OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /openrisc/trunk/gnu-old/gcc-4.2.2/gcc/config/crx
    from Rev 154 to Rev 816
    Reverse comparison

Rev 154 → Rev 816

/crx.h
0,0 → 1,522
/* Definitions of target machine for GNU compiler, for CRX.
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#ifndef GCC_CRX_H
#define GCC_CRX_H
 
/*****************************************************************************/
/* CONTROLLING THE DRIVER */
/*****************************************************************************/
 
#define CC1PLUS_SPEC "%{!frtti:-fno-rtti} \
%{!fenforce-eh-specs:-fno-enforce-eh-specs} \
%{!fexceptions:-fno-exceptions} \
%{!fthreadsafe-statics:-fno-threadsafe-statics}"
 
#undef STARTFILE_SPEC
#define STARTFILE_SPEC "crti.o%s crtbegin.o%s"
 
#undef ENDFILE_SPEC
#define ENDFILE_SPEC "crtend.o%s crtn.o%s"
 
#undef MATH_LIBRARY
#define MATH_LIBRARY ""
 
/*****************************************************************************/
/* RUN-TIME TARGET SPECIFICATION */
/*****************************************************************************/
 
#ifndef TARGET_CPU_CPP_BUILTINS
#define TARGET_CPU_CPP_BUILTINS() \
do { \
builtin_define("__CRX__"); \
builtin_define("__CR__"); \
} while (0)
#endif
 
#define TARGET_VERSION fputs (" (CRX/ELF)", stderr);
 
/* Put each function in its own section so that PAGE-instruction
* relaxation can do its best. */
#define OPTIMIZATION_OPTIONS(LEVEL, SIZEFLAG) \
do { \
if ((LEVEL) || (SIZEFLAG)) \
flag_function_sections = 1; \
} while (0)
 
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
 
/*****************************************************************************/
/* STORAGE LAYOUT */
/*****************************************************************************/
 
#define BITS_BIG_ENDIAN 0
 
#define BYTES_BIG_ENDIAN 0
 
#define WORDS_BIG_ENDIAN 0
 
#define UNITS_PER_WORD 4
 
#define POINTER_SIZE 32
 
#define PARM_BOUNDARY 32
 
#define STACK_BOUNDARY 32
 
#define FUNCTION_BOUNDARY 32
 
#define STRUCTURE_SIZE_BOUNDARY 32
 
#define BIGGEST_ALIGNMENT 32
 
/* In CRX arrays of chars are word-aligned, so strcpy() will be faster. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < BITS_PER_WORD \
? (BITS_PER_WORD) : (ALIGN))
 
/* In CRX strings are word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(CONSTANT, ALIGN) \
(TREE_CODE (CONSTANT) == STRING_CST && (ALIGN) < BITS_PER_WORD \
? (BITS_PER_WORD) : (ALIGN))
 
#define STRICT_ALIGNMENT 0
 
#define PCC_BITFIELD_TYPE_MATTERS 1
 
/*****************************************************************************/
/* LAYOUT OF SOURCE LANGUAGE DATA TYPES */
/*****************************************************************************/
 
#define INT_TYPE_SIZE 32
 
#define SHORT_TYPE_SIZE 16
 
#define LONG_TYPE_SIZE 32
 
#define LONG_LONG_TYPE_SIZE 64
 
#define FLOAT_TYPE_SIZE 32
 
#define DOUBLE_TYPE_SIZE 64
 
#define LONG_DOUBLE_TYPE_SIZE 64
 
#define DEFAULT_SIGNED_CHAR 1
 
#define SIZE_TYPE "unsigned int"
 
#define PTRDIFF_TYPE "int"
 
/*****************************************************************************/
/* REGISTER USAGE. */
/*****************************************************************************/
 
#define FIRST_PSEUDO_REGISTER 19
 
/* On the CRX, only the stack pointer (r15) is such. */
#define FIXED_REGISTERS \
{ \
/* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* r11 r12 r13 ra sp r16 r17 cc */ \
0, 0, 0, 0, 1, 0, 0, 1 \
}
 
/* On the CRX, calls clobbers r0-r6 (scratch registers), ra (the return address)
* and sp - (the stack pointer which is fixed). */
#define CALL_USED_REGISTERS \
{ \
/* r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 */ \
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
/* r11 r12 r13 ra sp r16 r17 cc */ \
0, 0, 0, 1, 1, 1, 1, 1 \
}
 
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
 
/* On the CRX architecture, HILO regs can only hold SI mode. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) crx_hard_regno_mode_ok(REGNO, MODE)
 
/* So far no patterns for moving CCMODE data are available */
#define AVOID_CCMODE_COPIES
 
/* Interrupt functions can only use registers that have already been saved by
* the prologue, even if they would normally be call-clobbered. */
#define HARD_REGNO_RENAME_OK(SRC, DEST) \
(!crx_interrupt_function_p () || regs_ever_live[DEST])
 
#define MODES_TIEABLE_P(MODE1, MODE2) 1
 
enum reg_class
{
NO_REGS,
LO_REGS,
HI_REGS,
HILO_REGS,
NOSP_REGS,
GENERAL_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
 
#define N_REG_CLASSES (int) LIM_REG_CLASSES
 
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"LO_REGS", \
"HI_REGS", \
"HILO_REGS", \
"NOSP_REGS", \
"GENERAL_REGS", \
"ALL_REGS" \
}
 
#define REG_CLASS_CONTENTS \
{ \
{0x00000000}, /* NO_REGS */ \
{0x00010000}, /* LO_REGS : 16 */ \
{0x00020000}, /* HI_REGS : 17 */ \
{0x00030000}, /* HILO_REGS : 16, 17 */ \
{0x00007fff}, /* NOSP_REGS : 0 - 14 */ \
{0x0000ffff}, /* GENERAL_REGS : 0 - 15 */ \
{0x0007ffff} /* ALL_REGS : 0 - 18 */ \
}
 
#define REGNO_REG_CLASS(REGNO) crx_regno_reg_class(REGNO)
 
#define BASE_REG_CLASS GENERAL_REGS
 
#define INDEX_REG_CLASS GENERAL_REGS
 
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'b' ? NOSP_REGS : \
(C) == 'l' ? LO_REGS : \
(C) == 'h' ? HI_REGS : \
(C) == 'k' ? HILO_REGS : \
NO_REGS)
 
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < 16 \
|| (reg_renumber && (unsigned)reg_renumber[REGNO] < 16))
 
#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)
 
#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
 
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
crx_secondary_reload_class (CLASS, MODE, X)
 
#define CLASS_MAX_NREGS(CLASS, MODE) \
(GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD
 
#define SIGNED_INT_FITS_N_BITS(imm, N) \
((((imm) < ((long long)1<<((N)-1))) && ((imm) >= -((long long)1<<((N)-1)))) ? 1 : 0)
 
#define UNSIGNED_INT_FITS_N_BITS(imm, N) \
(((imm) < ((long long)1<<(N)) && (imm) >= (long long)0) ? 1 : 0)
 
#define HILO_REGNO_P(regno) \
(reg_classes_intersect_p(REGNO_REG_CLASS(regno), HILO_REGS))
 
#define INT_CST4(VALUE) \
(((VALUE) >= -1 && (VALUE) <= 4) || (VALUE) == -4 \
|| (VALUE) == 7 || (VALUE) == 8 || (VALUE) == 16 || (VALUE) == 32 \
|| (VALUE) == 20 || (VALUE) == 12 || (VALUE) == 48)
 
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
/* Legal const for store immediate instructions */ \
((C) == 'I' ? UNSIGNED_INT_FITS_N_BITS(VALUE, 3) : \
(C) == 'J' ? UNSIGNED_INT_FITS_N_BITS(VALUE, 4) : \
(C) == 'K' ? UNSIGNED_INT_FITS_N_BITS(VALUE, 5) : \
(C) == 'L' ? INT_CST4(VALUE) : \
0)
 
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? crx_const_double_ok (VALUE) : \
0)
 
/*****************************************************************************/
/* STACK LAYOUT AND CALLING CONVENTIONS. */
/*****************************************************************************/
 
#define STACK_GROWS_DOWNWARD
 
#define STARTING_FRAME_OFFSET 0
 
#define STACK_POINTER_REGNUM 15
 
#define FRAME_POINTER_REGNUM 13
 
#define ARG_POINTER_REGNUM 12
 
#define STATIC_CHAIN_REGNUM 1
 
#define RETURN_ADDRESS_REGNUM 14
 
#define FIRST_PARM_OFFSET(FNDECL) 0
 
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
 
#define ELIMINABLE_REGS \
{ \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
}
 
#define CAN_ELIMINATE(FROM, TO) \
((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
 
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
do { \
(OFFSET) = crx_initial_elimination_offset ((FROM), (TO)); \
} while (0)
 
/*****************************************************************************/
/* PASSING FUNCTION ARGUMENTS */
/*****************************************************************************/
 
#define ACCUMULATE_OUTGOING_ARGS (TARGET_NO_PUSH_ARGS)
 
#define PUSH_ARGS (!TARGET_NO_PUSH_ARGS)
 
#define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
 
#define RETURN_POPS_ARGS(FNDECL, FUNTYPE, SIZE) 0
 
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
((rtx) crx_function_arg(&(CUM), (MODE), (TYPE), (NAMED)))
 
#ifndef CUMULATIVE_ARGS
struct cumulative_args
{
int ints;
};
 
#define CUMULATIVE_ARGS struct cumulative_args
#endif
 
/* On the CRX architecture, Varargs routines should receive their parameters on
* the stack. */
 
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
crx_init_cumulative_args(&(CUM), (FNTYPE), (LIBNAME))
 
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
crx_function_arg_advance(&(CUM), (MODE), (TYPE), (NAMED))
 
#define FUNCTION_ARG_REGNO_P(REGNO) crx_function_arg_regno_p(REGNO)
 
/*****************************************************************************/
/* RETURNING FUNCTION VALUE */
/*****************************************************************************/
 
/* On the CRX, the return value is in R0 */
 
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG(TYPE_MODE (VALTYPE), 0)
 
#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
 
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
 
#define CRX_STRUCT_VALUE_REGNUM 0
 
/*****************************************************************************/
/* GENERATING CODE FOR PROFILING - NOT IMPLEMENTED */
/*****************************************************************************/
 
#undef FUNCTION_PROFILER
#define FUNCTION_PROFILER(STREAM, LABELNO) \
{ \
sorry ("Profiler support for CRX"); \
}
/*****************************************************************************/
/* TRAMPOLINES FOR NESTED FUNCTIONS - NOT SUPPORTED */
/*****************************************************************************/
 
