OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /openrisc/trunk/gnu-old/gcc-4.2.2/gcc/config/m32c
    from Rev 154 to Rev 816
    Reverse comparison

Rev 154 → Rev 816

/predicates.md
0,0 → 1,287
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; Predicates
 
; TRUE for any valid operand. We do this because general_operand
; refuses to match volatile memory refs.
 
(define_predicate "m32c_any_operand"
(ior (match_operand 0 "general_operand")
(match_operand 1 "memory_operand")))
 
; Likewise for nonimmediate_operand.
 
(define_predicate "m32c_nonimmediate_operand"
(ior (match_operand 0 "nonimmediate_operand")
(match_operand 1 "memory_operand")))
 
; TRUE if the operand is a pseudo-register.
(define_predicate "m32c_pseudo"
(ior (and (match_code "reg")
(match_test "REGNO(op) >= FIRST_PSEUDO_REGISTER"))
(and (match_code "subreg")
(and (match_test "GET_CODE (XEXP (op, 0)) == REG")
(match_test "REGNO(XEXP (op,0)) >= FIRST_PSEUDO_REGISTER")))))
 
; Returning true causes many predicates to NOT match. We allow
; subregs for type changing, but not for size changing.
(define_predicate "m32c_wide_subreg"
(and (match_code "subreg")
(not (match_operand 0 "m32c_pseudo")))
{
unsigned int sizeo = GET_MODE_SIZE (GET_MODE (op));
unsigned int sizei = GET_MODE_SIZE (GET_MODE (XEXP (op, 0)));
sizeo = (sizeo + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
sizei = (sizei + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
return sizeo != sizei;
})
 
; TRUE for r0 through r3, or a pseudo that reload could put in r0
; through r3 (likewise for the next couple too)
(define_predicate "r0123_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO(op) <= R3_REGNO"))))
 
; TRUE for r0
(define_predicate "m32c_r0_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO(op) == R0_REGNO"))))
 
; TRUE for r1
(define_predicate "m32c_r1_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO(op) == R1_REGNO"))))
 
; TRUE for HL_CLASS (r0 or r1)
(define_predicate "m32c_hl_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO(op) == R0_REGNO || REGNO(op) == R1_REGNO"))))
 
 
; TRUE for r2
(define_predicate "m32c_r2_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO(op) == R2_REGNO"))))
 
; TRUE for r3
(define_predicate "m32c_r3_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO(op) == R3_REGNO"))))
 
; TRUE for any general operand except r2.
(define_predicate "m32c_notr2_operand"
(and (match_operand 0 "general_operand")
(ior (not (match_code "reg"))
(match_test "REGNO(op) != R2_REGNO"))))
 
; TRUE for the stack pointer.
(define_predicate "m32c_sp_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO(op) == SP_REGNO"))))
 
; TRUE for control registers.
(define_predicate "cr_operand"
(match_code "reg")
"return (REGNO (op) >= SB_REGNO
&& REGNO (op) <= FLG_REGNO);")
 
; TRUE for $a0 or $a1.
(define_predicate "a_operand"
(and (match_code "reg")
(match_test "REGNO (op) == A0_REGNO || REGNO (op) == A1_REGNO")))
 
; TRUE for $a0 or $a1 or a pseudo
(define_predicate "ap_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO (op) == A0_REGNO || REGNO (op) == A1_REGNO"))))
 
; TRUE for r0 through r3, or a0 or a1.
(define_predicate "ra_operand"
(and (and (match_operand 0 "register_operand" "")
(not (match_operand 1 "cr_operand" "")))
(not (match_operand 2 "m32c_wide_subreg" ""))))
 
; Likewise, plus TRUE for memory references.
(define_predicate "mra_operand"
(and (and (match_operand 0 "nonimmediate_operand" "")
(not (match_operand 1 "cr_operand" "")))
(not (match_operand 2 "m32c_wide_subreg" ""))))
 
; Likewise, plus TRUE for subregs.
(define_predicate "mras_operand"
(and (match_operand 0 "nonimmediate_operand" "")
(not (match_operand 1 "cr_operand" ""))))
 
; As above, but no push/pop operations
(define_predicate "mra_nopp_operand"
(match_operand 0 "mra_operand" "")
{
if (GET_CODE (op) == MEM
&& (GET_CODE (XEXP (op, 0)) == PRE_DEC
|| (GET_CODE (XEXP (op, 0)) == POST_INC)))
return 0;
return 1;
})
 
; TRUE for memory, r0..r3, a0..a1, or immediates.
(define_predicate "mrai_operand"
(and (and (match_operand 0 "m32c_any_operand" "")
(not (match_operand 1 "cr_operand" "")))
(not (match_operand 2 "m32c_wide_subreg" ""))))
 
; Likewise, plus true for subregs.
(define_predicate "mrasi_operand"
(and (match_operand 0 "general_operand" "")
(not (match_operand 1 "cr_operand" ""))))
 
; TRUE for r0..r3 or memory.
(define_predicate "mr_operand"
(and (match_operand 0 "mra_operand" "")
(not (match_operand 1 "a_operand" ""))))
 
; TRUE for a0..a1 or memory.
(define_predicate "ma_operand"
(ior (match_operand 0 "a_operand" "")
(match_operand 1 "memory_operand" "")))
 
; TRUE for memory operands that are not indexed
(define_predicate "memsym_operand"
(and (match_operand 0 "memory_operand" "")
(match_test "m32c_extra_constraint_p (op, 'S', \"Si\")")))
 
; TRUE for memory operands with small integer addresses
(define_predicate "memimmed_operand"
(and (match_operand 0 "memory_operand" "")
(match_test "m32c_extra_constraint_p (op, 'S', \"Sp\")")))
 
; TRUE for r1h. This is complicated since r1h isn't a register GCC
; normally knows about.
(define_predicate "r1h_operand"
(match_code "zero_extract")
{
rtx reg = XEXP (op, 0);
rtx size = XEXP (op, 1);
rtx pos = XEXP (op, 2);
return (GET_CODE (reg) == REG
&& REGNO (reg) == R1_REGNO
&& GET_CODE (size) == CONST_INT
&& INTVAL (size) == 8
&& GET_CODE (pos) == CONST_INT
&& INTVAL (pos) == 8);
})
 
; TRUE if we can shift by this amount. Constant shift counts have a
; limited range.
(define_predicate "shiftcount_operand"
(ior (match_operand 0 "mra_operand" "")
(and (match_operand 2 "const_int_operand" "")
(match_test "-8 <= INTVAL (op) && INTVAL (op) && INTVAL (op) <= 8"))))
(define_predicate "longshiftcount_operand"
(ior (match_operand 0 "mra_operand" "")
(and (match_operand 2 "const_int_operand" "")
(match_test "-32 <= INTVAL (op) && INTVAL (op) && INTVAL (op) <= 32"))))
 
; TRUE for r0..r3, a0..a1, or sp.
(define_predicate "mra_or_sp_operand"
(and (ior (match_operand 0 "mra_operand")
(match_operand 1 "m32c_sp_operand"))
(not (match_operand 2 "m32c_wide_subreg" ""))))
 
 
; TRUE for r2 or r3.
(define_predicate "m32c_r2r3_operand"
(ior (and (match_code "reg")
(ior (match_test "REGNO(op) == R2_REGNO")
(match_test "REGNO(op) == R3_REGNO")))
(and (match_code "subreg")
(match_test "GET_CODE (XEXP (op, 0)) == REG && (REGNO (XEXP (op, 0)) == R2_REGNO || REGNO (XEXP (op, 0)) == R3_REGNO)"))))
 
; Likewise, plus TRUE for a0..a1.
(define_predicate "m32c_r2r3a_operand"
(ior (match_operand 0 "m32c_r2r3_operand" "")
(match_operand 0 "a_operand" "")))
 
; These two are only for movqi - no subreg limit
(define_predicate "mra_qi_operand"
(and (and (match_operand 0 "m32c_nonimmediate_operand" "")
(not (match_operand 1 "cr_operand" "")))
(not (match_operand 1 "m32c_r2r3a_operand" ""))))
 
(define_predicate "mrai_qi_operand"
(and (and (match_operand 0 "m32c_any_operand" "")
(not (match_operand 1 "cr_operand" "")))
(not (match_operand 1 "m32c_r2r3a_operand" ""))))
 
(define_predicate "a_qi_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(match_operand 1 "a_operand" "")))
 
; TRUE for comparisons we support.
(define_predicate "m32c_cmp_operator"
(match_code "eq,ne,gt,gtu,lt,ltu,ge,geu,le,leu"))
 
(define_predicate "m32c_eqne_operator"
(match_code "eq,ne"))
 
; TRUE for mem0
(define_predicate "m32c_mem0_operand"
(ior (match_operand 0 "m32c_pseudo" "")
(and (match_code "reg")
(match_test "REGNO(op) == MEM0_REGNO"))))
 
; TRUE for things the call patterns can return.
(define_predicate "m32c_return_operand"
(ior (match_operand 0 "m32c_r0_operand")
(ior (match_operand 0 "m32c_mem0_operand")
(match_code "parallel"))))
 
; TRUE for constants we can multiply pointers by
(define_predicate "m32c_psi_scale"
(and (match_operand 0 "const_int_operand")
(match_test "m32c_const_ok_for_constraint_p(INTVAL(op), 'I', \"Ilb\")")))
 
; TRUE for one bit set (bit) or clear (mask) out of N bits.
 
(define_predicate "m32c_1bit8_operand"
(and (match_operand 0 "const_int_operand")
(match_test "m32c_const_ok_for_constraint_p(INTVAL(op), 'I', \"Ilb\")")))
 
(define_predicate "m32c_1bit16_operand"
(and (match_operand 0 "const_int_operand")
(match_test "m32c_const_ok_for_constraint_p(INTVAL(op), 'I', \"Ilw\")")))
 
(define_predicate "m32c_1mask8_operand"
(and (match_operand 0 "const_int_operand")
(match_test "m32c_const_ok_for_constraint_p(INTVAL(op), 'I', \"Imb\")")))
 
(define_predicate "m32c_1mask16_operand"
(and (match_operand 0 "const_int_operand")
(match_test "m32c_const_ok_for_constraint_p(INTVAL(op), 'I', \"Imw\")")))
/cond.md
0,0 → 1,318
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
; conditionals - cmp, jcc, setcc, etc.
 
; Special note about conditional instructions: GCC always emits the
; compare right before the insn, which is good, because m32c's mov
; insns modify the flags. However, this means that any conditional
; insn that may require reloading must be kept with its compare until
; after reload finishes, else the reload insns might clobber the
; flags. Thus, these rules:
;
; * the cmp* expanders just save the operands in compare_op0 and
; compare_op1 via m32c_pend_compare.
; * conditional insns that won't need reload can call
; m32c_unpend_compare before their expansion.
; * other insns must expand to include the compare operands within,
; then split after reload to a separate compare and conditional.
 
; Until support for relaxing is supported in gas, we must assume that
; short labels won't reach, so we must use long labels.
; Unfortunately, there aren't any conditional jumps with long labels,
; so instead we invert the conditional and jump around a regular jump.
 
; Note that we can, at some point in the future, add code to omit the
; "cmp" portion of the insn if the preceding insn happened to set the
; right flags already. For example, a mov followed by a "cmp *,0" is
; redundant; the move already set the Z flag.
 
