OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /openrisc/trunk/gnu-old/gcc-4.2.2/gcc/config/cris
    from Rev 154 to Rev 816
    Reverse comparison

Rev 154 → Rev 816

/arit.c
0,0 → 1,317
/* Signed and unsigned multiplication and division and modulus for CRIS.
Contributed by Axis Communications.
Written by Hans-Peter Nilsson <hp@axis.se>, c:a 1992.
 
Copyright (C) 1998, 1999, 2000, 2001, 2002,
2005 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
 
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
 
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
 
As a special exception, if you link this library with files, some of
which are compiled with GCC, this library does not by itself cause
the resulting object or executable to be covered by the GNU General
Public License.
This exception does not however invalidate any other reasons why
the executable file or object might be covered by the GNU General
Public License. */
 
 
/* Note that we provide prototypes for all "const" functions, to attach
the const attribute. This is necessary in 2.7.2 - adding the
attribute to the function *definition* is a syntax error.
This did not work with e.g. 2.1; back then, the return type had to
be "const". */
 
#include "config.h"
 
#if defined (__CRIS_arch_version) && __CRIS_arch_version >= 3
#define LZ(v) __extension__ \
({ int tmp_; __asm__ ("lz %1,%0" : "=r" (tmp_) : "r" (v)); tmp_; })
#endif
 
 
#if defined (L_udivsi3) || defined (L_divsi3) || defined (L_umodsi3) \
|| defined (L_modsi3)
/* Result type of divmod worker function. */
struct quot_rem
{
long quot;
long rem;
};
 
/* This is the worker function for div and mod. It is inlined into the
respective library function. Parameter A must have bit 31 == 0. */
 
static __inline__ struct quot_rem
do_31div (unsigned long a, unsigned long b)
__attribute__ ((__const__, __always_inline__));
 
static __inline__ struct quot_rem
do_31div (unsigned long a, unsigned long b)
{
/* Adjust operands and result if a is 31 bits. */
long extra = 0;
int quot_digits = 0;
 
if (b == 0)
{
struct quot_rem ret;
ret.quot = 0xffffffff;
ret.rem = 0xffffffff;
return ret;
}
 
if (a < b)
return (struct quot_rem) { 0, a };
 
#ifdef LZ
if (b <= a)
{
quot_digits = LZ (b) - LZ (a);
quot_digits += (a >= (b << quot_digits));
b <<= quot_digits;
}
#else
while (b <= a)
{
b <<= 1;
quot_digits++;
}
#endif
 
/* Is a 31 bits? Note that bit 31 is handled by the caller. */
if (a & 0x40000000)
{
/* Then make b:s highest bit max 0x40000000, because it must have
been 0x80000000 to be 1 bit higher than a. */
b >>= 1;
 
/* Adjust a to be maximum 0x3fffffff, i.e. two upper bits zero. */
if (a >= b)
{
a -= b;
extra = 1 << (quot_digits - 1);
}
else
{
a -= b >> 1;
 
/* Remember that we adjusted a by subtracting b * 2 ** Something. */
extra = 1 << quot_digits;
}
 
/* The number of quotient digits will be one less, because
we just adjusted b. */
quot_digits--;
}
 
/* Now do the division part. */
 
/* Subtract b and add ones to the right when a >= b
i.e. "a - (b - 1) == (a - b) + 1". */
b--;
 
#define DS __asm__ ("dstep %2,%0" : "=r" (a) : "0" (a), "r" (b))
 
switch (quot_digits)
{
case 32: DS; case 31: DS; case 30: DS; case 29: DS;
case 28: DS; case 27: DS; case 26: DS; case 25: DS;
case 24: DS; case 23: DS; case 22: DS; case 21: DS;
case 20: DS; case 19: DS; case 18: DS; case 17: DS;
case 16: DS; case 15: DS; case 14: DS; case 13: DS;
case 12: DS; case 11: DS; case 10: DS; case 9: DS;
case 8: DS; case 7: DS; case 6: DS; case 5: DS;
case 4: DS; case 3: DS; case 2: DS; case 1: DS;
case 0:;
}
 
{
struct quot_rem ret;
ret.quot = (a & ((1 << quot_digits) - 1)) + extra;
ret.rem = a >> quot_digits;
return ret;
}
}
 
#ifdef L_udivsi3
unsigned long
__Udiv (unsigned long a, unsigned long b) __attribute__ ((__const__));
 
unsigned long
__Udiv (unsigned long a, unsigned long b)
{
long extra = 0;
 
/* Adjust operands and result, if a and/or b is 32 bits. */
/* Effectively: b & 0x80000000. */
if ((long) b < 0)
return a >= b;
 
/* Effectively: a & 0x80000000. */
if ((long) a < 0)
{
int tmp = 0;
 
if (b == 0)
return 0xffffffff;
#ifdef LZ
tmp = LZ (b);
#else
for (tmp = 31; (((long) b & (1 << tmp)) == 0); tmp--)
;
 
tmp = 31 - tmp;
#endif
 
if ((b << tmp) > a)
{
extra = 1 << (tmp-1);
a -= b << (tmp - 1);
}
else
{
extra = 1 << tmp;
a -= b << tmp;
}
}
 
return do_31div (a, b).quot+extra;
}
#endif /* L_udivsi3 */
 
#ifdef L_divsi3
long
__Div (long a, long b) __attribute__ ((__const__));
 
long
__Div (long a, long b)
{
long extra = 0;
long sign = (b < 0) ? -1 : 1;
 
/* We need to handle a == -2147483648 as expected and must while
doing that avoid producing a sequence like "abs (a) < 0" as GCC
may optimize out the test. That sequence may not be obvious as
we call inline functions. Testing for a being negative and
handling (presumably much rarer than positive) enables us to get
a bit of optimization for an (accumulated) reduction of the
penalty of the 0x80000000 special-case. */
if (a < 0)
{
sign = -sign;
 
if ((a & 0x7fffffff) == 0)
{
/* We're at 0x80000000. Tread carefully. */
a -= b * sign;
extra = sign;
}
a = -a;
}
 
/* We knowingly penalize pre-v10 models by multiplication with the
sign. */
return sign * do_31div (a, __builtin_labs (b)).quot + extra;
}
#endif /* L_divsi3 */
 
 
#ifdef L_umodsi3
unsigned long
__Umod (unsigned long a, unsigned long b) __attribute__ ((__const__));
 
unsigned long
__Umod (unsigned long a, unsigned long b)
{
/* Adjust operands and result if a and/or b is 32 bits. */
if ((long) b < 0)
return a >= b ? a - b : a;
 
if ((long) a < 0)
{
int tmp = 0;
 
if (b == 0)
return a;
#ifdef LZ
tmp = LZ (b);
#else
for (tmp = 31; (((long) b & (1 << tmp)) == 0); tmp--)
;
tmp = 31 - tmp;
#endif
 
if ((b << tmp) > a)
{
a -= b << (tmp - 1);
}
else
{
a -= b << tmp;
}
}
 
return do_31div (a, b).rem;
}
#endif /* L_umodsi3 */
 
#ifdef L_modsi3
long
__Mod (long a, long b) __attribute__ ((__const__));
 
long
__Mod (long a, long b)
{
long sign = 1;
 
/* We need to handle a == -2147483648 as expected and must while
doing that avoid producing a sequence like "abs (a) < 0" as GCC
may optimize out the test. That sequence may not be obvious as
we call inline functions. Testing for a being negative and
handling (presumably much rarer than positive) enables us to get
a bit of optimization for an (accumulated) reduction of the
penalty of the 0x80000000 special-case. */
if (a < 0)
{
sign = -1;
if ((a & 0x7fffffff) == 0)
/* We're at 0x80000000. Tread carefully. */
a += __builtin_labs (b);
a = -a;
}
 
return sign * do_31div (a, __builtin_labs (b)).rem;
}
#endif /* L_modsi3 */
#endif /* L_udivsi3 || L_divsi3 || L_umodsi3 || L_modsi3 */
 
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
/cris.c
0,0 → 1,3556
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007 Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "flags.h"
#include "tree.h"
#include "expr.h"
#include "except.h"
#include "function.h"
#include "toplev.h"
#include "recog.h"
#include "reload.h"
#include "tm_p.h"
#include "debug.h"
#include "output.h"
#include "target.h"
#include "target-def.h"
#include "ggc.h"
#include "optabs.h"
 
/* Usable when we have an amount to add or subtract, and want the
optimal size of the insn. */
#define ADDITIVE_SIZE_MODIFIER(size) \
((size) <= 63 ? "q" : (size) <= 255 ? "u.b" : (size) <= 65535 ? "u.w" : ".d")
 
#define ASSERT_PLT_UNSPEC(x) \
CRIS_ASSERT (XINT (x, 1) == CRIS_UNSPEC_PLT \
&& ((GET_CODE (XVECEXP (x, 0, 0)) == SYMBOL_REF) \
|| GET_CODE (XVECEXP (x, 0, 0)) == LABEL_REF))
 
#define LOSE_AND_RETURN(msgid, x) \
do \
{ \
cris_operand_lossage (msgid, x); \
return; \
} while (0)
 
enum cris_retinsn_type
{ CRIS_RETINSN_UNKNOWN = 0, CRIS_RETINSN_RET, CRIS_RETINSN_JUMP };
 
/* Per-function machine data. */
struct machine_function GTY(())
{
int needs_return_address_on_stack;
 
/* This is the number of registers we save in the prologue due to
stdarg. */
int stdarg_regs;
 
enum cris_retinsn_type return_type;
};
 
/* This little fix suppresses the 'u' or 's' when '%e' in assembly
pattern. */
static char cris_output_insn_is_bound = 0;
 
/* In code for output macros, this is how we know whether e.g. constant
goes in code or in a static initializer. */
static int in_code = 0;
 
/* Fix for reg_overlap_mentioned_p. */
static int cris_reg_overlap_mentioned_p (rtx, rtx);
 
static void cris_print_base (rtx, FILE *);
 
static void cris_print_index (rtx, FILE *);
 
static void cris_output_addr_const (FILE *, rtx);
 
static struct machine_function * cris_init_machine_status (void);
 
static rtx cris_struct_value_rtx (tree, int);
 
static void cris_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
tree type, int *, int);
 
static int cris_initial_frame_pointer_offset (void);
 
static int saved_regs_mentioned (rtx);
 
static void cris_operand_lossage (const char *, rtx);
 
static int cris_reg_saved_in_regsave_area (unsigned int, bool);
 
static void cris_asm_output_mi_thunk
(FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree);
 
static void cris_file_start (void);
static void cris_init_libfuncs (void);
 
static bool cris_rtx_costs (rtx, int, int, int *);
static int cris_address_cost (rtx);
static bool cris_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static int cris_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static tree cris_md_asm_clobbers (tree, tree, tree);
 
static bool cris_handle_option (size_t, const char *, int);
 
/* This is the parsed result of the "-max-stack-stackframe=" option. If
it (still) is zero, then there was no such option given. */
int cris_max_stackframe = 0;
 
/* This is the parsed result of the "-march=" option, if given. */
int cris_cpu_version = CRIS_DEFAULT_CPU_VERSION;
 
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.dword\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
 
/* We need to define these, since the 2byte, 4byte, 8byte op:s are only
available in ELF. These "normal" pseudos do not have any alignment
constraints or side-effects. */
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
 
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
 
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
 
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK cris_asm_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
 
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START cris_file_start
 
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS cris_init_libfuncs
 
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS cris_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST cris_address_cost
 
#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX cris_struct_value_rtx
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS cris_setup_incoming_varargs
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE cris_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES cris_arg_partial_bytes
#undef TARGET_MD_ASM_CLOBBERS
#define TARGET_MD_ASM_CLOBBERS cris_md_asm_clobbers
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | CRIS_SUBTARGET_DEFAULT)
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION cris_handle_option
 
struct gcc_target targetm = TARGET_INITIALIZER;
 
/* Helper for cris_load_multiple_op and cris_ret_movem_op. */
 
bool
cris_movem_load_rest_p (rtx op, int offs)
{
unsigned int reg_count = XVECLEN (op, 0) - offs;
rtx src_addr;
int i;
rtx elt;
int setno;
int regno_dir = 1;
unsigned int regno = 0;
 
/* Perform a quick check so we don't blow up below. FIXME: Adjust for
other than (MEM reg). */
if (reg_count <= 1
|| GET_CODE (XVECEXP (op, 0, offs)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, offs))) != REG
|| GET_CODE (SET_SRC (XVECEXP (op, 0, offs))) != MEM)
return false;
 
/* Check a possible post-inc indicator. */
if (GET_CODE (SET_SRC (XVECEXP (op, 0, offs + 1))) == PLUS)
{
rtx reg = XEXP (SET_SRC (XVECEXP (op, 0, offs + 1)), 0);
rtx inc = XEXP (SET_SRC (XVECEXP (op, 0, offs + 1)), 1);
 
reg_count--;
 
if (reg_count == 1
|| !REG_P (reg)
|| !REG_P (SET_DEST (XVECEXP (op, 0, offs + 1)))
|| REGNO (reg) != REGNO (SET_DEST (XVECEXP (op, 0, offs + 1)))
|| GET_CODE (inc) != CONST_INT
|| INTVAL (inc) != (HOST_WIDE_INT) reg_count * 4)
return false;
i = offs + 2;
}
else
i = offs + 1;
 
/* FIXME: These two only for pre-v32. */
regno_dir = -1;
regno = reg_count - 1;
 
elt = XVECEXP (op, 0, offs);
src_addr = XEXP (SET_SRC (elt), 0);
 
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != SImode
|| REGNO (SET_DEST (elt)) != regno
|| GET_CODE (SET_SRC (elt)) != MEM
|| GET_MODE (SET_SRC (elt)) != SImode
|| !memory_address_p (SImode, src_addr))
return false;
 
for (setno = 1; i < XVECLEN (op, 0); setno++, i++)
{
rtx elt = XVECEXP (op, 0, i);
regno += regno_dir;
 
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != SImode
|| REGNO (SET_DEST (elt)) != regno
|| GET_CODE (SET_SRC (elt)) != MEM
|| GET_MODE (SET_SRC (elt)) != SImode
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
|| GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != setno * 4)
return false;
}
 
return true;
}
 
/* Worker function for predicate for the parallel contents in a movem
to-memory. */
 
bool
cris_store_multiple_op_p (rtx op)
{
int reg_count = XVECLEN (op, 0);
rtx dest;
rtx dest_addr;
rtx dest_base;
int i;
rtx elt;
int setno;
int regno_dir = 1;
int regno = 0;
int offset = 0;
 
/* Perform a quick check so we don't blow up below. FIXME: Adjust for
other than (MEM reg) and (MEM (PLUS reg const)). */
if (reg_count <= 1)
return false;
 
elt = XVECEXP (op, 0, 0);
 
if (GET_CODE (elt) != SET)
return false;
 
dest = SET_DEST (elt);
 
if (GET_CODE (SET_SRC (elt)) != REG
|| GET_CODE (dest) != MEM)
return false;
 
dest_addr = XEXP (dest, 0);
 
/* Check a possible post-inc indicator. */
if (GET_CODE (SET_SRC (XVECEXP (op, 0, 1))) == PLUS)
{
rtx reg = XEXP (SET_SRC (XVECEXP (op, 0, 1)), 0);
rtx inc = XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1);
 
reg_count--;
 
if (reg_count == 1
|| !REG_P (reg)
|| !REG_P (SET_DEST (XVECEXP (op, 0, 1)))
|| REGNO (reg) != REGNO (SET_DEST (XVECEXP (op, 0, 1)))
|| GET_CODE (inc) != CONST_INT
/* Support increment by number of registers, and by the offset
of the destination, if it has the form (MEM (PLUS reg
offset)). */
|| !((REG_P (dest_addr)
&& REGNO (dest_addr) == REGNO (reg)
&& INTVAL (inc) == (HOST_WIDE_INT) reg_count * 4)
|| (GET_CODE (dest_addr) == PLUS
&& REG_P (XEXP (dest_addr, 0))
&& REGNO (XEXP (dest_addr, 0)) == REGNO (reg)
&& GET_CODE (XEXP (dest_addr, 1)) == CONST_INT
&& INTVAL (XEXP (dest_addr, 1)) == INTVAL (inc))))
return false;
 
i = 2;
}
else
i = 1;
 
/* FIXME: These two only for pre-v32. */
regno_dir = -1;
regno = reg_count - 1;
 
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != SImode
|| REGNO (SET_SRC (elt)) != (unsigned int) regno
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_MODE (SET_DEST (elt)) != SImode)
return false;
 
if (REG_P (dest_addr))
{
dest_base = dest_addr;
offset = 0;
}
else if (GET_CODE (dest_addr) == PLUS
&& REG_P (XEXP (dest_addr, 0))
&& GET_CODE (XEXP (dest_addr, 1)) == CONST_INT)
{
dest_base = XEXP (dest_addr, 0);
offset = INTVAL (XEXP (dest_addr, 1));
}
else
return false;
 
for (setno = 1; i < XVECLEN (op, 0); setno++, i++)
{
rtx elt = XVECEXP (op, 0, i);
regno += regno_dir;
 
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != SImode
|| REGNO (SET_SRC (elt)) != (unsigned int) regno
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_MODE (SET_DEST (elt)) != SImode
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_base)
|| GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != setno * 4 + offset)
return false;
}
 
return true;
}
 
/* The CONDITIONAL_REGISTER_USAGE worker. */
 
void
cris_conditional_register_usage (void)
{
/* FIXME: This isn't nice. We should be able to use that register for
something else if the PIC table isn't needed. */
if (flag_pic)
fixed_regs[PIC_OFFSET_TABLE_REGNUM]
= call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
 
if (TARGET_HAS_MUL_INSNS)
fixed_regs[CRIS_MOF_REGNUM] = 0;
 
/* On early versions, we must use the 16-bit condition-code register,
which has another name. */
if (cris_cpu_version < 8)
reg_names[CRIS_CC0_REGNUM] = "ccr";
}
 
/* Return current_function_uses_pic_offset_table. For use in cris.md,
since some generated files do not include function.h. */
 
int
cris_cfun_uses_pic_table (void)
{
return current_function_uses_pic_offset_table;
}
 
/* Given an rtx, return the text string corresponding to the CODE of X.
Intended for use in the assembly language output section of a
define_insn. */
 
const char *
cris_op_str (rtx x)
{
cris_output_insn_is_bound = 0;
switch (GET_CODE (x))
{
case PLUS:
return "add";
break;
 
case MINUS:
return "sub";
break;
 
case MULT:
/* This function is for retrieving a part of an instruction name for
an operator, for immediate output. If that ever happens for
MULT, we need to apply TARGET_MUL_BUG in the caller. Make sure
we notice. */
internal_error ("MULT case in cris_op_str");
break;
 
case DIV:
return "div";
break;
 
case AND:
return "and";
break;
 
case IOR:
return "or";
break;
 
case XOR:
return "xor";
break;
 
case NOT:
return "not";
break;
 
case ASHIFT:
return "lsl";
break;
 
case LSHIFTRT:
return "lsr";
break;
 
case ASHIFTRT:
return "asr";
break;
 
case UMIN:
/* Used to control the sign/zero-extend character for the 'E' modifier.
BOUND has none. */
cris_output_insn_is_bound = 1;
return "bound";
break;
 
default:
return "Unknown operator";
break;
}
}
 
/* Emit an error message when we're in an asm, and a fatal error for
"normal" insns. Formatted output isn't easily implemented, since we
use output_operand_lossage to output the actual message and handle the
categorization of the error. */
 
static void
cris_operand_lossage (const char *msgid, rtx op)
{
debug_rtx (op);
output_operand_lossage ("%s", msgid);
}
 
/* Print an index part of an address to file. */
 
static void
cris_print_index (rtx index, FILE *file)
{
rtx inner = XEXP (index, 0);
 
/* Make the index "additive" unless we'll output a negative number, in
which case the sign character is free (as in free beer). */
if (GET_CODE (index) != CONST_INT || INTVAL (index) >= 0)
putc ('+', file);
 
if (REG_P (index))
fprintf (file, "$%s.b", reg_names[REGNO (index)]);
else if (CONSTANT_P (index))
cris_output_addr_const (file, index);
else if (GET_CODE (index) == MULT)
{
fprintf (file, "$%s.",
reg_names[REGNO (XEXP (index, 0))]);
 
putc (INTVAL (XEXP (index, 1)) == 2 ? 'w' : 'd', file);
}
else if (GET_CODE (index) == SIGN_EXTEND &&
GET_CODE (inner) == MEM)
{
rtx inner_inner = XEXP (inner, 0);
 
if (GET_CODE (inner_inner) == POST_INC)
{
fprintf (file, "[$%s+].",
reg_names[REGNO (XEXP (inner_inner, 0))]);
putc (GET_MODE (inner) == HImode ? 'w' : 'b', file);
}
else
{
fprintf (file, "[$%s].", reg_names[REGNO (inner_inner)]);
 
putc (GET_MODE (inner) == HImode ? 'w' : 'b', file);
}
}
else if (GET_CODE (index) == MEM)
{
if (GET_CODE (inner) == POST_INC)
fprintf (file, "[$%s+].d", reg_names[REGNO (XEXP (inner, 0))]);
else
fprintf (file, "[$%s].d", reg_names[REGNO (inner)]);
}
else
cris_operand_lossage ("unexpected index-type in cris_print_index",
index);
}
 
/* Print a base rtx of an address to file. */
 
static void
cris_print_base (rtx base, FILE *file)
{
if (REG_P (base))
fprintf (file, "$%s", reg_names[REGNO (base)]);
else if (GET_CODE (base) == POST_INC)
fprintf (file, "$%s+", reg_names[REGNO (XEXP (base, 0))]);
else
cris_operand_lossage ("unexpected base-type in cris_print_base",
base);
}
 
/* Usable as a guard in expressions. */
 
int
cris_fatal (char *arg)
{
internal_error (arg);
 
/* We'll never get here; this is just to appease compilers. */
return 0;
}
 
/* Return nonzero if REGNO is an ordinary register that *needs* to be
saved together with other registers, possibly by a MOVEM instruction,
or is saved for target-independent reasons. There may be
target-dependent reasons to save the register anyway; this is just a
wrapper for a complicated conditional. */
 
static int
cris_reg_saved_in_regsave_area (unsigned int regno, bool got_really_used)
{
return
(((regs_ever_live[regno]
&& !call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM
&& (got_really_used
/* It is saved anyway, if there would be a gap. */
|| (flag_pic
&& regs_ever_live[regno + 1]
&& !call_used_regs[regno + 1]))))
&& (regno != FRAME_POINTER_REGNUM || !frame_pointer_needed)
&& regno != CRIS_SRP_REGNUM)
|| (current_function_calls_eh_return
&& (regno == EH_RETURN_DATA_REGNO (0)
|| regno == EH_RETURN_DATA_REGNO (1)
|| regno == EH_RETURN_DATA_REGNO (2)
|| regno == EH_RETURN_DATA_REGNO (3)));
}
 
/* Return nonzero if there are regs mentioned in the insn that are not all
in the call_used regs. This is part of the decision whether an insn
can be put in the epilogue. */
 
static int
saved_regs_mentioned (rtx x)
{
int i;
const char *fmt;
RTX_CODE code;
 
/* Mainly stolen from refers_to_regno_p in rtlanal.c. */
 
code = GET_CODE (x);
 
switch (code)
{
case REG:
i = REGNO (x);
return !call_used_regs[i];
 
case SUBREG:
/* If this is a SUBREG of a hard reg, we can see exactly which
registers are being modified. Otherwise, handle normally. */
i = REGNO (SUBREG_REG (x));
return !call_used_regs[i];
 
default:
;
}
 
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (saved_regs_mentioned (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >=0; j--)
if (saved_regs_mentioned (XEXP (x, i)))
return 1;
}
}
 
return 0;
}
 
/* The PRINT_OPERAND worker. */
 
void
cris_print_operand (FILE *file, rtx x, int code)
{
rtx operand = x;
 
/* Size-strings corresponding to MULT expressions. */
static const char *const mults[] = { "BAD:0", ".b", ".w", "BAD:3", ".d" };
 
/* New code entries should just be added to the switch below. If
handling is finished, just return. If handling was just a
modification of the operand, the modified operand should be put in
"operand", and then do a break to let default handling
(zero-modifier) output the operand. */
 
switch (code)
{
case 'b':
/* Print the unsigned supplied integer as if it were signed
and < 0, i.e print 255 or 65535 as -1, 254, 65534 as -2, etc. */
if (GET_CODE (x) != CONST_INT
|| ! CONST_OK_FOR_LETTER_P (INTVAL (x), 'O'))
LOSE_AND_RETURN ("invalid operand for 'b' modifier", x);
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
INTVAL (x)| (INTVAL (x) <= 255 ? ~255 : ~65535));
return;
 
case 'x':
/* Print assembler code for operator. */
fprintf (file, "%s", cris_op_str (operand));
return;
 
case 'o':
{
/* A movem modifier working on a parallel; output the register
name. */
int regno;
 
if (GET_CODE (x) != PARALLEL)
LOSE_AND_RETURN ("invalid operand for 'o' modifier", x);
 
/* The second item can be (set reg (plus reg const)) to denote a
postincrement. */
regno
= (GET_CODE (SET_SRC (XVECEXP (x, 0, 1))) == PLUS
? XVECLEN (x, 0) - 2
: XVECLEN (x, 0) - 1);
 
fprintf (file, "$%s", reg_names [regno]);
}
return;
 
case 'O':
{
/* A similar movem modifier; output the memory operand. */
rtx addr;
 
if (GET_CODE (x) != PARALLEL)
LOSE_AND_RETURN ("invalid operand for 'O' modifier", x);
 
/* The lowest mem operand is in the first item, but perhaps it
needs to be output as postincremented. */
addr = GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == MEM
? XEXP (SET_SRC (XVECEXP (x, 0, 0)), 0)
: XEXP (SET_DEST (XVECEXP (x, 0, 0)), 0);
 
/* The second item can be a (set reg (plus reg const)) to denote
a modification. */
if (GET_CODE (SET_SRC (XVECEXP (x, 0, 1))) == PLUS)
{
/* It's a post-increment, if the address is a naked (reg). */
if (REG_P (addr))
addr = gen_rtx_POST_INC (SImode, addr);
else
{
/* Otherwise, it's a side-effect; RN=RN+M. */
fprintf (file, "[$%s=$%s%s%d]",
reg_names [REGNO (SET_DEST (XVECEXP (x, 0, 1)))],
reg_names [REGNO (XEXP (addr, 0))],
INTVAL (XEXP (addr, 1)) < 0 ? "" : "+",
(int) INTVAL (XEXP (addr, 1)));
return;
}
}
output_address (addr);
}
return;
 
case 'p':
/* Adjust a power of two to its log2. */
if (GET_CODE (x) != CONST_INT || exact_log2 (INTVAL (x)) < 0 )
LOSE_AND_RETURN ("invalid operand for 'p' modifier", x);
fprintf (file, "%d", exact_log2 (INTVAL (x)));
return;
 
case 's':
/* For an integer, print 'b' or 'w' if <= 255 or <= 65535
respectively. This modifier also terminates the inhibiting
effects of the 'x' modifier. */
cris_output_insn_is_bound = 0;
if (GET_MODE (x) == VOIDmode && GET_CODE (x) == CONST_INT)
{
if (INTVAL (x) >= 0)
{
if (INTVAL (x) <= 255)
putc ('b', file);
else if (INTVAL (x) <= 65535)
putc ('w', file);
else
putc ('d', file);
}
else
putc ('d', file);
return;
}
 
/* For a non-integer, print the size of the operand. */
putc ((GET_MODE (x) == SImode || GET_MODE (x) == SFmode)
? 'd' : GET_MODE (x) == HImode ? 'w'
: GET_MODE (x) == QImode ? 'b'
/* If none of the above, emit an erroneous size letter. */
: 'X',
file);
return;
 
case 'z':
/* Const_int: print b for -127 <= x <= 255,
w for -32768 <= x <= 65535, else die. */
if (GET_CODE (x) != CONST_INT
|| INTVAL (x) < -32768 || INTVAL (x) > 65535)
LOSE_AND_RETURN ("invalid operand for 'z' modifier", x);
putc (INTVAL (x) >= -128 && INTVAL (x) <= 255 ? 'b' : 'w', file);
return;
 
case '#':
/* Output a 'nop' if there's nothing for the delay slot.
This method stolen from the sparc files. */
if (dbr_sequence_length () == 0)
fputs ("\n\tnop", file);
return;
 
case '!':
/* Output directive for alignment padded with "nop" insns.
Optimizing for size, it's plain 4-byte alignment, otherwise we
align the section to a cache-line (32 bytes) and skip at max 2
bytes, i.e. we skip if it's the last insn on a cache-line. The
latter is faster by a small amount (for two test-programs 99.6%
and 99.9%) and larger by a small amount (ditto 100.1% and
100.2%). This is supposed to be the simplest yet performance-
wise least intrusive way to make sure the immediately following
(supposed) muls/mulu insn isn't located at the end of a
cache-line. */
if (TARGET_MUL_BUG)
fputs (optimize_size
? ".p2alignw 2,0x050f\n\t"
: ".p2alignw 5,0x050f,2\n\t", file);
return;
 
case ':':
/* The PIC register. */
if (! flag_pic)
internal_error ("invalid use of ':' modifier");
fprintf (file, "$%s", reg_names [PIC_OFFSET_TABLE_REGNUM]);
return;
 
case 'H':
/* Print high (most significant) part of something. */
switch (GET_CODE (operand))
{
case CONST_INT:
/* If we're having 64-bit HOST_WIDE_INTs, the whole (DImode)
value is kept here, and so may be other than 0 or -1. */
fprintf (file, HOST_WIDE_INT_PRINT_DEC,
INTVAL (operand_subword (operand, 1, 0, DImode)));
return;
 
case CONST_DOUBLE:
/* High part of a long long constant. */
if (GET_MODE (operand) == VOIDmode)
{
fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_HIGH (x));
return;
}
else
LOSE_AND_RETURN ("invalid operand for 'H' modifier", x);
 
case REG:
/* Print reg + 1. Check that there's not an attempt to print
high-parts of registers like stack-pointer or higher. */
if (REGNO (operand) > STACK_POINTER_REGNUM - 2)
LOSE_AND_RETURN ("bad register", operand);
fprintf (file, "$%s", reg_names[REGNO (operand) + 1]);
return;
 
case MEM:
/* Adjust memory address to high part. */
{
rtx adj_mem = operand;
int size
= GET_MODE_BITSIZE (GET_MODE (operand)) / BITS_PER_UNIT;
 
/* Adjust so we can use two SImode in DImode.
Calling adj_offsettable_operand will make sure it is an
offsettable address. Don't do this for a postincrement
though; it should remain as it was. */
if (GET_CODE (XEXP (adj_mem, 0)) != POST_INC)
adj_mem
= adjust_address (adj_mem, GET_MODE (adj_mem), size / 2);
 
output_address (XEXP (adj_mem, 0));
return;
}
 
default:
LOSE_AND_RETURN ("invalid operand for 'H' modifier", x);
}
 
case 'L':
/* Strip the MEM expression. */
operand = XEXP (operand, 0);
break;
 
case 'e':
/* Like 'E', but ignore state set by 'x'. FIXME: Use code
iterators ("code macros") and attributes in cris.md to avoid
the need for %x and %E (and %e) and state passed between
those modifiers. */
cris_output_insn_is_bound = 0;
/* FALL THROUGH. */
case 'E':
/* Print 's' if operand is SIGN_EXTEND or 'u' if ZERO_EXTEND unless
cris_output_insn_is_bound is nonzero. */
if (GET_CODE (operand) != SIGN_EXTEND
&& GET_CODE (operand) != ZERO_EXTEND
&& GET_CODE (operand) != CONST_INT)
LOSE_AND_RETURN ("invalid operand for 'e' modifier", x);
 
if (cris_output_insn_is_bound)
{
cris_output_insn_is_bound = 0;
return;
}
 
putc (GET_CODE (operand) == SIGN_EXTEND
|| (GET_CODE (operand) == CONST_INT && INTVAL (operand) < 0)
? 's' : 'u', file);
return;
 
case 'm':
/* Print the size letter of the inner element. We can do it by
calling ourselves with the 's' modifier. */
if (GET_CODE (operand) != SIGN_EXTEND && GET_CODE (operand) != ZERO_EXTEND)
LOSE_AND_RETURN ("invalid operand for 'm' modifier", x);
cris_print_operand (file, XEXP (operand, 0), 's');
return;
 
case 'M':
/* Print the least significant part of operand. */
if (GET_CODE (operand) == CONST_DOUBLE)
{
fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
return;
}
else if (HOST_BITS_PER_WIDE_INT > 32 && GET_CODE (operand) == CONST_INT)
{
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
INTVAL (x) & ((unsigned int) 0x7fffffff * 2 + 1));
return;
}
/* Otherwise the least significant part equals the normal part,
so handle it normally. */
break;
 
case 'A':
/* When emitting an add for the high part of a DImode constant, we
want to use addq for 0 and adds.w for -1. */
if (GET_CODE (operand) != CONST_INT)
LOSE_AND_RETURN ("invalid operand for 'A' modifier", x);
fprintf (file, INTVAL (operand) < 0 ? "adds.w" : "addq");
return;
 
case 'd':
/* If this is a GOT symbol, force it to be emitted as :GOT and
:GOTPLT regardless of -fpic (i.e. not as :GOT16, :GOTPLT16).
Avoid making this too much of a special case. */
if (flag_pic == 1 && CONSTANT_P (operand))
{
int flag_pic_save = flag_pic;
 
flag_pic = 2;
cris_output_addr_const (file, operand);
flag_pic = flag_pic_save;
return;
}
break;
 
case 'D':
/* When emitting an sub for the high part of a DImode constant, we
want to use subq for 0 and subs.w for -1. */
if (GET_CODE (operand) != CONST_INT)
LOSE_AND_RETURN ("invalid operand for 'D' modifier", x);
fprintf (file, INTVAL (operand) < 0 ? "subs.w" : "subq");
return;
 
case 'S':
/* Print the operand as the index-part of an address.
Easiest way out is to use cris_print_index. */
cris_print_index (operand, file);
return;
 
case 'T':
/* Print the size letter for an operand to a MULT, which must be a
const_int with a suitable value. */
if (GET_CODE (operand) != CONST_INT || INTVAL (operand) > 4)
LOSE_AND_RETURN ("invalid operand for 'T' modifier", x);
fprintf (file, "%s", mults[INTVAL (operand)]);
return;
 
case 0:
/* No code, print as usual. */
break;
 
default:
LOSE_AND_RETURN ("invalid operand modifier letter", x);
}
 
/* Print an operand as without a modifier letter. */
switch (GET_CODE (operand))
{
case REG:
if (REGNO (operand) > 15
&& REGNO (operand) != CRIS_MOF_REGNUM
&& REGNO (operand) != CRIS_SRP_REGNUM
&& REGNO (operand) != CRIS_CC0_REGNUM)
internal_error ("internal error: bad register: %d", REGNO (operand));
fprintf (file, "$%s", reg_names[REGNO (operand)]);
return;
 
case MEM:
output_address (XEXP (operand, 0));
return;
 
case CONST_DOUBLE:
if (GET_MODE (operand) == VOIDmode)
/* A long long constant. */
output_addr_const (file, operand);
else
{
/* Only single precision is allowed as plain operands the
moment. FIXME: REAL_VALUE_FROM_CONST_DOUBLE isn't
documented. */
REAL_VALUE_TYPE r;
long l;
 
/* FIXME: Perhaps check overflow of the "single". */
REAL_VALUE_FROM_CONST_DOUBLE (r, operand);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
 
fprintf (file, "0x%lx", l);
}
return;
 
case UNSPEC:
/* Fall through. */
case CONST:
cris_output_addr_const (file, operand);
return;
 
case MULT:
case ASHIFT:
{
/* For a (MULT (reg X) const_int) we output "rX.S". */
int i = GET_CODE (XEXP (operand, 1)) == CONST_INT
? INTVAL (XEXP (operand, 1)) : INTVAL (XEXP (operand, 0));
rtx reg = GET_CODE (XEXP (operand, 1)) == CONST_INT
? XEXP (operand, 0) : XEXP (operand, 1);
 
if (GET_CODE (reg) != REG
|| (GET_CODE (XEXP (operand, 0)) != CONST_INT
&& GET_CODE (XEXP (operand, 1)) != CONST_INT))
LOSE_AND_RETURN ("unexpected multiplicative operand", x);
 
cris_print_base (reg, file);
fprintf (file, ".%c",
i == 0 || (i == 1 && GET_CODE (operand) == MULT) ? 'b'
: i == 4 ? 'd'
: (i == 2 && GET_CODE (operand) == MULT) || i == 1 ? 'w'
: 'd');
return;
}
 
default:
/* No need to handle all strange variants, let output_addr_const
do it for us. */
if (CONSTANT_P (operand))
{
cris_output_addr_const (file, operand);
return;
}
 
LOSE_AND_RETURN ("unexpected operand", x);
}
}
 
/* The PRINT_OPERAND_ADDRESS worker. */
 
void
cris_print_operand_address (FILE *file, rtx x)
{
/* All these were inside MEM:s so output indirection characters. */
putc ('[', file);
 
if (CONSTANT_ADDRESS_P (x))
cris_output_addr_const (file, x);
else if (BASE_OR_AUTOINCR_P (x))
cris_print_base (x, file);
else if (GET_CODE (x) == PLUS)
{
rtx x1, x2;
 
x1 = XEXP (x, 0);
x2 = XEXP (x, 1);
if (BASE_P (x1))
{
cris_print_base (x1, file);
cris_print_index (x2, file);
}
else if (BASE_P (x2))
{
cris_print_base (x2, file);
cris_print_index (x1, file);
}
else
LOSE_AND_RETURN ("unrecognized address", x);
}
else if (GET_CODE (x) == MEM)
{
/* A DIP. Output more indirection characters. */
putc ('[', file);
cris_print_base (XEXP (x, 0), file);
putc (']', file);
}
else
LOSE_AND_RETURN ("unrecognized address", x);
 
putc (']', file);
}
 
/* The RETURN_ADDR_RTX worker.
We mark that the return address is used, either by EH or
__builtin_return_address, for use by the function prologue and
epilogue. FIXME: This isn't optimal; we just use the mark in the
prologue and epilogue to say that the return address is to be stored
in the stack frame. We could return SRP for leaf-functions and use the
initial-value machinery. */
 
rtx
cris_return_addr_rtx (int count, rtx frameaddr ATTRIBUTE_UNUSED)
{
cfun->machine->needs_return_address_on_stack = 1;
 
/* The return-address is stored just above the saved frame-pointer (if
present). Apparently we can't eliminate from the frame-pointer in
that direction, so use the incoming args (maybe pretended) pointer. */
return count == 0
? gen_rtx_MEM (Pmode, plus_constant (virtual_incoming_args_rtx, -4))
: NULL_RTX;
}
 
/* Accessor used in cris.md:return because cfun->machine isn't available
there. */
 
bool
cris_return_address_on_stack (void)
{
return regs_ever_live[CRIS_SRP_REGNUM]
|| cfun->machine->needs_return_address_on_stack;
}
 
/* Accessor used in cris.md:return because cfun->machine isn't available
there. */
 
bool
cris_return_address_on_stack_for_return (void)
{
return cfun->machine->return_type == CRIS_RETINSN_RET ? false
: cris_return_address_on_stack ();
}
 
/* This used to be the INITIAL_FRAME_POINTER_OFFSET worker; now only
handles FP -> SP elimination offset. */
 
static int
cris_initial_frame_pointer_offset (void)
{
int regno;
 
/* Initial offset is 0 if we don't have a frame pointer. */
int offs = 0;
bool got_really_used = false;
 
if (current_function_uses_pic_offset_table)
{
push_topmost_sequence ();
got_really_used
= reg_used_between_p (pic_offset_table_rtx, get_insns (),
NULL_RTX);
pop_topmost_sequence ();
}
 
/* And 4 for each register pushed. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (cris_reg_saved_in_regsave_area (regno, got_really_used))
offs += 4;
 
/* And then, last, we add the locals allocated. */
offs += get_frame_size ();
 
/* And more; the accumulated args size. */
offs += current_function_outgoing_args_size;
 
/* Then round it off, in case we use aligned stack. */
if (TARGET_STACK_ALIGN)
offs = TARGET_ALIGN_BY_32 ? (offs + 3) & ~3 : (offs + 1) & ~1;
 
return offs;
}
 
/* The INITIAL_ELIMINATION_OFFSET worker.
Calculate the difference between imaginary registers such as frame
pointer and the stack pointer. Used to eliminate the frame pointer
and imaginary arg pointer. */
 
int
cris_initial_elimination_offset (int fromreg, int toreg)
{
int fp_sp_offset
= cris_initial_frame_pointer_offset ();
 
/* We should be able to use regs_ever_live and related prologue
information here, or alpha should not as well. */
bool return_address_on_stack = cris_return_address_on_stack ();
 
/* Here we act as if the frame-pointer were needed. */
int ap_fp_offset = 4 + (return_address_on_stack ? 4 : 0);
 
if (fromreg == ARG_POINTER_REGNUM
&& toreg == FRAME_POINTER_REGNUM)
return ap_fp_offset;
 
/* Between the frame pointer and the stack are only "normal" stack
variables and saved registers. */
if (fromreg == FRAME_POINTER_REGNUM
&& toreg == STACK_POINTER_REGNUM)
return fp_sp_offset;
 
/* We need to balance out the frame pointer here. */
if (fromreg == ARG_POINTER_REGNUM
&& toreg == STACK_POINTER_REGNUM)
return ap_fp_offset + fp_sp_offset - 4;
 
gcc_unreachable ();
}
 
/* Worker function for LEGITIMIZE_RELOAD_ADDRESS. */
 
bool
cris_reload_address_legitimized (rtx x,
enum machine_mode mode ATTRIBUTE_UNUSED,
int opnum ATTRIBUTE_UNUSED,
int itype,
int ind_levels ATTRIBUTE_UNUSED)
{
enum reload_type type = itype;
rtx op0, op1;
rtx *op0p;
rtx *op1p;
 
if (GET_CODE (x) != PLUS)
return false;
 
op0 = XEXP (x, 0);
op0p = &XEXP (x, 0);
op1 = XEXP (x, 1);
op1p = &XEXP (x, 1);
 
if (!REG_P (op1))
return false;
 
if (GET_CODE (op0) == SIGN_EXTEND
&& GET_CODE (XEXP (op0, 0)) == MEM)
{
rtx op00 = XEXP (op0, 0);
rtx op000 = XEXP (op00, 0);
rtx *op000p = &XEXP (op00, 0);
 
if ((GET_MODE (op00) == HImode || GET_MODE (op00) == QImode)
&& (REG_P (op000)
|| (GET_CODE (op000) == POST_INC && REG_P (XEXP (op000, 0)))))
{
bool something_reloaded = false;
 
if (GET_CODE (op000) == POST_INC
&& REG_P (XEXP (op000, 0))
&& REGNO (XEXP (op000, 0)) > CRIS_LAST_GENERAL_REGISTER)
/* No, this gets too complicated and is too rare to care
about trying to improve on the general code Here.
As the return-value is an all-or-nothing indicator, we
punt on the other register too. */
return false;
 
if ((REG_P (op000)
&& REGNO (op000) > CRIS_LAST_GENERAL_REGISTER))
{
/* The address of the inner mem is a pseudo or wrong
reg: reload that. */
push_reload (op000, NULL_RTX, op000p, NULL, GENERAL_REGS,
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
something_reloaded = true;
}
 
if (REGNO (op1) > CRIS_LAST_GENERAL_REGISTER)
{
/* Base register is a pseudo or wrong reg: reload it. */
push_reload (op1, NULL_RTX, op1p, NULL, GENERAL_REGS,
GET_MODE (x), VOIDmode, 0, 0,
opnum, type);
something_reloaded = true;
}
 
gcc_assert (something_reloaded);
 
return true;
}
}
 
return false;
}
 
/* This function looks into the pattern to see how this insn affects
condition codes.
 