#define TRAMPOLINE_SIZE 32
 
#define INITIALIZE_TRAMPOLINE(addr, fnaddr, static_chain) \
{ \
sorry ("Trampoline support for CRX"); \
}
 
/*****************************************************************************/
/* ADDRESSING MODES */
/*****************************************************************************/
 
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF \
|| GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST \
|| GET_CODE (X) == CONST_INT)
 
#define MAX_REGS_PER_ADDRESS 2
 
#define HAVE_POST_INCREMENT 1
#define HAVE_POST_DECREMENT 1
#define HAVE_POST_MODIFY_DISP 1
#define HAVE_POST_MODIFY_REG 0
 
#ifdef REG_OK_STRICT
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#else
#define REG_OK_FOR_BASE_P(X) 1
#define REG_OK_FOR_INDEX_P(X) 1
#endif /* REG_OK_STRICT */
 
#ifdef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
{ \
if (crx_legitimate_address_p (MODE, X, 1)) \
goto LABEL; \
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
{ \
if (crx_legitimate_address_p (MODE, X, 0)) \
goto LABEL; \
}
#endif /* REG_OK_STRICT */
 
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
{ \
if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) \
goto LABEL; \
}
 
#define LEGITIMATE_CONSTANT_P(X) 1
 
/*****************************************************************************/
/* CONDITION CODE STATUS */
/*****************************************************************************/
 
/*****************************************************************************/
/* RELATIVE COSTS OF OPERATIONS */
/*****************************************************************************/
 
#define MEMORY_MOVE_COST(MODE, CLASS, IN) crx_memory_move_cost(MODE, CLASS, IN)
/* Moving to processor register flushes pipeline - thus asymmetric */
#define REGISTER_MOVE_COST(MODE, FROM, TO) ((TO != GENERAL_REGS) ? 8 : 2)
/* Assume best case (branch predicted) */
#define BRANCH_COST 2
 
#define SLOW_BYTE_ACCESS 1
 
/*****************************************************************************/
/* DIVIDING THE OUTPUT INTO SECTIONS */
/*****************************************************************************/
 
#define TEXT_SECTION_ASM_OP "\t.section\t.text"
 
#define DATA_SECTION_ASM_OP "\t.section\t.data"
 
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
 
/*****************************************************************************/
/* POSITION INDEPENDENT CODE */
/*****************************************************************************/
 
#define PIC_OFFSET_TABLE_REGNUM 12
 
#define LEGITIMATE_PIC_OPERAND_P(X) 1
 
/*****************************************************************************/
/* ASSEMBLER FORMAT */
/*****************************************************************************/
 
#define GLOBAL_ASM_OP "\t.globl\t"
 
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX "_"
 
#undef ASM_OUTPUT_LABELREF
#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
asm_fprintf (STREAM, "%U%s", (*targetm.strip_name_encoding) (NAME));
 
#undef ASM_APP_ON
#define ASM_APP_ON "#APP\n"
 
#undef ASM_APP_OFF
#define ASM_APP_OFF "#NO_APP\n"
 
/*****************************************************************************/
/* INSTRUCTION OUTPUT */
/*****************************************************************************/
 
#define REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "ra", "sp", \
"lo", "hi", "cc" \
}
 
#define PRINT_OPERAND(STREAM, X, CODE) \
crx_print_operand(STREAM, X, CODE)
 
#define PRINT_OPERAND_ADDRESS(STREAM, ADDR) \
crx_print_operand_address(STREAM, ADDR)
 
/*****************************************************************************/
/* OUTPUT OF DISPATCH TABLES */
/*****************************************************************************/
 
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
asm_fprintf ((STREAM), "\t.long\t.L%d\n", (VALUE))
 
/*****************************************************************************/
/* ALIGNMENT IN ASSEMBLER FILE */
/*****************************************************************************/
 
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
asm_fprintf ((STREAM), "\t.align\t%d\n", 1 << (POWER))
 
/*****************************************************************************/
/* MISCELLANEOUS PARAMETERS */
/*****************************************************************************/
 
#define CASE_VECTOR_MODE Pmode
 
#define MOVE_MAX 4
 
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
 
#define STORE_FLAG_VALUE 1
 
#define Pmode SImode
 
#define FUNCTION_MODE QImode
 
/*****************************************************************************/
/* EXTERNAL DECLARATIONS FOR VARIABLES DEFINED IN CRX.C */
/*****************************************************************************/
 
extern rtx crx_compare_op0; /* operand 0 for comparisons */
extern rtx crx_compare_op1; /* operand 1 for comparisons */
 
#endif /* ! GCC_CRX_H */
/crx-protos.h
0,0 → 1,86
/* Prototypes for exported functions defined in crx.c
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#ifndef GCC_CRX_PROTOS_H
#define GCC_CRX_PROTOS_H
 
 
/* Register usage. */
extern enum reg_class crx_regno_reg_class (int);
extern int crx_hard_regno_mode_ok (int regno, enum machine_mode);
#ifdef RTX_CODE
extern enum reg_class crx_secondary_reload_class (enum reg_class, enum machine_mode, rtx);
#endif /* RTX_CODE */
 
/* Passing function arguments. */
extern int crx_function_arg_regno_p (int);
#ifdef TREE_CODE
extern void crx_function_arg_advance (CUMULATIVE_ARGS *, enum machine_mode, tree, int);
#ifdef RTX_CODE
extern void crx_init_cumulative_args (CUMULATIVE_ARGS *, tree, rtx);
extern rtx crx_function_arg (struct cumulative_args *, enum machine_mode, tree, int);
#endif /* RTX_CODE */
#endif /* TREE_CODE */
 
#ifdef RTX_CODE
/* Addressing Modes. */
struct crx_address
{
rtx base, index, disp, side_effect;
int scale;
};
 
enum crx_addrtype
{
CRX_INVALID, CRX_REG_REL, CRX_POST_INC, CRX_SCALED_INDX, CRX_ABSOLUTE
};
 
extern enum crx_addrtype crx_decompose_address (rtx addr, struct crx_address *out);
extern int crx_legitimate_address_p (enum machine_mode, rtx, int);
 
extern int crx_const_double_ok (rtx op);
 
/* Instruction output. */
extern void crx_print_operand (FILE *, rtx, int);
extern void crx_print_operand_address (FILE *, rtx);
 
/* Misc functions called from crx.md. */
extern rtx crx_expand_compare (enum rtx_code, enum machine_mode);
extern void crx_expand_branch (enum rtx_code, rtx);
extern void crx_expand_scond (enum rtx_code, rtx);
 
extern void crx_expand_movmem_single (rtx, rtx, rtx, rtx, rtx, unsigned HOST_WIDE_INT *);
extern int crx_expand_movmem (rtx, rtx, rtx, rtx);
#endif /* RTX_CODE */
 
/* Routines to compute costs. */
extern int crx_memory_move_cost (enum machine_mode, enum reg_class, int);
 
/* Prologue/Epilogue functions. */
extern int crx_initial_elimination_offset (int, int);
extern char *crx_prepare_push_pop_string (int);
extern void crx_expand_prologue (void);
extern void crx_expand_epilogue (void);
 
 
/* Handling the "interrupt" attribute */
extern int crx_interrupt_function_p (void);
 
#endif /* GCC_CRX_PROTOS_H */
/crx.md
0,0 → 1,924
;; GCC machine description for CRX.
;; Copyright (C) 1988, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
;; 2001, 2002, 2003, 2004, 2007
;; Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>. */
 
;; Register numbers
 
(define_constants
[(SP_REGNUM 15) ; Stack pointer
(RA_REGNUM 14) ; Return address
(LO_REGNUM 16) ; LO register
(HI_REGNUM 17) ; HI register
(CC_REGNUM 18) ; Condition code register
]
)
 
(define_attr "length" "" ( const_int 6 ))
 
(define_asm_attributes
[(set_attr "length" "6")]
)
 
;; Predicates
 
(define_predicate "u4bits_operand"
(match_code "const_int,const_double")
{
if (GET_CODE (op) == CONST_DOUBLE)
return crx_const_double_ok (op);
return (UNSIGNED_INT_FITS_N_BITS(INTVAL(op), 4)) ? 1 : 0;
}
)
 
(define_predicate "cst4_operand"
(and (match_code "const_int")
(match_test "INT_CST4(INTVAL(op))")))
 
(define_predicate "reg_or_u4bits_operand"
(ior (match_operand 0 "u4bits_operand")
(match_operand 0 "register_operand")))
 
(define_predicate "reg_or_cst4_operand"
(ior (match_operand 0 "cst4_operand")
(match_operand 0 "register_operand")))
 
(define_predicate "reg_or_sym_operand"
(ior (match_code "symbol_ref")
(match_operand 0 "register_operand")))
 
(define_predicate "nosp_reg_operand"
(and (match_operand 0 "register_operand")
(match_test "REGNO (op) != SP_REGNUM")))
 
(define_predicate "store_operand"
(and (match_operand 0 "memory_operand")
(not (match_operand 0 "push_operand"))))
 
;; Mode Macro Definitions
 
(define_mode_macro ALLMT [QI HI SI SF DI DF])
(define_mode_macro CRXMM [QI HI SI SF])
(define_mode_macro CRXIM [QI HI SI])
(define_mode_macro DIDFM [DI DF])
(define_mode_macro SISFM [SI SF])
(define_mode_macro SHORT [QI HI])
 
(define_mode_attr tIsa [(QI "b") (HI "w") (SI "d") (SF "d")])
(define_mode_attr lImmArith [(QI "4") (HI "4") (SI "6")])
(define_mode_attr lImmRotl [(QI "2") (HI "2") (SI "4")])
(define_mode_attr IJK [(QI "I") (HI "J") (SI "K")])
(define_mode_attr iF [(QI "i") (HI "i") (SI "i") (DI "i") (SF "F") (DF "F")])
(define_mode_attr JG [(QI "J") (HI "J") (SI "J") (DI "J") (SF "G") (DF "G")])
; In HI or QI mode we push 4 bytes.
(define_mode_attr pushCnstr [(QI "X") (HI "X") (SI "<") (SF "<") (DI "<") (DF "<")])
(define_mode_attr tpush [(QI "") (HI "") (SI "") (SF "") (DI "sp, ") (DF "sp, ")])
(define_mode_attr lpush [(QI "2") (HI "2") (SI "2") (SF "2") (DI "4") (DF "4")])
 
 
;; Code Macro Definitions
 
(define_code_macro sz_xtnd [sign_extend zero_extend])
(define_code_attr sIsa [(sign_extend "") (zero_extend "u")])
(define_code_attr sPat [(sign_extend "s") (zero_extend "u")])
(define_code_attr szPat [(sign_extend "") (zero_extend "zero_")])
(define_code_attr szIsa [(sign_extend "s") (zero_extend "z")])
 
