = true) then |
if (PMP_NUM_REGIONS >= 1) then |
csr_rdata_o(07 downto 00) <= csr.pmpcfg(0); |
csr.rdata(07 downto 00) <= csr.pmpcfg(0); |
end if; |
if (PMP_NUM_REGIONS >= 2) then |
csr_rdata_o(15 downto 08) <= csr.pmpcfg(1); |
csr.rdata(15 downto 08) <= csr.pmpcfg(1); |
end if; |
if (PMP_NUM_REGIONS >= 3) then |
csr_rdata_o(23 downto 16) <= csr.pmpcfg(2); |
csr.rdata(23 downto 16) <= csr.pmpcfg(2); |
end if; |
if (PMP_NUM_REGIONS >= 4) then |
csr_rdata_o(31 downto 24) <= csr.pmpcfg(3); |
csr.rdata(31 downto 24) <= csr.pmpcfg(3); |
end if; |
end if; |
when x"3a1" => -- R/W: pmpcfg1 - physical memory protection configuration register 1 |
if (PMP_USE = true) then |
if (PMP_NUM_REGIONS >= 5) then |
csr_rdata_o(07 downto 00) <= csr.pmpcfg(4); |
csr.rdata(07 downto 00) <= csr.pmpcfg(4); |
end if; |
if (PMP_NUM_REGIONS >= 6) then |
csr_rdata_o(15 downto 08) <= csr.pmpcfg(5); |
csr.rdata(15 downto 08) <= csr.pmpcfg(5); |
end if; |
if (PMP_NUM_REGIONS >= 7) then |
csr_rdata_o(23 downto 16) <= csr.pmpcfg(6); |
csr.rdata(23 downto 16) <= csr.pmpcfg(6); |
end if; |
if (PMP_NUM_REGIONS >= 8) then |
csr_rdata_o(31 downto 24) <= csr.pmpcfg(7); |
csr.rdata(31 downto 24) <= csr.pmpcfg(7); |
end if; |
end if; |
|
when x"3b0" => -- R/W: pmpaddr0 - physical memory protection address register 0 |
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 1) then |
csr_rdata_o <= csr.pmpaddr(0); |
csr.rdata <= csr.pmpaddr(0); |
if (csr.pmpcfg(0)(4 downto 3) = "00") then -- mode = off |
csr_rdata_o(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
else -- mode = NAPOT |
csr_rdata_o(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
end if; |
end if; |
when x"3b1" => -- R/W: pmpaddr1 - physical memory protection address register 1 |
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 2) then |
csr_rdata_o <= csr.pmpaddr(1); |
csr.rdata <= csr.pmpaddr(1); |
if (csr.pmpcfg(1)(4 downto 3) = "00") then -- mode = off |
csr_rdata_o(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
else -- mode = NAPOT |
csr_rdata_o(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
end if; |
end if; |
when x"3b2" => -- R/W: pmpaddr2 - physical memory protection address register 2 |
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 3) then |
csr_rdata_o <= csr.pmpaddr(2); |
csr.rdata <= csr.pmpaddr(2); |
if (csr.pmpcfg(2)(4 downto 3) = "00") then -- mode = off |
csr_rdata_o(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
else -- mode = NAPOT |
csr_rdata_o(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
end if; |
end if; |
when x"3b3" => -- R/W: pmpaddr3 - physical memory protection address register 3 |
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 4) then |
csr_rdata_o <= csr.pmpaddr(3); |
csr.rdata <= csr.pmpaddr(3); |
if (csr.pmpcfg(3)(4 downto 3) = "00") then -- mode = off |
csr_rdata_o(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
else -- mode = NAPOT |
csr_rdata_o(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
end if; |
end if; |
when x"3b4" => -- R/W: pmpaddr4 - physical memory protection address register 4 |
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 5) then |
csr_rdata_o <= csr.pmpaddr(4); |
csr.rdata <= csr.pmpaddr(4); |
if (csr.pmpcfg(4)(4 downto 3) = "00") then -- mode = off |
csr_rdata_o(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
else -- mode = NAPOT |
csr_rdata_o(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
end if; |
end if; |
when x"3b5" => -- R/W: pmpaddr5 - physical memory protection address register 5 |
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 6) then |
csr_rdata_o <= csr.pmpaddr(5); |
csr.rdata <= csr.pmpaddr(5); |
if (csr.pmpcfg(5)(4 downto 3) = "00") then -- mode = off |
csr_rdata_o(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
else -- mode = NAPOT |
csr_rdata_o(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