Used when to eliminate test insns before a condition-code user,
such as a "scc" insn or a conditional branch. This includes
checking if the entities that cc was updated by, are changed by the
operation.
 
Currently a jumble of the old peek-inside-the-insn and the newer
check-cc-attribute methods. */
 
void
cris_notice_update_cc (rtx exp, rtx insn)
{
/* Check if user specified "-mcc-init" as a bug-workaround. FIXME:
TARGET_CCINIT does not work; we must set CC_REVERSED as below.
Several testcases will otherwise fail, for example
gcc.c-torture/execute/20000217-1.c -O0 and -O1. */
if (TARGET_CCINIT)
{
CC_STATUS_INIT;
return;
}
 
/* Slowly, we're converting to using attributes to control the setting
of condition-code status. */
switch (get_attr_cc (insn))
{
case CC_NONE:
/* Even if it is "none", a setting may clobber a previous
cc-value, so check. */
if (GET_CODE (exp) == SET)
{
if (cc_status.value1
&& modified_in_p (cc_status.value1, insn))
cc_status.value1 = 0;
 
if (cc_status.value2
&& modified_in_p (cc_status.value2, insn))
cc_status.value2 = 0;
}
return;
 
case CC_CLOBBER:
CC_STATUS_INIT;
break;
 
case CC_NORMAL:
/* Which means, for:
(set (cc0) (...)):
CC is (...).
 
(set (reg) (...)):
CC is (reg) and (...) - unless (...) is 0, then CC does not change.
CC_NO_OVERFLOW unless (...) is reg or mem.
 
(set (mem) (...)):
CC does not change.
 
(set (pc) (...)):
CC does not change.
 
(parallel
(set (reg1) (mem (bdap/biap)))
(set (reg2) (bdap/biap))):
CC is (reg1) and (mem (reg2))
 
(parallel
(set (mem (bdap/biap)) (reg1)) [or 0]
(set (reg2) (bdap/biap))):
CC does not change.
 
(where reg and mem includes strict_low_parts variants thereof)
 
For all others, assume CC is clobbered.
Note that we do not have to care about setting CC_NO_OVERFLOW,
since the overflow flag is set to 0 (i.e. right) for
instructions where it does not have any sane sense, but where
other flags have meanings. (This includes shifts; the carry is
not set by them).
 
Note that there are other parallel constructs we could match,
but we don't do that yet. */
 
if (GET_CODE (exp) == SET)
{
/* FIXME: Check when this happens. It looks like we should
actually do a CC_STATUS_INIT here to be safe. */
if (SET_DEST (exp) == pc_rtx)
return;
 
/* Record CC0 changes, so we do not have to output multiple
test insns. */
if (SET_DEST (exp) == cc0_rtx)
{
cc_status.value1 = SET_SRC (exp);
cc_status.value2 = 0;
 
/* Handle flags for the special btstq on one bit. */
if (GET_CODE (SET_SRC (exp)) == ZERO_EXTRACT
&& XEXP (SET_SRC (exp), 1) == const1_rtx)
{
if (GET_CODE (XEXP (SET_SRC (exp), 0)) == CONST_INT)
/* Using cmpq. */
cc_status.flags = CC_INVERTED;
else
/* A one-bit btstq. */
cc_status.flags = CC_Z_IN_NOT_N;
}
else
cc_status.flags = 0;
 
if (GET_CODE (SET_SRC (exp)) == COMPARE)
{
if (!REG_P (XEXP (SET_SRC (exp), 0))
&& XEXP (SET_SRC (exp), 1) != const0_rtx)
/* For some reason gcc will not canonicalize compare
operations, reversing the sign by itself if
operands are in wrong order. */
/* (But NOT inverted; eq is still eq.) */
cc_status.flags = CC_REVERSED;
 
/* This seems to be overlooked by gcc. FIXME: Check again.
FIXME: Is it really safe? */
cc_status.value2
= gen_rtx_MINUS (GET_MODE (SET_SRC (exp)),
XEXP (SET_SRC (exp), 0),
XEXP (SET_SRC (exp), 1));
}
return;
}
else if (REG_P (SET_DEST (exp))
|| (GET_CODE (SET_DEST (exp)) == STRICT_LOW_PART
&& REG_P (XEXP (SET_DEST (exp), 0))))
{
/* A register is set; normally CC is set to show that no
test insn is needed. Catch the exceptions. */
 
/* If not to cc0, then no "set"s in non-natural mode give
ok cc0... */
if (GET_MODE_SIZE (GET_MODE (SET_DEST (exp))) > UNITS_PER_WORD
|| GET_MODE_CLASS (GET_MODE (SET_DEST (exp))) == MODE_FLOAT)
{
/* ... except add:s and sub:s in DImode. */
if (GET_MODE (SET_DEST (exp)) == DImode
&& (GET_CODE (SET_SRC (exp)) == PLUS
|| GET_CODE (SET_SRC (exp)) == MINUS))
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);
 
if (cris_reg_overlap_mentioned_p (cc_status.value1,
cc_status.value2))
cc_status.value2 = 0;
 
/* Add and sub may set V, which gets us
unoptimizable results in "gt" and "le" condition
codes. */
cc_status.flags |= CC_NO_OVERFLOW;
 
return;
}
}
else if (SET_SRC (exp) == const0_rtx)
{
/* There's no CC0 change when clearing a register or
memory. Just check for overlap. */
if (cc_status.value1
&& modified_in_p (cc_status.value1, insn))
cc_status.value1 = 0;
 
if (cc_status.value2
&& modified_in_p (cc_status.value2, insn))
cc_status.value2 = 0;
 
return;
}
else
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);
 
if (cris_reg_overlap_mentioned_p (cc_status.value1,
cc_status.value2))
cc_status.value2 = 0;
 
/* Some operations may set V, which gets us
unoptimizable results in "gt" and "le" condition
codes. */
if (GET_CODE (SET_SRC (exp)) == PLUS
|| GET_CODE (SET_SRC (exp)) == MINUS
|| GET_CODE (SET_SRC (exp)) == NEG)
cc_status.flags |= CC_NO_OVERFLOW;
 
return;
}
}
else if (GET_CODE (SET_DEST (exp)) == MEM
|| (GET_CODE (SET_DEST (exp)) == STRICT_LOW_PART
&& GET_CODE (XEXP (SET_DEST (exp), 0)) == MEM))
{
/* When SET to MEM, then CC is not changed (except for
overlap). */
if (cc_status.value1
&& modified_in_p (cc_status.value1, insn))
cc_status.value1 = 0;
 
if (cc_status.value2
&& modified_in_p (cc_status.value2, insn))
cc_status.value2 = 0;
 
return;
}
}
else if (GET_CODE (exp) == PARALLEL)
{
if (GET_CODE (XVECEXP (exp, 0, 0)) == SET
&& GET_CODE (XVECEXP (exp, 0, 1)) == SET
&& REG_P (XEXP (XVECEXP (exp, 0, 1), 0)))
{
if (REG_P (XEXP (XVECEXP (exp, 0, 0), 0))
&& GET_CODE (XEXP (XVECEXP (exp, 0, 0), 1)) == MEM)
{
/* For "move.S [rx=ry+o],rz", say CC reflects
value1=rz and value2=[rx] */
cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
cc_status.value2
= replace_equiv_address (XEXP (XVECEXP (exp, 0, 0), 1),
XEXP (XVECEXP (exp, 0, 1), 0));
cc_status.flags = 0;
 
/* Huh? A side-effect cannot change the destination
register. */
if (cris_reg_overlap_mentioned_p (cc_status.value1,
cc_status.value2))
internal_error ("internal error: sideeffect-insn affecting main effect");
return;
}
else if ((REG_P (XEXP (XVECEXP (exp, 0, 0), 1))
|| XEXP (XVECEXP (exp, 0, 0), 1) == const0_rtx)
&& GET_CODE (XEXP (XVECEXP (exp, 0, 0), 0)) == MEM)
{
/* For "move.S rz,[rx=ry+o]" and "clear.S [rx=ry+o]",
say flags are not changed, except for overlap. */
if (cc_status.value1
&& modified_in_p (cc_status.value1, insn))
cc_status.value1 = 0;
 
if (cc_status.value2
&& modified_in_p (cc_status.value2, insn))
cc_status.value2 = 0;
 
return;
}
}
}
break;
 
default:
internal_error ("unknown cc_attr value");
}
 
CC_STATUS_INIT;
}
 
/* Return != 0 if the return sequence for the current function is short,
like "ret" or "jump [sp+]". Prior to reloading, we can't tell if
registers must be saved, so return 0 then. */
 
bool
cris_simple_epilogue (void)
{
unsigned int regno;
unsigned int reglimit = STACK_POINTER_REGNUM;
bool got_really_used = false;
 
if (! reload_completed
|| frame_pointer_needed
|| get_frame_size () != 0
|| current_function_pretend_args_size
|| current_function_args_size
|| current_function_outgoing_args_size
|| current_function_calls_eh_return
 
/* If we're not supposed to emit prologue and epilogue, we must
not emit return-type instructions. */
|| !TARGET_PROLOGUE_EPILOGUE)
return false;
 
if (current_function_uses_pic_offset_table)
{
push_topmost_sequence ();
got_really_used
= reg_used_between_p (pic_offset_table_rtx, get_insns (), NULL_RTX);
pop_topmost_sequence ();
}
 
/* No simple epilogue if there are saved registers. */
for (regno = 0; regno < reglimit; regno++)
if (cris_reg_saved_in_regsave_area (regno, got_really_used))
return false;
 
return true;
}
 
/* Expand a return insn (just one insn) marked as using SRP or stack
slot depending on parameter ON_STACK. */
 
void
cris_expand_return (bool on_stack)
{
/* FIXME: emit a parallel with a USE for SRP or the stack-slot, to
tell "ret" from "jump [sp+]". Some, but not all, other parts of
GCC expect just (return) to do the right thing when optimizing, so
we do that until they're fixed. Currently, all return insns in a
function must be the same (not really a limiting factor) so we need
to check that it doesn't change half-way through. */
emit_jump_insn (gen_rtx_RETURN (VOIDmode));
 
CRIS_ASSERT (cfun->machine->return_type != CRIS_RETINSN_RET || !on_stack);
CRIS_ASSERT (cfun->machine->return_type != CRIS_RETINSN_JUMP || on_stack);
 
cfun->machine->return_type
= on_stack ? CRIS_RETINSN_JUMP : CRIS_RETINSN_RET;
}
 
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
 
static bool
cris_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case CONST_INT:
{
HOST_WIDE_INT val = INTVAL (x);
if (val == 0)
*total = 0;
else if (val < 32 && val >= -32)
*total = 1;
/* Eight or 16 bits are a word and cycle more expensive. */
else if (val <= 32767 && val >= -32768)
*total = 2;
/* A 32 bit constant (or very seldom, unsigned 16 bits) costs
another word. FIXME: This isn't linear to 16 bits. */
else
*total = 4;
return true;
}
 
case LABEL_REF:
*total = 6;
return true;
 
case CONST:
case SYMBOL_REF:
*total = 6;
return true;
 
case CONST_DOUBLE:
if (x != CONST0_RTX (GET_MODE (x) == VOIDmode ? DImode : GET_MODE (x)))
*total = 12;
else
/* Make 0.0 cheap, else test-insns will not be used. */
*total = 0;
return true;
 
case MULT:
/* Identify values that are no powers of two. Powers of 2 are
taken care of already and those values should not be changed. */
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| exact_log2 (INTVAL (XEXP (x, 1)) < 0))
{
/* If we have a multiply insn, then the cost is between
1 and 2 "fast" instructions. */
if (TARGET_HAS_MUL_INSNS)
{
*total = COSTS_N_INSNS (1) + COSTS_N_INSNS (1) / 2;
return true;
}
 
/* Estimate as 4 + 4 * #ofbits. */
*total = COSTS_N_INSNS (132);
return true;
}
return false;
 
case UDIV:
case MOD:
case UMOD:
case DIV:
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| exact_log2 (INTVAL (XEXP (x, 1)) < 0))
{
/* Estimate this as 4 + 8 * #of bits. */
*total = COSTS_N_INSNS (260);
return true;
}
return false;
 
case AND:
if (GET_CODE (XEXP (x, 1)) == CONST_INT
/* Two constants may actually happen before optimization. */
&& GET_CODE (XEXP (x, 0)) != CONST_INT
&& !CONST_OK_FOR_LETTER_P (INTVAL (XEXP (x, 1)), 'I'))
{
*total = (rtx_cost (XEXP (x, 0), outer_code) + 2
+ 2 * GET_MODE_NUNITS (GET_MODE (XEXP (x, 0))));
return true;
}
return false;
 
case ZERO_EXTEND: case SIGN_EXTEND:
*total = rtx_cost (XEXP (x, 0), outer_code);
return true;
 
default:
return false;
}
}
 
/* The ADDRESS_COST worker. */
 
static int
cris_address_cost (rtx x)
{
/* The metric to use for the cost-macros is unclear.
The metric used here is (the number of cycles needed) / 2,
where we consider equal a cycle for a word of code and a cycle to
read memory. */
 
/* The cheapest addressing modes get 0, since nothing extra is needed. */
if (BASE_OR_AUTOINCR_P (x))
return 0;
 
/* An indirect mem must be a DIP. This means two bytes extra for code,
and 4 bytes extra for memory read, i.e. (2 + 4) / 2. */
if (GET_CODE (x) == MEM)
return (2 + 4) / 2;
 
/* Assume (2 + 4) / 2 for a single constant; a dword, since it needs
an extra DIP prefix and 4 bytes of constant in most cases. */
if (CONSTANT_P (x))
return (2 + 4) / 2;
 
/* Handle BIAP and BDAP prefixes. */
if (GET_CODE (x) == PLUS)
{
rtx tem1 = XEXP (x, 0);
rtx tem2 = XEXP (x, 1);
 
/* A BIAP is 2 extra bytes for the prefix insn, nothing more. We
recognize the typical MULT which is always in tem1 because of
insn canonicalization. */
if ((GET_CODE (tem1) == MULT && BIAP_INDEX_P (tem1))
|| REG_P (tem1))
return 2 / 2;
 
/* A BDAP (quick) is 2 extra bytes. Any constant operand to the
PLUS is always found in tem2. */
if (GET_CODE (tem2) == CONST_INT
&& INTVAL (tem2) < 128 && INTVAL (tem2) >= -128)
return 2 / 2;
 
/* A BDAP -32768 .. 32767 is like BDAP quick, but with 2 extra
bytes. */
if (GET_CODE (tem2) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (tem2), 'L'))
return (2 + 2) / 2;
 
/* A BDAP with some other constant is 2 bytes extra. */
if (CONSTANT_P (tem2))
return (2 + 2 + 2) / 2;
 
/* BDAP with something indirect should have a higher cost than
BIAP with register. FIXME: Should it cost like a MEM or more? */
/* Don't need to check it, it's the only one left.
FIXME: There was a REG test missing, perhaps there are others.
Think more. */
return (2 + 2 + 2) / 2;
}
 
/* What else? Return a high cost. It matters only for valid
addressing modes. */
return 10;
}
 
/* Check various objections to the side-effect. Used in the test-part
of an anonymous insn describing an insn with a possible side-effect.
Returns nonzero if the implied side-effect is ok.
 
code : PLUS or MULT
ops : An array of rtx:es. lreg, rreg, rval,
The variables multop and other_op are indexes into this,
or -1 if they are not applicable.
lreg : The register that gets assigned in the side-effect.
rreg : One register in the side-effect expression
rval : The other register, or an int.
multop : An integer to multiply rval with.
other_op : One of the entities of the main effect,
whose mode we must consider. */
 
int
cris_side_effect_mode_ok (enum rtx_code code, rtx *ops,
int lreg, int rreg, int rval,
int multop, int other_op)
{
/* Find what value to multiply with, for rx =ry + rz * n. */
int mult = multop < 0 ? 1 : INTVAL (ops[multop]);
 
rtx reg_rtx = ops[rreg];
rtx val_rtx = ops[rval];
 
/* The operands may be swapped. Canonicalize them in reg_rtx and
val_rtx, where reg_rtx always is a reg (for this constraint to
match). */
if (! BASE_P (reg_rtx))
reg_rtx = val_rtx, val_rtx = ops[rreg];
 
/* Don't forget to check that reg_rtx really is a reg. If it isn't,
we have no business. */
if (! BASE_P (reg_rtx))
return 0;
 
/* Don't do this when -mno-split. */
if (!TARGET_SIDE_EFFECT_PREFIXES)
return 0;
 
/* The mult expression may be hidden in lreg. FIXME: Add more
commentary about that. */
if (GET_CODE (val_rtx) == MULT)
{
mult = INTVAL (XEXP (val_rtx, 1));
val_rtx = XEXP (val_rtx, 0);
code = MULT;
}
 
/* First check the "other operand". */
if (other_op >= 0)
{
if (GET_MODE_SIZE (GET_MODE (ops[other_op])) > UNITS_PER_WORD)
return 0;
 
/* Check if the lvalue register is the same as the "other
operand". If so, the result is undefined and we shouldn't do
this. FIXME: Check again. */
if ((BASE_P (ops[lreg])
&& BASE_P (ops[other_op])
&& REGNO (ops[lreg]) == REGNO (ops[other_op]))
|| rtx_equal_p (ops[other_op], ops[lreg]))
return 0;
}
 
/* Do not accept frame_pointer_rtx as any operand. */
if (ops[lreg] == frame_pointer_rtx || ops[rreg] == frame_pointer_rtx
|| ops[rval] == frame_pointer_rtx
|| (other_op >= 0 && ops[other_op] == frame_pointer_rtx))
return 0;
 
if (code == PLUS
&& ! BASE_P (val_rtx))
{
 
/* Do not allow rx = rx + n if a normal add or sub with same size
would do. */
if (rtx_equal_p (ops[lreg], reg_rtx)
&& GET_CODE (val_rtx) == CONST_INT
&& (INTVAL (val_rtx) <= 63 && INTVAL (val_rtx) >= -63))
return 0;
 
/* Check allowed cases, like [r(+)?].[bwd] and const. */
if (CONSTANT_P (val_rtx))
return 1;
 
if (GET_CODE (val_rtx) == MEM
&& BASE_OR_AUTOINCR_P (XEXP (val_rtx, 0)))
return 1;
 
if (GET_CODE (val_rtx) == SIGN_EXTEND
&& GET_CODE (XEXP (val_rtx, 0)) == MEM
&& BASE_OR_AUTOINCR_P (XEXP (XEXP (val_rtx, 0), 0)))
return 1;
 
/* If we got here, it's not a valid addressing mode. */
return 0;
}
else if (code == MULT
|| (code == PLUS && BASE_P (val_rtx)))
{
/* Do not allow rx = rx + ry.S, since it doesn't give better code. */
if (rtx_equal_p (ops[lreg], reg_rtx)
|| (mult == 1 && rtx_equal_p (ops[lreg], val_rtx)))
return 0;
 
/* Do not allow bad multiply-values. */
if (mult != 1 && mult != 2 && mult != 4)
return 0;
 
/* Only allow r + ... */
if (! BASE_P (reg_rtx))
return 0;
 
/* If we got here, all seems ok.
(All checks need to be done above). */
return 1;
}
 
/* If we get here, the caller got its initial tests wrong. */
internal_error ("internal error: cris_side_effect_mode_ok with bad operands");
}
 
/* The function reg_overlap_mentioned_p in CVS (still as of 2001-05-16)
does not handle the case where the IN operand is strict_low_part; it
does handle it for X. Test-case in Axis-20010516. This function takes
care of that for THIS port. FIXME: strict_low_part is going away
anyway. */
 
static int
cris_reg_overlap_mentioned_p (rtx x, rtx in)
{
/* The function reg_overlap_mentioned now handles when X is
strict_low_part, but not when IN is a STRICT_LOW_PART. */
if (GET_CODE (in) == STRICT_LOW_PART)
in = XEXP (in, 0);
 
return reg_overlap_mentioned_p (x, in);
}
 
/* The TARGET_ASM_NAMED_SECTION worker.
We just dispatch to the functions for ELF and a.out. */
 
void
cris_target_asm_named_section (const char *name, unsigned int flags,
tree decl)
{
if (! TARGET_ELF)
default_no_named_section (name, flags, decl);
else
default_elf_asm_named_section (name, flags, decl);
}
 
/* Return TRUE iff X is a CONST valid for e.g. indexing. */
 
bool
cris_valid_pic_const (rtx x)
{
gcc_assert (flag_pic);
 
switch (GET_CODE (x))
{
case CONST_INT:
case CONST_DOUBLE:
return true;
default:
;
}
 
if (GET_CODE (x) != CONST)
return false;
 
x = XEXP (x, 0);
 
/* Handle (const (plus (unspec .. UNSPEC_GOTREL) (const_int ...))). */
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 0)) == UNSPEC
&& XINT (XEXP (x, 0), 1) == CRIS_UNSPEC_GOTREL
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
x = XEXP (x, 0);
 
if (GET_CODE (x) == UNSPEC)
switch (XINT (x, 1))
{
case CRIS_UNSPEC_PLT:
case CRIS_UNSPEC_PLTGOTREAD:
case CRIS_UNSPEC_GOTREAD:
case CRIS_UNSPEC_GOTREL:
return true;
default:
gcc_unreachable ();
}
 
return cris_pic_symbol_type_of (x) == cris_no_symbol;
}
 
/* Helper function to find the right PIC-type symbol to generate,
given the original (non-PIC) representation. */
 
enum cris_pic_symbol_type
cris_pic_symbol_type_of (rtx x)
{
switch (GET_CODE (x))
{
case SYMBOL_REF:
return SYMBOL_REF_LOCAL_P (x)
? cris_gotrel_symbol : cris_got_symbol;
 
case LABEL_REF:
return cris_gotrel_symbol;
 
case CONST:
return cris_pic_symbol_type_of (XEXP (x, 0));
 
case PLUS:
case MINUS:
{
enum cris_pic_symbol_type t1 = cris_pic_symbol_type_of (XEXP (x, 0));
enum cris_pic_symbol_type t2 = cris_pic_symbol_type_of (XEXP (x, 1));
 
gcc_assert (t1 == cris_no_symbol || t2 == cris_no_symbol);
 
if (t1 == cris_got_symbol || t1 == cris_got_symbol)
return cris_got_symbol_needing_fixup;
 
return t1 != cris_no_symbol ? t1 : t2;
}
 
case CONST_INT:
case CONST_DOUBLE:
return cris_no_symbol;
 
case UNSPEC:
/* Likely an offsettability-test attempting to add a constant to
a GOTREAD symbol, which can't be handled. */
return cris_invalid_pic_symbol;
 
default:
fatal_insn ("unrecognized supposed constant", x);
}
 
gcc_unreachable ();
}
 
/* The LEGITIMATE_PIC_OPERAND_P worker. */
 
int
cris_legitimate_pic_operand (rtx x)
{
/* Symbols are not valid PIC operands as-is; just constants. */
return cris_valid_pic_const (x);
}
 
/* TARGET_HANDLE_OPTION worker. We just store the values into local
variables here. Checks for correct semantics are in
cris_override_options. */
 
static bool
cris_handle_option (size_t code, const char *arg ATTRIBUTE_UNUSED,
int value ATTRIBUTE_UNUSED)
{
switch (code)
{
case OPT_metrax100:
target_flags
|= (MASK_SVINTO
+ MASK_ETRAX4_ADD
+ MASK_ALIGN_BY_32);
break;
 
case OPT_mno_etrax100:
target_flags
&= ~(MASK_SVINTO
+ MASK_ETRAX4_ADD
+ MASK_ALIGN_BY_32);
break;
 
case OPT_m32_bit:
case OPT_m32bit:
target_flags
|= (MASK_STACK_ALIGN
+ MASK_CONST_ALIGN
+ MASK_DATA_ALIGN
+ MASK_ALIGN_BY_32);
break;
 
case OPT_m16_bit:
case OPT_m16bit:
target_flags
|= (MASK_STACK_ALIGN
+ MASK_CONST_ALIGN
+ MASK_DATA_ALIGN);
break;
 
case OPT_m8_bit:
case OPT_m8bit:
target_flags
&= ~(MASK_STACK_ALIGN
+ MASK_CONST_ALIGN
+ MASK_DATA_ALIGN);
break;
 
default:
break;
}
 
CRIS_SUBTARGET_HANDLE_OPTION(code, arg, value);
 
return true;
}
 
/* The OVERRIDE_OPTIONS worker.
As is the norm, this also parses -mfoo=bar type parameters. */
 
void
cris_override_options (void)
{
if (cris_max_stackframe_str)
{
cris_max_stackframe = atoi (cris_max_stackframe_str);
 
/* Do some sanity checking. */
if (cris_max_stackframe < 0 || cris_max_stackframe > 0x20000000)
internal_error ("-max-stackframe=%d is not usable, not between 0 and %d",
cris_max_stackframe, 0x20000000);
}
 
/* Let "-metrax4" and "-metrax100" change the cpu version. */
if (TARGET_SVINTO && cris_cpu_version < CRIS_CPU_SVINTO)
cris_cpu_version = CRIS_CPU_SVINTO;
else if (TARGET_ETRAX4_ADD && cris_cpu_version < CRIS_CPU_ETRAX4)
cris_cpu_version = CRIS_CPU_ETRAX4;
 
/* Parse -march=... and its synonym, the deprecated -mcpu=... */
if (cris_cpu_str)
{
cris_cpu_version
= (*cris_cpu_str == 'v' ? atoi (cris_cpu_str + 1) : -1);
 
if (strcmp ("etrax4", cris_cpu_str) == 0)
cris_cpu_version = 3;
 
if (strcmp ("svinto", cris_cpu_str) == 0
|| strcmp ("etrax100", cris_cpu_str) == 0)
cris_cpu_version = 8;
 
if (strcmp ("ng", cris_cpu_str) == 0
|| strcmp ("etrax100lx", cris_cpu_str) == 0)
cris_cpu_version = 10;
 
if (cris_cpu_version < 0 || cris_cpu_version > 10)
error ("unknown CRIS version specification in -march= or -mcpu= : %s",
cris_cpu_str);
 
/* Set the target flags. */
if (cris_cpu_version >= CRIS_CPU_ETRAX4)
target_flags |= MASK_ETRAX4_ADD;
 
/* If this is Svinto or higher, align for 32 bit accesses. */
if (cris_cpu_version >= CRIS_CPU_SVINTO)
target_flags
|= (MASK_SVINTO | MASK_ALIGN_BY_32
| MASK_STACK_ALIGN | MASK_CONST_ALIGN
| MASK_DATA_ALIGN);
 
/* Note that we do not add new flags when it can be completely
described with a macro that uses -mcpu=X. So
TARGET_HAS_MUL_INSNS is (cris_cpu_version >= CRIS_CPU_NG). */
}
 
if (cris_tune_str)
{
int cris_tune
= (*cris_tune_str == 'v' ? atoi (cris_tune_str + 1) : -1);
 
if (strcmp ("etrax4", cris_tune_str) == 0)
cris_tune = 3;
 
if (strcmp ("svinto", cris_tune_str) == 0
|| strcmp ("etrax100", cris_tune_str) == 0)
cris_tune = 8;
 
if (strcmp ("ng", cris_tune_str) == 0
|| strcmp ("etrax100lx", cris_tune_str) == 0)
cris_tune = 10;
 
if (cris_tune < 0 || cris_tune > 10)
error ("unknown CRIS cpu version specification in -mtune= : %s",
cris_tune_str);
 
if (cris_tune >= CRIS_CPU_SVINTO)
/* We have currently nothing more to tune than alignment for
memory accesses. */
target_flags
|= (MASK_STACK_ALIGN | MASK_CONST_ALIGN
| MASK_DATA_ALIGN | MASK_ALIGN_BY_32);
}
 
if (flag_pic)
{
/* Use error rather than warning, so invalid use is easily
detectable. Still change to the values we expect, to avoid
further errors. */
if (! TARGET_LINUX)
{
error ("-fPIC and -fpic are not supported in this configuration");
flag_pic = 0;
}
 
/* Turn off function CSE. We need to have the addresses reach the
call expanders to get PLT-marked, as they could otherwise be
compared against zero directly or indirectly. After visiting the
call expanders they will then be cse:ed, as the call expanders
force_reg the addresses, effectively forcing flag_no_function_cse
to 0. */
flag_no_function_cse = 1;
}
 
if (write_symbols == DWARF2_DEBUG && ! TARGET_ELF)
{
warning (0, "that particular -g option is invalid with -maout and -melinux");
write_symbols = DBX_DEBUG;
}
 
/* Set the per-function-data initializer. */
init_machine_status = cris_init_machine_status;
}
 
/* The TARGET_ASM_OUTPUT_MI_THUNK worker. */
 
static void
cris_asm_output_mi_thunk (FILE *stream,
tree thunkdecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree funcdecl)
{
if (delta > 0)
fprintf (stream, "\tadd%s " HOST_WIDE_INT_PRINT_DEC ",$%s\n",
ADDITIVE_SIZE_MODIFIER (delta), delta,
reg_names[CRIS_FIRST_ARG_REG]);
else if (delta < 0)
fprintf (stream, "\tsub%s " HOST_WIDE_INT_PRINT_DEC ",$%s\n",
ADDITIVE_SIZE_MODIFIER (-delta), -delta,
reg_names[CRIS_FIRST_ARG_REG]);
 
if (flag_pic)
{
const char *name = XSTR (XEXP (DECL_RTL (funcdecl), 0), 0);
 
name = (* targetm.strip_name_encoding) (name);
fprintf (stream, "add.d ");
assemble_name (stream, name);
fprintf (stream, "%s,$pc\n", CRIS_PLT_PCOFFSET_SUFFIX);
}
else
{
fprintf (stream, "jump ");
assemble_name (stream, XSTR (XEXP (DECL_RTL (funcdecl), 0), 0));
fprintf (stream, "\n");
}
}
 
/* Boilerplate emitted at start of file.
 
NO_APP *only at file start* means faster assembly. It also means
comments are not allowed. In some cases comments will be output
for debugging purposes. Make sure they are allowed then.
 
We want a .file directive only if TARGET_ELF. */
static void
cris_file_start (void)
{
/* These expressions can vary at run time, so we cannot put
them into TARGET_INITIALIZER. */
targetm.file_start_app_off = !(TARGET_PDEBUG || flag_print_asm_name);
targetm.file_start_file_directive = TARGET_ELF;
 
default_file_start ();
}
 
/* Rename the function calls for integer multiply and divide. */
static void
cris_init_libfuncs (void)
{
set_optab_libfunc (smul_optab, SImode, "__Mul");
set_optab_libfunc (sdiv_optab, SImode, "__Div");
set_optab_libfunc (udiv_optab, SImode, "__Udiv");
set_optab_libfunc (smod_optab, SImode, "__Mod");
set_optab_libfunc (umod_optab, SImode, "__Umod");
}
 
/* The INIT_EXPANDERS worker sets the per-function-data initializer and
mark functions. */
 
void
cris_init_expanders (void)
{
/* Nothing here at the moment. */
}
 
/* Zero initialization is OK for all current fields. */
 
static struct machine_function *
cris_init_machine_status (void)
{
return ggc_alloc_cleared (sizeof (struct machine_function));
}
 
/* Split a 2 word move (DI or presumably DF) into component parts.
Originally a copy of gen_split_move_double in m32r.c. */
 
rtx
cris_split_movdx (rtx *operands)
{
enum machine_mode mode = GET_MODE (operands[0]);
rtx dest = operands[0];
rtx src = operands[1];
rtx val;
 
/* We used to have to handle (SUBREG (MEM)) here, but that should no
longer happen; after reload there are no SUBREGs any more, and we're
only called after reload. */
CRIS_ASSERT (GET_CODE (dest) != SUBREG && GET_CODE (src) != SUBREG);
 
start_sequence ();
if (GET_CODE (dest) == REG)
{
int dregno = REGNO (dest);
 
/* Reg-to-reg copy. */
if (GET_CODE (src) == REG)
{
int sregno = REGNO (src);
 
int reverse = (dregno == sregno + 1);
 
/* We normally copy the low-numbered register first. However, if
the first register operand 0 is the same as the second register of
operand 1, we must copy in the opposite order. */
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, reverse, TRUE, mode),
operand_subword (src, reverse, TRUE, mode)));
 
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, !reverse, TRUE, mode),
operand_subword (src, !reverse, TRUE, mode)));
}
/* Constant-to-reg copy. */
else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
{
rtx words[2];
split_double (src, &words[0], &words[1]);
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 0, TRUE, mode),
words[0]));
 
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 1, TRUE, mode),
words[1]));
}
/* Mem-to-reg copy. */
else if (GET_CODE (src) == MEM)
{
/* If the high-address word is used in the address, we must load it
last. Otherwise, load it first. */
rtx addr = XEXP (src, 0);
int reverse
= (refers_to_regno_p (dregno, dregno + 1, addr, NULL) != 0);
 
/* The original code implies that we can't do
move.x [rN+],rM move.x [rN],rM+1
when rN is dead, because of REG_NOTES damage. That is
consistent with what I've seen, so don't try it.
 
We have two different cases here; if the addr is POST_INC,
just pass it through, otherwise add constants. */
 
if (GET_CODE (addr) == POST_INC)
{
rtx mem;
rtx insn;
 
/* Whenever we emit insns with post-incremented
addresses ourselves, we must add a post-inc note
manually. */
mem = change_address (src, SImode, addr);
insn
= gen_rtx_SET (VOIDmode,
operand_subword (dest, 0, TRUE, mode), mem);
insn = emit_insn (insn);
if (GET_CODE (XEXP (mem, 0)) == POST_INC)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0),
REG_NOTES (insn));
 
mem = change_address (src, SImode, addr);
insn
= gen_rtx_SET (VOIDmode,
operand_subword (dest, 1, TRUE, mode), mem);
insn = emit_insn (insn);
if (GET_CODE (XEXP (mem, 0)) == POST_INC)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0),
REG_NOTES (insn));
}
else
{
/* Make sure we don't get any other addresses with
embedded postincrements. They should be stopped in
GO_IF_LEGITIMATE_ADDRESS, but we're here for your
safety. */
if (side_effects_p (addr))
fatal_insn ("unexpected side-effects in address", addr);
 
emit_insn (gen_rtx_SET
(VOIDmode,
operand_subword (dest, reverse, TRUE, mode),
change_address
(src, SImode,
plus_constant (addr,
reverse * UNITS_PER_WORD))));
emit_insn (gen_rtx_SET
(VOIDmode,
operand_subword (dest, ! reverse, TRUE, mode),
change_address
(src, SImode,
plus_constant (addr,
(! reverse) *
UNITS_PER_WORD))));
}
}
else
internal_error ("Unknown src");
}
/* Reg-to-mem copy or clear mem. */
else if (GET_CODE (dest) == MEM
&& (GET_CODE (src) == REG
|| src == const0_rtx
|| src == CONST0_RTX (DFmode)))
{
rtx addr = XEXP (dest, 0);
 
if (GET_CODE (addr) == POST_INC)
{
rtx mem;
rtx insn;
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
mem = change_address (dest, SImode, addr);
insn
= gen_rtx_SET (VOIDmode,
mem, operand_subword (src, 0, TRUE, mode));
insn = emit_insn (insn);
if (GET_CODE (XEXP (mem, 0)) == POST_INC)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0),
REG_NOTES (insn));
 
mem = change_address (dest, SImode, addr);
insn
= gen_rtx_SET (VOIDmode,
mem,
operand_subword (src, 1, TRUE, mode));
insn = emit_insn (insn);
if (GET_CODE (XEXP (mem, 0)) == POST_INC)
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, XEXP (XEXP (mem, 0), 0),
REG_NOTES (insn));
}
else
{
/* Make sure we don't get any other addresses with embedded
postincrements. They should be stopped in
GO_IF_LEGITIMATE_ADDRESS, but we're here for your safety. */
if (side_effects_p (addr))
fatal_insn ("unexpected side-effects in address", addr);
 
emit_insn (gen_rtx_SET
(VOIDmode,
change_address (dest, SImode, addr),
operand_subword (src, 0, TRUE, mode)));
 
emit_insn (gen_rtx_SET
(VOIDmode,
change_address (dest, SImode,
plus_constant (addr,
UNITS_PER_WORD)),
operand_subword (src, 1, TRUE, mode)));
}
}
 
else
internal_error ("Unknown dest");
 
val = get_insns ();
end_sequence ();
return val;
}
 
/* The expander for the prologue pattern name. */
 
void
cris_expand_prologue (void)
{
int regno;
int size = get_frame_size ();
/* Shorten the used name for readability. */
int cfoa_size = current_function_outgoing_args_size;
int last_movem_reg = -1;
int framesize = 0;
rtx mem, insn;
int return_address_on_stack = cris_return_address_on_stack ();
int got_really_used = false;
int n_movem_regs = 0;
int pretend = current_function_pretend_args_size;
 
/* Don't do anything if no prologues or epilogues are wanted. */
if (!TARGET_PROLOGUE_EPILOGUE)
return;
 
CRIS_ASSERT (size >= 0);
 
if (current_function_uses_pic_offset_table)
{
/* A reference may have been optimized out (like the abort () in
fde_split in unwind-dw2-fde.c, at least 3.2.1) so check that
it's still used. */
push_topmost_sequence ();
got_really_used
= reg_used_between_p (pic_offset_table_rtx, get_insns (), NULL_RTX);
pop_topmost_sequence ();
}
 
/* Align the size to what's best for the CPU model. */
if (TARGET_STACK_ALIGN)
size = TARGET_ALIGN_BY_32 ? (size + 3) & ~3 : (size + 1) & ~1;
 
if (pretend)
{
/* See also cris_setup_incoming_varargs where
cfun->machine->stdarg_regs is set. There are other setters of
current_function_pretend_args_size than stdarg handling, like
for an argument passed with parts in R13 and stack. We must
not store R13 into the pretend-area for that case, as GCC does
that itself. "Our" store would be marked as redundant and GCC
will attempt to remove it, which will then be flagged as an
internal error; trying to remove a frame-related insn. */
int stdarg_regs = cfun->machine->stdarg_regs;
 
framesize += pretend;
 
for (regno = CRIS_FIRST_ARG_REG + CRIS_MAX_ARGS_IN_REGS - 1;
stdarg_regs > 0;
regno--, pretend -= 4, stdarg_regs--)
{
insn = emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-4)));
/* FIXME: When dwarf2 frame output and unless asynchronous
exceptions, make dwarf2 bundle together all stack
adjustments like it does for registers between stack
adjustments. */
RTX_FRAME_RELATED_P (insn) = 1;
 
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_varargs_alias_set ());
insn = emit_move_insn (mem, gen_rtx_raw_REG (SImode, regno));
 
/* Note the absence of RTX_FRAME_RELATED_P on the above insn:
the value isn't restored, so we don't want to tell dwarf2
that it's been stored to stack, else EH handling info would
get confused. */
}
 
/* For other setters of current_function_pretend_args_size, we
just adjust the stack by leaving the remaining size in
"pretend", handled below. */
}
 
/* Save SRP if not a leaf function. */
if (return_address_on_stack)
{
insn = emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-4 - pretend)));
pretend = 0;
RTX_FRAME_RELATED_P (insn) = 1;
 
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (mem, gen_rtx_raw_REG (SImode, CRIS_SRP_REGNUM));
RTX_FRAME_RELATED_P (insn) = 1;
framesize += 4;
}
 
/* Set up the frame pointer, if needed. */
if (frame_pointer_needed)
{
insn = emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-4 - pretend)));
pretend = 0;
RTX_FRAME_RELATED_P (insn) = 1;
 
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (mem, frame_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
 
insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
 
framesize += 4;
}
 
/* Between frame-pointer and saved registers lie the area for local
variables. If we get here with "pretended" size remaining, count
it into the general stack size. */
size += pretend;
 
/* Get a contiguous sequence of registers, starting with R0, that need
to be saved. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (cris_reg_saved_in_regsave_area (regno, got_really_used))
{
n_movem_regs++;
 
/* Check if movem may be used for registers so far. */
if (regno == last_movem_reg + 1)
/* Yes, update next expected register. */
last_movem_reg = regno;
else
{
/* We cannot use movem for all registers. We have to flush
any movem:ed registers we got so far. */
if (last_movem_reg != -1)
{
int n_saved
= (n_movem_regs == 1) ? 1 : last_movem_reg + 1;
 
/* It is a win to use a side-effect assignment for
64 <= size <= 128. But side-effect on movem was
not usable for CRIS v0..3. Also only do it if
side-effects insns are allowed. */
if ((last_movem_reg + 1) * 4 + size >= 64
&& (last_movem_reg + 1) * 4 + size <= 128
&& (cris_cpu_version >= CRIS_CPU_SVINTO || n_saved == 1)
&& TARGET_SIDE_EFFECT_PREFIXES)
{
mem
= gen_rtx_MEM (SImode,
plus_constant (stack_pointer_rtx,
-(n_saved * 4 + size)));
set_mem_alias_set (mem, get_frame_alias_set ());
insn
= cris_emit_movem_store (mem, GEN_INT (n_saved),
-(n_saved * 4 + size),
true);
}
else
{
insn
= gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-(n_saved * 4 + size)));
insn = emit_insn (insn);
RTX_FRAME_RELATED_P (insn) = 1;
 
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = cris_emit_movem_store (mem, GEN_INT (n_saved),
0, true);
}
 
framesize += n_saved * 4 + size;
last_movem_reg = -1;
size = 0;
}
 
insn = emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-4 - size)));
RTX_FRAME_RELATED_P (insn) = 1;
 
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (mem, gen_rtx_raw_REG (SImode, regno));
RTX_FRAME_RELATED_P (insn) = 1;
 
framesize += 4 + size;
size = 0;
}
}
}
 
/* Check after, if we could movem all registers. This is the normal case. */
if (last_movem_reg != -1)
{
int n_saved
= (n_movem_regs == 1) ? 1 : last_movem_reg + 1;
 