(define_code_macro sh_oprnd [ashift ashiftrt lshiftrt])
(define_code_attr shIsa [(ashift "ll") (ashiftrt "ra") (lshiftrt "rl")])
(define_code_attr shPat [(ashift "ashl") (ashiftrt "ashr") (lshiftrt "lshr")])
 
(define_code_macro mima_oprnd [smax umax smin umin])
(define_code_attr mimaIsa [(smax "maxs") (umax "maxu") (smin "mins") (umin "minu")])
 
(define_code_macro any_cond [eq ne gt gtu lt ltu ge geu le leu])
 
;; Addition Instructions
 
(define_insn "adddi3"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(plus:DI (match_operand:DI 1 "register_operand" "%0,0")
(match_operand:DI 2 "nonmemory_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"addd\t%L2, %L1\;addcd\t%H2, %H1"
[(set_attr "length" "4,12")]
)
 
(define_insn "add<mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r,r")
(plus:CRXIM (match_operand:CRXIM 1 "register_operand" "%0,0")
(match_operand:CRXIM 2 "nonmemory_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"add<tIsa>\t%2, %0"
[(set_attr "length" "2,<lImmArith>")]
)
 
;; Subtract Instructions
 
(define_insn "subdi3"
[(set (match_operand:DI 0 "register_operand" "=r,r")
(minus:DI (match_operand:DI 1 "register_operand" "0,0")
(match_operand:DI 2 "nonmemory_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"subd\t%L2, %L1\;subcd\t%H2, %H1"
[(set_attr "length" "4,12")]
)
 
(define_insn "sub<mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r,r")
(minus:CRXIM (match_operand:CRXIM 1 "register_operand" "0,0")
(match_operand:CRXIM 2 "nonmemory_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"sub<tIsa>\t%2, %0"
[(set_attr "length" "2,<lImmArith>")]
)
 
;; Multiply Instructions
 
(define_insn "mul<mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r,r")
(mult:CRXIM (match_operand:CRXIM 1 "register_operand" "%0,0")
(match_operand:CRXIM 2 "nonmemory_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"mul<tIsa>\t%2, %0"
[(set_attr "length" "2,<lImmArith>")]
)
 
;; Widening-multiplication Instructions
 
(define_insn "<sIsa>mulsidi3"
[(set (match_operand:DI 0 "register_operand" "=k")
(mult:DI (sz_xtnd:DI (match_operand:SI 1 "register_operand" "%r"))
(sz_xtnd:DI (match_operand:SI 2 "register_operand" "r"))))
(clobber (reg:CC CC_REGNUM))]
""
"mull<sPat>d\t%2, %1"
[(set_attr "length" "4")]
)
 
(define_insn "<sIsa>mulhisi3"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI (sz_xtnd:SI (match_operand:HI 1 "register_operand" "%0"))
(sz_xtnd:SI (match_operand:HI 2 "register_operand" "r"))))
(clobber (reg:CC CC_REGNUM))]
""
"mul<sPat>wd\t%2, %0"
[(set_attr "length" "4")]
)
 
(define_insn "<sIsa>mulqihi3"
[(set (match_operand:HI 0 "register_operand" "=r")
(mult:HI (sz_xtnd:HI (match_operand:QI 1 "register_operand" "%0"))
(sz_xtnd:HI (match_operand:QI 2 "register_operand" "r"))))
(clobber (reg:CC CC_REGNUM))]
""
"mul<sPat>bw\t%2, %0"
[(set_attr "length" "4")]
)
 
;; Logical Instructions - and
 
(define_insn "and<mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r,r")
(and:CRXIM (match_operand:CRXIM 1 "register_operand" "%0,0")
(match_operand:CRXIM 2 "nonmemory_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"and<tIsa>\t%2, %0"
[(set_attr "length" "2,<lImmArith>")]
)
 
;; Logical Instructions - or
 
(define_insn "ior<mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r,r")
(ior:CRXIM (match_operand:CRXIM 1 "register_operand" "%0,0")
(match_operand:CRXIM 2 "nonmemory_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"or<tIsa>\t%2, %0"
[(set_attr "length" "2,<lImmArith>")]
)
 
;; Logical Instructions - xor
 
(define_insn "xor<mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r,r")
(xor:CRXIM (match_operand:CRXIM 1 "register_operand" "%0,0")
(match_operand:CRXIM 2 "nonmemory_operand" "r,i")))
(clobber (reg:CC CC_REGNUM))]
""
"xor<tIsa>\t%2, %0"
[(set_attr "length" "2,<lImmArith>")]
)
 
;; Sign and Zero Extend Instructions
 
(define_insn "<szPat>extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(sz_xtnd:SI (match_operand:HI 1 "register_operand" "r")))
(clobber (reg:CC CC_REGNUM))]
""
"<szIsa>extwd\t%1, %0"
[(set_attr "length" "4")]
)
 
(define_insn "<szPat>extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(sz_xtnd:SI (match_operand:QI 1 "register_operand" "r")))
(clobber (reg:CC CC_REGNUM))]
""
"<szIsa>extbd\t%1, %0"
[(set_attr "length" "4")]
)
 
(define_insn "<szPat>extendqihi2"
[(set (match_operand:HI 0 "register_operand" "=r")
(sz_xtnd:HI (match_operand:QI 1 "register_operand" "r")))
(clobber (reg:CC CC_REGNUM))]
""
"<szIsa>extbw\t%1, %0"
[(set_attr "length" "4")]
)
 
;; Negation Instructions
 
(define_insn "neg<mode>2"
[(set (match_operand:CRXIM 0 "register_operand" "=r")
(neg:CRXIM (match_operand:CRXIM 1 "register_operand" "r")))
(clobber (reg:CC CC_REGNUM))]
""
"neg<tIsa>\t%1, %0"
[(set_attr "length" "4")]
)
 
;; Absolute Instructions
 
(define_insn "abs<mode>2"
[(set (match_operand:CRXIM 0 "register_operand" "=r")
(abs:CRXIM (match_operand:CRXIM 1 "register_operand" "r")))
(clobber (reg:CC CC_REGNUM))]
""
"abs<tIsa>\t%1, %0"
[(set_attr "length" "4")]
)
 
;; Max and Min Instructions
 
(define_insn "<code><mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r")
(mima_oprnd:CRXIM (match_operand:CRXIM 1 "register_operand" "%0")
(match_operand:CRXIM 2 "register_operand" "r")))]
""
"<mimaIsa><tIsa>\t%2, %0"
[(set_attr "length" "4")]
)
 
;; One's Complement
 
(define_insn "one_cmpl<mode>2"
[(set (match_operand:CRXIM 0 "register_operand" "=r")
(not:CRXIM (match_operand:CRXIM 1 "register_operand" "0")))
(clobber (reg:CC CC_REGNUM))]
""
"xor<tIsa>\t$-1, %0"
[(set_attr "length" "2")]
)
 
;; Rotate Instructions
 
(define_insn "rotl<mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r,r")
(rotate:CRXIM (match_operand:CRXIM 1 "register_operand" "0,0")
(match_operand:CRXIM 2 "nonmemory_operand" "r,<IJK>")))
(clobber (reg:CC CC_REGNUM))]
""
"@
rotl<tIsa>\t%2, %0
rot<tIsa>\t%2, %0"
[(set_attr "length" "4,<lImmRotl>")]
)
 
(define_insn "rotr<mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r")
(rotatert:CRXIM (match_operand:CRXIM 1 "register_operand" "0")
(match_operand:CRXIM 2 "register_operand" "r")))
(clobber (reg:CC CC_REGNUM))]
""
"rotr<tIsa>\t%2, %0"
[(set_attr "length" "4")]
)
 
;; Arithmetic Left and Right Shift Instructions
 
(define_insn "<shPat><mode>3"
[(set (match_operand:CRXIM 0 "register_operand" "=r,r")
(sh_oprnd:CRXIM (match_operand:CRXIM 1 "register_operand" "0,0")
(match_operand:QI 2 "nonmemory_operand" "r,<IJK>")))
(clobber (reg:CC CC_REGNUM))]
""
"s<shIsa><tIsa>\t%2, %0"
[(set_attr "length" "2,2")]
)
 
;; Bit Set Instructions
 
(define_insn "extv"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extract:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "const_int_operand" "n")
(match_operand:SI 3 "const_int_operand" "n")))]
""
{
static char buf[100];
int strpntr;
int size = INTVAL (operands[2]);
int pos = INTVAL (operands[3]);
strpntr = sprintf (buf, "ram\t$%d, $31, $%d, %%1, %%0\;",
BITS_PER_WORD - (size + pos), BITS_PER_WORD - size);
sprintf (buf + strpntr, "srad\t$%d, %%0", BITS_PER_WORD - size);
return buf;
}
[(set_attr "length" "6")]
)
 
(define_insn "extzv"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extract:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "const_int_operand" "n")
(match_operand:SI 3 "const_int_operand" "n")))]
""
{
static char buf[40];
int size = INTVAL (operands[2]);
int pos = INTVAL (operands[3]);
sprintf (buf, "ram\t$%d, $%d, $0, %%1, %%0",
(BITS_PER_WORD - pos) % BITS_PER_WORD, size - 1);
return buf;
}
[(set_attr "length" "4")]
)
 
(define_insn "insv"
[(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
(match_operand:SI 1 "const_int_operand" "n")
(match_operand:SI 2 "const_int_operand" "n"))
(match_operand:SI 3 "register_operand" "r"))]
""
{
static char buf[40];
int size = INTVAL (operands[1]);
int pos = INTVAL (operands[2]);
sprintf (buf, "rim\t$%d, $%d, $%d, %%3, %%0",
pos, size + pos - 1, pos);
return buf;
}
[(set_attr "length" "4")]
)
 
;; Move Instructions
 
(define_expand "mov<mode>"
[(set (match_operand:ALLMT 0 "nonimmediate_operand" "")
(match_operand:ALLMT 1 "general_operand" ""))]
""
{
if (!(reload_in_progress || reload_completed))
{
if (!register_operand (operands[0], <MODE>mode))
{
if (push_operand (operands[0], <MODE>mode) ?
!nosp_reg_operand (operands[1], <MODE>mode) :
!reg_or_u4bits_operand (operands[1], <MODE>mode))
{
operands[1] = copy_to_mode_reg (<MODE>mode, operands[1]);
}
}
}
}
)
 
(define_insn "push<mode>_internal"
[(set (match_operand:ALLMT 0 "push_operand" "=<pushCnstr>")
(match_operand:ALLMT 1 "nosp_reg_operand" "b"))]
""
"push\t<tpush>%p1"
[(set_attr "length" "<lpush>")]
)
 
