OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /openrisc/tags/gnu-src/gcc-4.5.1/gcc-4.5.1-or32-1.0rc2/gcc/config/iq2000
    from Rev 282 to Rev 384
    Reverse comparison

Rev 282 → Rev 384

/iq2000.h
0,0 → 1,988
/* Definitions of target machine for GNU compiler.
Vitesse IQ2000 processors
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* Driver configuration. */
 
#undef SWITCH_TAKES_ARG
#define SWITCH_TAKES_ARG(CHAR) \
(DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
 
/* The svr4.h LIB_SPEC with -leval and --*group tacked on */
#undef LIB_SPEC
#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
 
#undef STARTFILE_SPEC
#undef ENDFILE_SPEC
 
/* Run-time target specifications. */
 
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define ("__iq2000__"); \
builtin_assert ("cpu=iq2000"); \
builtin_assert ("machine=iq2000"); \
} \
while (0)
 
/* Macros used in the machine description to test the flags. */
 
#define TARGET_STATS 0
 
#define TARGET_DEBUG_MODE 0
#define TARGET_DEBUG_A_MODE 0
#define TARGET_DEBUG_B_MODE 0
#define TARGET_DEBUG_C_MODE 0
#define TARGET_DEBUG_D_MODE 0
 
#ifndef IQ2000_ISA_DEFAULT
#define IQ2000_ISA_DEFAULT 1
#endif
 
#define IQ2000_VERSION "[1.0]"
 
#ifndef MACHINE_TYPE
#define MACHINE_TYPE "IQ2000"
#endif
 
#ifndef TARGET_VERSION_INTERNAL
#define TARGET_VERSION_INTERNAL(STREAM) \
fprintf (STREAM, " %s %s", IQ2000_VERSION, MACHINE_TYPE)
#endif
 
#ifndef TARGET_VERSION
#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
#endif
 
#define OVERRIDE_OPTIONS override_options ()
 
#define CAN_DEBUG_WITHOUT_FP
/* Storage Layout. */
 
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN 1
#define WORDS_BIG_ENDIAN 1
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#define BITS_PER_WORD 32
#define MAX_BITS_PER_WORD 64
#define UNITS_PER_WORD 4
#define MIN_UNITS_PER_WORD 4
#define POINTER_SIZE 32
 
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type.
 
We promote any value smaller than SImode up to SImode. */
 
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4) \
(MODE) = SImode;
 
#define PARM_BOUNDARY 32
 
#define STACK_BOUNDARY 64
 
#define FUNCTION_BOUNDARY 32
 
#define BIGGEST_ALIGNMENT 64
 
#undef DATA_ALIGNMENT
#define DATA_ALIGNMENT(TYPE, ALIGN) \
((((ALIGN) < BITS_PER_WORD) \
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
 
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
 
#define EMPTY_FIELD_BOUNDARY 32
 
#define STRUCTURE_SIZE_BOUNDARY 8
 
#define STRICT_ALIGNMENT 1
 
#define PCC_BITFIELD_TYPE_MATTERS 1
 
/* Layout of Source Language Data Types. */
 
#define INT_TYPE_SIZE 32
#define SHORT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define CHAR_TYPE_SIZE BITS_PER_UNIT
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
#define DEFAULT_SIGNED_CHAR 1
 
/* Register Basics. */
 
/* On the IQ2000, we have 32 integer registers. */
#define FIRST_PSEUDO_REGISTER 33
 
#define FIXED_REGISTERS \
{ \
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1 \
}
 
#define CALL_USED_REGISTERS \
{ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 \
}
 
/* Order of allocation of registers. */
 
#define REG_ALLOC_ORDER \
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 \
}
 
/* How Values Fit in Registers. */
 
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
 
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((REGNO_REG_CLASS (REGNO) == GR_REGS) \
? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
: ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
 
#define MODES_TIEABLE_P(MODE1, MODE2) \
((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
 
#define AVOID_CCMODE_COPIES
 
/* Register Classes. */
 
enum reg_class
{
NO_REGS, /* No registers in set. */
GR_REGS, /* Integer registers. */
ALL_REGS, /* All registers. */
LIM_REG_CLASSES /* Max value + 1. */
};
 
#define GENERAL_REGS GR_REGS
 
#define N_REG_CLASSES (int) LIM_REG_CLASSES
 
#define IRA_COVER_CLASSES \
{ \
GR_REGS, LIM_REG_CLASSES \
}
 
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"GR_REGS", \
"ALL_REGS" \
}
 
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000 }, /* No registers, */ \
{ 0xffffffff, 0x00000000 }, /* Integer registers. */ \
{ 0xffffffff, 0x00000001 } /* All registers. */ \
}
 
#define REGNO_REG_CLASS(REGNO) \
((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
 
#define BASE_REG_CLASS (GR_REGS)
 
#define INDEX_REG_CLASS NO_REGS
 
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'd' ? GR_REGS : \
(C) == 'b' ? ALL_REGS : \
(C) == 'y' ? GR_REGS : \
NO_REGS)
 
#define REGNO_OK_FOR_INDEX_P(regno) 0
 
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
((CLASS) != ALL_REGS \
? (CLASS) \
: ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|| GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
? (GR_REGS) \
: ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
|| GET_MODE (X) == VOIDmode) \
? (GR_REGS) \
: (CLASS))))
 
#define SMALL_REGISTER_CLASSES 0
 
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
 
/* For IQ2000:
 
`I' is used for the range of constants an arithmetic insn can
actually contain (16-bits signed integers).
 
`J' is used for the range which is just zero (i.e., $r0).
 
`K' is used for the range of constants a logical insn can actually
contain (16-bit zero-extended integers).
 
`L' is used for the range of constants that be loaded with lui
(i.e., the bottom 16 bits are zero).
 
`M' is used for the range of constants that take two words to load
(i.e., not matched by `I', `K', and `L').
 
`N' is used for constants 0xffffnnnn or 0xnnnnffff
 
`O' is a 5-bit zero-extended integer. */
 
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
: (C) == 'J' ? ((VALUE) == 0) \
: (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
: (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
&& (((VALUE) & ~2147483647) == 0 \
|| ((VALUE) & ~2147483647) == ~2147483647)) \
: (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
&& (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
&& (((VALUE) & 0x0000ffff) != 0 \
|| (((VALUE) & ~2147483647) != 0 \
&& ((VALUE) & ~2147483647) != ~2147483647))) \
: (C) == 'N' ? ((((VALUE) & 0xffff) == 0xffff) \
|| (((VALUE) & 0xffff0000) == 0xffff0000)) \
: (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x20) < 0x40) \
: 0)
 
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' \
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
 
/* `R' is for memory references which take 1 word for the instruction. */
 
#define EXTRA_CONSTRAINT(OP,CODE) \
(((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
: FALSE)
 
/* Basic Stack Layout. */
 
#define STACK_GROWS_DOWNWARD
 
#define FRAME_GROWS_DOWNWARD 0
 
#define STARTING_FRAME_OFFSET \
(crtl->outgoing_args_size)
 
/* Use the default value zero. */
/* #define STACK_POINTER_OFFSET 0 */
 
#define FIRST_PARM_OFFSET(FNDECL) 0
 
/* The return address for the current frame is in r31 if this is a leaf
function. Otherwise, it is on the stack. It is at a variable offset
from sp/fp/ap, so we define a fake hard register rap which is a
pointer to the return address on the stack. This always gets eliminated
during reload to be either the frame pointer or the stack pointer plus
an offset. */
 
#define RETURN_ADDR_RTX(count, frame) \
(((count) == 0) \
? (leaf_function_p () \
? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
: gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
RETURN_ADDRESS_POINTER_REGNUM))) \
: (rtx) 0)
 
/* Before the prologue, RA lives in r31. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
 
/* Register That Address the Stack Frame. */
 
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 27)
#define ARG_POINTER_REGNUM GP_REG_FIRST
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
 
/* Eliminating the Frame Pointer and the Arg Pointer. */
 
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
 
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
/* Passing Function Arguments on the Stack. */
 
/* #define PUSH_ROUNDING(BYTES) 0 */
 
#define ACCUMULATE_OUTGOING_ARGS 1
 
#define REG_PARM_STACK_SPACE(FNDECL) 0
 
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
 
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
 
/* Function Arguments in Registers. */
 
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg (& CUM, MODE, TYPE, NAMED)
 
#define MAX_ARGS_IN_REGISTERS 8
 
typedef struct iq2000_args
{
int gp_reg_found; /* Whether a gp register was found yet. */
unsigned int arg_number; /* Argument number. */
unsigned int arg_words; /* # total words the arguments take. */
unsigned int fp_arg_words; /* # words for FP args (IQ2000_EABI only). */
int last_arg_fp; /* Nonzero if last arg was FP (EABI only). */
int fp_code; /* Mode of FP arguments. */
unsigned int num_adjusts; /* Number of adjustments made. */
/* Adjustments made to args pass in regs. */
struct rtx_def * adjust[MAX_ARGS_IN_REGISTERS * 2];
} CUMULATIVE_ARGS;
 
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
init_cumulative_args (& CUM, FNTYPE, LIBNAME) \
 
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
function_arg_advance (& CUM, MODE, TYPE, NAMED)
 
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
(! BYTES_BIG_ENDIAN \
? upward \
: (((MODE) == BLKmode \
? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
&& int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
: (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY \
&& (GET_MODE_CLASS (MODE) == MODE_INT))) \
? downward : upward))
 
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
(((TYPE) != 0) \
? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: TYPE_ALIGN(TYPE)) \
: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: GET_MODE_ALIGNMENT(MODE)))
 
#define FUNCTION_ARG_REGNO_P(N) \
(((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
 
/* On the IQ2000, R2 and R3 are the only register thus used. */
 
#define FUNCTION_VALUE_REGNO_P(N) iq2000_function_value_regno_p (N)
 
/* How Large Values are Returned. */
 
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Function Entry and Exit. */
 
#define EXIT_IGNORE_STACK 1
 
/* Generating Code for Profiling. */
 
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ \
fprintf (FILE, "\t.set\tnoreorder\n"); \
fprintf (FILE, "\t.set\tnoat\n"); \
fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
fprintf (FILE, "\tjal\t_mcount\n"); \
fprintf (FILE, \
"\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
"subu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM], \
Pmode == DImode ? 16 : 8); \
fprintf (FILE, "\t.set\treorder\n"); \
fprintf (FILE, "\t.set\tat\n"); \
}
 
/* Trampolines for Nested Functions. */
 
#define TRAMPOLINE_CODE_SIZE (8*4)
#define TRAMPOLINE_SIZE (TRAMPOLINE_CODE_SIZE + 2*GET_MODE_SIZE (Pmode))
#define TRAMPOLINE_ALIGNMENT GET_MODE_ALIGNMENT (Pmode)
 
/* Addressing Modes. */
 
#define CONSTANT_ADDRESS_P(X) \
( (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
|| (GET_CODE (X) == CONST)))
 
#define MAX_REGS_PER_ADDRESS 1
 
#define REG_OK_FOR_INDEX_P(X) 0
 
#define LEGITIMATE_CONSTANT_P(X) (1)
 
/* Describing Relative Costs of Operations. */
 
#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
 
#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
(TO_P ? 2 : 16)
 
#define BRANCH_COST(speed_p, predictable_p) 2
 
#define SLOW_BYTE_ACCESS 1
 
#define NO_FUNCTION_CSE 1
 
#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
if (REG_NOTE_KIND (LINK) != 0) \
(COST) = 0; /* Anti or output dependence. */
 
/* Dividing the output into sections. */
 
#define TEXT_SECTION_ASM_OP "\t.text" /* Instructions. */
 
#define DATA_SECTION_ASM_OP "\t.data" /* Large data. */
 
/* The Overall Framework of an Assembler File. */
 
#define ASM_COMMENT_START " #"
 
#define ASM_APP_ON "#APP\n"
 
#define ASM_APP_OFF "#NO_APP\n"
 
/* Output and Generation of Labels. */
 
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
 
#define GLOBAL_ASM_OP "\t.globl\t"
 
/* Output of Assembler Instructions. */
 
#define REGISTER_NAMES \
{ \
"%0", "%1", "%2", "%3", "%4", "%5", "%6", "%7", \
"%8", "%9", "%10", "%11", "%12", "%13", "%14", "%15", \
"%16", "%17", "%18", "%19", "%20", "%21", "%22", "%23", \
"%24", "%25", "%26", "%27", "%28", "%29", "%30", "%31", "%rap" \
};
 
#define ADDITIONAL_REGISTER_NAMES \
{ \
{ "%0", 0 + GP_REG_FIRST }, \
{ "%1", 1 + GP_REG_FIRST }, \
{ "%2", 2 + GP_REG_FIRST }, \
{ "%3", 3 + GP_REG_FIRST }, \
{ "%4", 4 + GP_REG_FIRST }, \
{ "%5", 5 + GP_REG_FIRST }, \
{ "%6", 6 + GP_REG_FIRST }, \
{ "%7", 7 + GP_REG_FIRST }, \
{ "%8", 8 + GP_REG_FIRST }, \
{ "%9", 9 + GP_REG_FIRST }, \
{ "%10", 10 + GP_REG_FIRST }, \
{ "%11", 11 + GP_REG_FIRST }, \
{ "%12", 12 + GP_REG_FIRST }, \
{ "%13", 13 + GP_REG_FIRST }, \
{ "%14", 14 + GP_REG_FIRST }, \
{ "%15", 15 + GP_REG_FIRST }, \
{ "%16", 16 + GP_REG_FIRST }, \
{ "%17", 17 + GP_REG_FIRST }, \
{ "%18", 18 + GP_REG_FIRST }, \
{ "%19", 19 + GP_REG_FIRST }, \
{ "%20", 20 + GP_REG_FIRST }, \
{ "%21", 21 + GP_REG_FIRST }, \
{ "%22", 22 + GP_REG_FIRST }, \
{ "%23", 23 + GP_REG_FIRST }, \
{ "%24", 24 + GP_REG_FIRST }, \
{ "%25", 25 + GP_REG_FIRST }, \
{ "%26", 26 + GP_REG_FIRST }, \
{ "%27", 27 + GP_REG_FIRST }, \
{ "%28", 28 + GP_REG_FIRST }, \
{ "%29", 29 + GP_REG_FIRST }, \
{ "%30", 27 + GP_REG_FIRST }, \
{ "%31", 31 + GP_REG_FIRST }, \
{ "%rap", 32 + GP_REG_FIRST }, \
}
 
/* Check if the current insn needs a nop in front of it
because of load delays, and also update the delay slot statistics. */
 
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
final_prescan_insn (INSN, OPVEC, NOPERANDS)
 
/* See iq2000.c for the IQ2000 specific codes. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
 
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) iq2000_print_operand_punct[CODE]
 
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
 
#define DBR_OUTPUT_SEQEND(STREAM) \
do \
{ \
fputs ("\n", STREAM); \
} \
while (0)
 
#define LOCAL_LABEL_PREFIX "$"
 
#define USER_LABEL_PREFIX ""
 
/* Output of dispatch tables. */
 
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
do \
{ \
fprintf (STREAM, "\t%s\t%sL%d\n", \
Pmode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, VALUE); \
} \
while (0)
 
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
fprintf (STREAM, "\t%s\t%sL%d\n", \
Pmode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, \
VALUE)
 
/* Assembler Commands for Alignment. */
 
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n", \
(unsigned HOST_WIDE_INT)(SIZE))
 
#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
if ((LOG) != 0) \
fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
 
/* Macros Affecting all Debug Formats. */
 
#define DEBUGGER_AUTO_OFFSET(X) \
iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
 
#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
 
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
 
#define DWARF2_DEBUGGING_INFO 1
 
/* Miscellaneous Parameters. */
 
#define CASE_VECTOR_MODE SImode
 
#define WORD_REGISTER_OPERATIONS
 
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
 
#define MOVE_MAX 4
 
#define MAX_MOVE_MAX 8
 
#define SHIFT_COUNT_TRUNCATED 1
 
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
 
#define STORE_FLAG_VALUE 1
 
#define Pmode SImode
 
#define FUNCTION_MODE SImode
 
/* Standard GCC variables that we reference. */
 
extern char call_used_regs[];
 
/* IQ2000 external variables defined in iq2000.c. */
 
/* Comparison type. */
enum cmp_type
{
CMP_SI, /* Compare four byte integers. */
CMP_DI, /* Compare eight byte integers. */
CMP_SF, /* Compare single precision floats. */
CMP_DF, /* Compare double precision floats. */
CMP_MAX /* Max comparison type. */
};
 
/* Types of delay slot. */
enum delay_type
{
DELAY_NONE, /* No delay slot. */
DELAY_LOAD, /* Load from memory delay. */
DELAY_FCMP /* Delay after doing c.<xx>.{d,s}. */
};
 
/* Which processor to schedule for. */
 
enum processor_type
{
PROCESSOR_DEFAULT,
PROCESSOR_IQ2000,
PROCESSOR_IQ10
};
 
/* Recast the cpu class to be the cpu attribute. */
#define iq2000_cpu_attr ((enum attr_cpu) iq2000_tune)
 
#define BITMASK_UPPER16 ((unsigned long) 0xffff << 16) /* 0xffff0000 */
#define BITMASK_LOWER16 ((unsigned long) 0xffff) /* 0x0000ffff */
 
#define GENERATE_BRANCHLIKELY (ISA_HAS_BRANCHLIKELY)
 
/* Macros to decide whether certain features are available or not,
depending on the instruction set architecture level. */
 
#define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
 
/* ISA has branch likely instructions. */
#define ISA_HAS_BRANCHLIKELY (iq2000_isa == 1)
 
#undef ASM_SPEC
 
/* The mapping from gcc register number to DWARF 2 CFA column number. */
#define DWARF_FRAME_REGNUM(REG) (REG)
 
/* The DWARF 2 CFA column which tracks the return address. */
#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
 
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
 
/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
location used to store the amount to adjust the stack. This is
usually a register that is available from end of the function's body
to the end of the epilogue. Thus, this cannot be a register used as a
temporary by the epilogue.
 
This must be an integer register. */
#define EH_RETURN_STACKADJ_REGNO 3
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
 
/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
location used to store the address the processor should jump to
catch exception. This is usually a registers that is available from
end of the function's body to the end of the epilogue. Thus, this
cannot be a register used as a temporary by the epilogue.
 
This must be an address register. */
#define EH_RETURN_HANDLER_REGNO 26
#define EH_RETURN_HANDLER_RTX \
gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
 
/* Offsets recorded in opcodes are a multiple of this alignment factor. */
#define DWARF_CIE_DATA_ALIGNMENT 4
 
/* For IQ2000, width of a floating point register. */
#define UNITS_PER_FPREG 4
 
/* Force right-alignment for small varargs in 32 bit little_endian mode */
 
#define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
 
/* Internal macros to classify a register number as to whether it's a
general purpose register, a floating point register, a
multiply/divide register, or a status register. */
 
#define GP_REG_FIRST 0
#define GP_REG_LAST 31
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
 
#define RAP_REG_NUM 32
#define AT_REGNUM (GP_REG_FIRST + 1)
 
#define GP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
 
/* IQ2000 registers used in prologue/epilogue code when the stack frame
is larger than 32K bytes. These registers must come from the
scratch register set, and not used for passing and returning
arguments and any other information used in the calling sequence. */
 
#define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
#define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
 
/* This macro is used later on in the file. */
#define GR_REG_CLASS_P(CLASS) \
((CLASS) == GR_REGS)
 
#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
 
/* Certain machines have the property that some registers cannot be
copied to some other registers without using memory. Define this
macro on those machines to be a C expression that is nonzero if
objects of mode MODE in registers of CLASS1 can only be copied to
registers of class CLASS2 by storing a register of CLASS1 into
memory and loading that memory location into a register of CLASS2.
 
Do not define this macro if its value would always be zero. */
 
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
 
#define CLASS_UNITS(mode, size) \
((GET_MODE_SIZE (mode) + (size) - 1) / (size))
 
/* If defined, gives a class of registers that cannot be used as the
operand of a SUBREG that changes the mode of the object illegally. */
 
#define CLASS_CANNOT_CHANGE_MODE 0
 
/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
 
#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
 
/* Make sure 4 words are always allocated on the stack. */
 
#ifndef STACK_ARGS_ADJUST
#define STACK_ARGS_ADJUST(SIZE) \
{ \
if (SIZE.constant < 4 * UNITS_PER_WORD) \
SIZE.constant = 4 * UNITS_PER_WORD; \
}
#endif
 
/* Symbolic macros for the registers used to return integer and floating
point values. */
 
#define GP_RETURN (GP_REG_FIRST + 2)
 
/* Symbolic macros for the first/last argument registers. */
 
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
#define GP_ARG_LAST (GP_REG_FIRST + 11)
 
#define MAX_ARGS_IN_REGISTERS 8
 
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
 
#define MUST_SAVE_REGISTER(regno) \
((df_regs_ever_live_p (regno) && !call_used_regs[regno]) \
|| (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
|| (regno == (GP_REG_FIRST + 31) && df_regs_ever_live_p (GP_REG_FIRST + 31)))
 
/* ALIGN FRAMES on double word boundaries */
#ifndef IQ2000_STACK_ALIGN
#define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
#endif
 
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
These definitions are NOT overridden anywhere. */
 
#define BASE_REG_P(regno, mode) \
(GP_REG_P (regno))
 
#define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
(mode))
 
#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
(((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
 
#define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
 
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects them all.
The symbol REG_OK_STRICT causes the latter definition to be used.
 
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Some source files that are used after register allocation
need to be strict. */
 
#ifndef REG_OK_STRICT
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
#else
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
#endif
 
#if 1
#define GO_PRINTF(x) fprintf (stderr, (x))
#define GO_PRINTF2(x,y) fprintf (stderr, (x), (y))
#define GO_DEBUG_RTX(x) debug_rtx (x)
 
#else
#define GO_PRINTF(x)
#define GO_PRINTF2(x,y)
#define GO_DEBUG_RTX(x)
#endif
 
/* If defined, modifies the length assigned to instruction INSN as a
function of the context in which it is used. LENGTH is an lvalue
that contains the initially computed length of the insn and should
be updated with the correct length of the insn. */
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
 
 
 
/* How to tell the debugger about changes of source files. */
 
#ifndef SET_FILE_NUMBER
#define SET_FILE_NUMBER() ++ num_source_filenames
#endif
 
/* This is how to output a note the debugger telling it the line number
to which the following sequence of instructions corresponds. */
 
#ifndef LABEL_AFTER_LOC
#define LABEL_AFTER_LOC(STREAM)
#endif
 
/* Default to -G 8 */
#ifndef IQ2000_DEFAULT_GVALUE
#define IQ2000_DEFAULT_GVALUE 8
#endif
 
#define SDATA_SECTION_ASM_OP "\t.sdata" /* Small data. */
 
/* List of all IQ2000 punctuation characters used by print_operand. */
extern char iq2000_print_operand_punct[256];
 
/* The target cpu for optimization and scheduling. */
extern enum processor_type iq2000_tune;
 