/* Side-effect on movem was not usable for CRIS v0..3. Also only
do it if side-effects insns are allowed. */
if ((last_movem_reg + 1) * 4 + size >= 64
&& (last_movem_reg + 1) * 4 + size <= 128
&& (cris_cpu_version >= CRIS_CPU_SVINTO || n_saved == 1)
&& TARGET_SIDE_EFFECT_PREFIXES)
{
mem
= gen_rtx_MEM (SImode,
plus_constant (stack_pointer_rtx,
-(n_saved * 4 + size)));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = cris_emit_movem_store (mem, GEN_INT (n_saved),
-(n_saved * 4 + size), true);
}
else
{
insn
= gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-(n_saved * 4 + size)));
insn = emit_insn (insn);
RTX_FRAME_RELATED_P (insn) = 1;
 
mem = gen_rtx_MEM (SImode, stack_pointer_rtx);
set_mem_alias_set (mem, get_frame_alias_set ());
insn = cris_emit_movem_store (mem, GEN_INT (n_saved), 0, true);
}
 
framesize += n_saved * 4 + size;
/* We have to put outgoing argument space after regs. */
if (cfoa_size)
{
insn = emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-cfoa_size)));
RTX_FRAME_RELATED_P (insn) = 1;
framesize += cfoa_size;
}
}
else if ((size + cfoa_size) > 0)
{
insn = emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-(cfoa_size + size))));
RTX_FRAME_RELATED_P (insn) = 1;
framesize += size + cfoa_size;
}
 
/* Set up the PIC register, if it is used. */
if (got_really_used)
{
rtx got
= gen_rtx_UNSPEC (SImode, gen_rtvec (1, const0_rtx), CRIS_UNSPEC_GOT);
emit_move_insn (pic_offset_table_rtx, got);
 
/* FIXME: This is a cover-up for flow2 messing up; it doesn't
follow exceptional paths and tries to delete the GOT load as
unused, if it isn't used on the non-exceptional paths. Other
ports have similar or other cover-ups, or plain bugs marking
the GOT register load as maybe-dead. To see this, remove the
line below and try libsupc++/vec.cc or a trivial
"static void y (); void x () {try {y ();} catch (...) {}}". */
emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
}
 
if (cris_max_stackframe && framesize > cris_max_stackframe)
warning (0, "stackframe too big: %d bytes", framesize);
}
 
/* The expander for the epilogue pattern. */
 
void
cris_expand_epilogue (void)
{
int regno;
int size = get_frame_size ();
int last_movem_reg = -1;
int argspace_offset = current_function_outgoing_args_size;
int pretend = current_function_pretend_args_size;
rtx mem;
bool return_address_on_stack = cris_return_address_on_stack ();
/* A reference may have been optimized out
(like the abort () in fde_split in unwind-dw2-fde.c, at least 3.2.1)
so check that it's still used. */
int got_really_used = false;
int n_movem_regs = 0;
 
if (!TARGET_PROLOGUE_EPILOGUE)
return;
 
if (current_function_uses_pic_offset_table)
{
/* A reference may have been optimized out (like the abort () in
fde_split in unwind-dw2-fde.c, at least 3.2.1) so check that
it's still used. */
push_topmost_sequence ();
got_really_used
= reg_used_between_p (pic_offset_table_rtx, get_insns (), NULL_RTX);
pop_topmost_sequence ();
}
 
/* Align byte count of stack frame. */
if (TARGET_STACK_ALIGN)
size = TARGET_ALIGN_BY_32 ? (size + 3) & ~3 : (size + 1) & ~1;
 
/* Check how many saved regs we can movem. They start at r0 and must
be contiguous. */
for (regno = 0;
regno < FIRST_PSEUDO_REGISTER;
regno++)
if (cris_reg_saved_in_regsave_area (regno, got_really_used))
{
n_movem_regs++;
 
if (regno == last_movem_reg + 1)
last_movem_reg = regno;
else
break;
}
 
/* If there was only one register that really needed to be saved
through movem, don't use movem. */
if (n_movem_regs == 1)
last_movem_reg = -1;
 
/* Now emit "normal" move insns for all regs higher than the movem
regs. */
for (regno = FIRST_PSEUDO_REGISTER - 1;
regno > last_movem_reg;
regno--)
if (cris_reg_saved_in_regsave_area (regno, got_really_used))
{
rtx insn;
 
if (argspace_offset)
{
/* There is an area for outgoing parameters located before
the saved registers. We have to adjust for that. */
emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
argspace_offset)));
/* Make sure we only do this once. */
argspace_offset = 0;
}
 
mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode,
stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (gen_rtx_raw_REG (SImode, regno), mem);
 
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
}
 
/* If we have any movem-restore, do it now. */
if (last_movem_reg != -1)
{
rtx insn;
 
if (argspace_offset)
{
emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
argspace_offset)));
argspace_offset = 0;
}
 
mem = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (SImode, stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn
= emit_insn (cris_gen_movem_load (mem,
GEN_INT (last_movem_reg + 1), 0));
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
if (side_effects_p (PATTERN (insn)))
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
}
 
/* If we don't clobber all of the allocated stack area (we've already
deallocated saved registers), GCC might want to schedule loads from
the stack to *after* the stack-pointer restore, which introduces an
interrupt race condition. This happened for the initial-value
SRP-restore for g++.dg/eh/registers1.C (noticed by inspection of
other failure for that test). It also happened for the stack slot
for the return value in (one version of)
linux/fs/dcache.c:__d_lookup, at least with "-O2
-fno-omit-frame-pointer". */
 
/* Restore frame pointer if necessary. */
if (frame_pointer_needed)
{
rtx insn;
 
emit_insn (gen_cris_frame_deallocated_barrier ());
 
emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
mem = gen_rtx_MEM (SImode, gen_rtx_POST_INC (SImode,
stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (frame_pointer_rtx, mem);
 
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
}
else if ((size + argspace_offset) != 0)
{
emit_insn (gen_cris_frame_deallocated_barrier ());
 
/* If there was no frame-pointer to restore sp from, we must
explicitly deallocate local variables. */
 
/* Handle space for outgoing parameters that hasn't been handled
yet. */
size += argspace_offset;
 
emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx, size)));
}
 
/* If this function has no pushed register parameters
(stdargs/varargs), and if it is not a leaf function, then we have
the return address on the stack. */
if (return_address_on_stack && pretend == 0)
{
if (current_function_calls_eh_return)
{
rtx mem;
rtx insn;
rtx srpreg = gen_rtx_raw_REG (SImode, CRIS_SRP_REGNUM);
mem = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (SImode,
stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (srpreg, mem);
 
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
 
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
gen_rtx_raw_REG (SImode,
CRIS_STACKADJ_REG)));
cris_expand_return (false);
}
else
cris_expand_return (true);
 
return;
}
 
/* If we pushed some register parameters, then adjust the stack for
them. */
if (pretend != 0)
{
/* If SRP is stored on the way, we need to restore it first. */
if (return_address_on_stack)
{
rtx mem;
rtx srpreg = gen_rtx_raw_REG (SImode, CRIS_SRP_REGNUM);
rtx insn;
 
mem = gen_rtx_MEM (SImode,
gen_rtx_POST_INC (SImode,
stack_pointer_rtx));
set_mem_alias_set (mem, get_frame_alias_set ());
insn = emit_move_insn (srpreg, mem);
 
/* Whenever we emit insns with post-incremented addresses
ourselves, we must add a post-inc note manually. */
REG_NOTES (insn)
= alloc_EXPR_LIST (REG_INC, stack_pointer_rtx, REG_NOTES (insn));
}
 
emit_insn (gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
plus_constant (stack_pointer_rtx, pretend)));
}
 
/* Perform the "physical" unwinding that the EH machinery calculated. */
if (current_function_calls_eh_return)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
gen_rtx_raw_REG (SImode,
CRIS_STACKADJ_REG)));
cris_expand_return (false);
}
 
/* Worker function for generating movem from mem for load_multiple. */
 
rtx
cris_gen_movem_load (rtx src, rtx nregs_rtx, int nprefix)
{
int nregs = INTVAL (nregs_rtx);
rtvec vec;
int eltno = 1;
int i;
rtx srcreg = XEXP (src, 0);
unsigned int regno = nregs - 1;
int regno_inc = -1;
 
if (GET_CODE (srcreg) == POST_INC)
srcreg = XEXP (srcreg, 0);
 
CRIS_ASSERT (REG_P (srcreg));
 
/* Don't use movem for just one insn. The insns are equivalent except
for the pipeline hazard (on v32); movem does not forward the loaded
registers so there's a three cycles penalty for their use. */
if (nregs == 1)
return gen_movsi (gen_rtx_REG (SImode, 0), src);
 
vec = rtvec_alloc (nprefix + nregs
+ (GET_CODE (XEXP (src, 0)) == POST_INC));
 
if (GET_CODE (XEXP (src, 0)) == POST_INC)
{
RTVEC_ELT (vec, nprefix + 1)
= gen_rtx_SET (VOIDmode, srcreg, plus_constant (srcreg, nregs * 4));
eltno++;
}
 
src = replace_equiv_address (src, srcreg);
RTVEC_ELT (vec, nprefix)
= gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, regno), src);
regno += regno_inc;
 
for (i = 1; i < nregs; i++, eltno++)
{
RTVEC_ELT (vec, nprefix + eltno)
= gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, regno),
adjust_address_nv (src, SImode, i * 4));
regno += regno_inc;
}
 
return gen_rtx_PARALLEL (VOIDmode, vec);
}
 
/* Worker function for generating movem to mem. If FRAME_RELATED, notes
are added that the dwarf2 machinery understands. */
 
rtx
cris_emit_movem_store (rtx dest, rtx nregs_rtx, int increment,
bool frame_related)
{
int nregs = INTVAL (nregs_rtx);
rtvec vec;
int eltno = 1;
int i;
rtx insn;
rtx destreg = XEXP (dest, 0);
unsigned int regno = nregs - 1;
int regno_inc = -1;
 
if (GET_CODE (destreg) == POST_INC)
increment += nregs * 4;
 
if (GET_CODE (destreg) == POST_INC || GET_CODE (destreg) == PLUS)
destreg = XEXP (destreg, 0);
 
CRIS_ASSERT (REG_P (destreg));
 
/* Don't use movem for just one insn. The insns are equivalent except
for the pipeline hazard (on v32); movem does not forward the loaded
registers so there's a three cycles penalty for use. */
if (nregs == 1)
{
rtx mov = gen_rtx_SET (VOIDmode, dest, gen_rtx_REG (SImode, 0));
 
if (increment == 0)
{
insn = emit_insn (mov);
if (frame_related)
RTX_FRAME_RELATED_P (insn) = 1;
return insn;
}
 
/* If there was a request for a side-effect, create the ordinary
parallel. */
vec = rtvec_alloc (2);
 
RTVEC_ELT (vec, 0) = mov;
RTVEC_ELT (vec, 1) = gen_rtx_SET (VOIDmode, destreg,
plus_constant (destreg, increment));
if (frame_related)
{
RTX_FRAME_RELATED_P (mov) = 1;
RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 1)) = 1;
}
}
else
{
vec = rtvec_alloc (nregs + (increment != 0 ? 1 : 0));
RTVEC_ELT (vec, 0)
= gen_rtx_SET (VOIDmode,
replace_equiv_address (dest,
plus_constant (destreg,
increment)),
gen_rtx_REG (SImode, regno));
regno += regno_inc;
 
/* The dwarf2 info wants this mark on each component in a parallel
that's part of the prologue (though it's optional on the first
component). */
if (frame_related)
RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 0)) = 1;
 
if (increment != 0)
{
RTVEC_ELT (vec, 1)
= gen_rtx_SET (VOIDmode, destreg,
plus_constant (destreg,
increment != 0
? increment : nregs * 4));
eltno++;
 
if (frame_related)
RTX_FRAME_RELATED_P (RTVEC_ELT (vec, 1)) = 1;
 
/* Don't call adjust_address_nv on a post-incremented address if
we can help it. */
if (GET_CODE (XEXP (dest, 0)) == POST_INC)
dest = replace_equiv_address (dest, destreg);
}
 
for (i = 1; i < nregs; i++, eltno++)
{
RTVEC_ELT (vec, eltno)
= gen_rtx_SET (VOIDmode, adjust_address_nv (dest, SImode, i * 4),
gen_rtx_REG (SImode, regno));
if (frame_related)
RTX_FRAME_RELATED_P (RTVEC_ELT (vec, eltno)) = 1;
regno += regno_inc;
}
}
 
insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, vec));
 
/* Because dwarf2out.c handles the insns in a parallel as a sequence,
we need to keep the stack adjustment separate, after the
MEM-setters. Else the stack-adjustment in the second component of
the parallel would be mishandled; the offsets for the SETs that
follow it would be wrong. We prepare for this by adding a
REG_FRAME_RELATED_EXPR with the MEM-setting parts in a SEQUENCE
followed by the increment. Note that we have FRAME_RELATED_P on
all the SETs, including the original stack adjustment SET in the
parallel. */
if (frame_related)
{
if (increment != 0)
{
rtx seq = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nregs + 1));
XVECEXP (seq, 0, 0) = XVECEXP (PATTERN (insn), 0, 0);
for (i = 1; i < nregs; i++)
XVECEXP (seq, 0, i) = XVECEXP (PATTERN (insn), 0, i + 1);
XVECEXP (seq, 0, nregs) = XVECEXP (PATTERN (insn), 0, 1);
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, seq,
REG_NOTES (insn));
}
 
RTX_FRAME_RELATED_P (insn) = 1;
}
 
return insn;
}
 
/* Worker function for expanding the address for PIC function calls. */
 
void
cris_expand_pic_call_address (rtx *opp)
{
rtx op = *opp;
 
gcc_assert (MEM_P (op));
op = XEXP (op, 0);
 
/* It might be that code can be generated that jumps to 0 (or to a
specific address). Don't die on that. (There is a
testcase.) */
if (CONSTANT_ADDRESS_P (op) && GET_CODE (op) != CONST_INT)
{
enum cris_pic_symbol_type t = cris_pic_symbol_type_of (op);
 
CRIS_ASSERT (!no_new_pseudos);
 
/* For local symbols (non-PLT), just get the plain symbol
reference into a register. For symbols that can be PLT, make
them PLT. */
if (t == cris_gotrel_symbol)
op = force_reg (Pmode, op);
else if (t == cris_got_symbol)
{
if (TARGET_AVOID_GOTPLT)
{
/* Change a "jsr sym" into (allocate register rM, rO)
"move.d (const (unspec [sym] CRIS_UNSPEC_PLT)),rM"
"add.d rPIC,rM,rO", "jsr rO". */
rtx tem, rm, ro;
gcc_assert (! no_new_pseudos);
current_function_uses_pic_offset_table = 1;
tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op), CRIS_UNSPEC_PLT);
rm = gen_reg_rtx (Pmode);
emit_move_insn (rm, gen_rtx_CONST (Pmode, tem));
ro = gen_reg_rtx (Pmode);
if (expand_binop (Pmode, add_optab, rm,
pic_offset_table_rtx,
ro, 0, OPTAB_LIB_WIDEN) != ro)
internal_error ("expand_binop failed in movsi got");
op = ro;
}
else
{
/* Change a "jsr sym" into (allocate register rM, rO)
"move.d (const (unspec [sym] CRIS_UNSPEC_PLTGOT)),rM"
"add.d rPIC,rM,rO" "jsr [rO]" with the memory access
marked as not trapping and not aliasing. No "move.d
[rO],rP" as that would invite to re-use of a value
that should not be reused. FIXME: Need a peephole2
for cases when this is cse:d from the call, to change
back to just get the PLT entry address, so we don't
resolve the same symbol over and over (the memory
access of the PLTGOT isn't constant). */
rtx tem, mem, rm, ro;
 
gcc_assert (! no_new_pseudos);
current_function_uses_pic_offset_table = 1;
tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op),
CRIS_UNSPEC_PLTGOTREAD);
rm = gen_reg_rtx (Pmode);
emit_move_insn (rm, gen_rtx_CONST (Pmode, tem));
ro = gen_reg_rtx (Pmode);
if (expand_binop (Pmode, add_optab, rm,
pic_offset_table_rtx,
ro, 0, OPTAB_LIB_WIDEN) != ro)
internal_error ("expand_binop failed in movsi got");
mem = gen_rtx_MEM (Pmode, ro);
 
/* This MEM doesn't alias anything. Whether it aliases
other same symbols is unimportant. */
set_mem_alias_set (mem, new_alias_set ());
MEM_NOTRAP_P (mem) = 1;
op = mem;
}
}
else
/* Can't possibly get a GOT-needing-fixup for a function-call,
right? */
fatal_insn ("Unidentifiable call op", op);
 
*opp = replace_equiv_address (*opp, op);
}
}
 
/* Make sure operands are in the right order for an addsi3 insn as
generated by a define_split. A MEM as the first operand isn't
recognized by addsi3 after reload. OPERANDS contains the operands,
with the first at OPERANDS[N] and the second at OPERANDS[N+1]. */
 
void
cris_order_for_addsi3 (rtx *operands, int n)
{
if (MEM_P (operands[n]))
{
rtx tem = operands[n];
operands[n] = operands[n + 1];
operands[n + 1] = tem;
}
}
 
/* Use from within code, from e.g. PRINT_OPERAND and
PRINT_OPERAND_ADDRESS. Macros used in output_addr_const need to emit
different things depending on whether code operand or constant is
emitted. */
 
static void
cris_output_addr_const (FILE *file, rtx x)
{
in_code++;
output_addr_const (file, x);
in_code--;
}
 
/* Worker function for ASM_OUTPUT_SYMBOL_REF. */
 
void
cris_asm_output_symbol_ref (FILE *file, rtx x)
{
gcc_assert (GET_CODE (x) == SYMBOL_REF);
 
if (flag_pic && in_code > 0)
{
const char *origstr = XSTR (x, 0);
const char *str;
str = (* targetm.strip_name_encoding) (origstr);
assemble_name (file, str);
 
/* Sanity check. */
if (! current_function_uses_pic_offset_table)
output_operand_lossage ("PIC register isn't set up");
}
else
assemble_name (file, XSTR (x, 0));
}
 
/* Worker function for ASM_OUTPUT_LABEL_REF. */
 
void
cris_asm_output_label_ref (FILE *file, char *buf)
{
if (flag_pic && in_code > 0)
{
assemble_name (file, buf);
 
/* Sanity check. */
if (! current_function_uses_pic_offset_table)
internal_error ("emitting PIC operand, but PIC register isn't set up");
}
else
assemble_name (file, buf);
}
 
/* Worker function for OUTPUT_ADDR_CONST_EXTRA. */
 
bool
cris_output_addr_const_extra (FILE *file, rtx xconst)
{
switch (GET_CODE (xconst))
{
rtx x;
 
case UNSPEC:
x = XVECEXP (xconst, 0, 0);
CRIS_ASSERT (GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == LABEL_REF
|| GET_CODE (x) == CONST);
output_addr_const (file, x);
switch (XINT (xconst, 1))
{
case CRIS_UNSPEC_PLT:
fprintf (file, ":PLTG");
break;
 
case CRIS_UNSPEC_GOTREL:
fprintf (file, ":GOTOFF");
break;
 
case CRIS_UNSPEC_GOTREAD:
if (flag_pic == 1)
fprintf (file, ":GOT16");
else
fprintf (file, ":GOT");
break;
 
case CRIS_UNSPEC_PLTGOTREAD:
if (flag_pic == 1)
fprintf (file, CRIS_GOTPLT_SUFFIX "16");
else
fprintf (file, CRIS_GOTPLT_SUFFIX);
break;
 
default:
gcc_unreachable ();
}
return true;
 
default:
return false;
}
}
 
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
 
static rtx
cris_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, CRIS_STRUCT_VALUE_REGNUM);
}
 
/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
 
static void
cris_setup_incoming_varargs (CUMULATIVE_ARGS *ca,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
int *pretend_arg_size,
int second_time)
{
if (ca->regs < CRIS_MAX_ARGS_IN_REGS)
{
int stdarg_regs = CRIS_MAX_ARGS_IN_REGS - ca->regs;
cfun->machine->stdarg_regs = stdarg_regs;
*pretend_arg_size = stdarg_regs * 4;
}
 
if (TARGET_PDEBUG)
fprintf (asm_out_file,
"\n; VA:: ANSI: %d args before, anon @ #%d, %dtime\n",
ca->regs, *pretend_arg_size, second_time);
}
 
/* Return true if TYPE must be passed by invisible reference.
For cris, we pass <= 8 bytes by value, others by reference. */
 
static bool
cris_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
enum machine_mode mode, tree type,
bool named ATTRIBUTE_UNUSED)
{
return (targetm.calls.must_pass_in_stack (mode, type)
|| CRIS_FUNCTION_ARG_SIZE (mode, type) > 8);
}
 
 
static int
cris_arg_partial_bytes (CUMULATIVE_ARGS *ca, enum machine_mode mode,
tree type, bool named ATTRIBUTE_UNUSED)
{
if (ca->regs == CRIS_MAX_ARGS_IN_REGS - 1
&& !targetm.calls.must_pass_in_stack (mode, type)
&& CRIS_FUNCTION_ARG_SIZE (mode, type) > 4
&& CRIS_FUNCTION_ARG_SIZE (mode, type) <= 8)
return UNITS_PER_WORD;
else
return 0;
}
 
/* Worker function for TARGET_MD_ASM_CLOBBERS. */
 
static tree
cris_md_asm_clobbers (tree outputs, tree inputs, tree in_clobbers)
{
HARD_REG_SET mof_set;
tree clobbers;
tree t;
 
CLEAR_HARD_REG_SET (mof_set);
SET_HARD_REG_BIT (mof_set, CRIS_MOF_REGNUM);
 
/* For the time being, all asms clobber condition codes. Revisit when
there's a reasonable use for inputs/outputs that mention condition
codes. */
clobbers
= tree_cons (NULL_TREE,
build_string (strlen (reg_names[CRIS_CC0_REGNUM]),
reg_names[CRIS_CC0_REGNUM]),
in_clobbers);
 
for (t = outputs; t != NULL; t = TREE_CHAIN (t))
{
tree val = TREE_VALUE (t);
 
/* The constraint letter for the singleton register class of MOF
is 'h'. If it's mentioned in the constraints, the asm is
MOF-aware and adding it to the clobbers would cause it to have
impossible constraints. */
if (strchr (TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t))),
'h') != NULL
|| tree_overlaps_hard_reg_set (val, &mof_set) != NULL_TREE)
return clobbers;
}
 
for (t = inputs; t != NULL; t = TREE_CHAIN (t))
{
tree val = TREE_VALUE (t);
 
if (strchr (TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t))),
'h') != NULL
|| tree_overlaps_hard_reg_set (val, &mof_set) != NULL_TREE)
return clobbers;
}
 
return tree_cons (NULL_TREE,
build_string (strlen (reg_names[CRIS_MOF_REGNUM]),
reg_names[CRIS_MOF_REGNUM]),
clobbers);
}
 
#if 0
/* Various small functions to replace macros. Only called from a
debugger. They might collide with gcc functions or system functions,
so only emit them when '#if 1' above. */
 
enum rtx_code Get_code (rtx);
 
enum rtx_code
Get_code (rtx x)
{
return GET_CODE (x);
}
 
const char *Get_mode (rtx);
 
const char *
Get_mode (rtx x)
{
return GET_MODE_NAME (GET_MODE (x));
}
 
rtx Xexp (rtx, int);
 
rtx
Xexp (rtx x, int n)
{
return XEXP (x, n);
}
 
rtx Xvecexp (rtx, int, int);
 
rtx
Xvecexp (rtx x, int n, int m)
{
return XVECEXP (x, n, m);
}
 
int Get_rtx_len (rtx);
 
int
Get_rtx_len (rtx x)
{
return GET_RTX_LENGTH (GET_CODE (x));
}
 
/* Use upper-case to distinguish from local variables that are sometimes
called next_insn and prev_insn. */
 
rtx Next_insn (rtx);
 
rtx
Next_insn (rtx insn)
{
return NEXT_INSN (insn);
}
 
rtx Prev_insn (rtx);
 
rtx
Prev_insn (rtx insn)
{
return PREV_INSN (insn);
}
#endif
 
#include "gt-cris.h"
 
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
/cris_abi_symbol.c
0,0 → 1,57
/* Define symbol to recognize CRIS ABI version 2, for a.out use.
Contributed by Axis Communications.
Written by Hans-Peter Nilsson <hp@axis.se>, c:a 1992.
 
Copyright (C) 2000, 2001, 2003 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
 
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
 
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
 
As a special exception, if you link this library with files, some of
which are compiled with GCC, this library does not by itself cause
the resulting object or executable to be covered by the GNU General
Public License.
This exception does not however invalidate any other reasons why
the executable file or object might be covered by the GNU General
Public License. */
 
#include "tconfig.h"
#include "tm.h"
 
#ifdef __AOUT__
 
/* ELF support was not released before the ABI was changed, so we
restrict this awkwardness to a.out. This symbol is for gdb to
recognize, so it can debug both old and new programs successfully. */
__asm__ (".global " CRIS_ABI_VERSION_SYMBOL_STRING);
__asm__ (".set " CRIS_ABI_VERSION_SYMBOL_STRING ",0");
 
#else /* not __AOUT__ */
 
/* The file must not be empty (declaration/definition-wise) according to
ISO, IIRC. */
extern int _Dummy;
 
#endif /* not __AOUT__ */
/t-elfmulti
0,0 → 1,16
LIB2FUNCS_STATIC_EXTRA = $(srcdir)/config/cris/mulsi3.asm
EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o
MULTILIB_OPTIONS = march=v10
MULTILIB_DIRNAMES = v10
MULTILIB_MATCHES = \
march?v10=mcpu?etrax100lx \
march?v10=mcpu?ng \
march?v10=march?etrax100lx \
march?v10=march?ng \
march?v10=march?v11 \
march?v10=mcpu?v11 \
march?v10=mcpu?v10
MULTILIB_EXTRA_OPTS = mbest-lib-options
INSTALL_LIBGCC = install-multilib
LIBGCC = stmp-multilib
CRTSTUFF_T_CFLAGS = $(LIBGCC2_CFLAGS) -moverride-best-lib-options
/predicates.md
0,0 → 1,163
;; Operand and operator predicates for the GCC CRIS port.
;; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
 
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
 
;; Operator predicates.
 
(define_predicate "cris_orthogonal_operator"
(match_code "plus, minus, ior, and, umin"))
 
(define_predicate "cris_commutative_orth_op"
(match_code "plus, ior, and, umin"))
 
;; By the name, you might think we should include MULT. We don't because
;; it doesn't accept the same addressing modes as the others (only
;; registers) and there's also the problem of handling TARGET_MUL_BUG.
 
(define_predicate "cris_operand_extend_operator"
(match_code "plus, minus, umin"))
 
(define_predicate "cris_additive_operand_extend_operator"
(match_code "plus, minus"))
 
(define_predicate "cris_extend_operator"
(match_code "zero_extend, sign_extend"))
 
(define_predicate "cris_plus_or_bound_operator"
(match_code "plus, umin"))
 
;; Used as an operator to get a handle on a already-known-valid MEM rtx:es
;; (no need to validate the address), where some address expression parts
;; have their own match_operand.
 
(define_predicate "cris_mem_op"
(match_code "mem"))
 
(define_predicate "cris_load_multiple_op"
(and (match_code "parallel")
(match_test "cris_movem_load_rest_p (op, 0)")))
 
(define_predicate "cris_store_multiple_op"
(and (match_code "parallel")
(match_test "cris_store_multiple_op_p (op)")))
 
 
;; Operand helper predicates.
 
(define_predicate "cris_bdap_const_operand"
(and (match_code "label_ref, symbol_ref, const_int, const_double, const")
(ior (not (match_test "flag_pic"))
(match_test "cris_valid_pic_const (op)"))))
 
(define_predicate "cris_simple_address_operand"
(ior (match_operand:SI 0 "register_operand")
(and (match_code "post_inc")
(match_test "register_operand (XEXP (op, 0), Pmode)"))))
 
(define_predicate "cris_simple_operand"
(ior (match_operand 0 "register_operand")
(and (match_code "mem")
(match_test "cris_simple_address_operand (XEXP (op, 0),
Pmode)"))))
 
;; The caller needs to use :SI.
(define_predicate "cris_bdap_sign_extend_operand"
; Disabled until <URL:http://gcc.gnu.org/ml/gcc-patches/2005-10/msg01376.html>
; or <URL:http://gcc.gnu.org/ml/gcc-patches/2005-10/msg00940.html> is committed.
(match_test "0"))
; (and (match_code "sign_extend")
; (and (match_test "MEM_P (XEXP (op, 0))")
; (match_test "cris_simple_address_operand (XEXP (XEXP (op, 0), 0),
; Pmode)"))))
 
;; FIXME: Should not have to test for 1.
(define_predicate "cris_scale_int_operand"
(and (match_code "const_int")
(ior (ior (match_test "op == GEN_INT (4)")
(match_test "op == const2_rtx"))
(match_test "op == const1_rtx"))))
 
;; FIXME: Should be able to assume (reg int).
(define_predicate "cris_biap_mult_operand"
(and (match_code "mult")
(ior (and (match_test "register_operand (XEXP (op, 0), Pmode)")
(match_test "cris_scale_int_operand (XEXP (op, 1), Pmode)"))
(and (match_test "cris_scale_int_operand (XEXP (op, 0), Pmode)")
(match_test "register_operand (XEXP (op, 1), Pmode)")))))
 
 
;; Operand predicates.
 
;; This checks a part of an address, the one that is not a plain register
;; for an addressing mode using BDAP.
;; Allowed operands are either:
;; a) a register
;; b) a CONST operand (but not a symbol when generating PIC)
;; c) a [r] or [r+] in SImode, or sign-extend from HI or QI.
 
(define_predicate "cris_bdap_operand"
(ior (match_operand 0 "cris_bdap_const_operand")
(ior (match_operand:SI 0 "cris_simple_operand")
(match_operand:SI 0 "cris_bdap_sign_extend_operand"))))
 
;; This is similar to cris_bdap_operand:
;; It checks a part of an address, the one that is not a plain register
;; for an addressing mode using BDAP or BIAP.
;; Allowed operands are either:
;; a) a register
;; b) a CONST operand (but not a symbol when generating PIC)
;; c) a mult of (1, 2 or 4) and a register
;; d) a [r] or [r+] in SImode, or sign-extend from HI or QI. */
 
(define_predicate "cris_bdap_biap_operand"
(ior (match_operand 0 "cris_bdap_operand")
(match_operand 0 "cris_biap_mult_operand")))
 
;; Since with -fPIC, not all symbols are valid PIC symbols or indeed
;; general_operands, we have to have a predicate that matches it for the
;; "movsi" expander.
;; FIXME: Can s/special_// when PR 20413 is fixed.
 
(define_special_predicate "cris_general_operand_or_symbol"
(ior (match_operand 0 "general_operand")
(and (match_code "const, symbol_ref, label_ref")
; The following test is actually just an assertion.
(match_test "cris_pic_symbol_type_of (op) != cris_no_symbol"))))
 
;; Since a PLT symbol is not a general_operand, we have to have a
;; predicate that matches it when we need it. We use this in the expanded
;; "call" and "call_value" anonymous patterns.
 
(define_predicate "cris_general_operand_or_plt_symbol"
(ior (match_operand 0 "general_operand")
(and (match_code "const")
(and (match_test "GET_CODE (XEXP (op, 0)) == UNSPEC")
(not (match_test "TARGET_AVOID_GOTPLT"))))))
 
;; This matches a (MEM (general_operand)) or
;; (MEM (cris_general_operand_or_symbol)). The second one isn't a valid
;; memory_operand, so we need this predicate to recognize call
;; destinations before we change them to a PLT operand (by wrapping in
;; UNSPEC CRIS_UNSPEC_PLT).
 
(define_predicate "cris_mem_call_operand"
(and (match_code "mem")
(ior (match_operand 0 "memory_operand")
(match_test "cris_general_operand_or_symbol (XEXP (op, 0),
Pmode)"))))
/linux.h
0,0 → 1,119
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
 
/* After the first "Node:" comment comes all preprocessor directives and
attached declarations described in the info files, the "Using and
Porting GCC" manual (uapgcc), in the same order as found in the "Target
macros" section in the gcc-2.9x CVS edition of 2000-03-17. FIXME: Not
really, but needs an update anyway.
 
There is no generic copy-of-uapgcc comment, you'll have to see uapgcc
for that. If applicable, there is a CRIS-specific comment. The order
of macro definitions follow the order in the manual. Every section in
the manual (node in the info pages) has an introductory `Node:
<subchapter>' comment. If no macros are defined for a section, only
the section-comment is present. */
 
/* This file defines the macros for cris-axis-linux-gnu that are not
covered by cris.h, elfos.h and (config/)linux.h. */
 
 
/* Node: Instruction Output */
 
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
 
/* Node: Driver */
/* These macros are CRIS-specific, but used in target driver macros. */
 
#undef CRIS_CPP_SUBTARGET_SPEC
#define CRIS_CPP_SUBTARGET_SPEC \
"%{pthread:-D_REENTRANT}\
%{!march=*:%{!cpu=*:-D__arch_v10 -D__CRIS_arch_version=10}}"
 
#undef CRIS_CC1_SUBTARGET_SPEC
#define CRIS_CC1_SUBTARGET_SPEC \
"%{!march=*:%{!cpu=*:-march=v10}}"
 
#undef CRIS_ASM_SUBTARGET_SPEC
#define CRIS_ASM_SUBTARGET_SPEC \
"--em=criself\
%{!fleading-underscore:--no-underscore}\
%{fPIC|fpic|fPIE|fpie: --pic}"
 
/* Previously controlled by target_flags. */
#undef TARGET_LINUX
#define TARGET_LINUX 1
 
#undef CRIS_SUBTARGET_DEFAULT
#define CRIS_SUBTARGET_DEFAULT \
(MASK_SVINTO \
+ MASK_ETRAX4_ADD \
+ MASK_ALIGN_BY_32)
 
#undef CRIS_DEFAULT_CPU_VERSION
#define CRIS_DEFAULT_CPU_VERSION CRIS_CPU_NG
 
#undef CRIS_SUBTARGET_VERSION
#define CRIS_SUBTARGET_VERSION " - cris-axis-linux-gnu"
 
#define GLIBC_DYNAMIC_LINKER "/lib/ld.so.1"
 
/* We need an -rpath-link to ld.so.1, and presumably to each directory
specified with -B. */
#undef CRIS_LINK_SUBTARGET_SPEC
#define CRIS_LINK_SUBTARGET_SPEC \
"-mcrislinux\
-rpath-link include/asm/../..%s\
%{shared} %{static}\
%{symbolic:-Bdynamic} %{shlib:-Bdynamic} %{static:-Bstatic}\
%{!shared:%{!static:\
%{rdynamic:-export-dynamic}\
%{!dynamic-linker:-dynamic-linker " LINUX_DYNAMIC_LINKER "}}}\
%{!r:%{O2|O3: --gc-sections}}"
 
 
/* Node: Run-time Target */
 
/* For the cris-*-linux* subtarget. */
#undef TARGET_OS_CPP_BUILTINS
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
LINUX_TARGET_OS_CPP_BUILTINS(); \
if (flag_leading_underscore <= 0) \
builtin_define ("__NO_UNDERSCORES__"); \
} \
while (0)
 
/* Node: Sections */
 
/* GNU/Linux has crti and crtn and does not need the
CRT_CALL_STATIC_FUNCTION trick in cris.h. */
#undef CRT_CALL_STATIC_FUNCTION
 
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
/cris.h
0,0 → 1,1426
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* After the first "Node:" comment comes all preprocessor directives and
attached declarations described in the info files, the "Using and
Porting GCC" manual (uapgcc), in the same order as found in the "Target
macros" section in the gcc-2.9x CVS edition of 2000-03-17. FIXME: Not
really, but needs an update anyway.
 
There is no generic copy-of-uapgcc comment, you'll have to see uapgcc
for that. If applicable, there is a CRIS-specific comment. The order
of macro definitions follow the order in the manual. Every section in
the manual (node in the info pages) has an introductory `Node:
<subchapter>' comment. If no macros are defined for a section, only
the section-comment is present. */
 
/* Note that other header files (e.g. config/elfos.h, config/linux.h,
config/cris/linux.h and config/cris/aout.h) are responsible for lots of
settings not repeated below. This file contains general CRIS
definitions and definitions for the cris-*-elf subtarget. */
 
/* We don't want to use gcc_assert for everything, as that can be
compiled out. */
#define CRIS_ASSERT(x) \
do { if (!(x)) internal_error ("CRIS-port assertion failed: " #x); } while (0)
 
/* Replacement for REG_P since it does not match SUBREGs. Happens for
testcase Axis-20000320 with gcc-2.9x. */
#define REG_S_P(x) \
(REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0))))
 
/* Last register in main register bank r0..r15. */
#define CRIS_LAST_GENERAL_REGISTER 15
 
/* Descriptions of registers used for arguments. */
#define CRIS_FIRST_ARG_REG 10
#define CRIS_MAX_ARGS_IN_REGS 4
 
/* See also *_REGNUM constants in cris.md. */
 
/* Most of the time, we need the index into the register-names array.
When passing debug-info, we need the real hardware register number. */
#define CRIS_CANONICAL_SRP_REGNUM (16 + 11)
#define CRIS_CANONICAL_MOF_REGNUM (16 + 7)
/* We have CCR in all models including v10, but that's 16 bits, so let's
prefer the DCCR number, which is a DMA pointer in pre-v8, so we'll
never clash with it for GCC purposes. */
#define CRIS_CANONICAL_CC0_REGNUM (16 + 13)
 
/* When generating PIC, these suffixes are added to the names of non-local
functions when being output. Contrary to other ports, we have offsets
relative to the GOT, not the PC. We might implement PC-relative PLT
semantics later for the general case; they are used in some cases right
now, such as MI thunks. */
#define CRIS_GOTPLT_SUFFIX ":GOTPLT"
#define CRIS_PLT_GOTOFFSET_SUFFIX ":PLTG"
#define CRIS_PLT_PCOFFSET_SUFFIX ":PLT"
 
#define CRIS_FUNCTION_ARG_SIZE(MODE, TYPE) \
((MODE) != BLKmode ? GET_MODE_SIZE (MODE) \
: (unsigned) int_size_in_bytes (TYPE))
 
/* Which CPU version this is. The parsed and adjusted cris_cpu_str. */
extern int cris_cpu_version;
 
/* Changing the order used to be necessary to put the fourth __make_dp
argument (a DImode parameter) in registers, to fit with the libfunc
parameter passing scheme used for intrinsic functions. FIXME: Check
performance and maybe remove definition from TARGET_LIBGCC2_CFLAGS now
that it isn't strictly necessary. We used to do this through
TARGET_LIBGCC2_CFLAGS, but that became increasingly difficult as the
parenthesis (that needed quoting) travels through several layers of
make and shell invocations. */
#ifdef IN_LIBGCC2
#define __make_dp(a,b,c,d) __cris_make_dp(d,a,b,c)
#endif
 
 
/* Node: Driver */
 
/* When using make with defaults.mak for Sun this will handily remove
any "-target sun*" switches. */
/* We need to override any previous definitions (linux.h) */
#undef WORD_SWITCH_TAKES_ARG
#define WORD_SWITCH_TAKES_ARG(STR) \
(DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
|| !strcmp (STR, "target"))
 
/* Also provide canonical vN definitions when user specifies an alias.
Note that -melf overrides -maout. */
 
#define CPP_SPEC \
"%{mtune=*:-D__tune_%* %{mtune=v*:-D__CRIS_arch_tune=%*}\
%{mtune=etrax4:-D__tune_v3 -D__CRIS_arch_tune=3}\
%{mtune=etrax100:-D__tune_v8 -D__CRIS_arch_tune=8}\
%{mtune=svinto:-D__tune_v8 -D__CRIS_arch_tune=8}\
%{mtune=etrax100lx:-D__tune_v10 -D__CRIS_arch_tune=10}\
%{mtune=ng:-D__tune_v10 -D__CRIS_arch_tune=10}}\
%{mcpu=*:-D__arch_%* %{mcpu=v*:-D__CRIS_arch_version=%*}\
%{mcpu=etrax4:-D__arch_v3 -D__CRIS_arch_version=3}\
%{mcpu=etrax100:-D__arch_v8 -D__CRIS_arch_version=8}\
%{mcpu=svinto:-D__arch_v8 -D__CRIS_arch_version=8}\
%{mcpu=etrax100lx:-D__arch_v10 -D__CRIS_arch_version=10}\
%{mcpu=ng:-D__arch_v10 -D__CRIS_arch_version=10}}\
%{march=*:-D__arch_%* %{march=v*:-D__CRIS_arch_version=%*}\
%{march=etrax4:-D__arch_v3 -D__CRIS_arch_version=3}\
%{march=etrax100:-D__arch_v8 -D__CRIS_arch_version=8}\
%{march=svinto:-D__arch_v8 -D__CRIS_arch_version=8}\
%{march=etrax100lx:-D__arch_v10 -D__CRIS_arch_version=10}\
%{march=ng:-D__arch_v10 -D__CRIS_arch_version=10}}\
%{metrax100:-D__arch__v8 -D__CRIS_arch_version=8}\
%{metrax4:-D__arch__v3 -D__CRIS_arch_version=3}\
%(cpp_subtarget)"
 
/* For the cris-*-elf subtarget. */
#define CRIS_CPP_SUBTARGET_SPEC \
"%{mbest-lib-options:\
%{!moverride-best-lib-options:\
%{!march=*:%{!metrax*:%{!mcpu=*:-D__tune_v10 -D__CRIS_arch_tune=10}}}}}"
 
/* Remove those Sun-make "target" switches. */
/* Override previous definitions (linux.h). */
#undef CC1_SPEC
#define CC1_SPEC \
"%{target*:}\
%{metrax4:-march=v3}\
%{metrax100:-march=v8}\
%(cc1_subtarget)"
 
/* For the cris-*-elf subtarget. */
#define CRIS_CC1_SUBTARGET_SPEC \
"-melf\
%{mbest-lib-options:\
%{!moverride-best-lib-options:\
%{!march=*:%{!mcpu=*:-mtune=v10 -D__CRIS_arch_tune=10}}\
%{!finhibit-size-directive:\
%{!fno-function-sections: -ffunction-sections}\
%{!fno-data-sections: -fdata-sections}}}}"
 
/* This adds to CC1_SPEC. When bugs are removed from -fvtable-gc
(-fforce-addr causes invalid .vtable_entry asm in tinfo.cc and
nothing at all works in GCC 3.0-pre), add this line:
"%{mbest-lib-options:%{!moverride-best-lib-options:\
%{!melinux:%{!maout|melf:%{!fno-vtable-gc:-fvtable-gc}}}}}". */
#define CC1PLUS_SPEC ""
 
#ifdef HAVE_AS_NO_MUL_BUG_ABORT_OPTION
#define MAYBE_AS_NO_MUL_BUG_ABORT \
"%{mno-mul-bug-workaround:-no-mul-bug-abort} "
#else
#define MAYBE_AS_NO_MUL_BUG_ABORT
#endif
 
/* Override previous definitions (linux.h). */
#undef ASM_SPEC
#define ASM_SPEC \
MAYBE_AS_NO_MUL_BUG_ABORT \
"%{v:-v}\
%(asm_subtarget)"
 
/* For the cris-*-elf subtarget. */
#define CRIS_ASM_SUBTARGET_SPEC "--em=criself"
 
/* FIXME: We should propagate the -melf option to make the criself
"emulation" unless a linker script is provided (-T*), but I don't know
how to do that if either of -Ttext, -Tdata or -Tbss is given but no
linker script, as is usually the case. Leave it to the user for the
time being.
 