(define_insn "mov<mode>_regs"
[(set (match_operand:SISFM 0 "register_operand" "=r, r, r, k")
(match_operand:SISFM 1 "nonmemory_operand" "r, <iF>, k, r"))]
""
"@
movd\t%1, %0
movd\t%1, %0
mfpr\t%1, %0
mtpr\t%1, %0"
[(set_attr "length" "2,6,4,4")]
)
 
(define_insn "mov<mode>_regs"
[(set (match_operand:DIDFM 0 "register_operand" "=r, r, r, k")
(match_operand:DIDFM 1 "nonmemory_operand" "r, <iF>, k, r"))]
""
{
switch (which_alternative)
{
case 0: if (REGNO (operands[0]) > REGNO (operands[1]))
return "movd\t%H1, %H0\;movd\t%L1, %L0";
else
return "movd\t%L1, %L0\;movd\t%H1, %H0";
case 1: return "movd\t%H1, %H0\;movd\t%L1, %L0";
case 2: return "mfpr\t%H1, %H0\;mfpr\t%L1, %L0";
case 3: return "mtpr\t%H1, %H0\;mtpr\t%L1, %L0";
default: gcc_unreachable ();
}
}
[(set_attr "length" "4,12,8,8")]
)
 
(define_insn "mov<mode>_regs" ; no HI/QI mode in HILO regs
[(set (match_operand:SHORT 0 "register_operand" "=r, r")
(match_operand:SHORT 1 "nonmemory_operand" "r, i"))]
""
"mov<tIsa>\t%1, %0"
[(set_attr "length" "2,<lImmArith>")]
)
 
(define_insn "mov<mode>_load"
[(set (match_operand:CRXMM 0 "register_operand" "=r")
(match_operand:CRXMM 1 "memory_operand" "m"))]
""
"load<tIsa>\t%1, %0"
[(set_attr "length" "6")]
)
 
(define_insn "mov<mode>_load"
[(set (match_operand:DIDFM 0 "register_operand" "=r")
(match_operand:DIDFM 1 "memory_operand" "m"))]
""
{
rtx first_dest_reg = gen_rtx_REG (SImode, REGNO (operands[0]));
if (reg_overlap_mentioned_p (first_dest_reg, operands[1]))
return "loadd\t%H1, %H0\;loadd\t%L1, %L0";
return "loadd\t%L1, %L0\;loadd\t%H1, %H0";
}
[(set_attr "length" "12")]
)
 
(define_insn "mov<mode>_store"
[(set (match_operand:CRXMM 0 "store_operand" "=m, m")
(match_operand:CRXMM 1 "reg_or_u4bits_operand" "r, <JG>"))]
""
"stor<tIsa>\t%1, %0"
[(set_attr "length" "6")]
)
 
(define_insn "mov<mode>_store"
[(set (match_operand:DIDFM 0 "store_operand" "=m, m")
(match_operand:DIDFM 1 "reg_or_u4bits_operand" "r, <JG>"))]
""
"stord\t%H1, %H0\;stord\t%L1, %L0"
[(set_attr "length" "12")]
)
 
;; Movmem Instruction
 
(define_expand "movmemsi"
[(use (match_operand:BLK 0 "memory_operand" ""))
(use (match_operand:BLK 1 "memory_operand" ""))
(use (match_operand:SI 2 "nonmemory_operand" ""))
(use (match_operand:SI 3 "const_int_operand" ""))]
""
{
if (crx_expand_movmem (operands[0], operands[1], operands[2], operands[3]))
DONE;
else
FAIL;
}
)
 
;; Compare and Branch Instructions
 
(define_insn "cbranch<mode>4"
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(match_operand:CRXIM 1 "register_operand" "r")
(match_operand:CRXIM 2 "reg_or_cst4_operand" "rL")])
(label_ref (match_operand 3 "" ""))
(pc)))
(clobber (reg:CC CC_REGNUM))]
""
"cmpb%d0<tIsa>\t%2, %1, %l3"
[(set_attr "length" "6")]
)
 
;; Compare Instructions
 
(define_expand "cmp<mode>"
[(set (reg:CC CC_REGNUM)
(compare:CC (match_operand:CRXIM 0 "register_operand" "")
(match_operand:CRXIM 1 "nonmemory_operand" "")))]
""
{
crx_compare_op0 = operands[0];
crx_compare_op1 = operands[1];
DONE;
}
)
 
(define_insn "cmp<mode>_internal"
[(set (reg:CC CC_REGNUM)
(compare:CC (match_operand:CRXIM 0 "register_operand" "r,r")
(match_operand:CRXIM 1 "nonmemory_operand" "r,i")))]
""
"cmp<tIsa>\t%1, %0"
[(set_attr "length" "2,<lImmArith>")]
)
 
;; Conditional Branch Instructions
 
(define_expand "b<code>"
[(set (pc)
(if_then_else (any_cond (reg:CC CC_REGNUM)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
{
crx_expand_branch (<CODE>, operands[0]);
DONE;
}
)
 
(define_insn "bCOND_internal"
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(reg:CC CC_REGNUM)
(const_int 0)])
(label_ref (match_operand 1 ""))
(pc)))]
""
"b%d0\t%l1"
[(set_attr "length" "6")]
)
 
;; Scond Instructions
 
(define_expand "s<code>"
[(set (match_operand:SI 0 "register_operand")
(any_cond:SI (reg:CC CC_REGNUM) (const_int 0)))]
""
{
crx_expand_scond (<CODE>, operands[0]);
DONE;
}
)
 
(define_insn "sCOND_internal"
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operator:SI 1 "comparison_operator"
[(reg:CC CC_REGNUM) (const_int 0)]))]
""
"s%d1\t%0"
[(set_attr "length" "2")]
)
 
;; Jumps and Branches
 
(define_insn "indirect_jump_return"
[(parallel
[(set (pc)
(reg:SI RA_REGNUM))
(return)])
]
"reload_completed"
"jump\tra"
[(set_attr "length" "2")]
)
 
(define_insn "indirect_jump"
[(set (pc)
(match_operand:SI 0 "reg_or_sym_operand" "r,i"))]
""
"@
jump\t%0
br\t%a0"
[(set_attr "length" "2,6")]
)
 
(define_insn "interrupt_return"
[(parallel
[(unspec_volatile [(const_int 0)] 0)
(return)])]
""
{
return crx_prepare_push_pop_string (1);
}
[(set_attr "length" "14")]
)
 
(define_insn "jump_to_imm"
[(set (pc)
(match_operand 0 "immediate_operand" "i"))]
""
"br\t%c0"
[(set_attr "length" "6")]
)
 
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"br\t%l0"
[(set_attr "length" "6")]
)
 
;; Function Prologue and Epilogue
 
(define_expand "prologue"
[(const_int 0)]
""
{
crx_expand_prologue ();
DONE;
}
)
 
(define_insn "push_for_prologue"
[(parallel
[(set (reg:SI SP_REGNUM)
(minus:SI (reg:SI SP_REGNUM)
(match_operand:SI 0 "immediate_operand" "i")))])]
"reload_completed"
{
return crx_prepare_push_pop_string (0);
}
[(set_attr "length" "4")]
)
 
(define_expand "epilogue"
[(return)]
""
{
crx_expand_epilogue ();
DONE;
}
)
 
(define_insn "pop_and_popret_return"
[(parallel
[(set (reg:SI SP_REGNUM)
(plus:SI (reg:SI SP_REGNUM)
(match_operand:SI 0 "immediate_operand" "i")))
(use (reg:SI RA_REGNUM))
(return)])
]
"reload_completed"
{
return crx_prepare_push_pop_string (1);
}
[(set_attr "length" "4")]
)
 
(define_insn "popret_RA_return"
[(parallel
[(use (reg:SI RA_REGNUM))
(return)])
]
"reload_completed"
"popret\tra"
[(set_attr "length" "2")]
)
 
;; Table Jump
 
(define_insn "tablejump"
[(set (pc)
(match_operand:SI 0 "register_operand" "r"))
(use (label_ref:SI (match_operand 1 "" "" )))]
""
"jump\t%0"
[(set_attr "length" "2")]
)
 
;; Call Instructions
 
(define_expand "call"
[(call (match_operand:QI 0 "memory_operand" "")
(match_operand 1 "" ""))]
""
{
emit_call_insn (gen_crx_call (operands[0], operands[1]));
DONE;
}
)
 
(define_expand "crx_call"
[(parallel
[(call (match_operand:QI 0 "memory_operand" "")
(match_operand 1 "" ""))
(clobber (reg:SI RA_REGNUM))])]
""
""
)
 
(define_insn "crx_call_insn_branch"
[(call (mem:QI (match_operand:SI 0 "immediate_operand" "i"))
(match_operand 1 "" ""))
(clobber (match_operand:SI 2 "register_operand" "+r"))]
""
"bal\tra, %a0"
[(set_attr "length" "6")]
)
 
(define_insn "crx_call_insn_jump"
[(call (mem:QI (match_operand:SI 0 "register_operand" "r"))
(match_operand 1 "" ""))
(clobber (match_operand:SI 2 "register_operand" "+r"))]
""
"jal\t%0"
[(set_attr "length" "2")]
)
 
(define_insn "crx_call_insn_jalid"
[(call (mem:QI (mem:SI (plus:SI
(match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "register_operand" "r"))))
(match_operand 2 "" ""))
(clobber (match_operand:SI 3 "register_operand" "+r"))]
""
"jalid\t%0, %1"
[(set_attr "length" "4")]
)
 
;; Call Value Instructions
 
(define_expand "call_value"
[(set (match_operand 0 "general_operand" "")
(call (match_operand:QI 1 "memory_operand" "")
(match_operand 2 "" "")))]
""
{
emit_call_insn (gen_crx_call_value (operands[0], operands[1], operands[2]));
DONE;
}
)
 
(define_expand "crx_call_value"
[(parallel
[(set (match_operand 0 "general_operand" "")
(call (match_operand 1 "memory_operand" "")
(match_operand 2 "" "")))
(clobber (reg:SI RA_REGNUM))])]
""
""
)
 
(define_insn "crx_call_value_insn_branch"
[(set (match_operand 0 "" "=g")
(call (mem:QI (match_operand:SI 1 "immediate_operand" "i"))
(match_operand 2 "" "")))
(clobber (match_operand:SI 3 "register_operand" "+r"))]
""
"bal\tra, %a1"
[(set_attr "length" "6")]
)
 
(define_insn "crx_call_value_insn_jump"
[(set (match_operand 0 "" "=g")
(call (mem:QI (match_operand:SI 1 "register_operand" "r"))
(match_operand 2 "" "")))
(clobber (match_operand:SI 3 "register_operand" "+r"))]
""
"jal\t%1"
[(set_attr "length" "2")]
)
 