/* Which instruction set architecture to use. */
extern int iq2000_isa;
 
enum iq2000_builtins
{
IQ2000_BUILTIN_ADO16,
IQ2000_BUILTIN_CFC0,
IQ2000_BUILTIN_CFC1,
IQ2000_BUILTIN_CFC2,
IQ2000_BUILTIN_CFC3,
IQ2000_BUILTIN_CHKHDR,
IQ2000_BUILTIN_CTC0,
IQ2000_BUILTIN_CTC1,
IQ2000_BUILTIN_CTC2,
IQ2000_BUILTIN_CTC3,
IQ2000_BUILTIN_LU,
IQ2000_BUILTIN_LUC32L,
IQ2000_BUILTIN_LUC64,
IQ2000_BUILTIN_LUC64L,
IQ2000_BUILTIN_LUK,
IQ2000_BUILTIN_LULCK,
IQ2000_BUILTIN_LUM32,
IQ2000_BUILTIN_LUM32L,
IQ2000_BUILTIN_LUM64,
IQ2000_BUILTIN_LUM64L,
IQ2000_BUILTIN_LUR,
IQ2000_BUILTIN_LURL,
IQ2000_BUILTIN_MFC0,
IQ2000_BUILTIN_MFC1,
IQ2000_BUILTIN_MFC2,
IQ2000_BUILTIN_MFC3,
IQ2000_BUILTIN_MRGB,
IQ2000_BUILTIN_MTC0,
IQ2000_BUILTIN_MTC1,
IQ2000_BUILTIN_MTC2,
IQ2000_BUILTIN_MTC3,
IQ2000_BUILTIN_PKRL,
IQ2000_BUILTIN_RAM,
IQ2000_BUILTIN_RB,
IQ2000_BUILTIN_RX,
IQ2000_BUILTIN_SRRD,
IQ2000_BUILTIN_SRRDL,
IQ2000_BUILTIN_SRULC,
IQ2000_BUILTIN_SRULCK,
IQ2000_BUILTIN_SRWR,
IQ2000_BUILTIN_SRWRU,
IQ2000_BUILTIN_TRAPQF,
IQ2000_BUILTIN_TRAPQFL,
IQ2000_BUILTIN_TRAPQN,
IQ2000_BUILTIN_TRAPQNE,
IQ2000_BUILTIN_TRAPRE,
IQ2000_BUILTIN_TRAPREL,
IQ2000_BUILTIN_WB,
IQ2000_BUILTIN_WBR,
IQ2000_BUILTIN_WBU,
IQ2000_BUILTIN_WX,
IQ2000_BUILTIN_SYSCALL
};
iq2000.h Property changes : Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +Id \ No newline at end of property Index: predicates.md =================================================================== --- predicates.md (nonexistent) +++ predicates.md (revision 384) @@ -0,0 +1,240 @@ +;; Predicate definitions for Vitesse IQ2000. +;; Copyright (C) 2005, 2007 Free Software Foundation, Inc. +;; +;; This file is part of GCC. +;; +;; GCC is free software; you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation; either version 3, or (at your option) +;; any later version. +;; +;; GCC is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. +;; +;; You should have received a copy of the GNU General Public License +;; along with GCC; see the file COPYING3. If not see +;; . + +;; Return 1 if OP can be used as an operand where a register or 16-bit +;; unsigned integer is needed. + +(define_predicate "uns_arith_operand" + (match_code "reg,const_int,subreg") +{ + if (GET_CODE (op) == CONST_INT && SMALL_INT_UNSIGNED (op)) + return 1; + + return register_operand (op, mode); +}) + +;; Return 1 if OP can be used as an operand where a 16-bit integer is +;; needed. + +(define_predicate "arith_operand" + (match_code "reg,const_int,subreg") +{ + if (GET_CODE (op) == CONST_INT && SMALL_INT (op)) + return 1; + + return register_operand (op, mode); +}) + +;; Return 1 if OP is a register or a constant. gen_int_relational +;; takes care of forcing out-of-range constants into a register. + +(define_predicate "reg_or_const_operand" + (ior (match_code "const_int") + (and (match_code "reg,subreg") + (match_operand 0 "register_operand")))) + +;; Return 1 if OP is a integer which fits in 16 bits. + +(define_predicate "small_int" + (match_code "const_int") +{ + return (GET_CODE (op) == CONST_INT && SMALL_INT (op)); +}) + +;; Return 1 if OP is a 32-bit integer which is too big to be loaded +;; with one instruction. + +(define_predicate "large_int" + (match_code "const_int") +{ + HOST_WIDE_INT value; + + if (GET_CODE (op) != CONST_INT) + return 0; + + value = INTVAL (op); + + /* IOR reg,$r0,value. */ + if ((value & ~ ((HOST_WIDE_INT) 0x0000ffff)) == 0) + return 0; + + /* SUBU reg,$r0,value. */ + if (((unsigned HOST_WIDE_INT) (value + 32768)) <= 32767) + return 0; + + /* LUI reg,value >> 16. */ + if ((value & 0x0000ffff) == 0) + return 0; + + return 1; +}) + +;; Return 1 if OP is a register or the constant 0. + +(define_predicate "reg_or_0_operand" + (match_code "reg,const_int,const_double,subreg") +{ + switch (GET_CODE (op)) + { + case CONST_INT: + return INTVAL (op) == 0; + + case CONST_DOUBLE: + return op == CONST0_RTX (mode); + + case REG: + case SUBREG: + return register_operand (op, mode); + + default: + break; + } + + return 0; +}) + +;; Return 1 if OP is a memory operand that fits in a single +;; instruction (i.e., register + small offset). + +(define_predicate "simple_memory_operand" + (match_code "mem,subreg") +{ + rtx addr, plus0, plus1; + + /* Eliminate non-memory operations. */ + if (GET_CODE (op) != MEM) + return 0; + + /* Dword operations really put out 2 instructions, so eliminate them. */ + if (GET_MODE_SIZE (GET_MODE (op)) > (unsigned) UNITS_PER_WORD) + return 0; + + /* Decode the address now. */ + addr = XEXP (op, 0); + switch (GET_CODE (addr)) + { + case REG: + case LO_SUM: + return 1; + + case CONST_INT: + return SMALL_INT (addr); + + case PLUS: + plus0 = XEXP (addr, 0); + plus1 = XEXP (addr, 1); + if (GET_CODE (plus0) == REG + && GET_CODE (plus1) == CONST_INT && SMALL_INT (plus1) + && SMALL_INT_UNSIGNED (plus1) /* No negative offsets. */) + return 1; + + else if (GET_CODE (plus1) == REG + && GET_CODE (plus0) == CONST_INT && SMALL_INT (plus0) + && SMALL_INT_UNSIGNED (plus1) /* No negative offsets. */) + return 1; + + else + return 0; + + case SYMBOL_REF: + return 0; + + default: + break; + } + + return 0; +}) + +;; Return nonzero if the code of this rtx pattern is EQ or NE. + +(define_predicate "equality_op" + (match_code "eq,ne") +{ + if (mode != GET_MODE (op)) + return 0; + + return GET_CODE (op) == EQ || GET_CODE (op) == NE; +}) + +;; Return nonzero if the code is a relational operations (EQ, LE, +;; etc). + +(define_predicate "cmp_op" + (match_code "eq,ne,gt,ge,gtu,geu,lt,le,ltu,leu") +{ + if (mode != GET_MODE (op)) + return 0; + + return COMPARISON_P (op); +}) + +;; Return nonzero if the operand is either the PC or a label_ref. + +(define_special_predicate "pc_or_label_operand" + (match_code "pc,label_ref") +{ + if (op == pc_rtx) + return 1; + + if (GET_CODE (op) == LABEL_REF) + return 1; + + return 0; +}) + +;; Return nonzero if OP is a valid operand for a call instruction. + +(define_predicate "call_insn_operand" + (match_code "const_int,const,symbol_ref,reg") +{ + return (CONSTANT_ADDRESS_P (op) + || (GET_CODE (op) == REG && op != arg_pointer_rtx + && ! (REGNO (op) >= FIRST_PSEUDO_REGISTER + && REGNO (op) <= LAST_VIRTUAL_REGISTER))); +}) + +;; Return nonzero if OP is valid as a source operand for a move +;; instruction. + +(define_predicate "move_operand" + (match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem") +{ + /* Accept any general operand after reload has started; doing so + avoids losing if reload does an in-place replacement of a register + with a SYMBOL_REF or CONST. */ + return (general_operand (op, mode) + && (! (iq2000_check_split (op, mode)) + || reload_in_progress || reload_completed)); +}) + +;; Return nonzero if OP is a constant power of 2. + +(define_predicate "power_of_2_operand" + (match_code "const_int") +{ + int intval; + + if (GET_CODE (op) != CONST_INT) + return 0; + else + intval = INTVAL (op); + + return ((intval & ((unsigned)(intval) - 1)) == 0); +}) Index: iq2000-protos.h =================================================================== --- iq2000-protos.h (nonexistent) +++ iq2000-protos.h (revision 384) @@ -0,0 +1,53 @@ +/* Definitions of target machine for GNU compiler for iq2000. + Copyright (C) 2003, 2004, 2007 Free Software Foundation, Inc. + + This file is part of GCC. + + GCC is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3, or (at your option) + any later version. + + GCC is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with GCC; see the file COPYING3. If not see + . */ + +#ifndef GCC_IQ2000_PROTOS_H +#define GCC_IQ2000_PROTOS_H + +extern int iq2000_check_split (rtx, enum machine_mode); +extern int iq2000_reg_mode_ok_for_base_p (rtx, enum machine_mode, int); +extern const char * iq2000_fill_delay_slot (const char *, enum delay_type, rtx *, rtx); +extern const char * iq2000_move_1word (rtx *, rtx, int); +extern void override_options (void); +extern HOST_WIDE_INT iq2000_debugger_offset (rtx, HOST_WIDE_INT); +extern void final_prescan_insn (rtx, rtx *, int); +extern HOST_WIDE_INT compute_frame_size (HOST_WIDE_INT); +extern int iq2000_initial_elimination_offset (int, int); +extern void iq2000_expand_prologue (void); +extern void iq2000_expand_epilogue (void); +extern void iq2000_expand_eh_return (rtx); +extern int iq2000_can_use_return_insn (void); +extern int iq2000_adjust_insn_length (rtx, int); +extern char * iq2000_output_conditional_branch (rtx, rtx *, int, int, int, int); +extern void print_operand_address (FILE *, rtx); +extern void print_operand (FILE *, rtx, int); + +#ifdef RTX_CODE +extern rtx gen_int_relational (enum rtx_code, rtx, rtx, rtx, int *); +extern void gen_conditional_branch (rtx *, enum machine_mode); +#endif + +#ifdef TREE_CODE +extern void init_cumulative_args (CUMULATIVE_ARGS *, tree, rtx); +extern void function_arg_advance (CUMULATIVE_ARGS *, enum machine_mode, tree, int); +extern struct rtx_def * function_arg (CUMULATIVE_ARGS *, enum machine_mode, const_tree, int); +extern bool iq2000_function_value_regno_p (const unsigned int); +#endif + +#endif /* ! GCC_IQ2000_PROTOS_H */
iq2000-protos.h Property changes : Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +Id \ No newline at end of property Index: lib2extra-funcs.c =================================================================== --- lib2extra-funcs.c (nonexistent) +++ lib2extra-funcs.c (revision 384) @@ -0,0 +1,40 @@ +/* Copyright (C) 2003 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +. */ + +typedef unsigned int USItype __attribute__ ((mode (SI))); + +USItype +__mulsi3 (USItype a, USItype b) +{ + USItype c = 0; + + while (a != 0) + { + if (a & 1) + c += b; + a >>= 1; + b <<= 1; + } + + return c; +}
lib2extra-funcs.c Property changes : Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +Id \ No newline at end of property Index: iq2000.md =================================================================== --- iq2000.md (nonexistent) +++ iq2000.md (revision 384) @@ -0,0 +1,2184 @@ +;; iq2000.md Machine Description for Vitesse IQ2000 processors +;; Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc. + +;; This file is part of GCC. + +;; GCC is free software; you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation; either version 3, or (at your option) +;; any later version. + +;; GCC is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. + +;; You should have received a copy of the GNU General Public License +;; along with GCC; see the file COPYING3. If not see +;; . + +(define_constants + [(UNSPEC_ADO16 0) + (UNSPEC_RAM 1) + (UNSPEC_CHKHDR 2) + (UNSPEC_PKRL 3) + (UNSPEC_CFC0 4) + (UNSPEC_CFC1 5) + (UNSPEC_CFC2 6) + (UNSPEC_CFC3 7) + (UNSPEC_CTC0 8) + (UNSPEC_CTC1 9) + (UNSPEC_CTC2 10) + (UNSPEC_CTC3 11) + (UNSPEC_MFC0 12) + (UNSPEC_MFC1 13) + (UNSPEC_MFC2 14) + (UNSPEC_MFC3 15) + (UNSPEC_MTC0 16) + (UNSPEC_MTC1 17) + (UNSPEC_MTC2 18) + (UNSPEC_MTC3 19) + (UNSPEC_LUR 20) + (UNSPEC_RB 21) + (UNSPEC_RX 22) + (UNSPEC_SRRD 23) + (UNSPEC_SRWR 24) + (UNSPEC_WB 25) + (UNSPEC_WX 26) + (UNSPEC_LUC32 49) + (UNSPEC_LUC32L 27) + (UNSPEC_LUC64 28) + (UNSPEC_LUC64L 29) + (UNSPEC_LUK 30) + (UNSPEC_LULCK 31) + (UNSPEC_LUM32 32) + (UNSPEC_LUM32L 33) + (UNSPEC_LUM64 34) + (UNSPEC_LUM64L 35) + (UNSPEC_LURL 36) + (UNSPEC_MRGB 37) + (UNSPEC_SRRDL 38) + (UNSPEC_SRULCK 39) + (UNSPEC_SRWRU 40) + (UNSPEC_TRAPQFL 41) + (UNSPEC_TRAPQNE 42) + (UNSPEC_TRAPREL 43) + (UNSPEC_WBU 44) + (UNSPEC_SYSCALL 45)] +) +;; UNSPEC values used in iq2000.md +;; Number USE +;; 0 movsi_ul +;; 1 movsi_us, get_fnaddr +;; 3 eh_set_return +;; 20 builtin_setjmp_setup +;; +;; UNSPEC_VOLATILE values +;; 0 blockage +;; 2 loadgp +;; 3 builtin_longjmp +;; 4 exception_receiver +;; 10 consttable_qi +;; 11 consttable_hi +;; 12 consttable_si +;; 13 consttable_di +;; 14 consttable_sf +;; 15 consttable_df +;; 16 align_2 +;; 17 align_4 +;; 18 align_8 + + +;; .................... +;; +;; Attributes +;; +;; .................... + +;; Classification of each insn. +;; branch conditional branch +;; jump unconditional jump +;; call unconditional call +;; load load instruction(s) +;; store store instruction(s) +;; move data movement within same register set +;; xfer transfer to/from coprocessor +;; arith integer arithmetic instruction +;; darith double precision integer arithmetic instructions +;; imul integer multiply +;; idiv integer divide +;; icmp integer compare +;; fadd floating point add/subtract +;; fmul floating point multiply +;; fmadd floating point multiply-add +;; fdiv floating point divide +;; fabs floating point absolute value +;; fneg floating point negation +;; fcmp floating point compare +;; fcvt floating point convert +;; fsqrt floating point square root +;; multi multiword sequence (or user asm statements) +;; nop no operation + +(define_attr "type" + "unknown,branch,jump,call,load,store,move,xfer,arith,darith,imul,idiv,icmp,fadd,fmul,fmadd,fdiv,fabs,fneg,fcmp,fcvt,fsqrt,multi,nop" + (const_string "unknown")) + +;; Main data type used by the insn +(define_attr "mode" "unknown,none,QI,HI,SI,DI,SF,DF,FPSW" (const_string "unknown")) + +;; Length (in # of bytes). A conditional branch is allowed only to a +;; location within a signed 18-bit offset of the delay slot. If that +;; provides too small a range, we use the `j' instruction. This +;; instruction takes a 28-bit value, but that value is not an offset. +;; Instead, it's bitwise-ored with the high-order four bits of the +;; instruction in the delay slot, which means it cannot be used to +;; cross a 256MB boundary. We could fall back back on the jr, +;; instruction which allows full access to the entire address space, +;; but we do not do so at present. + +(define_attr "length" "" + (cond [(eq_attr "type" "branch") + (cond [(lt (abs (minus (match_dup 1) (plus (pc) (const_int 4)))) + (const_int 131072)) + (const_int 4)] + (const_int 12))] + (const_int 4))) + +(define_attr "cpu" + "default,iq2000" + (const (symbol_ref "iq2000_cpu_attr"))) + +;; Does the instruction have a mandatory delay slot? has_dslot +;; Can the instruction be in a delay slot? ok_in_dslot +;; Can the instruction not be in a delay slot? not_in_dslot +(define_attr "dslot" "has_dslot,ok_in_dslot,not_in_dslot" + (if_then_else (eq_attr "type" "branch,jump,call,xfer,fcmp") + (const_string "has_dslot") + (const_string "ok_in_dslot"))) + +;; Attribute defining whether or not we can use the branch-likely instructions + +(define_attr "branch_likely" "no,yes" + (const + (if_then_else (ne (symbol_ref "GENERATE_BRANCHLIKELY") (const_int 0)) + (const_string "yes") + (const_string "no")))) + + +;; Describe a user's asm statement. +(define_asm_attributes + [(set_attr "type" "multi")]) + + + +;; ......................... +;; +;; Delay slots, can't describe load/fcmp/xfer delay slots here +;; +;; ......................... + +(define_delay (eq_attr "type" "jump") + [(and (eq_attr "dslot" "ok_in_dslot") (eq_attr "length" "4")) + (nil) + (nil)]) + +(define_delay (eq_attr "type" "branch") + [(and (eq_attr "dslot" "ok_in_dslot") (eq_attr "length" "4")) + (nil) + (and (eq_attr "branch_likely" "yes") (and (eq_attr "dslot" "ok_in_dslot") (eq_attr "length" "4")))]) + +(define_delay (eq_attr "type" "call") + [(and (eq_attr "dslot" "ok_in_dslot") (eq_attr "length" "4")) + (nil) + (nil)]) + +(include "predicates.md") + + +;; ......................... +;; +;; Pipeline model +;; +;; ......................... + +(define_automaton "iq2000") +(define_cpu_unit "core,memory" "iq2000") + +(define_insn_reservation "nonmemory" 1 + (eq_attr "type" "!load,move,store,xfer") + "core") + +(define_insn_reservation "iq2000_load_move" 3 + (and (eq_attr "type" "load,move") + (eq_attr "cpu" "iq2000")) + "memory") + +(define_insn_reservation "other_load_move" 1 + (and (eq_attr "type" "load,move") + (eq_attr "cpu" "!iq2000")) + "memory") + +(define_insn_reservation "store" 1 + (eq_attr "type" "store") + "memory") + +(define_insn_reservation "xfer" 2 + (eq_attr "type" "xfer") + "memory") + +;; +;; .................... +;; +;; CONDITIONAL TRAPS +;; +;; .................... +;; + +(define_insn "trap" + [(trap_if (const_int 1) (const_int 0))] + "" + "* +{ + return \"break\"; +}") + +;; +;; .................... +;; +;; ADDITION +;; +;; .................... +;; + +(define_expand "addsi3" + [(set (match_operand:SI 0 "register_operand" "=d") + (plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ") + (match_operand:SI 2 "arith_operand" "dI")))] + "" + "") + +(define_insn "addsi3_internal" + [(set (match_operand:SI 0 "register_operand" "=d,=d") + (plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ,dJ") + (match_operand:SI 2 "arith_operand" "d,I")))] + "" + "@ + addu\\t%0,%z1,%2 + addiu\\t%0,%z1,%2" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +;; +;; .................... +;; +;; SUBTRACTION +;; +;; .................... +;; + +(define_expand "subsi3" + [(set (match_operand:SI 0 "register_operand" "=d") + (minus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ") + (match_operand:SI 2 "arith_operand" "dI")))] + "" + "") + +(define_insn "subsi3_internal" + [(set (match_operand:SI 0 "register_operand" "=d,=d") + (minus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ,dJ") + (match_operand:SI 2 "arith_operand" "d,I")))] + "" + "@ + subu\\t%0,%z1,%2 + addiu\\t%0,%z1,%n2" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +;; +;; .................... +;; +;; NEGATION and ONE'S COMPLEMENT +;; +;; .................... + +(define_insn "negsi2" + [(set (match_operand:SI 0 "register_operand" "=d") + (neg:SI (match_operand:SI 1 "register_operand" "d")))] + "" + "* +{ + operands[2] = const0_rtx; + return \"subu\\t%0,%z2,%1\"; +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_insn "one_cmplsi2" + [(set (match_operand:SI 0 "register_operand" "=d") + (not:SI (match_operand:SI 1 "register_operand" "d")))] + "" + "* +{ + operands[2] = const0_rtx; + return \"nor\\t%0,%z2,%1\"; +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +;; +;; .................... +;; +;; LOGICAL +;; +;; .................... +;; + +(define_expand "andsi3" + [(set (match_operand:SI 0 "register_operand" "=d,d,d") + (and:SI (match_operand:SI 1 "uns_arith_operand" "%d,d,d") + (match_operand:SI 2 "nonmemory_operand" "d,K,N")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=d,d,d") + (and:SI (match_operand:SI 1 "uns_arith_operand" "%d,d,d") + (match_operand:SI 2 "nonmemory_operand" "d,K,N")))] + "" + "* +{ + if (which_alternative == 0) + return \"and\\t%0,%1,%2\"; + else if (which_alternative == 1) + return \"andi\\t%0,%1,%x2\"; + else if (which_alternative == 2) + { + if ((INTVAL (operands[2]) & 0xffff) == 0xffff) + { + operands[2] = GEN_INT (INTVAL (operands[2]) >> 16); + return \"andoui\\t%0,%1,%x2\"; + } + else + { + operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff); + return \"andoi\\t%0,%1,%x2\"; + } + } +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_expand "iorsi3" + [(set (match_operand:SI 0 "register_operand" "=d,d") + (ior:SI (match_operand:SI 1 "uns_arith_operand" "%d,d") + (match_operand:SI 2 "uns_arith_operand" "d,K")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=d,d") + (ior:SI (match_operand:SI 1 "uns_arith_operand" "%d,d") + (match_operand:SI 2 "uns_arith_operand" "d,K")))] + "" + "@ + or\\t%0,%1,%2 + ori\\t%0,%1,%x2" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_expand "xorsi3" + [(set (match_operand:SI 0 "register_operand" "=d,d") + (xor:SI (match_operand:SI 1 "uns_arith_operand" "%d,d") + (match_operand:SI 2 "uns_arith_operand" "d,K")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=d,d") + (xor:SI (match_operand:SI 1 "uns_arith_operand" "%d,d") + (match_operand:SI 2 "uns_arith_operand" "d,K")))] + "" + "@ + xor\\t%0,%1,%2 + xori\\t%0,%1,%x2" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_insn "*norsi3" + [(set (match_operand:SI 0 "register_operand" "=d") + (and:SI (not:SI (match_operand:SI 1 "register_operand" "d")) + (not:SI (match_operand:SI 2 "register_operand" "d"))))] + "" + "nor\\t%0,%z1,%z2" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +;; +;; .................... +;; +;; ZERO EXTENSION +;; +;; .................... + +;; Extension insns. +;; Those for integer source operand are ordered widest source type first. + +(define_expand "zero_extendhisi2" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=d,d,d") + (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "d,R,m")))] + "" + "* +{ + if (which_alternative == 0) + return \"andi\\t%0,%1,0xffff\"; + else + return iq2000_move_1word (operands, insn, TRUE); +}" + [(set_attr "type" "arith,load,load") + (set_attr "mode" "SI") + (set_attr "length" "4,4,8")]) + +(define_expand "zero_extendqihi2" + [(set (match_operand:HI 0 "register_operand" "") + (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:HI 0 "register_operand" "=d,d,d") + (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,R,m")))] + "" + "* +{ + if (which_alternative == 0) + return \"andi\\t%0,%1,0x00ff\"; + else + return iq2000_move_1word (operands, insn, TRUE); +}" + [(set_attr "type" "arith,load,load") + (set_attr "mode" "HI") + (set_attr "length" "4,4,8")]) + +(define_expand "zero_extendqisi2" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "")))] + "" + "") + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=d,d,d") + (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "d,R,m")))] + "" + "* +{ + if (which_alternative == 0) + return \"andi\\t%0,%1,0x00ff\"; + else + return iq2000_move_1word (operands, insn, TRUE); +}" + [(set_attr "type" "arith,load,load") + (set_attr "mode" "SI") + (set_attr "length" "4,4,8")]) + +;; +;; .................... +;; +;; SIGN EXTENSION +;; +;; .................... + +;; Extension insns. +;; Those for integer source operand are ordered widest source type first. + +;; These patterns originally accepted general_operands, however, slightly +;; better code is generated by only accepting register_operands, and then +;; letting combine generate the lh and lb insns. + +(define_expand "extendhisi2" + [(set (match_operand:SI 0 "register_operand" "") + (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "")))] + "" + " +{ + if (optimize && GET_CODE (operands[1]) == MEM) + operands[1] = force_not_mem (operands[1]); + + if (GET_CODE (operands[1]) != MEM) + { + rtx op1 = gen_lowpart (SImode, operands[1]); + rtx temp = gen_reg_rtx (SImode); + rtx shift = GEN_INT (16); + + emit_insn (gen_ashlsi3 (temp, op1, shift)); + emit_insn (gen_ashrsi3 (operands[0], temp, shift)); + DONE; + } +}") + +(define_insn "extendhisi2_internal" + [(set (match_operand:SI 0 "register_operand" "=d,d") + (sign_extend:SI (match_operand:HI 1 "memory_operand" "R,m")))] + "" + "* return iq2000_move_1word (operands, insn, FALSE);" + [(set_attr "type" "load") + (set_attr "mode" "SI") + (set_attr "length" "4,8")]) + +(define_expand "extendqihi2" + [(set (match_operand:HI 0 "register_operand" "") + (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "")))] + "" + " +{ + if (optimize && GET_CODE (operands[1]) == MEM) + operands[1] = force_not_mem (operands[1]); + + if (GET_CODE (operands[1]) != MEM) + { + rtx op0 = gen_lowpart (SImode, operands[0]); + rtx op1 = gen_lowpart (SImode, operands[1]); + rtx temp = gen_reg_rtx (SImode); + rtx shift = GEN_INT (24); + + emit_insn (gen_ashlsi3 (temp, op1, shift)); + emit_insn (gen_ashrsi3 (op0, temp, shift)); + DONE; + } +}") + +(define_insn "extendqihi2_internal" + [(set (match_operand:HI 0 "register_operand" "=d,d") + (sign_extend:HI (match_operand:QI 1 "memory_operand" "R,m")))] + "" + "* return iq2000_move_1word (operands, insn, FALSE);" + [(set_attr "type" "load") + (set_attr "mode" "SI") + (set_attr "length" "4,8")]) + + +(define_expand "extendqisi2" + [(set (match_operand:SI 0 "register_operand" "") + (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "")))] + "" + " +{ + if (optimize && GET_CODE (operands[1]) == MEM) + operands[1] = force_not_mem (operands[1]); + + if (GET_CODE (operands[1]) != MEM) + { + rtx op1 = gen_lowpart (SImode, operands[1]); + rtx temp = gen_reg_rtx (SImode); + rtx shift = GEN_INT (24); + + emit_insn (gen_ashlsi3 (temp, op1, shift)); + emit_insn (gen_ashrsi3 (operands[0], temp, shift)); + DONE; + } +}") + +(define_insn "extendqisi2_insn" + [(set (match_operand:SI 0 "register_operand" "=d,d") + (sign_extend:SI (match_operand:QI 1 "memory_operand" "R,m")))] + "" + "* return iq2000_move_1word (operands, insn, FALSE);" + [(set_attr "type" "load") + (set_attr "mode" "SI") + (set_attr "length" "4,8")]) + +;; +;; ........................ +;; +;; BIT FIELD EXTRACTION +;; +;; ........................ + +(define_insn "extzv" + [(set (match_operand:SI 0 "register_operand" "=r") + (zero_extract:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "const_int_operand" "O") + (match_operand:SI 3 "const_int_operand" "O")))] + "" + "* +{ + int value[4]; + value[2] = INTVAL (operands[2]); + value[3] = INTVAL (operands[3]); + operands[2] = GEN_INT ((value[3])); + operands[3] = GEN_INT ((32 - value[2])); + return \"ram\\t%0,%1,%2,%3,0x0\"; +}" + [(set_attr "type" "arith")]) + +;; +;; .................... +;; +;; DATA MOVEMENT +;; +;; .................... + +/* Take care of constants that don't fit in single instruction */ +(define_split + [(set (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "general_operand" ""))] + "(reload_in_progress || reload_completed) + && large_int (operands[1], SImode)" + + [(set (match_dup 0 ) + (high:SI (match_dup 1))) + (set (match_dup 0 ) + (lo_sum:SI (match_dup 0) + (match_dup 1)))] +) + +;; ??? iq2000_move_1word has support for HIGH, so this pattern may be +;; unnecessary. + +(define_insn "high" + [(set (match_operand:SI 0 "register_operand" "=r") + (high:SI (match_operand:SI 1 "immediate_operand" "")))] + "" + "lui\\t%0,%%hi(%1) # high" + [(set_attr "type" "move")]) + +(define_insn "low" + [(set (match_operand:SI 0 "register_operand" "=r") + (lo_sum:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "immediate_operand" "")))] + "" + "addiu\\t%0,%1,%%lo(%2) # low" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +;; 32-bit Integer moves + +(define_split + [(set (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "large_int" ""))] + "reload_in_progress | reload_completed" + [(set (match_dup 0) + (match_dup 2)) + (set (match_dup 0) + (ior:SI (match_dup 0) + (match_dup 3)))] + " +{ + operands[2] = GEN_INT (trunc_int_for_mode (INTVAL (operands[1]) + & BITMASK_UPPER16, + SImode)); + operands[3] = GEN_INT (INTVAL (operands[1]) & BITMASK_LOWER16); +}") + +;; Unlike most other insns, the move insns can't be split with +;; different predicates, because register spilling and other parts of +;; the compiler, have memoized the insn number already. + +(define_expand "movsi" + [(set (match_operand:SI 0 "nonimmediate_operand" "") + (match_operand:SI 1 "general_operand" ""))] + "" + " +{ + if (iq2000_check_split (operands[1], SImode)) + { + enum machine_mode mode = GET_MODE (operands[0]); + rtx tem = ((reload_in_progress | reload_completed) + ? operands[0] : gen_reg_rtx (mode)); + + emit_insn (gen_rtx_SET (VOIDmode, tem, + gen_rtx_HIGH (mode, operands[1]))); + + operands[1] = gen_rtx_LO_SUM (mode, tem, operands[1]); + } + + if ((reload_in_progress | reload_completed) == 0 + && !register_operand (operands[0], SImode) + && !register_operand (operands[1], SImode) + && (GET_CODE (operands[1]) != CONST_INT + || INTVAL (operands[1]) != 0)) + { + rtx temp = force_reg (SImode, operands[1]); + emit_move_insn (operands[0], temp); + DONE; + } + + /* Take care of constants that don't fit in single instruction */ + if ((reload_in_progress || reload_completed) + && CONSTANT_P (operands[1]) + && GET_CODE (operands[1]) != HIGH + && GET_CODE (operands[1]) != LO_SUM + && ! SMALL_INT_UNSIGNED (operands[1])) + { + rtx tem = ((reload_in_progress | reload_completed) + ? operands[0] : gen_reg_rtx (SImode)); + + emit_insn (gen_rtx_SET (VOIDmode, tem, + gen_rtx_HIGH (SImode, operands[1]))); + operands[1] = gen_rtx_LO_SUM (SImode, tem, operands[1]); + } +}") + +;; The difference between these two is whether or not ints are allowed +;; in FP registers (off by default, use -mdebugh to enable). + +(define_insn "movsi_internal2" + [(set (match_operand:SI 0 "nonimmediate_operand" "=d,d,d,d,d,d,R,m,*d,*z,*x,*d,*x,*d") + (match_operand:SI 1 "move_operand" "d,S,IKL,Mnis,R,m,dJ,dJ,*z,*d,J,*x,*d,*a"))] + "(register_operand (operands[0], SImode) + || register_operand (operands[1], SImode) + || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" + "* return iq2000_move_1word (operands, insn, FALSE);" + [(set_attr "type" "move,load,arith,arith,load,load,store,store,xfer,xfer,move,move,move,move") + (set_attr "mode" "SI") + (set_attr "length" "4,8,4,8,8,8,4,8,4,4,4,4,4,4")]) + +;; 16-bit Integer moves + +;; Unlike most other insns, the move insns can't be split with +;; different predicates, because register spilling and other parts of +;; the compiler, have memoized the insn number already. +;; Unsigned loads are used because BYTE_LOADS_ZERO_EXTEND is defined + +(define_expand "movhi" + [(set (match_operand:HI 0 "nonimmediate_operand" "") + (match_operand:HI 1 "general_operand" ""))] + "" + " +{ + if ((reload_in_progress | reload_completed) == 0 + && !register_operand (operands[0], HImode) + && !register_operand (operands[1], HImode) + && ((GET_CODE (operands[1]) != CONST_INT + || INTVAL (operands[1]) != 0))) + { + rtx temp = force_reg (HImode, operands[1]); + emit_move_insn (operands[0], temp); + DONE; + } +}") + +;; The difference between these two is whether or not ints are allowed +;; in FP registers (off by default, use -mdebugh to enable). + +(define_insn "movhi_internal2" + [(set (match_operand:HI 0 "nonimmediate_operand" "=d,d,d,d,R,m,*d,*z,*x,*d") + (match_operand:HI 1 "general_operand" "d,IK,R,m,dJ,dJ,*z,*d,*d,*x"))] + "(register_operand (operands[0], HImode) + || register_operand (operands[1], HImode) + || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" + "* return iq2000_move_1word (operands, insn, TRUE);" + [(set_attr "type" "move,arith,load,load,store,store,xfer,xfer,move,move") + (set_attr "mode" "HI") + (set_attr "length" "4,4,4,8,4,8,4,4,4,4")]) + +;; 8-bit Integer moves + +;; Unlike most other insns, the move insns can't be split with +;; different predicates, because register spilling and other parts of +;; the compiler, have memoized the insn number already. +;; Unsigned loads are used because BYTE_LOADS_ZERO_EXTEND is defined + +(define_expand "movqi" + [(set (match_operand:QI 0 "nonimmediate_operand" "") + (match_operand:QI 1 "general_operand" ""))] + "" + " +{ + if ((reload_in_progress | reload_completed) == 0 + && !register_operand (operands[0], QImode) + && !register_operand (operands[1], QImode) + && (GET_CODE (operands[1]) != CONST_INT + || INTVAL (operands[1]) != 0)) + { + rtx temp = force_reg (QImode, operands[1]); + emit_move_insn (operands[0], temp); + DONE; + } +}") + +;; The difference between these two is whether or not ints are allowed +;; in FP registers (off by default, use -mdebugh to enable). + +(define_insn "movqi_internal2" + [(set (match_operand:QI 0 "nonimmediate_operand" "=d,d,d,d,R,m,*d,*z,*x,*d") + (match_operand:QI 1 "general_operand" "d,IK,R,m,dJ,dJ,*z,*d,*d,*x"))] + "(register_operand (operands[0], QImode) + || register_operand (operands[1], QImode) + || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" + "* return iq2000_move_1word (operands, insn, TRUE);" + [(set_attr "type" "move,arith,load,load,store,store,xfer,xfer,move,move") + (set_attr "mode" "QI") + (set_attr "length" "4,4,4,8,4,8,4,4,4,4")]) + +;; 32-bit floating point moves + +(define_expand "movsf" + [(set (match_operand:SF 0 "general_operand" "") + (match_operand:SF 1 "general_operand" ""))] + "" + " +{ + if (!reload_in_progress + && !reload_completed + && GET_CODE (operands[0]) == MEM + && (GET_CODE (operands[1]) == MEM + || GET_CODE (operands[1]) == CONST_DOUBLE)) + operands[1] = copy_to_mode_reg (SFmode, operands[1]); + + /* Take care of reg <- SF constant */ + if ( const_double_operand (operands[1], GET_MODE (operands[1]) ) ) + { + emit_insn (gen_movsf_high (operands[0], operands[1])); + emit_insn (gen_movsf_lo_sum (operands[0], operands[0], operands[1])); + DONE; + } +}") + +(define_insn "movsf_lo_sum" + [(set (match_operand:SF 0 "register_operand" "=r") + (lo_sum:SF (match_operand:SF 1 "register_operand" "r") + (match_operand:SF 2 "const_double_operand" "")))] + "" + "* +{ + REAL_VALUE_TYPE r; + long i; + + REAL_VALUE_FROM_CONST_DOUBLE (r, operands[2]); + REAL_VALUE_TO_TARGET_SINGLE (r, i); + operands[2] = GEN_INT (i); + return \"addiu\\t%0,%1,%%lo(%2) # low\"; +}" + [(set_attr "length" "4") + (set_attr "type" "arith")]) + +(define_insn "movsf_high" + [(set (match_operand:SF 0 "register_operand" "=r") + (high:SF (match_operand:SF 1 "const_double_operand" "")))] + "" + "* +{ + REAL_VALUE_TYPE r; + long i; + + REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]); + REAL_VALUE_TO_TARGET_SINGLE (r, i); + operands[1] = GEN_INT (i); + return \"lui\\t%0,%%hi(%1) # high\"; +}" + [(set_attr "length" "4") + (set_attr "type" "arith")]) + +(define_insn "*movsf_internal" + [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,m") + (match_operand:SF 1 "nonimmediate_operand" "r,m,r"))] + "!memory_operand (operands[0], SFmode) || !memory_operand (operands[1], SFmode)" + "* +{ + iq2000_fill_delay_slot (\"\", DELAY_LOAD, operands, insn); + if (which_alternative == 0) + return \"or\\t%0,%1,%1\"; + else if (which_alternative == 1) + return \"lw\\t%0,%1\"; + else if (which_alternative == 2) + return \"sw\\t%1,%0\"; +}" + [(set_attr "length" "4,4,4") + (set_attr "type" "arith,load,store")] +) + +;; +;; .................... +;; +;; SHIFTS +;; +;; .................... + +(define_expand "ashlsi3" + [(set (match_operand:SI 0 "register_operand" "=d") + (ashift:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "arith_operand" "dI")))] + "" + "") + +(define_insn "ashlsi3_internal1" + [(set (match_operand:SI 0 "register_operand" "=d") + (ashift:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "arith_operand" "dI")))] + "" + "* +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return \"sll\\t%0,%1,%2\"; + } + else + return \"sllv\\t%0,%1,%2\"; +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_expand "ashrsi3" + [(set (match_operand:SI 0 "register_operand" "=d") + (ashiftrt:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "arith_operand" "dI")))] + "" + "") + +(define_insn "ashrsi3_internal1" + [(set (match_operand:SI 0 "register_operand" "=d") + (ashiftrt:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "arith_operand" "dI")))] + "" + "* +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return \"sra\\t%0,%1,%2\"; + } + else + return \"srav\\t%0,%1,%2\"; +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_expand "lshrsi3" + [(set (match_operand:SI 0 "register_operand" "=d") + (lshiftrt:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "arith_operand" "dI")))] + "" + "") + +(define_insn "lshrsi3_internal1" + [(set (match_operand:SI 0 "register_operand" "=d") + (lshiftrt:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "arith_operand" "dI")))] + "" + "* +{ + if (GET_CODE (operands[2]) == CONST_INT) + { + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return \"srl\\t%0,%1,%2\"; + } + else + return \"srlv\\t%0,%1,%2\"; +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +;; Rotate Right +(define_insn "rotrsi3" + [(set (match_operand:SI 0 "register_operand" "=r") + (rotatert:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "uns_arith_operand" "O")))] + "" + "ram %0,%1,%2,0x0,0x0" + [(set_attr "type" "arith")]) + + +;; +;; .................... +;; +;; CONDITIONAL BRANCHES +;; +;; .................... + +(define_expand "cbranchsi4" + [(set (pc) + (if_then_else + (match_operator:SI 0 "ordered_comparison_operator" + [(match_operand:SI 1 "register_operand") + (match_operand:SI 2 "reg_or_const_operand")]) + (label_ref (match_operand:SI 3 "")) + (pc)))] + "" + " +{ + gen_conditional_branch (operands, SImode); + DONE; +}") + + +;; Conditional branches on comparisons with zero. + +(define_insn "branch_zero" + [(set (pc) + (if_then_else + (match_operator:SI 0 "cmp_op" + [(match_operand:SI 2 "register_operand" "d") + (const_int 0)]) + (label_ref (match_operand 1 "" "")) + (pc)))] + "" + "* +{ + return iq2000_output_conditional_branch (insn, + operands, + /*two_operands_p=*/0, + /*float_p=*/0, + /*inverted_p=*/0, + get_attr_length (insn)); +}" + [(set_attr "type" "branch") + (set_attr "mode" "none")]) + +(define_insn "branch_zero_inverted" + [(set (pc) + (if_then_else + (match_operator:SI 0 "cmp_op" + [(match_operand:SI 2 "register_operand" "d") + (const_int 0)]) + (pc) + (label_ref (match_operand 1 "" ""))))] + "" + "* +{ + return iq2000_output_conditional_branch (insn, + operands, + /*two_operands_p=*/0, + /*float_p=*/0, + /*inverted_p=*/1, + get_attr_length (insn)); +}" + [(set_attr "type" "branch") + (set_attr "mode" "none")]) + +;; Conditional branch on equality comparison. + +(define_insn "branch_equality" + [(set (pc) + (if_then_else + (match_operator:SI 0 "equality_op" + [(match_operand:SI 2 "register_operand" "d") + (match_operand:SI 3 "register_operand" "d")]) + (label_ref (match_operand 1 "" "")) + (pc)))] + "" + "* +{ + return iq2000_output_conditional_branch (insn, + operands, + /*two_operands_p=*/1, + /*float_p=*/0, + /*inverted_p=*/0, + get_attr_length (insn)); +}" + [(set_attr "type" "branch") + (set_attr "mode" "none")]) + +(define_insn "branch_equality_inverted" + [(set (pc) + (if_then_else + (match_operator:SI 0 "equality_op" + [(match_operand:SI 2 "register_operand" "d") + (match_operand:SI 3 "register_operand" "d")]) + (pc) + (label_ref (match_operand 1 "" ""))))] + "" + "* +{ + return iq2000_output_conditional_branch (insn, + operands, + /*two_operands_p=*/1, + /*float_p=*/0, + /*inverted_p=*/1, + get_attr_length (insn)); +}" + [(set_attr "type" "branch") + (set_attr "mode" "none")]) + + +;; Recognize bbi and bbin instructions. These use two unusual template +;; patterns, %Ax and %Px. %Ax outputs an 'i' if operand `x' is a LABEL_REF +;; otherwise it outputs an 'in'. %Px does nothing if `x' is PC +;; and outputs the operand if `x' is a LABEL_REF. + +(define_insn "" + [(set (pc) + (if_then_else + (ne (sign_extract:SI (match_operand:SI 0 "register_operand" "r") + (const_int 1) + (match_operand:SI 1 "arith_operand" "I")) + (const_int 0)) + (match_operand 2 "pc_or_label_operand" "") + (match_operand 3 "pc_or_label_operand" "")))] + "" + "bb%A2\\t%0(31-%1),%P2%P3" + [(set_attr "length" "4") + (set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else + (eq (sign_extract:SI (match_operand:SI 0 "register_operand" "r") + (const_int 1) + (match_operand:SI 1 "arith_operand" "I")) + (const_int 0)) + (match_operand 2 "pc_or_label_operand" "") + (match_operand 3 "pc_or_label_operand" "")))] + "" + "bb%A3\\t%0(31-%1),%P2%P3" + [(set_attr "length" "4") + (set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else + (ne (zero_extract:SI (match_operand:SI 0 "register_operand" "r") + (const_int 1) + (match_operand:SI 1 "arith_operand" "I")) + (const_int 0)) + (match_operand 2 "pc_or_label_operand" "") + (match_operand 3 "pc_or_label_operand" "")))] + "" + "bb%A2\\t%0(31-%1),%P2%P3" + [(set_attr "length" "4") + (set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else + (eq (zero_extract:SI (match_operand:SI 0 "register_operand" "r") + (const_int 1) + (match_operand:SI 1 "arith_operand" "I")) + (const_int 0)) + (match_operand 2 "pc_or_label_operand" "") + (match_operand 3 "pc_or_label_operand" "")))] + "" + "bb%A3\\t%0(31-%1),%P2%P3" + [(set_attr "length" "4") + (set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else + (eq (and:SI (match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "power_of_2_operand" "I")) + (const_int 0)) + (match_operand 2 "pc_or_label_operand" "") + (match_operand 3 "pc_or_label_operand" "")))] + "" + "bb%A3\\t%0(%p1),%P2%P3" + [(set_attr "length" "4") + (set_attr "type" "branch")]) + +(define_insn "" + [(set (pc) + (if_then_else + (ne (and:SI (match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "power_of_2_operand" "I")) + (const_int 0)) + (match_operand 2 "pc_or_label_operand" "") + (match_operand 3 "pc_or_label_operand" "")))] + "" + "bb%A2\\t%0(%p1),%P2%P3" + [(set_attr "length" "4") + (set_attr "type" "branch")]) + +;; +;; .................... +;; +;; SETTING A REGISTER FROM A COMPARISON +;; +;; .................... + +(define_expand "cstoresi4" + [(set (match_operand:SI 0 "register_operand" "=d") + (match_operator:SI 1 "ordered_comparison_operator" + [(match_operand:SI 2 "register_operand") + (match_operand:SI 3 "reg_or_const_operand")]))] + "" + " +{ + gen_int_relational (GET_CODE (operands[1]), operands[0], + operands[2], operands[3], (int *)0); + DONE; +}") + +(define_insn "seq_si_zero" + [(set (match_operand:SI 0 "register_operand" "=d") + (eq:SI (match_operand:SI 1 "register_operand" "d") + (const_int 0)))] + "" + "sltiu\\t%0,%1,1" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_insn "sne_si_zero" + [(set (match_operand:SI 0 "register_operand" "=d") + (ne:SI (match_operand:SI 1 "register_operand" "d") + (const_int 0)))] + "" + "sltu\\t%0,%.,%1" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_insn "sgt_si" + [(set (match_operand:SI 0 "register_operand" "=d,=d") + (gt:SI (match_operand:SI 1 "register_operand" "d,d") + (match_operand:SI 2 "reg_or_0_operand" "d,J")))] + "" + "@ + slt\\t%0,%z2,%1 + slt\\t%0,%z2,%1" + [(set_attr "type" "arith,arith") + (set_attr "mode" "SI,SI")]) + +(define_insn "slt_si" + [(set (match_operand:SI 0 "register_operand" "=d,=d") + (lt:SI (match_operand:SI 1 "register_operand" "d,d") + (match_operand:SI 2 "arith_operand" "d,I")))] + "" + "@ + slt\\t%0,%1,%2 + slti\\t%0,%1,%2" + [(set_attr "type" "arith,arith") + (set_attr "mode" "SI,SI")]) + +(define_insn "sle_si_const" + [(set (match_operand:SI 0 "register_operand" "=d") + (le:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "small_int" "I")))] + "INTVAL (operands[2]) < 32767" + "* +{ + operands[2] = GEN_INT (INTVAL (operands[2])+1); + return \"slti\\t%0,%1,%2\"; +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_insn "sgtu_si" + [(set (match_operand:SI 0 "register_operand" "=d") + (gtu:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "reg_or_0_operand" "dJ")))] + "" + "sltu\\t%0,%z2,%1" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=t") + (gtu:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "register_operand" "d")))] + "" + "sltu\\t%2,%1" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + +(define_insn "sltu_si" + [(set (match_operand:SI 0 "register_operand" "=d,=d") + (ltu:SI (match_operand:SI 1 "register_operand" "d,d") + (match_operand:SI 2 "arith_operand" "d,I")))] + "" + "@ + sltu\\t%0,%1,%2 + sltiu\\t%0,%1,%2" + [(set_attr "type" "arith,arith") + (set_attr "mode" "SI,SI")]) + +(define_insn "sleu_si_const" + [(set (match_operand:SI 0 "register_operand" "=d") + (leu:SI (match_operand:SI 1 "register_operand" "d") + (match_operand:SI 2 "small_int" "I")))] + "INTVAL (operands[2]) < 32767" + "* +{ + operands[2] = GEN_INT (INTVAL (operands[2]) + 1); + return \"sltiu\\t%0,%1,%2\"; +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI")]) + + +;; +;; .................... +;; +;; UNCONDITIONAL BRANCHES +;; +;; .................... + +;; Unconditional branches. + +(define_insn "jump" + [(set (pc) + (label_ref (match_operand 0 "" "")))] + "" + "* +{ + if (GET_CODE (operands[0]) == REG) + return \"j\\t%0\"; + return \"j\\t%l0\"; + /* return \"b\\t%l0\";*/ +}" + [(set_attr "type" "jump") + (set_attr "mode" "none")]) + +(define_expand "indirect_jump" + [(set (pc) (match_operand 0 "register_operand" "d"))] + "" + " +{ + rtx dest; + + if (operands[0]) /* eliminate unused code warnings */ + { + dest = operands[0]; + if (GET_CODE (dest) != REG || GET_MODE (dest) != Pmode) + operands[0] = copy_to_mode_reg (Pmode, dest); + + if (!(Pmode == DImode)) + emit_jump_insn (gen_indirect_jump_internal1 (operands[0])); + else + emit_jump_insn (gen_indirect_jump_internal2 (operands[0])); + + DONE; + } +}") + +(define_insn "indirect_jump_internal1" + [(set (pc) (match_operand:SI 0 "register_operand" "d"))] + "!(Pmode == DImode)" + "j\\t%0" + [(set_attr "type" "jump") + (set_attr "mode" "none")]) + +(define_expand "tablejump" + [(set (pc) + (match_operand 0 "register_operand" "d")) + (use (label_ref (match_operand 1 "" "")))] + "" + " +{ + if (operands[0]) /* eliminate unused code warnings */ + { + gcc_assert (GET_MODE (operands[0]) == Pmode); + + if (!(Pmode == DImode)) + emit_jump_insn (gen_tablejump_internal1 (operands[0], operands[1])); + else + emit_jump_insn (gen_tablejump_internal2 (operands[0], operands[1])); + + DONE; + } +}") + +(define_insn "tablejump_internal1" + [(set (pc) + (match_operand:SI 0 "register_operand" "d")) + (use (label_ref (match_operand 1 "" "")))] + "!(Pmode == DImode)" + "j\\t%0" + [(set_attr "type" "jump") + (set_attr "mode" "none")]) + +(define_expand "tablejump_internal3" + [(parallel [(set (pc) + (plus:SI (match_operand:SI 0 "register_operand" "d") + (label_ref:SI (match_operand 1 "" "")))) + (use (label_ref:SI (match_dup 1)))])] + "" + "") + +;;; Make sure that this only matches the insn before ADDR_DIFF_VEC. Otherwise +;;; it is not valid. ??? With the USE, the condition tests may not be required +;;; any longer. + +;;; ??? The length depends on the ABI. It is two for o32, and one for n32. +;;; We just use the conservative number here. + +(define_insn "" + [(set (pc) + (plus:SI (match_operand:SI 0 "register_operand" "d") + (label_ref:SI (match_operand 1 "" "")))) + (use (label_ref:SI (match_dup 1)))] + "!