end if; |
end if; |
when x"3b6" => -- R/W: pmpaddr6 - physical memory protection address register 6 |
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 7) then |
csr_rdata_o <= csr.pmpaddr(6); |
csr.rdata <= csr.pmpaddr(6); |
if (csr.pmpcfg(6)(4 downto 3) = "00") then -- mode = off |
csr_rdata_o(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
else -- mode = NAPOT |
csr_rdata_o(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
end if; |
end if; |
when x"3b7" => -- R/W: pmpaddr7 - physical memory protection address register 7 |
if (PMP_USE = true) and (PMP_NUM_REGIONS >= 8) then |
csr_rdata_o <= csr.pmpaddr(7); |
csr.rdata <= csr.pmpaddr(7); |
if (csr.pmpcfg(7)(4 downto 3) = "00") then -- mode = off |
csr_rdata_o(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
csr.rdata(PMP_GRANULARITY-1 downto 0) <= (others => '0'); -- required for granularity check by SW |
else -- mode = NAPOT |
csr_rdata_o(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
csr.rdata(PMP_GRANULARITY-2 downto 0) <= (others => '1'); |
end if; |
end if; |
|
-- counter and timers -- |
when x"c00" | x"b00" => -- R/(W): cycle/mcycle: Cycle counter LOW |
csr_rdata_o <= csr.mcycle(31 downto 0); |
csr.rdata <= csr.mcycle(31 downto 0); |
when x"c01" => -- R/-: time: System time LOW (from MTIME unit) |
csr_rdata_o <= time_i(31 downto 0); |
csr.rdata <= time_i(31 downto 0); |
when x"c02" | x"b02" => -- R/(W): instret/minstret: Instructions-retired counter LOW |
csr_rdata_o <= csr.minstret(31 downto 0); |
csr.rdata <= csr.minstret(31 downto 0); |
when x"c80" | x"b80" => -- R/(W): cycleh/mcycleh: Cycle counter HIGH |
csr_rdata_o <= x"000" & csr.mcycleh(19 downto 0); -- only the lowest 20 bit! |
csr.rdata <= csr.mcycleh(31 downto 0); |
when x"c81" => -- R/-: timeh: System time HIGH (from MTIME unit) |
csr_rdata_o <= time_i(63 downto 32); |
csr.rdata <= time_i(63 downto 32); |
when x"c82" | x"b82" => -- R/(W): instreth/minstreth: Instructions-retired counter HIGH |
csr_rdata_o <= x"000" & csr.minstreth(19 downto 0); -- only the lowest 20 bit! |
csr.rdata <= csr.minstreth(31 downto 0); |
|
-- machine information registers -- |
when x"f11" => -- R/-: mvendorid - vendor ID |
csr_rdata_o <= (others => '0'); -- not assigned |
csr.rdata <= (others => '0'); |
when x"f12" => -- R/-: marchid - architecture ID |
csr_rdata_o <= (others => '0'); -- not assigned |
when x"f13" => -- R/-: mimpid - implementation ID / NEORV32 version |
csr_rdata_o <= hw_version_c; |
csr.rdata <= (others => '0'); |
when x"f13" => -- R/-: mimpid - implementation ID / NEORV32 hardware version |
csr.rdata <= hw_version_c; |
when x"f14" => -- R/-: mhartid - hardware thread ID |
csr_rdata_o <= HW_THREAD_ID; |
csr.rdata <= HW_THREAD_ID; |
|
-- custom machine read-only CSRs -- |
when x"fc0" => -- R/-: mzext |
csr_rdata_o(0) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicsr); -- Zicsr CPU extension |
csr_rdata_o(1) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zifencei); -- Zifencei CPU extension |
csr.rdata(0) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zicsr); -- Zicsr CPU extension |
csr.rdata(1) <= bool_to_ulogic_f(CPU_EXTENSION_RISCV_Zifencei); -- Zifencei CPU extension |
|
-- undefined/unavailable -- |
when others => |
csr_rdata_o <= (others => '0'); -- not implemented |
csr.rdata <= (others => '0'); -- not implemented |
|
end case; |
else |
csr_rdata_o <= (others => '0'); |
csr.rdata <= (others => '0'); |
end if; |
end if; |
end process csr_read_access; |
|
-- CSR read data output -- |
csr_rdata_o <= csr.rdata; |
|
-- CPU's current privilege level -- |
priv_mode_o <= csr.privilege; |
|
1726,7 → 1742,7
-- mcycle (cycle) -- |
mcycle_msb <= csr.mcycle(csr.mcycle'left); |
if (csr.we = '1') and (execute_engine.i_reg(31 downto 20) = x"b00") then -- write access |