(define_insn_and_split "cbranch<mode>4"
[(set (pc) (if_then_else
(match_operator 0 "m32c_cmp_operator"
[(match_operand:QHPSI 1 "mra_operand" "RraSd")
(match_operand:QHPSI 2 "mrai_operand" "iRraSd")])
(label_ref (match_operand 3 "" ""))
(pc)))]
""
"#"
"reload_completed"
[(set (reg:CC FLG_REGNO)
(compare (match_dup 1)
(match_dup 2)))
(set (pc) (if_then_else (match_dup 4)
(label_ref (match_dup 3))
(pc)))]
"operands[4] = m32c_cmp_flg_0 (operands[0]);"
)
 
(define_insn "stzx_16"
[(set (match_operand:QI 0 "mrai_operand" "=R0w,R0w,R0w")
(if_then_else:QI (eq (reg:CC FLG_REGNO) (const_int 0))
(match_operand:QI 1 "const_int_operand" "i,i,0")
(match_operand:QI 2 "const_int_operand" "i,0,i")))]
"TARGET_A16 && reload_completed"
"@
stzx\t%1,%2,%0
stz\t%1,%0
stnz\t%2,%0"
[(set_attr "flags" "n,n,n")]
)
 
(define_insn "stzx_24_<mode>"
[(set (match_operand:QHI 0 "mrai_operand" "=RraSd,RraSd,RraSd")
(if_then_else:QHI (eq (reg:CC FLG_REGNO) (const_int 0))
(match_operand:QHI 1 "const_int_operand" "i,i,0")
(match_operand:QHI 2 "const_int_operand" "i,0,i")))]
"TARGET_A24 && reload_completed"
"@
stzx.<bwl>\t%1,%2,%0
stz.<bwl>\t%1,%0
stnz.<bwl>\t%2,%0"
[(set_attr "flags" "n,n,n")])
 
(define_insn_and_split "stzx_reversed_<mode>"
[(set (match_operand:QHI 0 "m32c_r0_operand" "")
(if_then_else:QHI (ne (reg:CC FLG_REGNO) (const_int 0))
(match_operand:QHI 1 "const_int_operand" "")
(match_operand:QHI 2 "const_int_operand" "")))]
"(TARGET_A24 || GET_MODE (operands[0]) == QImode) && reload_completed"
"#"
""
[(set (match_dup 0)
(if_then_else:QHI (eq (reg:CC FLG_REGNO) (const_int 0))
(match_dup 2)
(match_dup 1)))]
""
)
 
 
(define_insn "cmp<mode>_op"
[(set (reg:CC FLG_REGNO)
(compare (match_operand:QHPSI 0 "mra_operand" "RraSd")
(match_operand:QHPSI 1 "mrai_operand" "RraSdi")))]
""
"* return m32c_output_compare(insn, operands); "
[(set_attr "flags" "oszc")])
 
(define_expand "cmp<mode>"
[(set (reg:CC FLG_REGNO)
(compare (match_operand:QHPSI 0 "mra_operand" "RraSd")
(match_operand:QHPSI 1 "mrai_operand" "RraSdi")))]
""
"m32c_pend_compare (operands); DONE;")
 
(define_insn "b<code>_op"
[(set (pc)
(if_then_else (any_cond (reg:CC FLG_REGNO)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
"j<code>\t%l0"
[(set_attr "flags" "n")]
)
 
(define_expand "b<code>"
[(set (pc)
(if_then_else (any_cond (reg:CC FLG_REGNO)
(const_int 0))
(label_ref (match_operand 0 ""))
(pc)))]
""
"m32c_unpend_compare ();"
)
 
;; m32c_conditional_register_usage changes the setcc_gen_code array to
;; point to the _24 variants if needed.
 
;; We need to keep the compare and conditional sets together through
;; reload, because reload might need to add address reloads to the
;; set, which would clobber the flags. By keeping them together, the
;; reloads get put before the compare, thus preserving the flags.
 
;; These are the post-split patterns for the conditional sets.
 
(define_insn "s<code>_op"
[(set (match_operand:QI 0 "register_operand" "=Rqi")
(any_cond:QI (reg:CC FLG_REGNO) (const_int 0)))]
"TARGET_A16 && reload_completed"
"* return m32c_scc_pattern(operands, <CODE>);")
 
(define_insn "s<code>_24_op"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd")
(any_cond:HI (reg:CC FLG_REGNO) (const_int 0)))]
"TARGET_A24 && reload_completed"
"sc<code>\t%0"
[(set_attr "flags" "n")]
)
 
;; These are the pre-split patterns for the conditional sets. Yes,
;; there are a lot of permutations.
 
(define_insn_and_split "s<code>_<mode>"
[(set (match_operand:QI 0 "register_operand" "=Rqi")
(any_cond:QI (match_operand:QHPSI 1 "mra_operand" "RraSd")
(match_operand:QHPSI 2 "mrai_operand" "RraSdi")))]
"TARGET_A16"
"#"
"reload_completed"
[(set (reg:CC FLG_REGNO)
(compare (match_dup 1)
(match_dup 2)))
(set (match_dup 0)
(any_cond:QI (reg:CC FLG_REGNO) (const_int 0)))]
""
[(set_attr "flags" "x")]
)
 
(define_insn_and_split "s<code>_<mode>_24"
[(set (match_operand:HI 0 "mra_nopp_operand" "=RhiSd")
(any_cond:HI (match_operand:QHPSI 1 "mra_operand" "RraSd")
(match_operand:QHPSI 2 "mrai_operand" "RraSdi")))]
"TARGET_A24"
"#"
"reload_completed"
[(set (reg:CC FLG_REGNO)
(compare (match_dup 1)
(match_dup 2)))
(set (match_dup 0)
(any_cond:HI (reg:CC FLG_REGNO) (const_int 0)))]
""
[(set_attr "flags" "x")]
)
 
(define_insn_and_split "movqicc_<code>_<mode>"
[(set (match_operand:QI 0 "register_operand" "")
(if_then_else:QI (eqne_cond:QI (match_operand:QHPSI 1 "mra_operand" "RraSd")
(match_operand:QHPSI 2 "mrai_operand" "RraSdi"))
(match_operand:QI 3 "const_int_operand" "")
(match_operand:QI 4 "const_int_operand" "")))]
""
"#"
"reload_completed"
[(set (reg:CC FLG_REGNO)
(compare (match_dup 1)
(match_dup 2)))
(set (match_dup 0)
(if_then_else:QI (eqne_cond:QI (reg:CC FLG_REGNO) (const_int 0))
(match_dup 3)
(match_dup 4)))]
""
[(set_attr "flags" "x")]
)
 
(define_insn_and_split "movhicc_<code>_<mode>"
[(set (match_operand:HI 0 "register_operand" "")
(if_then_else:HI (eqne_cond:HI (match_operand:QHPSI 1 "mra_operand" "RraSd")
(match_operand:QHPSI 2 "mrai_operand" "RraSdi"))
(match_operand:QI 3 "const_int_operand" "")
(match_operand:QI 4 "const_int_operand" "")))]
"TARGET_A24"
"#"
"reload_completed"
[(set (reg:CC FLG_REGNO)
(compare (match_dup 1)
(match_dup 2)))
(set (match_dup 0)
(if_then_else:HI (eqne_cond:HI (reg:CC FLG_REGNO) (const_int 0))
(match_dup 3)
(match_dup 4)))]
""
[(set_attr "flags" "x")]
)
 
;; And these are the expanders, which read the pending compare
;; operands to build a combined insn.
 
(define_expand "s<code>"
[(set (match_operand:QI 0 "register_operand" "=Rqi")
(any_cond:QI (reg:CC FLG_REGNO) (const_int 0)))]
"TARGET_A16"
"m32c_expand_scc (<CODE>, operands); DONE;")
 
(define_expand "s<code>_24"
[(set (match_operand:HI 0 "mra_nopp_operand" "=RhiSd")
(any_cond:HI (reg:CC FLG_REGNO) (const_int 0)))]
"TARGET_A24"
"m32c_expand_scc (<CODE>, operands); DONE;")
 
 
(define_expand "movqicc"
[(set (match_operand:QI 0 "register_operand" "")
(if_then_else:QI (match_operand 1 "m32c_eqne_operator" "")
(match_operand:QI 2 "const_int_operand" "")
(match_operand:QI 3 "const_int_operand" "")))]
""
"if (m32c_expand_movcc(operands))
FAIL;
DONE;"
)
 
(define_expand "movhicc"
[(set (match_operand:HI 0 "mra_operand" "")
(if_then_else:HI (match_operand 1 "m32c_eqne_operator" "")
(match_operand:HI 2 "const_int_operand" "")
(match_operand:HI 3 "const_int_operand" "")))]
"TARGET_A24"
"if (m32c_expand_movcc(operands))
FAIL;
DONE;"
)
 
 
;; CMP opcodes subtract two values, set the flags, and discard the
;; value. This pattern recovers the sign of the discarded value based
;; on the flags. Operand 0 is set to -1, 0, or 1. This is used for
;; the cmpstr pattern. For optimal code, this should be removed if
;; followed by a suitable CMP insn (see the peephole following). This
;; pattern is 7 bytes and 5 cycles. If you don't need specific
;; values, a 5/4 pattern can be made with SCGT and BMLT to set the
;; appropriate bits.
 
(define_insn "cond_to_int"
[(set (match_operand:HI 0 "mra_qi_operand" "=Rqi")
(if_then_else:HI (lt (reg:CC FLG_REGNO) (const_int 0))
(const_int -1)
(if_then_else:HI (eq (reg:CC FLG_REGNO) (const_int 0))
(const_int 0)
(const_int -1))))]
"TARGET_A24"
"sceq\t%0\n\tbmgt\t1,%h0\n\tdec.w\t%0"
[(set_attr "flags" "x")]
)
 
;; A cond_to_int followed by a compare against zero is essentially a no-op.
 
(define_peephole2
[(set (match_operand:HI 0 "mra_qi_operand" "")
(if_then_else:HI (lt (reg:CC FLG_REGNO) (const_int 0))
(const_int -1)
(if_then_else:HI (eq (reg:CC FLG_REGNO) (const_int 0))
(const_int 0)
(const_int -1))))
(set (reg:CC FLG_REGNO)
(compare (match_operand:HI 1 "mra_qi_operand" "")
(const_int 0)))
]
"rtx_equal_p(operands[0], operands[1])"
[(const_int 1)]
"")
/m32c.c
0,0 → 1,4094
/* Target Code for R8C/M16C/M32C
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by Red Hat.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "reload.h"
#include "toplev.h"
#include "obstack.h"
#include "tree.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "tm_p.h"
#include "langhooks.h"
#include "tree-gimple.h"
 
/* Prototypes */
 
/* Used by m32c_pushm_popm. */
typedef enum
{
PP_pushm,
PP_popm,
PP_justcount
} Push_Pop_Type;
 
static tree interrupt_handler (tree *, tree, tree, int, bool *);
static int interrupt_p (tree node);
static bool m32c_asm_integer (rtx, unsigned int, int);
static int m32c_comp_type_attributes (tree, tree);
static bool m32c_fixed_condition_code_regs (unsigned int *, unsigned int *);
static struct machine_function *m32c_init_machine_status (void);
static void m32c_insert_attributes (tree, tree *);
static bool m32c_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static bool m32c_promote_prototypes (tree);
static int m32c_pushm_popm (Push_Pop_Type);
static bool m32c_strict_argument_naming (CUMULATIVE_ARGS *);
static rtx m32c_struct_value_rtx (tree, int);
static rtx m32c_subreg (enum machine_mode, rtx, enum machine_mode, int);
static int need_to_save (int);
 
#define streq(a,b) (strcmp ((a), (b)) == 0)
 
/* Internal support routines */
 
/* Debugging statements are tagged with DEBUG0 only so that they can
be easily enabled individually, by replacing the '0' with '1' as
needed. */
#define DEBUG0 0
#define DEBUG1 1
 
#if DEBUG0
/* This is needed by some of the commented-out debug statements
below. */
static char const *class_names[LIM_REG_CLASSES] = REG_CLASS_NAMES;
#endif
static int class_contents[LIM_REG_CLASSES][1] = REG_CLASS_CONTENTS;
 
/* These are all to support encode_pattern(). */
static char pattern[30], *patternp;
static GTY(()) rtx patternr[30];
#define RTX_IS(x) (streq (pattern, x))
 
/* Some macros to simplify the logic throughout this file. */
#define IS_MEM_REGNO(regno) ((regno) >= MEM0_REGNO && (regno) <= MEM7_REGNO)
#define IS_MEM_REG(rtx) (GET_CODE (rtx) == REG && IS_MEM_REGNO (REGNO (rtx)))
 
#define IS_CR_REGNO(regno) ((regno) >= SB_REGNO && (regno) <= PC_REGNO)
#define IS_CR_REG(rtx) (GET_CODE (rtx) == REG && IS_CR_REGNO (REGNO (rtx)))
 
/* We do most RTX matching by converting the RTX into a string, and
using string compares. This vastly simplifies the logic in many of
the functions in this file.
 
On exit, pattern[] has the encoded string (use RTX_IS("...") to
compare it) and patternr[] has pointers to the nodes in the RTX
corresponding to each character in the encoded string. The latter
is mostly used by print_operand().
 