(define_insn "crx_call_value_insn_jalid"
[(set (match_operand 0 "" "=g")
(call (mem:QI (mem:SI (plus:SI
(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))))
(match_operand 3 "" "")))
(clobber (match_operand:SI 4 "register_operand" "+r"))]
""
"jalid\t%0, %1"
[(set_attr "length" "4")]
)
 
;; Nop
 
(define_insn "nop"
[(const_int 0)]
""
""
)
 
;; Multiply and Accumulate Instructions
 
(define_insn "<sPat>madsidi3"
[(set (match_operand:DI 0 "register_operand" "+k")
(plus:DI
(mult:DI (sz_xtnd:DI (match_operand:SI 1 "register_operand" "%r"))
(sz_xtnd:DI (match_operand:SI 2 "register_operand" "r")))
(match_dup 0)))
(clobber (reg:CC CC_REGNUM))]
"TARGET_MAC"
"mac<sPat>d\t%2, %1"
[(set_attr "length" "4")]
)
 
(define_insn "<sPat>madhisi3"
[(set (match_operand:SI 0 "register_operand" "+l")
(plus:SI
(mult:SI (sz_xtnd:SI (match_operand:HI 1 "register_operand" "%r"))
(sz_xtnd:SI (match_operand:HI 2 "register_operand" "r")))
(match_dup 0)))
(clobber (reg:CC CC_REGNUM))]
"TARGET_MAC"
"mac<sPat>w\t%2, %1"
[(set_attr "length" "4")]
)
 
(define_insn "<sPat>madqihi3"
[(set (match_operand:HI 0 "register_operand" "+l")
(plus:HI
(mult:HI (sz_xtnd:HI (match_operand:QI 1 "register_operand" "%r"))
(sz_xtnd:HI (match_operand:QI 2 "register_operand" "r")))
(match_dup 0)))
(clobber (reg:CC CC_REGNUM))]
"TARGET_MAC"
"mac<sPat>b\t%2, %1"
[(set_attr "length" "4")]
)
 
;; Loop Instructions
 
(define_expand "doloop_end"
[(use (match_operand 0 "" "")) ; loop pseudo
(use (match_operand 1 "" "")) ; iterations; zero if unknown
(use (match_operand 2 "" "")) ; max iterations
(use (match_operand 3 "" "")) ; loop level
(use (match_operand 4 "" ""))] ; label
""
{
if (INTVAL (operands[3]) > crx_loop_nesting)
FAIL;
switch (GET_MODE (operands[0]))
{
case SImode:
emit_jump_insn (gen_doloop_end_si (operands[4], operands[0]));
break;
case HImode:
emit_jump_insn (gen_doloop_end_hi (operands[4], operands[0]));
break;
case QImode:
emit_jump_insn (gen_doloop_end_qi (operands[4], operands[0]));
break;
default:
FAIL;
}
DONE;
}
)
 
; CRX dbnz[bwd] used explicitly (see above) but also by the combiner.
 
(define_insn "doloop_end_<mode>"
[(set (pc)
(if_then_else (ne (match_operand:CRXIM 1 "register_operand" "+r,!m")
(const_int 1))
(label_ref (match_operand 0 "" ""))
(pc)))
(set (match_dup 1) (plus:CRXIM (match_dup 1) (const_int -1)))
(clobber (match_scratch:CRXIM 2 "=X,r"))
(clobber (reg:CC CC_REGNUM))]
""
"@
dbnz<tIsa>\t%1, %l0
load<tIsa>\t%1, %2\;add<tIsa>\t$-1, %2\;stor<tIsa>\t%2, %1\;bne\t%l0"
[(set_attr "length" "6, 12")]
)
/crx.c
0,0 → 1,1471
/* Output routines for GCC for CRX.
Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/*****************************************************************************/
/* HEADER INCLUDES */
/*****************************************************************************/
 
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-codes.h"
#include "insn-attr.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "recog.h"
#include "expr.h"
#include "optabs.h"
#include "toplev.h"
#include "basic-block.h"
#include "target.h"
#include "target-def.h"
 
/*****************************************************************************/
/* DEFINITIONS */
/*****************************************************************************/
 
/* Maximum number of register used for passing parameters. */
#define MAX_REG_FOR_PASSING_ARGS 6
 
/* Minimum number register used for passing parameters. */
#define MIN_REG_FOR_PASSING_ARGS 2
 
/* The maximum count of words supported in the assembly of the architecture in
* a push/pop instruction. */
#define MAX_COUNT 8
 
/* Predicate is true if the current function is a 'noreturn' function, i.e. it
* is qualified as volatile. */
#define FUNC_IS_NORETURN_P(decl) (TREE_THIS_VOLATILE (decl))
 
/* The following macros are used in crx_decompose_address () */
 
/* Returns the factor of a scaled index address or -1 if invalid. */
#define SCALE_FOR_INDEX_P(X) \
(GET_CODE (X) == CONST_INT ? \
(INTVAL (X) == 1 ? 1 : \
INTVAL (X) == 2 ? 2 : \
INTVAL (X) == 4 ? 4 : \
INTVAL (X) == 8 ? 8 : \
-1) : \
-1)
 
/* Nonzero if the rtx X is a signed const int of n bits */
#define RTX_SIGNED_INT_FITS_N_BITS(X,n) \
((GET_CODE (X) == CONST_INT \
&& SIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
 
/* Nonzero if the rtx X is an unsigned const int of n bits. */
#define RTX_UNSIGNED_INT_FITS_N_BITS(X, n) \
((GET_CODE (X) == CONST_INT \
&& UNSIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
 
/*****************************************************************************/
/* STATIC VARIABLES */
/*****************************************************************************/
 
/* Nonzero if the last param processed is passed in a register. */
static int last_parm_in_reg;
 
/* Will hold the number of the last register the prologue saves, -1 if no
* register is saved. */
static int last_reg_to_save;
 
/* Each object in the array is a register number. Mark 1 for registers that
* need to be saved. */
static int save_regs[FIRST_PSEUDO_REGISTER];
 
/* Number of bytes saved on the stack for non-scratch registers */
static int sum_regs = 0;
 
/* Number of bytes saved on the stack for local variables. */
static int local_vars_size;
 
/* The sum of 2 sizes: locals vars and padding byte for saving the registers.
* Used in expand_prologue () and expand_epilogue (). */
static int size_for_adjusting_sp;
 
/* In case of a POST_INC or POST_DEC memory reference, we must report the mode
* of the memory reference from PRINT_OPERAND to PRINT_OPERAND_ADDRESS. */
static enum machine_mode output_memory_reference_mode;
 
/*****************************************************************************/
/* GLOBAL VARIABLES */
/*****************************************************************************/
 
/* Table of machine attributes. */
const struct attribute_spec crx_attribute_table[];
 
/* Test and compare insns use these globals to generate branch insns. */
rtx crx_compare_op0 = NULL_RTX;
rtx crx_compare_op1 = NULL_RTX;
 
/*****************************************************************************/
/* TARGETM FUNCTION PROTOTYPES */
/*****************************************************************************/
 
static bool crx_fixed_condition_code_regs (unsigned int *, unsigned int *);
static rtx crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED);
static bool crx_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED);
static int crx_address_cost (rtx);
 
/*****************************************************************************/
/* STACK LAYOUT AND CALLING CONVENTIONS */
/*****************************************************************************/
 
#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS crx_fixed_condition_code_regs
 
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX crx_struct_value_rtx
 
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY crx_return_in_memory
 
/*****************************************************************************/
/* RELATIVE COSTS OF OPERATIONS */
/*****************************************************************************/
 
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST crx_address_cost
 
/*****************************************************************************/
/* TARGET-SPECIFIC USES OF `__attribute__' */
/*****************************************************************************/
 
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE crx_attribute_table
 
const struct attribute_spec crx_attribute_table[] = {
/* ISRs have special prologue and epilogue requirements. */
{"interrupt", 0, 0, false, true, true, NULL},
{NULL, 0, 0, false, false, false, NULL}
};
 
 
/* Initialize 'targetm' variable which contains pointers to functions and data
* relating to the target machine. */
 
struct gcc_target targetm = TARGET_INITIALIZER;
 
 
/*****************************************************************************/
/* TARGET HOOK IMPLEMENTATIONS */
/*****************************************************************************/
 
/* Return the fixed registers used for condition codes. */
 
static bool
crx_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
*p1 = CC_REGNUM;
*p2 = INVALID_REGNUM;
return true;
}
 
/* Implements hook TARGET_STRUCT_VALUE_RTX. */
 
static rtx
crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, CRX_STRUCT_VALUE_REGNUM);
}
 
/* Implements hook TARGET_RETURN_IN_MEMORY. */
 
static bool
crx_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
{
if (TYPE_MODE (type) == BLKmode)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
return (size == -1 || size > 8);
}
else
return false;
}
 
 
/*****************************************************************************/
/* MACRO IMPLEMENTATIONS */
/*****************************************************************************/
 
/* STACK LAYOUT AND CALLING CONVENTIONS ROUTINES */
/* --------------------------------------------- */
 
/* Return nonzero if the current function being compiled is an interrupt
* function as specified by the "interrupt" attribute. */
 
int
crx_interrupt_function_p (void)
{
tree attributes;
 
attributes = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
return lookup_attribute ("interrupt", attributes) != NULL_TREE;
}
 
/* Compute values for the array save_regs and the variable sum_regs. The index
* of save_regs is numbers of register, each will get 1 if we need to save it
* in the current function, 0 if not. sum_regs is the total sum of the
* registers being saved. */
 
static void
crx_compute_save_regs (void)
{
unsigned int regno;
 
/* initialize here so in case the function is no-return it will be -1. */
last_reg_to_save = -1;
 
/* No need to save any registers if the function never returns. */
if (FUNC_IS_NORETURN_P (current_function_decl))
return;
 
/* Initialize the number of bytes to be saved. */
sum_regs = 0;
 
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (fixed_regs[regno])
{
save_regs[regno] = 0;
continue;
}
 
/* If this reg is used and not call-used (except RA), save it. */
if (crx_interrupt_function_p ())
{
if (!current_function_is_leaf && call_used_regs[regno])
/* this is a volatile reg in a non-leaf interrupt routine - save it
* for the sake of its sons. */
save_regs[regno] = 1;
 
else if (regs_ever_live[regno])
/* This reg is used - save it. */
save_regs[regno] = 1;
else
/* This reg is not used, and is not a volatile - don't save. */
save_regs[regno] = 0;
}
else
{
/* If this reg is used and not call-used (except RA), save it. */
if (regs_ever_live[regno]
&& (!call_used_regs[regno] || regno == RETURN_ADDRESS_REGNUM))
save_regs[regno] = 1;
else
save_regs[regno] = 0;
}
}
 