Note that -melf overrides -maout except that a.out-compiled libraries
are linked in (multilibbing). The somewhat cryptic -rpath-link pair is
to avoid *only* picking up the linux multilib subdir from the "-B./"
option during build, while still giving it preference. We'd need some
%s-variant that checked for existence of some specific file. */
/* Override previous definitions (svr4.h). */
#undef LINK_SPEC
#define LINK_SPEC \
"%{v:--verbose}\
%(link_subtarget)"
 
/* For the cris-*-elf subtarget. */
#define CRIS_LINK_SUBTARGET_SPEC \
"-mcriself\
%{sim2:%{!T*:-Tdata 0x4000000 -Tbss 0x8000000}}\
%{!r:%{O2|O3: --gc-sections}}"
 
/* Which library to get. The simulator uses a different library for
the low-level syscalls (implementing the Linux syscall ABI instead
of direct-iron accesses). Default everything with the stub "nosys"
library. */
/* Override previous definitions (linux.h). */
#undef LIB_SPEC
#define LIB_SPEC \
"%{sim*:--start-group -lc -lsyslinux --end-group}\
%{!sim*:%{g*:-lg}\
%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} -lbsp}\
-lnosys"
 
/* Linker startfile options; crt0 flavors.
We need to remove any previous definition (elfos.h). */
#undef STARTFILE_SPEC
#define STARTFILE_SPEC \
"%{sim*:crt1.o%s}%{!sim*:crt0.o%s}\
crti.o%s crtbegin.o%s"
 
#undef ENDFILE_SPEC
#define ENDFILE_SPEC "crtend.o%s crtn.o%s"
 
#define EXTRA_SPECS \
{"cpp_subtarget", CRIS_CPP_SUBTARGET_SPEC}, \
{"cc1_subtarget", CRIS_CC1_SUBTARGET_SPEC}, \
{"asm_subtarget", CRIS_ASM_SUBTARGET_SPEC}, \
{"link_subtarget", CRIS_LINK_SUBTARGET_SPEC}, \
CRIS_SUBTARGET_EXTRA_SPECS
 
#define CRIS_SUBTARGET_EXTRA_SPECS
 
 
/* Node: Run-time Target */
 
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define_std ("cris"); \
builtin_define_std ("CRIS"); \
builtin_define_std ("GNU_CRIS"); \
builtin_define ("__CRIS_ABI_version=2"); \
builtin_assert ("cpu=cris"); \
builtin_assert ("machine=cris"); \
} \
while (0)
 
/* This needs to be at least 32 bits. */
extern int target_flags;
 
/* Previously controlled by target_flags. */
#define TARGET_ELF 1
 
/* Previously controlled by target_flags. Note that this is *not* set
for -melinux. */
#define TARGET_LINUX 0
 
/* Default target_flags if no switches specified. */
#ifndef TARGET_DEFAULT
# define TARGET_DEFAULT \
(MASK_SIDE_EFFECT_PREFIXES + MASK_STACK_ALIGN \
+ MASK_CONST_ALIGN + MASK_DATA_ALIGN \
+ MASK_PROLOGUE_EPILOGUE + MASK_MUL_BUG)
#endif
 
/* For the cris-*-elf subtarget. */
#define CRIS_SUBTARGET_DEFAULT 0
 
#define CRIS_CPU_BASE 0
#define CRIS_CPU_ETRAX4 3 /* Just lz added. */
#define CRIS_CPU_SVINTO 8 /* Added swap, jsrc & Co., 32-bit accesses. */
#define CRIS_CPU_NG 10 /* Added mul[su]. */
 
/* Local, providing a default for cris_cpu_version. */
#define CRIS_DEFAULT_CPU_VERSION CRIS_CPU_BASE
 
#define TARGET_HAS_MUL_INSNS (cris_cpu_version >= CRIS_CPU_NG)
 
#define CRIS_SUBTARGET_HANDLE_OPTION(x, y, z)
 
/* Print subsidiary information on the compiler version in use.
Do not use VD.D syntax (D=digit), since this will cause confusion
with the base gcc version among users, when we ask which version of
gcc-cris they are using. Please use some flavor of "R<number>" for
the version (no need for major.minor versions, I believe). */
#define TARGET_VERSION \
fprintf (stderr, " [Axis CRIS%s]", CRIS_SUBTARGET_VERSION)
 
/* For the cris-*-elf subtarget. */
#define CRIS_SUBTARGET_VERSION " - generic ELF"
 
#define OVERRIDE_OPTIONS cris_override_options ()
 
/* The following gives optimal code for gcc-2.7.2, but *may* be subject
to change. Omitting flag_force_addr gives .1-.7% faster code for gcc
*only*, but 1.3% larger code. On ipps it gives 5.3-10.6% slower
code(!) and 0.3% larger code. For products, images gets .1-1.8%
larger. Do not set strict aliasing from optimization options. */
#define OPTIMIZATION_OPTIONS(OPTIMIZE, SIZE) \
do \
{ \
if ((OPTIMIZE) >= 2 || (SIZE)) \
{ \
flag_force_addr = 1; \
flag_omit_frame_pointer = 1; \
} \
} \
while (0)
 
 
/* Node: Storage Layout */
 
#define BITS_BIG_ENDIAN 0
 
#define BYTES_BIG_ENDIAN 0
 
/* WORDS_BIG_ENDIAN is not defined in the hardware, but for consistency,
we use little-endianness, and we may also be able to use
post-increment on DImode indirect. */
#define WORDS_BIG_ENDIAN 0
 
#define UNITS_PER_WORD 4
 
/* A combination of defining PROMOTE_FUNCTION_MODE,
TARGET_PROMOTE_FUNCTION_ARGS that always returns true
and *not* defining TARGET_PROMOTE_PROTOTYPES or PROMOTE_MODE gives the
best code size and speed for gcc, ipps and products in gcc-2.7.2. */
#define CRIS_PROMOTED_MODE(MODE, UNSIGNEDP, TYPE) \
(GET_MODE_CLASS (MODE) == MODE_INT && GET_MODE_SIZE (MODE) < 4) \
? SImode : MODE
 
#define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
(MODE) = CRIS_PROMOTED_MODE (MODE, UNSIGNEDP, TYPE)
 
/* Defining PROMOTE_FUNCTION_RETURN in gcc-2.7.2 uncovers bug 981110 (even
if defining FUNCTION_VALUE with MODE as PROMOTED_MODE ;-)
 
FIXME: Report this when cris.h is part of GCC, so others can easily
see the problem. Maybe check other systems that define
TARGET_PROMOTE_FUNCTION_RETURN that always returns true. */
 
/* We will be using prototype promotion, so they will be 32 bit. */
#define PARM_BOUNDARY 32
 
/* Stack boundary is guided by -mstack-align, -mno-stack-align,
-malign.
Old comment: (2.1: still valid in 2.7.2?)
Note that to make this macro affect the alignment of stack
locals, a fix was required, and special precautions when handling
the stack pointer in various other macros (TARGET_ASM_FUNCTION_PROLOGUE
et al) were required. See file "function.c". If you would just define
this macro, it would only affect the builtin alloca and variable
local data (non-ANSI, non-K&R, Gnu C extension). */
#define STACK_BOUNDARY \
(TARGET_STACK_ALIGN ? (TARGET_ALIGN_BY_32 ? 32 : 16) : 8)
 
#define FUNCTION_BOUNDARY 16
 
/* Do not change BIGGEST_ALIGNMENT (when optimizing), as it will affect
strange places, at least in 2.1. */
#define BIGGEST_ALIGNMENT 8
 
/* If -m16bit, -m16-bit, -malign or -mdata-align,
align everything to 16 bit. */
#define DATA_ALIGNMENT(TYPE, BASIC_ALIGN) \
(TARGET_DATA_ALIGN \
? (TARGET_ALIGN_BY_32 \
? (BASIC_ALIGN < 32 ? 32 : BASIC_ALIGN) \
: (BASIC_ALIGN < 16 ? 16 : BASIC_ALIGN)) : BASIC_ALIGN)
 
/* Note that CONSTANT_ALIGNMENT has the effect of making gcc believe that
ALL references to constant stuff (in code segment, like strings) has
this alignment. That is a rather rushed assumption. Luckily we do not
care about the "alignment" operand to builtin memcpy (only place where
it counts), so it doesn't affect any bad spots. */
#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \
(TARGET_CONST_ALIGN \
? (TARGET_ALIGN_BY_32 \
? (BASIC_ALIGN < 32 ? 32 : BASIC_ALIGN) \
: (BASIC_ALIGN < 16 ? 16 : BASIC_ALIGN)) : BASIC_ALIGN)
 
/* FIXME: Define LOCAL_ALIGNMENT for word and dword or arrays and
structures (if -mstack-align=), and check that it is good. */
 
#define EMPTY_FIELD_BOUNDARY 8
 
#define STRUCTURE_SIZE_BOUNDARY 8
 
#define STRICT_ALIGNMENT 0
 
/* Remove any previous definition (elfos.h).
??? If it wasn't for all the other stuff that affects layout of
structures and bit-fields, this could presumably cause incompatibility
with other GNU/Linux ports (i.e. elfos.h users). */
#undef PCC_BITFIELD_TYPE_MATTERS
 
/* This is only used for non-scalars. Strange stuff happens to structs
(FIXME: What?) if we use anything larger than largest actually used
datum size, so lets make it 32. The type "long long" will still work
as usual. We can still have DImode insns, but they will only be used
for scalar data (i.e. long long). */
#define MAX_FIXED_MODE_SIZE 32
 
 
/* Node: Type Layout */
 
/* Note that DOUBLE_TYPE_SIZE is not defined anymore, since the default
value gives a 64-bit double, which is what we now use. */
 
/* For compatibility and historical reasons, a char should be signed. */
#define DEFAULT_SIGNED_CHAR 1
 
/* Note that WCHAR_TYPE_SIZE is used in cexp.y,
where TARGET_SHORT is not available. */
#undef WCHAR_TYPE
#define WCHAR_TYPE "long int"
 
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE 32
 
 
/* Node: Register Basics */
 
/* We count all 16 non-special registers, SRP, a faked argument
pointer register, MOF and CCR/DCCR. */
#define FIRST_PSEUDO_REGISTER (16 + 1 + 1 + 1 + 1)
 
/* For CRIS, these are r15 (pc) and r14 (sp). Register r8 is used as a
frame-pointer, but is not fixed. SRP is not included in general
registers and will not be used automatically. All other special
registers are fixed at the moment. The faked argument pointer register
is fixed too. */
#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0}
 
/* Register r9 is used for structure-address, r10-r13 for parameters,
r10- for return values. */
#define CALL_USED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1}
 
#define CONDITIONAL_REGISTER_USAGE cris_conditional_register_usage ()
 
 
/* Node: Allocation Order */
 
/* We need this on CRIS, because call-used regs should be used first,
(so we don't need to push). Else start using registers from r0 and up.
This preference is mainly because if we put call-used-regs from r0
and up, then we can't use movem to push the rest, (which have to be
saved if we use them, and movem has to start with r0).
Change here if you change which registers to use as call registers.
 
The actual need to explicitly prefer call-used registers improved the
situation a lot for 2.1, but might not actually be needed anymore.
Still, this order reflects what GCC should find out by itself, so it
probably does not hurt.
 
Order of preference: Call-used-regs first, then r0 and up, last fp &
sp & pc as fillers.
Call-used regs in opposite order, so they will cause less conflict if
a function has few args (<= 3) and it wants a scratch reg.
Use struct-return address first, since very few functions use
structure return values so it is likely to be available. */
#define REG_ALLOC_ORDER \
{9, 13, 12, 11, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 17, 16, 18, 19}
 
 
/* Node: Values in Registers */
 
/* The VOIDmode test is so we can omit mode on anonymous insns. FIXME:
Still needed in 2.9x, at least for Axis-20000319. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(MODE == VOIDmode \
? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
 
/* CRIS permits all registers to hold all modes. Well, except for the
condition-code register. And we can't hold larger-than-register size
modes in the last special register that can hold a full 32 bits. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
(((MODE) == CCmode \
|| (REGNO) != CRIS_CC0_REGNUM) \
&& (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
|| (REGNO) != CRIS_MOF_REGNUM))
 
/* Because CCmode isn't covered by the "narrower mode" statement in
tm.texi, we can still say all modes are tieable despite not having an
always 1 HARD_REGNO_MODE_OK. */
#define MODES_TIEABLE_P(MODE1, MODE2) 1
 
 
/* Node: Leaf Functions */
/* (no definitions) */
 
/* Node: Stack Registers */
/* (no definitions) */
 
 
/* Node: Register Classes */
 
enum reg_class
{
NO_REGS,
MOF_REGS, CC0_REGS, SPECIAL_REGS, GENERAL_REGS, ALL_REGS,
LIM_REG_CLASSES
};
 
#define N_REG_CLASSES (int) LIM_REG_CLASSES
 
#define REG_CLASS_NAMES \
{"NO_REGS", \
"MOF_REGS", "CC0_REGS", "SPECIAL_REGS", "GENERAL_REGS", "ALL_REGS"}
 
#define CRIS_SPECIAL_REGS_CONTENTS \
((1 << CRIS_SRP_REGNUM) | (1 << CRIS_MOF_REGNUM) | (1 << CRIS_CC0_REGNUM))
 
/* Count in the faked argument register in GENERAL_REGS. Keep out SRP. */
#define REG_CLASS_CONTENTS \
{ \
{0}, \
{1 << CRIS_MOF_REGNUM}, \
{1 << CRIS_CC0_REGNUM}, \
{CRIS_SPECIAL_REGS_CONTENTS}, \
{0xffff | (1 << CRIS_AP_REGNUM)}, \
{0xffff | (1 << CRIS_AP_REGNUM) \
| CRIS_SPECIAL_REGS_CONTENTS} \
}
 
#define REGNO_REG_CLASS(REGNO) \
((REGNO) == CRIS_MOF_REGNUM ? MOF_REGS : \
(REGNO) == CRIS_CC0_REGNUM ? CC0_REGS : \
(REGNO) == CRIS_SRP_REGNUM ? SPECIAL_REGS : \
GENERAL_REGS)
 
#define BASE_REG_CLASS GENERAL_REGS
 
#define INDEX_REG_CLASS GENERAL_REGS
 
#define REG_CLASS_FROM_LETTER(C) \
( \
(C) == 'h' ? MOF_REGS : \
(C) == 'x' ? SPECIAL_REGS : \
(C) == 'c' ? CC0_REGS : \
NO_REGS \
)
 
/* Since it uses reg_renumber, it is safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) <= CRIS_LAST_GENERAL_REGISTER \
|| (REGNO) == ARG_POINTER_REGNUM \
|| (unsigned) reg_renumber[REGNO] <= CRIS_LAST_GENERAL_REGISTER \
|| (unsigned) reg_renumber[REGNO] == ARG_POINTER_REGNUM)
 
/* See REGNO_OK_FOR_BASE_P. */
#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
 
/* It seems like gcc (2.7.2 and 2.9x of 2000-03-22) may send "NO_REGS" as
the class for a constant (testcase: __Mul in arit.c). To avoid forcing
out a constant into the constant pool, we will trap this case and
return something a bit more sane. FIXME: Check if this is a bug.
Beware that we must not "override" classes that can be specified as
constraint letters, or else asm operands using them will fail when
they need to be reloaded. FIXME: Investigate whether that constitutes
a bug. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
((CLASS) != MOF_REGS \
&& (CLASS) != CC0_REGS \
&& (CLASS) != SPECIAL_REGS \
? GENERAL_REGS : (CLASS))
 
/* We can't move special registers to and from memory in smaller than
word_mode. */
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
(((CLASS) != SPECIAL_REGS && (CLASS) != MOF_REGS) \
|| GET_MODE_SIZE (MODE) == 4 \
|| GET_CODE (X) != MEM \
? NO_REGS : GENERAL_REGS)
 
/* For CRIS, this is always the size of MODE in words,
since all registers are the same size. To use omitted modes in
patterns with reload constraints, you must say the widest size
which is allowed for VOIDmode.
FIXME: Does that still apply for gcc-2.9x? Keep poisoned until such
patterns are added back. News: 2001-03-16: Happens as early as the
underscore-test. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((MODE) == VOIDmode \
? 1 /* + cris_fatal ("CLASS_MAX_NREGS with VOIDmode") */ \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
 
/* We are now out of letters; we could use ten more. This forces us to
use C-code in the 'md' file. FIXME: Use some EXTRA_CONSTRAINTS. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
( \
/* MOVEQ, CMPQ, ANDQ, ORQ. */ \
(C) == 'I' ? (VALUE) >= -32 && (VALUE) <= 31 : \
/* ADDQ, SUBQ. */ \
(C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
/* ASRQ, BTSTQ, LSRQ, LSLQ. */ \
(C) == 'K' ? (VALUE) >= 0 && (VALUE) <= 31 : \
/* A 16-bit signed number. */ \
(C) == 'L' ? (VALUE) >= -32768 && (VALUE) <= 32767 : \
/* The constant 0 for CLEAR. */ \
(C) == 'M' ? (VALUE) == 0 : \
/* A negative ADDQ or SUBQ. */ \
(C) == 'N' ? (VALUE) >= -63 && (VALUE) < 0 : \
/* Quickened ints, QI and HI. */ \
(C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 65535 \
&& ((VALUE) >= (65535-31) \
|| ((VALUE) >= (255-31) \
&& (VALUE) <= 255 )) : \
/* A 16-bit number signed *or* unsigned. */ \
(C) == 'P' ? (VALUE) >= -32768 && (VALUE) <= 65535 : \
0)
 
/* It is really simple to make up a 0.0; it is the same as int-0 in
IEEE754. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' && ((VALUE) == CONST0_RTX (DFmode) \
|| (VALUE) == CONST0_RTX (SFmode)))
 
/* We need this on cris to distinguish delay-slottable addressing modes. */
#define EXTRA_CONSTRAINT(X, C) \
( \
/* Slottable address mode? */ \
(C) == 'Q' ? EXTRA_CONSTRAINT_Q (X) : \
/* Operand to BDAP or BIAP? */ \
(C) == 'R' ? EXTRA_CONSTRAINT_R (X) : \
/* A local PIC symbol? */ \
(C) == 'S' ? EXTRA_CONSTRAINT_S (X) : \
/* A three-address addressing-mode? */ \
(C) == 'T' ? EXTRA_CONSTRAINT_T (X) : \
0)
 
#define EXTRA_MEMORY_CONSTRAINT(X, STR) ((X) == 'Q')
 
#define EXTRA_CONSTRAINT_Q(X) \
( \
/* Just an indirect register (happens to also be \
"all" slottable memory addressing modes not \
covered by other constraints, i.e. '>'). */ \
GET_CODE (X) == MEM && BASE_P (XEXP (X, 0)) \
)
 
#define EXTRA_CONSTRAINT_R(X) \
( \
/* An operand to BDAP or BIAP: \
A BIAP; r.S? */ \
BIAP_INDEX_P (X) \
/* A [reg] or (int) [reg], maybe with post-increment. */ \
|| BDAP_INDEX_P (X) \
|| CONSTANT_INDEX_P (X) \
)
 
#define EXTRA_CONSTRAINT_T(X) \
( \
/* Memory three-address operand. All are indirect-memory: */ \
GET_CODE (X) == MEM \
&& ((GET_CODE (XEXP (X, 0)) == MEM \
/* Double indirect: [[reg]] or [[reg+]]? */ \
&& (BASE_OR_AUTOINCR_P (XEXP (XEXP (X, 0), 0)))) \
/* Just an explicit indirect reference: [const]? */ \
|| CONSTANT_P (XEXP (X, 0)) \
/* Something that is indexed; [...+...]? */ \
|| (GET_CODE (XEXP (X, 0)) == PLUS \
/* A BDAP constant: [reg+(8|16|32)bit offset]? */ \
&& ((BASE_P (XEXP (XEXP (X, 0), 0)) \
&& CONSTANT_INDEX_P (XEXP (XEXP (X, 0), 1))) \
/* A BDAP register: [reg+[reg(+)].S]? */ \
|| (BASE_P (XEXP (XEXP (X, 0), 0)) \
&& BDAP_INDEX_P(XEXP(XEXP(X, 0), 1))) \
/* Same, but with swapped arguments (no canonical \
ordering between e.g. REG and MEM as of LAST_UPDATED \
"Thu May 12 03:59:11 UTC 2005"). */ \
|| (BASE_P (XEXP (XEXP (X, 0), 1)) \
&& BDAP_INDEX_P (XEXP (XEXP (X, 0), 0))) \
/* A BIAP: [reg+reg.S] (MULT comes first). */ \
|| (BASE_P (XEXP (XEXP (X, 0), 1)) \
&& BIAP_INDEX_P (XEXP (XEXP (X, 0), 0)))))) \
)
 
/* PIC-constructs for symbols. */
#define EXTRA_CONSTRAINT_S(X) \
(flag_pic && GET_CODE (X) == CONST && cris_valid_pic_const (X))
 
 
/* Node: Frame Layout */
 
#define STACK_GROWS_DOWNWARD
#define FRAME_GROWS_DOWNWARD 1
 
/* It seems to be indicated in the code (at least 2.1) that this is
better a constant, and best 0. */
#define STARTING_FRAME_OFFSET 0
 
#define FIRST_PARM_OFFSET(FNDECL) 0
 
#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
cris_return_addr_rtx (COUNT, FRAMEADDR)
 
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, CRIS_SRP_REGNUM)
 
/* FIXME: Any __builtin_eh_return callers must not return anything and
there must not be collisions with incoming parameters. Luckily the
number of __builtin_eh_return callers is limited. For now return
parameter registers in reverse order and hope for the best. */
#define EH_RETURN_DATA_REGNO(N) \
(IN_RANGE ((N), 0, 3) ? (CRIS_FIRST_ARG_REG + 3 - (N)) : INVALID_REGNUM)
 
/* Store the stack adjustment in the structure-return-address register. */
#define CRIS_STACKADJ_REG CRIS_STRUCT_VALUE_REGNUM
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, CRIS_STACKADJ_REG)
 
#define EH_RETURN_HANDLER_RTX \
cris_return_addr_rtx (0, NULL)
 
#define INIT_EXPANDERS cris_init_expanders ()
 
/* FIXME: Move this to right node (it's not documented properly yet). */
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (CRIS_SRP_REGNUM)
 
/* FIXME: Move this to right node (it's not documented properly yet).
FIXME: Check what alignment we can assume regarding
TARGET_STACK_ALIGN and TARGET_ALIGN_BY_32. */
#define DWARF_CIE_DATA_ALIGNMENT -1
 
/* If we would ever need an exact mapping between canonical register
number and dwarf frame register, we would either need to include all
registers in the gcc description (with some marked fixed of course), or
an inverse mapping from dwarf register to gcc register. There is one
need in dwarf2out.c:expand_builtin_init_dwarf_reg_sizes. Right now, I
don't see that we need exact correspondence between DWARF *frame*
registers and DBX_REGISTER_NUMBER, so map them onto GCC registers. */
#define DWARF_FRAME_REGNUM(REG) (REG)
 
/* Node: Stack Checking */
/* (no definitions) FIXME: Check. */
 
/* Node: Frame Registers */
 
#define STACK_POINTER_REGNUM CRIS_SP_REGNUM
 
/* Register used for frame pointer. This is also the last of the saved
registers, when a frame pointer is not used. */
#define FRAME_POINTER_REGNUM CRIS_FP_REGNUM
 
/* Faked register, is always eliminated. We need it to eliminate
allocating stack slots for the return address and the frame pointer. */
#define ARG_POINTER_REGNUM CRIS_AP_REGNUM
 
#define STATIC_CHAIN_REGNUM CRIS_STATIC_CHAIN_REGNUM
 
 
/* Node: Elimination */
 
/* Really only needed if the stack frame has variable length (alloca
or variable sized local arguments (GNU C extension). */
#define FRAME_POINTER_REQUIRED 0
 
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
 
/* We need not worry about when the frame-pointer is required for other
reasons. */
#define CAN_ELIMINATE(FROM, TO) 1
 
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = cris_initial_elimination_offset (FROM, TO)
 
 
/* Node: Stack Arguments */
 
/* Since many parameters take up one register each in any case,
defining TARGET_PROMOTE_PROTOTYPES that always returns true would
seem like a good idea, but measurements indicate that a combination
using PROMOTE_MODE is better. */
 
#define ACCUMULATE_OUTGOING_ARGS 1
 
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACKSIZE) 0
 
 
/* Node: Register Arguments */
 
/* The void_type_node is sent as a "closing" call. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
((CUM).regs < CRIS_MAX_ARGS_IN_REGS \
? gen_rtx_REG (MODE, (CRIS_FIRST_ARG_REG) + (CUM).regs) \
: NULL_RTX)
 
/* The differences between this and the previous, is that this one checks
that an argument is named, since incoming stdarg/varargs arguments are
pushed onto the stack, and we don't have to check against the "closing"
void_type_node TYPE parameter. */
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
((NAMED) && (CUM).regs < CRIS_MAX_ARGS_IN_REGS \
? gen_rtx_REG (MODE, CRIS_FIRST_ARG_REG + (CUM).regs) \
: NULL_RTX)
 
/* Contrary to what you'd believe, defining FUNCTION_ARG_CALLEE_COPIES
seems like a (small total) loss, at least for gcc-2.7.2 compiling and
running gcc-2.1 (small win in size, small loss running -- 100.1%),
and similarly for size for products (.1 .. .3% bloat, sometimes win).
Due to the empirical likeliness of making slower code, it is not
defined. */
 
/* This no longer *needs* to be a structure; but keeping it as such should
not hurt (and hacking the ABI is simpler). */
#define CUMULATIVE_ARGS struct cum_args
struct cum_args {int regs;};
 
/* The regs member is an integer, the number of arguments got into
registers so far. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
((CUM).regs = 0)
 
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM).regs += (3 + CRIS_FUNCTION_ARG_SIZE (MODE, TYPE)) / 4)
 
#define FUNCTION_ARG_REGNO_P(REGNO) \
((REGNO) >= CRIS_FIRST_ARG_REG \
&& (REGNO) < CRIS_FIRST_ARG_REG + (CRIS_MAX_ARGS_IN_REGS))
 
 
/* Node: Scalar Return */
 
/* Let's assume all functions return in r[CRIS_FIRST_ARG_REG] for the
time being. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG (TYPE_MODE (VALTYPE), CRIS_FIRST_ARG_REG)
 
#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, CRIS_FIRST_ARG_REG)
 
#define FUNCTION_VALUE_REGNO_P(N) ((N) == CRIS_FIRST_ARG_REG)
 
 
/* Node: Aggregate Return */
 
#if 0
/* FIXME: Let's try this some time, so we return structures in registers.
We would cast the result of int_size_in_bytes to unsigned, so we will
get a huge number for "structures" of variable size (-1). */
#define RETURN_IN_MEMORY(TYPE) \
((unsigned) int_size_in_bytes (TYPE) > CRIS_MAX_ARGS_IN_REGS * UNITS_PER_WORD)
#endif
 
#define CRIS_STRUCT_VALUE_REGNUM ((CRIS_FIRST_ARG_REG) - 1)
 
 
/* Node: Caller Saves */
/* (no definitions) */
 
/* Node: Function entry */
 
/* See cris.c for TARGET_ASM_FUNCTION_PROLOGUE and
TARGET_ASM_FUNCTION_EPILOGUE. */
 
/* Node: Profiling */
 
#define FUNCTION_PROFILER(FILE, LABELNO) \
error ("no FUNCTION_PROFILER for CRIS")
 
/* FIXME: Some of the undefined macros might be mandatory. If so, fix
documentation. */
 
 
/* Node: Trampolines */
 
/* This looks too complicated, and it is. I assigned r7 to be the
static chain register, but it is call-saved, so we have to save it,
and come back to restore it after the call, so we have to save srp...
Anyway, trampolines are rare enough that we can cope with this
somewhat lack of elegance.
(Do not be tempted to "straighten up" whitespace in the asms; the
assembler #NO_APP state mandates strict spacing). */
#define TRAMPOLINE_TEMPLATE(FILE) \
do \
{ \
fprintf (FILE, "\tmove.d $%s,[$pc+20]\n", \
reg_names[STATIC_CHAIN_REGNUM]); \
fprintf (FILE, "\tmove $srp,[$pc+22]\n"); \
fprintf (FILE, "\tmove.d 0,$%s\n", \
reg_names[STATIC_CHAIN_REGNUM]); \
fprintf (FILE, "\tjsr 0\n"); \
fprintf (FILE, "\tmove.d 0,$%s\n", \
reg_names[STATIC_CHAIN_REGNUM]); \
fprintf (FILE, "\tjump 0\n"); \
} \
while (0)
 
#define TRAMPOLINE_SIZE 32
 
/* CRIS wants instructions on word-boundary.
Note that due to a bug (reported) in 2.7.2 and earlier, this is
actually treated as alignment in _bytes_, not _bits_. (Obviously
this is not fatal, only a slight waste of stack space). */
#define TRAMPOLINE_ALIGNMENT 16
 
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
do \
{ \
emit_move_insn (gen_rtx_MEM (SImode, \
plus_constant (TRAMP, 10)), \
CXT); \
emit_move_insn (gen_rtx_MEM (SImode, \
plus_constant (TRAMP, 16)), \
FNADDR); \
} \
while (0)
 
/* Note that there is no need to do anything with the cache for sake of
a trampoline. */
 
 
/* Node: Library Calls */
 
/* If you change this, you have to check whatever libraries and systems
that use it. */
#define TARGET_EDOM 33
 
 
/* Node: Addressing Modes */
 
#define HAVE_POST_INCREMENT 1
 
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
 
#define MAX_REGS_PER_ADDRESS 2
 
/* There are helper macros defined here which are used only in
GO_IF_LEGITIMATE_ADDRESS.
 
Note that you *have to* reject invalid addressing modes for mode
MODE, even if it is legal for normal addressing modes. You cannot
rely on the constraints to do this work. They can only be used to
doublecheck your intentions. One example is that you HAVE TO reject
(mem:DI (plus:SI (reg:SI x) (reg:SI y))) because for some reason
this cannot be reloaded. (Which of course you can argue that gcc
should have done.) FIXME: Strange. Check. */
 
/* No symbol can be used as an index (or more correct, as a base) together
with a register with PIC; the PIC register must be there. */
#define CONSTANT_INDEX_P(X) \
(CONSTANT_P (X) && (!flag_pic || cris_valid_pic_const (X)))
 
/* True if X is a valid base register. */
#define BASE_P(X) \
(REG_P (X) && REG_OK_FOR_BASE_P (X))
 
/* True if X is a valid base register with or without autoincrement. */
#define BASE_OR_AUTOINCR_P(X) \
(BASE_P (X) || (GET_CODE (X) == POST_INC && BASE_P (XEXP (X, 0))))
 
/* True if X is a valid (register) index for BDAP, i.e. [Rs].S or [Rs+].S. */
#define BDAP_INDEX_P(X) \
((GET_CODE (X) == MEM && GET_MODE (X) == SImode \
&& BASE_OR_AUTOINCR_P (XEXP (X, 0))) \
|| (GET_CODE (X) == SIGN_EXTEND \
&& GET_CODE (XEXP (X, 0)) == MEM \
&& (GET_MODE (XEXP (X, 0)) == HImode \
|| GET_MODE (XEXP (X, 0)) == QImode) \
&& BASE_OR_AUTOINCR_P (XEXP (XEXP (X, 0), 0))))
 
/* True if X is a valid (register) index for BIAP, i.e. Rd.m. */
#define BIAP_INDEX_P(X) \
((BASE_P (X) && REG_OK_FOR_INDEX_P (X)) \
|| (GET_CODE (X) == MULT \
&& BASE_P (XEXP (X, 0)) \
&& REG_OK_FOR_INDEX_P (XEXP (X, 0)) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (INTVAL (XEXP (X, 1)) == 2 \
|| INTVAL (XEXP (X, 1)) == 4)))
 
/* True if X is an address that doesn't need a prefix i.e. [Rs] or [Rs+]. */
#define SIMPLE_ADDRESS_P(X) \
(BASE_P (X) \
|| (GET_CODE (X) == POST_INC \
&& BASE_P (XEXP (X, 0))))
 
/* A PIC operand looks like a normal symbol here. At output we dress it
in "[rPIC+symbol:GOT]" (global symbol) or "rPIC+symbol:GOTOFF" (local
symbol) so we exclude all addressing modes where we can't replace a
plain "symbol" with that. A global PIC symbol does not fit anywhere
here (but is thankfully a general_operand in itself). A local PIC
symbol is valid for the plain "symbol + offset" case. */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
rtx x1, x2; \
if (SIMPLE_ADDRESS_P (X)) \
goto ADDR; \
if (CONSTANT_INDEX_P (X)) \
goto ADDR; \
/* Indexed? */ \
if (GET_CODE (X) == PLUS) \
{ \
x1 = XEXP (X, 0); \
x2 = XEXP (X, 1); \
/* BDAP o, Rd. */ \
if ((BASE_P (x1) && CONSTANT_INDEX_P (x2)) \
|| (BASE_P (x2) && CONSTANT_INDEX_P (x1)) \
/* BDAP Rs[+], Rd. */ \
|| (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
&& ((BASE_P (x1) && BDAP_INDEX_P (x2)) \
|| (BASE_P (x2) && BDAP_INDEX_P (x1)) \
/* BIAP.m Rs, Rd */ \
|| (BASE_P (x1) && BIAP_INDEX_P (x2)) \
|| (BASE_P (x2) && BIAP_INDEX_P (x1))))) \
goto ADDR; \
} \
else if (GET_CODE (X) == MEM) \
{ \
/* DIP (Rs). Reject [[reg+]] and [[reg]] for \
DImode (long long). */ \
if (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
&& (BASE_P (XEXP (X, 0)) \
|| BASE_OR_AUTOINCR_P (XEXP (X, 0)))) \
goto ADDR; \
} \
}
 
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
# define REG_OK_FOR_BASE_P(X) \
(REGNO (X) <= CRIS_LAST_GENERAL_REGISTER \
|| REGNO (X) == ARG_POINTER_REGNUM \
|| REGNO (X) >= FIRST_PSEUDO_REGISTER)
#else
/* Nonzero if X is a hard reg that can be used as a base reg. */
# define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
 
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
# define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
#else
/* Nonzero if X is a hard reg that can be used as an index. */
# define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#endif
 
/* For now, don't do anything. GCC does a good job most often.
 
Maybe we could do something about gcc:s misbehavior when it
recalculates frame offsets for local variables, from fp+offs to
sp+offs. The resulting address expression gets screwed up
sometimes, but I'm not sure that it may be fixed here, since it is
already split up in several instructions (Is this still true?).
FIXME: Check and adjust for gcc-2.9x. */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) {}
 
/* Fix reloads known to cause suboptimal spilling. */
#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
do \
{ \
if (cris_reload_address_legitimized (X, MODE, OPNUM, TYPE, INDL)) \
goto WIN; \
} \
while (0)
 
/* In CRIS, only the postincrement address mode depends thus,
since the increment depends on the size of the operand. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
do \
{ \
if (GET_CODE (ADDR) == POST_INC) \
goto LABEL; \
} \
while (0)
 
#define LEGITIMATE_CONSTANT_P(X) 1
 
 
/* Node: Condition Code */
 
#define NOTICE_UPDATE_CC(EXP, INSN) cris_notice_update_cc (EXP, INSN)
 
/* FIXME: Maybe define CANONICALIZE_COMPARISON later, when playing with
optimizations. It is needed; currently we do this with instruction
patterns and NOTICE_UPDATE_CC. */
 
 
/* Node: Costs */
 
/* Can't move to and from a SPECIAL_REGS register, so we have to say
their move cost within that class is higher. How about 7? That's 3
for a move to a GENERAL_REGS register, 3 for the move from the
GENERAL_REGS register, and 1 for the increased register pressure.
Also, it's higher than the memory move cost, which is in order.
We also do this for ALL_REGS, since we don't want that class to be
preferred (even to memory) at all where GENERAL_REGS doesn't fit.
Whenever it's about to be used, it's for SPECIAL_REGS. If we don't
present a higher cost for ALL_REGS than memory, a SPECIAL_REGS may be
used when a GENERAL_REGS should be used, even if there are call-saved
GENERAL_REGS left to allocate. This is because the fall-back when
the most preferred register class isn't available, isn't the next
(or next good) wider register class, but the *most widest* register
class.
Give the cost 3 between a special register and a general register,
because we want constraints verified. */
 
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
((((FROM) == SPECIAL_REGS || (FROM) == MOF_REGS) \
&& ((TO) == SPECIAL_REGS || (TO) == MOF_REGS)) \
|| (FROM) == ALL_REGS \
|| (TO) == ALL_REGS \
? 7 : \
((FROM) == SPECIAL_REGS || (FROM) == MOF_REGS \
|| (TO) == SPECIAL_REGS || (TO) == MOF_REGS) \
? 3 : 2)
 
/* This isn't strictly correct for v0..3 in buswidth-8bit mode, but
should suffice. */
#define MEMORY_MOVE_COST(M, CLASS, IN) \
(((M) == QImode) ? 4 : ((M) == HImode) ? 4 : 6)
 
/* Regardless of the presence of delay slots, the default value of 1 for
BRANCH_COST is the best in the range (1, 2, 3), tested with gcc-2.7.2
with testcases ipps and gcc, giving smallest and fastest code. */
 
#define SLOW_BYTE_ACCESS 0
 
/* This is the threshold *below* which inline move sequences of
word-length sizes will be emitted. The "9" will translate to
(9 - 1) * 4 = 32 bytes maximum moved, but using 16 instructions
(8 instruction sequences) or less. */
#define MOVE_RATIO 9
 
 
/* Node: Sections */
 
#define TEXT_SECTION_ASM_OP "\t.text"
 
#define DATA_SECTION_ASM_OP "\t.data"
 
#define FORCE_EH_FRAME_INFO_IN_DATA_SECTION (! TARGET_ELF)
 
/* The jump table is immediately connected to the preceding insn. */
#define JUMP_TABLES_IN_TEXT_SECTION 1
 
 
/* Node: PIC */
 
/* Helper type. */
 
enum cris_pic_symbol_type
{
cris_no_symbol = 0,
cris_got_symbol = 1,
cris_gotrel_symbol = 2,
cris_got_symbol_needing_fixup = 3,
cris_invalid_pic_symbol = 4
};
 
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? CRIS_GOT_REGNUM : INVALID_REGNUM)
 
#define LEGITIMATE_PIC_OPERAND_P(X) cris_legitimate_pic_operand (X)
 
 
/* Node: File Framework */
 
/* We don't want an .ident for gcc. To avoid that but still support
#ident, we override ASM_OUTPUT_IDENT and, since the gcc .ident is its
only use besides ASM_OUTPUT_IDENT, undef IDENT_ASM_OP from elfos.h. */
#undef IDENT_ASM_OP
#undef ASM_OUTPUT_IDENT
#define ASM_OUTPUT_IDENT(FILE, NAME) \
fprintf (FILE, "%s\"%s\"\n", "\t.ident\t", NAME);
 
#define ASM_APP_ON "#APP\n"
 
#define ASM_APP_OFF "#NO_APP\n"
 
 
/* Node: Data Output */
 
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
do { if (!cris_output_addr_const_extra (STREAM, X)) goto FAIL; } while (0)
 
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) (C) == '@'
 
/* Node: Uninitialized Data */
 
/* Remember to round off odd values if we want data alignment,
since we cannot do that with an .align directive.
 