Unrecognized patterns have '?' in them; this shows up when the
assembler complains about syntax errors.
*/
 
static void
encode_pattern_1 (rtx x)
{
int i;
 
if (patternp == pattern + sizeof (pattern) - 2)
{
patternp[-1] = '?';
return;
}
 
patternr[patternp - pattern] = x;
 
switch (GET_CODE (x))
{
case REG:
*patternp++ = 'r';
break;
case SUBREG:
if (GET_MODE_SIZE (GET_MODE (x)) !=
GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
*patternp++ = 'S';
encode_pattern_1 (XEXP (x, 0));
break;
case MEM:
*patternp++ = 'm';
case CONST:
encode_pattern_1 (XEXP (x, 0));
break;
case PLUS:
*patternp++ = '+';
encode_pattern_1 (XEXP (x, 0));
encode_pattern_1 (XEXP (x, 1));
break;
case PRE_DEC:
*patternp++ = '>';
encode_pattern_1 (XEXP (x, 0));
break;
case POST_INC:
*patternp++ = '<';
encode_pattern_1 (XEXP (x, 0));
break;
case LO_SUM:
*patternp++ = 'L';
encode_pattern_1 (XEXP (x, 0));
encode_pattern_1 (XEXP (x, 1));
break;
case HIGH:
*patternp++ = 'H';
encode_pattern_1 (XEXP (x, 0));
break;
case SYMBOL_REF:
*patternp++ = 's';
break;
case LABEL_REF:
*patternp++ = 'l';
break;
case CODE_LABEL:
*patternp++ = 'c';
break;
case CONST_INT:
case CONST_DOUBLE:
*patternp++ = 'i';
break;
case UNSPEC:
*patternp++ = 'u';
*patternp++ = '0' + XCINT (x, 1, UNSPEC);
for (i = 0; i < XVECLEN (x, 0); i++)
encode_pattern_1 (XVECEXP (x, 0, i));
break;
case USE:
*patternp++ = 'U';
break;
case PARALLEL:
*patternp++ = '|';
for (i = 0; i < XVECLEN (x, 0); i++)
encode_pattern_1 (XVECEXP (x, 0, i));
break;
case EXPR_LIST:
*patternp++ = 'E';
encode_pattern_1 (XEXP (x, 0));
if (XEXP (x, 1))
encode_pattern_1 (XEXP (x, 1));
break;
default:
*patternp++ = '?';
#if DEBUG0
fprintf (stderr, "can't encode pattern %s\n",
GET_RTX_NAME (GET_CODE (x)));
debug_rtx (x);
gcc_unreachable ();
#endif
break;
}
}
 
static void
encode_pattern (rtx x)
{
patternp = pattern;
encode_pattern_1 (x);
*patternp = 0;
}
 
/* Since register names indicate the mode they're used in, we need a
way to determine which name to refer to the register with. Called
by print_operand(). */
 
static const char *
reg_name_with_mode (int regno, enum machine_mode mode)
{
int mlen = GET_MODE_SIZE (mode);
if (regno == R0_REGNO && mlen == 1)
return "r0l";
if (regno == R0_REGNO && (mlen == 3 || mlen == 4))
return "r2r0";
if (regno == R0_REGNO && mlen == 6)
return "r2r1r0";
if (regno == R0_REGNO && mlen == 8)
return "r3r1r2r0";
if (regno == R1_REGNO && mlen == 1)
return "r1l";
if (regno == R1_REGNO && (mlen == 3 || mlen == 4))
return "r3r1";
if (regno == A0_REGNO && TARGET_A16 && (mlen == 3 || mlen == 4))
return "a1a0";
return reg_names[regno];
}
 
/* How many bytes a register uses on stack when it's pushed. We need
to know this because the push opcode needs to explicitly indicate
the size of the register, even though the name of the register
already tells it that. Used by m32c_output_reg_{push,pop}, which
is only used through calls to ASM_OUTPUT_REG_{PUSH,POP}. */
 
static int
reg_push_size (int regno)
{
switch (regno)
{
case R0_REGNO:
case R1_REGNO:
return 2;
case R2_REGNO:
case R3_REGNO:
case FLG_REGNO:
return 2;
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
if (TARGET_A16)
return 2;
else
return 3;
default:
gcc_unreachable ();
}
}
 
static int *class_sizes = 0;
 
/* Given two register classes, find the largest intersection between
them. If there is no intersection, return RETURNED_IF_EMPTY
instead. */
static int
reduce_class (int original_class, int limiting_class, int returned_if_empty)
{
int cc = class_contents[original_class][0];
int i, best = NO_REGS;
int best_size = 0;
 
if (original_class == limiting_class)
return original_class;
 
if (!class_sizes)
{
int r;
class_sizes = (int *) xmalloc (LIM_REG_CLASSES * sizeof (int));
for (i = 0; i < LIM_REG_CLASSES; i++)
{
class_sizes[i] = 0;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (class_contents[i][0] & (1 << r))
class_sizes[i]++;
}
}
 
cc &= class_contents[limiting_class][0];
for (i = 0; i < LIM_REG_CLASSES; i++)
{
int ic = class_contents[i][0];
 
if ((~cc & ic) == 0)
if (best_size < class_sizes[i])
{
best = i;
best_size = class_sizes[i];
}
 
}
if (best == NO_REGS)
return returned_if_empty;
return best;
}
 
/* Returns TRUE If there are any registers that exist in both register
classes. */
static int
classes_intersect (int class1, int class2)
{
return class_contents[class1][0] & class_contents[class2][0];
}
 
/* Used by m32c_register_move_cost to determine if a move is
impossibly expensive. */
static int
class_can_hold_mode (int class, enum machine_mode mode)
{
/* Cache the results: 0=untested 1=no 2=yes */
static char results[LIM_REG_CLASSES][MAX_MACHINE_MODE];
if (results[class][mode] == 0)
{
int r, n, i;
results[class][mode] = 1;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (class_contents[class][0] & (1 << r)
&& HARD_REGNO_MODE_OK (r, mode))
{
int ok = 1;
n = HARD_REGNO_NREGS (r, mode);
for (i = 1; i < n; i++)
if (!(class_contents[class][0] & (1 << (r + i))))
ok = 0;
if (ok)
{
results[class][mode] = 2;
break;
}
}
}
#if DEBUG0
fprintf (stderr, "class %s can hold %s? %s\n",
class_names[class], mode_name[mode],
(results[class][mode] == 2) ? "yes" : "no");
#endif
return results[class][mode] == 2;
}
 
/* Run-time Target Specification. */
 
/* Memregs are memory locations that gcc treats like general
registers, as there are a limited number of true registers and the
m32c families can use memory in most places that registers can be
used.
 
However, since memory accesses are more expensive than registers,
we allow the user to limit the number of memregs available, in
order to try to persuade gcc to try harder to use real registers.
 
Memregs are provided by m32c-lib1.S.
*/
 
int target_memregs = 16;
static bool target_memregs_set = FALSE;
int ok_to_change_target_memregs = TRUE;
 
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION m32c_handle_option
static bool
m32c_handle_option (size_t code,
const char *arg ATTRIBUTE_UNUSED,
int value ATTRIBUTE_UNUSED)
{
if (code == OPT_memregs_)
{
target_memregs_set = TRUE;
target_memregs = atoi (arg);
}
return TRUE;
}
 
/* Implements OVERRIDE_OPTIONS. We limit memregs to 0..16, and
provide a default. */
void
m32c_override_options (void)
{
if (target_memregs_set)
{
if (target_memregs < 0 || target_memregs > 16)
error ("invalid target memregs value '%d'", target_memregs);
}
else
target_memregs = 16;
}
 
/* Defining data structures for per-function information */
 
/* The usual; we set up our machine_function data. */
static struct machine_function *
m32c_init_machine_status (void)
{
struct machine_function *machine;
machine =
(machine_function *) ggc_alloc_cleared (sizeof (machine_function));
 
return machine;
}
 
/* Implements INIT_EXPANDERS. We just set up to call the above
function. */
void
m32c_init_expanders (void)
{
init_machine_status = m32c_init_machine_status;
}
 
/* Storage Layout */
 
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN m32c_promote_function_return
bool
m32c_promote_function_return (tree fntype ATTRIBUTE_UNUSED)
{
return false;
}
 
/* Register Basics */
 
/* Basic Characteristics of Registers */
 
/* Whether a mode fits in a register is complex enough to warrant a
table. */
static struct
{
char qi_regs;
char hi_regs;
char pi_regs;
char si_regs;
char di_regs;
} nregs_table[FIRST_PSEUDO_REGISTER] =
{
{ 1, 1, 2, 2, 4 }, /* r0 */
{ 0, 1, 0, 0, 0 }, /* r2 */
{ 1, 1, 2, 2, 0 }, /* r1 */
{ 0, 1, 0, 0, 0 }, /* r3 */
{ 0, 1, 1, 0, 0 }, /* a0 */
{ 0, 1, 1, 0, 0 }, /* a1 */
{ 0, 1, 1, 0, 0 }, /* sb */
{ 0, 1, 1, 0, 0 }, /* fb */
{ 0, 1, 1, 0, 0 }, /* sp */
{ 1, 1, 1, 0, 0 }, /* pc */
{ 0, 0, 0, 0, 0 }, /* fl */
{ 1, 1, 1, 0, 0 }, /* ap */
{ 1, 1, 2, 2, 4 }, /* mem0 */
{ 1, 1, 2, 2, 4 }, /* mem1 */
{ 1, 1, 2, 2, 4 }, /* mem2 */
{ 1, 1, 2, 2, 4 }, /* mem3 */
{ 1, 1, 2, 2, 4 }, /* mem4 */
{ 1, 1, 2, 2, 0 }, /* mem5 */
{ 1, 1, 2, 2, 0 }, /* mem6 */
{ 1, 1, 0, 0, 0 }, /* mem7 */
};
 
/* Implements CONDITIONAL_REGISTER_USAGE. We adjust the number of
available memregs, and select which registers need to be preserved
across calls based on the chip family. */
 
void
m32c_conditional_register_usage (void)
{
int i;
 
if (0 <= target_memregs && target_memregs <= 16)
{
/* The command line option is bytes, but our "registers" are
16-bit words. */
for (i = target_memregs/2; i < 8; i++)
{
fixed_regs[MEM0_REGNO + i] = 1;
CLEAR_HARD_REG_BIT (reg_class_contents[MEM_REGS], MEM0_REGNO + i);
}
}
 
/* M32CM and M32C preserve more registers across function calls. */
if (TARGET_A24)
{
call_used_regs[R1_REGNO] = 0;
call_used_regs[R2_REGNO] = 0;
call_used_regs[R3_REGNO] = 0;
call_used_regs[A0_REGNO] = 0;
call_used_regs[A1_REGNO] = 0;
}
}
 
/* How Values Fit in Registers */
 
/* Implements HARD_REGNO_NREGS. This is complicated by the fact that
different registers are different sizes from each other, *and* may
be different sizes in different chip families. */
int
m32c_hard_regno_nregs (int regno, enum machine_mode mode)
{
if (regno == FLG_REGNO && mode == CCmode)
return 1;
if (regno >= FIRST_PSEUDO_REGISTER)
return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
 
if (regno >= MEM0_REGNO && regno <= MEM7_REGNO)
return (GET_MODE_SIZE (mode) + 1) / 2;
 
if (GET_MODE_SIZE (mode) <= 1)
return nregs_table[regno].qi_regs;
if (GET_MODE_SIZE (mode) <= 2)
return nregs_table[regno].hi_regs;
if (regno == A0_REGNO && mode == PSImode && TARGET_A16)
return 2;
if ((GET_MODE_SIZE (mode) <= 3 || mode == PSImode) && TARGET_A24)
return nregs_table[regno].pi_regs;
if (GET_MODE_SIZE (mode) <= 4)
return nregs_table[regno].si_regs;
if (GET_MODE_SIZE (mode) <= 8)
return nregs_table[regno].di_regs;
return 0;
}
 
/* Implements HARD_REGNO_MODE_OK. The above function does the work
already; just test its return value. */
int
m32c_hard_regno_ok (int regno, enum machine_mode mode)
{
return m32c_hard_regno_nregs (regno, mode) != 0;
}
 
/* Implements MODES_TIEABLE_P. In general, modes aren't tieable since
registers are all different sizes. However, since most modes are
bigger than our registers anyway, it's easier to implement this
function that way, leaving QImode as the only unique case. */
int
m32c_modes_tieable_p (enum machine_mode m1, enum machine_mode m2)
{
if (GET_MODE_SIZE (m1) == GET_MODE_SIZE (m2))
return 1;
 
#if 0
if (m1 == QImode || m2 == QImode)
return 0;
#endif
 
return 1;
}
 
/* Register Classes */
 
/* Implements REGNO_REG_CLASS. */
enum machine_mode
m32c_regno_reg_class (int regno)
{
switch (regno)
{
case R0_REGNO:
return R0_REGS;
case R1_REGNO:
return R1_REGS;
case R2_REGNO:
return R2_REGS;
case R3_REGNO:
return R3_REGS;
case A0_REGNO:
case A1_REGNO:
return A_REGS;
case SB_REGNO:
return SB_REGS;
case FB_REGNO:
return FB_REGS;
case SP_REGNO:
return SP_REGS;
case FLG_REGNO:
return FLG_REGS;
default:
if (IS_MEM_REGNO (regno))
return MEM_REGS;
return ALL_REGS;
}
}
 