(Pmode == DImode) && next_active_insn (insn) != 0 + && GET_CODE (PATTERN (next_active_insn (insn))) == ADDR_DIFF_VEC + && PREV_INSN (next_active_insn (insn)) == operands[1]" + "* +{ + return \"j\\t%0\"; +}" + [(set_attr "type" "jump") + (set_attr "mode" "none") + (set_attr "length" "8")]) + +;; +;; .................... +;; +;; Function prologue/epilogue +;; +;; .................... +;; + +(define_expand "prologue" + [(const_int 1)] + "" + " +{ + if (iq2000_isa >= 0) /* avoid unused code warnings */ + { + iq2000_expand_prologue (); + DONE; + } +}") + +;; Block any insns from being moved before this point, since the +;; profiling call to mcount can use various registers that aren't +;; saved or used to pass arguments. + +(define_insn "blockage" + [(unspec_volatile [(const_int 0)] 0)] + "" + "" + [(set_attr "type" "unknown") + (set_attr "mode" "none") + (set_attr "length" "0")]) + +(define_expand "epilogue" + [(const_int 2)] + "" + " +{ + if (iq2000_isa >= 0) /* avoid unused code warnings */ + { + iq2000_expand_epilogue (); + DONE; + } +}") + +;; Trivial return. Make it look like a normal return insn as that +;; allows jump optimizations to work better . +(define_insn "return" + [(return)] + "iq2000_can_use_return_insn ()" + "j\\t%%31" + [(set_attr "type" "jump") + (set_attr "mode" "none")]) + +;; Normal return. + +(define_insn "return_internal" + [(use (match_operand 0 "pmode_register_operand" "")) + (return)] + "" + "* +{ + return \"j\\t%0\"; +}" + [(set_attr "type" "jump") + (set_attr "mode" "none")]) + +(define_insn "eh_return_internal" + [(const_int 4) + (return) + (use (reg:SI 26)) + (use (reg:SI 31))] + "" + "j\\t%%26" + [(set_attr "type" "jump") + (set_attr "mode" "none")]) + +(define_expand "eh_return" + [(use (match_operand:SI 0 "register_operand" "r"))] + "" + " +{ + iq2000_expand_eh_return (operands[0]); + DONE; +}") + + +;; +;; .................... +;; +;; FUNCTION CALLS +;; +;; .................... + +;; calls.c now passes a third argument, make saber happy + +(define_expand "call" + [(parallel [(call (match_operand 0 "memory_operand" "m") + (match_operand 1 "" "i")) + (clobber (reg:SI 31)) + (use (match_operand 2 "" "")) ;; next_arg_reg + (use (match_operand 3 "" ""))])] ;; struct_value_size_rtx + "" + " +{ + rtx addr; + + if (operands[0]) /* eliminate unused code warnings */ + { + addr = XEXP (operands[0], 0); + if ((GET_CODE (addr) != REG && (!CONSTANT_ADDRESS_P (addr))) + || ! call_insn_operand (addr, VOIDmode)) + XEXP (operands[0], 0) = copy_to_mode_reg (Pmode, addr); + + /* In order to pass small structures by value in registers + compatibly with the IQ2000 compiler, we need to shift the value + into the high part of the register. Function_arg has encoded + a PARALLEL rtx, holding a vector of adjustments to be made + as the next_arg_reg variable, so we split up the insns, + and emit them separately. */ + + if (operands[2] != (rtx)0 && GET_CODE (operands[2]) == PARALLEL) + { + rtvec adjust = XVEC (operands[2], 0); + int num = GET_NUM_ELEM (adjust); + int i; + + for (i = 0; i < num; i++) + emit_insn (RTVEC_ELT (adjust, i)); + } + + emit_call_insn (gen_call_internal0 (operands[0], operands[1], + gen_rtx_REG (SImode, + GP_REG_FIRST + 31))); + DONE; + } +}") + +(define_expand "call_internal0" + [(parallel [(call (match_operand 0 "" "") + (match_operand 1 "" "")) + (clobber (match_operand:SI 2 "" ""))])] + "" + "") + +(define_insn "call_internal1" + [(call (mem (match_operand 0 "call_insn_operand" "ri")) + (match_operand 1 "" "i")) + (clobber (match_operand:SI 2 "register_operand" "=d"))] + "" + "* +{ + register rtx target = operands[0]; + + if (GET_CODE (target) == CONST_INT) + return \"li\\t%@,%0\\n\\tjalr\\t%2,%@\"; + else if (CONSTANT_ADDRESS_P (target)) + return \"jal\\t%0\"; + else + return \"jalr\\t%2,%0\"; +}" + [(set_attr "type" "call") + (set_attr "mode" "none")]) + +;; calls.c now passes a fourth argument, make saber happy + +(define_expand "call_value" + [(parallel [(set (match_operand 0 "register_operand" "=df") + (call (match_operand 1 "memory_operand" "m") + (match_operand 2 "" "i"))) + (clobber (reg:SI 31)) + (use (match_operand 3 "" ""))])] ;; next_arg_reg + "" + " +{ + rtx addr; + + if (operands[0]) /* eliminate unused code warning */ + { + addr = XEXP (operands[1], 0); + if ((GET_CODE (addr) != REG && (!CONSTANT_ADDRESS_P (addr))) + || ! call_insn_operand (addr, VOIDmode)) + XEXP (operands[1], 0) = copy_to_mode_reg (Pmode, addr); + + /* In order to pass small structures by value in registers + compatibly with the IQ2000 compiler, we need to shift the value + into the high part of the register. Function_arg has encoded + a PARALLEL rtx, holding a vector of adjustments to be made + as the next_arg_reg variable, so we split up the insns, + and emit them separately. */ + + if (operands[3] != (rtx)0 && GET_CODE (operands[3]) == PARALLEL) + { + rtvec adjust = XVEC (operands[3], 0); + int num = GET_NUM_ELEM (adjust); + int i; + + for (i = 0; i < num; i++) + emit_insn (RTVEC_ELT (adjust, i)); + } + + if (GET_CODE (operands[0]) == PARALLEL && XVECLEN (operands[0], 0) > 1) + { + emit_call_insn (gen_call_value_multiple_internal0 + (XEXP (XVECEXP (operands[0], 0, 0), 0), + operands[1], operands[2], + XEXP (XVECEXP (operands[0], 0, 1), 0), + gen_rtx_REG (SImode, GP_REG_FIRST + 31))); + DONE; + } + + /* We have a call returning a DImode structure in an FP reg. + Strip off the now unnecessary PARALLEL. */ + if (GET_CODE (operands[0]) == PARALLEL) + operands[0] = XEXP (XVECEXP (operands[0], 0, 0), 0); + + emit_call_insn (gen_call_value_internal0 (operands[0], operands[1], operands[2], + gen_rtx_REG (SImode, + GP_REG_FIRST + 31))); + + DONE; + } +}") + +(define_expand "call_value_internal0" + [(parallel [(set (match_operand 0 "" "") + (call (match_operand 1 "" "") + (match_operand 2 "" ""))) + (clobber (match_operand:SI 3 "" ""))])] + "" + "") + +(define_insn "call_value_internal1" + [(set (match_operand 0 "register_operand" "=df") + (call (mem (match_operand 1 "call_insn_operand" "ri")) + (match_operand 2 "" "i"))) + (clobber (match_operand:SI 3 "register_operand" "=d"))] + "" + "* +{ + register rtx target = operands[1]; + + if (GET_CODE (target) == CONST_INT) + return \"li\\t%@,%1\\n\\tjalr\\t%3,%@\"; + else if (CONSTANT_ADDRESS_P (target)) + return \"jal\\t%1\"; + else + return \"jalr\\t%3,%1\"; +}" + [(set_attr "type" "call") + (set_attr "mode" "none")]) + +(define_expand "call_value_multiple_internal0" + [(parallel [(set (match_operand 0 "" "") + (call (match_operand 1 "" "") + (match_operand 2 "" ""))) + (set (match_operand 3 "" "") + (call (match_dup 1) + (match_dup 2))) + (clobber (match_operand:SI 4 "" ""))])] + "" + "") + +;; ??? May eventually need all 6 versions of the call patterns with multiple +;; return values. + +(define_insn "call_value_multiple_internal1" + [(set (match_operand 0 "register_operand" "=df") + (call (mem (match_operand 1 "call_insn_operand" "ri")) + (match_operand 2 "" "i"))) + (set (match_operand 3 "register_operand" "=df") + (call (mem (match_dup 1)) + (match_dup 2))) + (clobber (match_operand:SI 4 "register_operand" "=d"))] + "" + "* +{ + register rtx target = operands[1]; + + if (GET_CODE (target) == CONST_INT) + return \"li\\t%@,%1\\n\\tjalr\\t%4,%@\"; + else if (CONSTANT_ADDRESS_P (target)) + return \"jal\\t%1\"; + else + return \"jalr\\t%4,%1\"; +}" + [(set_attr "type" "call") + (set_attr "mode" "none")]) + +;; Call subroutine returning any type. + +(define_expand "untyped_call" + [(parallel [(call (match_operand 0 "" "") + (const_int 0)) + (match_operand 1 "" "") + (match_operand 2 "" "")])] + "" + " +{ + if (operands[0]) /* silence statement not reached warnings */ + { + int i; + + emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx)); + + for (i = 0; i < XVECLEN (operands[2], 0); i++) + { + rtx set = XVECEXP (operands[2], 0, i); + emit_move_insn (SET_DEST (set), SET_SRC (set)); + } + + emit_insn (gen_blockage ()); + DONE; + } +}") + +;; +;; .................... +;; +;; MISC. +;; +;; .................... +;; + +(define_insn "nop" + [(const_int 0)] + "" + "nop" + [(set_attr "type" "nop") + (set_attr "mode" "none")]) + + +;; For the rare case where we need to load an address into a register +;; that cannot be recognized by the normal movsi/addsi instructions. +;; I have no idea how many insns this can actually generate. It should +;; be rare, so over-estimating as 10 instructions should not have any +;; real performance impact. +(define_insn "leasi" + [(set (match_operand:SI 0 "register_operand" "=d") + (match_operand:SI 1 "address_operand" "p"))] + "Pmode == SImode" + "* +{ + rtx xoperands [3]; + + xoperands[0] = operands[0]; + xoperands[1] = XEXP (operands[1], 0); + xoperands[2] = XEXP (operands[1], 1); + output_asm_insn (\"addiu\\t%0,%1,%2\", xoperands); + return \"\"; +}" + [(set_attr "type" "arith") + (set_attr "mode" "SI") + (set_attr "length" "40")]) + +(define_insn "ado16" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec:SI [(match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "register_operand" "r")] + UNSPEC_ADO16))] + "" + "ado16\\t%0, %1, %2" +) + +(define_insn "ram" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec:SI [(match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "const_int_operand" "I") + (match_operand:SI 3 "const_int_operand" "I") + (match_operand:SI 4 "const_int_operand" "I")] + UNSPEC_RAM))] + "" + "ram\\t%0, %1, %2, %3, %4" +) + +(define_insn "chkhdr" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "=r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_CHKHDR)] + "" + "* return iq2000_fill_delay_slot (\"chkhdr\\t%0, %1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "pkrl" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_PKRL)] + "" + "* return iq2000_fill_delay_slot (\"pkrl\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "cfc0" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_CFC0))] + "" + "* return iq2000_fill_delay_slot (\"cfc0\\t%0, %%%1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "cfc1" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_CFC1))] + "" + "* return iq2000_fill_delay_slot (\"cfc1\\t%0, %%%1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "cfc2" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_CFC2))] + "" + "* return iq2000_fill_delay_slot (\"cfc2\\t%0, %%%1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "cfc3" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_CFC3))] + "" + "* return iq2000_fill_delay_slot (\"cfc3\\t%0, %%%1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "ctc0" + [(unspec_volatile:SI [(match_operand:SI 0 "reg_or_0_operand" "rJ") + (match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_CTC0)] + "" + "* return iq2000_fill_delay_slot (\"ctc0\\t%z0, %%%1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "ctc1" + [(unspec_volatile:SI [(match_operand:SI 0 "reg_or_0_operand" "rJ") + (match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_CTC1)] + "" + "* return iq2000_fill_delay_slot (\"ctc1\\t%z0, %%%1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "ctc2" + [(unspec_volatile:SI [(match_operand:SI 0 "reg_or_0_operand" "rJ") + (match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_CTC2)] + "" + "* return iq2000_fill_delay_slot (\"ctc2\\t%z0, %%%1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "ctc3" + [(unspec_volatile:SI [(match_operand:SI 0 "reg_or_0_operand" "rJ") + (match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_CTC3)] + "" + "* return iq2000_fill_delay_slot (\"ctc3\\t%z0, %%%1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "mfc0" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_MFC0))] + "" + "* return iq2000_fill_delay_slot (\"mfc0\\t%0, %%%1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "mfc1" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_MFC1))] + "" + "* return iq2000_fill_delay_slot (\"mfc1\\t%0, %%%1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "mfc2" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_MFC2))] + "" + "* return iq2000_fill_delay_slot (\"mfc2\\t%0, %%%1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "mfc3" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_MFC3))] + "" + "* return iq2000_fill_delay_slot (\"mfc3\\t%0, %%%1\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "mtc0" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_MTC0)] + "" + "* return iq2000_fill_delay_slot (\"mtc0\\t%0, %%%1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "mtc1" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_MTC1)] + "" + "* return iq2000_fill_delay_slot (\"mtc1\\t%0, %%%1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "mtc2" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_MTC2)] + "" + "* return iq2000_fill_delay_slot (\"mtc2\\t%0, %%%1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "mtc3" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "const_int_operand" "I")] + UNSPEC_MTC3)] + "" + "* return iq2000_fill_delay_slot (\"mtc3\\t%0, %%%1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "lur" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUR)] + "" + "* return iq2000_fill_delay_slot (\"lur\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "rb" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_RB)] + "" + "* return iq2000_fill_delay_slot (\"rb\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "rx" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_RX)] + "" + "* return iq2000_fill_delay_slot (\"rx\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "srrd" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")] + UNSPEC_SRRD)] + "" + "* return iq2000_fill_delay_slot (\"srrd\\t%0\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "srwr" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_SRWR)] + "" + "* return iq2000_fill_delay_slot (\"srwr\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "wb" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_WB)] + "" + "* return iq2000_fill_delay_slot (\"wb\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "wx" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_WX)] + "" + "* return iq2000_fill_delay_slot (\"wx\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "luc32" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUC32)] + "" + "* return iq2000_fill_delay_slot (\"luc32\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "luc32l" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUC32L)] + "" + "* return iq2000_fill_delay_slot (\"luc32l\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "luc64" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUC64)] + "" + "* return iq2000_fill_delay_slot (\"luc64\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "luc64l" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUC64L)] + "" + "* return iq2000_fill_delay_slot (\"luc64l\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "luk" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUK)] + "" + "* return iq2000_fill_delay_slot (\"luk\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "lulck" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")] + UNSPEC_LULCK)] + "" + "* return iq2000_fill_delay_slot (\"lulck\\t%0\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "lum32" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUM32)] + "" + "* return iq2000_fill_delay_slot (\"lum32\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "lum32l" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUM32L)] + "" + "* return iq2000_fill_delay_slot (\"lum32l\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "lum64" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUM64)] + "" + "* return iq2000_fill_delay_slot (\"lum64\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "lum64l" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LUM64L)] + "" + "* return iq2000_fill_delay_slot (\"lum64l\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "lurl" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_LURL)] + "" + "* return iq2000_fill_delay_slot (\"lurl\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "mrgb" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec_volatile:SI [(match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "register_operand" "r") + (match_operand:SI 3 "const_int_operand" "I")] + UNSPEC_MRGB))] + "" + "* return iq2000_fill_delay_slot (\"mrgb\\t%0, %1, %2, %3\", DELAY_LOAD, operands, insn);" + [(set_attr "dslot" "ok_in_dslot")] +) + +(define_insn "srrdl" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")] + UNSPEC_SRRDL)] + "" + "* return iq2000_fill_delay_slot (\"srrdl\\t%0\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "srulck" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")] + UNSPEC_SRULCK)] + "" + "* return iq2000_fill_delay_slot (\"srulck\\t%0\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "srwru" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_SRWRU)] + "" + "* return iq2000_fill_delay_slot (\"srwru\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "trapqfl" + [(unspec_volatile:SI [(const_int 1)] UNSPEC_TRAPQFL)] + "" + "* return iq2000_fill_delay_slot (\"trapqfl\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "trapqne" + [(unspec_volatile:SI [(const_int 2)] UNSPEC_TRAPQNE)] + "" + "* return iq2000_fill_delay_slot (\"trapqne\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "traprel" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r")] + UNSPEC_TRAPREL)] + "" + "* return iq2000_fill_delay_slot (\"traprel %0\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "wbu" + [(unspec_volatile:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] + UNSPEC_WBU)] + "" + "* return iq2000_fill_delay_slot (\"wbu\\t%0, %1\", DELAY_NONE, operands, insn);" + [(set_attr "dslot" "not_in_dslot")] +) + +(define_insn "syscall" + [(unspec_volatile:SI [(const_int 2)] UNSPEC_SYSCALL)] + "" + "syscall" + [(set_attr "dslot" "not_in_dslot")] +) Index: abi =================================================================== --- abi (nonexistent) +++ abi (revision 384) @@ -0,0 +1,239 @@ + IQ2000 ABI + ========= + +Sizes and alignments +-------------------- + + Type Size (bytes) Alignment (bytes) + + char 1 1 + short 2 2 + int 4 4 + unsigned 4 4 + long 4 4 + long long 8 8 + float 4 4 + double 8 8 + pointers 4 4 + +* alignment within aggregates (structs and unions) is as above, with + padding added if needed +* aggregates have alignment equal to that of their most aligned + member +* aggregates have sizes which are a multiple of their alignment + + +Floating point +-------------- + +All emulated using IEEE floating point conventions. + +Registers +---------------- + +%0 always zero +%1 call clobbered +%2 return value +%3 return value +%4 argument register 1 +%5 argument register 2 +%6 argument register 3 +%7 argument register 4 +%8 argument register 5 +%9 argument register 6 +%10 argument register 7 +%11 argument register 8 +%12 call clobbered +%13 call clobbered +%14 call clobbered +%15 call clobbered +%16 call saved +%17 call saved +%18 call saved +%19 call saved +%20 call saved +%21 call saved +%22 call saved +%23 call saved +%24 call clobbered +%25 call clobbered +%26 reserved +%27 frame ptr +%28 global ptr +%29 stack ptr +%30 reserved +%31 return address + +Stack alignment 8 bytes + +Structures passed <= 32 bits as values, else as pointers + +The IQ2000 Stack +--------------- + +Space is allocated as needed in the stack frame for the following at compile +time: + +* Outgoing parameters beyond the eighth + +* All automatic arrays, automatic data aggregates, automatic + scalars which must be addressable, and automatic scalars for + which there is no room in registers + +* Compiler-generated temporary values (typically when there are + too many for the compiler to keep them all in registers) + +Space can be allocated dynamically (at runtime) in the stack frame for the +following: + +* Memory allocated using the alloca() function of the C library + +Addressable automatic variables on the stack are addressed with positive +offsets relative to %27; dynamically allocated space is addressed with positive +offsets from the pointer returned by alloca(). + +Stack Frame +----------- + + +-----------------------+ + | Caller memory args | + +-----------------------+ <-sp + | Return address | + +-----------------------+ + | Previous FP | + +-----------------------+ + | Saved Registers | + +-----------------------+ + | ... | + +-----------------------+ + | Local Variables | + +-----------------------+ <-fp + | Alloca | + +-----------------------+ + | ... | + +-----------------------+ + | Parameter Word 2 | + +-----------------------+ + | Parameter Word 1 | + +-----------------------+ <-sp + + +Parameter Assignment to Registers +--------------------------------- + +Consider the parameters in a function call as ordered from left (first +parameter) to right. GR contains the number of the next available +general-purpose register. STARG is the address of the next available stack +parameter word. + +INITIALIZE: + Set GR=r4 and STARG to point to parameter word 1. + +SCAN: + If there are no more parameters, terminate. + Otherwise, select one of the following depending on the type + of the next parameter: + + SIMPLE ARG: + + A SIMPLE ARG is one of the following: + + * One of the simple integer types which will fit into a + general-purpose register, + * A pointer to an object of any type, + * A struct or union small enough to fit in a register (<= 32 bits) + * A larger struct or union, which shall be treated as a + pointer to the object or to a copy of the object. + (See below for when copies are made.) + + If GR > r11, go to STACK. Otherwise, load the parameter value into + general-purpose register GR and advance GR to the next general-purpose + register. Values shorter than the register size are sign-extended or + zero-extended depending on whether they are signed or unsigned. Then + go to SCAN. + + DOUBLE or LONG LONG + + If GR > r10, go to STACK. Otherwise, if GR is odd, advance GR to the + next register. Load the 64-bit long long or double value into register + pair GR and GR+1. Advance GR to GR+2 and go to SCAN. + + STACK: + + Parameters not otherwise handled above are passed in the parameter + words of the caller's stack frame. SIMPLE ARGs, as defined above, are + considered to have size and alignment equal to the size of a + general-purpose register, with simple argument types shorter than this + sign- or zero-extended to this width. Round STARG up to a multiple of + the alignment requirement of the parameter and copy the argument + byte-for-byte into STARG, STARG+1, ... STARG+size-1. Set STARG to + STARG+size and go to SCAN. + + +Structure passing +----------------- + +As noted above, code which passes structures and unions by value is implemented +specially. (In this section, "struct" will refer to structs and unions +inclusively.) Structs small enough to fit in a register are passed by value in +a single register or in a stack frame slot the size of a register. Structs +containing a single double or long long component are passed by value in two +registers or in a stack frame slot the size of two registers. Other structs +are handled by passing the address of the structure. In this case, a copy of +the structure will be made if necessary in order to preserve the pass-by-value +semantics. + +Copies of large structs are made under the following rules: + + ANSI mode K&R Mode + --------- -------- +Normal param Callee copies if needed Caller copies +Varargs (...) param Caller copies Caller copies + +In the case of normal (non-varargs) large-struct parameters in ANSI mode, the +callee is responsible for producing the same effect as if a copy of the +structure were passed, preserving the pass-by-value semantics. This may be +accomplished by having the callee make a copy, but in some cases the callee may +be able to determine that a copy is not necessary in order to produce the same +results. In such cases, the callee may choose to avoid making a copy of the +parameter. + + +Varargs handling +---------------- + +No special changes are needed for handling varargs parameters other than the +caller knowing that a copy is needed on struct parameters larger than a +register (see above). + +The varargs macros set up a register save area for the general-purpose +registers to be saved. Because the save area lies between the caller and +callee stack frames, the saved register parameters are contiguous with +parameters passed on the stack. A pointer advances from the register save area +into the caller's stack frame. + + +Function return values +---------------------- + + Type Register + ---- -------- + int r2 + short r2 + long r2 + long long r2-r3 + float r2 + double r2-r3 + struct/union see below + +Structs/unions which will fit into two general-purpose registers are returned +in r2, or in r2-r3 if necessary. Larger structs/unions are handled by the +caller passing as a "hidden" first argument a pointer to space allocated to +receive the return value. + + +Copyright (C) 2003 Free Software Foundation, Inc. + +Copying and distribution of this file, with or without modification, +are permitted in any medium without royalty provided the copyright +notice and this notice are preserved. Index: iq2000.c =================================================================== --- iq2000.c (nonexistent) +++ iq2000.c (revision 384) @@ -0,0 +1,3498 @@ +/* Subroutines used for code generation on Vitesse IQ2000 processors + Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include +#include "tm.h" +#include "tree.h" +#include "rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "real.h" +#include "insn-config.h" +#include "conditions.h" +#include "output.h" +#include "insn-attr.h" +#include "flags.h" +#include "function.h" +#include "expr.h" +#include "optabs.h" +#include "libfuncs.h" +#include "recog.h" +#include "toplev.h" +#include "reload.h" +#include "ggc.h" +#include "tm_p.h" +#include "debug.h" +#include "target.h" +#include "target-def.h" +#include "langhooks.h" + +/* Enumeration for all of the relational tests, so that we can build + arrays indexed by the test type, and not worry about the order + of EQ, NE, etc. */ + +enum internal_test + { + ITEST_EQ, + ITEST_NE, + ITEST_GT, + ITEST_GE, + ITEST_LT, + ITEST_LE, + ITEST_GTU, + ITEST_GEU, + ITEST_LTU, + ITEST_LEU, + ITEST_MAX + }; + +struct constant; + + +/* Structure to be filled in by compute_frame_size with register + save masks, and offsets for the current function. */ + +struct iq2000_frame_info +{ + long total_size; /* # bytes that the entire frame takes up. */ + long var_size; /* # bytes that variables take up. */ + long args_size; /* # bytes that outgoing arguments take up. */ + long extra_size; /* # bytes of extra gunk. */ + int gp_reg_size; /* # bytes needed to store gp regs. */ + int fp_reg_size; /* # bytes needed to store fp regs. */ + long mask; /* Mask of saved gp registers. */ + long gp_save_offset; /* Offset from vfp to store gp registers. */ + long fp_save_offset; /* Offset from vfp to store fp registers. */ + long gp_sp_offset; /* Offset from new sp to store gp registers. */ + long fp_sp_offset; /* Offset from new sp to store fp registers. */ + int initialized; /* != 0 if frame size already calculated. */ + int num_gp; /* Number of gp registers saved. */ +} iq2000_frame_info; + +struct GTY(()) machine_function +{ + /* Current frame information, calculated by compute_frame_size. */ + long total_size; /* # bytes that the entire frame takes up. */ + long var_size; /* # bytes that variables take up. */ + long args_size; /* # bytes that outgoing arguments take up. */ + long extra_size; /* # bytes of extra gunk. */ + int gp_reg_size; /* # bytes needed to store gp regs. */ + int fp_reg_size; /* # bytes needed to store fp regs. */ + long mask; /* Mask of saved gp registers. */ + long gp_save_offset; /* Offset from vfp to store gp registers. */ + long fp_save_offset; /* Offset from vfp to store fp registers. */ + long gp_sp_offset; /* Offset from new sp to store gp registers. */ + long fp_sp_offset; /* Offset from new sp to store fp registers. */ + int initialized; /* != 0 if frame size already calculated. */ + int num_gp; /* Number of gp registers saved. */ +}; + +/* Global variables for machine-dependent things. */ + +/* List of all IQ2000 punctuation characters used by print_operand. */ +char iq2000_print_operand_punct[256]; + +/* The target cpu for optimization and scheduling. */ +enum processor_type iq2000_tune; + +/* Which instruction set architecture to use. */ +int iq2000_isa; + +/* Local variables. */ + +/* The next branch instruction is a branch likely, not branch normal. */ +static int iq2000_branch_likely; + +/* Count of delay slots and how many are filled. */ +static int dslots_load_total; +static int dslots_load_filled; +static int dslots_jump_total; + +/* # of nops needed by previous insn. */ +static int dslots_number_nops; + +/* Number of 1/2/3 word references to data items (i.e., not jal's). */ +static int num_refs[3]; + +/* Registers to check for load delay. */ +static rtx iq2000_load_reg; +static rtx iq2000_load_reg2; +static rtx iq2000_load_reg3; +static rtx iq2000_load_reg4; + +/* Mode used for saving/restoring general purpose registers. */ +static enum machine_mode gpr_mode; + + +/* Initialize the GCC target structure. */ +static struct machine_function* iq2000_init_machine_status (void); +static bool iq2000_handle_option (size_t, const char *, int); +static section *iq2000_select_rtx_section (enum machine_mode, rtx, + unsigned HOST_WIDE_INT); +static void iq2000_init_builtins (void); +static rtx iq2000_expand_builtin (tree, rtx, rtx, enum machine_mode, int); +static bool iq2000_return_in_memory (const_tree, const_tree); +static void iq2000_setup_incoming_varargs (CUMULATIVE_ARGS *, + enum machine_mode, tree, int *, + int); +static bool iq2000_rtx_costs (rtx, int, int, int *, bool); +static int iq2000_address_cost (rtx, bool); +static section *iq2000_select_section (tree, int, unsigned HOST_WIDE_INT); +static rtx iq2000_legitimize_address (rtx, rtx, enum machine_mode); +static bool iq2000_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode, + const_tree, bool); +static int iq2000_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode, + tree, bool); +static void iq2000_va_start (tree, rtx); +static bool iq2000_legitimate_address_p (enum machine_mode, rtx, bool); +static bool iq2000_can_eliminate (const int, const int); +static void iq2000_asm_trampoline_template (FILE *); +static void iq2000_trampoline_init (rtx, tree, rtx); +static rtx iq2000_function_value (const_tree, const_tree, bool); +static rtx iq2000_libcall_value (enum machine_mode, const_rtx); + +#undef TARGET_INIT_BUILTINS +#define TARGET_INIT_BUILTINS iq2000_init_builtins +#undef TARGET_EXPAND_BUILTIN +#define TARGET_EXPAND_BUILTIN iq2000_expand_builtin +#undef TARGET_ASM_SELECT_RTX_SECTION +#define TARGET_ASM_SELECT_RTX_SECTION iq2000_select_rtx_section +#undef TARGET_HANDLE_OPTION +#define TARGET_HANDLE_OPTION iq2000_handle_option +#undef TARGET_RTX_COSTS +#define TARGET_RTX_COSTS iq2000_rtx_costs +#undef TARGET_ADDRESS_COST +#define TARGET_ADDRESS_COST iq2000_address_cost +#undef TARGET_ASM_SELECT_SECTION +#define TARGET_ASM_SELECT_SECTION iq2000_select_section + +#undef TARGET_LEGITIMIZE_ADDRESS +#define TARGET_LEGITIMIZE_ADDRESS iq2000_legitimize_address + +/* The assembler supports switchable .bss sections, but + iq2000_select_section doesn't yet make use of them. */ +#undef TARGET_HAVE_SWITCHABLE_BSS_SECTIONS +#define TARGET_HAVE_SWITCHABLE_BSS_SECTIONS false + +#undef TARGET_PROMOTE_FUNCTION_MODE +#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote +#undef TARGET_PROMOTE_PROTOTYPES +#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true + +#undef TARGET_FUNCTION_VALUE +#define TARGET_FUNCTION_VALUE iq2000_function_value +#undef TARGET_LIBCALL_VALUE +#define TARGET_LIBCALL_VALUE iq2000_libcall_value +#undef TARGET_RETURN_IN_MEMORY +#define TARGET_RETURN_IN_MEMORY iq2000_return_in_memory +#undef TARGET_PASS_BY_REFERENCE +#define TARGET_PASS_BY_REFERENCE iq2000_pass_by_reference +#undef TARGET_CALLEE_COPIES +#define TARGET_CALLEE_COPIES hook_callee_copies_named +#undef TARGET_ARG_PARTIAL_BYTES +#define TARGET_ARG_PARTIAL_BYTES iq2000_arg_partial_bytes + +#undef TARGET_SETUP_INCOMING_VARARGS +#define TARGET_SETUP_INCOMING_VARARGS iq2000_setup_incoming_varargs +#undef TARGET_STRICT_ARGUMENT_NAMING +#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true + +#undef TARGET_EXPAND_BUILTIN_VA_START +#define TARGET_EXPAND_BUILTIN_VA_START iq2000_va_start + +#undef TARGET_LEGITIMATE_ADDRESS_P +#define TARGET_LEGITIMATE_ADDRESS_P iq2000_legitimate_address_p + +#undef TARGET_CAN_ELIMINATE +#define TARGET_CAN_ELIMINATE iq2000_can_eliminate + +#undef TARGET_ASM_TRAMPOLINE_TEMPLATE +#define TARGET_ASM_TRAMPOLINE_TEMPLATE iq2000_asm_trampoline_template +#undef TARGET_TRAMPOLINE_INIT +#define TARGET_TRAMPOLINE_INIT iq2000_trampoline_init + +struct gcc_target targetm = TARGET_INITIALIZER; + +/* Return nonzero if we split the address into high and low parts. */ + +int +iq2000_check_split (rtx address, enum machine_mode mode) +{ + /* This is the same check used in simple_memory_operand. + We use it here because LO_SUM is not offsettable. */ + if (GET_MODE_SIZE (mode) > (unsigned) UNITS_PER_WORD) + return 0; + + if ((GET_CODE (address) == SYMBOL_REF) + || (GET_CODE (address) == CONST + && GET_CODE (XEXP (XEXP (address, 0), 0)) == SYMBOL_REF) + || GET_CODE (address) == LABEL_REF) + return 1; + + return 0; +} + +/* Return nonzero if REG is valid for MODE. */ + +int +iq2000_reg_mode_ok_for_base_p (rtx reg, + enum machine_mode mode ATTRIBUTE_UNUSED, + int strict) +{ + return (strict + ? REGNO_MODE_OK_FOR_BASE_P (REGNO (reg), mode) + : GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (reg), mode)); +} + +/* Return a nonzero value if XINSN is a legitimate address for a + memory operand of the indicated MODE. STRICT is nonzero if this + function is called during reload. */ + +bool +iq2000_legitimate_address_p (enum machine_mode mode, rtx xinsn, bool strict) +{ + if (TARGET_DEBUG_A_MODE) + { + GO_PRINTF2 ("\n========== legitimate_address_p, %sstrict\n", + strict ? "" : "not "); + GO_DEBUG_RTX (xinsn); + } + + /* Check for constant before stripping off SUBREG, so that we don't + accept (subreg (const_int)) which will fail to reload. */ + if (CONSTANT_ADDRESS_P (xinsn) + && ! (iq2000_check_split (xinsn, mode)) + && ! (GET_CODE (xinsn) == CONST_INT && ! SMALL_INT (xinsn))) + return 1; + + while (GET_CODE (xinsn) == SUBREG) + xinsn = SUBREG_REG (xinsn); + + if (GET_CODE (xinsn) == REG + && iq2000_reg_mode_ok_for_base_p (xinsn, mode, strict)) + return 1; + + if (GET_CODE (xinsn) == LO_SUM) + { + rtx xlow0 = XEXP (xinsn, 0); + rtx xlow1 = XEXP (xinsn, 1); + + while (GET_CODE (xlow0) == SUBREG) + xlow0 = SUBREG_REG (xlow0); + if (GET_CODE (xlow0) == REG + && iq2000_reg_mode_ok_for_base_p (xlow0, mode, strict) + && iq2000_check_split (xlow1, mode)) + return 1; + } + + if (GET_CODE (xinsn) == PLUS) + { + rtx xplus0 = XEXP (xinsn, 0); + rtx xplus1 = XEXP (xinsn, 1); + enum rtx_code code0; + enum rtx_code code1; + + while (GET_CODE (xplus0) == SUBREG) + xplus0 = SUBREG_REG (xplus0); + code0 = GET_CODE (xplus0); + + while (GET_CODE (xplus1) == SUBREG) + xplus1 = SUBREG_REG (xplus1); + code1 = GET_CODE (xplus1); + + if (code0 == REG + && iq2000_reg_mode_ok_for_base_p (xplus0, mode, strict)) + { + if (code1 == CONST_INT && SMALL_INT (xplus1) + && SMALL_INT_UNSIGNED (xplus1) /* No negative offsets */) + return 1; + } + } + + if (TARGET_DEBUG_A_MODE) + GO_PRINTF ("Not a enum machine_mode mode, legitimate address\n"); + + /* The address was not legitimate. */ + return 0; +} + +/* Returns an operand string for the given instruction's delay slot, + after updating filled delay slot statistics. + + We assume that operands[0] is the target register that is set. + + In order to check the next insn, most of this functionality is moved + to FINAL_PRESCAN_INSN, and we just set the global variables that + it needs. */ + +const char * +iq2000_fill_delay_slot (const char *ret, enum delay_type type, rtx operands[], + rtx cur_insn) +{ + rtx set_reg; + enum machine_mode mode; + rtx next_insn = cur_insn ? NEXT_INSN (cur_insn) : NULL_RTX; + int num_nops; + + if (type == DELAY_LOAD || type == DELAY_FCMP) + num_nops = 1; + + else + num_nops = 0; + + /* Make sure that we don't put nop's after labels. */ + next_insn = NEXT_INSN (cur_insn); + while (next_insn != 0 + && (GET_CODE (next_insn) == NOTE + || GET_CODE (next_insn) == CODE_LABEL)) + next_insn = NEXT_INSN (next_insn); + + dslots_load_total += num_nops; + if (TARGET_DEBUG_C_MODE + || type == DELAY_NONE + || operands == 0 + || cur_insn == 0 + || next_insn == 0 + || GET_CODE (next_insn) == CODE_LABEL + || (set_reg = operands[0]) == 0) + { + dslots_number_nops = 0; + iq2000_load_reg = 0; + iq2000_load_reg2 = 0; + iq2000_load_reg3 = 0; + iq2000_load_reg4 = 0; + + return ret; + } + + set_reg = operands[0]; + if (set_reg == 0) + return ret; + + while (GET_CODE (set_reg) == SUBREG) + set_reg = SUBREG_REG (set_reg); + + mode = GET_MODE (set_reg); + dslots_number_nops = num_nops; + iq2000_load_reg = set_reg; + if (GET_MODE_SIZE (mode) + > (unsigned) (UNITS_PER_WORD)) + iq2000_load_reg2 = gen_rtx_REG (SImode, REGNO (set_reg) + 1); + else + iq2000_load_reg2 = 0; + + return ret; +} + +/* Determine whether a memory reference takes one (based off of the GP + pointer), two (normal), or three (label + reg) instructions, and bump the + appropriate counter for -mstats. */ + +static void +iq2000_count_memory_refs (rtx op, int num) +{ + int additional = 0; + int n_words = 0; + rtx addr, plus0, plus1; + enum rtx_code code0, code1; + int looping; + + if (TARGET_DEBUG_B_MODE) + { + fprintf (stderr, "\n========== iq2000_count_memory_refs:\n"); + debug_rtx (op); + } + + /* Skip MEM if passed, otherwise handle movsi of address. */ + addr = (GET_CODE (op) != MEM) ? op : XEXP (op, 0); + + /* Loop, going through the address RTL. */ + do + { + looping = FALSE; + switch (GET_CODE (addr)) + { + case REG: + case CONST_INT: + case LO_SUM: + break; + + case PLUS: + plus0 = XEXP (addr, 0); + plus1 = XEXP (addr, 1); + code0 = GET_CODE (plus0); + code1 = GET_CODE (plus1); + + if (code0 == REG) + { + additional++; + addr = plus1; + looping = 1; + continue; + } + + if (code0 == CONST_INT) + { + addr = plus1; + looping = 1; + continue; + } + + if (code1 == REG) + { + additional++; + addr = plus0; + looping = 1; + continue; + } + + if (code1 == CONST_INT) + { + addr = plus0; + looping = 1; + continue; + } + + if (code0 == SYMBOL_REF || code0 == LABEL_REF || code0 == CONST) + { + addr = plus0; + looping = 1; + continue; + } + + if (code1 == SYMBOL_REF || code1 == LABEL_REF || code1 == CONST) + { + addr = plus1; + looping = 1; + continue; + } + + break; + + case LABEL_REF: + n_words = 2; /* Always 2 words. */ + break; + + case CONST: + addr = XEXP (addr, 0); + looping = 1; + continue; + + case SYMBOL_REF: + n_words = SYMBOL_REF_FLAG (addr) ? 1 : 2; + break; + + default: + break; + } + } + while (looping); + + if (n_words == 0) + return; + + n_words += additional; + if (n_words > 3) + n_words = 3; + + num_refs[n_words-1] += num; +} + +/* Abort after printing out a specific insn. */ + +static void +abort_with_insn (rtx insn, const char * reason) +{ + error (reason); + debug_rtx (insn); + fancy_abort (__FILE__, __LINE__, __FUNCTION__); +} + +/* Return the appropriate instructions to move one operand to another. */ + +const char * +iq2000_move_1word (rtx operands[], rtx insn, int unsignedp) +{ + const char *ret = 0; + rtx op0 = operands[0]; + rtx op1 = operands[1]; + enum rtx_code code0 = GET_CODE (op0); + enum rtx_code code1 = GET_CODE (op1); + enum machine_mode mode = GET_MODE (op0); + int subreg_offset0 = 0; + int subreg_offset1 = 0; + enum delay_type delay = DELAY_NONE; + + while (code0 == SUBREG) + { + subreg_offset0 += subreg_regno_offset (REGNO (SUBREG_REG (op0)), + GET_MODE (SUBREG_REG (op0)), + SUBREG_BYTE (op0), + GET_MODE (op0)); + op0 = SUBREG_REG (op0); + code0 = GET_CODE (op0); + } + + while (code1 == SUBREG) + { + subreg_offset1 += subreg_regno_offset (REGNO (SUBREG_REG (op1)), + GET_MODE (SUBREG_REG (op1)), + SUBREG_BYTE (op1), + GET_MODE (op1)); + op1 = SUBREG_REG (op1); + code1 = GET_CODE (op1); + } + + /* For our purposes, a condition code mode is the same as SImode. */ + if (mode == CCmode) + mode = SImode; + + if (code0 == REG) + { + int regno0 = REGNO (op0) + subreg_offset0; + + if (code1 == REG) + { + int regno1 = REGNO (op1) + subreg_offset1; + + /* Do not do anything for assigning a register to itself */ + if (regno0 == regno1) + ret = ""; + + else if (GP_REG_P (regno0)) + { + if (GP_REG_P (regno1)) + ret = "or\t%0,%%0,%1"; + } + + } + + else if (code1 == MEM) + { + delay = DELAY_LOAD; + + if (TARGET_STATS) + iq2000_count_memory_refs (op1, 1); + + if (GP_REG_P (regno0)) + { + /* For loads, use the mode of the memory item, instead of the + target, so zero/sign extend can use this code as well. */ + switch (GET_MODE (op1)) + { + default: + break; + case SFmode: + ret = "lw\t%0,%1"; + break; + case SImode: + case CCmode: + ret = "lw\t%0,%1"; + break; + case HImode: + ret = (unsignedp) ? "lhu\t%0,%1" : "lh\t%0,%1"; + break; + case QImode: + ret = (unsignedp) ? "lbu\t%0,%1" : "lb\t%0,%1"; + break; + } + } + } + + else if (code1 == CONST_INT + || (code1 == CONST_DOUBLE + && GET_MODE (op1) == VOIDmode)) + { + if (code1 == CONST_DOUBLE) + { + /* This can happen when storing constants into long long + bitfields. Just store the least significant word of + the value. */ + operands[1] = op1 = GEN_INT (CONST_DOUBLE_LOW (op1)); + } + + if (INTVAL (op1) == 0) + { + if (GP_REG_P (regno0)) + ret = "or\t%0,%%0,%z1"; + } + else if (GP_REG_P (regno0)) + { + if (SMALL_INT_UNSIGNED (op1)) + ret = "ori\t%0,%%0,%x1\t\t\t# %1"; + else if (SMALL_INT (op1)) + ret = "addiu\t%0,%%0,%1\t\t\t# %1"; + else + ret = "lui\t%0,%X1\t\t\t# %1\n\tori\t%0,%0,%x1"; + } + } + + else if (code1 == CONST_DOUBLE && mode == SFmode) + { + if (op1 == CONST0_RTX (SFmode)) + { + if (GP_REG_P (regno0)) + ret = "or\t%0,%%0,%."; + } + + else + { + delay = DELAY_LOAD; + ret = "li.s\t%0,%1"; + } + } + + else if (code1 == LABEL_REF) + { + if (TARGET_STATS) + iq2000_count_memory_refs (op1, 1); + + ret = "la\t%0,%a1"; + } + + else if (code1 == SYMBOL_REF || code1 == CONST) + { + if (TARGET_STATS) + iq2000_count_memory_refs (op1, 1); + + ret = "la\t%0,%a1"; + } + + else if (code1 == PLUS) + { + rtx add_op0 = XEXP (op1, 0); + rtx add_op1 = XEXP (op1, 1); + + if (GET_CODE (XEXP (op1, 1)) == REG + && GET_CODE (XEXP (op1, 0)) == CONST_INT) + add_op0 = XEXP (op1, 1), add_op1 = XEXP (op1, 0); + + operands[2] = add_op0; + operands[3] = add_op1; + ret = "add%:\t%0,%2,%3"; + } + + else if (code1 == HIGH) + { + operands[1] = XEXP (op1, 0); + ret = "lui\t%0,%%hi(%1)"; + } + } + + else if (code0 == MEM) + { + if (TARGET_STATS) + iq2000_count_memory_refs (op0, 1); + + if (code1 == REG) + { + int regno1 = REGNO (op1) + subreg_offset1; + + if (GP_REG_P (regno1)) + { + switch (mode) + { + case SFmode: ret = "sw\t%1,%0"; break; + case SImode: ret = "sw\t%1,%0"; break; + case HImode: ret = "sh\t%1,%0"; break; + case QImode: ret = "sb\t%1,%0"; break; + default: break; + } + } + } + + else if (code1 == CONST_INT && INTVAL (op1) == 0) + { + switch (mode) + { + case SFmode: ret = "sw\t%z1,%0"; break; + case SImode: ret = "sw\t%z1,%0"; break; + case HImode: ret = "sh\t%z1,%0"; break; + case QImode: ret = "sb\t%z1,%0"; break; + default: break; + } + } + + else if (code1 == CONST_DOUBLE && op1 == CONST0_RTX (mode)) + { + switch (mode) + { + case SFmode: ret = "sw\t%.,%0"; break; + case SImode: ret = "sw\t%.,%0"; break; + case HImode: ret = "sh\t%.,%0"; break; + case QImode: ret = "sb\t%.,%0"; break; + default: break; + } + } + } + + if (ret == 0) + { + abort_with_insn (insn, "Bad move"); + return 0; + } + + if (delay != DELAY_NONE) + return iq2000_fill_delay_slot (ret, delay, operands, insn); + + return ret; +} + +/* Provide the costs of an addressing mode that contains ADDR. */ + +static int +iq2000_address_cost (rtx addr, bool speed) +{ + switch (GET_CODE (addr)) + { + case LO_SUM: + return 1; + + case LABEL_REF: + return 2; + + case CONST: + { + rtx offset = const0_rtx; + + addr = eliminate_constant_term (XEXP (addr, 0), & offset); + if (GET_CODE (addr) == LABEL_REF) + return 2; + + if (GET_CODE (addr) != SYMBOL_REF) + return 4; + + if (! SMALL_INT (offset)) + return 2; + } + + /* Fall through. */ + + case SYMBOL_REF: + return SYMBOL_REF_FLAG (addr) ? 1 : 2; + + case PLUS: + { + rtx plus0 = XEXP (addr, 0); + rtx plus1 = XEXP (addr, 1); + + if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) + plus0 = XEXP (addr, 1), plus1 = XEXP (addr, 0); + + if (GET_CODE (plus0) != REG) + break; + + switch (GET_CODE (plus1)) + { + case CONST_INT: + return SMALL_INT (plus1) ? 1 : 2; + + case CONST: + case SYMBOL_REF: + case LABEL_REF: + case HIGH: + case LO_SUM: + return iq2000_address_cost (plus1, speed) + 1; + + default: + break; + } + } + + default: + break; + } + + return 4; +} + +/* Make normal rtx_code into something we can index from an array. */ + +static enum internal_test +map_test_to_internal_test (enum rtx_code test_code) +{ + enum internal_test test = ITEST_MAX; + + switch (test_code) + { + case EQ: test = ITEST_EQ; break; + case NE: test = ITEST_NE; break; + case GT: test = ITEST_GT; break; + case GE: test = ITEST_GE; break; + case LT: test = ITEST_LT; break; + case LE: test = ITEST_LE; break; + case GTU: test = ITEST_GTU; break; + case GEU: test = ITEST_GEU; break; + case LTU: test = ITEST_LTU; break; + case LEU: test = ITEST_LEU; break; + default: break; + } + + return test; +} + +/* Generate the code to do a TEST_CODE comparison on two integer values CMP0 + and CMP1. P_INVERT is NULL or ptr if branch needs to reverse its test. + The return value RESULT is: + (reg:SI xx) The pseudo register the comparison is in + 0 No register, generate a simple branch. */ + +rtx +gen_int_relational (enum rtx_code test_code, rtx result, rtx cmp0, rtx cmp1, + int *p_invert) +{ + struct cmp_info + { + enum rtx_code test_code; /* Code to use in instruction (LT vs. LTU). */ + int const_low; /* Low bound of constant we can accept. */ + int const_high; /* High bound of constant we can accept. */ + int const_add; /* Constant to add (convert LE -> LT). */ + int reverse_regs; /* Reverse registers in test. */ + int invert_const; /* != 0 if invert value if cmp1 is constant. */ + int invert_reg; /* != 0 if invert value if cmp1 is register. */ + int unsignedp; /* != 0 for unsigned comparisons. */ + }; + + static struct cmp_info info[ (int)ITEST_MAX ] = + { + { XOR, 0, 65535, 0, 0, 0, 0, 0 }, /* EQ */ + { XOR, 0, 65535, 0, 0, 1, 1, 0 }, /* NE */ + { LT, -32769, 32766, 1, 1, 1, 0, 0 }, /* GT */ + { LT, -32768, 32767, 0, 0, 1, 1, 0 }, /* GE */ + { LT, -32768, 32767, 0, 0, 0, 0, 0 }, /* LT */ + { LT, -32769, 32766, 1, 1, 0, 1, 0 }, /* LE */ + { LTU, -32769, 32766, 1, 1, 1, 0, 1 }, /* GTU */ + { LTU, -32768, 32767, 0, 0, 1, 1, 1 }, /* GEU */ + { LTU, -32768, 32767, 0, 0, 0, 0, 1 }, /* LTU */ + { LTU, -32769, 32766, 1, 1, 0, 1, 1 }, /* LEU */ + }; + + enum internal_test test; + enum machine_mode mode; + struct cmp_info *p_info; + int branch_p; + int eqne_p; + int invert; + rtx reg; + rtx reg2; + + test = map_test_to_internal_test (test_code); + gcc_assert (test != ITEST_MAX); + + p_info = &info[(int) test]; + eqne_p = (p_info->test_code == XOR); + + mode = GET_MODE (cmp0); + if (mode == VOIDmode) + mode = GET_MODE (cmp1); + + /* Eliminate simple branches. */ + branch_p = (result == 0); + if (branch_p) + { + if (GET_CODE (cmp0) == REG || GET_CODE (cmp0) == SUBREG) + { + /* Comparisons against zero are simple branches. */ + if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0) + return 0; + + /* Test for beq/bne. */ + if (eqne_p) + return 0; + } + + /* Allocate a pseudo to calculate the value in. */ + result = gen_reg_rtx (mode); + } + + /* Make sure we can handle any constants given to us. */ + if (GET_CODE (cmp0) == CONST_INT) + cmp0 = force_reg (mode, cmp0); + + if (GET_CODE (cmp1) == CONST_INT) + { + HOST_WIDE_INT value = INTVAL (cmp1); + + if (value < p_info->const_low + || value > p_info->const_high) + cmp1 = force_reg (mode, cmp1); + } + + /* See if we need to invert the result. */ + invert = (GET_CODE (cmp1) == CONST_INT + ? p_info->invert_const : p_info->invert_reg); + + if (p_invert != (int *)0) + { + *p_invert = invert; + invert = 0; + } + + /* Comparison to constants, may involve adding 1 to change a LT into LE. + Comparison between two registers, may involve switching operands. */ + if (GET_CODE (cmp1) == CONST_INT) + { + if (p_info->const_add != 0) + { + HOST_WIDE_INT new_const = INTVAL (cmp1) + p_info->const_add; + + /* If modification of cmp1 caused overflow, + we would get the wrong answer if we follow the usual path; + thus, x > 0xffffffffU would turn into x > 0U. */ + if ((p_info->unsignedp + ? (unsigned HOST_WIDE_INT) new_const > + (unsigned HOST_WIDE_INT) INTVAL (cmp1) + : new_const > INTVAL (cmp1)) + != (p_info->const_add > 0)) + { + /* This test is always true, but if INVERT is true then + the result of the test needs to be inverted so 0 should + be returned instead. */ + emit_move_insn (result, invert ? const0_rtx : const_true_rtx); + return result; + } + else + cmp1 = GEN_INT (new_const); + } + } + + else if (p_info->reverse_regs) + { + rtx temp = cmp0; + cmp0 = cmp1; + cmp1 = temp; + } + + if (test == ITEST_NE && GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0) + reg = cmp0; + else + { + reg = (invert || eqne_p) ? gen_reg_rtx (mode) : result; + convert_move (reg, gen_rtx_fmt_ee (p_info->test_code, mode, cmp0, cmp1), 0); + } + + if (test == ITEST_NE) + { + convert_move (result, gen_rtx_GTU (mode, reg, const0_rtx), 0); + if (p_invert != NULL) + *p_invert = 0; + invert = 0; + } + + else if (test == ITEST_EQ) + { + reg2 = invert ? gen_reg_rtx (mode) : result; + convert_move (reg2, gen_rtx_LTU (mode, reg, const1_rtx), 0); + reg = reg2; + } + + if (invert) + { + rtx one; + + one = const1_rtx; + convert_move (result, gen_rtx_XOR (mode, reg, one), 0); + } + + return result; +} + +/* Emit the common code for doing conditional branches. + operand[0] is the label to jump to. + The comparison operands are saved away by cmp{si,di,sf,df}. */ + +void +gen_conditional_branch (rtx operands[], enum machine_mode mode) +{ + enum rtx_code test_code = GET_CODE (operands[0]); + rtx cmp0 = operands[1]; + rtx cmp1 = operands[2]; + rtx reg; + int invert; + rtx label1, label2; + + invert = 0; + reg = gen_int_relational (test_code, NULL_RTX, cmp0, cmp1, &invert); + + if (reg) + { + cmp0 = reg; + cmp1 = const0_rtx; + test_code = NE; + } + else if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) != 0) + /* We don't want to build a comparison against a nonzero + constant. */ + cmp1 = force_reg (mode, cmp1); + + /* Generate the branch. */ + label1 = gen_rtx_LABEL_REF (VOIDmode, operands[3]); + label2 = pc_rtx; + + if (invert) + { + label2 = label1; + label1 = pc_rtx; + } + + emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, + gen_rtx_IF_THEN_ELSE (VOIDmode, + gen_rtx_fmt_ee (test_code, + mode, + cmp0, cmp1), + label1, label2))); +} + +/* Initialize CUM for a function FNTYPE. */ + +void +init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, + rtx libname ATTRIBUTE_UNUSED) +{ + static CUMULATIVE_ARGS zero_cum; + tree param; + tree next_param; + + if (TARGET_DEBUG_D_MODE) + { + fprintf (stderr, + "\ninit_cumulative_args, fntype = 0x%.8lx", (long) fntype); + + if (!fntype) + fputc ('\n', stderr); + + else + { + tree ret_type = TREE_TYPE (fntype); + + fprintf (stderr, ", fntype code = %s, ret code = %s\n", + tree_code_name[(int)TREE_CODE (fntype)], + tree_code_name[(int)TREE_CODE (ret_type)]); + } + } + + *cum = zero_cum; + + /* Determine if this function has variable arguments. This is + indicated by the last argument being 'void_type_mode' if there + are no variable arguments. The standard IQ2000 calling sequence + passes all arguments in the general purpose registers in this case. */ + + for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0; + param != 0; param = next_param) + { + next_param = TREE_CHAIN (param); + if (next_param == 0 && TREE_VALUE (param) != void_type_node) + cum->gp_reg_found = 1; + } +} + +/* Advance the argument of type TYPE and mode MODE to the next argument + position in CUM. */ + +void +function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, + int named) +{ + if (TARGET_DEBUG_D_MODE) + { + fprintf (stderr, + "function_adv({gp reg found = %d, arg # = %2d, words = %2d}, %4s, ", + cum->gp_reg_found, cum->arg_number, cum->arg_words, + GET_MODE_NAME (mode)); + fprintf (stderr, "%p", (void *) type); + fprintf (stderr, ", %d )\n\n", named); + } + + cum->arg_number++; + switch (mode) + { + case VOIDmode: + break; + + default: + gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT + || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); + + cum->gp_reg_found = 1; + cum->arg_words += ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) + / UNITS_PER_WORD); + break; + + case BLKmode: + cum->gp_reg_found = 1; + cum->arg_words += ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) + / UNITS_PER_WORD); + break; + + case SFmode: + cum->arg_words ++; + if (! cum->gp_reg_found && cum->arg_number <= 2) + cum->fp_code += 1 << ((cum->arg_number - 1) * 2); + break; + + case DFmode: + cum->arg_words += 2; + if (! cum->gp_reg_found && cum->arg_number <= 2) + cum->fp_code += 2 << ((cum->arg_number - 1) * 2); + break; + + case DImode: + cum->gp_reg_found = 1; + cum->arg_words += 2; + break; + + case TImode: + cum->gp_reg_found = 1; + cum->arg_words += 4; + break; + + case QImode: + case HImode: + case SImode: + cum->gp_reg_found = 1; + cum->arg_words ++; + break; + } +} + +/* Return an RTL expression containing the register for the given mode MODE + and type TYPE in CUM, or 0 if the argument is to be passed on the stack. */ + +struct rtx_def * +function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, const_tree type, + int named) +{ + rtx ret; + int regbase = -1; + int bias = 0; + unsigned int *arg_words = &cum->arg_words; + int struct_p = (type != 0 + && (TREE_CODE (type) == RECORD_TYPE + || TREE_CODE (type) == UNION_TYPE + || TREE_CODE (type) == QUAL_UNION_TYPE)); + + if (TARGET_DEBUG_D_MODE) + { + fprintf (stderr, + "function_arg( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, ", + cum->gp_reg_found, cum->arg_number, cum->arg_words, + GET_MODE_NAME (mode)); + fprintf (stderr, "%p", (const void *) type); + fprintf (stderr, ", %d ) = ", named); + } + + + cum->last_arg_fp = 0; + switch (mode) + { + case SFmode: + regbase = GP_ARG_FIRST; + break; + + case DFmode: + cum->arg_words += cum->arg_words & 1; + + regbase = GP_ARG_FIRST; + break; + + default: + gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT + || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); + + /* Drops through. */ + case BLKmode: + if (type != NULL_TREE && TYPE_ALIGN (type) > (unsigned) BITS_PER_WORD) + cum->arg_words += (cum->arg_words & 1); + regbase = GP_ARG_FIRST; + break; + + case VOIDmode: + case QImode: + case HImode: + case SImode: + regbase = GP_ARG_FIRST; + break; + + case DImode: + cum->arg_words += (cum->arg_words & 1); + regbase = GP_ARG_FIRST; + break; + + case TImode: + cum->arg_words += (cum->arg_words & 3); + regbase = GP_ARG_FIRST; + break; + } + + if (*arg_words >= (unsigned) MAX_ARGS_IN_REGISTERS) + { + if (TARGET_DEBUG_D_MODE) + fprintf (stderr, "%s\n", struct_p ? ", [struct]" : ""); + + ret = 0; + } + else + { + gcc_assert (regbase != -1); + + if (! type || TREE_CODE (type) != RECORD_TYPE + || ! named || ! TYPE_SIZE_UNIT (type) + || ! host_integerp (TYPE_SIZE_UNIT (type), 1)) + ret = gen_rtx_REG (mode, regbase + *arg_words + bias); + else + { + tree field; + + for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL + && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE + && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD + && host_integerp (bit_position (field), 0) + && int_bit_position (field) % BITS_PER_WORD == 0) + break; + + /* If the whole struct fits a DFmode register, + we don't need the PARALLEL. */ + if (! field || mode == DFmode) + ret = gen_rtx_REG (mode, regbase + *arg_words + bias); + else + { + unsigned int chunks; + HOST_WIDE_INT bitpos; + unsigned int regno; + unsigned int i; + + /* ??? If this is a packed structure, then the last hunk won't + be 64 bits. */ + chunks + = tree_low_cst (TYPE_SIZE_UNIT (type), 1) / UNITS_PER_WORD; + if (chunks + *arg_words + bias > (unsigned) MAX_ARGS_IN_REGISTERS) + chunks = MAX_ARGS_IN_REGISTERS - *arg_words - bias; + + /* Assign_parms checks the mode of ENTRY_PARM, so we must + use the actual mode here. */ + ret = gen_rtx_PARALLEL (mode, rtvec_alloc (chunks)); + + bitpos = 0; + regno = regbase + *arg_words + bias; + field = TYPE_FIELDS (type); + for (i = 0; i < chunks; i++) + { + rtx reg; + + for (; field; field = TREE_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL + && int_bit_position (field) >= bitpos) + break; + + if (field + && int_bit_position (field) == bitpos + && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE + && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD) + reg = gen_rtx_REG (DFmode, regno++); + else + reg = gen_rtx_REG (word_mode, regno); + + XVECEXP (ret, 0, i) + = gen_rtx_EXPR_LIST (VOIDmode, reg, + GEN_INT (bitpos / BITS_PER_UNIT)); + + bitpos += 64; + regno++; + } + } + } + + if (TARGET_DEBUG_D_MODE) + fprintf (stderr, "%s%s\n", reg_names[regbase + *arg_words + bias], + struct_p ? ", [struct]" : ""); + } + + /* We will be called with a mode of VOIDmode after the last argument + has been seen. Whatever we return will be passed to the call + insn. If we need any shifts for small structures, return them in + a PARALLEL. */ + if (mode == VOIDmode) + { + if (cum->num_adjusts > 0) + ret = gen_rtx_PARALLEL ((enum machine_mode) cum->fp_code, + gen_rtvec_v (cum->num_adjusts, cum->adjust)); + } + + return ret; +} + +static int +iq2000_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode, + tree type ATTRIBUTE_UNUSED, + bool named ATTRIBUTE_UNUSED) +{ + if (mode == DImode && cum->arg_words == MAX_ARGS_IN_REGISTERS - 1) + { + if (TARGET_DEBUG_D_MODE) + fprintf (stderr, "iq2000_arg_partial_bytes=%d\n", UNITS_PER_WORD); + return UNITS_PER_WORD; + } + + return 0; +} + +/* Implement va_start. */ + +static void +iq2000_va_start (tree valist, rtx nextarg) +{ + int int_arg_words; + /* Find out how many non-float named formals. */ + int gpr_save_area_size; + /* Note UNITS_PER_WORD is 4 bytes. */ + int_arg_words = crtl->args.info.arg_words; + + if (int_arg_words < 8 ) + /* Adjust for the prologue's economy measure. */ + gpr_save_area_size = (8 - int_arg_words) * UNITS_PER_WORD; + else + gpr_save_area_size = 0; + + /* Everything is in the GPR save area, or in the overflow + area which is contiguous with it. */ + nextarg = plus_constant (nextarg, - gpr_save_area_size); + std_expand_builtin_va_start (valist, nextarg); +} + +/* Allocate a chunk of memory for per-function machine-dependent data. */ + +static struct machine_function * +iq2000_init_machine_status (void) +{ + struct machine_function *f; + + f = GGC_CNEW (struct machine_function); + + return f; +} + +/* Implement TARGET_HANDLE_OPTION. */ + +static bool +iq2000_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED) +{ + switch (code) + { + case OPT_mcpu_: + if (strcmp (arg, "iq10") == 0) + iq2000_tune = PROCESSOR_IQ10; + else if (strcmp (arg, "iq2000") == 0) + iq2000_tune = PROCESSOR_IQ2000; + else + return false; + return true; + + case OPT_march_: + /* This option has no effect at the moment. */ + return (strcmp (arg, "default") == 0 + || strcmp (arg, "DEFAULT") == 0 + || strcmp (arg, "iq2000") == 0); + + default: + return true; + } +} + +/* Detect any conflicts in the switches. */ + +void +override_options (void) +{ + target_flags &= ~MASK_GPOPT; + + iq2000_isa = IQ2000_ISA_DEFAULT; + + /* Identify the processor type. */ + + iq2000_print_operand_punct['?'] = 1; + iq2000_print_operand_punct['#'] = 1; + iq2000_print_operand_punct['&'] = 1; + iq2000_print_operand_punct['!'] = 1; + iq2000_print_operand_punct['*'] = 1; + iq2000_print_operand_punct['@'] = 1; + iq2000_print_operand_punct['.'] = 1; + iq2000_print_operand_punct['('] = 1; + iq2000_print_operand_punct[')'] = 1; + iq2000_print_operand_punct['['] = 1; + iq2000_print_operand_punct[']'] = 1; + iq2000_print_operand_punct['<'] = 1; + iq2000_print_operand_punct['>'] = 1; + iq2000_print_operand_punct['{'] = 1; + iq2000_print_operand_punct['}'] = 1; + iq2000_print_operand_punct['^'] = 1; + iq2000_print_operand_punct['$'] = 1; + iq2000_print_operand_punct['+'] = 1; + iq2000_print_operand_punct['~'] = 1; + + /* Save GPR registers in word_mode sized hunks. word_mode hasn't been + initialized yet, so we can't use that here. */ + gpr_mode = SImode; + + /* Function to allocate machine-dependent function status. */ + init_machine_status = iq2000_init_machine_status; +} + +/* The arg pointer (which is eliminated) points to the virtual frame pointer, + while the frame pointer (which may be eliminated) points to the stack + pointer after the initial adjustments. */ + +HOST_WIDE_INT +iq2000_debugger_offset (rtx addr, HOST_WIDE_INT offset) +{ + rtx offset2 = const0_rtx; + rtx reg = eliminate_constant_term (addr, & offset2); + + if (offset == 0) + offset = INTVAL (offset2); + + if (reg == stack_pointer_rtx || reg == frame_pointer_rtx + || reg == hard_frame_pointer_rtx) + { + HOST_WIDE_INT frame_size = (!cfun->machine->initialized) + ? compute_frame_size (get_frame_size ()) + : cfun->machine->total_size; + + offset = offset - frame_size; + } + + return offset; +} + +/* If defined, a C statement to be executed just prior to the output of + assembler code for INSN, to modify the extracted operands so they will be + output differently. + + Here the argument OPVEC is the vector containing the operands extracted + from INSN, and NOPERANDS is the number of elements of the vector which + contain meaningful data for this insn. The contents of this vector are + what will be used to convert the insn template into assembler code, so you + can change the assembler output by changing the contents of the vector. + + We use it to check if the current insn needs a nop in front of it because + of load delays, and also to update the delay slot statistics. */ + +void +final_prescan_insn (rtx insn, rtx opvec[] ATTRIBUTE_UNUSED, + int noperands ATTRIBUTE_UNUSED) +{ + if (dslots_number_nops > 0) + { + rtx pattern = PATTERN (insn); + int length = get_attr_length (insn); + + /* Do we need to emit a NOP? */ + if (length == 0 + || (iq2000_load_reg != 0 && reg_mentioned_p (iq2000_load_reg, pattern)) + || (iq2000_load_reg2 != 0 && reg_mentioned_p (iq2000_load_reg2, pattern)) + || (iq2000_load_reg3 != 0 && reg_mentioned_p (iq2000_load_reg3, pattern)) + || (iq2000_load_reg4 != 0 + && reg_mentioned_p (iq2000_load_reg4, pattern))) + fputs ("\tnop\n", asm_out_file); + + else + dslots_load_filled ++; + + while (--dslots_number_nops > 0) + fputs ("\tnop\n", asm_out_file); + + iq2000_load_reg = 0; + iq2000_load_reg2 = 0; + iq2000_load_reg3 = 0; + iq2000_load_reg4 = 0; + } + + if ( (GET_CODE (insn) == JUMP_INSN + || GET_CODE (insn) == CALL_INSN + || (GET_CODE (PATTERN (insn)) == RETURN)) + && NEXT_INSN (PREV_INSN (insn)) == insn) + { + rtx nop_insn = emit_insn_after (gen_nop (), insn); + + INSN_ADDRESSES_NEW (nop_insn, -1); + } + + if (TARGET_STATS + && (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)) + dslots_jump_total ++; +} + +/* Return the bytes needed to compute the frame pointer from the current + stack pointer where SIZE is the # of var. bytes allocated. + + IQ2000 stack frames look like: + + Before call After call + +-----------------------+ +-----------------------+ + high | | | | + mem. | | | | + | caller's temps. | | caller's temps. | + | | | | + +-----------------------+ +-----------------------+ + | | | | + | arguments on stack. | | arguments on stack. | + | | | | + +-----------------------+ +-----------------------+ + | 4 words to save | | 4 words to save | + | arguments passed | | arguments passed | + | in registers, even | | in registers, even | + SP->| if not passed. | VFP->| if not passed. | + +-----------------------+ +-----------------------+ + | | + | fp register save | + | | + +-----------------------+ + | | + | gp register save | + | | + +-----------------------+ + | | + | local variables | + | | + +-----------------------+ + | | + | alloca allocations | + | | + +-----------------------+ + | | + | GP save for V.4 abi | + | | + +-----------------------+ + | | + | arguments on stack | + | | + +-----------------------+ + | 4 words to save | + | arguments passed | + | in registers, even | + low SP->| if not passed. | + memory +-----------------------+ */ + +HOST_WIDE_INT +compute_frame_size (HOST_WIDE_INT size) +{ + int regno; + HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up. */ + HOST_WIDE_INT var_size; /* # bytes that variables take up. */ + HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up. */ + HOST_WIDE_INT extra_size; /* # extra bytes. */ + HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding. */ + HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs. */ + HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs. */ + long mask; /* mask of saved gp registers. */ + int fp_inc; /* 1 or 2 depending on the size of fp regs. */ + long fp_bits; /* bitmask to use for each fp register. */ + + gp_reg_size = 0; + fp_reg_size = 0; + mask = 0; + extra_size = IQ2000_STACK_ALIGN ((0)); + var_size = IQ2000_STACK_ALIGN (size); + args_size = IQ2000_STACK_ALIGN (crtl->outgoing_args_size); + + /* If a function dynamically allocates the stack and + has 0 for STACK_DYNAMIC_OFFSET then allocate some stack space. */ + if (args_size == 0 && cfun->calls_alloca) + args_size = 4 * UNITS_PER_WORD; + + total_size = var_size + args_size + extra_size; + + /* Calculate space needed for gp registers. */ + for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++) + { + if (MUST_SAVE_REGISTER (regno)) + { + gp_reg_size += GET_MODE_SIZE (gpr_mode); + mask |= 1L << (regno - GP_REG_FIRST); + } + } + + /* We need to restore these for the handler. */ + if (crtl->calls_eh_return) + { + unsigned int i; + + for (i = 0; ; ++i) + { + regno = EH_RETURN_DATA_REGNO (i); + if (regno == (int) INVALID_REGNUM) + break; + gp_reg_size += GET_MODE_SIZE (gpr_mode); + mask |= 1L << (regno - GP_REG_FIRST); + } + } + + fp_inc = 2; + fp_bits = 3; + gp_reg_rounded = IQ2000_STACK_ALIGN (gp_reg_size); + total_size += gp_reg_rounded + IQ2000_STACK_ALIGN (fp_reg_size); + + /* The gp reg is caller saved, so there is no need for leaf routines + (total_size == extra_size) to save the gp reg. */ + if (total_size == extra_size + && ! profile_flag) + total_size = extra_size = 0; + + total_size += IQ2000_STACK_ALIGN (crtl->args.pretend_args_size); + + /* Save other computed information. */ + cfun->machine->total_size = total_size; + cfun->machine->var_size = var_size; + cfun->machine->args_size = args_size; + cfun->machine->extra_size = extra_size; + cfun->machine->gp_reg_size = gp_reg_size; + cfun->machine->fp_reg_size = fp_reg_size; + cfun->machine->mask = mask; + cfun->machine->initialized = reload_completed; + cfun->machine->num_gp = gp_reg_size / UNITS_PER_WORD; + + if (mask) + { + unsigned long offset; + + offset = (args_size + extra_size + var_size + + gp_reg_size - GET_MODE_SIZE (gpr_mode)); + + cfun->machine->gp_sp_offset = offset; + cfun->machine->gp_save_offset = offset - total_size; + } + else + { + cfun->machine->gp_sp_offset = 0; + cfun->machine->gp_save_offset = 0; + } + + cfun->machine->fp_sp_offset = 0; + cfun->machine->fp_save_offset = 0; + + /* Ok, we're done. */ + return total_size; +} + + +/* We can always eliminate to the frame pointer. We can eliminate to the + stack pointer unless a frame pointer is needed. */ + +bool +iq2000_can_eliminate (const int from, const int to) +{ + return (from == RETURN_ADDRESS_POINTER_REGNUM + && (! leaf_function_p () + || (to == GP_REG_FIRST + 31 && leaf_function_p))) + || (from != RETURN_ADDRESS_POINTER_REGNUM + && (to == HARD_FRAME_POINTER_REGNUM + || (to == STACK_POINTER_REGNUM + && ! frame_pointer_needed))); +} + +/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame + pointer, argument pointer, or return address pointer. TO is either + the stack pointer or hard frame pointer. */ + +int +iq2000_initial_elimination_offset (int from, int to ATTRIBUTE_UNUSED) +{ + int offset; + + compute_frame_size (get_frame_size ()); + if ((from) == FRAME_POINTER_REGNUM) + (offset) = 0; + else if ((from) == ARG_POINTER_REGNUM) + (offset) = (cfun->machine->total_size); + else if ((from) == RETURN_ADDRESS_POINTER_REGNUM) + { + if (leaf_function_p ()) + (offset) = 0; + else (offset) = cfun->machine->gp_sp_offset + + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) + * (BYTES_BIG_ENDIAN != 0)); + } + + return offset; +} + +/* Common code to emit the insns (or to write the instructions to a file) + to save/restore registers. + Other parts of the code assume that IQ2000_TEMP1_REGNUM (aka large_reg) + is not modified within save_restore_insns. */ + +#define BITSET_P(VALUE,BIT) (((VALUE) & (1L << (BIT))) != 0) + +/* Emit instructions to load the value (SP + OFFSET) into IQ2000_TEMP2_REGNUM + and return an rtl expression for the register. Write the assembly + instructions directly to FILE if it is not null, otherwise emit them as + rtl. + + This function is a subroutine of save_restore_insns. It is used when + OFFSET is too large to add in a single instruction. */ + +static rtx +iq2000_add_large_offset_to_sp (HOST_WIDE_INT offset) +{ + rtx reg = gen_rtx_REG (Pmode, IQ2000_TEMP2_REGNUM); + rtx offset_rtx = GEN_INT (offset); + + emit_move_insn (reg, offset_rtx); + emit_insn (gen_addsi3 (reg, reg, stack_pointer_rtx)); + return reg; +} + +/* Make INSN frame related and note that it performs the frame-related + operation DWARF_PATTERN. */ + +static void +iq2000_annotate_frame_insn (rtx insn, rtx dwarf_pattern) +{ + RTX_FRAME_RELATED_P (insn) = 1; + REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR, + dwarf_pattern, + REG_NOTES (insn)); +} + +/* Emit a move instruction that stores REG in MEM. Make the instruction + frame related and note that it stores REG at (SP + OFFSET). */ + +static void +iq2000_emit_frame_related_store (rtx mem, rtx reg, HOST_WIDE_INT offset) +{ + rtx dwarf_address = plus_constant (stack_pointer_rtx, offset); + rtx dwarf_mem = gen_rtx_MEM (GET_MODE (reg), dwarf_address); + + iq2000_annotate_frame_insn (emit_move_insn (mem, reg), + gen_rtx_SET (GET_MODE (reg), dwarf_mem, reg)); +} + +/* Emit instructions to save/restore registers, as determined by STORE_P. */ + +static void +save_restore_insns (int store_p) +{ + long mask = cfun->machine->mask; + int regno; + rtx base_reg_rtx; + HOST_WIDE_INT base_offset; + HOST_WIDE_INT gp_offset; + HOST_WIDE_INT end_offset; + + gcc_assert (!frame_pointer_needed + || BITSET_P (mask, HARD_FRAME_POINTER_REGNUM - GP_REG_FIRST)); + + if (mask == 0) + { + base_reg_rtx = 0, base_offset = 0; + return; + } + + /* Save registers starting from high to low. The debuggers prefer at least + the return register be stored at func+4, and also it allows us not to + need a nop in the epilog if at least one register is reloaded in + addition to return address. */ + + /* Save GP registers if needed. */ + /* Pick which pointer to use as a base register. For small frames, just + use the stack pointer. Otherwise, use a temporary register. Save 2 + cycles if the save area is near the end of a large frame, by reusing + the constant created in the prologue/epilogue to adjust the stack + frame. */ + + gp_offset = cfun->machine->gp_sp_offset; + end_offset + = gp_offset - (cfun->machine->gp_reg_size + - GET_MODE_SIZE (gpr_mode)); + + if (gp_offset < 0 || end_offset < 0) + internal_error + ("gp_offset (%ld) or end_offset (%ld) is less than zero", + (long) gp_offset, (long) end_offset); + + else if (gp_offset < 32768) + base_reg_rtx = stack_pointer_rtx, base_offset = 0; + else + { + int regno; + int reg_save_count = 0; + + for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--) + if (BITSET_P (mask, regno - GP_REG_FIRST)) reg_save_count += 1; + base_offset = gp_offset - ((reg_save_count - 1) * 4); + base_reg_rtx = iq2000_add_large_offset_to_sp (base_offset); + } + + for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--) + { + if (BITSET_P (mask, regno - GP_REG_FIRST)) + { + rtx reg_rtx; + rtx mem_rtx + = gen_rtx_MEM (gpr_mode, + gen_rtx_PLUS (Pmode, base_reg_rtx, + GEN_INT (gp_offset - base_offset))); + + reg_rtx = gen_rtx_REG (gpr_mode, regno); + + if (store_p) + iq2000_emit_frame_related_store (mem_rtx, reg_rtx, gp_offset); + else + { + emit_move_insn (reg_rtx, mem_rtx); + } + gp_offset -= GET_MODE_SIZE (gpr_mode); + } + } +} + +/* Expand the prologue into a bunch of separate insns. */ + +void +iq2000_expand_prologue (void) +{ + int regno; + HOST_WIDE_INT tsize; + int last_arg_is_vararg_marker = 0; + tree fndecl = current_function_decl; + tree fntype = TREE_TYPE (fndecl); + tree fnargs = DECL_ARGUMENTS (fndecl); + rtx next_arg_reg; + int i; + tree