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (save_regs[regno] == 1)
{
last_reg_to_save = regno;
sum_regs += UNITS_PER_WORD;
}
}
 
/* Compute the size of the local area and the size to be adjusted by the
* prologue and epilogue. */
 
static void
crx_compute_frame (void)
{
/* For aligning the local variables. */
int stack_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
int padding_locals;
 
/* Padding needed for each element of the frame. */
local_vars_size = get_frame_size ();
 
/* Align to the stack alignment. */
padding_locals = local_vars_size % stack_alignment;
if (padding_locals)
padding_locals = stack_alignment - padding_locals;
 
local_vars_size += padding_locals;
 
size_for_adjusting_sp = local_vars_size + (ACCUMULATE_OUTGOING_ARGS ?
current_function_outgoing_args_size : 0);
}
 
/* Implements the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET. */
 
int
crx_initial_elimination_offset (int from, int to)
{
/* Compute this since we need to use sum_regs. */
crx_compute_save_regs ();
 
/* Compute this since we need to use local_vars_size. */
crx_compute_frame ();
 
if ((from) == FRAME_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
return (ACCUMULATE_OUTGOING_ARGS ?
current_function_outgoing_args_size : 0);
else if ((from) == ARG_POINTER_REGNUM && (to) == FRAME_POINTER_REGNUM)
return (sum_regs + local_vars_size);
else if ((from) == ARG_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
return (sum_regs + local_vars_size +
(ACCUMULATE_OUTGOING_ARGS ?
current_function_outgoing_args_size : 0));
else
abort ();
}
 
/* REGISTER USAGE */
/* -------------- */
 
/* Return the class number of the smallest class containing reg number REGNO.
* This could be a conditional expression or could index an array. */
 
enum reg_class
crx_regno_reg_class (int regno)
{
if (regno >= 0 && regno < SP_REGNUM)
return NOSP_REGS;
 
if (regno == SP_REGNUM)
return GENERAL_REGS;
 
if (regno == LO_REGNUM)
return LO_REGS;
if (regno == HI_REGNUM)
return HI_REGS;
 
return NO_REGS;
}
 
/* Transfer between HILO_REGS and memory via secondary reloading. */
 
enum reg_class
crx_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x ATTRIBUTE_UNUSED)
{
if (reg_classes_intersect_p (class, HILO_REGS)
&& true_regnum (x) == -1)
return GENERAL_REGS;
 
return NO_REGS;
}
 
/* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */
 
int
crx_hard_regno_mode_ok (int regno, enum machine_mode mode)
{
/* CC can only hold CCmode values. */
if (regno == CC_REGNUM)
return GET_MODE_CLASS (mode) == MODE_CC;
if (GET_MODE_CLASS (mode) == MODE_CC)
return 0;
/* HILO registers can only hold SImode and DImode */
if (HILO_REGNO_P (regno))
return mode == SImode || mode == DImode;
return 1;
}
 
/* PASSING FUNCTION ARGUMENTS */
/* -------------------------- */
 
/* If enough param regs are available for passing the param of type TYPE return
* the number of registers needed else 0. */
 
static int
enough_regs_for_param (CUMULATIVE_ARGS * cum, tree type,
enum machine_mode mode)
{
int type_size;
int remaining_size;
 
if (mode != BLKmode)
type_size = GET_MODE_BITSIZE (mode);
else
type_size = int_size_in_bytes (type) * BITS_PER_UNIT;
 
remaining_size =
BITS_PER_WORD * (MAX_REG_FOR_PASSING_ARGS -
(MIN_REG_FOR_PASSING_ARGS + cum->ints) + 1);
 
/* Any variable which is too big to pass in two registers, will pass on
* stack. */
if ((remaining_size >= type_size) && (type_size <= 2 * BITS_PER_WORD))
return (type_size + BITS_PER_WORD - 1) / BITS_PER_WORD;
 
return 0;
}
 
/* Implements the macro FUNCTION_ARG defined in crx.h. */
 
rtx
crx_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, tree type,
int named ATTRIBUTE_UNUSED)
{
last_parm_in_reg = 0;
 
/* Function_arg () is called with this type just after all the args have had
* their registers assigned. The rtx that function_arg returns from this type
* is supposed to pass to 'gen_call' but currently it is not implemented (see
* macro GEN_CALL). */
if (type == void_type_node)
return NULL_RTX;
 
if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
return NULL_RTX;
 
if (mode == BLKmode)
{
/* Enable structures that need padding bytes at the end to pass to a
* function in registers. */
if (enough_regs_for_param (cum, type, mode) != 0)
{
last_parm_in_reg = 1;
return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
}
}
 
if (MIN_REG_FOR_PASSING_ARGS + cum->ints > MAX_REG_FOR_PASSING_ARGS)
return NULL_RTX;
else
{
if (enough_regs_for_param (cum, type, mode) != 0)
{
last_parm_in_reg = 1;
return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
}
}
 
return NULL_RTX;
}
 
/* Implements the macro INIT_CUMULATIVE_ARGS defined in crx.h. */
 
void
crx_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
rtx libfunc ATTRIBUTE_UNUSED)
{
tree param, next_param;
 
cum->ints = 0;
 
/* Determine if this function has variable arguments. This is indicated by
* the last argument being 'void_type_mode' if there are no variable
* arguments. Change here for a different vararg. */
for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
param != (tree) 0; param = next_param)
{
next_param = TREE_CHAIN (param);
if (next_param == (tree) 0 && TREE_VALUE (param) != void_type_node)
{
cum->ints = -1;
return;
}
}
}
 
/* Implements the macro FUNCTION_ARG_ADVANCE defined in crx.h. */
 
void
crx_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
tree type, int named ATTRIBUTE_UNUSED)
{
/* l holds the number of registers required */
int l = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
 
/* If the parameter isn't passed on a register don't advance cum. */
if (!last_parm_in_reg)
return;
 
if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
return;
 
if (mode == SImode || mode == HImode || mode == QImode || mode == DImode)
{
if (l <= 1)
cum->ints += 1;
else
cum->ints += l;
}
else if (mode == SFmode || mode == DFmode)
cum->ints += l;
else if ((mode) == BLKmode)
{
if ((l = enough_regs_for_param (cum, type, mode)) != 0)
cum->ints += l;
}
 
}
 
/* Implements the macro FUNCTION_ARG_REGNO_P defined in crx.h. Return nonzero
* if N is a register used for passing parameters. */
 
int
crx_function_arg_regno_p (int n)
{
return (n <= MAX_REG_FOR_PASSING_ARGS && n >= MIN_REG_FOR_PASSING_ARGS);
}
 
/* ADDRESSING MODES */
/* ---------------- */
 
/* Implements the macro GO_IF_LEGITIMATE_ADDRESS defined in crx.h.
* The following addressing modes are supported on CRX:
*
* Relocations --> const | symbol_ref | label_ref
* Absolute address --> 32 bit absolute
* Post increment --> reg + 12 bit disp.
* Post modify --> reg + 12 bit disp.
* Register relative --> reg | 32 bit disp. + reg | 4 bit + reg
* Scaled index --> reg + reg | 22 bit disp. + reg + reg |
* 22 disp. + reg + reg + (2 | 4 | 8) */
 
static int crx_addr_reg_p (rtx addr_reg)
{
rtx reg;
 
if (REG_P (addr_reg))
{
reg = addr_reg;
}
else if ((GET_CODE (addr_reg) == SUBREG
&& REG_P (SUBREG_REG (addr_reg))
&& GET_MODE_SIZE (GET_MODE (SUBREG_REG (addr_reg)))
<= UNITS_PER_WORD))
{
reg = SUBREG_REG (addr_reg);
}
else
return FALSE;
 
if (GET_MODE (addr_reg) != Pmode)
{
return FALSE;
}
 
return TRUE;
}
 
enum crx_addrtype
crx_decompose_address (rtx addr, struct crx_address *out)
{
rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX;
rtx scale_rtx = NULL_RTX, side_effect = NULL_RTX;
int scale = -1;
enum crx_addrtype retval = CRX_INVALID;
 
switch (GET_CODE (addr))
{
case CONST_INT:
/* Absolute address (known at compile time) */
retval = CRX_ABSOLUTE;
disp = addr;
if (!UNSIGNED_INT_FITS_N_BITS (INTVAL (disp), GET_MODE_BITSIZE (Pmode)))
return CRX_INVALID;
break;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
/* Absolute address (known at link time) */
retval = CRX_ABSOLUTE;
disp = addr;
break;
 
case REG:
case SUBREG:
/* Register relative address */
retval = CRX_REG_REL;
base = addr;
break;
 
case PLUS:
switch (GET_CODE (XEXP (addr, 0)))
{
case REG:
case SUBREG:
if (REG_P (XEXP (addr, 1)))
{
/* Scaled index with scale = 1 and disp. = 0 */
retval = CRX_SCALED_INDX;
base = XEXP (addr, 1);
index = XEXP (addr, 0);
scale = 1;
}
else if (RTX_SIGNED_INT_FITS_N_BITS (XEXP (addr, 1), 28))
{
/* Register relative address and <= 28-bit disp. */
retval = CRX_REG_REL;
base = XEXP (addr, 0);
disp = XEXP (addr, 1);
}
else
return CRX_INVALID;
break;
 
case PLUS:
/* Scaled index and <= 22-bit disp. */
retval = CRX_SCALED_INDX;
base = XEXP (XEXP (addr, 0), 1);
disp = XEXP (addr, 1);
if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 22))
return CRX_INVALID;
switch (GET_CODE (XEXP (XEXP (addr, 0), 0)))
{
case REG:
/* Scaled index with scale = 0 and <= 22-bit disp. */
index = XEXP (XEXP (addr, 0), 0);
scale = 1;
break;
case MULT:
/* Scaled index with scale >= 0 and <= 22-bit disp. */
index = XEXP (XEXP (XEXP (addr, 0), 0), 0);
scale_rtx = XEXP (XEXP (XEXP (addr, 0), 0), 1);
if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
return CRX_INVALID;
break;
 
default:
return CRX_INVALID;
}
break;
case MULT:
/* Scaled index with scale >= 0 */
retval = CRX_SCALED_INDX;
base = XEXP (addr, 1);
index = XEXP (XEXP (addr, 0), 0);
scale_rtx = XEXP (XEXP (addr, 0), 1);
/* Scaled index with scale >= 0 and <= 22-bit disp. */
if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
return CRX_INVALID;
break;
 
default:
return CRX_INVALID;
}
break;
 
case POST_INC:
case POST_DEC:
/* Simple post-increment */
retval = CRX_POST_INC;
base = XEXP (addr, 0);
side_effect = addr;
break;
 