/* Implements REG_CLASS_FROM_CONSTRAINT. Note that some constraints only match
for certain chip families. */
int
m32c_reg_class_from_constraint (char c ATTRIBUTE_UNUSED, const char *s)
{
if (memcmp (s, "Rsp", 3) == 0)
return SP_REGS;
if (memcmp (s, "Rfb", 3) == 0)
return FB_REGS;
if (memcmp (s, "Rsb", 3) == 0)
return SB_REGS;
if (memcmp (s, "Rcr", 3) == 0)
return TARGET_A16 ? CR_REGS : NO_REGS;
if (memcmp (s, "Rcl", 3) == 0)
return TARGET_A24 ? CR_REGS : NO_REGS;
if (memcmp (s, "R0w", 3) == 0)
return R0_REGS;
if (memcmp (s, "R1w", 3) == 0)
return R1_REGS;
if (memcmp (s, "R2w", 3) == 0)
return R2_REGS;
if (memcmp (s, "R3w", 3) == 0)
return R3_REGS;
if (memcmp (s, "R02", 3) == 0)
return R02_REGS;
if (memcmp (s, "R03", 3) == 0)
return R03_REGS;
if (memcmp (s, "Rdi", 3) == 0)
return DI_REGS;
if (memcmp (s, "Rhl", 3) == 0)
return HL_REGS;
if (memcmp (s, "R23", 3) == 0)
return R23_REGS;
if (memcmp (s, "Ra0", 3) == 0)
return A0_REGS;
if (memcmp (s, "Ra1", 3) == 0)
return A1_REGS;
if (memcmp (s, "Raa", 3) == 0)
return A_REGS;
if (memcmp (s, "Raw", 3) == 0)
return TARGET_A16 ? A_REGS : NO_REGS;
if (memcmp (s, "Ral", 3) == 0)
return TARGET_A24 ? A_REGS : NO_REGS;
if (memcmp (s, "Rqi", 3) == 0)
return QI_REGS;
if (memcmp (s, "Rad", 3) == 0)
return AD_REGS;
if (memcmp (s, "Rsi", 3) == 0)
return SI_REGS;
if (memcmp (s, "Rhi", 3) == 0)
return HI_REGS;
if (memcmp (s, "Rhc", 3) == 0)
return HC_REGS;
if (memcmp (s, "Rra", 3) == 0)
return RA_REGS;
if (memcmp (s, "Rfl", 3) == 0)
return FLG_REGS;
if (memcmp (s, "Rmm", 3) == 0)
{
if (fixed_regs[MEM0_REGNO])
return NO_REGS;
return MEM_REGS;
}
 
/* PSImode registers - i.e. whatever can hold a pointer. */
if (memcmp (s, "Rpi", 3) == 0)
{
if (TARGET_A16)
return HI_REGS;
else
return RA_REGS; /* r2r0 and r3r1 can hold pointers. */
}
 
/* We handle this one as an EXTRA_CONSTRAINT. */
if (memcmp (s, "Rpa", 3) == 0)
return NO_REGS;
 
if (*s == 'R')
{
fprintf(stderr, "unrecognized R constraint: %.3s\n", s);
gcc_unreachable();
}
 
return NO_REGS;
}
 
/* Implements REGNO_OK_FOR_BASE_P. */
int
m32c_regno_ok_for_base_p (int regno)
{
if (regno == A0_REGNO
|| regno == A1_REGNO || regno >= FIRST_PSEUDO_REGISTER)
return 1;
return 0;
}
 
#define DEBUG_RELOAD 0
 
/* Implements PREFERRED_RELOAD_CLASS. In general, prefer general
registers of the appropriate size. */
int
m32c_preferred_reload_class (rtx x, int rclass)
{
int newclass = rclass;
 
#if DEBUG_RELOAD
fprintf (stderr, "\npreferred_reload_class for %s is ",
class_names[rclass]);
#endif
if (rclass == NO_REGS)
rclass = GET_MODE (x) == QImode ? HL_REGS : R03_REGS;
 
if (classes_intersect (rclass, CR_REGS))
{
switch (GET_MODE (x))
{
case QImode:
newclass = HL_REGS;
break;
default:
/* newclass = HI_REGS; */
break;
}
}
 
else if (newclass == QI_REGS && GET_MODE_SIZE (GET_MODE (x)) > 2)
newclass = SI_REGS;
else if (GET_MODE_SIZE (GET_MODE (x)) > 4
&& ~class_contents[rclass][0] & 0x000f)
newclass = DI_REGS;
 
rclass = reduce_class (rclass, newclass, rclass);
 
if (GET_MODE (x) == QImode)
rclass = reduce_class (rclass, HL_REGS, rclass);
 
#if DEBUG_RELOAD
fprintf (stderr, "%s\n", class_names[rclass]);
debug_rtx (x);
 
if (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
fprintf (stderr, "Glorm!\n");
#endif
return rclass;
}
 
/* Implements PREFERRED_OUTPUT_RELOAD_CLASS. */
int
m32c_preferred_output_reload_class (rtx x, int rclass)
{
return m32c_preferred_reload_class (x, rclass);
}
 
/* Implements LIMIT_RELOAD_CLASS. We basically want to avoid using
address registers for reloads since they're needed for address
reloads. */
int
m32c_limit_reload_class (enum machine_mode mode, int rclass)
{
#if DEBUG_RELOAD
fprintf (stderr, "limit_reload_class for %s: %s ->",
mode_name[mode], class_names[rclass]);
#endif
 
if (mode == QImode)
rclass = reduce_class (rclass, HL_REGS, rclass);
else if (mode == HImode)
rclass = reduce_class (rclass, HI_REGS, rclass);
else if (mode == SImode)
rclass = reduce_class (rclass, SI_REGS, rclass);
 
if (rclass != A_REGS)
rclass = reduce_class (rclass, DI_REGS, rclass);
 
#if DEBUG_RELOAD
fprintf (stderr, " %s\n", class_names[rclass]);
#endif
return rclass;
}
 
/* Implements SECONDARY_RELOAD_CLASS. QImode have to be reloaded in
r0 or r1, as those are the only real QImode registers. CR regs get
reloaded through appropriately sized general or address
registers. */
int
m32c_secondary_reload_class (int rclass, enum machine_mode mode, rtx x)
{
int cc = class_contents[rclass][0];
#if DEBUG0
fprintf (stderr, "\nsecondary reload class %s %s\n",
class_names[rclass], mode_name[mode]);
debug_rtx (x);
#endif
if (mode == QImode
&& GET_CODE (x) == MEM && (cc & ~class_contents[R23_REGS][0]) == 0)
return QI_REGS;
if (classes_intersect (rclass, CR_REGS)
&& GET_CODE (x) == REG
&& REGNO (x) >= SB_REGNO && REGNO (x) <= SP_REGNO)
return TARGET_A16 ? HI_REGS : A_REGS;
return NO_REGS;
}
 
/* Implements CLASS_LIKELY_SPILLED_P. A_REGS is needed for address
reloads. */
int
m32c_class_likely_spilled_p (int regclass)
{
if (regclass == A_REGS)
return 1;
return reg_class_size[regclass] == 1;
}
 
/* Implements CLASS_MAX_NREGS. We calculate this according to its
documented meaning, to avoid potential inconsistencies with actual
class definitions. */
int
m32c_class_max_nregs (int regclass, enum machine_mode mode)
{
int rn, max = 0;
 
for (rn = 0; rn < FIRST_PSEUDO_REGISTER; rn++)
if (class_contents[regclass][0] & (1 << rn))
{
int n = m32c_hard_regno_nregs (rn, mode);
if (max < n)
max = n;
}
return max;
}
 
/* Implements CANNOT_CHANGE_MODE_CLASS. Only r0 and r1 can change to
QI (r0l, r1l) because the chip doesn't support QI ops on other
registers (well, it does on a0/a1 but if we let gcc do that, reload
suffers). Otherwise, we allow changes to larger modes. */
int
m32c_cannot_change_mode_class (enum machine_mode from,
enum machine_mode to, int rclass)
{
#if DEBUG0
fprintf (stderr, "cannot change from %s to %s in %s\n",
mode_name[from], mode_name[to], class_names[rclass]);
#endif
 
if (to == QImode)
return (class_contents[rclass][0] & 0x1ffa);
 
if (class_contents[rclass][0] & 0x0005 /* r0, r1 */
&& GET_MODE_SIZE (from) > 1)
return 0;
if (GET_MODE_SIZE (from) > 2) /* all other regs */
return 0;
 
return 1;
}
 
/* Helpers for the rest of the file. */
/* TRUE if the rtx is a REG rtx for the given register. */
#define IS_REG(rtx,regno) (GET_CODE (rtx) == REG \
&& REGNO (rtx) == regno)
/* TRUE if the rtx is a pseudo - specifically, one we can use as a
base register in address calculations (hence the "strict"
argument). */
#define IS_PSEUDO(rtx,strict) (!strict && GET_CODE (rtx) == REG \
&& (REGNO (rtx) == AP_REGNO \
|| REGNO (rtx) >= FIRST_PSEUDO_REGISTER))
 
/* Implements CONST_OK_FOR_CONSTRAINT_P. Currently, all constant
constraints start with 'I', with the next two characters indicating
the type and size of the range allowed. */
int
m32c_const_ok_for_constraint_p (HOST_WIDE_INT value,
char c ATTRIBUTE_UNUSED, const char *str)
{
/* s=signed u=unsigned n=nonzero m=minus l=log2able,
[sun] bits [SUN] bytes, p=pointer size
I[-0-9][0-9] matches that number */
if (memcmp (str, "Is3", 3) == 0)
{
return (-8 <= value && value <= 7);
}
if (memcmp (str, "IS1", 3) == 0)
{
return (-128 <= value && value <= 127);
}
if (memcmp (str, "IS2", 3) == 0)
{
return (-32768 <= value && value <= 32767);
}
if (memcmp (str, "IU2", 3) == 0)
{
return (0 <= value && value <= 65535);
}
if (memcmp (str, "IU3", 3) == 0)
{
return (0 <= value && value <= 0x00ffffff);
}
if (memcmp (str, "In4", 3) == 0)
{
return (-8 <= value && value && value <= 8);
}
if (memcmp (str, "In5", 3) == 0)
{
return (-16 <= value && value && value <= 16);
}
if (memcmp (str, "In6", 3) == 0)
{
return (-32 <= value && value && value <= 32);
}
if (memcmp (str, "IM2", 3) == 0)
{
return (-65536 <= value && value && value <= -1);
}
if (memcmp (str, "Ilb", 3) == 0)
{
int b = exact_log2 (value);
return (b >= 0 && b <= 7);
}
if (memcmp (str, "Imb", 3) == 0)
{
int b = exact_log2 ((value ^ 0xff) & 0xff);
return (b >= 0 && b <= 7);
}
if (memcmp (str, "Ilw", 3) == 0)
{
int b = exact_log2 (value);
return (b >= 0 && b <= 15);
}
if (memcmp (str, "Imw", 3) == 0)
{
int b = exact_log2 ((value ^ 0xffff) & 0xffff);
return (b >= 0 && b <= 15);
}
if (memcmp (str, "I00", 3) == 0)
{
return (value == 0);
}
return 0;
}
 