Using .comm causes the space not to be reserved in .bss, but by
tricks with the symbol type. Not good if other tools than binutils
are used on the object files. Since ".global ... .lcomm ..." works, we
use that. Use .._ALIGNED_COMMON, since gcc whines when we only have
..._COMMON, and we prefer to whine ourselves; BIGGEST_ALIGNMENT is not
the one to check. This done for a.out only. */
/* FIXME: I suspect a bug in gcc with alignment. Do not warn until
investigated; it mucks up the testsuite results. */
#define CRIS_ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN, LOCAL) \
do \
{ \
int align_ = (ALIGN) / BITS_PER_UNIT; \
if (TARGET_DATA_ALIGN && TARGET_ALIGN_BY_32 && align_ < 4) \
align_ = 4; \
else if (TARGET_DATA_ALIGN && align_ < 2) \
align_ = 2; \
/* FIXME: Do we need this? */ \
else if (align_ < 1) \
align_ = 1; \
\
if (TARGET_ELF) \
{ \
if (LOCAL) \
{ \
fprintf ((FILE), "%s", LOCAL_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), "\n"); \
} \
fprintf ((FILE), "%s", COMMON_ASM_OP); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), ",%u,%u\n", (int)(SIZE), align_); \
} \
else \
{ \
/* We can't tell a one-only or weak COMM from a "global \
COMM" so just make all non-locals weak. */ \
if (! (LOCAL)) \
ASM_WEAKEN_LABEL (FILE, NAME); \
fputs ("\t.lcomm ", (FILE)); \
assemble_name ((FILE), (NAME)); \
fprintf ((FILE), ",%u\n", \
((int)(SIZE) + (align_ - 1)) & ~(align_ - 1)); \
} \
} \
while (0)
 
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
CRIS_ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN, 0)
 
#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
CRIS_ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN, 1)
 
/* Node: Label Output */
 
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.global "
 
#define SUPPORTS_WEAK 1
 
#define ASM_OUTPUT_SYMBOL_REF(STREAM, SYM) \
cris_asm_output_symbol_ref (STREAM, SYM)
 
#define ASM_OUTPUT_LABEL_REF(STREAM, BUF) \
cris_asm_output_label_ref (STREAM, BUF)
 
/* Remove any previous definition (elfos.h). */
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
sprintf (LABEL, "*%s%s%ld", LOCAL_LABEL_PREFIX, PREFIX, (long) NUM)
 
/* Node: Initialization */
/* (no definitions) */
 
/* Node: Macros for Initialization */
/* (no definitions) */
 
/* Node: Instruction Output */
 
#define REGISTER_NAMES \
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
"r9", "r10", "r11", "r12", "r13", "sp", "pc", "srp", "mof", "faked_ap", "dccr"}
 
#define ADDITIONAL_REGISTER_NAMES \
{{"r14", 14}, {"r15", 15}}
 
#define PRINT_OPERAND(FILE, X, CODE) \
cris_print_operand (FILE, X, CODE)
 
/* For delay-slot handling. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '#' || (CODE) == '!' || (CODE) == ':')
 
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
cris_print_operand_address (FILE, ADDR)
 
/* Output an empty line to illustrate the presence of the delay slot. */
#define DBR_OUTPUT_SEQEND(FILE) \
fprintf (FILE, "\n")
 
#define LOCAL_LABEL_PREFIX (TARGET_ELF ? "." : "")
 
/* cppinit.c initializes a const array from this, so it must be constant,
can't have it different based on options. Luckily, the prefix is
always allowed, so let's have it on all GCC-generated code. Note that
we have this verbatim everywhere in the back-end, not using %R or %s or
such. */
#define REGISTER_PREFIX "$"
 
/* Remove any previous definition (elfos.h). */
/* We use -fno-leading-underscore to remove it, when necessary. */
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX "_"
 
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
fprintf (FILE, "\tpush $%s\n", reg_names[REGNO])
 
#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
fprintf (FILE, "\tpop $%s\n", reg_names[REGNO])
 
 
/* Node: Dispatch Tables */
 
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
 
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
asm_fprintf (FILE, "\t.dword %LL%d\n", VALUE)
 
/* Defined to also emit an .align in elfos.h. We don't want that. */
#undef ASM_OUTPUT_CASE_LABEL
 
/* Since the "bound" insn loads the comparison value if the compared<
value (register) is out of bounds (0..comparison value-1), we need
to output another case to catch it.
The way to find it is to look for the label_ref at the else-arm inside
the expanded casesi core-insn.
FIXME: Check this construct when changing to new version of gcc. */
#define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \
do \
{ \
asm_fprintf (STREAM, "\t.word %LL%d-%LL%d%s\n", \
CODE_LABEL_NUMBER \
(XEXP (XEXP (XEXP \
(XVECEXP \
(PATTERN \
(prev_nonnote_insn \
(PREV_INSN (TABLE))), \
0, 0), 1), 2), 0)), \
NUM, \
(TARGET_PDEBUG ? "; default" : "")); \
} \
while (0)
 
 
/* Node: Exception Region Output */
/* (no definitions) */
/* FIXME: Fill in with our own optimized layout. */
 
/* Node: Alignment Output */
 
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
fprintf (FILE, "\t.align %d\n", (LOG))
 
 
/* Node: All Debuggers */
 
#define DBX_REGISTER_NUMBER(REGNO) \
((REGNO) == CRIS_SRP_REGNUM ? CRIS_CANONICAL_SRP_REGNUM : \
(REGNO) == CRIS_MOF_REGNUM ? CRIS_CANONICAL_MOF_REGNUM : \
(REGNO) == CRIS_CC0_REGNUM ? CRIS_CANONICAL_CC0_REGNUM : \
(REGNO))
 
/* FIXME: Investigate DEBUGGER_AUTO_OFFSET, DEBUGGER_ARG_OFFSET. */
 
 
/* Node: DBX Options */
 
/* Is this correct? Check later. */
#define DBX_NO_XREFS
 
#define DBX_CONTIN_LENGTH 0
 
/* FIXME: Is this needed when we have 0 DBX_CONTIN_LENGTH? */
#define DBX_CONTIN_CHAR '?'
 
 
/* Node: DBX Hooks */
/* (no definitions) */
 
/* Node: File names and DBX */
/* (no definitions) */
 
 
/* Node: SDB and DWARF */
/* (no definitions) */
 
/* Node: Misc */
 
/* A combination of the bound (umin) insn together with a
sign-extended add via the table to PC seems optimal.
If the table overflows, the assembler will take care of it.
Theoretically, in extreme cases (uncertain if they occur), an error
will be emitted, so FIXME: Check how large case-tables are emitted,
possible add an option to emit SImode case-tables. */
#define CASE_VECTOR_MODE HImode
 
#define CASE_VECTOR_PC_RELATIVE 1
 
/* FIXME: Investigate CASE_VECTOR_SHORTEN_MODE to make sure HImode is not
used when broken-.word could possibly fail (plus testcase). */
 
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
 
/* This is the number of bytes that can be moved in one
reasonably fast instruction sequence. For CRIS, this is two
instructions: mem => reg, reg => mem. */
#define MOVE_MAX 4
 
/* Maybe SHIFT_COUNT_TRUNCATED is safe to define? FIXME: Check later. */
 
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
 
#define Pmode SImode
 
#define FUNCTION_MODE QImode
 
#define NO_IMPLICIT_EXTERN_C
 
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
/mulsi3.asm
0,0 → 1,232
;; This code used to be expanded through interesting expansions in
;; the machine description, compiled from this code:
;;
;; #ifdef L_mulsi3
;; long __Mul (unsigned long a, unsigned long b) __attribute__ ((__const__));
;;
;; /* This must be compiled with the -mexpand-mul flag, to synthesize the
;; multiplication from the mstep instructions. The check for
;; smaller-size multiplication pays off in the order of .5-10%;
;; estimated median 1%, depending on application.
;; FIXME: It can be further optimized if we go to assembler code, as
;; gcc 2.7.2 adds a few unnecessary instructions and does not put the
;; basic blocks in optimal order. */
;; long
;; __Mul (unsigned long a, unsigned long b)
;; {
;; #if defined (__CRIS_arch_version) && __CRIS_arch_version >= 10
;; /* In case other code is compiled without -march=v10, they will
;; contain calls to __Mul, regardless of flags at link-time. The
;; "else"-code below will work, but is unnecessarily slow. This
;; sometimes cuts a few minutes off from simulation time by just
;; returning a "mulu.d". */
;; return a * b;
;; #else
;; unsigned long min;
;;
;; /* Get minimum via the bound insn. */
;; min = a < b ? a : b;
;;
;; /* Can we omit computation of the high part? */
;; if (min > 65535)
;; /* No. Perform full multiplication. */
;; return a * b;
;; else
;; {
;; /* Check if both operands are within 16 bits. */
;; unsigned long max;
;;
;; /* Get maximum, by knowing the minimum.
;; This will partition a and b into max and min.
;; This is not currently something GCC understands,
;; so do this trick by asm. */
;; __asm__ ("xor %1,%0\n\txor %2,%0"
;; : "=r" (max)
;; : "r" (b), "r" (a), "0" (min));
;;
;; if (max > 65535)
;; /* Make GCC understand that only the low part of "min" will be
;; used. */
;; return max * (unsigned short) min;
;; else
;; /* Only the low parts of both operands are necessary. */
;; return ((unsigned short) max) * (unsigned short) min;
;; }
;; #endif /* not __CRIS_arch_version >= 10 */
;; }
;; #endif /* L_mulsi3 */
;;
;; That approach was abandoned since the caveats outweighted the
;; benefits. The expand-multiplication machinery is also removed, so you
;; can't do this anymore.
;;
;; For doubters of there being any benefits, some where: insensitivity to:
;; - ABI changes (mostly for experimentation)
;; - assembler syntax differences (mostly debug format).
;; - insn scheduling issues.
;; Most ABI experiments will presumably happen with arches with mul insns,
;; so that argument doesn't really hold anymore, and it's unlikely there
;; being new arch variants needing insn scheduling and not having mul
;; insns.
 
;; ELF and a.out have different syntax for local labels: the "wrong"
;; one may not be omitted from the object.
#undef L
#ifdef __AOUT__
# define L(x) x
#else
# define L(x) .x
#endif
 
.global ___Mul
.type ___Mul,@function
___Mul:
#if defined (__CRIS_arch_version) && __CRIS_arch_version >= 10
;; Can't have the mulu.d last on a cache-line (in the delay-slot of the
;; "ret"), due to hardware bug. See documentation for -mmul-bug-workaround.
;; Not worthwhile to conditionalize here.
.p2alignw 2,0x050f
mulu.d $r11,$r10
ret
nop
#else
move.d $r10,$r12
move.d $r11,$r9
bound.d $r12,$r9
cmpu.w 65535,$r9
bls L(L3)
move.d $r12,$r13
 
movu.w $r11,$r9
lslq 16,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
mstep $r9,$r13
clear.w $r10
test.d $r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
movu.w $r12,$r12
move.d $r11,$r9
clear.w $r9
test.d $r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
mstep $r12,$r9
add.w $r9,$r10
lslq 16,$r10
ret
add.d $r13,$r10
 
L(L3):
move.d $r9,$r10
xor $r11,$r10
xor $r12,$r10
cmpu.w 65535,$r10
bls L(L5)
movu.w $r9,$r13
 
movu.w $r13,$r13
move.d $r10,$r9
lslq 16,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
mstep $r13,$r9
clear.w $r10
test.d $r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
mstep $r13,$r10
lslq 16,$r10
ret
add.d $r9,$r10
 
L(L5):
movu.w $r9,$r9
lslq 16,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
mstep $r9,$r10
ret
mstep $r9,$r10
#endif
L(Lfe1):
.size ___Mul,L(Lfe1)-___Mul
/aout.h
0,0 → 1,394
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
Contributed by Axis Communications. Written by Hans-Peter Nilsson.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* After the first "Node:" comment comes all preprocessor directives and
attached declarations described in the info files, the "Using and
Porting GCC" manual (uapgcc), in the same order as found in the "Target
macros" section in the gcc-2.9x CVS edition of 2000-03-17. FIXME: Not
really, but needs an update anyway.
 
There is no generic copy-of-uapgcc comment, you'll have to see uapgcc
for that. If applicable, there is a CRIS-specific comment. The order
of macro definitions follow the order in the manual. Every section in
the manual (node in the info pages) has an introductory `Node:
<subchapter>' comment. If no macros are defined for a section, only
the section-comment is present. */
 
/* This file defines the macros for a.out that are not covered by cris.h.
Many macros are copied from elfos.h and should be in some generic
config/gas-aout.h. */
 
/* Node: Driver */
 
#undef STARTFILE_SPEC
#define STARTFILE_SPEC \
"%{melinux:crt0.o%s}\
%{!melinux:%{sim*:crt1.o%s}%{!sim*:crt0.o%s}}"
 
/* Override cris.h define. */
#undef ENDFILE_SPEC
 
#undef CRIS_CPP_SUBTARGET_SPEC
#define CRIS_CPP_SUBTARGET_SPEC \
"%{melinux:-D__gnu_linux__ -D__linux__ -D__unix__ -D__elinux__ -D__uclinux__\
%{!ansi:%{!std=*:%{!undef:-Dlinux -Dunix -Delinux -Duclinux}}}}\
%{mbest-lib-options:\
%{!moverride-best-lib-options:\
%{!march=*:%{!metrax*:%{!mcpu=*:-D__tune_v8 -D__CRIS_arch_tune=8}}}}}"
 
#undef CRIS_CC1_SUBTARGET_SPEC
#define CRIS_CC1_SUBTARGET_SPEC \
"%{mbest-lib-options:\
%{!moverride-best-lib-options:\
%{!march=*:%{!mcpu=*:-mtune=v8}}}}"
 
#undef CRIS_ASM_SUBTARGET_SPEC
#define CRIS_ASM_SUBTARGET_SPEC "--em=crisaout"
 
#undef CRIS_LINK_SUBTARGET_SPEC
#define CRIS_LINK_SUBTARGET_SPEC \
"-mcrisaout\
%{sim2:%{!T*:-Tdata 0x4000000 -Tbss 0x8000000}}\
%{melinux:-Ur -d\
%{!shlib:%{!symbolic:-Bstatic}}\
%{shlib:-Bdynamic}\
%{symbolic:-Bdynamic}\
%{static:-Bstatic}}\
%{melinux-stacksize=*:-defsym __Stacksize=%*}"
 
/* Previously controlled by target_flags. */
#undef TARGET_ELF
#define TARGET_ELF 0
 
#undef CRIS_SUBTARGET_HANDLE_OPTION
#define CRIS_SUBTARGET_HANDLE_OPTION(CODE, ARG, VALUE) \
do \
{ \
switch (CODE) \
{ \
case OPT_melinux: \
target_flags \
|= (MASK_SVINTO \
+ MASK_STACK_ALIGN \
+ MASK_CONST_ALIGN \
+ MASK_DATA_ALIGN \
+ MASK_ETRAX4_ADD \
+ MASK_ALIGN_BY_32); \
break; \
\
default: \
break; \
} \
} \
while (0)
 
#undef CRIS_SUBTARGET_VERSION
#define CRIS_SUBTARGET_VERSION " - a.out"
 
#undef CRIS_SUBTARGET_DEFAULT
#define CRIS_SUBTARGET_DEFAULT 0
 
 
/* Node: Run-time Target */
 
/* For the cris-*-aout subtarget. */
#undef TARGET_OS_CPP_BUILTINS
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
builtin_define ("__AOUT__"); \
} \
while (0)
 
 
/* Node: Storage Layout */
 
/* All sections but the .bss is rounded up to a 4-byte multiple size. */
#define MAX_OFILE_ALIGNMENT 32
 
 
/* Node: Data Output */
 
#define ESCAPES \
"\1\1\1\1\1\1\1\1btn\1fr\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\0\0\"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\\\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1"
 
/* Some svr4 assemblers have a limit on the number of characters which
can appear in the operand of a .string directive. If your assembler
has such a limitation, you should define STRING_LIMIT to reflect that
limit. Note that at least some svr4 assemblers have a limit on the
actual number of bytes in the double-quoted string, and that they
count each character in an escape sequence as one byte. Thus, an
escape sequence like \377 would count as four bytes.
 
If your target assembler doesn't support the .string directive, you
should define this to zero. */
 
#define STRING_LIMIT ((unsigned) 256)
 
#define STRING_ASM_OP "\t.string\t"
#define ASCII_DATA_ASM_OP "\t.ascii\t"
#define TYPE_ASM_OP "\t.type\t"
#define SIZE_ASM_OP "\t.size\t"
#define TYPE_OPERAND_FMT "@%s"
 
/* The routine used to output NUL terminated strings. We use a special
version of this for most svr4 targets because doing so makes the
generated assembly code more compact (and thus faster to assemble)
as well as more readable, especially for targets like the i386
(where the only alternative is to output character sequences as
comma separated lists of numbers). */
 
#define ASM_OUTPUT_LIMITED_STRING(FILE, STR) \
do \
{ \
register const unsigned char *_limited_str = \
(const unsigned char *) (STR); \
register unsigned ch; \
\
fprintf ((FILE), "%s\"", STRING_ASM_OP); \
\
for (; (ch = *_limited_str); _limited_str++) \
{ \
register int escape; \
\
switch (escape = ESCAPES[ch]) \
{ \
case 0: \
putc (ch, (FILE)); \
break; \
case 1: \
fprintf ((FILE), "\\%03o", ch); \
break; \
default: \
putc ('\\', (FILE)); \
putc (escape, (FILE)); \
break; \
} \
} \
\
fprintf ((FILE), "\"\n"); \
} \
while (0)
 
/* The routine used to output sequences of byte values. We use a special
version of this for most svr4 targets because doing so makes the
generated assembly code more compact (and thus faster to assemble)
as well as more readable. Note that if we find subparts of the
character sequence which end with NUL (and which are shorter than
STRING_LIMIT) we output those using ASM_OUTPUT_LIMITED_STRING. */
 
#undef ASM_OUTPUT_ASCII
#define ASM_OUTPUT_ASCII(FILE, STR, LENGTH) \
do \
{ \
register const unsigned char *_ascii_bytes = \
(const unsigned char *) (STR); \
register const unsigned char *limit = _ascii_bytes + (LENGTH); \
register unsigned bytes_in_chunk = 0; \
\
for (; _ascii_bytes < limit; _ascii_bytes++) \
{ \
register const unsigned char *p; \
\
if (bytes_in_chunk >= 60) \
{ \
fprintf ((FILE), "\"\n"); \
bytes_in_chunk = 0; \
} \
\
for (p = _ascii_bytes; p < limit && *p != '\0'; p++) \
continue; \
\
if (p < limit && (p - _ascii_bytes) <= (long)STRING_LIMIT) \
{ \
if (bytes_in_chunk > 0) \
{ \
fprintf ((FILE), "\"\n"); \
bytes_in_chunk = 0; \
} \
\
ASM_OUTPUT_LIMITED_STRING ((FILE), _ascii_bytes); \
_ascii_bytes = p; \
} \
else \
{ \
register int escape; \
register unsigned ch; \
\
if (bytes_in_chunk == 0) \
fprintf ((FILE), "%s\"", ASCII_DATA_ASM_OP); \
\
switch (escape = ESCAPES[ch = *_ascii_bytes]) \
{ \
case 0: \
putc (ch, (FILE)); \
bytes_in_chunk++; \
break; \
case 1: \
fprintf ((FILE), "\\%03o", ch); \
bytes_in_chunk += 4; \
break; \
default: \
putc ('\\', (FILE)); \
putc (escape, (FILE)); \
bytes_in_chunk += 2; \
break; \
} \
} \
} \
\
if (bytes_in_chunk > 0) \
fprintf ((FILE), "\"\n"); \
} \
while (0)
 
 
/* Node: Label Output */
 
#define SET_ASM_OP "\t.set\t"
 
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
(*targetm.asm_out.globalize_label) (FILE, XSTR (FUN, 0))
 
#define ASM_WEAKEN_LABEL(FILE, NAME) \
do \
{ \
fputs ("\t.weak\t", (FILE)); \
assemble_name ((FILE), (NAME)); \
fputc ('\n', (FILE)); \
} \
while (0)
 
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
do \
{ \
ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \
ASM_OUTPUT_LABEL(FILE, NAME); \
} \
while (0)
 
#define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL) \
do \
{ \
HOST_WIDE_INT size; \
\
ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "object"); \
\
size_directive_output = 0; \
if (!flag_inhibit_size_directive \
&& (DECL) && DECL_SIZE (DECL)) \
{ \
size_directive_output = 1; \
size = int_size_in_bytes (TREE_TYPE (DECL)); \
ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, size); \
} \
\
ASM_OUTPUT_LABEL (FILE, NAME); \
} \
while (0)
 
#undef ASM_FINISH_DECLARE_OBJECT
#define ASM_FINISH_DECLARE_OBJECT(FILE, DECL, TOP_LEVEL, AT_END)\
do \
{ \
const char *name = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
HOST_WIDE_INT size; \
\
if (!flag_inhibit_size_directive \
&& DECL_SIZE (DECL) \
&& ! AT_END && TOP_LEVEL \
&& DECL_INITIAL (DECL) == error_mark_node \
&& !size_directive_output) \
{ \
size_directive_output = 1; \
size = int_size_in_bytes (TREE_TYPE (DECL)); \
ASM_OUTPUT_SIZE_DIRECTIVE (FILE, name, size); \
} \
} \
while (0)
 
#define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
do \
{ \
if (!flag_inhibit_size_directive) \
ASM_OUTPUT_MEASURED_SIZE (FILE, FNAME); \
} \
while (0)
 
/* The configure machinery invokes the assembler without options, which is
not how gcc invokes it. Without options, the multi-target assembler
will probably be found, which is ELF by default. To counter that, we
need to override ELF auto-host.h config stuff which we know collides
with a.out. */
#undef HAVE_GAS_HIDDEN
 
 
/* Node: Alignment Output */
 
#define SKIP_ASM_OP "\t.zero\t"
 
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
fprintf (FILE, "%s%u\n", SKIP_ASM_OP, (int)(SIZE))
 
/* Node: All Debuggers */
 
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
 
 
/* Node: Misc */
 
#define HANDLE_SYSV_PRAGMA 1
 
/* In theory, this one isn't necessary, but over time, external tools have
been primed on names with "." rather than "$". */
#define NO_DOLLAR_IN_LABEL
 
/* These are undocumented, but to keep a single
CRIS_ASM_OUTPUT_ALIGNED_DECL_COMMON, we set this to an asm that will
emit an error if ever output. It will not be emitted for a.out modulo
careless hacking. */
#define COMMON_ASM_OP "\t.err\t"
#define LOCAL_ASM_OP "\t.err\t"
 
#if defined(__CRIS__) && defined (__AOUT__) && defined (IN_GCC)
 
#define CRIS_ABI_VERSION_SYMBOL_STRING ".$CRIS_ABI_V2"
 
/* Make all a.out library functions have undefined references to the
.$CRIS_ABI_V2 symbol, so it will be picked up. Used by GDB. GDB has
a bug with reading a.out symbols; it does not see the GNU weak
extensions, so we can't have .$CRIS_ABI_V2 weak. Weak. */
__asm__ (".set .$abi_referer," CRIS_ABI_VERSION_SYMBOL_STRING);
#endif
 
/*
* Local variables:
* eval: (c-set-style "gnu")
* indent-tabs-mode: t
* End:
*/
/cris.md
0,0 → 1,4197
;; GCC machine description for CRIS cpu cores.
;; Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
;; 2007 Free Software Foundation, Inc.
;; Contributed by Axis Communications.
 
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; The original PO technology requires these to be ordered by speed,
;; so that assigner will pick the fastest.
 
;; See files "md.texi" and "rtl.def" for documentation on define_insn,
;; match_*, et. al.
;;
;; The function cris_notice_update_cc in cris.c handles condition code
;; updates for most instructions, helped by the "cc" attribute.
 
;; There are several instructions that are orthogonal in size, and seems
;; they could be matched by a single pattern without a specified size
;; for the operand that is orthogonal. However, this did not work on
;; gcc-2.7.2 (and probably not on gcc-2.8.1), relating to that when a
;; constant is substituted into an operand, the actual mode must be
;; deduced from the pattern. There is reasonable hope that that has been
;; fixed, so FIXME: try again.
 
;; You will notice that three-operand alternatives ("=r", "r", "!To")
;; are marked with a "!" constraint modifier to avoid being reloaded
;; into. This is because gcc would otherwise prefer to use the constant
;; pool and its offsettable address instead of reloading to an
;; ("=r", "0", "i") alternative. Also, the constant-pool support was not
;; only suboptimal but also buggy in 2.7.2, ??? maybe only in 2.6.3.
 
;; All insns that look like (set (...) (plus (...) (reg:SI 8)))
;; get problems when reloading r8 (frame pointer) to r14 + offs (stack
;; pointer). Thus the instructions that get into trouble have specific
;; checks against matching frame_pointer_rtx.
;; ??? But it should be re-checked for gcc > 2.7.2
;; FIXME: This changed some time ago (from 2000-03-16) for gcc-2.9x.
 
;; FIXME: When PIC, all [rX=rY+S] could be enabled to match
;; [rX=gotless_symbol].
;; The movsi for a gotless symbol could be split (post reload).
;; UNSPEC Usage:
;; 0 PLT reference from call expansion: operand 0 is the address,
;; the mode is VOIDmode. Always wrapped in CONST.
;; 1 Stack frame deallocation barrier.
;; 2 The address of the global offset table as a source operand.
;; 3 The address of a global-offset-table-relative symbol + offset.
;; 4 The offset within GOT of a symbol.
;; 5 The offset within GOT of a symbol that has a PLT.
 
(define_constants ; FIXME: reorder sanely.
[(CRIS_UNSPEC_PLT 0)
(CRIS_UNSPEC_FRAME_DEALLOC 1)
(CRIS_UNSPEC_GOT 2)
(CRIS_UNSPEC_GOTREL 3)
(CRIS_UNSPEC_GOTREAD 4)
(CRIS_UNSPEC_PLTGOTREAD 5)])
 
;; Register numbers.
(define_constants
[(CRIS_GOT_REGNUM 0)
(CRIS_STATIC_CHAIN_REGNUM 7)
(CRIS_FP_REGNUM 8)
(CRIS_SP_REGNUM 14)
(CRIS_SRP_REGNUM 16)
(CRIS_MOF_REGNUM 17)
(CRIS_AP_REGNUM 18)
(CRIS_CC0_REGNUM 19)]
)
 
;; We need an attribute to define whether an instruction can be put in
;; a branch-delay slot or not, and whether it has a delay slot.
;;
;; Branches and return instructions have a delay slot, and cannot
;; themselves be put in a delay slot. This has changed *for short
;; branches only* between architecture variants, but the possible win
;; is presumed negligible compared to the added complexity of the machine
;; description: one would have to add always-correct infrastructure to
;; distinguish short branches.
;;
;; Whether an instruction can be put in a delay slot depends on the
;; instruction (all short instructions except jumps and branches)
;; and the addressing mode (must not be prefixed or referring to pc).
;; In short, any "slottable" instruction must be 16 bit and not refer
;; to pc, or alter it.
;;
;; The possible values are "yes", "no" and "has_slot". Yes/no means if
;; the insn is slottable or not. Has_slot means that the insn is a
;; return insn or branch insn (which are not considered slottable since
;; that is generally true). Having the seemingly illogical value
;; "has_slot" means we do not have to add another attribute just to say
;; that an insn has a delay-slot, since it also infers that it is not
;; slottable. Better names for the attribute were found to be longer and
;; not add readability to the machine description.
;;
;; The default that is defined here for this attribute is "no", not
;; slottable, not having a delay-slot, so there's no need to worry about
;; it being wrong for non-branch and return instructions.
;; The default could depend on the kind of insn and the addressing
;; mode, but that would need more attributes and hairier, more error
;; prone code.
;;
;; There is an extra memory constraint, 'Q', which recognizes an indirect
;; register. The constraints 'Q' and '>' together match all possible
;; memory operands that are slottable.
;; For other operands, you need to check if it has a valid "slottable"
;; quick-immediate operand, where the particular signedness-variation
;; may match the constraints 'I' or 'J'.), and include it in the
;; constraint pattern for the slottable pattern. An alternative using
;; only "r" constraints is most often slottable.
 
(define_attr "slottable" "no,yes,has_slot" (const_string "no"))
 
;; We also need attributes to sanely determine the condition code
;; state. See cris_notice_update_cc for how this is used.
 
(define_attr "cc" "none,clobber,normal" (const_string "normal"))
 
;; At the moment, this attribute is just used to help bb-reorder do its
;; work; the default 0 doesn't help it. Many insns have other lengths,
;; though none are shorter.
(define_attr "length" "" (const_int 2))
 
;; A branch or return has one delay-slot. The instruction in the
;; delay-slot is always executed, independent of whether the branch is
;; taken or not. Note that besides setting "slottable" to "has_slot",
;; there also has to be a "%#" at the end of a "delayed" instruction
;; output pattern (for "jump" this means "ba %l0%#"), so print_operand can
;; catch it and print a "nop" if necessary. This method was stolen from
;; sparc.md.
 
(define_delay (eq_attr "slottable" "has_slot")
[(eq_attr "slottable" "yes") (nil) (nil)])
;; Iterator definitions.
 
;; For the "usual" pattern size alternatives.
(define_mode_macro BWD [SI HI QI])
(define_mode_macro WD [SI HI])
(define_mode_macro BW [HI QI])
(define_mode_attr S [(SI "HI") (HI "QI")])
(define_mode_attr s [(SI "hi") (HI "qi")])
(define_mode_attr m [(SI ".d") (HI ".w") (QI ".b")])
(define_mode_attr mm [(SI ".w") (HI ".b")])
(define_mode_attr nbitsm1 [(SI "31") (HI "15") (QI "7")])
 
;; For the sign_extend+zero_extend variants.
(define_code_macro szext [sign_extend zero_extend])
(define_code_attr u [(sign_extend "") (zero_extend "u")])
(define_code_attr su [(sign_extend "s") (zero_extend "u")])
 
;; For the shift variants.
(define_code_macro shift [ashiftrt lshiftrt ashift])
(define_code_macro shiftrt [ashiftrt lshiftrt])
(define_code_attr shlr [(ashiftrt "ashr") (lshiftrt "lshr") (ashift "ashl")])
(define_code_attr slr [(ashiftrt "asr") (lshiftrt "lsr") (ashift "lsl")])
 
(define_code_macro ncond [eq ne gtu ltu geu leu])
(define_code_macro ocond [gt le])
(define_code_macro rcond [lt ge])
(define_code_attr CC [(eq "eq") (ne "ne") (gt "gt") (gtu "hi") (lt "lt")
(ltu "lo") (ge "ge") (geu "hs") (le "le") (leu "ls")])
(define_code_attr rCC [(eq "ne") (ne "eq") (gt "le") (gtu "ls") (lt "ge")
(ltu "hs") (ge "lt") (geu "lo") (le "gt") (leu "hi")])
(define_code_attr oCC [(lt "mi") (ge "pl")])
(define_code_attr roCC [(lt "pl") (ge "mi")])
 
;; Operand and operator predicates.
 
(include "predicates.md")
;; Test insns.
 
;; DImode
;;
;; Allow register and offsettable mem operands only; post-increment is
;; not worth the trouble.
 
(define_insn "tstdi"
[(set (cc0)
(match_operand:DI 0 "nonimmediate_operand" "r,o"))]
""
"test.d %M0\;ax\;test.d %H0")
 
;; No test insns with side-effect on the mem addressing.
;;
;; See note on cmp-insns with side-effects (or lack of them)
 
;; Normal named test patterns from SI on.
;; FIXME: Seems they should change to be in order smallest..largest.
 
(define_insn "tst<mode>"
[(set (cc0)
(match_operand:BWD 0 "nonimmediate_operand" "r,Q>,m"))]
""
"test<m> %0"
[(set_attr "slottable" "yes,yes,no")])
 
;; It seems that the position of the sign-bit and the fact that 0.0 is
;; all 0-bits would make "tstsf" a straight-forward implementation;
;; either "test.d" it for positive/negative or "btstq 30,r" it for
;; zeroness.
;;
;; FIXME: Do that some time; check next_cc0_user to determine if
;; zero or negative is tested for.
;; Compare insns.
 
;; We could optimize the sizes of the immediate operands for various
;; cases, but that is not worth it because of the very little usage of
;; DImode for anything else but a structure/block-mode. Just do the
;; obvious stuff for the straight-forward constraint letters.
 
(define_insn "cmpdi"
[(set (cc0)
(compare (match_operand:DI 0 "nonimmediate_operand" "r,r,r,r,r,r,o")
(match_operand:DI 1 "general_operand" "K,I,P,n,r,o,r")))]
""
"@
cmpq %1,%M0\;ax\;cmpq 0,%H0
cmpq %1,%M0\;ax\;cmpq -1,%H0
cmp%e1.%z1 %1,%M0\;ax\;cmpq %H1,%H0
cmp.d %M1,%M0\;ax\;cmp.d %H1,%H0
cmp.d %M1,%M0\;ax\;cmp.d %H1,%H0
cmp.d %M1,%M0\;ax\;cmp.d %H1,%H0
cmp.d %M0,%M1\;ax\;cmp.d %H0,%H1")
 
;; Note that compare insns with side effect addressing mode (e.g.):
;;
;; cmp.S [rx=ry+i],rz;
;; cmp.S [%3=%1+%2],%0
;;
;; are *not* usable for gcc since the reloader *does not accept*
;; cc0-changing insns with side-effects other than setting the condition
;; codes. The reason is that the reload stage *may* cause another insn to
;; be output after the main instruction, in turn invalidating cc0 for the
;; insn using the test. (This does not apply to the CRIS case, since a
;; reload for output -- move to memory -- does not change the condition
;; code. Unfortunately we have no way to describe that at the moment. I
;; think code would improve being in the order of one percent faster.
;; We have cmps and cmpu (compare reg w. sign/zero extended mem).
;; These are mostly useful for compares in SImode, using 8 or 16-bit
;; constants, but sometimes gcc will find its way to use it for other
;; (memory) operands. Avoid side-effect patterns, though (see above).
 
(define_insn "*cmp_ext<mode>"
[(set (cc0)
(compare
(match_operand:SI 0 "register_operand" "r,r")
(match_operator:SI 2 "cris_extend_operator"
[(match_operand:BW 1 "memory_operand" "Q>,m")])))]
""
"cmp%e2<m> %1,%0"
[(set_attr "slottable" "yes,no")])
 
;; Swap operands; it seems the canonical look (if any) is not enforced.
;;
;; FIXME: Investigate that.
 
(define_insn "*cmp_swapext<mode>"
[(set (cc0)
(compare
(match_operator:SI 2 "cris_extend_operator"
[(match_operand:BW 0 "memory_operand" "Q>,m")])
(match_operand:SI 1 "register_operand" "r,r")))]
""
"cmp%e2<m> %0,%1" ; The function cris_notice_update_cc knows about
; swapped operands to compares.
[(set_attr "slottable" "yes,no")])
;; The "normal" compare patterns, from SI on.
 
(define_insn "cmpsi"
[(set (cc0)
(compare
(match_operand:SI 0 "nonimmediate_operand" "r,r,r, r,Q>,Q>,r,r,m,m")
(match_operand:SI 1 "general_operand" "I,r,Q>,M,M, r, P,g,M,r")))]
""
"@
cmpq %1,%0
cmp.d %1,%0
cmp.d %1,%0
test.d %0
test.d %0
cmp.d %0,%1
cmp%e1.%z1 %1,%0
cmp.d %1,%0
test.d %0
cmp.d %0,%1"
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,no,no,no,no")])
 
(define_insn "cmp<mode>"
[(set (cc0)
(compare
(match_operand:BW 0 "nonimmediate_operand" "r,r, r,Q>,Q>,r,m,m")
(match_operand:BW 1 "general_operand" "r,Q>,M,M, r, g,M,r")))]
""
"@
cmp<m> %1,%0
cmp<m> %1,%0
test<m> %0
test<m> %0
cmp<m> %0,%1
cmp<m> %1,%0
test<m> %0
cmp<m> %0,%1"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no,no")])
;; Pattern matching the BTST insn.
;; It is useful for "if (i & val)" constructs, where val is an exact
;; power of 2, or if val + 1 is a power of two, where we check for a bunch
;; of zeros starting at bit 0).
 
;; SImode. This mode is the only one needed, since gcc automatically
;; extends subregs for lower-size modes. FIXME: Add testcase.
(define_insn "*btst"
[(set (cc0)
(zero_extract
(match_operand:SI 0 "nonmemory_operand" "r,r,r,r,r,r,n")
(match_operand:SI 1 "const_int_operand" "K,n,K,n,K,n,n")
(match_operand:SI 2 "nonmemory_operand" "M,M,K,n,r,r,r")))]
;; Either it is a single bit, or consecutive ones starting at 0.
"GET_CODE (operands[1]) == CONST_INT
&& (operands[1] == const1_rtx || operands[2] == const0_rtx)
&& (REG_S_P (operands[0])
|| (operands[1] == const1_rtx
&& REG_S_P (operands[2])
&& GET_CODE (operands[0]) == CONST_INT
&& exact_log2 (INTVAL (operands[0])) >= 0))"
 
;; The last "&&" condition above should be caught by some kind of
;; canonicalization in gcc, but we can easily help with it here.
;; It results from expressions of the type
;; "power_of_2_value & (1 << y)".
;;
;; Since there may be codes with tests in on bits (in constant position)
;; beyond the size of a word, handle that by assuming those bits are 0.
;; GCC should handle that, but it's a matter of easily-added belts while
;; having suspenders.
 
"@
btstq (%1-1),%0
test.d %0
btstq %2,%0
clearf nz
btst %2,%0
clearf nz
cmpq %p0,%2"
[(set_attr "slottable" "yes")])
;; Move insns.
 
;; The whole mandatory movdi family is here; expander, "anonymous"
;; recognizer and splitter. We're forced to have a movdi pattern,
;; although GCC should be able to split it up itself. Normally it can,
;; but if other insns have DI operands (as is the case here), reload
;; must be able to generate or match a movdi. many testcases fail at
;; -O3 or -fssa if we don't have this. FIXME: Fix GCC... See
;; <URL:http://gcc.gnu.org/ml/gcc-patches/2000-04/msg00104.html>.
;; However, a patch from Richard Kenner (similar to the cause of
;; discussion at the URL above), indicates otherwise. See
;; <URL:http://gcc.gnu.org/ml/gcc-patches/2000-04/msg00554.html>.
;; The truth has IMO is not been decided yet, so check from time to
;; time by disabling the movdi patterns.
 
;; To appease testcase gcc.c-torture/execute/920501-2.c (and others) at
;; -O0, we need a movdi as a temporary measure. Here's how things fail:
;; A cmpdi RTX needs reloading (global):
;; (insn 185 326 186 (set (cc0)
;; (compare (mem/f:DI (reg/v:SI 22) 0)
;; (const_int 1 [0x1]))) 4 {cmpdi} (nil)
;; (nil))
;; Now, reg 22 is reloaded for input address, and the mem is also moved
;; out of the instruction (into a register), since one of the operands
;; must be a register. Reg 22 is reloaded (into reg 10), and the mem is
;; moved out and synthesized in SImode parts (reg 9, reg 10 - should be ok
;; wrt. overlap). The bad things happen with the synthesis in
;; emit_move_insn_1; the location where to substitute reg 10 is lost into
;; two new RTX:es, both still having reg 22. Later on, the left-over reg
;; 22 is recognized to have an equivalent in memory which is substituted
;; straight in, and we end up with an unrecognizable insn:
;; (insn 325 324 326 (set (reg:SI 9 r9)
;; (mem/f:SI (mem:SI (plus:SI (reg:SI 8 r8)
;; (const_int -84 [0xffffffac])) 0) 0)) -1 (nil)
;; (nil))
;; which is the first part of the reloaded synthesized "movdi".
;; The right thing would be to add equivalent replacement locations for
;; insn with pseudos that need more reloading. The question is where.
 
(define_expand "movdi"
[(set (match_operand:DI 0 "nonimmediate_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
{
if (GET_CODE (operands[0]) == MEM && operands[1] != const0_rtx)
operands[1] = copy_to_mode_reg (DImode, operands[1]);
 
/* Some other ports (as of 2001-09-10 for example mcore and romp) also
prefer to split up constants early, like this. The testcase in
gcc.c-torture/execute/961213-1.c shows that CSE2 gets confused by the
resulting subreg sets when using the construct from mcore (as of FSF
CVS, version -r 1.5), and it believes that the high part (the last one
emitted) is the final value. This construct from romp seems more
robust, especially considering the head comments from
emit_no_conflict_block. */
if ((GET_CODE (operands[1]) == CONST_INT
|| GET_CODE (operands[1]) == CONST_DOUBLE)
&& ! reload_completed
&& ! reload_in_progress)
{
rtx insns;
rtx op0 = operands[0];
rtx op1 = operands[1];
 
start_sequence ();
emit_move_insn (operand_subword (op0, 0, 1, DImode),
operand_subword (op1, 0, 1, DImode));
emit_move_insn (operand_subword (op0, 1, 1, DImode),
operand_subword (op1, 1, 1, DImode));
insns = get_insns ();
end_sequence ();
 
emit_no_conflict_block (insns, op0, op1, 0, op1);
DONE;
}
})
 
(define_insn "*movdi_insn"
[(set (match_operand:DI 0 "nonimmediate_operand" "=r,rx,m")
(match_operand:DI 1 "general_operand" "rx,g,rxM"))]
"register_operand (operands[0], DImode)
|| register_operand (operands[1], DImode)
|| operands[1] == const0_rtx"
"#")
 
(define_split
[(set (match_operand:DI 0 "nonimmediate_operand" "")
(match_operand:DI 1 "general_operand" ""))]
"reload_completed"
[(match_dup 2)]
"operands[2] = cris_split_movdx (operands);")
;; Side-effect patterns for move.S1 [rx=ry+rx.S2],rw
;; and move.S1 [rx=ry+i],rz
;; Then movs.S1 and movu.S1 for both modes.
;;
;; move.S1 [rx=ry+rz.S],rw avoiding when rx is ry, or rw is rx
;; FIXME: These could have anonymous mode for operand 0.
 
(define_insn "*mov_side<mode>_biap"
[(set (match_operand:BW 0 "register_operand" "=r,r")
(mem:BW (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "const_int_operand" "n,n"))
(match_operand:SI 3 "register_operand" "r,r"))))
(set (match_operand:SI 4 "register_operand" "=*3,r")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))]
"cris_side_effect_mode_ok (MULT, operands, 4, 3, 1, 2, 0)"
"@
#
move<m> [%4=%3+%1%T2],%0")
 
(define_insn "*mov_sidesisf_biap"
[(set (match_operand 0 "register_operand" "=r,r,x,x")
(mem (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "r,r,r,r")
(match_operand:SI 2 "const_int_operand" "n,n,n,n"))
(match_operand:SI 3 "register_operand" "r,r,r,r"))))
(set (match_operand:SI 4 "register_operand" "=*3,r,*3,r")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))]
"GET_MODE_SIZE (GET_MODE (operands[0])) == UNITS_PER_WORD
&& cris_side_effect_mode_ok (MULT, operands, 4, 3, 1, 2, 0)"
"@
#
move.%s0 [%4=%3+%1%T2],%0
#
move [%4=%3+%1%T2],%0")
;; move.S1 [rx=ry+i],rz
;; avoiding move.S1 [ry=ry+i],rz
;; and move.S1 [rz=ry+i],rz
;; Note that "i" is allowed to be a register.
 
(define_insn "*mov_side<mode>"
[(set (match_operand:BW 0 "register_operand" "=r,r,r,r,r")
(mem:BW
(plus:SI (match_operand:SI 1 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn,r,r"))))
(set (match_operand:SI 3 "register_operand" "=*1,r,r,*2,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"cris_side_effect_mode_ok (PLUS, operands, 3, 1, 2, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) > 127
|| INTVAL (operands[2]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')))
return "#";
if (which_alternative == 4)
return "move<m> [%3=%2%S1],%0";
return "move<m> [%3=%1%S2],%0";
})
 
(define_insn "*mov_sidesisf"
[(set (match_operand 0 "register_operand" "=r,r,r,x,x,x,r,r,x,x")
(mem
(plus:SI
(match_operand:SI 1 "cris_bdap_operand" "%r,r,r,r,r,r,R,R,R,R")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn,r>Rn,r,>Rn,r,r,r,r"))))
(set (match_operand:SI 3 "register_operand" "=*1,r,r,*1,r,r,*2,r,*2,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"GET_MODE_SIZE (GET_MODE (operands[0])) == UNITS_PER_WORD
&& cris_side_effect_mode_ok (PLUS, operands, 3, 1, 2, -1, 0)"
{
if ((which_alternative == 0
|| which_alternative == 3
|| which_alternative == 6
|| which_alternative == 8)
&& (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) > 127
|| INTVAL (operands[2]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')))
return "#";
if (which_alternative < 3)
return "move.%s0 [%3=%1%S2],%0";
if (which_alternative == 7)
return "move.%s0 [%3=%2%S1],%0";
if (which_alternative == 9)
return "move [%3=%2%S1],%0";
return "move [%3=%1%S2],%0";
})
;; Other way around; move to memory.
 
;; Note that the condition (which for side-effect patterns is usually a
;; call to cris_side_effect_mode_ok), isn't consulted for register
;; allocation preferences -- constraints is the method for that. The
;; drawback is that we can't exclude register allocation to cause
;; "move.s rw,[rx=ry+rz.S]" when rw==rx without also excluding rx==ry or
;; rx==rz if we use an earlyclobber modifier for the constraint for rx.
;; Instead of that, we recognize and split the cases where dangerous
;; register combinations are spotted: where a register is set in the
;; side-effect, and used in the main insn. We don't handle the case where
;; the set in the main insn overlaps the set in the side-effect; that case
;; must be handled in gcc. We handle just the case where the set in the
;; side-effect overlaps the input operand of the main insn (i.e. just
;; moves to memory).
 