next_arg; + tree cur_arg; + CUMULATIVE_ARGS args_so_far; + int store_args_on_stack = (iq2000_can_use_return_insn ()); + + /* If struct value address is treated as the first argument. */ + if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) + && !cfun->returns_pcc_struct + && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) + { + tree type = build_pointer_type (fntype); + tree function_result_decl = build_decl (BUILTINS_LOCATION, + PARM_DECL, NULL_TREE, type); + + DECL_ARG_TYPE (function_result_decl) = type; + TREE_CHAIN (function_result_decl) = fnargs; + fnargs = function_result_decl; + } + + /* For arguments passed in registers, find the register number + of the first argument in the variable part of the argument list, + otherwise GP_ARG_LAST+1. Note also if the last argument is + the varargs special argument, and treat it as part of the + variable arguments. + + This is only needed if store_args_on_stack is true. */ + INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0, 0); + regno = GP_ARG_FIRST; + + for (cur_arg = fnargs; cur_arg != 0; cur_arg = next_arg) + { + tree passed_type = DECL_ARG_TYPE (cur_arg); + enum machine_mode passed_mode = TYPE_MODE (passed_type); + rtx entry_parm; + + if (TREE_ADDRESSABLE (passed_type)) + { + passed_type = build_pointer_type (passed_type); + passed_mode = Pmode; + } + + entry_parm = FUNCTION_ARG (args_so_far, passed_mode, passed_type, 1); + + FUNCTION_ARG_ADVANCE (args_so_far, passed_mode, passed_type, 1); + next_arg = TREE_CHAIN (cur_arg); + + if (entry_parm && store_args_on_stack) + { + if (next_arg == 0 + && DECL_NAME (cur_arg) + && ((0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), + "__builtin_va_alist")) + || (0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), + "va_alist")))) + { + last_arg_is_vararg_marker = 1; + break; + } + else + { + int words; + + gcc_assert (GET_CODE (entry_parm) == REG); + + /* Passed in a register, so will get homed automatically. */ + if (GET_MODE (entry_parm) == BLKmode) + words = (int_size_in_bytes (passed_type) + 3) / 4; + else + words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4; + + regno = REGNO (entry_parm) + words - 1; + } + } + else + { + regno = GP_ARG_LAST+1; + break; + } + } + + /* In order to pass small structures by value in registers we need to + shift the value into the high part of the register. + Function_arg has encoded a PARALLEL rtx, holding a vector of + adjustments to be made as the next_arg_reg variable, so we split up the + insns, and emit them separately. */ + next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1); + if (next_arg_reg != 0 && GET_CODE (next_arg_reg) == PARALLEL) + { + rtvec adjust = XVEC (next_arg_reg, 0); + int num = GET_NUM_ELEM (adjust); + + for (i = 0; i < num; i++) + { + rtx insn, pattern; + + pattern = RTVEC_ELT (adjust, i); + if (GET_CODE (pattern) != SET + || GET_CODE (SET_SRC (pattern)) != ASHIFT) + abort_with_insn (pattern, "Insn is not a shift"); + PUT_CODE (SET_SRC (pattern), ASHIFTRT); + + insn = emit_insn (pattern); + } + } + + tsize = compute_frame_size (get_frame_size ()); + + /* If this function is a varargs function, store any registers that + would normally hold arguments ($4 - $7) on the stack. */ + if (store_args_on_stack + && ((TYPE_ARG_TYPES (fntype) != 0 + && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) + != void_type_node)) + || last_arg_is_vararg_marker)) + { + int offset = (regno - GP_ARG_FIRST) * UNITS_PER_WORD; + rtx ptr = stack_pointer_rtx; + + for (; regno <= GP_ARG_LAST; regno++) + { + if (offset != 0) + ptr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset)); + emit_move_insn (gen_rtx_MEM (gpr_mode, ptr), + gen_rtx_REG (gpr_mode, regno)); + + offset += GET_MODE_SIZE (gpr_mode); + } + } + + if (tsize > 0) + { + rtx tsize_rtx = GEN_INT (tsize); + rtx adjustment_rtx, insn, dwarf_pattern; + + if (tsize > 32767) + { + adjustment_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM); + emit_move_insn (adjustment_rtx, tsize_rtx); + } + else + adjustment_rtx = tsize_rtx; + + insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, + adjustment_rtx)); + + dwarf_pattern = gen_rtx_SET (Pmode, stack_pointer_rtx, + plus_constant (stack_pointer_rtx, -tsize)); + + iq2000_annotate_frame_insn (insn, dwarf_pattern); + + save_restore_insns (1); + + if (frame_pointer_needed) + { + rtx insn = 0; + + insn = emit_insn (gen_movsi (hard_frame_pointer_rtx, + stack_pointer_rtx)); + + if (insn) + RTX_FRAME_RELATED_P (insn) = 1; + } + } + + emit_insn (gen_blockage ()); +} + +/* Expand the epilogue into a bunch of separate insns. */ + +void +iq2000_expand_epilogue (void) +{ + HOST_WIDE_INT tsize = cfun->machine->total_size; + rtx tsize_rtx = GEN_INT (tsize); + rtx tmp_rtx = (rtx)0; + + if (iq2000_can_use_return_insn ()) + { + emit_jump_insn (gen_return ()); + return; + } + + if (tsize > 32767) + { + tmp_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM); + emit_move_insn (tmp_rtx, tsize_rtx); + tsize_rtx = tmp_rtx; + } + + if (tsize > 0) + { + if (frame_pointer_needed) + { + emit_insn (gen_blockage ()); + + emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx)); + } + + save_restore_insns (0); + + if (crtl->calls_eh_return) + { + rtx eh_ofs = EH_RETURN_STACKADJ_RTX; + emit_insn (gen_addsi3 (eh_ofs, eh_ofs, tsize_rtx)); + tsize_rtx = eh_ofs; + } + + emit_insn (gen_blockage ()); + + if (tsize != 0 || crtl->calls_eh_return) + { + emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, + tsize_rtx)); + } + } + + if (crtl->calls_eh_return) + { + /* Perform the additional bump for __throw. */ + emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM), + stack_pointer_rtx); + emit_use (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM)); + emit_jump_insn (gen_eh_return_internal ()); + } + else + emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, + GP_REG_FIRST + 31))); +} + +void +iq2000_expand_eh_return (rtx address) +{ + HOST_WIDE_INT gp_offset = cfun->machine->gp_sp_offset; + rtx scratch; + + scratch = plus_constant (stack_pointer_rtx, gp_offset); + emit_move_insn (gen_rtx_MEM (GET_MODE (address), scratch), address); +} + +/* Return nonzero if this function is known to have a null epilogue. + This allows the optimizer to omit jumps to jumps if no stack + was created. */ + +int +iq2000_can_use_return_insn (void) +{ + if (! reload_completed) + return 0; + + if (df_regs_ever_live_p (31) || profile_flag) + return 0; + + if (cfun->machine->initialized) + return cfun->machine->total_size == 0; + + return compute_frame_size (get_frame_size ()) == 0; +} + +/* Returns nonzero if X contains a SYMBOL_REF. */ + +static int +symbolic_expression_p (rtx x) +{ + if (GET_CODE (x) == SYMBOL_REF) + return 1; + + if (GET_CODE (x) == CONST) + return symbolic_expression_p (XEXP (x, 0)); + + if (UNARY_P (x)) + return symbolic_expression_p (XEXP (x, 0)); + + if (ARITHMETIC_P (x)) + return (symbolic_expression_p (XEXP (x, 0)) + || symbolic_expression_p (XEXP (x, 1))); + + return 0; +} + +/* Choose the section to use for the constant rtx expression X that has + mode MODE. */ + +static section * +iq2000_select_rtx_section (enum machine_mode mode, rtx x ATTRIBUTE_UNUSED, + unsigned HOST_WIDE_INT align) +{ + /* For embedded applications, always put constants in read-only data, + in order to reduce RAM usage. */ + return mergeable_constant_section (mode, align, 0); +} + +/* Choose the section to use for DECL. RELOC is true if its value contains + any relocatable expression. + + Some of the logic used here needs to be replicated in + ENCODE_SECTION_INFO in iq2000.h so that references to these symbols + are done correctly. */ + +static section * +iq2000_select_section (tree decl, int reloc ATTRIBUTE_UNUSED, + unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED) +{ + if (TARGET_EMBEDDED_DATA) + { + /* For embedded applications, always put an object in read-only data + if possible, in order to reduce RAM usage. */ + if ((TREE_CODE (decl) == VAR_DECL + && TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl) + && DECL_INITIAL (decl) + && (DECL_INITIAL (decl) == error_mark_node + || TREE_CONSTANT (DECL_INITIAL (decl)))) + /* Deal with calls from output_constant_def_contents. */ + || TREE_CODE (decl) != VAR_DECL) + return readonly_data_section; + else + return data_section; + } + else + { + /* For hosted applications, always put an object in small data if + possible, as this gives the best performance. */ + if ((TREE_CODE (decl) == VAR_DECL + && TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl) + && DECL_INITIAL (decl) + && (DECL_INITIAL (decl) == error_mark_node + || TREE_CONSTANT (DECL_INITIAL (decl)))) + /* Deal with calls from output_constant_def_contents. */ + || TREE_CODE (decl) != VAR_DECL) + return readonly_data_section; + else + return data_section; + } +} +/* Return register to use for a function return value with VALTYPE for function + FUNC. */ + +static rtx +iq2000_function_value (const_tree valtype, + const_tree fn_decl_or_type, + bool outgoing ATTRIBUTE_UNUSED) +{ + int reg = GP_RETURN; + enum machine_mode mode = TYPE_MODE (valtype); + int unsignedp = TYPE_UNSIGNED (valtype); + tree func = fn_decl_or_type; + + if (fn_decl_or_type + && !DECL_P (fn_decl_or_type)) + fn_decl_or_type = NULL; + + /* Since we promote return types, we must promote the mode here too. */ + mode = promote_function_mode (valtype, mode, &unsignedp, func, 1); + + return gen_rtx_REG (mode, reg); +} + +/* Worker function for TARGET_LIBCALL_VALUE. */ + +static rtx +iq2000_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED) +{ + return gen_rtx_REG (((GET_MODE_CLASS (mode) != MODE_INT + || GET_MODE_SIZE (mode) >= 4) + ? mode : SImode), + GP_RETURN); +} + +/* Worker function for FUNCTION_VALUE_REGNO_P. + + On the IQ2000, R2 and R3 are the only register thus used. */ + +bool +iq2000_function_value_regno_p (const unsigned int regno) +{ + return (regno == GP_RETURN); +} + + +/* Return true when an argument must be passed by reference. */ + +static bool +iq2000_pass_by_reference (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named ATTRIBUTE_UNUSED) +{ + int size; + + /* We must pass by reference if we would be both passing in registers + and the stack. This is because any subsequent partial arg would be + handled incorrectly in this case. */ + if (cum && targetm.calls.must_pass_in_stack (mode, type)) + { + /* Don't pass the actual CUM to FUNCTION_ARG, because we would + get double copies of any offsets generated for small structs + passed in registers. */ + CUMULATIVE_ARGS temp; + + temp = *cum; + if (FUNCTION_ARG (temp, mode, type, named) != 0) + return 1; + } + + if (type == NULL_TREE || mode == DImode || mode == DFmode) + return 0; + + size = int_size_in_bytes (type); + return size == -1 || size > UNITS_PER_WORD; +} + +/* Return the length of INSN. LENGTH is the initial length computed by + attributes in the machine-description file. */ + +int +iq2000_adjust_insn_length (rtx insn, int length) +{ + /* A unconditional jump has an unfilled delay slot if it is not part + of a sequence. A conditional jump normally has a delay slot. */ + if (simplejump_p (insn) + || ( (GET_CODE (insn) == JUMP_INSN + || GET_CODE (insn) == CALL_INSN))) + length += 4; + + return length; +} + +/* Output assembly instructions to perform a conditional branch. + + INSN is the branch instruction. OPERANDS[0] is the condition. + OPERANDS[1] is the target of the branch. OPERANDS[2] is the target + of the first operand to the condition. If TWO_OPERANDS_P is + nonzero the comparison takes two operands; OPERANDS[3] will be the + second operand. + + If INVERTED_P is nonzero we are to branch if the condition does + not hold. If FLOAT_P is nonzero this is a floating-point comparison. + + LENGTH is the length (in bytes) of the sequence we are to generate. + That tells us whether to generate a simple conditional branch, or a + reversed conditional branch around a `jr' instruction. */ + +char * +iq2000_output_conditional_branch (rtx insn, rtx * operands, int two_operands_p, + int float_p, int inverted_p, int length) +{ + static char buffer[200]; + /* The kind of comparison we are doing. */ + enum rtx_code code = GET_CODE (operands[0]); + /* Nonzero if the opcode for the comparison needs a `z' indicating + that it is a comparison against zero. */ + int need_z_p; + /* A string to use in the assembly output to represent the first + operand. */ + const char *op1 = "%z2"; + /* A string to use in the assembly output to represent the second + operand. Use the hard-wired zero register if there's no second + operand. */ + const char *op2 = (two_operands_p ? ",%z3" : ",%."); + /* The operand-printing string for the comparison. */ + const char *comp = (float_p ? "%F0" : "%C0"); + /* The operand-printing string for the inverted comparison. */ + const char *inverted_comp = (float_p ? "%W0" : "%N0"); + + /* Likely variants of each branch instruction annul the instruction + in the delay slot if the branch is not taken. */ + iq2000_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn)); + + if (!two_operands_p) + { + /* To compute whether than A > B, for example, we normally + subtract B from A and then look at the sign bit. But, if we + are doing an unsigned comparison, and B is zero, we don't + have to do the subtraction. Instead, we can just check to + see if A is nonzero. Thus, we change the CODE here to + reflect the simpler comparison operation. */ + switch (code) + { + case GTU: + code = NE; + break; + + case LEU: + code = EQ; + break; + + case GEU: + /* A condition which will always be true. */ + code = EQ; + op1 = "%."; + break; + + case LTU: + /* A condition which will always be false. */ + code = NE; + op1 = "%."; + break; + + default: + /* Not a special case. */ + break; + } + } + + /* Relative comparisons are always done against zero. But + equality comparisons are done between two operands, and therefore + do not require a `z' in the assembly language output. */ + need_z_p = (!float_p && code != EQ && code != NE); + /* For comparisons against zero, the zero is not provided + explicitly. */ + if (need_z_p) + op2 = ""; + + /* Begin by terminating the buffer. That way we can always use + strcat to add to it. */ + buffer[0] = '\0'; + + switch (length) + { + case 4: + case 8: + /* Just a simple conditional branch. */ + if (float_p) + sprintf (buffer, "b%s%%?\t%%Z2%%1", + inverted_p ? inverted_comp : comp); + else + sprintf (buffer, "b%s%s%%?\t%s%s,%%1", + inverted_p ? inverted_comp : comp, + need_z_p ? "z" : "", + op1, + op2); + return buffer; + + case 12: + case 16: + { + /* Generate a reversed conditional branch around ` j' + instruction: + + .set noreorder + .set nomacro + bc l + nop + j target + .set macro + .set reorder + l: + + Because we have to jump four bytes *past* the following + instruction if this branch was annulled, we can't just use + a label, as in the picture above; there's no way to put the + label after the next instruction, as the assembler does not + accept `.L+4' as the target of a branch. (We can't just + wait until the next instruction is output; it might be a + macro and take up more than four bytes. Once again, we see + why we want to eliminate macros.) + + If the branch is annulled, we jump four more bytes that we + would otherwise; that way we skip the annulled instruction + in the delay slot. */ + + const char *target + = ((iq2000_branch_likely || length == 16) ? ".+16" : ".+12"); + char *c; + + c = strchr (buffer, '\0'); + /* Generate the reversed comparison. This takes four + bytes. */ + if (float_p) + sprintf (c, "b%s\t%%Z2%s", + inverted_p ? comp : inverted_comp, + target); + else + sprintf (c, "b%s%s\t%s%s,%s", + inverted_p ? comp : inverted_comp, + need_z_p ? "z" : "", + op1, + op2, + target); + strcat (c, "\n\tnop\n\tj\t%1"); + if (length == 16) + /* The delay slot was unfilled. Since we're inside + .noreorder, the assembler will not fill in the NOP for + us, so we must do it ourselves. */ + strcat (buffer, "\n\tnop"); + return buffer; + } + + default: + gcc_unreachable (); + } + + /* NOTREACHED */ + return 0; +} + +#define def_builtin(NAME, TYPE, CODE) \ + add_builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD, \ + NULL, NULL_TREE) + +static void +iq2000_init_builtins (void) +{ + tree endlink = void_list_node; + tree void_ftype, void_ftype_int, void_ftype_int_int; + tree void_ftype_int_int_int; + tree int_ftype_int, int_ftype_int_int, int_ftype_int_int_int; + tree int_ftype_int_int_int_int; + + /* func () */ + void_ftype + = build_function_type (void_type_node, + tree_cons (NULL_TREE, void_type_node, endlink)); + + /* func (int) */ + void_ftype_int + = build_function_type (void_type_node, + tree_cons (NULL_TREE, integer_type_node, endlink)); + + /* void func (int, int) */ + void_ftype_int_int + = build_function_type (void_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + endlink))); + + /* int func (int) */ + int_ftype_int + = build_function_type (integer_type_node, + tree_cons (NULL_TREE, integer_type_node, endlink)); + + /* int func (int, int) */ + int_ftype_int_int + = build_function_type (integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + endlink))); + + /* void func (int, int, int) */ +void_ftype_int_int_int + = build_function_type + (void_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, + integer_type_node, + endlink)))); + + /* int func (int, int, int, int) */ + int_ftype_int_int_int_int + = build_function_type + (integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, + integer_type_node, + tree_cons (NULL_TREE, + integer_type_node, + endlink))))); + + /* int func (int, int, int) */ + int_ftype_int_int_int + = build_function_type + (integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, + integer_type_node, + endlink)))); + + /* int func (int, int, int, int) */ + int_ftype_int_int_int_int + = build_function_type + (integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, integer_type_node, + tree_cons (NULL_TREE, + integer_type_node, + tree_cons (NULL_TREE, + integer_type_node, + endlink))))); + + def_builtin ("__builtin_ado16", int_ftype_int_int, IQ2000_BUILTIN_ADO16); + def_builtin ("__builtin_ram", int_ftype_int_int_int_int, IQ2000_BUILTIN_RAM); + def_builtin ("__builtin_chkhdr", void_ftype_int_int, IQ2000_BUILTIN_CHKHDR); + def_builtin ("__builtin_pkrl", void_ftype_int_int, IQ2000_BUILTIN_PKRL); + def_builtin ("__builtin_cfc0", int_ftype_int, IQ2000_BUILTIN_CFC0); + def_builtin ("__builtin_cfc1", int_ftype_int, IQ2000_BUILTIN_CFC1); + def_builtin ("__builtin_cfc2", int_ftype_int, IQ2000_BUILTIN_CFC2); + def_builtin ("__builtin_cfc3", int_ftype_int, IQ2000_BUILTIN_CFC3); + def_builtin ("__builtin_ctc0", void_ftype_int_int, IQ2000_BUILTIN_CTC0); + def_builtin ("__builtin_ctc1", void_ftype_int_int, IQ2000_BUILTIN_CTC1); + def_builtin ("__builtin_ctc2", void_ftype_int_int, IQ2000_BUILTIN_CTC2); + def_builtin ("__builtin_ctc3", void_ftype_int_int, IQ2000_BUILTIN_CTC3); + def_builtin ("__builtin_mfc0", int_ftype_int, IQ2000_BUILTIN_MFC0); + def_builtin ("__builtin_mfc1", int_ftype_int, IQ2000_BUILTIN_MFC1); + def_builtin ("__builtin_mfc2", int_ftype_int, IQ2000_BUILTIN_MFC2); + def_builtin ("__builtin_mfc3", int_ftype_int, IQ2000_BUILTIN_MFC3); + def_builtin ("__builtin_mtc0", void_ftype_int_int, IQ2000_BUILTIN_MTC0); + def_builtin ("__builtin_mtc1", void_ftype_int_int, IQ2000_BUILTIN_MTC1); + def_builtin ("__builtin_mtc2", void_ftype_int_int, IQ2000_BUILTIN_MTC2); + def_builtin ("__builtin_mtc3", void_ftype_int_int, IQ2000_BUILTIN_MTC3); + def_builtin ("__builtin_lur", void_ftype_int_int, IQ2000_BUILTIN_LUR); + def_builtin ("__builtin_rb", void_ftype_int_int, IQ2000_BUILTIN_RB); + def_builtin ("__builtin_rx", void_ftype_int_int, IQ2000_BUILTIN_RX); + def_builtin ("__builtin_srrd", void_ftype_int, IQ2000_BUILTIN_SRRD); + def_builtin ("__builtin_srwr", void_ftype_int_int, IQ2000_BUILTIN_SRWR); + def_builtin ("__builtin_wb", void_ftype_int_int, IQ2000_BUILTIN_WB); + def_builtin ("__builtin_wx", void_ftype_int_int, IQ2000_BUILTIN_WX); + def_builtin ("__builtin_luc32l", void_ftype_int_int, IQ2000_BUILTIN_LUC32L); + def_builtin ("__builtin_luc64", void_ftype_int_int, IQ2000_BUILTIN_LUC64); + def_builtin ("__builtin_luc64l", void_ftype_int_int, IQ2000_BUILTIN_LUC64L); + def_builtin ("__builtin_luk", void_ftype_int_int, IQ2000_BUILTIN_LUK); + def_builtin ("__builtin_lulck", void_ftype_int, IQ2000_BUILTIN_LULCK); + def_builtin ("__builtin_lum32", void_ftype_int_int, IQ2000_BUILTIN_LUM32); + def_builtin ("__builtin_lum32l", void_ftype_int_int, IQ2000_BUILTIN_LUM32L); + def_builtin ("__builtin_lum64", void_ftype_int_int, IQ2000_BUILTIN_LUM64); + def_builtin ("__builtin_lum64l", void_ftype_int_int, IQ2000_BUILTIN_LUM64L); + def_builtin ("__builtin_lurl", void_ftype_int_int, IQ2000_BUILTIN_LURL); + def_builtin ("__builtin_mrgb", int_ftype_int_int_int, IQ2000_BUILTIN_MRGB); + def_builtin ("__builtin_srrdl", void_ftype_int, IQ2000_BUILTIN_SRRDL); + def_builtin ("__builtin_srulck", void_ftype_int, IQ2000_BUILTIN_SRULCK); + def_builtin ("__builtin_srwru", void_ftype_int_int, IQ2000_BUILTIN_SRWRU); + def_builtin ("__builtin_trapqfl", void_ftype, IQ2000_BUILTIN_TRAPQFL); + def_builtin ("__builtin_trapqne", void_ftype, IQ2000_BUILTIN_TRAPQNE); + def_builtin ("__builtin_traprel", void_ftype_int, IQ2000_BUILTIN_TRAPREL); + def_builtin ("__builtin_wbu", void_ftype_int_int_int, IQ2000_BUILTIN_WBU); + def_builtin ("__builtin_syscall", void_ftype, IQ2000_BUILTIN_SYSCALL); +} + +/* Builtin for ICODE having ARGCOUNT args in EXP where each arg + has an rtx CODE. */ + +static rtx +expand_one_builtin (enum insn_code icode, rtx target, tree exp, + enum rtx_code *code, int argcount) +{ + rtx pat; + tree arg [5]; + rtx op [5]; + enum machine_mode mode [5]; + int i; + + mode[0] = insn_data[icode].operand[0].mode; + for (i = 0; i < argcount; i++) + { + arg[i] = CALL_EXPR_ARG (exp, i); + op[i] = expand_expr (arg[i], NULL_RTX, VOIDmode, 0); + mode[i] = insn_data[icode].operand[i].mode; + if (code[i] == CONST_INT && GET_CODE (op[i]) != CONST_INT) + error ("argument %qd is not a constant", i + 1); + if (code[i] == REG + && ! (*insn_data[icode].operand[i].predicate) (op[i], mode[i])) + op[i] = copy_to_mode_reg (mode[i], op[i]); + } + + if (insn_data[icode].operand[0].constraint[0] == '=') + { + if (target == 0 + || GET_MODE (target) != mode[0] + || ! (*insn_data[icode].operand[0].predicate) (target, mode[0])) + target = gen_reg_rtx (mode[0]); + } + else + target = 0; + + switch (argcount) + { + case 0: + pat = GEN_FCN (icode) (target); + case 1: + if (target) + pat = GEN_FCN (icode) (target, op[0]); + else + pat = GEN_FCN (icode) (op[0]); + break; + case 2: + if (target) + pat = GEN_FCN (icode) (target, op[0], op[1]); + else + pat = GEN_FCN (icode) (op[0], op[1]); + break; + case 3: + if (target) + pat = GEN_FCN (icode) (target, op[0], op[1], op[2]); + else + pat = GEN_FCN (icode) (op[0], op[1], op[2]); + break; + case 4: + if (target) + pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3]); + else + pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]); + break; + default: + gcc_unreachable (); + } + + if (! pat) + return 0; + emit_insn (pat); + return target; +} + +/* Expand an expression EXP that calls a built-in function, + with result going to TARGET if that's convenient + (and in mode MODE if that's convenient). + SUBTARGET may be used as the target for computing one of EXP's operands. + IGNORE is nonzero if the value is to be ignored. */ + +static rtx +iq2000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, + enum machine_mode mode ATTRIBUTE_UNUSED, + int ignore ATTRIBUTE_UNUSED) +{ + tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); + int fcode = DECL_FUNCTION_CODE (fndecl); + enum rtx_code code [5]; + + code[0] = REG; + code[1] = REG; + code[2] = REG; + code[3] = REG; + code[4] = REG; + switch (fcode) + { + default: + break; + + case IQ2000_BUILTIN_ADO16: + return expand_one_builtin (CODE_FOR_ado16, target, exp, code, 2); + + case IQ2000_BUILTIN_RAM: + code[1] = CONST_INT; + code[2] = CONST_INT; + code[3] = CONST_INT; + return expand_one_builtin (CODE_FOR_ram, target, exp, code, 4); + + case IQ2000_BUILTIN_CHKHDR: + return expand_one_builtin (CODE_FOR_chkhdr, target, exp, code, 2); + + case IQ2000_BUILTIN_PKRL: + return expand_one_builtin (CODE_FOR_pkrl, target, exp, code, 2); + + case IQ2000_BUILTIN_CFC0: + code[0] = CONST_INT; + return expand_one_builtin (CODE_FOR_cfc0, target, exp, code, 1); + + case IQ2000_BUILTIN_CFC1: + code[0] = CONST_INT; + return expand_one_builtin (CODE_FOR_cfc1, target, exp, code, 1); + + case IQ2000_BUILTIN_CFC2: + code[0] = CONST_INT; + return expand_one_builtin (CODE_FOR_cfc2, target, exp, code, 1); + + case IQ2000_BUILTIN_CFC3: + code[0] = CONST_INT; + return expand_one_builtin (CODE_FOR_cfc3, target, exp, code, 1); + + case IQ2000_BUILTIN_CTC0: + code[1] = CONST_INT; + return expand_one_builtin (CODE_FOR_ctc0, target, exp, code, 2); + + case IQ2000_BUILTIN_CTC1: + code[1] = CONST_INT; + return expand_one_builtin (CODE_FOR_ctc1, target, exp, code, 2); + + case IQ2000_BUILTIN_CTC2: + code[1] = CONST_INT; + return expand_one_builtin (CODE_FOR_ctc2, target, exp, code, 2); + + case IQ2000_BUILTIN_CTC3: + code[1] = CONST_INT; + return expand_one_builtin (CODE_FOR_ctc3, target, exp, code, 2); + + case IQ2000_BUILTIN_MFC0: + code[0] = CONST_INT; + return expand_one_builtin (CODE_FOR_mfc0, target, exp, code, 1); + + case IQ2000_BUILTIN_MFC1: + code[0] = CONST_INT; + return expand_one_builtin (CODE_FOR_mfc1, target, exp, code, 1); + + case IQ2000_BUILTIN_MFC2: + code[0] = CONST_INT; + return expand_one_builtin (CODE_FOR_mfc2, target, exp, code, 1); + + case IQ2000_BUILTIN_MFC3: + code[0] = CONST_INT; + return expand_one_builtin (CODE_FOR_mfc3, target, exp, code, 1); + + case IQ2000_BUILTIN_MTC0: + code[1] = CONST_INT; + return expand_one_builtin (CODE_FOR_mtc0, target, exp, code, 2); + + case IQ2000_BUILTIN_MTC1: + code[1] = CONST_INT; + return expand_one_builtin (CODE_FOR_mtc1, target, exp, code, 2); + + case IQ2000_BUILTIN_MTC2: + code[1] = CONST_INT; + return expand_one_builtin (CODE_FOR_mtc2, target, exp, code, 2); + + case IQ2000_BUILTIN_MTC3: + code[1] = CONST_INT; + return expand_one_builtin (CODE_FOR_mtc3, target, exp, code, 2); + + case IQ2000_BUILTIN_LUR: + return expand_one_builtin (CODE_FOR_lur, target, exp, code, 2); + + case IQ2000_BUILTIN_RB: + return expand_one_builtin (CODE_FOR_rb, target, exp, code, 2); + + case IQ2000_BUILTIN_RX: + return expand_one_builtin (CODE_FOR_rx, target, exp, code, 2); + + case IQ2000_BUILTIN_SRRD: + return expand_one_builtin (CODE_FOR_srrd, target, exp, code, 1); + + case IQ2000_BUILTIN_SRWR: + return expand_one_builtin (CODE_FOR_srwr, target, exp, code, 2); + + case IQ2000_BUILTIN_WB: + return expand_one_builtin (CODE_FOR_wb, target, exp, code, 2); + + case IQ2000_BUILTIN_WX: + return expand_one_builtin (CODE_FOR_wx, target, exp, code, 2); + + case IQ2000_BUILTIN_LUC32L: + return expand_one_builtin (CODE_FOR_luc32l, target, exp, code, 2); + + case IQ2000_BUILTIN_LUC64: + return expand_one_builtin (CODE_FOR_luc64, target, exp, code, 2); + + case IQ2000_BUILTIN_LUC64L: + return expand_one_builtin (CODE_FOR_luc64l, target, exp, code, 2); + + case IQ2000_BUILTIN_LUK: + return expand_one_builtin (CODE_FOR_luk, target, exp, code, 2); + + case IQ2000_BUILTIN_LULCK: + return expand_one_builtin (CODE_FOR_lulck, target, exp, code, 1); + + case IQ2000_BUILTIN_LUM32: + return expand_one_builtin (CODE_FOR_lum32, target, exp, code, 2); + + case IQ2000_BUILTIN_LUM32L: + return expand_one_builtin (CODE_FOR_lum32l, target, exp, code, 2); + + case IQ2000_BUILTIN_LUM64: + return expand_one_builtin (CODE_FOR_lum64, target, exp, code, 2); + + case IQ2000_BUILTIN_LUM64L: + return expand_one_builtin (CODE_FOR_lum64l, target, exp, code, 2); + + case IQ2000_BUILTIN_LURL: + return expand_one_builtin (CODE_FOR_lurl, target, exp, code, 2); + + case IQ2000_BUILTIN_MRGB: + code[2] = CONST_INT; + return expand_one_builtin (CODE_FOR_mrgb, target, exp, code, 3); + + case IQ2000_BUILTIN_SRRDL: + return expand_one_builtin (CODE_FOR_srrdl, target, exp, code, 1); + + case IQ2000_BUILTIN_SRULCK: + return expand_one_builtin (CODE_FOR_srulck, target, exp, code, 1); + + case IQ2000_BUILTIN_SRWRU: + return expand_one_builtin (CODE_FOR_srwru, target, exp, code, 2); + + case IQ2000_BUILTIN_TRAPQFL: + return expand_one_builtin (CODE_FOR_trapqfl, target, exp, code, 0); + + case IQ2000_BUILTIN_TRAPQNE: + return expand_one_builtin (CODE_FOR_trapqne, target, exp, code, 0); + + case IQ2000_BUILTIN_TRAPREL: + return expand_one_builtin (CODE_FOR_traprel, target, exp, code, 1); + + case IQ2000_BUILTIN_WBU: + return expand_one_builtin (CODE_FOR_wbu, target, exp, code, 3); + + case IQ2000_BUILTIN_SYSCALL: + return expand_one_builtin (CODE_FOR_syscall, target, exp, code, 0); + } + + return NULL_RTX; +} + +/* Worker function for TARGET_RETURN_IN_MEMORY. */ + +static bool +iq2000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) +{ + return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD)) + || (int_size_in_bytes (type) == -1)); +} + +/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */ + +static void +iq2000_setup_incoming_varargs (CUMULATIVE_ARGS *cum, + enum machine_mode mode ATTRIBUTE_UNUSED, + tree type ATTRIBUTE_UNUSED, int * pretend_size, + int no_rtl) +{ + unsigned int iq2000_off = ! cum->last_arg_fp; + unsigned int iq2000_fp_off = cum->last_arg_fp; + + if ((cum->arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off)) + { + int iq2000_save_gp_regs + = MAX_ARGS_IN_REGISTERS - cum->arg_words - iq2000_off; + int iq2000_save_fp_regs + = (MAX_ARGS_IN_REGISTERS - cum->fp_arg_words - iq2000_fp_off); + + if (iq2000_save_gp_regs < 0) + iq2000_save_gp_regs = 0; + if (iq2000_save_fp_regs < 0) + iq2000_save_fp_regs = 0; + + *pretend_size = ((iq2000_save_gp_regs * UNITS_PER_WORD) + + (iq2000_save_fp_regs * UNITS_PER_FPREG)); + + if (! (no_rtl)) + { + if (cum->arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off) + { + rtx ptr, mem; + ptr = plus_constant (virtual_incoming_args_rtx, + - (iq2000_save_gp_regs + * UNITS_PER_WORD)); + mem = gen_rtx_MEM (BLKmode, ptr); + move_block_from_reg + (cum->arg_words + GP_ARG_FIRST + iq2000_off, + mem, + iq2000_save_gp_regs); + } + } + } +} + +/* A C compound statement to output to stdio stream STREAM the + assembler syntax for an instruction operand that is a memory + reference whose address is ADDR. ADDR is an RTL expression. */ + +void +print_operand_address (FILE * file, rtx addr) +{ + if (!addr) + error ("PRINT_OPERAND_ADDRESS, null pointer"); + + else + switch (GET_CODE (addr)) + { + case REG: + if (REGNO (addr) == ARG_POINTER_REGNUM) + abort_with_insn (addr, "Arg pointer not eliminated."); + + fprintf (file, "0(%s)", reg_names [REGNO (addr)]); + break; + + case LO_SUM: + { + rtx arg0 = XEXP (addr, 0); + rtx arg1 = XEXP (addr, 1); + + if (GET_CODE (arg0) != REG) + abort_with_insn (addr, + "PRINT_OPERAND_ADDRESS, LO_SUM with #1 not REG."); + + fprintf (file, "%%lo("); + print_operand_address (file, arg1); + fprintf (file, ")(%s)", reg_names [REGNO (arg0)]); + } + break; + + case PLUS: + { + rtx reg = 0; + rtx offset = 0; + rtx arg0 = XEXP (addr, 0); + rtx arg1 = XEXP (addr, 1); + + if (GET_CODE (arg0) == REG) + { + reg = arg0; + offset = arg1; + if (GET_CODE (offset) == REG) + abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, 2 regs"); + } + + else if (GET_CODE (arg1) == REG) + reg = arg1, offset = arg0; + else if (CONSTANT_P (arg0) && CONSTANT_P (arg1)) + { + output_addr_const (file, addr); + break; + } + else + abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, no regs"); + + if (! CONSTANT_P (offset)) + abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #2"); + + if (REGNO (reg) == ARG_POINTER_REGNUM) + abort_with_insn (addr, "Arg pointer not eliminated."); + + output_addr_const (file, offset); + fprintf (file, "(%s)", reg_names [REGNO (reg)]); + } + break; + + case LABEL_REF: + case SYMBOL_REF: + case CONST_INT: + case CONST: + output_addr_const (file, addr); + if (GET_CODE (addr) == CONST_INT) + fprintf (file, "(%s)", reg_names [0]); + break; + + default: + abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #1"); + break; + } +} + +/* A C compound statement to output to stdio stream FILE the + assembler syntax for an instruction operand OP. + + LETTER is a value that can be used to specify one of several ways + of printing the operand. It is used when identical operands + must be printed differently depending on the context. LETTER + comes from the `%' specification that was used to request + printing of the operand. If the specification was just `%DIGIT' + then LETTER is 0; if the specification was `%LTR DIGIT' then LETTER + is the ASCII code for LTR. + + If OP is a register, this macro should print the register's name. + The names can be found in an array `reg_names' whose type is + `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'. + + When the machine description has a specification `%PUNCT' (a `%' + followed by a punctuation character), this macro is called with + a null pointer for X and the punctuation character for LETTER. + + The IQ2000 specific codes are: + + 'X' X is CONST_INT, prints upper 16 bits in hexadecimal format = "0x%04x", + 'x' X is CONST_INT, prints lower 16 bits in hexadecimal format = "0x%04x", + 'd' output integer constant in decimal, + 'z' if the operand is 0, use $0 instead of normal operand. + 'D' print second part of double-word register or memory operand. + 'L' print low-order register of double-word register operand. + 'M' print high-order register of double-word register operand. + 'C' print part of opcode for a branch condition. + 'F' print part of opcode for a floating-point branch condition. + 'N' print part of opcode for a branch condition, inverted. + 'W' print part of opcode for a floating-point branch condition, inverted. + 'A' Print part of opcode for a bit test condition. + 'P' Print label for a bit test. + 'p' Print log for a bit test. + 'B' print 'z' for EQ, 'n' for NE + 'b' print 'n' for EQ, 'z' for NE + 'T' print 'f' for EQ, 't' for NE + 't' print 't' for EQ, 'f' for NE + 'Z' print register and a comma, but print nothing for $fcc0 + '?' Print 'l' if we are to use a branch likely instead of normal branch. + '@' Print the name of the assembler temporary register (at or $1). + '.' Print the name of the register with a hard-wired zero (zero or $0). + '$' Print the name of the stack pointer register (sp or $29). + '+' Print the name of the gp register (gp or $28). */ + +void +print_operand (FILE *file, rtx op, int letter) +{ + enum rtx_code code; + + if (PRINT_OPERAND_PUNCT_VALID_P (letter)) + { + switch (letter) + { + case '?': + if (iq2000_branch_likely) + putc ('l', file); + break; + + case '@': + fputs (reg_names [GP_REG_FIRST + 1], file); + break; + + case '.': + fputs (reg_names [GP_REG_FIRST + 0], file); + break; + + case '$': + fputs (reg_names[STACK_POINTER_REGNUM], file); + break; + + case '+': + fputs (reg_names[GP_REG_FIRST + 28], file); + break; + + default: + error ("PRINT_OPERAND: Unknown punctuation '%c'", letter); + break; + } + + return; + } + + if (! op) + { + error ("PRINT_OPERAND null pointer"); + return; + } + + code = GET_CODE (op); + + if (code == SIGN_EXTEND) + op = XEXP (op, 0), code = GET_CODE (op); + + if (letter == 'C') + switch (code) + { + case EQ: fputs ("eq", file); break; + case NE: fputs ("ne", file); break; + case GT: fputs ("gt", file); break; + case GE: fputs ("ge", file); break; + case LT: fputs ("lt", file); break; + case LE: fputs ("le", file); break; + case GTU: fputs ("ne", file); break; + case GEU: fputs ("geu", file); break; + case LTU: fputs ("ltu", file); break; + case LEU: fputs ("eq", file); break; + default: + abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%C"); + } + + else if (letter == 'N') + switch (code) + { + case EQ: fputs ("ne", file); break; + case NE: fputs ("eq", file); break; + case GT: fputs ("le", file); break; + case GE: fputs ("lt", file); break; + case LT: fputs ("ge", file); break; + case LE: fputs ("gt", file); break; + case GTU: fputs ("leu", file); break; + case GEU: fputs ("ltu", file); break; + case LTU: fputs ("geu", file); break; + case LEU: fputs ("gtu", file); break; + default: + abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%N"); + } + + else if (letter == 'F') + switch (code) + { + case EQ: fputs ("c1f", file); break; + case NE: fputs ("c1t", file); break; + default: + abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%F"); + } + + else if (letter == 'W') + switch (code) + { + case EQ: fputs ("c1t", file); break; + case NE: fputs ("c1f", file); break; + default: + abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%W"); + } + + else if (letter == 'A') + fputs (code == LABEL_REF ? "i" : "in", file); + + else if (letter == 'P') + { + if (code == LABEL_REF) + output_addr_const (file, op); + else if (code != PC) + output_operand_lossage ("invalid %%P operand"); + } + + else if (letter == 'p') + { + int value; + if (code != CONST_INT + || (value = exact_log2 (INTVAL (op))) < 0) + output_operand_lossage ("invalid %%p value"); + fprintf (file, "%d", value); + } + + else if (letter == 'Z') + { + gcc_unreachable (); + } + + else if (code == REG || code == SUBREG) + { + int regnum; + + if (code == REG) + regnum = REGNO (op); + else + regnum = true_regnum (op); + + if ((letter == 'M' && ! WORDS_BIG_ENDIAN) + || (letter == 'L' && WORDS_BIG_ENDIAN) + || letter == 'D') + regnum++; + + fprintf (file, "%s", reg_names[regnum]); + } + + else if (code == MEM) + { + if (letter == 'D') + output_address (plus_constant (XEXP (op, 0), 4)); + else + output_address (XEXP (op, 0)); + } + + else if (code == CONST_DOUBLE + && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT) + { + char s[60]; + + real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (op), sizeof (s), 0, 1); + fputs (s, file); + } + + else if (letter == 'x' && GET_CODE (op) == CONST_INT) + fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op)); + + else if (letter == 'X' && GET_CODE(op) == CONST_INT) + fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & (INTVAL (op) >> 16)); + + else if (letter == 'd' && GET_CODE(op) == CONST_INT) + fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op))); + + else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0) + fputs (reg_names[GP_REG_FIRST], file); + + else if (letter == 'd' || letter == 'x' || letter == 'X') + output_operand_lossage ("invalid use of %%d, %%x, or %%X"); + + else if (letter == 'B') + fputs (code == EQ ? "z" : "n", file); + else if (letter == 'b') + fputs (code == EQ ? "n" : "z", file); + else if (letter == 'T') + fputs (code == EQ ? "f" : "t", file); + else if (letter == 't') + fputs (code == EQ ? "t" : "f", file); + + else if (code == CONST && GET_CODE (XEXP (op, 0)) == REG) + { + print_operand (file, XEXP (op, 0), letter); + } + + else + output_addr_const (file, op); +} + + +/* For the IQ2000, transform: + + memory(X + ) + into: + Y = & ~0x7fff; + Z = X + Y + memory (Z + ( & 0x7fff)); +*/ + +rtx +iq2000_legitimize_address (rtx xinsn, rtx old_x ATTRIBUTE_UNUSED, + enum machine_mode mode) +{ + if (TARGET_DEBUG_B_MODE) + { + GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); + GO_DEBUG_RTX (xinsn); + } + + if (iq2000_check_split (xinsn, mode)) + { + return gen_rtx_LO_SUM (Pmode, + copy_to_mode_reg (Pmode, + gen_rtx_HIGH (Pmode, xinsn)), + xinsn); + } + + if (GET_CODE (xinsn) == PLUS) + { + rtx xplus0 = XEXP (xinsn, 0); + rtx xplus1 = XEXP (xinsn, 1); + enum rtx_code code0 = GET_CODE (xplus0); + enum rtx_code code1 = GET_CODE (xplus1); + + if (code0 != REG && code1 == REG) + { + xplus0 = XEXP (xinsn, 1); + xplus1 = XEXP (xinsn, 0); + code0 = GET_CODE (xplus0); + code1 = GET_CODE (xplus1); + } + + if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, mode) + && code1 == CONST_INT && !SMALL_INT (xplus1)) + { + rtx int_reg = gen_reg_rtx (Pmode); + rtx ptr_reg = gen_reg_rtx (Pmode); + + emit_move_insn (int_reg, + GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); + + emit_insn (gen_rtx_SET (VOIDmode, + ptr_reg, + gen_rtx_PLUS (Pmode, xplus0, int_reg))); + + return plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); + } + } + + if (TARGET_DEBUG_B_MODE) + GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); + + return xinsn; +} + + +static bool +iq2000_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED, int * total, + bool speed ATTRIBUTE_UNUSED) +{ + enum machine_mode mode = GET_MODE (x); + + switch (code) + { + case MEM: + { + int num_words = (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ? 2 : 1; + + if (simple_memory_operand (x, mode)) + return COSTS_N_INSNS (num_words); + + * total = COSTS_N_INSNS (2 * num_words); + break; + } + + case FFS: + * total = COSTS_N_INSNS (6); + break; + + case AND: + case IOR: + case XOR: + case NOT: + * total = COSTS_N_INSNS (mode == DImode ? 2 : 1); + break; + + case ASHIFT: + case ASHIFTRT: + case LSHIFTRT: + if (mode == DImode) + * total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT) ? 4 : 12); + else + * total = COSTS_N_INSNS (1); + break; + + case ABS: + if (mode == SFmode || mode == DFmode) + * total = COSTS_N_INSNS (1); + else + * total = COSTS_N_INSNS (4); + break; + + case PLUS: + case MINUS: + if (mode == SFmode || mode == DFmode) + * total = COSTS_N_INSNS (6); + else if (mode == DImode) + * total = COSTS_N_INSNS (4); + else + * total = COSTS_N_INSNS (1); + break; + + case NEG: + * total = (mode == DImode) ? 4 : 1; + break; + + case MULT: + if (mode == SFmode) + * total = COSTS_N_INSNS (7); + else if (mode == DFmode) + * total = COSTS_N_INSNS (8); + else + * total = COSTS_N_INSNS (10); + break; + + case DIV: + case MOD: + if (mode == SFmode) + * total = COSTS_N_INSNS (23); + else if (mode == DFmode) + * total = COSTS_N_INSNS (36); + else + * total = COSTS_N_INSNS (69); + break; + + case UDIV: + case UMOD: + * total = COSTS_N_INSNS (69); + break; + + case SIGN_EXTEND: + * total = COSTS_N_INSNS (2); + break; + + case ZERO_EXTEND: + * total = COSTS_N_INSNS (1); + break; + + case CONST_INT: + * total = 0; + break; + + case LABEL_REF: + * total = COSTS_N_INSNS (2); + break; + + case CONST: + { + rtx offset = const0_rtx; + rtx symref = eliminate_constant_term (XEXP (x, 0), & offset); + + if (GET_CODE (symref) == LABEL_REF) + * total = COSTS_N_INSNS (2); + else if (GET_CODE (symref) != SYMBOL_REF) + * total = COSTS_N_INSNS (4); + /* Let's be paranoid.... */ + else if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) + * total = COSTS_N_INSNS (2); + else + * total = COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); + break; + } + + case SYMBOL_REF: + * total = COSTS_N_INSNS (SYMBOL_REF_FLAG (x) ? 1 : 2); + break; + + case CONST_DOUBLE: + { + rtx high, low; + + split_double (x, & high, & low); + + * total = COSTS_N_INSNS ( (high == CONST0_RTX (GET_MODE (high)) + || low == CONST0_RTX (GET_MODE (low))) + ? 2 : 4); + break; + } + + default: + return false; + } + return true; +} + +/* Worker for TARGET_ASM_TRAMPOLINE_TEMPLATE. */ + +static void +iq2000_asm_trampoline_template (FILE *f) +{ + fprintf (f, "\t.word\t0x03e00821\t\t# move $1,$31\n"); + fprintf (f, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); + fprintf (f, "\t.word\t0x00000000\t\t# nop\n"); + if (Pmode == DImode) + { + fprintf (f, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); + fprintf (f, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); + } + else + { + fprintf (f, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); + fprintf (f, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); + } + fprintf (f, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); + fprintf (f, "\t.word\t0x00600008\t\t# jr $3\n"); + fprintf (f, "\t.word\t0x0020f821\t\t# move $31,$1\n"); + fprintf (f, "\t.word\t0x00000000\t\t# \n"); + fprintf (f, "\t.word\t0x00000000\t\t# \n"); +} + +/* Worker for TARGET_TRAMPOLINE_INIT. */ + +static void +iq2000_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) +{ + rtx fnaddr = XEXP (DECL_RTL (fndecl), 0); + rtx mem; + + emit_block_move (m_tramp, assemble_trampoline_template (), + GEN_INT (TRAMPOLINE_CODE_SIZE), BLOCK_OP_NORMAL); + + mem = adjust_address (m_tramp, Pmode, TRAMPOLINE_CODE_SIZE); + emit_move_insn (mem, fnaddr); + mem = adjust_address (m_tramp, Pmode, + TRAMPOLINE_CODE_SIZE + GET_MODE_SIZE (Pmode)); + emit_move_insn (mem, chain_value); +} + +#include "gt-iq2000.h"
iq2000.c Property changes : Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +Id \ No newline at end of property Index: iq2000.opt =================================================================== --- iq2000.opt (nonexistent) +++ iq2000.opt (revision 384) @@ -0,0 +1,44 @@ +; Options for the Vitesse IQ2000 port of the compiler. + +; Copyright (C) 2005, 2007 Free Software Foundation, Inc. +; +; This file is part of GCC. +; +; GCC is free software; you can redistribute it and/or modify it under +; the terms of the GNU General Public License as published by the Free +; Software Foundation; either version 3, or (at your option) any later +; version. +; +; GCC is distributed in the hope that it will be useful, but WITHOUT ANY +; WARRANTY; without even the implied warranty of MERCHANTABILITY or +; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +; for more details. +; +; You should have received a copy of the GNU General Public License +; along with GCC; see the file COPYING3. If not see +; . + +march= +Target RejectNegative Joined +Specify CPU for code generation purposes + +mcpu= +Target RejectNegative Joined +Specify CPU for scheduling purposes + +membedded-data +Target Mask(EMBEDDED_DATA) +Use ROM instead of RAM + +mgpopt +Target Mask(GPOPT) +Use GP relative sdata/sbss sections + +; Not used by the compiler proper. +mno-crt0 +Target RejectNegative +No default crt0.o + +muninit-const-in-rodata +Target Mask(UNINIT_CONST_IN_RODATA) +Put uninitialized constants in ROM (needs -membedded-data) Index: t-iq2000 =================================================================== --- t-iq2000 (nonexistent) +++ t-iq2000 (revision 384) @@ -0,0 +1,54 @@ +# Copyright (C) 2003 Free Software Foundation, Inc. +# +# This file is part of GCC. +# +# GCC is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3, or (at your option) +# any later version. +# +# GCC is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with GCC; see the file COPYING3. If not see +# . + +# Suppress building libgcc1.a, since the MIPS compiler port is complete +# and does not need anything from libgcc1.a. +LIBGCC1 = +CROSS_LIBGCC1 = + +# We must build libgcc2.a with -G 0, in case the user wants to link +# without the $gp register. +TARGET_LIBGCC2_CFLAGS = -G 0 + +LIB2FUNCS_EXTRA = $(srcdir)/config/udivmod.c $(srcdir)/config/divmod.c $(srcdir)/config/udivmodsi4.c $(srcdir)/config/iq2000/lib2extra-funcs.c + +# We want fine grained libraries, so use the new code to build the +# floating point emulation libraries. +FPBIT = fp-bit.c +DPBIT = dp-bit.c + +fp-bit.c: $(srcdir)/config/fp-bit.c + echo '#define FLOAT' > fp-bit.c + cat $(srcdir)/config/fp-bit.c >> fp-bit.c + +dp-bit.c: $(srcdir)/config/fp-bit.c + cat $(srcdir)/config/fp-bit.c > dp-bit.c + +# Enable the following if multilibs are needed. +# See gcc/genmultilib, gcc/gcc.texi and gcc/tm.texi for a +# description of the options and their values. +# +# MULTILIB_OPTIONS = +# MULTILIB_DIRNAMES = +# MULTILIB_MATCHES = +# MULTILIB_EXCEPTIONS = +# MULTILIB_EXTRA_OPTS = +# +# LIBGCC = stmp-multilib +# INSTALL_LIBGCC = install-multilib +

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.