csr.mcycle(31 downto 0) <= csr_wdata_i; |
csr.mcycle(31 downto 0) <= csr.wdata; |
csr.mcycle(32) <= '0'; |
elsif (execute_engine.sleep = '0') then -- automatic update (if CPU is not in sleep mode) |
csr.mcycle <= std_ulogic_vector(unsigned(csr.mcycle) + 1); |
1734,7 → 1750,7
|
-- mcycleh (cycleh) -- |
if (csr.we = '1') and (execute_engine.i_reg(31 downto 20) = x"b80") then -- write access |
csr.mcycleh <= csr_wdata_i(csr.mcycleh'left downto 0); |
csr.mcycleh <= csr.wdata(csr.mcycleh'left downto 0); |
elsif ((mcycle_msb xor csr.mcycle(csr.mcycle'left)) = '1') then -- automatic update |
csr.mcycleh <= std_ulogic_vector(unsigned(csr.mcycleh) + 1); |
end if; |
1742,7 → 1758,7
-- minstret (instret) -- |
minstret_msb <= csr.minstret(csr.minstret'left); |
if (csr.we = '1') and (execute_engine.i_reg(31 downto 20) = x"b02") then -- write access |
csr.minstret(31 downto 0) <= csr_wdata_i; |
csr.minstret(31 downto 0) <= csr.wdata; |
csr.minstret(32) <= '0'; |
elsif (execute_engine.state_prev /= EXECUTE) and (execute_engine.state = EXECUTE) then -- automatic update |
csr.minstret <= std_ulogic_vector(unsigned(csr.minstret) + 1); |
1750,7 → 1766,7
|
-- minstreth (instreth) -- |
if (csr.we = '1') and (execute_engine.i_reg(31 downto 20) = x"b82") then -- write access |
csr.minstreth <= csr_wdata_i(csr.minstreth'left downto 0); |
csr.minstreth <= csr.wdata(csr.minstreth'left downto 0); |
elsif ((minstret_msb xor csr.minstret(csr.minstret'left)) = '1') then -- automatic update |
csr.minstreth <= std_ulogic_vector(unsigned(csr.minstreth) + 1); |
end if; |
/neorv32_cpu_regfile.vhd
119,7 → 119,6
-- read -- |
rs1_o <= reg_file(to_integer(unsigned(ctrl_i(ctrl_rf_rs1_adr4_c downto ctrl_rf_rs1_adr0_c)))); |
rs2_o <= reg_file(to_integer(unsigned(ctrl_i(ctrl_rf_rs2_adr4_c downto ctrl_rf_rs2_adr0_c)))); |
|
else -- embedded register file with 16 entries |
-- write -- |
if (ctrl_i(ctrl_rf_wb_en_c) = '1') and ((valid_wr = '1') or (rf_r0_is_reg_c = false)) then -- valid write-back |
/neorv32_package.vhd
38,11 → 38,16
|
package neorv32_package is |
|
-- Architecture Constants/Configuration --------------------------------------------------- |
-- Architecture Constants ----------------------------------------------------------------- |
-- ------------------------------------------------------------------------------------------- |
constant data_width_c : natural := 32; -- data width - FIXED! |
constant hw_version_c : std_ulogic_vector(31 downto 0) := x"01040303"; -- no touchy! |
constant pmp_max_r_c : natural := 8; -- max PMP regions - FIXED! |
constant data_width_c : natural := 32; -- data width - do not change! |
constant hw_version_c : std_ulogic_vector(31 downto 0) := x"01040309"; -- no touchy! |
constant pmp_max_r_c : natural := 8; -- max PMP regions - FIXED! |
|
-- Architecture Configuration ------------------------------------------------------------- |
-- ------------------------------------------------------------------------------------------- |
constant ispace_base_c : std_ulogic_vector(data_width_c-1 downto 0) := x"00000000"; -- default instruction memory address space base address |
constant dspace_base_c : std_ulogic_vector(data_width_c-1 downto 0) := x"80000000"; -- default data memory address space base address |
constant ipb_entries_c : natural := 2; -- entries in instruction prefetch buffer, must be a power of 2, default=2 |
constant rf_r0_is_reg_c : boolean := true; -- reg_file.r0 is a physical register that has to be initialized to zero |
|
63,11 → 68,6
type pmp_ctrl_if_t is array (0 to pmp_max_r_c-1) of std_ulogic_vector(7 downto 0); |
type pmp_addr_if_t is array (0 to pmp_max_r_c-1) of std_ulogic_vector(33 downto 0); |
|
-- General Address Space Layout ----------------------------------------------------------- |
-- ------------------------------------------------------------------------------------------- |