;;
;; move.s rz,[ry=rx+rw.S]
 
(define_insn "*mov_side<mode>_biap_mem"
[(set (mem:BW (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "r,r,r")
(match_operand:SI 1 "const_int_operand" "n,n,n"))
(match_operand:SI 2 "register_operand" "r,r,r")))
(match_operand:BW 3 "register_operand" "r,r,r"))
(set (match_operand:SI 4 "register_operand" "=*2,!3,r")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))]
"cris_side_effect_mode_ok (MULT, operands, 4, 2, 0, 1, 3)"
"@
#
#
move<m> %3,[%4=%2+%0%T1]")
 
(define_insn "*mov_sidesisf_biap_mem"
[(set (mem (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "r,r,r,r,r,r")
(match_operand:SI 1 "const_int_operand" "n,n,n,n,n,n"))
(match_operand:SI 2 "register_operand" "r,r,r,r,r,r")))
(match_operand 3 "register_operand" "r,r,r,x,x,x"))
(set (match_operand:SI 4 "register_operand" "=*2,!3,r,*2,!3,r")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))]
"GET_MODE_SIZE (GET_MODE (operands[3])) == UNITS_PER_WORD
&& cris_side_effect_mode_ok (MULT, operands, 4, 2, 0, 1, 3)"
"@
#
#
move.%s3 %3,[%4=%2+%0%T1]
#
#
move %3,[%4=%2+%0%T1]")
 
;; Split for the case above where we're out of luck with register
;; allocation (again, the condition isn't checked for that), and we end up
;; with the set in the side-effect getting the same register as the input
;; register.
 
(define_split
[(parallel
[(set (match_operator
6 "cris_mem_op"
[(plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(match_operand:SI 2 "register_operand" ""))])
(match_operand 3 "register_operand" ""))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))])]
"reload_completed && reg_overlap_mentioned_p (operands[4], operands[3])"
[(set (match_dup 5) (match_dup 3))
(set (match_dup 4) (match_dup 2))
(set (match_dup 4)
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 4)))]
"operands[5]
= replace_equiv_address (operands[6],
gen_rtx_PLUS (SImode,
gen_rtx_MULT (SImode,
operands[0],
operands[1]),
operands[2]));")
;; move.s rx,[ry=rz+i]
;; FIXME: These could have anonymous mode for operand 2.
 
;; QImode
 
(define_insn "*mov_side<mode>_mem"
[(set (mem:BW
(plus:SI (match_operand:SI 0 "cris_bdap_operand" "%r,r,r,r,R,R,R")
(match_operand:SI 1 "cris_bdap_operand" "r>Rn,r>Rn,r,>Rn,r,r,r")))
(match_operand:BW 2 "register_operand" "r,r,r,r,r,r,r"))
(set (match_operand:SI 3 "register_operand" "=*0,!*2,r,r,*1,!*2,r")
(plus:SI (match_dup 0)
(match_dup 1)))]
"cris_side_effect_mode_ok (PLUS, operands, 3, 0, 1, -1, 2)"
{
if ((which_alternative == 0 || which_alternative == 4)
&& (GET_CODE (operands[1]) != CONST_INT
|| INTVAL (operands[1]) > 127
|| INTVAL (operands[1]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'J')))
return "#";
if (which_alternative == 1 || which_alternative == 5)
return "#";
if (which_alternative == 6)
return "move.%s2 %2,[%3=%1%S0]";
return "move<m> %2,[%3=%0%S1]";
})
 
;; SImode
 
(define_insn "*mov_sidesisf_mem"
[(set (mem
(plus:SI
(match_operand:SI
0 "cris_bdap_operand"
"%r, r, r,r, r, r,r, R,R, R,R, R")
(match_operand:SI
1 "cris_bdap_operand"
"r>Rn,r>Rn,r,>Rn,r>Rn,r,>Rn,r,r, r,r, r")))
(match_operand 2 "register_operand"
"r, r, r,r, x, x,x, r,r, r,x, x"))
(set (match_operand:SI 3 "register_operand"
"=*0,!2, r,r, *0, r,r, *1,!*2,r,*1,r")
(plus:SI (match_dup 0)
(match_dup 1)))]
"GET_MODE_SIZE (GET_MODE (operands[2])) == UNITS_PER_WORD
&& cris_side_effect_mode_ok (PLUS, operands, 3, 0, 1, -1, 2)"
{
if ((which_alternative == 0 || which_alternative == 4)
&& (GET_CODE (operands[1]) != CONST_INT
|| INTVAL (operands[1]) > 127
|| INTVAL (operands[1]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'J')))
return "#";
if (which_alternative == 1
|| which_alternative == 7
|| which_alternative == 8
|| which_alternative == 10)
return "#";
if (which_alternative < 4)
return "move.%s2 %2,[%3=%0%S1]";
if (which_alternative == 9)
return "move.%s2 %2,[%3=%1%S0]";
if (which_alternative == 11)
return "move %2,[%3=%1%S0]";
return "move %2,[%3=%0%S1]";
})
 
;; Like the biap case, a split where the set in the side-effect gets the
;; same register as the input register to the main insn, since the
;; condition isn't checked at register allocation.
 
(define_split
[(parallel
[(set (match_operator
4 "cris_mem_op"
[(plus:SI
(match_operand:SI 0 "cris_bdap_operand" "")
(match_operand:SI 1 "cris_bdap_operand" ""))])
(match_operand 2 "register_operand" ""))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (match_dup 0) (match_dup 1)))])]
"reload_completed && reg_overlap_mentioned_p (operands[3], operands[2])"
[(set (match_dup 4) (match_dup 2))
(set (match_dup 3) (match_dup 0))
(set (match_dup 3) (plus:SI (match_dup 3) (match_dup 1)))]
"")
;; Clear memory side-effect patterns. It is hard to get to the mode if
;; the MEM was anonymous, so there will be one for each mode.
 
;; clear.[bwd] [ry=rx+rw.s2]
 
(define_insn "*clear_side<mode>_biap"
[(set (mem:BWD (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "const_int_operand" "n,n"))
(match_operand:SI 2 "register_operand" "r,r")))
(const_int 0))
(set (match_operand:SI 3 "register_operand" "=*2,r")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))]
"cris_side_effect_mode_ok (MULT, operands, 3, 2, 0, 1, -1)"
"@
#
clear<m> [%3=%2+%0%T1]")
 
;; clear.[bwd] [ry=rz+i]
 
(define_insn "*clear_side<mode>"
[(set (mem:BWD
(plus:SI (match_operand:SI 0 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 1 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))
(const_int 0))
(set (match_operand:SI 2 "register_operand" "=*0,r,r,*1,r")
(plus:SI (match_dup 0)
(match_dup 1)))]
"cris_side_effect_mode_ok (PLUS, operands, 2, 0, 1, -1, -1)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[1]) != CONST_INT
|| INTVAL (operands[1]) > 127
|| INTVAL (operands[1]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'J')))
return "#";
if (which_alternative == 4)
return "clear<m> [%2=%1%S0]";
return "clear<m> [%2=%0%S1]";
})
;; Normal move patterns from SI on.
 
(define_expand "movsi"
[(set
(match_operand:SI 0 "nonimmediate_operand" "")
(match_operand:SI 1 "cris_general_operand_or_symbol" ""))]
""
{
/* If the output goes to a MEM, make sure we have zero or a register as
input. */
if (GET_CODE (operands[0]) == MEM
&& ! REG_S_P (operands[1])
&& operands[1] != const0_rtx
&& ! no_new_pseudos)
operands[1] = force_reg (SImode, operands[1]);
 
/* If we're generating PIC and have an incoming symbol, validize it to a
general operand or something that will match a special pattern.
 
FIXME: Do we *have* to recognize anything that would normally be a
valid symbol? Can we exclude global PIC addresses with an added
offset? */
if (flag_pic
&& CONSTANT_ADDRESS_P (operands[1])
&& !cris_valid_pic_const (operands[1]))
{
enum cris_pic_symbol_type t = cris_pic_symbol_type_of (operands[1]);
 
gcc_assert (t != cris_no_symbol);
 
if (! REG_S_P (operands[0]))
{
/* We must have a register as destination for what we're about to
do, and for the patterns we generate. */
CRIS_ASSERT (!no_new_pseudos);
operands[1] = force_reg (SImode, operands[1]);
}
else
{
/* FIXME: add a REG_EQUAL (or is it REG_EQUIV) note to the
destination register for the symbol. It might not be
worth it. Measure. */
current_function_uses_pic_offset_table = 1;
if (t == cris_gotrel_symbol)
{
/* Change a "move.d sym(+offs),rN" into (allocate register rM)
"move.d (const (plus (unspec [sym]
CRIS_UNSPEC_GOTREL) offs)),rM" "add.d rPIC,rM,rN" */
rtx tem, rm, rn = operands[0];
rtx sym = GET_CODE (operands[1]) != CONST
? operands[1] : get_related_value (operands[1]);
HOST_WIDE_INT offs = get_integer_term (operands[1]);
 
gcc_assert (! no_new_pseudos);
tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, sym),
CRIS_UNSPEC_GOTREL);
if (offs != 0)
tem = plus_constant (tem, offs);
rm = gen_reg_rtx (Pmode);
emit_move_insn (rm, gen_rtx_CONST (Pmode, tem));
if (expand_binop (Pmode, add_optab, rm, pic_offset_table_rtx,
rn, 0, OPTAB_LIB_WIDEN) != rn)
internal_error ("expand_binop failed in movsi gotrel");
DONE;
}
else if (t == cris_got_symbol)
{
/* Change a "move.d sym,rN" into (allocate register rM, rO)
"move.d (const (unspec [sym] CRIS_UNSPEC_GOTREAD)),rM"
"add.d rPIC,rM,rO", "move.d [rO],rN" with
the memory access marked as read-only. */
rtx tem, mem, rm, ro, rn = operands[0];
gcc_assert (! no_new_pseudos);
tem = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, operands[1]),
CRIS_UNSPEC_GOTREAD);
rm = gen_reg_rtx (Pmode);
emit_move_insn (rm, gen_rtx_CONST (Pmode, tem));
ro = gen_reg_rtx (Pmode);
if (expand_binop (Pmode, add_optab, rm, pic_offset_table_rtx,
ro, 0, OPTAB_LIB_WIDEN) != ro)
internal_error ("expand_binop failed in movsi got");
mem = gen_rtx_MEM (Pmode, ro);
 
/* This MEM doesn't alias anything. Whether it
aliases other same symbols is unimportant. */
set_mem_alias_set (mem, new_alias_set ());
MEM_NOTRAP_P (mem) = 1;
MEM_READONLY_P (mem) = 1;
emit_move_insn (rn, mem);
DONE;
}
else
{
/* We get here when we have to change something that would
be recognizable if it wasn't PIC. A ``sym'' is ok for
PIC symbols both with and without a GOT entry. And ``sym
+ offset'' is ok for local symbols, so the only thing it
could be, is a global symbol with an offset. Check and
abort if not. */
rtx reg = gen_reg_rtx (Pmode);
rtx sym = get_related_value (operands[1]);
HOST_WIDE_INT offs = get_integer_term (operands[1]);
 
gcc_assert (! no_new_pseudos
&& t == cris_got_symbol_needing_fixup
&& sym != NULL_RTX && offs != 0);
 
emit_move_insn (reg, sym);
if (expand_binop (SImode, add_optab, reg,
GEN_INT (offs), operands[0], 0,
OPTAB_LIB_WIDEN) != operands[0])
internal_error ("expand_binop failed in movsi got+offs");
DONE;
}
}
}
})
 
(define_insn "*movsi_got_load"
[(set (reg:SI CRIS_GOT_REGNUM) (unspec:SI [(const_int 0)] CRIS_UNSPEC_GOT))]
"flag_pic"
"move.d $pc,%:\;sub.d .:GOTOFF,%:"
[(set_attr "cc" "clobber")])
 
(define_insn "*movsi_internal"
[(set
(match_operand:SI 0 "nonimmediate_operand" "=r,r, r,Q>,r,Q>,g,r,r, r,g,rQ>,x, m,x")
;; Note that we prefer not to use the S alternative (if for some reason
;; it competes with others), but g matches S.
(match_operand:SI 1 "general_operand" "r,Q>,M,M, I,r, M,n,!S,g,r,x, rQ>,x,gi"))]
""
{
/* Better to have c-switch here; it is worth it to optimize the size of
move insns. The alternative would be to try to find more constraint
letters. FIXME: Check again. It seems this could shrink a bit. */
switch (which_alternative)
{
case 0:
case 1:
case 5:
case 9:
case 10:
return "move.d %1,%0";
 
case 11:
case 12:
case 13:
case 14:
return "move %d1,%0";
 
case 2:
case 3:
case 6:
return "clear.d %0";
 
/* Constants -32..31 except 0. */
case 4:
return "moveq %1,%0";
 
/* We can win a little on constants -32768..-33, 32..65535. */
case 7:
if (INTVAL (operands[1]) > 0 && INTVAL (operands[1]) < 65536)
{
if (INTVAL (operands[1]) < 256)
return "movu.b %1,%0";
return "movu.w %1,%0";
}
else if (INTVAL (operands[1]) >= -32768 && INTVAL (operands[1]) < 32768)
{
if (INTVAL (operands[1]) >= -128 && INTVAL (operands[1]) < 128)
return "movs.b %1,%0";
return "movs.w %1,%0";
}
return "move.d %1,%0";
 
case 8:
{
rtx tem = operands[1];
gcc_assert (GET_CODE (tem) == CONST);
tem = XEXP (tem, 0);
if (GET_CODE (tem) == PLUS
&& GET_CODE (XEXP (tem, 0)) == UNSPEC
&& XINT (XEXP (tem, 0), 1) == CRIS_UNSPEC_GOTREL
&& GET_CODE (XEXP (tem, 1)) == CONST_INT)
tem = XEXP (tem, 0);
gcc_assert (GET_CODE (tem) == UNSPEC);
switch (XINT (tem, 1))
{
case CRIS_UNSPEC_GOTREAD:
case CRIS_UNSPEC_PLTGOTREAD:
/* Using sign-extend mostly to be consistent with the
indexed addressing mode. */
if (flag_pic == 1)
return "movs.w %1,%0";
case CRIS_UNSPEC_GOTREL:
case CRIS_UNSPEC_PLT:
return "move.d %1,%0";
 
default:
gcc_unreachable ();
}
}
default:
return "BOGUS: %1 to %0";
}
}
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,no,no,no,no,no,yes,yes,no,no")
(set_attr "cc" "*,*,*,*,*,*,*,*,*,*,*,none,none,none,none")])
;; Extend operations with side-effect from mem to register, using
;; MOVS/MOVU. These are from mem to register only.
;;
;; [rx=ry+rz.S]
;;
;; QImode to HImode
;;
;; FIXME: Can we omit extend to HImode, since GCC should truncate for
;; HImode by itself? Perhaps use only anonymous modes?
 
(define_insn "*ext_sideqihi_biap"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(match_operator:HI
5 "cris_extend_operator"
[(mem:QI (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "const_int_operand" "n,n"))
(match_operand:SI 3 "register_operand" "r,r")))]))
(set (match_operand:SI 4 "register_operand" "=*3,r")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))]
"cris_side_effect_mode_ok (MULT, operands, 4, 3, 1, 2, 0)"
"@
#
mov%e5.%m5 [%4=%3+%1%T2],%0")
 
(define_insn "*ext_side<mode>si_biap"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(match_operator:SI
5 "cris_extend_operator"
[(mem:BW (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "const_int_operand" "n,n"))
(match_operand:SI 3 "register_operand" "r,r")))]))
(set (match_operand:SI 4 "register_operand" "=*3,r")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))]
"cris_side_effect_mode_ok (MULT, operands, 4, 3, 1, 2, 0)"
"@
#
mov%e5<m> [%4=%3+%1%T2],%0")
;; Same but [rx=ry+i]
 
;; QImode to HImode
 
(define_insn "*ext_sideqihi"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r,r")
(match_operator:HI
4 "cris_extend_operator"
[(mem:QI (plus:SI
(match_operand:SI 1 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))]))
(set (match_operand:SI 3 "register_operand" "=*1,r,r,*2,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"cris_side_effect_mode_ok (PLUS, operands, 3, 1, 2, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) > 127
|| INTVAL (operands[2]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')))
return "#";
if (which_alternative == 4)
return "mov%e4.%m4 [%3=%2%S1],%0";
return "mov%e4.%m4 [%3=%1%S2],%0";
})
 
(define_insn "*ext_side<mode>si"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r")
(match_operator:SI
4 "cris_extend_operator"
[(mem:BW (plus:SI
(match_operand:SI 1 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))]))
(set (match_operand:SI 3 "register_operand" "=*1,r,r,*2,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"cris_side_effect_mode_ok (PLUS, operands, 3, 1, 2, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) > 127
|| INTVAL (operands[2]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')))
return "#";
if (which_alternative == 4)
return "mov%e4<m> [%3=%2%S1],%0";
return "mov%e4<m> [%3=%1%S2],%0";
})
;; FIXME: See movsi.
 
(define_insn "movhi"
[(set
(match_operand:HI 0 "nonimmediate_operand" "=r,r, r,Q>,r,Q>,r,r,r,g,g,r,r,x")
(match_operand:HI 1 "general_operand" "r,Q>,M,M, I,r, L,O,n,M,r,g,x,r"))]
""
{
switch (which_alternative)
{
case 0:
case 1:
case 5:
case 10:
case 11:
return "move.w %1,%0";
case 12:
case 13:
return "move %1,%0";
case 2:
case 3:
case 9:
return "clear.w %0";
case 4:
return "moveq %1,%0";
case 6:
case 8:
if (INTVAL (operands[1]) < 256 && INTVAL (operands[1]) >= -128)
{
if (INTVAL (operands[1]) > 0)
return "movu.b %1,%0";
return "movs.b %1,%0";
}
return "move.w %1,%0";
case 7:
return "movEq %b1,%0";
default:
return "BOGUS: %1 to %0";
}
}
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,no,yes,no,no,no,no,yes,yes")
(set_attr "cc" "*,*,none,none,*,none,*,clobber,*,none,none,*,none,none")])
 
(define_insn "movstricthi"
[(set
(strict_low_part
(match_operand:HI 0 "nonimmediate_operand" "+r,r, r,Q>,Q>,g,r,g"))
(match_operand:HI 1 "general_operand" "r,Q>,M,M, r, M,g,r"))]
""
"@
move.w %1,%0
move.w %1,%0
clear.w %0
clear.w %0
move.w %1,%0
clear.w %0
move.w %1,%0
move.w %1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no,no")])
 
(define_expand "reload_in<mode>"
[(set (match_operand:BW 2 "register_operand" "=r")
(match_operand:BW 1 "memory_operand" "m"))
(set (match_operand:BW 0 "register_operand" "=x")
(match_dup 2))]
""
"")
 
(define_expand "reload_out<mode>"
[(set (match_operand:BW 2 "register_operand" "=&r")
(match_operand:BW 1 "register_operand" "x"))
(set (match_operand:BW 0 "memory_operand" "=m")
(match_dup 2))]
""
"")
(define_insn "movqi"
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,Q>,r, r,Q>,r,g,g,r,r,r,x")
(match_operand:QI 1 "general_operand" "r,r, Q>,M,M, I,M,r,O,g,x,r"))]
""
"@
move.b %1,%0
move.b %1,%0
move.b %1,%0
clear.b %0
clear.b %0
moveq %1,%0
clear.b %0
move.b %1,%0
moveq %b1,%0
move.b %1,%0
move %1,%0
move %1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,yes,no,no,yes,no,yes,yes")
(set_attr "cc" "*,*,*,*,*,*,*,*,clobber,*,none,none")])
 
(define_insn "movstrictqi"
[(set (strict_low_part
(match_operand:QI 0 "nonimmediate_operand" "+r,Q>,r, r,Q>,g,g,r"))
(match_operand:QI 1 "general_operand" "r,r, Q>,M,M, M,r,g"))]
""
"@
move.b %1,%0
move.b %1,%0
move.b %1,%0
clear.b %0
clear.b %0
clear.b %0
move.b %1,%0
move.b %1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no,no")])
 
;; The valid "quick" bit-patterns are, except for 0.0, denormalized
;; values REALLY close to 0, and some NaN:s (I think; their exponent is
;; all ones); the worthwhile one is "0.0".
;; It will use clear, so we know ALL types of immediate 0 never change cc.
 
(define_insn "movsf"
[(set (match_operand:SF 0 "nonimmediate_operand" "=r,Q>,r, r,Q>,g,g,r,r,x,Q>,m,x, x")
(match_operand:SF 1 "general_operand" "r,r, Q>,G,G, G,r,g,x,r,x, x,Q>,g"))]
""
"@
move.d %1,%0
move.d %1,%0
move.d %1,%0
clear.d %0
clear.d %0
clear.d %0
move.d %1,%0
move.d %1,%0
move %1,%0
move %1,%0
move %1,%0
move %1,%0
move %1,%0
move %1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no,no,yes,yes,yes,no,yes,no")])
 
;; Note that the memory layout of the registers is the reverse of that
;; of the standard patterns "load_multiple" and "store_multiple".
(define_insn "*cris_load_multiple"
[(match_parallel 0 "cris_load_multiple_op"
[(set (match_operand:SI 1 "register_operand" "=r,r")
(match_operand:SI 2 "memory_operand" "Q,m"))])]
""
"movem %O0,%o0"
[(set_attr "cc" "none")
(set_attr "slottable" "yes,no")
;; Not true, but setting the length to 0 causes return sequences (ret
;; movem) to have the cost they had when (return) included the movem
;; and reduces the performance penalty taken for needing to emit an
;; epilogue (in turn copied by bb-reorder) instead of return patterns.
;; FIXME: temporary change until all insn lengths are correctly
;; described. FIXME: have better target control over bb-reorder.
(set_attr "length" "0")])
 
(define_insn "*cris_store_multiple"
[(match_parallel 0 "cris_store_multiple_op"
[(set (match_operand:SI 2 "memory_operand" "=Q,m")
(match_operand:SI 1 "register_operand" "r,r"))])]
""
"movem %o0,%O0"
[(set_attr "cc" "none")
(set_attr "slottable" "yes,no")])
 
;; Sign- and zero-extend insns with standard names.
;; Those for integer source operand are ordered with the widest source
;; type first.
 
;; Sign-extend.
 
(define_insn "extendsidi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:SI 1 "general_operand" "g")))]
""
"move.d %1,%M0\;smi %H0\;neg.d %H0,%H0")
 
(define_insn "extend<mode>di2"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:BW 1 "general_operand" "g")))]
""
"movs<m> %1,%M0\;smi %H0\;neg.d %H0,%H0")
 
(define_insn "extend<mode>si2"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(sign_extend:SI (match_operand:BW 1 "general_operand" "r,Q>,g")))]
""
"movs<m> %1,%0"
[(set_attr "slottable" "yes,yes,no")])
 
;; To do a byte->word extension, extend to dword, exept that the top half
;; of the register will be clobbered. FIXME: Perhaps this is not needed.
 
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(sign_extend:HI (match_operand:QI 1 "general_operand" "r,Q>,g")))]
""
"movs.b %1,%0"
[(set_attr "slottable" "yes,yes,no")])
 
;; Zero-extend. The DImode ones are synthesized by gcc, so we don't
;; specify them here.
 
(define_insn "zero_extend<mode>si2"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(zero_extend:SI
(match_operand:BW 1 "nonimmediate_operand" "r,Q>,m")))]
""
"movu<m> %1,%0"
[(set_attr "slottable" "yes,yes,no")])
 
;; Same comment as sign-extend QImode to HImode above applies.
 
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(zero_extend:HI
(match_operand:QI 1 "nonimmediate_operand" "r,Q>,m")))]
""
"movu.b %1,%0"
[(set_attr "slottable" "yes,yes,no")])
;; All kinds of arithmetic and logical instructions.
;;
;; First, anonymous patterns to match addressing modes with
;; side-effects.
;;
;; op.S [rx=ry+I],rz; (add, sub, or, and, bound).
;;
;; [rx=ry+rz.S]
 
(define_insn "*op_side<mode>_biap"
[(set (match_operand:BWD 0 "register_operand" "=r,r")
(match_operator:BWD
6 "cris_orthogonal_operator"
[(match_operand:BWD 1 "register_operand" "0,0")
(mem:BWD (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x6<m> [%5=%4+%2%T3],%0")
;; [rx=ry+i] ([%4=%2+%3])
 
(define_insn "*op_side<mode>"
[(set (match_operand:BWD 0 "register_operand" "=r,r,r,r,r")
(match_operator:BWD
5 "cris_orthogonal_operator"
[(match_operand:BWD 1 "register_operand" "0,0,0,0,0")
(mem:BWD (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[3]) != CONST_INT
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "%x5.%s0 [%4=%3%S2],%0";
return "%x5<m> [%4=%2%S3],%0";
})
;; To match all cases for commutative operations we may have to have the
;; following pattern for add, or & and. I do not know really, but it does
;; not break anything.
;;
;; FIXME: This really ought to be checked.
;;
;; op.S [rx=ry+I],rz;
;;
;; [rx=ry+rz.S]
 
(define_insn "*op_swap_side<mode>_biap"
[(set (match_operand:BWD 0 "register_operand" "=r,r")
(match_operator:BWD
6 "cris_commutative_orth_op"
[(mem:BWD (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))
(match_operand:BWD 1 "register_operand" "0,0")]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x6<m> [%5=%4+%2%T3],%0")
;; [rx=ry+i] ([%4=%2+%3])
;; FIXME: These could have anonymous mode for operand 0.
 
;; QImode
 
(define_insn "*op_swap_side<mode>"
[(set (match_operand:BWD 0 "register_operand" "=r,r,r,r,r")
(match_operator:BWD
5 "cris_commutative_orth_op"
[(mem:BWD
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))
(match_operand:BWD 1 "register_operand" "0,0,0,0,0")]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[3]) != CONST_INT
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "%x5<m> [%4=%3%S2],%0";
return "%x5<m> [%4=%2%S3],%0";
})
;; Add operations, standard names.
 
;; Note that for the 'P' constraint, the high part can be -1 or 0. We
;; output the insn through the 'A' output modifier as "adds.w" and "addq",
;; respectively.
(define_insn "adddi3"
[(set (match_operand:DI 0 "register_operand" "=r,r,r,&r,&r")
(plus:DI (match_operand:DI 1 "register_operand" "%0,0,0,0,r")
(match_operand:DI 2 "general_operand" "J,N,P,g,!To")))]
""
"@
addq %2,%M0\;ax\;addq 0,%H0
subq %n2,%M0\;ax\;subq 0,%H0
add%e2.%z2 %2,%M0\;ax\;%A2 %H2,%H0
add.d %M2,%M0\;ax\;add.d %H2,%H0
add.d %M2,%M1,%M0\;ax\;add.d %H2,%H1,%H0")
 
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r, r,r,r,r, r,r, r")
(plus:SI
(match_operand:SI 1 "register_operand" "%0,0, 0,0,0,0, 0,r, r")
(match_operand:SI 2 "general_operand" "r,Q>,J,N,n,!S,g,!To,0")))]
 
;; The last constraint is due to that after reload, the '%' is not
;; honored, and canonicalization doesn't care about keeping the same
;; register as in destination. This will happen after insn splitting.
;; gcc <= 2.7.2. FIXME: Check for gcc-2.9x
 
""
{
switch (which_alternative)
{
case 0:
case 1:
return "add.d %2,%0";
case 2:
return "addq %2,%0";
case 3:
return "subq %n2,%0";
case 4:
/* 'Known value', but not in -63..63.
Check if addu/subu may be used. */
if (INTVAL (operands[2]) > 0)
{
if (INTVAL (operands[2]) < 256)
return "addu.b %2,%0";
if (INTVAL (operands[2]) < 65536)
return "addu.w %2,%0";
}
else
{
if (INTVAL (operands[2]) >= -255)
return "subu.b %n2,%0";
if (INTVAL (operands[2]) >= -65535)
return "subu.w %n2,%0";
}
return "add.d %2,%0";
case 5:
{
rtx tem = operands[2];
gcc_assert (GET_CODE (tem) == CONST);
tem = XEXP (tem, 0);
if (GET_CODE (tem) == PLUS
&& GET_CODE (XEXP (tem, 0)) == UNSPEC
&& XINT (XEXP (tem, 0), 1) == CRIS_UNSPEC_GOTREL
&& GET_CODE (XEXP (tem, 1)) == CONST_INT)
tem = XEXP (tem, 0);
gcc_assert (GET_CODE (tem) == UNSPEC);
switch (XINT (tem, 1))
{
case CRIS_UNSPEC_GOTREAD:
case CRIS_UNSPEC_PLTGOTREAD:
/* Using sign-extend mostly to be consistent with the
indexed addressing mode. */
if (flag_pic == 1)
return "adds.w %2,%0";
/* Fall through. */
case CRIS_UNSPEC_PLT:
case CRIS_UNSPEC_GOTREL:
return "add.d %2,%0";
default:
gcc_unreachable ();
}
}
case 6:
return "add.d %2,%0";
case 7:
return "add.d %2,%1,%0";
case 8:
return "add.d %1,%0";
default:
return "BOGUS addsi %2+%1 to %0";
}
}
[(set_attr "slottable" "yes,yes,yes,yes,no,no,no,no,yes")])
(define_insn "addhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r, r,r,r,r")
(plus:HI (match_operand:HI 1 "register_operand" "%0,0, 0,0,0,r")
(match_operand:HI 2 "general_operand" "r,Q>,J,N,g,!To")))]
""
"@
add.w %2,%0
add.w %2,%0
addq %2,%0
subq %n2,%0
add.w %2,%0
add.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,clobber,clobber,normal,normal")])
 
(define_insn "addqi3"
[(set (match_operand:QI 0 "register_operand" "=r,r, r,r,r,r,r")
(plus:QI (match_operand:QI 1 "register_operand" "%0,0, 0,0,0,0,r")
(match_operand:QI 2 "general_operand" "r,Q>,J,N,O,g,!To")))]
""
"@
add.b %2,%0
add.b %2,%0
addq %2,%0
subq %n2,%0
subQ -%b2,%0
add.b %2,%0
add.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,clobber,clobber,clobber,normal,normal")])
;; Subtract.
;;
;; Note that because of insn canonicalization these will *seldom* but
;; rarely be used with a known constant as an operand.
 
;; Note that for the 'P' constraint, the high part can be -1 or 0. We
;; output the insn through the 'D' output modifier as "subs.w" and "subq",
;; respectively.
(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=r,r,r,&r,&r")
(minus:DI (match_operand:DI 1 "register_operand" "0,0,0,0,r")
(match_operand:DI 2 "general_operand" "J,N,P,g,!To")))]
""
"@
subq %2,%M0\;ax\;subq 0,%H0
addq %n2,%M0\;ax\;addq 0,%H0
sub%e2.%z2 %2,%M0\;ax\;%D2 %H2,%H0
sub.d %M2,%M0\;ax\;sub.d %H2,%H0
sub.d %M2,%M1,%M0\;ax\;sub.d %H2,%H1,%H0")
 
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r, r,r,r,r,r,r")
(minus:SI
(match_operand:SI 1 "register_operand" "0,0, 0,0,0,0,0,r")
(match_operand:SI 2 "general_operand" "r,Q>,J,N,P,n,g,!To")))]
""
 
;; This does not do the optimal: "addu.w 65535,r0" when %2 is negative.
;; But then again, %2 should not be negative.
 
"@
sub.d %2,%0
sub.d %2,%0
subq %2,%0
addq %n2,%0
sub%e2.%z2 %2,%0
sub.d %2,%0
sub.d %2,%0
sub.d %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no,no,no")])
(define_insn "sub<mode>3"
[(set (match_operand:BW 0 "register_operand" "=r,r, r,r,r,r")
(minus:BW (match_operand:BW 1 "register_operand" "0,0, 0,0,0,r")
(match_operand:BW 2 "general_operand" "r,Q>,J,N,g,!To")))]
""
"@
sub<m> %2,%0
sub<m> %2,%0
subq %2,%0
addq %n2,%0
sub<m> %2,%0
sub<m> %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,clobber,clobber,normal,normal")])
;; CRIS has some add/sub-with-sign/zero-extend instructions.
;; Although these perform sign/zero-extension to SImode, they are
;; equally applicable for the HImode case.
;; FIXME: Check; GCC should handle the widening.
;; Note that these must be located after the normal add/sub patterns,
;; so not to get constants into any less specific operands.
;;
;; Extend with add/sub and side-effect.
;;
;; ADDS/SUBS/ADDU/SUBU and BOUND, which needs a check for zero_extend
;;
;; adds/subs/addu/subu bound [rx=ry+rz.S]
 
;; QImode to HImode
;; FIXME: GCC should widen.
 
(define_insn "*extopqihi_side_biap"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(match_operator:HI
6 "cris_additive_operand_extend_operator"
[(match_operand:HI 1 "register_operand" "0,0")
(match_operator:HI
7 "cris_extend_operator"
[(mem:QI (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))])]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x6%e7.%m7 [%5=%4+%2%T3],%0")
 
(define_insn "*extop<mode>si_side_biap"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(match_operator:SI
6 "cris_operand_extend_operator"
[(match_operand:SI 1 "register_operand" "0,0")
(match_operator:SI
7 "cris_extend_operator"
[(mem:BW (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))])]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"(GET_CODE (operands[6]) != UMIN || GET_CODE (operands[7]) == ZERO_EXTEND)
&& cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x6%e7<m> [%5=%4+%2%T3],%0")
 
;; [rx=ry+i]
 
;; QImode to HImode
 
(define_insn "*extopqihi_side"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r,r")
(match_operator:HI
5 "cris_additive_operand_extend_operator"
[(match_operand:HI 1 "register_operand" "0,0,0,0,0")
(match_operator:HI
6 "cris_extend_operator"
[(mem:QI
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")
))])]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[3]) != CONST_INT
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "%x5%E6.%m6 [%4=%3%S2],%0";
return "%x5%E6.%m6 [%4=%2%S3],%0";
})
 
(define_insn "*extop<mode>si_side"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r")
(match_operator:SI
5 "cris_operand_extend_operator"
[(match_operand:SI 1 "register_operand" "0,0,0,0,0")
(match_operator:SI
6 "cris_extend_operator"
[(mem:BW
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")
))])]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"(GET_CODE (operands[5]) != UMIN || GET_CODE (operands[6]) == ZERO_EXTEND)
&& cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[3]) != CONST_INT
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "%x5%E6<m> [%4=%3%S2],%0";
return "%x5%E6<m> [%4=%2%S3],%0";
})
 
;; As with op.S we may have to add special pattern to match commuted
;; operands to adds/addu and bound
;;
;; adds/addu/bound [rx=ry+rz.S]
 
;; QImode to HImode
;; FIXME: GCC should widen.
 
(define_insn "*extopqihi_swap_side_biap"
[(set (match_operand:HI 0 "register_operand" "=r,r")
(plus:HI
(match_operator:HI
6 "cris_extend_operator"
[(mem:QI (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))])
(match_operand:HI 1 "register_operand" "0,0")))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
add%e6.b [%5=%4+%2%T3],%0")
 
(define_insn "*extop<mode>si_swap_side_biap"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(match_operator:SI
7 "cris_plus_or_bound_operator"
[(match_operator:SI
6 "cris_extend_operator"
[(mem:BW (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r,r")
(match_operand:SI 3 "const_int_operand" "n,n"))
(match_operand:SI 4 "register_operand" "r,r")))])
(match_operand:SI 1 "register_operand" "0,0")]))
(set (match_operand:SI 5 "register_operand" "=*4,r")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))]
"(GET_CODE (operands[7]) != UMIN || GET_CODE (operands[6]) == ZERO_EXTEND)
&& cris_side_effect_mode_ok (MULT, operands, 5, 4, 2, 3, 0)"
"@
#
%x7%E6<m> [%5=%4+%2%T3],%0")
;; [rx=ry+i]
;; FIXME: GCC should widen.
 
;; QImode to HImode
 
(define_insn "*extopqihi_swap_side"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r,r")
(plus:HI
(match_operator:HI
5 "cris_extend_operator"
[(mem:QI (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))])
(match_operand:HI 1 "register_operand" "0,0,0,0,0")))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[3]) != CONST_INT
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return "add%e5.b [%4=%3%S2],%0";
return "add%e5.b [%4=%2%S3],%0";
})
 
(define_insn "*extop<mode>si_swap_side"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r,r")
(match_operator:SI
6 "cris_plus_or_bound_operator"
[(match_operator:SI
5 "cris_extend_operator"
[(mem:BW (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "%r,r,r,R,R")
(match_operand:SI 3 "cris_bdap_operand" "r>Rn,r,>Rn,r,r")))])
(match_operand:SI 1 "register_operand" "0,0,0,0,0")]))
(set (match_operand:SI 4 "register_operand" "=*2,r,r,*3,r")
(plus:SI (match_dup 2)
(match_dup 3)))]
"(GET_CODE (operands[6]) != UMIN || GET_CODE (operands[5]) == ZERO_EXTEND)
&& cris_side_effect_mode_ok (PLUS, operands, 4, 2, 3, -1, 0)"
{
if ((which_alternative == 0 || which_alternative == 3)
&& (GET_CODE (operands[3]) != CONST_INT
|| INTVAL (operands[3]) > 127
|| INTVAL (operands[3]) < -128
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'N')
|| CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'J')))
return "#";
if (which_alternative == 4)
return \"%x6%E5.%m5 [%4=%3%S2],%0\";
return "%x6%E5<m> [%4=%2%S3],%0";
})
;; Extend versions (zero/sign) of normal add/sub (no side-effects).
 
;; QImode to HImode
;; FIXME: GCC should widen.
 
(define_insn "*extopqihi"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
(match_operator:HI
3 "cris_additive_operand_extend_operator"
[(match_operand:HI 1 "register_operand" "0,0,0,r")
(match_operator:HI
4 "cris_extend_operator"
[(match_operand:QI 2 "nonimmediate_operand" "r,Q>,m,!To")])]))]
"GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& (operands[1] != frame_pointer_rtx || GET_CODE (operands[3]) != PLUS)"
"@
%x3%E4.%m4 %2,%0
%x3%E4.%m4 %2,%0
%x3%E4.%m4 %2,%0
%x3%E4.%m4 %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,no")
(set_attr "cc" "clobber")])
 
;; QImode to SImode
 
(define_insn "*extop<mode>si"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
(match_operator:SI
3 "cris_operand_extend_operator"
[(match_operand:SI 1 "register_operand" "0,0,0,r")
(match_operator:SI
4 "cris_extend_operator"
[(match_operand:BW 2 "nonimmediate_operand" "r,Q>,m,!To")])]))]
"(GET_CODE (operands[3]) != UMIN || GET_CODE (operands[4]) == ZERO_EXTEND)
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& (operands[1] != frame_pointer_rtx || GET_CODE (operands[3]) != PLUS)"
"@
%x3%E4<m> %2,%0
%x3%E4<m> %2,%0
%x3%E4<m> %2,%0
%x3%E4<m> %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,no")])
 
;; As with the side-effect patterns, may have to have swapped operands for add.
;; FIXME: *should* be redundant to gcc.
 
;; QImode to HImode
 
(define_insn "*extopqihi_swap"
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
(plus:HI
(match_operator:HI
3 "cris_extend_operator"
[(match_operand:QI 2 "nonimmediate_operand" "r,Q>,m,!To")])
(match_operand:HI 1 "register_operand" "0,0,0,r")))]
"operands[1] != frame_pointer_rtx"
"@
add%e3.b %2,%0
add%e3.b %2,%0
add%e3.b %2,%0
add%e3.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,no")
(set_attr "cc" "clobber")])
 
(define_insn "*extop<mode>si_swap"
[(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
(match_operator:SI
4 "cris_plus_or_bound_operator"
[(match_operator:SI
3 "cris_extend_operator"
[(match_operand:BW 2 "nonimmediate_operand" "r,Q>,m,!To")])
(match_operand:SI 1 "register_operand" "0,0,0,r")]))]
"(GET_CODE (operands[4]) != UMIN || GET_CODE (operands[3]) == ZERO_EXTEND)
&& operands[1] != frame_pointer_rtx"
"@
%x4%E3<m> %2,%0
%x4%E3<m> %2,%0
%x4%E3<m> %2,%0
%x4%E3<m> %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,no")])
;; This is the special case when we use what corresponds to the
;; instruction above in "casesi". Do *not* change it to use the generic
;; pattern and "REG 15" as pc; I did that and it led to madness and
;; maintenance problems: Instead of (as imagined) recognizing and removing
;; or replacing this pattern with something simpler, other variant
;; patterns were recognized or combined, including some prefix variants
;; where the value in pc is not that of the next instruction (which means
;; this instruction actually *is* special and *should* be marked as such).
;; When switching from the "generic pattern match" approach to this simpler
;; approach, there were insignificant differences in gcc, ipps and
;; product code, somehow due to scratching reload behind the ear or
;; something. Testcase "gcc" looked .01% slower and 4 bytes bigger;
;; product code became .001% smaller but "looked better". The testcase
;; "ipps" was just different at register allocation).
;;
;; Assumptions in the jump optimizer forces us to use IF_THEN_ELSE in this
;; pattern with the default-label as the else, with the "if" being
;; index-is-less-than the max number of cases plus one. The default-label
;; is attached to the end of the case-table at time of output.
 
(define_insn "*casesi_adds_w"
[(set (pc)
(if_then_else
(ltu (match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "const_int_operand" "n"))
(plus:SI (sign_extend:SI
(mem:HI
(plus:SI (mult:SI (match_dup 0) (const_int 2))
(pc))))
(pc))
(label_ref (match_operand 2 "" ""))))
(use (label_ref (match_operand 3 "" "")))]
 
"operands[0] != frame_pointer_rtx"
 
"adds.w [$pc+%0.w],$pc"
[(set_attr "cc" "clobber")])
;; Multiply instructions.
 
;; Sometimes powers of 2 (which are normally canonicalized to a
;; left-shift) appear here, as a result of address reloading.
;; As a special, for values 3 and 5, we can match with an addi, so add those.
;;
;; FIXME: This may be unnecessary now.
;; Explicitly named for convenience of having a gen_... function.
 
(define_insn "addi_mul"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI
(match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "const_int_operand" "n")))]
"operands[0] != frame_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& GET_CODE (operands[2]) == CONST_INT
&& (INTVAL (operands[2]) == 2
|| INTVAL (operands[2]) == 4 || INTVAL (operands[2]) == 3
|| INTVAL (operands[2]) == 5)"
{
if (INTVAL (operands[2]) == 2)
return "lslq 1,%0";
else if (INTVAL (operands[2]) == 4)
return "lslq 2,%0";
else if (INTVAL (operands[2]) == 3)
return "addi %0.w,%0";
else if (INTVAL (operands[2]) == 5)
return "addi %0.d,%0";
return "BAD: adr_mulsi: %0=%1*%2";
}
[(set_attr "slottable" "yes")
;; No flags are changed if this insn is "addi", but it does not seem
;; worth the trouble to distinguish that to the lslq cases.
(set_attr "cc" "clobber")])
 
;; The addi insn as it is normally used.
 