/* Implements EXTRA_CONSTRAINT_STR (see next function too). 'S' is
for memory constraints, plus "Rpa" for PARALLEL rtx's we use for
call return values. */
int
m32c_extra_constraint_p2 (rtx value, char c ATTRIBUTE_UNUSED, const char *str)
{
encode_pattern (value);
if (memcmp (str, "Sd", 2) == 0)
{
/* This is the common "src/dest" address */
rtx r;
if (GET_CODE (value) == MEM && CONSTANT_P (XEXP (value, 0)))
return 1;
if (RTX_IS ("ms") || RTX_IS ("m+si"))
return 1;
if (RTX_IS ("m++rii"))
{
if (REGNO (patternr[3]) == FB_REGNO
&& INTVAL (patternr[4]) == 0)
return 1;
}
if (RTX_IS ("mr"))
r = patternr[1];
else if (RTX_IS ("m+ri") || RTX_IS ("m+rs") || RTX_IS ("m+r+si"))
r = patternr[2];
else
return 0;
if (REGNO (r) == SP_REGNO)
return 0;
return m32c_legitimate_address_p (GET_MODE (value), XEXP (value, 0), 1);
}
else if (memcmp (str, "Sa", 2) == 0)
{
rtx r;
if (RTX_IS ("mr"))
r = patternr[1];
else if (RTX_IS ("m+ri"))
r = patternr[2];
else
return 0;
return (IS_REG (r, A0_REGNO) || IS_REG (r, A1_REGNO));
}
else if (memcmp (str, "Si", 2) == 0)
{
return (RTX_IS ("mi") || RTX_IS ("ms") || RTX_IS ("m+si"));
}
else if (memcmp (str, "Ss", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], SP_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], SP_REGNO))));
}
else if (memcmp (str, "Sf", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], FB_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], FB_REGNO))));
}
else if (memcmp (str, "Sb", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], SB_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], SB_REGNO))));
}
else if (memcmp (str, "Sp", 2) == 0)
{
/* Absolute addresses 0..0x1fff used for bit addressing (I/O ports) */
return (RTX_IS ("mi")
&& !(INTVAL (patternr[1]) & ~0x1fff));
}
else if (memcmp (str, "S1", 2) == 0)
{
return r1h_operand (value, QImode);
}
 
gcc_assert (str[0] != 'S');
 
if (memcmp (str, "Rpa", 2) == 0)
return GET_CODE (value) == PARALLEL;
 
return 0;
}
 
/* This is for when we're debugging the above. */
int
m32c_extra_constraint_p (rtx value, char c, const char *str)
{
int rv = m32c_extra_constraint_p2 (value, c, str);
#if DEBUG0
fprintf (stderr, "\nconstraint %.*s: %d\n", CONSTRAINT_LEN (c, str), str,
rv);
debug_rtx (value);
#endif
return rv;
}
 
/* Implements EXTRA_MEMORY_CONSTRAINT. Currently, we only use strings
starting with 'S'. */
int
m32c_extra_memory_constraint (char c, const char *str ATTRIBUTE_UNUSED)
{
return c == 'S';
}
 
/* Implements EXTRA_ADDRESS_CONSTRAINT. We reserve 'A' strings for these,
but don't currently define any. */
int
m32c_extra_address_constraint (char c, const char *str ATTRIBUTE_UNUSED)
{
return c == 'A';
}
 
/* STACK AND CALLING */
 
/* Frame Layout */
 
/* Implements RETURN_ADDR_RTX. Note that R8C and M16C push 24 bits
(yes, THREE bytes) onto the stack for the return address, but we
don't support pointers bigger than 16 bits on those chips. This
will likely wreak havoc with exception unwinding. FIXME. */
rtx
m32c_return_addr_rtx (int count)
{
enum machine_mode mode;
int offset;
rtx ra_mem;
 
if (count)
return NULL_RTX;
/* we want 2[$fb] */
 
if (TARGET_A24)
{
mode = SImode;
offset = 4;
}
else
{
/* FIXME: it's really 3 bytes */
mode = HImode;
offset = 2;
}
 
ra_mem =
gen_rtx_MEM (mode, plus_constant (gen_rtx_REG (Pmode, FP_REGNO), offset));
return copy_to_mode_reg (mode, ra_mem);
}
 
/* Implements INCOMING_RETURN_ADDR_RTX. See comment above. */
rtx
m32c_incoming_return_addr_rtx (void)
{
/* we want [sp] */
return gen_rtx_MEM (PSImode, gen_rtx_REG (PSImode, SP_REGNO));
}
 
/* Exception Handling Support */
 
/* Implements EH_RETURN_DATA_REGNO. Choose registers able to hold
pointers. */
int
m32c_eh_return_data_regno (int n)
{
switch (n)
{
case 0:
return A0_REGNO;
case 1:
return A1_REGNO;
default:
return INVALID_REGNUM;
}
}
 
/* Implements EH_RETURN_STACKADJ_RTX. Saved and used later in
m32c_emit_eh_epilogue. */
rtx
m32c_eh_return_stackadj_rtx (void)
{
if (!cfun->machine->eh_stack_adjust)
{
rtx sa;
 
sa = gen_reg_rtx (Pmode);
cfun->machine->eh_stack_adjust = sa;
}
return cfun->machine->eh_stack_adjust;
}
 
/* Registers That Address the Stack Frame */
 
/* Implements DWARF_FRAME_REGNUM and DBX_REGISTER_NUMBER. Note that
the original spec called for dwarf numbers to vary with register
width as well, for example, r0l, r0, and r2r0 would each have
different dwarf numbers. GCC doesn't support this, and we don't do
it, and gdb seems to like it this way anyway. */
unsigned int
m32c_dwarf_frame_regnum (int n)
{
switch (n)
{
case R0_REGNO:
return 5;
case R1_REGNO:
return 6;
case R2_REGNO:
return 7;
case R3_REGNO:
return 8;
case A0_REGNO:
return 9;
case A1_REGNO:
return 10;
case FB_REGNO:
return 11;
case SB_REGNO:
return 19;
 
case SP_REGNO:
return 12;
case PC_REGNO:
return 13;
default:
return DWARF_FRAME_REGISTERS + 1;
}
}
 
/* The frame looks like this:
 
ap -> +------------------------------
| Return address (3 or 4 bytes)
| Saved FB (2 or 4 bytes)
fb -> +------------------------------
| local vars
| register saves fb
| through r0 as needed
sp -> +------------------------------
*/
 
/* We use this to wrap all emitted insns in the prologue. */
static rtx
F (rtx x)
{
RTX_FRAME_RELATED_P (x) = 1;
return x;
}
 
/* This maps register numbers to the PUSHM/POPM bitfield, and tells us
how much the stack pointer moves for each, for each cpu family. */
static struct
{
int reg1;
int bit;
int a16_bytes;
int a24_bytes;
} pushm_info[] =
{
/* These are in reverse push (nearest-to-sp) order. */
{ R0_REGNO, 0x80, 2, 2 },
{ R1_REGNO, 0x40, 2, 2 },
{ R2_REGNO, 0x20, 2, 2 },
{ R3_REGNO, 0x10, 2, 2 },
{ A0_REGNO, 0x08, 2, 4 },
{ A1_REGNO, 0x04, 2, 4 },
{ SB_REGNO, 0x02, 2, 4 },
{ FB_REGNO, 0x01, 2, 4 }
};
 
#define PUSHM_N (sizeof(pushm_info)/sizeof(pushm_info[0]))
 
/* Returns TRUE if we need to save/restore the given register. We
save everything for exception handlers, so that any register can be
unwound. For interrupt handlers, we save everything if the handler
calls something else (because we don't know what *that* function
might do), but try to be a bit smarter if the handler is a leaf
function. We always save $a0, though, because we use that in the
epilog to copy $fb to $sp. */
static int
need_to_save (int regno)
{
if (fixed_regs[regno])
return 0;
if (cfun->calls_eh_return)
return 1;
if (regno == FP_REGNO)
return 0;
if (cfun->machine->is_interrupt
&& (!cfun->machine->is_leaf || regno == A0_REGNO))
return 1;
if (regs_ever_live[regno]
&& (!call_used_regs[regno] || cfun->machine->is_interrupt))
return 1;
return 0;
}
 
/* This function contains all the intelligence about saving and
restoring registers. It always figures out the register save set.
When called with PP_justcount, it merely returns the size of the
save set (for eliminating the frame pointer, for example). When
called with PP_pushm or PP_popm, it emits the appropriate
instructions for saving (pushm) or restoring (popm) the
registers. */
static int
m32c_pushm_popm (Push_Pop_Type ppt)
{
int reg_mask = 0;
int byte_count = 0, bytes;
int i;
rtx dwarf_set[PUSHM_N];
int n_dwarfs = 0;
int nosave_mask = 0;
 
if (cfun->return_rtx
&& GET_CODE (cfun->return_rtx) == PARALLEL
&& !(cfun->calls_eh_return || cfun->machine->is_interrupt))
{
rtx exp = XVECEXP (cfun->return_rtx, 0, 0);
rtx rv = XEXP (exp, 0);
int rv_bytes = GET_MODE_SIZE (GET_MODE (rv));
 
if (rv_bytes > 2)
nosave_mask |= 0x20; /* PSI, SI */
else
nosave_mask |= 0xf0; /* DF */
if (rv_bytes > 4)
nosave_mask |= 0x50; /* DI */
}
 
for (i = 0; i < (int) PUSHM_N; i++)
{
/* Skip if neither register needs saving. */
if (!need_to_save (pushm_info[i].reg1))
continue;
 
if (pushm_info[i].bit & nosave_mask)
continue;
 
reg_mask |= pushm_info[i].bit;
bytes = TARGET_A16 ? pushm_info[i].a16_bytes : pushm_info[i].a24_bytes;
 
if (ppt == PP_pushm)
{
enum machine_mode mode = (bytes == 2) ? HImode : SImode;
rtx addr;
 
/* Always use stack_pointer_rtx instead of calling
rtx_gen_REG ourselves. Code elsewhere in GCC assumes
that there is a single rtx representing the stack pointer,
namely stack_pointer_rtx, and uses == to recognize it. */
addr = stack_pointer_rtx;
 
if (byte_count != 0)
addr = gen_rtx_PLUS (GET_MODE (addr), addr, GEN_INT (byte_count));
 
dwarf_set[n_dwarfs++] =
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (mode, addr),
gen_rtx_REG (mode, pushm_info[i].reg1));
F (dwarf_set[n_dwarfs - 1]);
 
}
byte_count += bytes;
}
 
if (cfun->machine->is_interrupt)
{
cfun->machine->intr_pushm = reg_mask & 0xfe;
reg_mask = 0;
byte_count = 0;
}
 
if (cfun->machine->is_interrupt)
for (i = MEM0_REGNO; i <= MEM7_REGNO; i++)
if (need_to_save (i))
{
byte_count += 2;
cfun->machine->intr_pushmem[i - MEM0_REGNO] = 1;
}
 
if (ppt == PP_pushm && byte_count)
{
rtx note = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (n_dwarfs + 1));
rtx pushm;
 
if (reg_mask)
{
XVECEXP (note, 0, 0)
= gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
gen_rtx_PLUS (GET_MODE (stack_pointer_rtx),
stack_pointer_rtx,
GEN_INT (-byte_count)));
F (XVECEXP (note, 0, 0));
 
for (i = 0; i < n_dwarfs; i++)
XVECEXP (note, 0, i + 1) = dwarf_set[i];
 
pushm = F (emit_insn (gen_pushm (GEN_INT (reg_mask))));
 
REG_NOTES (pushm) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, note,
REG_NOTES (pushm));
}
 
if (cfun->machine->is_interrupt)
for (i = MEM0_REGNO; i <= MEM7_REGNO; i++)
if (cfun->machine->intr_pushmem[i - MEM0_REGNO])
{
if (TARGET_A16)
pushm = emit_insn (gen_pushhi_16 (gen_rtx_REG (HImode, i)));
else
pushm = emit_insn (gen_pushhi_24 (gen_rtx_REG (HImode, i)));
F (pushm);
}
}
if (ppt == PP_popm && byte_count)
{
if (cfun->machine->is_interrupt)
for (i = MEM7_REGNO; i >= MEM0_REGNO; i--)
if (cfun->machine->intr_pushmem[i - MEM0_REGNO])
{
if (TARGET_A16)
emit_insn (gen_pophi_16 (gen_rtx_REG (HImode, i)));
else
emit_insn (gen_pophi_24 (gen_rtx_REG (HImode, i)));
}
if (reg_mask)
emit_insn (gen_popm (GEN_INT (reg_mask)));
}
 
return byte_count;
}
 
/* Implements INITIAL_ELIMINATION_OFFSET. See the comment above that
diagrams our call frame. */
int
m32c_initial_elimination_offset (int from, int to)
{
int ofs = 0;
 
if (from == AP_REGNO)
{
if (TARGET_A16)
ofs += 5;
else
ofs += 8;
}
 
if (to == SP_REGNO)
{
ofs += m32c_pushm_popm (PP_justcount);
ofs += get_frame_size ();
}
 
/* Account for push rounding. */
if (TARGET_A24)
ofs = (ofs + 1) & ~1;
#if DEBUG0
fprintf (stderr, "initial_elimination_offset from=%d to=%d, ofs=%d\n", from,
to, ofs);
#endif
return ofs;
}
 
/* Passing Function Arguments on the Stack */
 
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES m32c_promote_prototypes
static bool
m32c_promote_prototypes (tree fntype ATTRIBUTE_UNUSED)
{
return 0;
}
 
/* Implements PUSH_ROUNDING. The R8C and M16C have byte stacks, the
M32C has word stacks. */
int
m32c_push_rounding (int n)
{
if (TARGET_R8C || TARGET_M16C)
return n;
return (n + 1) & ~1;
}
 
/* Passing Arguments in Registers */
 
/* Implements FUNCTION_ARG. Arguments are passed partly in registers,
partly on stack. If our function returns a struct, a pointer to a
buffer for it is at the top of the stack (last thing pushed). The
first few real arguments may be in registers as follows:
 
R8C/M16C: arg1 in r1 if it's QI or HI (else it's pushed on stack)
arg2 in r2 if it's HI (else pushed on stack)
rest on stack
M32C: arg1 in r0 if it's QI or HI (else it's pushed on stack)
rest on stack
 
Structs are not passed in registers, even if they fit. Only
integer and pointer types are passed in registers.
 