case POST_MODIFY:
/* Generic post-increment with <= 12-bit disp. */
retval = CRX_POST_INC;
base = XEXP (addr, 0);
side_effect = XEXP (addr, 1);
if (base != XEXP (side_effect, 0))
return CRX_INVALID;
switch (GET_CODE (side_effect))
{
case PLUS:
case MINUS:
disp = XEXP (side_effect, 1);
if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 12))
return CRX_INVALID;
break;
 
default:
/* CRX only supports PLUS and MINUS */
return CRX_INVALID;
}
break;
 
default:
return CRX_INVALID;
}
 
if (base && !crx_addr_reg_p (base)) return CRX_INVALID;
if (index && !crx_addr_reg_p (index)) return CRX_INVALID;
out->base = base;
out->index = index;
out->disp = disp;
out->scale = scale;
out->side_effect = side_effect;
 
return retval;
}
 
int
crx_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
rtx addr, int strict)
{
enum crx_addrtype addrtype;
struct crx_address address;
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr,
"\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
GET_MODE_NAME (mode), strict);
debug_rtx (addr);
}
addrtype = crx_decompose_address (addr, &address);
 
if (addrtype == CRX_POST_INC && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
return FALSE;
 
if (TARGET_DEBUG_ADDR)
{
const char *typestr;
switch (addrtype)
{
case CRX_INVALID:
typestr = "Invalid";
break;
case CRX_REG_REL:
typestr = "Register relative";
break;
case CRX_POST_INC:
typestr = "Post-increment";
break;
case CRX_SCALED_INDX:
typestr = "Scaled index";
break;
case CRX_ABSOLUTE:
typestr = "Absolute";
break;
default:
abort ();
}
fprintf (stderr, "CRX Address type: %s\n", typestr);
}
if (addrtype == CRX_INVALID)
return FALSE;
 
if (strict)
{
if (address.base && !REGNO_OK_FOR_BASE_P (REGNO (address.base)))
{
if (TARGET_DEBUG_ADDR)
fprintf (stderr, "Base register not strict\n");
return FALSE;
}
if (address.index && !REGNO_OK_FOR_INDEX_P (REGNO (address.index)))
{
if (TARGET_DEBUG_ADDR)
fprintf (stderr, "Index register not strict\n");
return FALSE;
}
}
 
return TRUE;
}
 
/* ROUTINES TO COMPUTE COSTS */
/* ------------------------- */
 
/* Return cost of the memory address x. */
 
static int
crx_address_cost (rtx addr)
{
enum crx_addrtype addrtype;
struct crx_address address;
int cost = 2;
addrtype = crx_decompose_address (addr, &address);
gcc_assert (addrtype != CRX_INVALID);
 
/* An absolute address causes a 3-word instruction */
if (addrtype == CRX_ABSOLUTE)
cost+=2;
/* Post-modifying addresses are more powerful. */
if (addrtype == CRX_POST_INC)
cost-=2;
 
/* Attempt to minimize number of registers in the address. */
if (address.base)
cost++;
if (address.index && address.scale == 1)
cost+=5;
 
if (address.disp && !INT_CST4 (INTVAL (address.disp)))
cost+=2;
 
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr, "\n======\nTARGET_ADDRESS_COST = %d\n", cost);
debug_rtx (addr);
}
return cost;
}
 
/* Return the cost of moving data of mode MODE between a register of class
* CLASS and memory; IN is zero if the value is to be written to memory,
* nonzero if it is to be read in. This cost is relative to those in
* REGISTER_MOVE_COST. */
 
int
crx_memory_move_cost (enum machine_mode mode,
enum reg_class class ATTRIBUTE_UNUSED,
int in ATTRIBUTE_UNUSED)
{
/* One LD or ST takes twice the time of a simple reg-reg move */
if (reg_classes_intersect_p (class, GENERAL_REGS))
{
/* printf ("GENERAL_REGS LD/ST = %d\n", 4 * HARD_REGNO_NREGS (0, mode));*/
return 4 * HARD_REGNO_NREGS (0, mode);
}
else if (reg_classes_intersect_p (class, HILO_REGS))
{
/* HILO to memory and vice versa */
/* printf ("HILO_REGS %s = %d\n", in ? "LD" : "ST",
(REGISTER_MOVE_COST (mode,
in ? GENERAL_REGS : HILO_REGS,
in ? HILO_REGS : GENERAL_REGS) + 4)
* HARD_REGNO_NREGS (0, mode)); */
return (REGISTER_MOVE_COST (mode,
in ? GENERAL_REGS : HILO_REGS,
in ? HILO_REGS : GENERAL_REGS) + 4)
* HARD_REGNO_NREGS (0, mode);
}
else /* default (like in i386) */
{
/* printf ("ANYREGS = 100\n"); */
return 100;
}
}
 
/* INSTRUCTION OUTPUT */
/* ------------------ */
 
/* Check if a const_double is ok for crx store-immediate instructions */
 
int
crx_const_double_ok (rtx op)
{
if (GET_MODE (op) == DFmode)
{
REAL_VALUE_TYPE r;
long l[2];
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
return (UNSIGNED_INT_FITS_N_BITS (l[0], 4) &&
UNSIGNED_INT_FITS_N_BITS (l[1], 4)) ? 1 : 0;
}
 
if (GET_MODE (op) == SFmode)
{
REAL_VALUE_TYPE r;
long l;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
return UNSIGNED_INT_FITS_N_BITS (l, 4) ? 1 : 0;
}
 
return (UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_LOW (op), 4) &&
UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_HIGH (op), 4)) ? 1 : 0;
}
 
/* Implements the macro PRINT_OPERAND defined in crx.h. */
 
void
crx_print_operand (FILE * file, rtx x, int code)
{
switch (code)
{
case 'p' :
if (GET_CODE (x) == REG) {
if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
{
int regno = REGNO (x);
if (regno + 1 >= SP_REGNUM) abort ();
fprintf (file, "{%s, %s}", reg_names[regno], reg_names[regno + 1]);
return;
}
else
{
if (REGNO (x) >= SP_REGNUM) abort ();
fprintf (file, "%s", reg_names[REGNO (x)]);
return;
}
}
 
case 'd' :
{
const char *crx_cmp_str;
switch (GET_CODE (x))
{ /* MD: compare (reg, reg or imm) but CRX: cmp (reg or imm, reg)
* -> swap all non symmetric ops */
case EQ : crx_cmp_str = "eq"; break;
case NE : crx_cmp_str = "ne"; break;
case GT : crx_cmp_str = "lt"; break;
case GTU : crx_cmp_str = "lo"; break;
case LT : crx_cmp_str = "gt"; break;
case LTU : crx_cmp_str = "hi"; break;
case GE : crx_cmp_str = "le"; break;
case GEU : crx_cmp_str = "ls"; break;
case LE : crx_cmp_str = "ge"; break;
case LEU : crx_cmp_str = "hs"; break;
default : abort ();
}
fprintf (file, "%s", crx_cmp_str);
return;
}
 
case 'H':
/* Print high part of a double precision value. */
switch (GET_CODE (x))
{
case CONST_DOUBLE:
if (GET_MODE (x) == SFmode) abort ();
if (GET_MODE (x) == DFmode)
{
/* High part of a DF const. */
REAL_VALUE_TYPE r;
long l[2];
 
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
 
fprintf (file, "$0x%lx", l[1]);
return;
}
 
/* -- Fallthrough to handle DI consts -- */
 
case CONST_INT:
{
rtx high, low;
split_double (x, &low, &high);
putc ('$', file);
output_addr_const (file, high);
return;
}
 
case REG:
if (REGNO (x) + 1 >= FIRST_PSEUDO_REGISTER) abort ();
fprintf (file, "%s", reg_names[REGNO (x) + 1]);
return;
 
case MEM:
/* Adjust memory address to high part. */
{
rtx adj_mem = x;
adj_mem = adjust_address (adj_mem, GET_MODE (adj_mem), 4);
 
output_memory_reference_mode = GET_MODE (adj_mem);
output_address (XEXP (adj_mem, 0));
return;
}
 
default:
abort ();
}
 
case 'L':
/* Print low part of a double precision value. */
switch (GET_CODE (x))
{
case CONST_DOUBLE:
if (GET_MODE (x) == SFmode) abort ();
if (GET_MODE (x) == DFmode)
{
/* High part of a DF const. */
REAL_VALUE_TYPE r;
long l[2];
 
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
 
fprintf (file, "$0x%lx", l[0]);
return;
}
 
/* -- Fallthrough to handle DI consts -- */
 
case CONST_INT:
{
rtx high, low;
split_double (x, &low, &high);
putc ('$', file);
output_addr_const (file, low);
return;
}
 
case REG:
fprintf (file, "%s", reg_names[REGNO (x)]);
return;
 
case MEM:
output_memory_reference_mode = GET_MODE (x);
output_address (XEXP (x, 0));
return;
 
default:
abort ();
}
 
case 0 : /* default */
switch (GET_CODE (x))
{
case REG:
fprintf (file, "%s", reg_names[REGNO (x)]);
return;
 
case MEM:
output_memory_reference_mode = GET_MODE (x);
output_address (XEXP (x, 0));
return;
 
case CONST_DOUBLE:
{
REAL_VALUE_TYPE r;
long l;
 
/* Always use H and L for double precision - see above */
gcc_assert (GET_MODE (x) == SFmode);
 
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
 
fprintf (file, "$0x%lx", l);
return;
}
 
default:
putc ('$', file);
output_addr_const (file, x);
return;
}
 
default:
output_operand_lossage ("invalid %%xn code");
}
 
abort ();
}
 
/* Implements the macro PRINT_OPERAND_ADDRESS defined in crx.h. */
 
void
crx_print_operand_address (FILE * file, rtx addr)
{
enum crx_addrtype addrtype;
struct crx_address address;
 
int offset;
addrtype = crx_decompose_address (addr, &address);
if (address.disp)
offset = INTVAL (address.disp);
else
offset = 0;
 
switch (addrtype)
{
case CRX_REG_REL:
fprintf (file, "%d(%s)", offset, reg_names[REGNO (address.base)]);
return;
case CRX_POST_INC:
switch (GET_CODE (address.side_effect))
{
case PLUS:
break;
case MINUS:
offset = -offset;
break;
case POST_INC:
offset = GET_MODE_SIZE (output_memory_reference_mode);
break;
case POST_DEC:
offset = -GET_MODE_SIZE (output_memory_reference_mode);
break;
default:
abort ();
}
fprintf (file, "%d(%s)+", offset, reg_names[REGNO (address.base)]);
return;
case CRX_SCALED_INDX:
fprintf (file, "%d(%s, %s, %d)", offset, reg_names[REGNO (address.base)],
reg_names[REGNO (address.index)], address.scale);
return;
case CRX_ABSOLUTE:
output_addr_const (file, address.disp);
return;
default:
abort ();
}
}
 