(define_insn "*addi"
[(set (match_operand:SI 0 "register_operand" "=r")
(plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "r")
(match_operand:SI 3 "const_int_operand" "n"))
(match_operand:SI 1 "register_operand" "0")))]
"operands[0] != frame_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& GET_CODE (operands[3]) == CONST_INT
&& (INTVAL (operands[3]) == 1
|| INTVAL (operands[3]) == 2 || INTVAL (operands[3]) == 4)"
"addi %2%T3,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "none")])
 
;; The mstep instruction. Probably not useful by itself; it's to
;; non-linear wrt. the other insns. We used to expand to it, so at least
;; it's correct.
 
(define_insn "mstep_shift"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else:SI
(lt:SI (cc0) (const_int 0))
(plus:SI (ashift:SI (match_operand:SI 1 "register_operand" "0")
(const_int 1))
(match_operand:SI 2 "register_operand" "r"))
(ashift:SI (match_operand:SI 3 "register_operand" "0")
(const_int 1))))]
""
"mstep %2,%0"
[(set_attr "slottable" "yes")])
 
;; When illegitimate addresses are legitimized, sometimes gcc forgets
;; to canonicalize the multiplications.
;;
;; FIXME: Check gcc > 2.7.2, remove and possibly fix in gcc.
 
(define_insn "mstep_mul"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else:SI
(lt:SI (cc0) (const_int 0))
(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "0")
(const_int 2))
(match_operand:SI 2 "register_operand" "r"))
(mult:SI (match_operand:SI 3 "register_operand" "0")
(const_int 2))))]
"operands[0] != frame_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& operands[2] != frame_pointer_rtx
&& operands[3] != frame_pointer_rtx"
"mstep %2,%0"
[(set_attr "slottable" "yes")])
 
(define_insn "<u>mul<s><mode>3"
[(set (match_operand:WD 0 "register_operand" "=r")
(mult:WD
(szext:WD (match_operand:<S> 1 "register_operand" "%0"))
(szext:WD (match_operand:<S> 2 "register_operand" "r"))))
(clobber (match_scratch:SI 3 "=h"))]
"TARGET_HAS_MUL_INSNS"
"%!mul<su><mm> %2,%0"
[(set (attr "slottable")
(if_then_else (ne (symbol_ref "TARGET_MUL_BUG") (const_int 0))
(const_string "no")
(const_string "yes")))
;; For umuls.[bwd] it's just N unusable here, but let's be safe.
;; For muls.b, this really extends to SImode, so cc should be
;; considered clobbered.
;; For muls.w, it's just N unusable here, but let's be safe.
(set_attr "cc" "clobber")])
 
;; Note that gcc does not make use of such a thing as umulqisi3. It gets
;; confused and will erroneously use it instead of umulhisi3, failing (at
;; least) gcc.c-torture/execute/arith-rand.c at all optimization levels.
;; Inspection of optab code shows that there must be only one widening
;; multiplication per mode widened to.
 
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "register_operand" "r")))
(clobber (match_scratch:SI 3 "=h"))]
"TARGET_HAS_MUL_INSNS"
"%!muls.d %2,%0"
[(set (attr "slottable")
(if_then_else (ne (symbol_ref "TARGET_MUL_BUG") (const_int 0))
(const_string "no")
(const_string "yes")))
;; Just N unusable here, but let's be safe.
(set_attr "cc" "clobber")])
;; A few multiply variations.
 
;; When needed, we can get the high 32 bits from the overflow
;; register. We don't care to split and optimize these.
;;
;; Note that cc0 is still valid after the move-from-overflow-register
;; insn; no special precaution need to be taken in cris_notice_update_cc.
 
(define_insn "<u>mulsidi3"
[(set (match_operand:DI 0 "register_operand" "=r")
(mult:DI
(szext:DI (match_operand:SI 1 "register_operand" "%0"))
(szext:DI (match_operand:SI 2 "register_operand" "r"))))
(clobber (match_scratch:SI 3 "=h"))]
"TARGET_HAS_MUL_INSNS"
"%!mul<su>.d %2,%M0\;move $mof,%H0")
 
;; These two patterns may be expressible by other means, perhaps by making
;; [u]?mulsidi3 a define_expand.
 
;; Due to register allocation braindamage, the clobber 1,2 alternatives
;; cause a move into the clobbered register *before* the insn, then
;; after the insn, mof is moved too, rather than the clobber assigned
;; the last mof target. This became apparent when making MOF and SRP
;; visible registers, with the necessary tweak to smulsi3_highpart.
;; Because these patterns are used in division by constants, that damage
;; is visible (ipps regression tests). Therefore the last two
;; alternatives, "helping" reload to avoid an unnecessary move, but
;; punished by force of one "?". Check code from "int d (int a) {return
;; a / 1000;}" and unsigned. FIXME: Comment above was for 3.2, revisit.
 
(define_insn "<su>mulsi3_highpart"
[(set (match_operand:SI 0 "nonimmediate_operand" "=h,h,?r,?r")
(truncate:SI
(lshiftrt:DI
(mult:DI
(szext:DI (match_operand:SI 1 "register_operand" "r,r,0,r"))
(szext:DI (match_operand:SI 2 "register_operand" "r,r,r,0")))
(const_int 32))))
(clobber (match_scratch:SI 3 "=1,2,h,h"))]
"TARGET_HAS_MUL_INSNS"
"@
%!mul<su>.d %2,%1
%!mul<su>.d %1,%2
%!mul<su>.d %2,%1\;move $mof,%0
%!mul<su>.d %1,%2\;move $mof,%0"
[(set_attr "slottable" "yes,yes,no,no")
(set_attr "cc" "clobber")])
;; Divide and modulus instructions. CRIS only has a step instruction.
 
(define_insn "dstep_shift"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else:SI
(geu:SI (ashift:SI (match_operand:SI 1 "register_operand" "0")
(const_int 1))
(match_operand:SI 2 "register_operand" "r"))
(minus:SI (ashift:SI (match_operand:SI 3 "register_operand" "0")
(const_int 1))
(match_operand:SI 4 "register_operand" "2"))
(ashift:SI (match_operand:SI 5 "register_operand" "0")
(const_int 1))))]
""
"dstep %2,%0"
[(set_attr "slottable" "yes")])
 
;; Here's a variant with mult instead of ashift.
;;
;; FIXME: This should be investigated. Which one matches through combination?
 
(define_insn "dstep_mul"
[(set (match_operand:SI 0 "register_operand" "=r")
(if_then_else:SI
(geu:SI (mult:SI (match_operand:SI 1 "register_operand" "0")
(const_int 2))
(match_operand:SI 2 "register_operand" "r"))
(minus:SI (mult:SI (match_operand:SI 3 "register_operand" "0")
(const_int 2))
(match_operand:SI 4 "register_operand" "2"))
(mult:SI (match_operand:SI 5 "register_operand" "0")
(const_int 2))))]
"operands[0] != frame_pointer_rtx
&& operands[1] != frame_pointer_rtx
&& operands[2] != frame_pointer_rtx
&& operands[3] != frame_pointer_rtx"
"dstep %2,%0"
[(set_attr "slottable" "yes")])
;; Logical operators.
 
;; Bitwise "and".
 
;; There is no use in defining "anddi3", because gcc can expand this by
;; itself, and make reasonable code without interference.
 
;; If the first operand is memory or a register and is the same as the
;; second operand, and the third operand is -256 or -65536, we can use
;; CLEAR instead. Or, if the first operand is a register, and the third
;; operand is 255 or 65535, we can zero_extend.
;; GCC isn't smart enough to recognize these cases (yet), and they seem
;; to be common enough to be worthwhile.
;; FIXME: This should be made obsolete.
 
(define_expand "andsi3"
[(set (match_operand:SI 0 "nonimmediate_operand" "")
(and:SI (match_operand:SI 1 "nonimmediate_operand" "")
(match_operand:SI 2 "general_operand" "")))]
""
{
if (! (GET_CODE (operands[2]) == CONST_INT
&& (((INTVAL (operands[2]) == -256
|| INTVAL (operands[2]) == -65536)
&& rtx_equal_p (operands[1], operands[0]))
|| ((INTVAL (operands[2]) == 255
|| INTVAL (operands[2]) == 65535)
&& REG_P (operands[0])))))
{
/* Make intermediate steps if operand0 is not a register or
operand1 is not a register, and hope that the reload pass will
make something useful out of it. Note that the operands are
*not* canonicalized. For the moment, I chicken out on this,
because all or most ports do not describe 'and' with
canonicalized operands, and I seem to remember magic in reload,
checking that operand1 has constraint '%0', in which case
operand0 and operand1 must have similar predicates.
FIXME: Investigate. */
rtx reg0 = REG_P (operands[0]) ? operands[0] : gen_reg_rtx (SImode);
rtx reg1 = operands[1];
 
if (! REG_P (reg1))
{
emit_move_insn (reg0, reg1);
reg1 = reg0;
}
 
emit_insn (gen_rtx_SET (SImode, reg0,
gen_rtx_AND (SImode, reg1, operands[2])));
 
/* Make sure we get the right *final* destination. */
if (! REG_P (operands[0]))
emit_move_insn (operands[0], reg0);
 
DONE;
}
})
 
;; Some special cases of andsi3.
 
(define_insn "*andsi_movu"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(and:SI (match_operand:SI 1 "nonimmediate_operand" "%r,Q,To")
(match_operand:SI 2 "const_int_operand" "n,n,n")))]
"(INTVAL (operands[2]) == 255 || INTVAL (operands[2]) == 65535)
&& (GET_CODE (operands[1]) != MEM || ! MEM_VOLATILE_P (operands[1]))"
"movu.%z2 %1,%0"
[(set_attr "slottable" "yes,yes,no")])
 
(define_insn "*andsi_clear"
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,Q,Q,To,To")
(and:SI (match_operand:SI 1 "nonimmediate_operand" "%0,0,0,0,0,0")
(match_operand:SI 2 "const_int_operand" "P,n,P,n,P,n")))]
"(INTVAL (operands[2]) == -65536 || INTVAL (operands[2]) == -256)
&& (GET_CODE (operands[0]) != MEM || ! MEM_VOLATILE_P (operands[0]))"
"@
cLear.b %0
cLear.w %0
cLear.b %0
cLear.w %0
cLear.b %0
cLear.w %0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "none")])
 
;; This is a catch-all pattern, taking care of everything that was not
;; matched in the insns above.
;;
;; Sidenote: the tightening from "nonimmediate_operand" to
;; "register_operand" for operand 1 actually increased the register
;; pressure (worse code). That will hopefully change with an
;; improved reload pass.
 
(define_insn "*expanded_andsi"
[(set (match_operand:SI 0 "register_operand" "=r,r,r, r,r")
(and:SI (match_operand:SI 1 "register_operand" "%0,0,0, 0,r")
(match_operand:SI 2 "general_operand" "I,r,Q>,g,!To")))]
""
"@
andq %2,%0
and.d %2,%0
and.d %2,%0
and.d %2,%0
and.d %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,no")])
;; For both QI and HI we may use the quick patterns. This results in
;; useless condition codes, but that is used rarely enough for it to
;; normally be a win (could check ahead for use of cc0, but seems to be
;; more pain than win).
 
;; FIXME: See note for andsi3
 
(define_expand "andhi3"
[(set (match_operand:HI 0 "nonimmediate_operand" "")
(and:HI (match_operand:HI 1 "nonimmediate_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
{
if (! (GET_CODE (operands[2]) == CONST_INT
&& (((INTVAL (operands[2]) == -256
|| INTVAL (operands[2]) == 65280)
&& rtx_equal_p (operands[1], operands[0]))
|| (INTVAL (operands[2]) == 255
&& REG_P (operands[0])))))
{
/* See comment for andsi3. */
rtx reg0 = REG_P (operands[0]) ? operands[0] : gen_reg_rtx (HImode);
rtx reg1 = operands[1];
 
if (! REG_P (reg1))
{
emit_move_insn (reg0, reg1);
reg1 = reg0;
}
 
emit_insn (gen_rtx_SET (HImode, reg0,
gen_rtx_AND (HImode, reg1, operands[2])));
 
/* Make sure we get the right destination. */
if (! REG_P (operands[0]))
emit_move_insn (operands[0], reg0);
 
DONE;
}
})
 
;; Some fast andhi3 special cases.
 
(define_insn "*andhi_movu"
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
(and:HI (match_operand:HI 1 "nonimmediate_operand" "r,Q,To")
(const_int 255)))]
"GET_CODE (operands[1]) != MEM || ! MEM_VOLATILE_P (operands[1])"
"mOvu.b %1,%0"
[(set_attr "slottable" "yes,yes,no")])
 
(define_insn "*andhi_clear"
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,Q,To")
(and:HI (match_operand:HI 1 "nonimmediate_operand" "0,0,0")
(const_int -256)))]
"GET_CODE (operands[0]) != MEM || ! MEM_VOLATILE_P (operands[0])"
"cLear.b %0"
[(set_attr "slottable" "yes,yes,no")
(set_attr "cc" "none")])
 
;; Catch-all andhi3 pattern.
 
(define_insn "*expanded_andhi"
[(set (match_operand:HI 0 "register_operand" "=r,r,r, r,r,r,r")
(and:HI (match_operand:HI 1 "register_operand" "%0,0,0, 0,0,0,r")
(match_operand:HI 2 "general_operand" "I,r,Q>,L,O,g,!To")))]
 
;; Sidenote: the tightening from "general_operand" to
;; "register_operand" for operand 1 actually increased the register
;; pressure (worse code). That will hopefully change with an
;; improved reload pass.
 
""
"@
andq %2,%0
and.w %2,%0
and.w %2,%0
and.w %2,%0
anDq %b2,%0
and.w %2,%0
and.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,yes,no,no")
(set_attr "cc" "clobber,normal,normal,normal,clobber,normal,normal")])
 
;; A strict_low_part pattern.
 
(define_insn "*andhi_lowpart"
[(set (strict_low_part
(match_operand:HI 0 "register_operand" "=r,r, r,r,r,r"))
(and:HI (match_operand:HI 1 "register_operand" "%0,0, 0,0,0,r")
(match_operand:HI 2 "general_operand" "r,Q>,L,O,g,!To")))]
""
"@
and.w %2,%0
and.w %2,%0
and.w %2,%0
anDq %b2,%0
and.w %2,%0
and.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,no,yes,no,no")
(set_attr "cc" "normal,normal,normal,clobber,normal,normal")])
(define_insn "andqi3"
[(set (match_operand:QI 0 "register_operand" "=r,r,r, r,r,r")
(and:QI (match_operand:QI 1 "register_operand" "%0,0,0, 0,0,r")
(match_operand:QI 2 "general_operand" "I,r,Q>,O,g,!To")))]
""
"@
andq %2,%0
and.b %2,%0
and.b %2,%0
andQ %b2,%0
and.b %2,%0
and.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "clobber,normal,normal,clobber,normal,normal")])
 
(define_insn "*andqi_lowpart"
[(set (strict_low_part
(match_operand:QI 0 "register_operand" "=r,r, r,r,r"))
(and:QI (match_operand:QI 1 "register_operand" "%0,0, 0,0,r")
(match_operand:QI 2 "general_operand" "r,Q>,O,g,!To")))]
""
"@
and.b %2,%0
and.b %2,%0
andQ %b2,%0
and.b %2,%0
and.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,no")
(set_attr "cc" "normal,normal,clobber,normal,normal")])
;; Bitwise or.
 
;; Same comment as anddi3 applies here - no need for such a pattern.
 
;; It seems there's no need to jump through hoops to get good code such as
;; with andsi3.
 
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r, r,r,r")
(ior:SI (match_operand:SI 1 "register_operand" "%0,0,0, 0,0,r")
(match_operand:SI 2 "general_operand" "I, r,Q>,n,g,!To")))]
""
"@
orq %2,%0
or.d %2,%0
or.d %2,%0
oR.%s2 %2,%0
or.d %2,%0
or.d %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,no,no")
(set_attr "cc" "normal,normal,normal,clobber,normal,normal")])
 
(define_insn "iorhi3"
[(set (match_operand:HI 0 "register_operand" "=r,r,r, r,r,r,r")
(ior:HI (match_operand:HI 1 "register_operand" "%0,0,0, 0,0,0,r")
(match_operand:HI 2 "general_operand" "I,r,Q>,L,O,g,!To")))]
""
"@
orq %2,%0
or.w %2,%0
or.w %2,%0
or.w %2,%0
oRq %b2,%0
or.w %2,%0
or.w %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,no,yes,no,no")
(set_attr "cc" "clobber,normal,normal,normal,clobber,normal,normal")])
 
(define_insn "iorqi3"
[(set (match_operand:QI 0 "register_operand" "=r,r,r, r,r,r")
(ior:QI (match_operand:QI 1 "register_operand" "%0,0,0, 0,0,r")
(match_operand:QI 2 "general_operand" "I,r,Q>,O,g,!To")))]
""
"@
orq %2,%0
or.b %2,%0
or.b %2,%0
orQ %b2,%0
or.b %2,%0
or.b %2,%1,%0"
[(set_attr "slottable" "yes,yes,yes,yes,no,no")
(set_attr "cc" "clobber,normal,normal,clobber,normal,normal")])
;; Exclusive-or
 
;; See comment about "anddi3" for xordi3 - no need for such a pattern.
;; FIXME: Do we really need the shorter variants?
 
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(xor:SI (match_operand:SI 1 "register_operand" "%0")
(match_operand:SI 2 "register_operand" "r")))]
""
"xor %2,%0"
[(set_attr "slottable" "yes")])
 
(define_insn "xor<mode>3"
[(set (match_operand:BW 0 "register_operand" "=r")
(xor:BW (match_operand:BW 1 "register_operand" "%0")
(match_operand:BW 2 "register_operand" "r")))]
""
"xor %2,%0"
[(set_attr "slottable" "yes")
(set_attr "cc" "clobber")])
;; Negation insns.
 
;; Questionable use, here mostly as a (slightly usable) define_expand
;; example.
 
(define_expand "negsf2"
[(set (match_dup 2)
(match_dup 3))
(parallel [(set (match_operand:SF 0 "register_operand" "=r")
(neg:SF (match_operand:SF 1
"register_operand" "0")))
(use (match_dup 2))])]
""
{
operands[2] = gen_reg_rtx (SImode);
operands[3] = GEN_INT (1 << 31);
})
 
(define_insn "*expanded_negsf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(neg:SF (match_operand:SF 1 "register_operand" "0")))
(use (match_operand:SI 2 "register_operand" "r"))]
""
"xor %2,%0"
[(set_attr "slottable" "yes")])
 
;; No "negdi2" although we could make one up that may be faster than
;; the one in libgcc.
 
(define_insn "neg<mode>2"
[(set (match_operand:BWD 0 "register_operand" "=r")
(neg:BWD (match_operand:BWD 1 "register_operand" "r")))]
""
"neg<m> %1,%0"
[(set_attr "slottable" "yes")])
;; One-complements.
 
;; See comment on anddi3 - no need for a DImode pattern.
;; See also xor comment.
 
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (match_operand:SI 1 "register_operand" "0")))]
""
"not %0"
[(set_attr "slottable" "yes")])
 
(define_insn "one_cmpl<mode>2"
[(set (match_operand:BW 0 "register_operand" "=r")
(not:BW (match_operand:BW 1 "register_operand" "0")))]
""
"not %0"
[(set_attr "slottable" "yes")
(set_attr "cc" "clobber")])
;; Arithmetic/Logical shift right (and SI left).
 
(define_insn "<shlr>si3"
[(set (match_operand:SI 0 "register_operand" "=r")
(shift:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "nonmemory_operand" "Kr")))]
""
{
if (REG_S_P (operands[2]))
return "<slr>.d %2,%0";
 
return "<slr>q %2,%0";
}
[(set_attr "slottable" "yes")])
 
;; Since gcc gets lost, and forgets to zero-extend the source (or mask
;; the destination) when it changes shifts of lower modes into SImode,
;; it is better to make these expands an anonymous patterns instead of
;; the more correct define_insns. This occurs when gcc thinks that is
;; is better to widen to SImode and use immediate shift count.
 
;; FIXME: Is this legacy or still true for gcc >= 2.7.2?
 
;; FIXME: Can't parametrize sign_extend and zero_extend (before
;; mentioning "shiftrt"), so we need two patterns.
(define_expand "ashr<mode>3"
[(set (match_dup 3)
(sign_extend:SI (match_operand:BW 1 "nonimmediate_operand" "")))
(set (match_dup 4)
(zero_extend:SI (match_operand:BW 2 "nonimmediate_operand" "")))
(set (match_dup 5) (ashiftrt:SI (match_dup 3) (match_dup 4)))
(set (match_operand:BW 0 "general_operand" "")
(subreg:BW (match_dup 5) 0))]
""
{
int i;
 
for (i = 3; i < 6; i++)
operands[i] = gen_reg_rtx (SImode);
})
 
(define_expand "lshr<mode>3"
[(set (match_dup 3)
(zero_extend:SI (match_operand:BW 1 "nonimmediate_operand" "")))
(set (match_dup 4)
(zero_extend:SI (match_operand:BW 2 "nonimmediate_operand" "")))
(set (match_dup 5) (lshiftrt:SI (match_dup 3) (match_dup 4)))
(set (match_operand:BW 0 "general_operand" "")
(subreg:BW (match_dup 5) 0))]
""
{
int i;
 
for (i = 3; i < 6; i++)
operands[i] = gen_reg_rtx (SImode);
})
 
(define_insn "*expanded_<shlr><mode>"
[(set (match_operand:BW 0 "register_operand" "=r")
(shiftrt:BW (match_operand:BW 1 "register_operand" "0")
(match_operand:BW 2 "register_operand" "r")))]
""
"<slr><m> %2,%0"
[(set_attr "slottable" "yes")])
 
(define_insn "*<shlr><mode>_lowpart"
[(set (strict_low_part (match_operand:BW 0 "register_operand" "+r"))
(shiftrt:BW (match_dup 0)
(match_operand:BW 1 "register_operand" "r")))]
""
"<slr><m> %1,%0"
[(set_attr "slottable" "yes")])
;; Arithmetic/logical shift left.
 
;; For narrower modes than SI, we can use lslq although it makes cc
;; unusable. The win is that we do not have to reload the shift-count
;; into a register.
 
(define_insn "ashl<mode>3"
[(set (match_operand:BW 0 "register_operand" "=r,r")
(ashift:BW (match_operand:BW 1 "register_operand" "0,0")
(match_operand:BW 2 "nonmemory_operand" "r,K")))]
""
{
return
(GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) > <nbitsm1>)
? "moveq 0,%0"
: (CONSTANT_P (operands[2])
? "lslq %2,%0" : "lsl<m> %2,%0");
}
[(set_attr "slottable" "yes")
(set_attr "cc" "normal,clobber")])
 
;; A strict_low_part matcher.
 
(define_insn "*ashl<mode>_lowpart"
[(set (strict_low_part (match_operand:BW 0 "register_operand" "+r"))
(ashift:BW (match_dup 0)
(match_operand:HI 1 "register_operand" "r")))]
""
"lsl<m> %1,%0"
[(set_attr "slottable" "yes")])
;; Various strange insns that gcc likes.
 
;; Fortunately, it is simple to construct an abssf (although it may not
;; be very much used in practice).
 
(define_insn "abssf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(abs:SF (match_operand:SF 1 "register_operand" "0")))]
""
"lslq 1,%0\;lsrq 1,%0")
 
(define_insn "abssi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(abs:SI (match_operand:SI 1 "register_operand" "r")))]
""
"abs %1,%0"
[(set_attr "slottable" "yes")])
 
;; FIXME: GCC should be able to do these expansions itself.
 
(define_expand "abs<mode>2"
[(set (match_dup 2)
(sign_extend:SI (match_operand:BW 1 "general_operand" "")))
(set (match_dup 3) (abs:SI (match_dup 2)))
(set (match_operand:BW 0 "register_operand" "")
(subreg:BW (match_dup 3) 0))]
""
"operands[2] = gen_reg_rtx (SImode); operands[3] = gen_reg_rtx (SImode);")
;; Bound-insn. Defined to be the same as an unsigned minimum, which is an
;; operation supported by gcc. Used in casesi, but used now and then in
;; normal code too.
 
(define_insn "uminsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r, r,r")
(umin:SI (match_operand:SI 1 "register_operand" "%0,0, 0,r")
(match_operand:SI 2 "general_operand" "r,Q>,g,!To")))]
""
{
if (GET_CODE (operands[2]) == CONST_INT)
{
/* Constant operands are zero-extended, so only 32-bit operands
may be negative. */
if (INTVAL (operands[2]) >= 0)
{
if (INTVAL (operands[2]) < 256)
return "bound.b %2,%0";
 
if (INTVAL (operands[2]) < 65536)
return "bound.w %2,%0";
}
}
else if (which_alternative == 3)
return "bound.d %2,%1,%0";
 
return "bound.d %2,%0";
}
[(set_attr "slottable" "yes,yes,no,no")])
;; Jump and branch insns.
 
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"ba %l0%#"
[(set_attr "slottable" "has_slot")])
 
;; Testcase gcc.c-torture/compile/991213-3.c fails if we allow a constant
;; here, since the insn is not recognized as an indirect jump by
;; jmp_uses_reg_or_mem used by computed_jump_p. Perhaps it is a kludge to
;; change from general_operand to nonimmediate_operand (at least the docs
;; should be changed), but then again the pattern is called indirect_jump.
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "nonimmediate_operand" "rm"))]
""
"jump %0")
 
;; Return insn. Used whenever the epilogue is very simple; if it is only
;; a single ret or jump [sp+]. No allocated stack space or saved
;; registers are allowed.
;; Note that for this pattern, although named, it is ok to check the
;; context of the insn in the test, not only compiler switches.
 
(define_expand "return"
[(return)]
"cris_simple_epilogue ()"
"cris_expand_return (cris_return_address_on_stack ()); DONE;")
 
(define_insn "*return_expanded"
[(return)]
""
{
return cris_return_address_on_stack_for_return ()
? "jump [$sp+]" : "ret%#";
}
[(set (attr "slottable")
(if_then_else
(ne (symbol_ref
"(cris_return_address_on_stack_for_return ())")
(const_int 0))
(const_string "no")
(const_string "has_slot")))])
 
(define_expand "prologue"
[(const_int 0)]
"TARGET_PROLOGUE_EPILOGUE"
"cris_expand_prologue (); DONE;")
 
;; Note that the (return) from the expander itself is always the last
;; insn in the epilogue.
(define_expand "epilogue"
[(const_int 0)]
"TARGET_PROLOGUE_EPILOGUE"
"cris_expand_epilogue (); DONE;")
;; Conditional branches.
 
;; We suffer from the same overflow-bit-gets-in-the-way problem as
;; e.g. m68k, so we have to check if overflow bit is set on all "signed"
;; conditions.
 
(define_insn "b<ncond:code>"
[(set (pc)
(if_then_else (ncond (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"b<CC> %l0%#"
[(set_attr "slottable" "has_slot")])
 
(define_insn "b<ocond:code>"
[(set (pc)
(if_then_else (ocond (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? 0 : "b<CC> %l0%#";
}
[(set_attr "slottable" "has_slot")])
 
(define_insn "b<rcond:code>"
[(set (pc)
(if_then_else (rcond (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? "b<oCC> %l0%#" : "b<CC> %l0%#";
}
[(set_attr "slottable" "has_slot")])
;; Reversed anonymous patterns to the ones above, as mandated.
 
(define_insn "*b<ncond:code>_reversed"
[(set (pc)
(if_then_else (ncond (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"b<rCC> %l0%#"
[(set_attr "slottable" "has_slot")])
 
(define_insn "*b<ocond:code>_reversed"
[(set (pc)
(if_then_else (ocond (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? 0 : "b<rCC> %l0%#";
}
[(set_attr "slottable" "has_slot")])
 
(define_insn "*b<rcond:code>_reversed"
[(set (pc)
(if_then_else (rcond (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? "b<roCC> %l0%#" : "b<rCC> %l0%#";
}
[(set_attr "slottable" "has_slot")])
;; Set on condition: sCC.
 
;; Like bCC, we have to check the overflow bit for
;; signed conditions.
 
(define_insn "s<ncond:code>"
[(set (match_operand:SI 0 "register_operand" "=r")
(ncond:SI (cc0) (const_int 0)))]
""
"s<CC> %0"
[(set_attr "slottable" "yes")
(set_attr "cc" "none")])
 
(define_insn "s<rcond:code>"
[(set (match_operand:SI 0 "register_operand" "=r")
(rcond:SI (cc0) (const_int 0)))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? "s<oCC> %0" : "s<CC> %0";
}
[(set_attr "slottable" "yes")
(set_attr "cc" "none")])
 
(define_insn "s<ocond:code>"
[(set (match_operand:SI 0 "register_operand" "=r")
(ocond:SI (cc0) (const_int 0)))]
""
{
return
(cc_prev_status.flags & CC_NO_OVERFLOW)
? 0 : "s<CC> %0";
}
[(set_attr "slottable" "yes")
(set_attr "cc" "none")])
;; Call insns.
 
;; We need to make these patterns "expand", since the real operand is
;; hidden in a (mem:QI ) inside operand[0] (call_value: operand[1]),
;; and cannot be checked if it were a "normal" pattern.
;; Note that "call" and "call_value" are *always* called with a
;; mem-operand for operand 0 and 1 respective. What happens for combined
;; instructions is a different issue.
 
(define_expand "call"
[(parallel [(call (match_operand:QI 0 "cris_mem_call_operand" "")
(match_operand 1 "general_operand" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))])]
""
{
gcc_assert (GET_CODE (operands[0]) == MEM);
if (flag_pic)
cris_expand_pic_call_address (&operands[0]);
})
 
;; Accept *anything* as operand 1. Accept operands for operand 0 in
;; order of preference.
 
(define_insn "*expanded_call"
[(call (mem:QI (match_operand:SI
0 "cris_general_operand_or_plt_symbol" "r,Q>,g"))
(match_operand 1 "" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))]
""
"jsr %0")
 
;; Parallel when calculating and reusing address of indirect pointer
;; with simple offset. (Makes most sense with PIC.) It looks a bit
;; wrong not to have the clobber last, but that's the way combine
;; generates it (except it doesn' look into the *inner* mem, so this
;; just matches a peephole2). FIXME: investigate that.
(define_insn "*expanded_call_side"
[(call (mem:QI
(mem:SI
(plus:SI (match_operand:SI 0 "cris_bdap_operand" "%r, r,r")
(match_operand:SI 1 "cris_bdap_operand" "r>Rn,r,>Rn"))))
(match_operand 2 "" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))
(set (match_operand:SI 3 "register_operand" "=*0,r,r")
(plus:SI (match_dup 0)
(match_dup 1)))]
"! TARGET_AVOID_GOTPLT"
"jsr [%3=%0%S1]")
 
(define_expand "call_value"
[(parallel [(set (match_operand 0 "" "")
(call (match_operand:QI 1 "cris_mem_call_operand" "")
(match_operand 2 "" "")))
(clobber (reg:SI CRIS_SRP_REGNUM))])]
""
{
gcc_assert (GET_CODE (operands[1]) == MEM);
if (flag_pic)
cris_expand_pic_call_address (&operands[1]);
})
 
;; Accept *anything* as operand 2. The validity other than "general" of
;; operand 0 will be checked elsewhere. Accept operands for operand 1 in
;; order of preference (Q includes r, but r is shorter, faster).
;; We also accept a PLT symbol. We output it as [rPIC+sym:GOTPLT] rather
;; than requiring getting rPIC + sym:PLT into a register.
 
(define_insn "*expanded_call_value"
[(set (match_operand 0 "nonimmediate_operand" "=g,g,g")
(call (mem:QI (match_operand:SI
1 "cris_general_operand_or_plt_symbol" "r,Q>,g"))
(match_operand 2 "" "")))
(clobber (reg:SI CRIS_SRP_REGNUM))]
""
"Jsr %1"
[(set_attr "cc" "clobber")])
 
;; See similar call special-case.
(define_insn "*expanded_call_value_side"
[(set (match_operand 0 "nonimmediate_operand" "=g,g,g")
(call
(mem:QI
(mem:SI
(plus:SI (match_operand:SI 1 "cris_bdap_operand" "%r, r,r")
(match_operand:SI 2 "cris_bdap_operand" "r>Rn,r,>Rn"))))
(match_operand 3 "" "")))
(clobber (reg:SI CRIS_SRP_REGNUM))
(set (match_operand:SI 4 "register_operand" "=*1,r,r")
(plus:SI (match_dup 1)
(match_dup 2)))]
"! TARGET_AVOID_GOTPLT"
"Jsr [%4=%1%S2]"
[(set_attr "cc" "clobber")])
 
;; Used in debugging. No use for the direct pattern; unfilled
;; delayed-branches are taken care of by other means.
 
(define_insn "nop"
[(const_int 0)]
""
"nop"
[(set_attr "cc" "none")])
;; We need to stop accesses to the stack after the memory is
;; deallocated. Unfortunately, reorg doesn't look at naked clobbers,
;; e.g. (insn ... (clobber (mem:BLK (stack_pointer_rtx)))) and we don't
;; want to use a naked (unspec_volatile) as that would stop any
;; scheduling in the epilogue. Hence we model it as a "real" insn that
;; sets the memory in an unspecified manner. FIXME: Unfortunately it
;; still has the effect of an unspec_volatile.
(define_insn "cris_frame_deallocated_barrier"
[(set (mem:BLK (reg:SI CRIS_SP_REGNUM))
(unspec:BLK [(const_int 0)] CRIS_UNSPEC_FRAME_DEALLOC))]
""
""
[(set_attr "length" "0")])
 
;; We expand on casesi so we can use "bound" and "add offset fetched from
;; a table to pc" (adds.w [pc+%0.w],pc).
 
;; Note: if you change the "parallel" (or add anything after it) in
;; this expansion, you must change the macro ASM_OUTPUT_CASE_END
;; accordingly, to add the default case at the end of the jump-table.
 
(define_expand "casesi"
[(set (match_dup 5) (match_operand:SI 0 "general_operand" ""))
(set (match_dup 6)
(minus:SI (match_dup 5)
(match_operand:SI 1 "const_int_operand" "n")))
(set (match_dup 7)
(umin:SI (match_dup 6)
(match_operand:SI 2 "const_int_operand" "n")))
(parallel
[(set (pc)
(if_then_else
(ltu (match_dup 7) (match_dup 2))
(plus:SI (sign_extend:SI
(mem:HI
(plus:SI (mult:SI (match_dup 7) (const_int 2))
(pc))))
(pc))
(label_ref (match_operand 4 "" ""))))
(use (label_ref (match_operand 3 "" "")))])]
""
{
operands[2] = plus_constant (operands[2], 1);
operands[5] = gen_reg_rtx (SImode);
operands[6] = gen_reg_rtx (SImode);
operands[7] = gen_reg_rtx (SImode);
})
;; Split-patterns. Some of them have modes unspecified. This
;; should always be ok; if for no other reason sparc.md has it as
;; well.
;;
;; When register_operand is specified for an operand, we can get a
;; subreg as well (Axis-990331), so don't just assume that REG_P is true
;; for a register_operand and that REGNO can be used as is. It is best to
;; guard with REG_P, unless it is worth it to adjust for the subreg case.
 
;; op [rx + 0],ry,rz
;; The index to rx is optimized into zero, and gone.
 
;; First, recognize bound [rx],ry,rz; where [rx] is zero-extended,
;; and add/sub [rx],ry,rz, with zero or sign-extend on [rx].
;; Split this into:
;; move ry,rz
;; op [rx],rz
;; Lose if rz=ry or rx=rz.
;; Call this op-extend-split
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_operand_extend_operator"
[(match_operand 1 "register_operand" "")
(match_operator
3 "cris_extend_operator"
[(match_operand 2 "memory_operand" "")])]))]
"REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) != REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 1))
(set (match_dup 0)
(match_op_dup
4 [(match_dup 0)
(match_op_dup 3 [(match_dup 2)])]))]
"")
 
;; As op-extend-split, but recognize and split op [rz],ry,rz into
;; ext [rz],rz
;; op ry,rz
;; Do this for plus or bound only, being commutative operations, since we
;; have swapped the operands.
;; Call this op-extend-split-rx=rz
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_plus_or_bound_operator"
[(match_operand 1 "register_operand" "")
(match_operator
3 "cris_extend_operator"
[(match_operand 2 "memory_operand" "")])]))]
"REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) == REGNO (operands[0])"
[(set (match_dup 0)
(match_op_dup 3 [(match_dup 2)]))
(set (match_dup 0)
(match_op_dup
4 [(match_dup 0)
(match_dup 1)]))]
"")
 
;; As the op-extend-split, but swapped operands, and only for
;; plus or bound, being the commutative extend-operators. FIXME: Why is
;; this needed? Is it?
;; Call this op-extend-split-swapped
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_plus_or_bound_operator"
[(match_operator
3 "cris_extend_operator"
[(match_operand 2 "memory_operand" "")])
(match_operand 1 "register_operand" "")]))]
"REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) != REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 1))
(set (match_dup 0)
(match_op_dup
4 [(match_dup 0)
(match_op_dup 3 [(match_dup 2)])]))]
"")
 
;; As op-extend-split-rx=rz, but swapped operands, only for plus or
;; bound. Call this op-extend-split-swapped-rx=rz.
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_plus_or_bound_operator"
[(match_operator
3 "cris_extend_operator"
[(match_operand 2 "memory_operand" "")])
(match_operand 1 "register_operand" "")]))]
"REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) == REGNO (operands[0])"
[(set (match_dup 0)
(match_op_dup 3 [(match_dup 2)]))
(set (match_dup 0)
(match_op_dup
4 [(match_dup 0)
(match_dup 1)]))]
"")
 
;; As op-extend-split, but the mem operand is not extended.
;;
;; op [rx],ry,rz changed into
;; move ry,rz
;; op [rx],rz
;; lose if ry=rz or rx=rz
;; Call this op-extend.
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
3 "cris_orthogonal_operator"
[(match_operand 1 "register_operand" "")
(match_operand 2 "memory_operand" "")]))]
"REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) != REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 1))
(set (match_dup 0)
(match_op_dup
3 [(match_dup 0)
(match_dup 2)]))]
"")
 
;; As op-extend-split-rx=rz, non-extended.
;; Call this op-split-rx=rz
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
3 "cris_commutative_orth_op"
[(match_operand 2 "memory_operand" "")
(match_operand 1 "register_operand" "")]))]
"REG_P (operands[0])
&& REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) != REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 1))
(set (match_dup 0)
(match_op_dup
3 [(match_dup 0)
(match_dup 2)]))]
"")
 
;; As op-extend-split-swapped, nonextended.
;; Call this op-split-swapped.
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
3 "cris_commutative_orth_op"
[(match_operand 1 "register_operand" "")
(match_operand 2 "memory_operand" "")]))]
"REG_P (operands[0]) && REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) == REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 2))
(set (match_dup 0)
(match_op_dup
3 [(match_dup 0)
(match_dup 1)]))]
"")
 
;; As op-extend-split-swapped-rx=rz, non-extended.
;; Call this op-split-swapped-rx=rz.
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
3 "cris_orthogonal_operator"
[(match_operand 2 "memory_operand" "")
(match_operand 1 "register_operand" "")]))]
"REG_P (operands[0]) && REG_P (operands[1])
&& REGNO (operands[1]) != REGNO (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& REG_P (XEXP (operands[2], 0))
&& REGNO (XEXP (operands[2], 0)) == REGNO (operands[0])"
[(set (match_dup 0)
(match_dup 2))
(set (match_dup 0)
(match_op_dup
3 [(match_dup 0)
(match_dup 1)]))]
"")
;; Splits for all cases in side-effect insns where (possibly after reload
;; and register allocation) rx and ry in [rx=ry+i] are equal.
 