constant ispace_base_c : std_ulogic_vector(data_width_c-1 downto 0) := x"00000000"; -- default instruction memory space base address |
constant dspace_base_c : std_ulogic_vector(data_width_c-1 downto 0) := x"80000000"; -- default data memory space base address |
|
-- Processor-Internal Address Space Layout ------------------------------------------------ |
-- ------------------------------------------------------------------------------------------- |
-- Internal Instruction Memory (IMEM) -- |
183,37 → 183,38
constant ctrl_alu_cmd0_c : natural := 19; -- ALU command bit 0 |
constant ctrl_alu_cmd1_c : natural := 20; -- ALU command bit 1 |
constant ctrl_alu_cmd2_c : natural := 21; -- ALU command bit 2 |
constant ctrl_alu_opa_mux_lsb_c : natural := 22; -- operand A select lsb (00=rs1, 01=PC) |
constant ctrl_alu_opa_mux_msb_c : natural := 23; -- operand A select msb (1-=CSR) |
constant ctrl_alu_opb_mux_c : natural := 24; -- operand B select (0=rs2, 1=IMM) |
constant ctrl_alu_opc_mux_c : natural := 25; -- operand C select (0=rs2, 1=IMM) |
constant ctrl_alu_unsigned_c : natural := 26; -- is unsigned ALU operation |
constant ctrl_alu_shift_dir_c : natural := 27; -- shift direction (0=left, 1=right) |
constant ctrl_alu_shift_ar_c : natural := 28; -- is arithmetic shift |
constant ctrl_alu_opa_mux_c : natural := 22; -- operand A select (0=rs1, 1=PC) |
constant ctrl_alu_opb_mux_c : natural := 23; -- operand B select (0=rs2, 1=IMM) |
constant ctrl_alu_opc_mux_c : natural := 24; -- operand C select (0=rs2, 1=IMM) |
constant ctrl_alu_unsigned_c : natural := 25; -- is unsigned ALU operation |
constant ctrl_alu_shift_dir_c : natural := 26; -- shift direction (0=left, 1=right) |
constant ctrl_alu_shift_ar_c : natural := 27; -- is arithmetic shift |
-- bus interface -- |
constant ctrl_bus_size_lsb_c : natural := 29; -- transfer size lsb (00=byte, 01=half-word) |
constant ctrl_bus_size_msb_c : natural := 30; -- transfer size msb (10=word, 11=?) |
constant ctrl_bus_rd_c : natural := 31; -- read data request |
constant ctrl_bus_wr_c : natural := 32; -- write data request |
constant ctrl_bus_if_c : natural := 33; -- instruction fetch request |
constant ctrl_bus_mar_we_c : natural := 34; -- memory address register write enable |
constant ctrl_bus_mdo_we_c : natural := 35; -- memory data out register write enable |
constant ctrl_bus_mdi_we_c : natural := 36; -- memory data in register write enable |
constant ctrl_bus_unsigned_c : natural := 37; -- is unsigned load |
constant ctrl_bus_ierr_ack_c : natural := 38; -- acknowledge instruction fetch bus exceptions |
constant ctrl_bus_derr_ack_c : natural := 39; -- acknowledge data access bus exceptions |
constant ctrl_bus_fence_c : natural := 40; -- executed fence operation |
constant ctrl_bus_fencei_c : natural := 41; -- executed fencei operation |
constant ctrl_bus_size_lsb_c : natural := 28; -- transfer size lsb (00=byte, 01=half-word) |
constant ctrl_bus_size_msb_c : natural := 29; -- transfer size msb (10=word, 11=?) |
constant ctrl_bus_rd_c : natural := 30; -- read data request |
constant ctrl_bus_wr_c : natural := 31; -- write data request |
constant ctrl_bus_if_c : natural := 32; -- instruction fetch request |
constant ctrl_bus_mar_we_c : natural := 33; -- memory address register write enable |
constant ctrl_bus_mdo_we_c : natural := 34; -- memory data out register write enable |
constant ctrl_bus_mdi_we_c : natural := 35; -- memory data in register write enable |
constant ctrl_bus_unsigned_c : natural := 36; -- is unsigned load |
constant ctrl_bus_ierr_ack_c : natural := 37; -- acknowledge instruction fetch bus exceptions |
constant ctrl_bus_derr_ack_c : natural := 38; -- acknowledge data access bus exceptions |
constant ctrl_bus_fence_c : natural := 39; -- executed fence operation |