Note that when arg1 doesn't fit in r1, arg2 may still be passed in
r2 if it fits. */
rtx
m32c_function_arg (CUMULATIVE_ARGS * ca,
enum machine_mode mode, tree type, int named)
{
/* Can return a reg, parallel, or 0 for stack */
rtx rv = NULL_RTX;
#if DEBUG0
fprintf (stderr, "func_arg %d (%s, %d)\n",
ca->parm_num, mode_name[mode], named);
debug_tree (type);
#endif
 
if (mode == VOIDmode)
return GEN_INT (0);
 
if (ca->force_mem || !named)
{
#if DEBUG0
fprintf (stderr, "func arg: force %d named %d, mem\n", ca->force_mem,
named);
#endif
return NULL_RTX;
}
 
if (type && INTEGRAL_TYPE_P (type) && POINTER_TYPE_P (type))
return NULL_RTX;
 
if (type && AGGREGATE_TYPE_P (type))
return NULL_RTX;
 
switch (ca->parm_num)
{
case 1:
if (GET_MODE_SIZE (mode) == 1 || GET_MODE_SIZE (mode) == 2)
rv = gen_rtx_REG (mode, TARGET_A16 ? R1_REGNO : R0_REGNO);
break;
 
case 2:
if (TARGET_A16 && GET_MODE_SIZE (mode) == 2)
rv = gen_rtx_REG (mode, R2_REGNO);
break;
}
 
#if DEBUG0
debug_rtx (rv);
#endif
return rv;
}
 
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE m32c_pass_by_reference
static bool
m32c_pass_by_reference (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
bool named ATTRIBUTE_UNUSED)
{
return 0;
}
 
/* Implements INIT_CUMULATIVE_ARGS. */
void
m32c_init_cumulative_args (CUMULATIVE_ARGS * ca,
tree fntype,
rtx libname ATTRIBUTE_UNUSED,
tree fndecl,
int n_named_args ATTRIBUTE_UNUSED)
{
if (fntype && aggregate_value_p (TREE_TYPE (fntype), fndecl))
ca->force_mem = 1;
else
ca->force_mem = 0;
ca->parm_num = 1;
}
 
/* Implements FUNCTION_ARG_ADVANCE. force_mem is set for functions
returning structures, so we always reset that. Otherwise, we only
need to know the sequence number of the argument to know what to do
with it. */
void
m32c_function_arg_advance (CUMULATIVE_ARGS * ca,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
int named ATTRIBUTE_UNUSED)
{
if (ca->force_mem)
ca->force_mem = 0;
else
ca->parm_num++;
}
 
/* Implements FUNCTION_ARG_REGNO_P. */
int
m32c_function_arg_regno_p (int r)
{
if (TARGET_A24)
return (r == R0_REGNO);
return (r == R1_REGNO || r == R2_REGNO);
}
 
/* HImode and PSImode are the two "native" modes as far as GCC is
concerned, but the chips also support a 32 bit mode which is used
for some opcodes in R8C/M16C and for reset vectors and such. */
#undef TARGET_VALID_POINTER_MODE
#define TARGET_VALID_POINTER_MODE m32c_valid_pointer_mode
static bool
m32c_valid_pointer_mode (enum machine_mode mode)
{
if (mode == HImode
|| mode == PSImode
|| mode == SImode
)
return 1;
return 0;
}
 
/* How Scalar Function Values Are Returned */
 
/* Implements LIBCALL_VALUE. Most values are returned in $r0, or some
combination of registers starting there (r2r0 for longs, r3r1r2r0
for long long, r3r2r1r0 for doubles), except that that ABI
currently doesn't work because it ends up using all available
general registers and gcc often can't compile it. So, instead, we
return anything bigger than 16 bits in "mem0" (effectively, a
memory location). */
rtx
m32c_libcall_value (enum machine_mode mode)
{
/* return reg or parallel */
#if 0
/* FIXME: GCC has difficulty returning large values in registers,
because that ties up most of the general registers and gives the
register allocator little to work with. Until we can resolve
this, large values are returned in memory. */
if (mode == DFmode)
{
rtx rv;
 
rv = gen_rtx_PARALLEL (mode, rtvec_alloc (4));
XVECEXP (rv, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R0_REGNO),
GEN_INT (0));
XVECEXP (rv, 0, 1) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R1_REGNO),
GEN_INT (2));
XVECEXP (rv, 0, 2) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R2_REGNO),
GEN_INT (4));
XVECEXP (rv, 0, 3) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R3_REGNO),
GEN_INT (6));
return rv;
}
 
if (TARGET_A24 && GET_MODE_SIZE (mode) > 2)
{
rtx rv;
 
rv = gen_rtx_PARALLEL (mode, rtvec_alloc (1));
XVECEXP (rv, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode,
R0_REGNO),
GEN_INT (0));
return rv;
}
#endif
 
if (GET_MODE_SIZE (mode) > 2)
return gen_rtx_REG (mode, MEM0_REGNO);
return gen_rtx_REG (mode, R0_REGNO);
}
 
/* Implements FUNCTION_VALUE. Functions and libcalls have the same
conventions. */
rtx
m32c_function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
{
/* return reg or parallel */
enum machine_mode mode = TYPE_MODE (valtype);
return m32c_libcall_value (mode);
}
 
/* How Large Values Are Returned */
 
/* We return structures by pushing the address on the stack, even if
we use registers for the first few "real" arguments. */
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX m32c_struct_value_rtx
static rtx
m32c_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return 0;
}
 
/* Function Entry and Exit */
 
/* Implements EPILOGUE_USES. Interrupts restore all registers. */
int
m32c_epilogue_uses (int regno ATTRIBUTE_UNUSED)
{
if (cfun->machine->is_interrupt)
return 1;
return 0;
}
 
/* Implementing the Varargs Macros */
 
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING m32c_strict_argument_naming
static bool
m32c_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED)
{
return 1;
}
 
/* Trampolines for Nested Functions */
 
/*
m16c:
1 0000 75C43412 mov.w #0x1234,a0
2 0004 FC000000 jmp.a label
 
m32c:
1 0000 BC563412 mov.l:s #0x123456,a0
2 0004 CC000000 jmp.a label
*/
 
/* Implements TRAMPOLINE_SIZE. */
int
m32c_trampoline_size (void)
{
/* Allocate extra space so we can avoid the messy shifts when we
initialize the trampoline; we just write past the end of the
opcode. */
return TARGET_A16 ? 8 : 10;
}
 
/* Implements TRAMPOLINE_ALIGNMENT. */
int
m32c_trampoline_alignment (void)
{
return 2;
}
 
/* Implements INITIALIZE_TRAMPOLINE. */
void
m32c_initialize_trampoline (rtx tramp, rtx function, rtx chainval)
{
#define A0(m,i) gen_rtx_MEM (m, plus_constant (tramp, i))
if (TARGET_A16)
{
/* Note: we subtract a "word" because the moves want signed
constants, not unsigned constants. */
emit_move_insn (A0 (HImode, 0), GEN_INT (0xc475 - 0x10000));
emit_move_insn (A0 (HImode, 2), chainval);
emit_move_insn (A0 (QImode, 4), GEN_INT (0xfc - 0x100));
/* We use 16 bit addresses here, but store the zero to turn it
into a 24 bit offset. */
emit_move_insn (A0 (HImode, 5), function);
emit_move_insn (A0 (QImode, 7), GEN_INT (0x00));
}
else
{
/* Note that the PSI moves actually write 4 bytes. Make sure we
write stuff out in the right order, and leave room for the
extra byte at the end. */
emit_move_insn (A0 (QImode, 0), GEN_INT (0xbc - 0x100));
emit_move_insn (A0 (PSImode, 1), chainval);
emit_move_insn (A0 (QImode, 4), GEN_INT (0xcc - 0x100));
emit_move_insn (A0 (PSImode, 5), function);
}
#undef A0
}
 
/* Implicit Calls to Library Routines */
 
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS m32c_init_libfuncs
static void
m32c_init_libfuncs (void)
{
if (TARGET_A24)
{
/* We do this because the M32C has an HImode operand, but the
M16C has an 8 bit operand. Since gcc looks at the match data
and not the expanded rtl, we have to reset the array so that
the right modes are found. */
setcc_gen_code[EQ] = CODE_FOR_seq_24;
setcc_gen_code[NE] = CODE_FOR_sne_24;
setcc_gen_code[GT] = CODE_FOR_sgt_24;
setcc_gen_code[GE] = CODE_FOR_sge_24;
setcc_gen_code[LT] = CODE_FOR_slt_24;
setcc_gen_code[LE] = CODE_FOR_sle_24;
setcc_gen_code[GTU] = CODE_FOR_sgtu_24;
setcc_gen_code[GEU] = CODE_FOR_sgeu_24;
setcc_gen_code[LTU] = CODE_FOR_sltu_24;
setcc_gen_code[LEU] = CODE_FOR_sleu_24;
}
}
 
/* Addressing Modes */
 
/* Used by GO_IF_LEGITIMATE_ADDRESS. The r8c/m32c family supports a
wide range of non-orthogonal addressing modes, including the
ability to double-indirect on *some* of them. Not all insns
support all modes, either, but we rely on predicates and
constraints to deal with that. */
int
m32c_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
int mode_adjust;
if (CONSTANT_P (x))
return 1;
 
/* Wide references to memory will be split after reload, so we must
ensure that all parts of such splits remain legitimate
addresses. */
mode_adjust = GET_MODE_SIZE (mode) - 1;
 
/* allowing PLUS yields mem:HI(plus:SI(mem:SI(plus:SI in m32c_split_move */
if (GET_CODE (x) == PRE_DEC
|| GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_MODIFY)
{
return (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) == SP_REGNO);
}
 
#if 0
/* This is the double indirection detection, but it currently
doesn't work as cleanly as this code implies, so until we've had
a chance to debug it, leave it disabled. */
if (TARGET_A24 && GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) != PLUS)
{
#if DEBUG_DOUBLE
fprintf (stderr, "double indirect\n");
#endif
x = XEXP (x, 0);
}
#endif
 
encode_pattern (x);
if (RTX_IS ("r"))
{
/* Most indexable registers can be used without displacements,
although some of them will be emitted with an explicit zero
to please the assembler. */
switch (REGNO (patternr[0]))
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
return 1;
 
default:
if (IS_PSEUDO (patternr[0], strict))
return 1;
return 0;
}
}
if (RTX_IS ("+ri"))
{
/* This is more interesting, because different base registers
allow for different displacements - both range and signedness
- and it differs from chip series to chip series too. */
int rn = REGNO (patternr[1]);
HOST_WIDE_INT offs = INTVAL (patternr[2]);
switch (rn)
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
/* The syntax only allows positive offsets, but when the
offsets span the entire memory range, we can simulate
negative offsets by wrapping. */
if (TARGET_A16)
return (offs >= -65536 && offs <= 65535 - mode_adjust);
if (rn == SB_REGNO)
return (offs >= 0 && offs <= 65535 - mode_adjust);
/* A0 or A1 */
return (offs >= -16777216 && offs <= 16777215);
 
case FB_REGNO:
if (TARGET_A16)
return (offs >= -128 && offs <= 127 - mode_adjust);
return (offs >= -65536 && offs <= 65535 - mode_adjust);
 
case SP_REGNO:
return (offs >= -128 && offs <= 127 - mode_adjust);
 
default:
if (IS_PSEUDO (patternr[1], strict))
return 1;
return 0;
}
}
if (RTX_IS ("+rs") || RTX_IS ("+r+si"))
{
rtx reg = patternr[1];
 
/* We don't know where the symbol is, so only allow base
registers which support displacements spanning the whole
address range. */
switch (REGNO (reg))
{
case A0_REGNO:
case A1_REGNO:
/* $sb needs a secondary reload, but since it's involved in
memory address reloads too, we don't deal with it very
well. */
/* case SB_REGNO: */
return 1;
default:
if (IS_PSEUDO (reg, strict))
return 1;
return 0;
}
}
return 0;
}
 