;; move.S1 [rx=rx+rz.S2],ry
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_mem_op"
[(plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" ""))
(match_operand:SI 3 "register_operand" ""))]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))])]
"REG_P (operands[3]) && REG_P (operands[4])
&& REGNO (operands[3]) == REGNO (operands[4])"
[(set (match_dup 4) (plus:SI (mult:SI (match_dup 1) (match_dup 2))
(match_dup 3)))
(set (match_dup 0) (match_dup 5))]
"operands[5] = replace_equiv_address (operands[6], operands[3]);")
 
;; move.S1 [rx=rx+i],ry
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_mem_op"
[(plus:SI (match_operand:SI 1 "cris_bdap_operand" "")
(match_operand:SI 2 "cris_bdap_operand" ""))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (match_dup 1)
(match_dup 2)))])]
"(rtx_equal_p (operands[3], operands[1])
|| rtx_equal_p (operands[3], operands[2]))"
[(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (match_dup 4))]
{
operands[4] = replace_equiv_address (operands[5], operands[3]);
cris_order_for_addsi3 (operands, 1);
})
 
;; move.S1 ry,[rx=rx+rz.S2]
 
(define_split
[(parallel
[(set (match_operator
6 "cris_mem_op"
[(plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(match_operand:SI 2 "register_operand" ""))])
(match_operand 3 "register_operand" ""))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))])]
"REG_P (operands[2]) && REG_P (operands[4])
&& REGNO (operands[4]) == REGNO (operands[2])"
[(set (match_dup 4) (plus:SI (mult:SI (match_dup 0) (match_dup 1))
(match_dup 2)))
(set (match_dup 5) (match_dup 3))]
"operands[5] = replace_equiv_address (operands[6], operands[4]);")
 
;; move.S1 ry,[rx=rx+i]
 
(define_split
[(parallel
[(set (match_operator
6 "cris_mem_op"
[(plus:SI (match_operand:SI 0 "cris_bdap_operand" "")
(match_operand:SI 1 "cris_bdap_operand" ""))])
(match_operand 2 "register_operand" ""))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (match_dup 0)
(match_dup 1)))])]
"(rtx_equal_p (operands[3], operands[0])
|| rtx_equal_p (operands[3], operands[1]))"
[(set (match_dup 3) (plus:SI (match_dup 0) (match_dup 1)))
(set (match_dup 5) (match_dup 2))]
{
operands[5] = replace_equiv_address (operands[6], operands[3]);
cris_order_for_addsi3 (operands, 0);
})
 
;; clear.[bwd] [rx=rx+rz.S2]
 
(define_split
[(parallel
[(set (mem:BWD (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(match_operand:SI 2 "register_operand" "")))
(const_int 0))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (mult:SI (match_dup 0)
(match_dup 1))
(match_dup 2)))])]
"REG_P (operands[2]) && REG_P (operands[3])
&& REGNO (operands[3]) == REGNO (operands[2])"
[(set (match_dup 3) (plus:SI (mult:SI (match_dup 0) (match_dup 1))
(match_dup 2)))
(set (mem:BWD (match_dup 3)) (const_int 0))]
"")
 
;; clear.[bwd] [rx=rx+i]
 
(define_split
[(parallel
[(set (mem:BWD
(plus:SI (match_operand:SI 0 "cris_bdap_operand" "")
(match_operand:SI 1 "cris_bdap_operand" "")))
(const_int 0))
(set (match_operand:SI 2 "register_operand" "")
(plus:SI (match_dup 0)
(match_dup 1)))])]
"(rtx_equal_p (operands[0], operands[2])
|| rtx_equal_p (operands[2], operands[1]))"
[(set (match_dup 2) (plus:SI (match_dup 0) (match_dup 1)))
(set (mem:BWD (match_dup 2)) (const_int 0))]
"cris_order_for_addsi3 (operands, 0);")
 
;; mov(s|u).S1 [rx=rx+rz.S2],ry
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_extend_operator"
[(mem (plus:SI
(mult:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" ""))
(match_operand:SI 3 "register_operand" "")))]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (mult:SI (match_dup 1)
(match_dup 2))
(match_dup 3)))])]
"REG_P (operands[3])
&& REG_P (operands[4])
&& REGNO (operands[3]) == REGNO (operands[4])"
[(set (match_dup 4) (plus:SI (mult:SI (match_dup 1) (match_dup 2))
(match_dup 3)))
(set (match_dup 0) (match_op_dup 5 [(match_dup 6)]))]
"operands[6] = replace_equiv_address (XEXP (operands[5], 0), operands[4]);")
 
;; mov(s|u).S1 [rx=rx+i],ry
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_extend_operator"
[(mem (plus:SI
(match_operand:SI 1 "cris_bdap_operand" "")
(match_operand:SI 2 "cris_bdap_operand" "")))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (match_dup 1)
(match_dup 2)))])]
"(rtx_equal_p (operands[1], operands[3])
|| rtx_equal_p (operands[2], operands[3]))"
[(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0) (match_op_dup 4 [(match_dup 5)]))]
{
operands[5] = replace_equiv_address (XEXP (operands[4], 0), operands[3]);
cris_order_for_addsi3 (operands, 1);
})
 
;; op.S1 [rx=rx+i],ry
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_orthogonal_operator"
[(match_operand 1 "register_operand" "")
(mem (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "")
(match_operand:SI 3 "cris_bdap_operand" "")))]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (match_dup 2)
(match_dup 3)))])]
"(rtx_equal_p (operands[4], operands[2])
|| rtx_equal_p (operands[4], operands[3]))"
[(set (match_dup 4) (plus:SI (match_dup 2) (match_dup 3)))
(set (match_dup 0) (match_op_dup 5 [(match_dup 1) (match_dup 6)]))]
{
operands[6] = replace_equiv_address (XEXP (operands[5], 1), operands[4]);
cris_order_for_addsi3 (operands, 2);
})
 
;; op.S1 [rx=rx+rz.S2],ry
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_orthogonal_operator"
[(match_operand 1 "register_operand" "")
(mem (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(match_operand:SI 4 "register_operand" "")))]))
(set (match_operand:SI 5 "register_operand" "")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))])]
"REG_P (operands[4])
&& REG_P (operands[5])
&& REGNO (operands[5]) == REGNO (operands[4])"
[(set (match_dup 5) (plus:SI (mult:SI (match_dup 2) (match_dup 3))
(match_dup 4)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 1) (match_dup 7)]))]
"operands[7] = replace_equiv_address (XEXP (operands[6], 1), operands[5]);")
 
;; op.S1 [rx=rx+rz.S2],ry (swapped)
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_commutative_orth_op"
[(mem (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(match_operand:SI 4 "register_operand" "")))
(match_operand 1 "register_operand" "")]))
(set (match_operand:SI 5 "register_operand" "")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))])]
"REG_P (operands[4])
&& REG_P (operands[5])
&& REGNO (operands[5]) == REGNO (operands[4])"
[(set (match_dup 5) (plus:SI (mult:SI (match_dup 2) (match_dup 3))
(match_dup 4)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 7) (match_dup 1)]))]
"operands[7] = replace_equiv_address (XEXP (operands[6], 0), operands[5]);")
 
;; op.S1 [rx=rx+i],ry (swapped)
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_commutative_orth_op"
[(mem
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "")
(match_operand:SI 3 "cris_bdap_operand" "")))
(match_operand 1 "register_operand" "")]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (match_dup 2)
(match_dup 3)))])]
"(rtx_equal_p (operands[4], operands[2])
|| rtx_equal_p (operands[4], operands[3]))"
[(set (match_dup 4) (plus:SI (match_dup 2) (match_dup 3)))
(set (match_dup 0) (match_op_dup 5 [(match_dup 6) (match_dup 1)]))]
{
operands[6] = replace_equiv_address (XEXP (operands[5], 0), operands[4]);
cris_order_for_addsi3 (operands, 2);
})
 
;; op(s|u).S1 [rx=rx+rz.S2],ry
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_operand_extend_operator"
[(match_operand 1 "register_operand" "")
(match_operator
7 "cris_extend_operator"
[(mem (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(match_operand:SI 4 "register_operand" "")))])]))
(set (match_operand:SI 5 "register_operand" "")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))])]
"REG_P (operands[4])
&& REG_P (operands[5])
&& REGNO (operands[5]) == REGNO (operands[4])"
[(set (match_dup 5) (plus:SI (mult:SI (match_dup 2) (match_dup 3))
(match_dup 4)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 1) (match_dup 8)]))]
"operands[8] = gen_rtx_fmt_e (GET_CODE (operands[7]), GET_MODE (operands[7]),
replace_equiv_address (XEXP (operands[7], 0),
operands[5]));")
 
;; op(s|u).S1 [rx=rx+i],ry
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
5 "cris_operand_extend_operator"
[(match_operand 1 "register_operand" "")
(match_operator
6 "cris_extend_operator"
[(mem
(plus:SI (match_operand:SI 2 "cris_bdap_operand" "")
(match_operand:SI 3 "cris_bdap_operand" "")
))])]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (match_dup 2)
(match_dup 3)))])]
"(rtx_equal_p (operands[4], operands[2])
|| rtx_equal_p (operands[4], operands[3]))"
[(set (match_dup 4) (plus:SI (match_dup 2) (match_dup 3)))
(set (match_dup 0) (match_op_dup 5 [(match_dup 1) (match_dup 7)]))]
{
operands[7] = gen_rtx_fmt_e (GET_CODE (operands[6]), GET_MODE (operands[6]),
replace_equiv_address (XEXP (operands[6], 0),
operands[4]));
cris_order_for_addsi3 (operands, 2);
})
 
;; op(s|u).S1 [rx=rx+rz.S2],ry (swapped, plus or bound)
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
7 "cris_plus_or_bound_operator"
[(match_operator
6 "cris_extend_operator"
[(mem (plus:SI
(mult:SI (match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(match_operand:SI 4 "register_operand" "")))])
(match_operand 1 "register_operand" "")]))
(set (match_operand:SI 5 "register_operand" "")
(plus:SI (mult:SI (match_dup 2)
(match_dup 3))
(match_dup 4)))])]
"REG_P (operands[4]) && REG_P (operands[5])
&& REGNO (operands[5]) == REGNO (operands[4])"
[(set (match_dup 5) (plus:SI (mult:SI (match_dup 2) (match_dup 3))
(match_dup 4)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 8) (match_dup 1)]))]
"operands[8] = gen_rtx_fmt_e (GET_CODE (operands[6]), GET_MODE (operands[6]),
replace_equiv_address (XEXP (operands[6], 0),
operands[5]));")
 
;; op(s|u).S1 [rx=rx+i],ry (swapped, plus or bound)
 
(define_split
[(parallel
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_plus_or_bound_operator"
[(match_operator
5 "cris_extend_operator"
[(mem (plus:SI
(match_operand:SI 2 "cris_bdap_operand" "")
(match_operand:SI 3 "cris_bdap_operand" "")))])
(match_operand 1 "register_operand" "")]))
(set (match_operand:SI 4 "register_operand" "")
(plus:SI (match_dup 2)
(match_dup 3)))])]
"(rtx_equal_p (operands[4], operands[2])
|| rtx_equal_p (operands[4], operands[3]))"
[(set (match_dup 4) (plus:SI (match_dup 2) (match_dup 3)))
(set (match_dup 0) (match_op_dup 6 [(match_dup 7) (match_dup 1)]))]
{
operands[7] = gen_rtx_fmt_e (GET_CODE (operands[5]), GET_MODE (operands[5]),
replace_equiv_address (XEXP (operands[5], 0),
operands[4]));
cris_order_for_addsi3 (operands, 2);
})
;; Splits for addressing prefixes that have no side-effects, so we can
;; fill a delay slot. Never split if we lose something, though.
 
;; If we have a
;; move [indirect_ref],rx
;; where indirect ref = {const, [r+], [r]}, it costs as much as
;; move indirect_ref,rx
;; move [rx],rx
;; Take care not to allow indirect_ref = register.
 
;; We're not allowed to generate copies of registers with different mode
;; until after reload; copying pseudos upsets reload. CVS as of
;; 2001-08-24, unwind-dw2-fde.c, _Unwind_Find_FDE ICE in
;; cselib_invalidate_regno.
 
(define_split ; indir_to_reg_split
[(set (match_operand 0 "register_operand" "")
(match_operand 1 "indirect_operand" ""))]
"reload_completed
&& REG_P (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& (GET_CODE (XEXP (operands[1], 0)) == MEM
|| CONSTANT_P (XEXP (operands[1], 0)))
&& REGNO (operands[0]) < CRIS_LAST_GENERAL_REGISTER"
[(set (match_dup 2) (match_dup 4))
(set (match_dup 0) (match_dup 3))]
"operands[2] = gen_rtx_REG (Pmode, REGNO (operands[0]));
operands[3] = replace_equiv_address (operands[1], operands[2]);
operands[4] = XEXP (operands[1], 0);")
 
;; As the above, but MOVS and MOVU.
 
(define_split
[(set (match_operand 0 "register_operand" "")
(match_operator
4 "cris_extend_operator"
[(match_operand 1 "indirect_operand" "")]))]
"reload_completed
&& REG_P (operands[0])
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD
&& (GET_CODE (XEXP (operands[1], 0)) == MEM
|| CONSTANT_P (XEXP (operands[1], 0)))"
[(set (match_dup 2) (match_dup 5))
(set (match_dup 0) (match_op_dup 4 [(match_dup 3)]))]
"operands[2] = gen_rtx_REG (Pmode, REGNO (operands[0]));
operands[3] = replace_equiv_address (XEXP (operands[4], 0), operands[2]);
operands[5] = XEXP (operands[1], 0);")
;; Various peephole optimizations.
;;
;; Watch out: when you exchange one set of instructions for another, the
;; condition codes setting must be the same, or you have to CC_INIT or
;; whatever is appropriate, in the pattern before you emit the
;; assembly text. This is best done here, not in cris_notice_update_cc,
;; to keep changes local to their cause.
;;
;; Do not add patterns that you do not know will be matched.
;; Please also add a self-contained testcase.
 
;; We have trouble with and:s and shifts. Maybe something is broken in
;; gcc? Or it could just be that bit-field insn expansion is a bit
;; suboptimal when not having extzv insns.
;; Testcase for the following four peepholes: gcc.dg/cris-peep2-xsrand.c
 
(define_peephole2 ; asrandb (peephole casesi+31)
[(set (match_operand:SI 0 "register_operand" "")
(ashiftrt:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(set (match_dup 0)
(and:SI (match_dup 0)
(match_operand 2 "const_int_operand" "")))]
"INTVAL (operands[2]) > 31
&& INTVAL (operands[2]) < 255
&& INTVAL (operands[1]) > 23
/* Check that the and-operation enables us to use logical-shift. */
&& (INTVAL (operands[2])
& ((HOST_WIDE_INT) -1 << (32 - INTVAL (operands[1])))) == 0"
[(set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 1)))
(set (match_dup 3) (and:QI (match_dup 3) (match_dup 4)))]
;; FIXME: CC0 is valid except for the M bit.
{
operands[3] = gen_rtx_REG (QImode, REGNO (operands[0]));
operands[4] = GEN_INT (trunc_int_for_mode (INTVAL (operands[2]), QImode));
})
 
(define_peephole2 ; asrandw (peephole casesi+32)
[(set (match_operand:SI 0 "register_operand" "")
(ashiftrt:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(set (match_dup 0)
(and:SI (match_dup 0) (match_operand 2 "const_int_operand" "")))]
"INTVAL (operands[2]) > 31
&& INTVAL (operands[2]) < 65535
&& INTVAL (operands[2]) != 255
&& INTVAL (operands[1]) > 15
/* Check that the and-operation enables us to use logical-shift. */
&& (INTVAL (operands[2])
& ((HOST_WIDE_INT) -1 << (32 - INTVAL (operands[1])))) == 0"
[(set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 1)))
(set (match_dup 3) (and:HI (match_dup 3) (match_dup 4)))]
;; FIXME: CC0 is valid except for the M bit.
{
operands[3] = gen_rtx_REG (HImode, REGNO (operands[0]));
operands[4] = GEN_INT (trunc_int_for_mode (INTVAL (operands[2]), HImode));
})
 
(define_peephole2 ; lsrandb (peephole casesi+33)
[(set (match_operand:SI 0 "register_operand" "")
(lshiftrt:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(set (match_dup 0)
(and:SI (match_dup 0) (match_operand 2 "const_int_operand" "")))]
"INTVAL (operands[2]) > 31
&& INTVAL (operands[2]) < 255
&& INTVAL (operands[1]) > 23"
[(set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 1)))
(set (match_dup 3) (and:QI (match_dup 3) (match_dup 4)))]
;; FIXME: CC0 is valid except for the M bit.
{
operands[3] = gen_rtx_REG (QImode, REGNO (operands[0]));
operands[4] = GEN_INT (trunc_int_for_mode (INTVAL (operands[2]), QImode));
})
 
(define_peephole2 ; lsrandw (peephole casesi+34)
[(set (match_operand:SI 0 "register_operand" "")
(lshiftrt:SI (match_dup 0)
(match_operand:SI 1 "const_int_operand" "")))
(set (match_dup 0)
(and:SI (match_dup 0) (match_operand 2 "const_int_operand" "")))]
"INTVAL (operands[2]) > 31 && INTVAL (operands[2]) < 65535
&& INTVAL (operands[2]) != 255
&& INTVAL (operands[1]) > 15"
[(set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 1)))
(set (match_dup 3) (and:HI (match_dup 3) (match_dup 4)))]
;; FIXME: CC0 is valid except for the M bit.
{
operands[3] = gen_rtx_REG (HImode, REGNO (operands[0]));
operands[4] = GEN_INT (trunc_int_for_mode (INTVAL (operands[2]), HImode));
})
 
;; Change
;; add.d n,rx
;; move [rx],ry
;; into
;; move [rx=rx+n],ry
;; when -128 <= n <= 127.
;; This will reduce the size of the assembler code for n = [-128..127],
;; and speed up accordingly. Don't match if the previous insn is
;; (set rx rz) because that combination is matched by another peephole.
;; No stable test-case.
 
(define_peephole2 ; moversideqi (peephole casesi+35)
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")))
(set (match_operand 3 "register_operand" "")
(match_operator 4 "cris_mem_op" [(match_dup 0)]))]
"GET_MODE_SIZE (GET_MODE (operands[4])) <= UNITS_PER_WORD
&& REGNO (operands[3]) != REGNO (operands[0])
&& (BASE_P (operands[1]) || BASE_P (operands[2]))
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
&& (INTVAL (operands[2]) >= -128 && INTVAL (operands[2]) < 128)"
[(parallel
[(set (match_dup 3) (match_dup 5))
(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))])]
;; Checking the previous insn is a bit too awkward for the condition.
{
rtx prev = prev_nonnote_insn (curr_insn);
if (prev != NULL_RTX)
{
rtx set = single_set (prev);
if (set != NULL_RTX
&& REG_S_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) == REGNO (operands[0])
&& REG_S_P (SET_SRC (set)))
FAIL;
}
operands[5]
= replace_equiv_address (operands[4],
gen_rtx_PLUS (SImode,
operands[1], operands[2]));
})
 
;; Vice versa: move ry,[rx=rx+n]
 
(define_peephole2 ; movemsideqi (peephole casesi+36)
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")))
(set (match_operator 3 "cris_mem_op" [(match_dup 0)])
(match_operand 4 "register_operand" ""))]
"GET_MODE_SIZE (GET_MODE (operands[4])) <= UNITS_PER_WORD
&& REGNO (operands[4]) != REGNO (operands[0])
&& (BASE_P (operands[1]) || BASE_P (operands[2]))
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
&& (INTVAL (operands[2]) >= -128 && INTVAL (operands[2]) < 128)"
[(parallel
[(set (match_dup 5) (match_dup 4))
(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))])]
"operands[5]
= replace_equiv_address (operands[3],
gen_rtx_PLUS (SImode,
operands[1], operands[2]));")
;; As above, change:
;; add.d n,rx
;; op.d [rx],ry
;; into:
;; op.d [rx=rx+n],ry
;; Saves when n = [-128..127].
;;
;; Splitting and joining combinations for side-effect modes are slightly
;; out of hand. They probably will not save the time they take typing in,
;; not to mention the bugs that creep in. FIXME: Get rid of as many of
;; the splits and peepholes as possible.
;; No stable test-case.
 
(define_peephole2 ; mover2side (peephole casesi+37)
[(set (match_operand:SI 0 "register_operand" "")
(plus:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")))
(set (match_operand 3 "register_operand" "")
(match_operator 4 "cris_orthogonal_operator"
[(match_dup 3)
(match_operator
5 "cris_mem_op" [(match_dup 0)])]))]
;; FIXME: What about DFmode?
;; Change to GET_MODE_SIZE (GET_MODE (operands[3])) <= UNITS_PER_WORD?
"GET_MODE (operands[3]) != DImode
&& REGNO (operands[0]) != REGNO (operands[3])
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J')
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'N')
&& INTVAL (operands[2]) >= -128
&& INTVAL (operands[2]) <= 127"
[(parallel
[(set (match_dup 3) (match_op_dup 4 [(match_dup 3) (match_dup 6)]))
(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))])]
"operands[6]
= replace_equiv_address (operands[5],
gen_rtx_PLUS (SImode,
operands[1], operands[2]));")
 
;; Sometimes, for some reason the pattern
;; move x,rx
;; add y,rx
;; move [rx],rz
;; will occur. Solve this, and likewise for to-memory.
;; No stable test-case.
 
(define_peephole2 ; moverside (peephole casesi+38)
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "cris_bdap_biap_operand" ""))
(set (match_dup 0)
(plus:SI (match_operand:SI 2 "cris_bdap_biap_operand" "")
(match_operand:SI 3 "cris_bdap_biap_operand" "")))
(set (match_operand 4 "register_operand" "")
(match_operator 5 "cris_mem_op" [(match_dup 0)]))]
"(rtx_equal_p (operands[2], operands[0])
|| rtx_equal_p (operands[3], operands[0]))
&& cris_side_effect_mode_ok (PLUS, operands, 0,
(REG_S_P (operands[1])
? 1
: (rtx_equal_p (operands[2], operands[0])
? 3 : 2)),
(! REG_S_P (operands[1])
? 1
: (rtx_equal_p (operands[2], operands[0])
? 3 : 2)),
-1, 4)"
[(parallel
[(set (match_dup 4) (match_dup 6))
(set (match_dup 0) (plus:SI (match_dup 7) (match_dup 8)))])]
{
rtx otherop
= rtx_equal_p (operands[2], operands[0]) ? operands[3] : operands[2];
 
/* Make sure we have canonical RTX so we match the insn pattern -
not a constant in the first operand. We also require the order
(plus reg mem) to match the final pattern. */
if (CONSTANT_P (otherop) || MEM_P (otherop))
{
operands[7] = operands[1];
operands[8] = otherop;
}
else
{
operands[7] = otherop;
operands[8] = operands[1];
}
operands[6]
= replace_equiv_address (operands[5],
gen_rtx_PLUS (SImode,
operands[7], operands[8]));
})
 
;; As above but to memory.
;; FIXME: Split movemside and moverside into variants and prune
;; the ones that don't trig.
;; No stable test-case.
 
(define_peephole2 ; movemside (peephole casesi+39)
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "cris_bdap_biap_operand" ""))
(set (match_dup 0)
(plus:SI (match_operand:SI 2 "cris_bdap_biap_operand" "")
(match_operand:SI 3 "cris_bdap_biap_operand" "")))
(set (match_operator 4 "cris_mem_op" [(match_dup 0)])
(match_operand 5 "register_operand" ""))]
"(rtx_equal_p (operands[2], operands[0])
|| rtx_equal_p (operands[3], operands[0]))
&& cris_side_effect_mode_ok (PLUS, operands, 0,
(REG_S_P (operands[1])
? 1
: (rtx_equal_p (operands[2], operands[0])
? 3 : 2)),
(! REG_S_P (operands[1])
? 1
: (rtx_equal_p (operands[2], operands[0])
? 3 : 2)),
-1, 5)"
[(parallel
[(set (match_dup 6) (match_dup 5))
(set (match_dup 0) (plus:SI (match_dup 7) (match_dup 8)))])]
{
rtx otherop
= rtx_equal_p (operands[2], operands[0]) ? operands[3] : operands[2];
 
/* Make sure we have canonical RTX so we match the insn pattern -
not a constant in the first operand. We also require the order
(plus reg mem) to match the final pattern. */
if (CONSTANT_P (otherop) || MEM_P (otherop))
{
operands[7] = operands[1];
operands[8] = otherop;
}
else
{
operands[7] = otherop;
operands[8] = operands[1];
}
operands[6]
= replace_equiv_address (operands[4],
gen_rtx_PLUS (SImode,
operands[7], operands[8]));
})
 
;; Another spotted bad code:
;; move rx,ry
;; move [ry],ry
;; No stable test-case.
 
(define_peephole2 ; movei (peephole casesi+42)
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "register_operand" ""))
(set (match_operand 2 "register_operand" "")
(match_operator 3 "cris_mem_op" [(match_dup 0)]))]
"REGNO (operands[0]) == REGNO (operands[2])
&& (REGNO_REG_CLASS (REGNO (operands[0]))
== REGNO_REG_CLASS (REGNO (operands[1])))
&& GET_MODE_SIZE (GET_MODE (operands[2])) <= UNITS_PER_WORD"
[(set (match_dup 2) (match_dup 4))]
"operands[4] = replace_equiv_address (operands[3], operands[1]);")
 
;; move.d [r10+16],r9
;; and.d r12,r9
;; change to
;; and.d [r10+16],r12,r9
;; With generalization of the operation, the size and the addressing mode.
;; This seems to be the result of a quirk in register allocation
;; missing the three-operand cases when having different predicates.
;; Maybe that it matters that it is a commutative operation.
;; This pattern helps that situation, but there's still the increased
;; register pressure.
;; Note that adding the noncommutative variant did not show any matches
;; in ipps and cc1, so it's not here.
;; No stable test-case.
 
(define_peephole2 ; op3 (peephole casesi+44)
[(set (match_operand 0 "register_operand" "")
(match_operator
6 "cris_mem_op"
[(plus:SI
(match_operand:SI 1 "cris_bdap_biap_operand" "")
(match_operand:SI 2 "cris_bdap_biap_operand" ""))]))
(set (match_dup 0)
(match_operator
5 "cris_commutative_orth_op"
[(match_operand 3 "register_operand" "")
(match_operand 4 "register_operand" "")]))]
"(rtx_equal_p (operands[3], operands[0])
|| rtx_equal_p (operands[4], operands[0]))
&& ! rtx_equal_p (operands[3], operands[4])
&& (REG_S_P (operands[1]) || REG_S_P (operands[2]))
&& GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD"
[(set (match_dup 0) (match_op_dup 5 [(match_dup 7) (match_dup 6)]))]
"operands[7]
= rtx_equal_p (operands[3], operands[0]) ? operands[4] : operands[3];")
 
;; I cannot tell GCC (2.1, 2.7.2) how to correctly reload an instruction
;; that looks like
;; and.b some_byte,const,reg_32
;; where reg_32 is the destination of the "three-address" code optimally.
;; It should be:
;; movu.b some_byte,reg_32
;; and.b const,reg_32
;; but is turns into:
;; move.b some_byte,reg_32
;; and.d const,reg_32
;; Fix it here.
;; Testcases: gcc.dg/cris-peep2-andu1.c gcc.dg/cris-peep2-andu2.c
 
(define_peephole2 ; andu (casesi+45)
[(set (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "nonimmediate_operand" ""))
(set (match_operand:SI 2 "register_operand" "")
(and:SI (match_dup 0)
(match_operand:SI 3 "const_int_operand" "")))]
;; Since the size of the memory access could be made different here,
;; don't do this for a mem-volatile access.
"REGNO (operands[2]) == REGNO (operands[0])
&& INTVAL (operands[3]) <= 65535 && INTVAL (operands[3]) >= 0
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'I')
&& (GET_CODE (operands[1]) != MEM || ! MEM_VOLATILE_P (operands[1]))"
;; FIXME: CC0 valid except for M (i.e. CC_NOT_NEGATIVE).
[(set (match_dup 0) (match_dup 4))
(set (match_dup 5) (match_dup 6))]
{
enum machine_mode zmode = INTVAL (operands[3]) <= 255 ? QImode : HImode;
enum machine_mode amode
= CONST_OK_FOR_LETTER_P (INTVAL (operands[3]), 'O') ? SImode : zmode;
rtx op1
= (REG_S_P (operands[1])
? gen_rtx_REG (zmode, REGNO (operands[1]))
: adjust_address (operands[1], zmode, 0));
operands[4]
= gen_rtx_ZERO_EXTEND (SImode, op1);
operands[5] = gen_rtx_REG (amode, REGNO (operands[0]));
operands[6]
= gen_rtx_AND (amode, gen_rtx_REG (amode, REGNO (operands[0])),
GEN_INT (trunc_int_for_mode (INTVAL (operands[3]),
amode == SImode
? QImode : amode)));
})
 
;; Try and avoid GOTPLT reads escaping a call: transform them into
;; PLT. Curiously (but thankfully), peepholes for instructions
;; *without side-effects* that just feed a call (or call_value) are
;; not matched neither in a build or test-suite, so those patterns are
;; omitted.
 
;; A "normal" move where we don't check the consumer.
 
(define_peephole2 ; gotplt-to-plt
[(set
(match_operand:SI 0 "register_operand" "")
(match_operator:SI
1 "cris_mem_op"
[(plus:SI
(reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_operand:SI 2 "cris_general_operand_or_symbol" "")]
CRIS_UNSPEC_PLTGOTREAD)))]))]
"flag_pic
&& cris_valid_pic_const (XEXP (XEXP (operands[1], 0), 1))
&& REGNO_REG_CLASS (REGNO (operands[0])) == REGNO_REG_CLASS (0)"
[(set (match_dup 0) (const:SI (unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLT)))
(set (match_dup 0) (plus:SI (match_dup 0) (reg:SI CRIS_GOT_REGNUM)))]
"")
 
;; And one set with a side-effect getting the PLTGOT offset.
;; First call and call_value variants.
 
(define_peephole2 ; gotplt-to-plt-side-call
[(parallel
[(set
(match_operand:SI 0 "register_operand" "")
(match_operator:SI
1 "cris_mem_op"
[(plus:SI
(reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_operand:SI
2 "cris_general_operand_or_symbol" "")]
CRIS_UNSPEC_PLTGOTREAD)))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLTGOTREAD))))])
(parallel [(call (mem:QI (match_dup 0))
(match_operand 4 "" ""))
(clobber (reg:SI CRIS_SRP_REGNUM))])]
"flag_pic
&& cris_valid_pic_const (XEXP (XEXP (operands[1], 0), 1))
&& peep2_reg_dead_p (2, operands[0])"
[(parallel [(call (mem:QI (match_dup 1))
(match_dup 4))
(clobber (reg:SI CRIS_SRP_REGNUM))
(set (match_dup 3)
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)]
CRIS_UNSPEC_PLTGOTREAD))))])]
"")
 
(define_peephole2 ; gotplt-to-plt-side-call-value
[(parallel
[(set
(match_operand:SI 0 "register_operand" "")
(match_operator:SI
1 "cris_mem_op"
[(plus:SI
(reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_operand:SI
2 "cris_general_operand_or_symbol" "")]
CRIS_UNSPEC_PLTGOTREAD)))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLTGOTREAD))))])
(parallel [(set (match_operand 5 "" "")
(call (mem:QI (match_dup 0))
(match_operand 4 "" "")))
(clobber (reg:SI CRIS_SRP_REGNUM))])]
"flag_pic
&& cris_valid_pic_const (XEXP (XEXP (operands[1], 0), 1))
&& peep2_reg_dead_p (2, operands[0])"
[(parallel [(set (match_dup 5)
(call (mem:QI (match_dup 1))
(match_dup 4)))
(clobber (reg:SI CRIS_SRP_REGNUM))
(set (match_dup 3)
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)]
CRIS_UNSPEC_PLTGOTREAD))))])]
"")
 
(define_peephole2 ; gotplt-to-plt-side
[(parallel
[(set
(match_operand:SI 0 "register_operand" "")
(match_operator:SI
1 "cris_mem_op"
[(plus:SI
(reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_operand:SI
2 "cris_general_operand_or_symbol" "")]
CRIS_UNSPEC_PLTGOTREAD)))]))
(set (match_operand:SI 3 "register_operand" "")
(plus:SI (reg:SI CRIS_GOT_REGNUM)
(const:SI
(unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLTGOTREAD))))])]
"flag_pic
&& cris_valid_pic_const (XEXP (XEXP (operands[1], 0), 1))
&& REGNO_REG_CLASS (REGNO (operands[0])) == REGNO_REG_CLASS (0)"
[(set (match_dup 3)
(const:SI (unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLTGOTREAD)))
(set (match_dup 3) (plus:SI (match_dup 3) (reg:SI CRIS_GOT_REGNUM)))
(set (match_dup 0) (const:SI (unspec:SI [(match_dup 2)] CRIS_UNSPEC_PLT)))
(set (match_dup 0) (plus:SI (match_dup 0) (reg:SI CRIS_GOT_REGNUM)))]
"")
;; Local variables:
;; mode:emacs-lisp
;; comment-start: ";; "
;; eval: (set-syntax-table (copy-sequence (syntax-table)))
;; eval: (modify-syntax-entry ?[ "(]")
;; eval: (modify-syntax-entry ?] ")[")
;; eval: (modify-syntax-entry ?{ "(}")
;; eval: (modify-syntax-entry ?} "){")
;; eval: (setq indent-tabs-mode t)
;; End:
/t-linux
0,0 → 1,6
TARGET_LIBGCC2_CFLAGS += -fPIC
CRTSTUFF_T_CFLAGS_S = $(TARGET_LIBGCC2_CFLAGS)
 
# We *know* we have a limits.h in the glibc library, with extra
# definitions needed for e.g. libgfortran.
LIMITS_H_TEST = :
/linux.opt
0,0 → 1,33
; GNU/Linux-specific options for the CRIS port of the compiler.
 
; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
 
; Provide a legacy -mlinux option.
mlinux
Target Report RejectNegative Undocumented
 
mno-gotplt
Target Report RejectNegative Mask(AVOID_GOTPLT) MaskExists
Together with -fpic and -fPIC, do not use GOTPLT references
 
; There's a small added setup cost with using GOTPLT references
; for the first (resolving) call, but should in total be a win
; both in code-size and execution-time.
mgotplt
Target Report RejectNegative InverseMask(AVOID_GOTPLT) Undocumented
/cris.opt
0,0 → 1,190
; Options for the CRIS port of the compiler.
 
; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
 
; TARGET_MUL_BUG: Whether or not to work around multiplication
; instruction hardware bug when generating code for models where
; it may be present. From the trouble report for Etrax 100 LX:
; "A multiply operation may cause incorrect cache behaviour
; under some specific circumstances. The problem can occur if
; the instruction following the multiply instruction causes a
; cache miss, and multiply operand 1 (source operand) bits
; [31:27] matches the logical mapping of the mode register
; address (0xb0....), and bits [9:2] of operand 1 matches the
; TLB register address (0x258-0x25f). There is such a mapping
; in kernel mode or when the MMU is off. Normally there is no
; such mapping in user mode, and the problem will therefore
; probably not occur in Linux user mode programs."
;
; We have no sure-fire way to know from within GCC that we're
; compiling a user program. For example, -fpic/PIC is used in
; libgcc which is linked into the kernel. However, the
; workaround option -mno-mul-bug can be safely used per-package
; when compiling programs. The same goes for general user-only
; libraries such as glibc, since there's no user-space
; driver-like program that gets a mapping of I/O registers (all
; on the same page, including the TLB registers).
mmul-bug-workaround
Target Report Mask(MUL_BUG)
Work around bug in multiplication instruction
 
; TARGET_ETRAX4_ADD: Instruction-set additions from Etrax 4 and up.
; (Just "lz", which we don't really generate from GCC -- yet).
metrax4
Target Report Mask(ETRAX4_ADD)
Compile for ETRAX 4 (CRIS v3)
 
; See cris_handle_option.
metrax100
Target Report RejectNegative
Compile for ETRAX 100 (CRIS v8)
 
; See cris_handle_option.
mno-etrax100
Target Report RejectNegative Undocumented
 
mpdebug
Target Report Mask(PDEBUG)
Emit verbose debug information in assembly code
 
; TARGET_CCINIT: Whether to use condition-codes generated by
; insns other than the immediately preceding compare/test insn.
; Used to check for errors in notice_update_cc.
mcc-init
Target Report Mask(CCINIT)
Do not use condition codes from normal instructions
 
; TARGET_SIDE_EFFECT_PREFIXES: Whether to use side-effect
; patterns. Used to debug the [rx=ry+i] type patterns.
mside-effects
Target Report RejectNegative Mask(SIDE_EFFECT_PREFIXES) Undocumented
 
mno-side-effects
Target Report RejectNegative InverseMask(SIDE_EFFECT_PREFIXES)
Do not emit addressing modes with side-effect assignment
 
; TARGET_STACK_ALIGN: Whether to *keep* (not force) alignment of
; stack at 16 (or 32, depending on TARGET_ALIGN_BY_32) bits.
mstack-align
Target Report RejectNegative Mask(STACK_ALIGN) Undocumented
 
mno-stack-align
Target Report RejectNegative InverseMask(STACK_ALIGN)
Do not tune stack alignment
 
; TARGET_DATA_ALIGN: Whether to do alignment on individual
; modifiable objects.
mdata-align
Target Report RejectNegative Mask(DATA_ALIGN) Undocumented
 
mno-data-align
Target Report RejectNegative InverseMask(DATA_ALIGN)
Do not tune writable data alignment
 
; TARGET_CONST_ALIGN: Whether to do alignment on individual
; non-modifiable objects.
mconst-align
Target Report RejectNegative Mask(CONST_ALIGN) Undocumented
 
mno-const-align
Target Report RejectNegative InverseMask(CONST_ALIGN)
Do not tune code and read-only data alignment
 
; See cris_handle_option.
m32-bit
Target Report RejectNegative Undocumented
 
; See cris_handle_option.
m32bit
Target Report RejectNegative
Align code and data to 32 bits
 
; See cris_handle_option.
m16-bit
Target Report RejectNegative Undocumented
 
; See cris_handle_option.
m16bit
Target Report RejectNegative Undocumented
 
; See cris_handle_option.
m8-bit
Target Report RejectNegative Undocumented
 
; See cris_handle_option.
m8bit
Target Report RejectNegative
Don't align items in code or data
 
; TARGET_PROLOGUE_EPILOGUE: Whether or not to omit function
; prologue and epilogue.
mprologue-epilogue
Target Report RejectNegative Mask(PROLOGUE_EPILOGUE) Undocumented
 
mno-prologue-epilogue
Target Report RejectNegative InverseMask(PROLOGUE_EPILOGUE)
Do not emit function prologue or epilogue
 
; We have to handle this m-option here since we can't wash it
; off in both CC1_SPEC and CC1PLUS_SPEC.
 
mbest-lib-options
Target Report RejectNegative
Use the most feature-enabling options allowed by other options
 
; FIXME: The following comment relates to gcc before cris.opt.
; Check it it's still valid:
; We must call it "override-" since calling it "no-" will cause
; gcc.c to forget it, if there's a "later" -mbest-lib-options.
; Kludgy, but needed for some multilibbed files.
moverride-best-lib-options
Target Report RejectNegative
Override -mbest-lib-options
 
mcpu=
Target Report RejectNegative Joined Undocumented Var(cris_cpu_str)
 
march=
Target Report RejectNegative Joined Var(cris_cpu_str)
-march=ARCH Generate code for the specified chip or CPU version
 
mtune=
Target Report RejectNegative Joined Var(cris_tune_str)
-mtune=ARCH Tune alignment for the specified chip or CPU version
 
mmax-stackframe=
Target Report RejectNegative Joined Var(cris_max_stackframe_str)
-mmax-stackframe=SIZE Warn when a stackframe is larger than the specified size
 
max-stackframe=
Target Report RejectNegative Joined Undocumented Var(cris_max_stackframe_str)
 
; TARGET_SVINTO: Currently this just affects alignment. FIXME:
; Redundant with TARGET_ALIGN_BY_32, or put machine stuff here?
; This and the others below could just as well be variables and
; TARGET_* defines in cris.h.
Mask(SVINTO)
 
; TARGET_ALIGN_BY_32: Say that all alignment specifications say
; to prefer 32 rather than 16 bits.
Mask(ALIGN_BY_32)
 
; TARGET_AVOID_GOTPLT is referred to in the .c and the .md so we
; need to allocate the flag and macros here.
Mask(AVOID_GOTPLT)
/t-cris
0,0 → 1,41
#
# t-cris
#
# The Makefile fragment to include when compiling gcc et al for CRIS.
#
#
# The makefile macros etc. are included in the order found in the
# section "Target Fragment" in the gcc info-files (or the paper copy) of
# "Using and Porting GCC"
 
LIB2FUNCS_EXTRA = _udivsi3.c _divsi3.c _umodsi3.c _modsi3.c
CRIS_LIB1CSRC = $(srcdir)/config/cris/arit.c
 
FPBIT = tmplibgcc_fp_bit.c
DPBIT = dp-bit.c
 
dp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' > dp-bit.c
cat $(srcdir)/config/fp-bit.c >> dp-bit.c
 
# Use another name to avoid confusing SUN make, if support for
# it is reinstated elsewhere. Prefixed with "tmplibgcc" means
# "make clean" will wipe it. We define a few L_ thingies
# because we can't select them individually through FPBIT_FUNCS;
# see above.
tmplibgcc_fp_bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' > $@
echo '#define FLOAT' >> $@
cat $(srcdir)/config/fp-bit.c >> $@
 
# The fixed-point arithmetic code is in one file, arit.c,
# similar to libgcc2.c (or the old libgcc1.c). We need to
# "split it up" with one file per define.
$(LIB2FUNCS_EXTRA): $(CRIS_LIB1CSRC)
name=`echo $@ | sed -e 's,.*/,,' | sed -e 's,.c$$,,'`; \
echo "#define L$$name" > tmp-$@ \
&& echo '#include "$<"' >> tmp-$@ \
&& mv -f tmp-$@ $@
 
$(out_object_file): gt-cris.h
gt-cris.h : s-gtype ; @true
/elf.opt
0,0 → 1,22
; ELF-specific options for the CRIS port of the compiler.
 
; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
 
melf
Target Report RejectNegative Undocumented
/t-aout
0,0 → 1,12
LIB2FUNCS_STATIC_EXTRA = \
tmpabi_symbol.c $(srcdir)/config/cris/mulsi3.asm
 
MULTILIB_OPTIONS = melinux
MULTILIB_DIRNAMES = elinux
MULTILIB_EXTRA_OPTS = mbest-lib-options
 
INSTALL_LIBGCC = install-multilib
LIBGCC = stmp-multilib
 
tmpabi_symbol.c: $(srcdir)/config/cris/cris_abi_symbol.c
cp $(srcdir)/config/cris/cris_abi_symbol.c $@
/aout.opt
0,0 → 1,33
; a.out-specific options for the CRIS port of the compiler.
 
; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
 
; Legacy option.
maout
Target Report RejectNegative Undocumented
 
melinux
Target Report RejectNegative
Compile for the MMU-less Etrax 100-based elinux system
 
;; We don't parse it currently; it's just passed on to the linker.
;; We might want to do something here someday.
melinux-stacksize=
Target Report RejectNegative Joined Var(cris_elinux_stacksize_str)
-melinux-stacksize=SIZE For elinux, request a specified stack-size for this program
/cris-protos.h
0,0 → 1,69
/* Definitions for GCC. Part of the machine description for CRIS.
Copyright (C) 1998, 1999, 2000, 2001, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by Axis Communications.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* Prototypes for the CRIS port. */
 
#if defined(FILE) || defined(stdin) || defined(stdout) || defined(getc) || defined(putc)
#define STDIO_INCLUDED
#endif
 
extern void cris_conditional_register_usage (void);
extern bool cris_simple_epilogue (void);
#ifdef RTX_CODE
extern const char *cris_op_str (rtx);
extern void cris_notice_update_cc (rtx, rtx);
extern bool cris_reload_address_legitimized (rtx, enum machine_mode, int, int, int);
extern void cris_print_operand (FILE *, rtx, int);
extern void cris_print_operand_address (FILE *, rtx);
extern int cris_side_effect_mode_ok (enum rtx_code, rtx *, int, int,
int, int, int);
extern rtx cris_return_addr_rtx (int, rtx);
extern rtx cris_split_movdx (rtx *);
extern int cris_legitimate_pic_operand (rtx);
extern enum cris_pic_symbol_type cris_pic_symbol_type_of (rtx);
extern bool cris_valid_pic_const (rtx);
extern bool cris_store_multiple_op_p (rtx);
extern bool cris_movem_load_rest_p (rtx, int);
extern void cris_asm_output_symbol_ref (FILE *, rtx);
extern bool cris_output_addr_const_extra (FILE *, rtx);
extern int cris_cfun_uses_pic_table (void);
extern rtx cris_gen_movem_load (rtx, rtx, int);
extern rtx cris_emit_movem_store (rtx, rtx, int, bool);
extern void cris_expand_pic_call_address (rtx *);
extern void cris_order_for_addsi3 (rtx *, int);
#endif /* RTX_CODE */
extern void cris_asm_output_label_ref (FILE *, char *);
extern void cris_target_asm_named_section (const char *, unsigned int, tree);
extern void cris_expand_prologue (void);
extern void cris_expand_epilogue (void);
extern void cris_expand_return (bool);
extern bool cris_return_address_on_stack_for_return (void);
extern bool cris_return_address_on_stack (void);
extern void cris_pragma_expand_mul (struct cpp_reader *);
 
/* Need one that returns an int; usable in expressions. */
extern int cris_fatal (char *);
 
extern void cris_override_options (void);
 
extern int cris_initial_elimination_offset (int, int);
 
extern void cris_init_expanders (void);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.