constant ctrl_bus_fencei_c : natural := 40; -- executed fencei operation |
-- co-processors -- |
constant ctrl_cp_use_c : natural := 42; -- is cp operation |
constant ctrl_cp_id_lsb_c : natural := 43; -- cp select ID lsb |
constant ctrl_cp_id_msb_c : natural := 44; -- cp select ID msb |
constant ctrl_cp_cmd0_c : natural := 45; -- cp command bit 0 |
constant ctrl_cp_cmd1_c : natural := 46; -- cp command bit 1 |
constant ctrl_cp_cmd2_c : natural := 47; -- cp command bit 2 |
constant ctrl_cp_use_c : natural := 41; -- is cp operation |
constant ctrl_cp_id_lsb_c : natural := 42; -- cp select ID lsb |
constant ctrl_cp_id_msb_c : natural := 43; -- cp select ID msb |
constant ctrl_cp_cmd0_c : natural := 44; -- cp command bit 0 |
constant ctrl_cp_cmd1_c : natural := 45; -- cp command bit 1 |
constant ctrl_cp_cmd2_c : natural := 46; -- cp command bit 2 |
-- control bus size -- |
constant ctrl_width_c : natural := 48; -- control bus size |
constant ctrl_width_c : natural := 47; -- control bus size |
|
constant ctrl_alu_aopb_inv_c : natural := 48; |
|
-- ALU Comparator Bus --------------------------------------------------------------------- |
-- ------------------------------------------------------------------------------------------- |
constant alu_cmp_equal_c : natural := 0; |
331,7 → 332,7
constant alu_cmd_xor_c : std_ulogic_vector(2 downto 0) := "100"; -- r <= A xor B |
constant alu_cmd_or_c : std_ulogic_vector(2 downto 0) := "101"; -- r <= A or B |
constant alu_cmd_and_c : std_ulogic_vector(2 downto 0) := "110"; -- r <= A and B |
constant alu_cmd_bclr_c : std_ulogic_vector(2 downto 0) := "111"; -- r <= A and (not B) |
constant alu_cmd_movb_c : std_ulogic_vector(2 downto 0) := "111"; -- r <= B |
|
-- Trap ID Codes -------------------------------------------------------------------------- |
-- ------------------------------------------------------------------------------------------- |
571,13 → 572,12
instr_i : in std_ulogic_vector(data_width_c-1 downto 0); -- instruction |
cmp_i : in std_ulogic_vector(1 downto 0); -- comparator status |
alu_add_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU.add result |
alu_res_i : in std_ulogic_vector(data_width_c-1 downto 0); -- ALU processing result |
-- data output -- |
imm_o : out std_ulogic_vector(data_width_c-1 downto 0); -- immediate |
fetch_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- PC for instruction fetch |
curr_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- current PC (corresponding to current instruction) |
next_pc_o : out std_ulogic_vector(data_width_c-1 downto 0); -- next PC (corresponding to current instruction) |
-- csr interface -- |
csr_wdata_i : in std_ulogic_vector(data_width_c-1 downto 0); -- CSR write data |
csr_rdata_o : out std_ulogic_vector(data_width_c-1 downto 0); -- CSR read data |
-- interrupts (risc-v compliant) -- |
msw_irq_i : in std_ulogic; -- machine software interrupt |
639,14 → 639,11
rs2_i : in std_ulogic_vector(data_width_c-1 downto 0); -- rf source 2 |
pc2_i : in std_ulogic_vector(data_width_c-1 downto 0); -- delayed PC |
imm_i : in std_ulogic_vector(data_width_c-1 downto 0); -- immediate |
csr_i : in std_ulogic_vector(data_width_c-1 downto 0); -- csr read data |
-- data output -- |
cmp_o : out std_ulogic_vector(1 downto 0); -- comparator status |
add_o : out std_ulogic_vector(data_width_c-1 downto 0); -- OPA + OPB |
res_o : out std_ulogic_vector(data_width_c-1 downto 0); -- ALU result |
-- co-processor interface -- |
cp_opa_o : out std_ulogic_vector(data_width_c-1 downto 0); -- co-processor operand a |
cp_opb_o : out std_ulogic_vector(data_width_c-1 downto 0); -- co-processor operand b |
cp0_start_o : out std_ulogic; -- trigger co-processor 0 |
cp0_data_i : in std_ulogic_vector(data_width_c-1 downto 0); -- co-processor 0 result |
cp0_valid_i : in std_ulogic; -- co-processor 0 result valid |