/* Implements REG_OK_FOR_BASE_P. */
int
m32c_reg_ok_for_base_p (rtx x, int strict)
{
if (GET_CODE (x) != REG)
return 0;
switch (REGNO (x))
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
return 1;
default:
if (IS_PSEUDO (x, strict))
return 1;
return 0;
}
}
 
/* We have three choices for choosing fb->aN offsets. If we choose -128,
we need one MOVA -128[fb],aN opcode and 16 bit aN displacements,
like this:
EB 4B FF mova -128[$fb],$a0
D8 0C FF FF mov.w:Q #0,-1[$a0]
 
Alternately, we subtract the frame size, and hopefully use 8 bit aN
displacements:
7B F4 stc $fb,$a0
77 54 00 01 sub #256,$a0
D8 08 01 mov.w:Q #0,1[$a0]
 
If we don't offset (i.e. offset by zero), we end up with:
7B F4 stc $fb,$a0
D8 0C 00 FF mov.w:Q #0,-256[$a0]
 
We have to subtract *something* so that we have a PLUS rtx to mark
that we've done this reload. The -128 offset will never result in
an 8 bit aN offset, and the payoff for the second case is five
loads *if* those loads are within 256 bytes of the other end of the
frame, so the third case seems best. Note that we subtract the
zero, but detect that in the addhi3 pattern. */
 
#define BIG_FB_ADJ 0
 
/* Implements LEGITIMIZE_ADDRESS. The only address we really have to
worry about is frame base offsets, as $fb has a limited
displacement range. We deal with this by attempting to reload $fb
itself into an address register; that seems to result in the best
code. */
int
m32c_legitimize_address (rtx * x ATTRIBUTE_UNUSED,
rtx oldx ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
#if DEBUG0
fprintf (stderr, "m32c_legitimize_address for mode %s\n", mode_name[mode]);
debug_rtx (*x);
fprintf (stderr, "\n");
#endif
 
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == REG
&& REGNO (XEXP (*x, 0)) == FB_REGNO
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
&& (INTVAL (XEXP (*x, 1)) < -128
|| INTVAL (XEXP (*x, 1)) > (128 - GET_MODE_SIZE (mode))))
{
/* reload FB to A_REGS */
rtx temp = gen_reg_rtx (Pmode);
*x = copy_rtx (*x);
emit_insn (gen_rtx_SET (VOIDmode, temp, XEXP (*x, 0)));
XEXP (*x, 0) = temp;
return 1;
}
 
return 0;
}
 
/* Implements LEGITIMIZE_RELOAD_ADDRESS. See comment above. */
int
m32c_legitimize_reload_address (rtx * x,
enum machine_mode mode,
int opnum,
int type, int ind_levels ATTRIBUTE_UNUSED)
{
#if DEBUG0
fprintf (stderr, "\nm32c_legitimize_reload_address for mode %s\n",
mode_name[mode]);
debug_rtx (*x);
#endif
 
/* At one point, this function tried to get $fb copied to an address
register, which in theory would maximize sharing, but gcc was
*also* still trying to reload the whole address, and we'd run out
of address registers. So we let gcc do the naive (but safe)
reload instead, when the above function doesn't handle it for
us.
 
The code below is a second attempt at the above. */
 
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == REG
&& REGNO (XEXP (*x, 0)) == FB_REGNO
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
&& (INTVAL (XEXP (*x, 1)) < -128
|| INTVAL (XEXP (*x, 1)) > (128 - GET_MODE_SIZE (mode))))
{
rtx sum;
int offset = INTVAL (XEXP (*x, 1));
int adjustment = -BIG_FB_ADJ;
 
sum = gen_rtx_PLUS (Pmode, XEXP (*x, 0),
GEN_INT (adjustment));
*x = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - adjustment));
if (type == RELOAD_OTHER)
type = RELOAD_FOR_OTHER_ADDRESS;
push_reload (sum, NULL_RTX, &XEXP (*x, 0), NULL,
A_REGS, Pmode, VOIDmode, 0, 0, opnum,
type);
return 1;
}
 
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (*x, 0), 0)) == REG
&& REGNO (XEXP (XEXP (*x, 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (*x, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
)
{
if (type == RELOAD_OTHER)
type = RELOAD_FOR_OTHER_ADDRESS;
push_reload (XEXP (*x, 0), NULL_RTX, &XEXP (*x, 0), NULL,
A_REGS, Pmode, VOIDmode, 0, 0, opnum,
type);
return 1;
}
 
return 0;
}
 
/* Used in GO_IF_MODE_DEPENDENT_ADDRESS. */
int
m32c_mode_dependent_address (rtx addr)
{
if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == PRE_DEC)
return 1;
return 0;
}
 
/* Implements LEGITIMATE_CONSTANT_P. We split large constants anyway,
so we can allow anything. */
int
m32c_legitimate_constant_p (rtx x ATTRIBUTE_UNUSED)
{
return 1;
}
 
 
/* Condition Code Status */
 
#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS m32c_fixed_condition_code_regs
static bool
m32c_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
*p1 = FLG_REGNO;
*p2 = INVALID_REGNUM;
return true;
}
 
/* Describing Relative Costs of Operations */
 
/* Implements REGISTER_MOVE_COST. We make impossible moves
prohibitively expensive, like trying to put QIs in r2/r3 (there are
no opcodes to do that). We also discourage use of mem* registers
since they're really memory. */
int
m32c_register_move_cost (enum machine_mode mode, int from, int to)
{
int cost = COSTS_N_INSNS (3);
int cc = class_contents[from][0] | class_contents[to][0];
/* FIXME: pick real values, but not 2 for now. */
if (mode == QImode && (cc & class_contents[R23_REGS][0]))
{
if (!(cc & ~class_contents[R23_REGS][0]))
cost = COSTS_N_INSNS (1000);
else
cost = COSTS_N_INSNS (80);
}
 
if (!class_can_hold_mode (from, mode) || !class_can_hold_mode (to, mode))
cost = COSTS_N_INSNS (1000);
 
if (classes_intersect (from, CR_REGS))
cost += COSTS_N_INSNS (5);
 
if (classes_intersect (to, CR_REGS))
cost += COSTS_N_INSNS (5);
 
if (from == MEM_REGS || to == MEM_REGS)
cost += COSTS_N_INSNS (50);
else if (classes_intersect (from, MEM_REGS)
|| classes_intersect (to, MEM_REGS))
cost += COSTS_N_INSNS (10);
 
#if DEBUG0
fprintf (stderr, "register_move_cost %s from %s to %s = %d\n",
mode_name[mode], class_names[from], class_names[to], cost);
#endif
return cost;
}
 
/* Implements MEMORY_MOVE_COST. */
int
m32c_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
int reg_class ATTRIBUTE_UNUSED,
int in ATTRIBUTE_UNUSED)
{
/* FIXME: pick real values. */
return COSTS_N_INSNS (10);
}
 
/* Here we try to describe when we use multiple opcodes for one RTX so
that gcc knows when to use them. */
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS m32c_rtx_costs
static bool
m32c_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case REG:
if (REGNO (x) >= MEM0_REGNO && REGNO (x) <= MEM7_REGNO)
*total += COSTS_N_INSNS (500);
else
*total += COSTS_N_INSNS (1);
return true;
 
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
{
/* mov.b r1l, r1h */
*total += COSTS_N_INSNS (1);
return true;
}
if (INTVAL (XEXP (x, 1)) > 8
|| INTVAL (XEXP (x, 1)) < -8)
{
/* mov.b #N, r1l */
/* mov.b r1l, r1h */
*total += COSTS_N_INSNS (2);
return true;
}
return true;
 
case LE:
case LEU:
case LT:
case LTU:
case GT:
case GTU:
case GE:
case GEU:
case NE:
case EQ:
if (outer_code == SET)
{
*total += COSTS_N_INSNS (2);
return true;
}
break;
 
case ZERO_EXTRACT:
{
rtx dest = XEXP (x, 0);
rtx addr = XEXP (dest, 0);
switch (GET_CODE (addr))
{
case CONST_INT:
*total += COSTS_N_INSNS (1);
break;
case SYMBOL_REF:
*total += COSTS_N_INSNS (3);
break;
default:
*total += COSTS_N_INSNS (2);
break;
}
return true;
}
break;
 
default:
/* Reasonable default. */
if (TARGET_A16 && GET_MODE(x) == SImode)
*total += COSTS_N_INSNS (2);
break;
}
return false;
}
 
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST m32c_address_cost
static int
m32c_address_cost (rtx addr)
{
/* fprintf(stderr, "\naddress_cost\n");
debug_rtx(addr);*/
switch (GET_CODE (addr))
{
case CONST_INT:
return COSTS_N_INSNS(1);
case SYMBOL_REF:
return COSTS_N_INSNS(3);
case REG:
return COSTS_N_INSNS(2);
default:
return 0;
}
}
 
/* Defining the Output Assembler Language */
 
/* The Overall Framework of an Assembler File */
 
#undef TARGET_HAVE_NAMED_SECTIONS
#define TARGET_HAVE_NAMED_SECTIONS true
 
/* Output of Data */
 
/* We may have 24 bit sizes, which is the native address size.
Currently unused, but provided for completeness. */
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER m32c_asm_integer
static bool
m32c_asm_integer (rtx x, unsigned int size, int aligned_p)
{
switch (size)
{
case 3:
fprintf (asm_out_file, "\t.3byte\t");
output_addr_const (asm_out_file, x);
fputc ('\n', asm_out_file);
return true;
case 4:
if (GET_CODE (x) == SYMBOL_REF)
{
fprintf (asm_out_file, "\t.long\t");
output_addr_const (asm_out_file, x);
fputc ('\n', asm_out_file);
return true;
}
break;
}
return default_assemble_integer (x, size, aligned_p);
}
 
/* Output of Assembler Instructions */
 
/* We use a lookup table because the addressing modes are non-orthogonal. */
 
static struct
{
char code;
char const *pattern;
char const *format;
}
const conversions[] = {
{ 0, "r", "0" },
 
{ 0, "mr", "z[1]" },
{ 0, "m+ri", "3[2]" },
{ 0, "m+rs", "3[2]" },
{ 0, "m+r+si", "4+5[2]" },
{ 0, "ms", "1" },
{ 0, "mi", "1" },
{ 0, "m+si", "2+3" },
 
{ 0, "mmr", "[z[2]]" },
{ 0, "mm+ri", "[4[3]]" },
{ 0, "mm+rs", "[4[3]]" },
{ 0, "mm+r+si", "[5+6[3]]" },
{ 0, "mms", "[[2]]" },
{ 0, "mmi", "[[2]]" },
{ 0, "mm+si", "[4[3]]" },
 
{ 0, "i", "#0" },
{ 0, "s", "#0" },
{ 0, "+si", "#1+2" },
{ 0, "l", "#0" },
 
{ 'l', "l", "0" },
{ 'd', "i", "0" },
{ 'd', "s", "0" },
{ 'd', "+si", "1+2" },
{ 'D', "i", "0" },
{ 'D', "s", "0" },
{ 'D', "+si", "1+2" },
{ 'x', "i", "#0" },
{ 'X', "i", "#0" },
{ 'm', "i", "#0" },
{ 'b', "i", "#0" },
{ 'B', "i", "0" },
{ 'p', "i", "0" },
 
{ 0, 0, 0 }
};
 
/* This is in order according to the bitfield that pushm/popm use. */
static char const *pushm_regs[] = {
"fb", "sb", "a1", "a0", "r3", "r2", "r1", "r0"
};
 
/* Implements PRINT_OPERAND. */
void
m32c_print_operand (FILE * file, rtx x, int code)
{
int i, j, b;
const char *comma;
HOST_WIDE_INT ival;
int unsigned_const = 0;
int force_sign;
 