 
/*****************************************************************************/
/* MACHINE DESCRIPTION HELPER-FUNCTIONS */
/*****************************************************************************/
 
void crx_expand_movmem_single (rtx src, rtx srcbase, rtx dst, rtx dstbase,
rtx tmp_reg, unsigned HOST_WIDE_INT *offset_p)
{
rtx addr, mem;
unsigned HOST_WIDE_INT offset = *offset_p;
 
/* Load */
addr = plus_constant (src, offset);
mem = adjust_automodify_address (srcbase, SImode, addr, offset);
emit_move_insn (tmp_reg, mem);
 
/* Store */
addr = plus_constant (dst, offset);
mem = adjust_automodify_address (dstbase, SImode, addr, offset);
emit_move_insn (mem, tmp_reg);
 
*offset_p = offset + 4;
}
 
int
crx_expand_movmem (rtx dstbase, rtx srcbase, rtx count_exp, rtx align_exp)
{
unsigned HOST_WIDE_INT count = 0, offset, si_moves, i;
HOST_WIDE_INT align = 0;
 
rtx src, dst;
rtx tmp_reg;
 
if (GET_CODE (align_exp) == CONST_INT)
{ /* Only if aligned */
align = INTVAL (align_exp);
if (align & 3)
return 0;
}
 
if (GET_CODE (count_exp) == CONST_INT)
{ /* No more than 16 SImode moves */
count = INTVAL (count_exp);
if (count > 64)
return 0;
}
 
tmp_reg = gen_reg_rtx (SImode);
 
/* Create psrs for the src and dest pointers */
dst = copy_to_mode_reg (Pmode, XEXP (dstbase, 0));
if (dst != XEXP (dstbase, 0))
dstbase = replace_equiv_address_nv (dstbase, dst);
src = copy_to_mode_reg (Pmode, XEXP (srcbase, 0));
if (src != XEXP (srcbase, 0))
srcbase = replace_equiv_address_nv (srcbase, src);
 
offset = 0;
 
/* Emit SImode moves */
si_moves = count >> 2;
for (i = 0; i < si_moves; i++)
crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
 
/* Special cases */
if (count & 3)
{
offset = count - 4;
crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
}
 
gcc_assert (offset == count);
 
return 1;
}
 
rtx
crx_expand_compare (enum rtx_code code, enum machine_mode mode)
{
rtx op0, op1, cc_reg, ret;
 
op0 = crx_compare_op0;
op1 = crx_compare_op1;
 
/* Emit the compare that writes into CC_REGNUM) */
cc_reg = gen_rtx_REG (CCmode, CC_REGNUM);
ret = gen_rtx_COMPARE (CCmode, op0, op1);
emit_insn (gen_rtx_SET (VOIDmode, cc_reg, ret));
/* debug_rtx (get_last_insn ()); */
 
/* Return the rtx for using the result in CC_REGNUM */
return gen_rtx_fmt_ee (code, mode, cc_reg, const0_rtx);
}
 
void
crx_expand_branch (enum rtx_code code, rtx label)
{
rtx tmp = crx_expand_compare (code, VOIDmode);
tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
gen_rtx_LABEL_REF (VOIDmode, label),
pc_rtx);
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
/* debug_rtx (get_last_insn ()); */
}
 
void
crx_expand_scond (enum rtx_code code, rtx dest)
{
rtx tmp = crx_expand_compare (code, GET_MODE (dest));
emit_move_insn (dest, tmp);
/* debug_rtx (get_last_insn ()); */
}
 
static void
mpushpop_str (char *stringbuffer, const char *mnemonic, char *mask)
{
if (strlen (mask) > 2 || crx_interrupt_function_p ()) /* needs 2-word instr. */
sprintf (stringbuffer, "\n\t%s\tsp, {%s}", mnemonic, mask);
else /* single word instruction */
sprintf (stringbuffer, "\n\t%s\t%s", mnemonic, mask);
}
 
/* Called from crx.md. The return value depends on the parameter push_or_pop:
* When push_or_pop is zero -> string for push instructions of prologue.
* When push_or_pop is nonzero -> string for pop/popret/retx in epilogue.
* Relies on the assumptions:
* 1. RA is the last register to be saved.
* 2. The maximal value of the counter is MAX_COUNT. */
 
char *
crx_prepare_push_pop_string (int push_or_pop)
{
/* j is the number of registers being saved, takes care that there won't be
* more than 8 in one push/pop instruction */
 
/* For the register mask string */
static char mask_str[50];
 
/* i is the index of save_regs[], going from 0 until last_reg_to_save */
int i = 0;
 
int ra_in_bitmask = 0;
 
char *return_str;
 
/* For reversing on the push instructions if there are more than one. */
char *temp_str;
 
return_str = (char *) xmalloc (120);
temp_str = (char *) xmalloc (120);
 
/* Initialize */
memset (return_str, 0, 3);
 
while (i <= last_reg_to_save)
{
/* Prepare mask for one instruction. */
mask_str[0] = 0;
 
if (i <= SP_REGNUM)
{ /* Add regs unit full or SP register reached */
int j = 0;
while (j < MAX_COUNT && i <= SP_REGNUM)
{
if (save_regs[i])
{
/* TODO to use ra_in_bitmask for detecting last pop is not
* smart it prevents things like: popret r5 */
if (i == RETURN_ADDRESS_REGNUM) ra_in_bitmask = 1;
if (j > 0) strcat (mask_str, ", ");
strcat (mask_str, reg_names[i]);
++j;
}
++i;
}
}
else
{
/* Handle hi/lo savings */
while (i <= last_reg_to_save)
{
if (save_regs[i])
{
strcat (mask_str, "lo, hi");
i = last_reg_to_save + 1;
break;
}
++i;
}
}
 
if (strlen (mask_str) == 0) continue;
if (push_or_pop == 1)
{
if (crx_interrupt_function_p ())
mpushpop_str (temp_str, "popx", mask_str);
else
{
if (ra_in_bitmask)
{
mpushpop_str (temp_str, "popret", mask_str);
ra_in_bitmask = 0;
}
else mpushpop_str (temp_str, "pop", mask_str);
}
 
strcat (return_str, temp_str);
}
else
{
/* push - We need to reverse the order of the instructions if there
* are more than one. (since the pop will not be reversed in the
* epilogue */
if (crx_interrupt_function_p ())
mpushpop_str (temp_str, "pushx", mask_str);
else
mpushpop_str (temp_str, "push", mask_str);
strcat (temp_str, return_str);
strcpy (strcat (return_str, "\t"), temp_str);
}
 
}
 
if (push_or_pop == 1)
{
/* pop */
if (crx_interrupt_function_p ())
strcat (return_str, "\n\tretx\n");
 
else if (!FUNC_IS_NORETURN_P (current_function_decl)
&& !save_regs[RETURN_ADDRESS_REGNUM])
strcat (return_str, "\n\tjump\tra\n");
}
 
/* Skip the newline and the tab in the start of return_str. */
return_str += 2;
return return_str;
}
 
/* CompactRISC CRX Architecture stack layout:
 
0 +---------------------
|
.
.
|
+==================== Sp(x)=Ap(x+1)
A | Args for functions
| | called by X and Dynamically
| | Dynamic allocations allocated and
| | (alloca, variable deallocated
Stack | length arrays).
grows +-------------------- Fp(x)
down| | Local variables of X
ward| +--------------------
| | Regs saved for X-1
| +==================== Sp(x-1)=Ap(x)
| Args for func X
| pushed by X-1
+-------------------- Fp(x-1)
|
|
V
 
*/
 
void
crx_expand_prologue (void)
{
crx_compute_frame ();
crx_compute_save_regs ();
 
/* If there is no need in push and adjustment to sp, return. */
if (size_for_adjusting_sp + sum_regs == 0)
return;
 
if (last_reg_to_save != -1)
/* If there are registers to push. */
emit_insn (gen_push_for_prologue (GEN_INT (sum_regs)));
 
if (size_for_adjusting_sp > 0)
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-size_for_adjusting_sp)));
 
if (frame_pointer_needed)
/* Initialize the frame pointer with the value of the stack pointer
* pointing now to the locals. */
emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
}
 
/* Generate insn that updates the stack for local variables and padding for
* registers we save. - Generate the appropriate return insn. */
 
void
crx_expand_epilogue (void)
{
rtx return_reg;
 
/* Nonzero if we need to return and pop only RA. This will generate a
* different insn. This differentiate is for the peepholes for call as last
* statement in function. */
int only_popret_RA = (save_regs[RETURN_ADDRESS_REGNUM]
&& (sum_regs == UNITS_PER_WORD));
 
/* Return register. */
return_reg = gen_rtx_REG (Pmode, RETURN_ADDRESS_REGNUM);
 
if (frame_pointer_needed)
/* Restore the stack pointer with the frame pointers value */
emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
 
if (size_for_adjusting_sp > 0)
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (size_for_adjusting_sp)));
 
if (crx_interrupt_function_p ())
emit_jump_insn (gen_interrupt_return ());
else if (last_reg_to_save == -1)
/* Nothing to pop */
/* Don't output jump for interrupt routine, only retx. */
emit_jump_insn (gen_indirect_jump_return ());
else if (only_popret_RA)
emit_jump_insn (gen_popret_RA_return ());
else
emit_jump_insn (gen_pop_and_popret_return (GEN_INT (sum_regs)));
}
 
/crx.opt
0,0 → 1,34
; Options for the National Semiconductor CRX port of the compiler.
 
; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
 
mmac
Target Report Mask(MAC)
Support multiply accumulate instructions
 
mno-push-args
Target Report RejectNegative Mask(NO_PUSH_ARGS)
Do not use push to store function arguments
 
mloop-nesting=
Common RejectNegative Joined UInteger Var(crx_loop_nesting) Init(12)
Restrict doloop to the given nesting level
 
mdebug-addr
Target RejectNegative Var(TARGET_DEBUG_ADDR) Undocumented
/t-crx
0,0 → 1,19
# CRX Target Makefile
 
# Mingw specific compilation fixes
USE_COLLECT2 =
STMP_FIXINC =
 
# Software emulation for integer div and mod
LIB2FUNCS_EXTRA = $(srcdir)/config/udivmodsi4.c $(srcdir)/config/udivmod.c $(srcdir)/config/divmod.c
 
# Build the floating point emulation libraries.
FPBIT = fp-bit.c
DPBIT = dp-bit.c
 
fp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT' > fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c
 
dp-bit.c: $(srcdir)/config/fp-bit.c
cat $(srcdir)/config/fp-bit.c > dp-bit.c

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.