/* Multiplies; constants are converted to sign-extended format but
we need unsigned, so 'u' and 'U' tell us what size unsigned we
need. */
if (code == 'u')
{
unsigned_const = 2;
code = 0;
}
if (code == 'U')
{
unsigned_const = 1;
code = 0;
}
/* This one is only for debugging; you can put it in a pattern to
force this error. */
if (code == '!')
{
fprintf (stderr, "dj: unreviewed pattern:");
if (current_output_insn)
debug_rtx (current_output_insn);
gcc_unreachable ();
}
/* PSImode operations are either .w or .l depending on the target. */
if (code == '&')
{
if (TARGET_A16)
fprintf (file, "w");
else
fprintf (file, "l");
return;
}
/* Inverted conditionals. */
if (code == 'C')
{
switch (GET_CODE (x))
{
case LE:
fputs ("gt", file);
break;
case LEU:
fputs ("gtu", file);
break;
case LT:
fputs ("ge", file);
break;
case LTU:
fputs ("geu", file);
break;
case GT:
fputs ("le", file);
break;
case GTU:
fputs ("leu", file);
break;
case GE:
fputs ("lt", file);
break;
case GEU:
fputs ("ltu", file);
break;
case NE:
fputs ("eq", file);
break;
case EQ:
fputs ("ne", file);
break;
default:
gcc_unreachable ();
}
return;
}
/* Regular conditionals. */
if (code == 'c')
{
switch (GET_CODE (x))
{
case LE:
fputs ("le", file);
break;
case LEU:
fputs ("leu", file);
break;
case LT:
fputs ("lt", file);
break;
case LTU:
fputs ("ltu", file);
break;
case GT:
fputs ("gt", file);
break;
case GTU:
fputs ("gtu", file);
break;
case GE:
fputs ("ge", file);
break;
case GEU:
fputs ("geu", file);
break;
case NE:
fputs ("ne", file);
break;
case EQ:
fputs ("eq", file);
break;
default:
gcc_unreachable ();
}
return;
}
/* Used in negsi2 to do HImode ops on the two parts of an SImode
operand. */
if (code == 'h' && GET_MODE (x) == SImode)
{
x = m32c_subreg (HImode, x, SImode, 0);
code = 0;
}
if (code == 'H' && GET_MODE (x) == SImode)
{
x = m32c_subreg (HImode, x, SImode, 2);
code = 0;
}
if (code == 'h' && GET_MODE (x) == HImode)
{
x = m32c_subreg (QImode, x, HImode, 0);
code = 0;
}
if (code == 'H' && GET_MODE (x) == HImode)
{
/* We can't actually represent this as an rtx. Do it here. */
if (GET_CODE (x) == REG)
{
switch (REGNO (x))
{
case R0_REGNO:
fputs ("r0h", file);
return;
case R1_REGNO:
fputs ("r1h", file);
return;
default:
gcc_unreachable();
}
}
/* This should be a MEM. */
x = m32c_subreg (QImode, x, HImode, 1);
code = 0;
}
/* This is for BMcond, which always wants word register names. */
if (code == 'h' && GET_MODE (x) == QImode)
{
if (GET_CODE (x) == REG)
x = gen_rtx_REG (HImode, REGNO (x));
code = 0;
}
/* 'x' and 'X' need to be ignored for non-immediates. */
if ((code == 'x' || code == 'X') && GET_CODE (x) != CONST_INT)
code = 0;
 
encode_pattern (x);
force_sign = 0;
for (i = 0; conversions[i].pattern; i++)
if (conversions[i].code == code
&& streq (conversions[i].pattern, pattern))
{
for (j = 0; conversions[i].format[j]; j++)
/* backslash quotes the next character in the output pattern. */
if (conversions[i].format[j] == '\\')
{
fputc (conversions[i].format[j + 1], file);
j++;
}
/* Digits in the output pattern indicate that the
corresponding RTX is to be output at that point. */
else if (ISDIGIT (conversions[i].format[j]))
{
rtx r = patternr[conversions[i].format[j] - '0'];
switch (GET_CODE (r))
{
case REG:
fprintf (file, "%s",
reg_name_with_mode (REGNO (r), GET_MODE (r)));
break;
case CONST_INT:
switch (code)
{
case 'b':
case 'B':
{
int v = INTVAL (r);
int i = (int) exact_log2 (v);
if (i == -1)
i = (int) exact_log2 ((v ^ 0xffff) & 0xffff);
if (i == -1)
i = (int) exact_log2 ((v ^ 0xff) & 0xff);
/* Bit position. */
fprintf (file, "%d", i);
}
break;
case 'x':
/* Unsigned byte. */
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
INTVAL (r) & 0xff);
break;
case 'X':
/* Unsigned word. */
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
INTVAL (r) & 0xffff);
break;
case 'p':
/* pushm and popm encode a register set into a single byte. */
comma = "";
for (b = 7; b >= 0; b--)
if (INTVAL (r) & (1 << b))
{
fprintf (file, "%s%s", comma, pushm_regs[b]);
comma = ",";
}
break;
case 'm':
/* "Minus". Output -X */
ival = (-INTVAL (r) & 0xffff);
if (ival & 0x8000)
ival = ival - 0x10000;
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
break;
default:
ival = INTVAL (r);
if (conversions[i].format[j + 1] == '[' && ival < 0)
{
/* We can simulate negative displacements by
taking advantage of address space
wrapping when the offset can span the
entire address range. */
rtx base =
patternr[conversions[i].format[j + 2] - '0'];
if (GET_CODE (base) == REG)
switch (REGNO (base))
{
case A0_REGNO:
case A1_REGNO:
if (TARGET_A24)
ival = 0x1000000 + ival;
else
ival = 0x10000 + ival;
break;
case SB_REGNO:
if (TARGET_A16)
ival = 0x10000 + ival;
break;
}
}
else if (code == 'd' && ival < 0 && j == 0)
/* The "mova" opcode is used to do addition by
computing displacements, but again, we need
displacements to be unsigned *if* they're
the only component of the displacement
(i.e. no "symbol-4" type displacement). */
ival = (TARGET_A24 ? 0x1000000 : 0x10000) + ival;
 
if (conversions[i].format[j] == '0')
{
/* More conversions to unsigned. */
if (unsigned_const == 2)
ival &= 0xffff;
if (unsigned_const == 1)
ival &= 0xff;
}
if (streq (conversions[i].pattern, "mi")
|| streq (conversions[i].pattern, "mmi"))
{
/* Integers used as addresses are unsigned. */
ival &= (TARGET_A24 ? 0xffffff : 0xffff);
}
if (force_sign && ival >= 0)
fputc ('+', file);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
break;
}
break;
case CONST_DOUBLE:
/* We don't have const_double constants. If it
happens, make it obvious. */
fprintf (file, "[const_double 0x%lx]",
(unsigned long) CONST_DOUBLE_HIGH (r));
break;
case SYMBOL_REF:
assemble_name (file, XSTR (r, 0));
break;
case LABEL_REF:
output_asm_label (r);
break;
default:
fprintf (stderr, "don't know how to print this operand:");
debug_rtx (r);
gcc_unreachable ();
}
}
else
{
if (conversions[i].format[j] == 'z')
{
/* Some addressing modes *must* have a displacement,
so insert a zero here if needed. */
int k;
for (k = j + 1; conversions[i].format[k]; k++)
if (ISDIGIT (conversions[i].format[k]))
{
rtx reg = patternr[conversions[i].format[k] - '0'];
if (GET_CODE (reg) == REG
&& (REGNO (reg) == SB_REGNO
|| REGNO (reg) == FB_REGNO
|| REGNO (reg) == SP_REGNO))
fputc ('0', file);
}
continue;
}
/* Signed displacements off symbols need to have signs
blended cleanly. */
if (conversions[i].format[j] == '+'
&& (!code || code == 'D' || code == 'd')
&& ISDIGIT (conversions[i].format[j + 1])
&& (GET_CODE (patternr[conversions[i].format[j + 1] - '0'])
== CONST_INT))
{
force_sign = 1;
continue;
}
fputc (conversions[i].format[j], file);
}
break;
}
if (!conversions[i].pattern)
{
fprintf (stderr, "unconvertible operand %c `%s'", code ? code : '-',
pattern);
debug_rtx (x);
fprintf (file, "[%c.%s]", code ? code : '-', pattern);
}
 
return;
}
 
/* Implements PRINT_OPERAND_PUNCT_VALID_P. See m32c_print_operand
above for descriptions of what these do. */
int
m32c_print_operand_punct_valid_p (int c)
{
if (c == '&' || c == '!')
return 1;
return 0;
}
 
/* Implements PRINT_OPERAND_ADDRESS. Nothing unusual here. */
void
m32c_print_operand_address (FILE * stream, rtx address)
{
gcc_assert (GET_CODE (address) == MEM);
m32c_print_operand (stream, XEXP (address, 0), 0);
}
 
/* Implements ASM_OUTPUT_REG_PUSH. Control registers are pushed
differently than general registers. */
void
m32c_output_reg_push (FILE * s, int regno)
{
if (regno == FLG_REGNO)
fprintf (s, "\tpushc\tflg\n");
else
fprintf (s, "\tpush.%c\t%s\n",
" bwll"[reg_push_size (regno)], reg_names[regno]);
}
 
/* Likewise for ASM_OUTPUT_REG_POP. */
void
m32c_output_reg_pop (FILE * s, int regno)
{
if (regno == FLG_REGNO)
fprintf (s, "\tpopc\tflg\n");
else
fprintf (s, "\tpop.%c\t%s\n",
" bwll"[reg_push_size (regno)], reg_names[regno]);
}
 
/* Defining target-specific uses of `__attribute__' */
 
/* Used to simplify the logic below. Find the attributes wherever
they may be. */
#define M32C_ATTRIBUTES(decl) \
(TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \
: DECL_ATTRIBUTES (decl) \
? (DECL_ATTRIBUTES (decl)) \
: TYPE_ATTRIBUTES (TREE_TYPE (decl))
 
/* Returns TRUE if the given tree has the "interrupt" attribute. */
static int
interrupt_p (tree node ATTRIBUTE_UNUSED)
{
tree list = M32C_ATTRIBUTES (node);
while (list)
{
if (is_attribute_p ("interrupt", TREE_PURPOSE (list)))
return 1;
list = TREE_CHAIN (list);
}
return 0;
}
 
static tree
interrupt_handler (tree * node ATTRIBUTE_UNUSED,
tree name ATTRIBUTE_UNUSED,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool * no_add_attrs ATTRIBUTE_UNUSED)
{
return NULL_TREE;
}
 
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE m32c_attribute_table
static const struct attribute_spec m32c_attribute_table[] = {
{"interrupt", 0, 0, false, false, false, interrupt_handler},
{0, 0, 0, 0, 0, 0, 0}
};
 
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES m32c_comp_type_attributes
static int
m32c_comp_type_attributes (tree type1 ATTRIBUTE_UNUSED,
tree type2 ATTRIBUTE_UNUSED)
{
/* 0=incompatible 1=compatible 2=warning */
return 1;
}
 
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES m32c_insert_attributes
static void
m32c_insert_attributes (tree node ATTRIBUTE_UNUSED,
tree * attr_ptr ATTRIBUTE_UNUSED)
{
/* Nothing to do here. */
}
 
/* Predicates */
 
/* Returns TRUE if we support a move between the first two operands.
At the moment, we just want to discourage mem to mem moves until
after reload, because reload has a hard time with our limited
number of address registers, and we can get into a situation where
we need three of them when we only have two. */
bool
m32c_mov_ok (rtx * operands, enum machine_mode mode ATTRIBUTE_UNUSED)
{
rtx op0 = operands[0];
rtx op1 = operands[1];
 
if (TARGET_A24)
return true;
 
#define DEBUG_MOV_OK 0
#if DEBUG_MOV_OK
fprintf (stderr, "m32c_mov_ok %s\n", mode_name[mode]);
debug_rtx (op0);
debug_rtx (op1);
#endif
 
if (GET_CODE (op0) == SUBREG)
op0 = XEXP (op0, 0);
if (GET_CODE (op1) == SUBREG)
op1 = XEXP (op1, 0);
 
if (GET_CODE (op0) == MEM
&& GET_CODE (op1) == MEM
&& ! reload_completed)
{
#if DEBUG_MOV_OK
fprintf (stderr, " - no, mem to mem\n");
#endif
return false;
}
 
#if DEBUG_MOV_OK
fprintf (stderr, " - ok\n");
#endif
return true;
}
 
/* Returns TRUE if two consecutive HImode mov instructions, generated
for moving an immediate double data to a double data type variable
location, can be combined into single SImode mov instruction. */
bool
m32c_immd_dbl_mov (rtx * operands,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
int flag = 0, okflag = 0, offset1 = 0, offset2 = 0, offsetsign = 0;
const char *str1;
const char *str2;
 
if (GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& GET_CODE (XEXP (operands[2], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[2], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 1;
 
else if (GET_CODE (XEXP (operands[0], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[0], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[0], 0), 0), 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& !(XINT (XEXP (XEXP (XEXP (operands[0], 0), 0), 1), 0) %4)
&& GET_CODE (XEXP (operands[2], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[2], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 2;
 
else if (GET_CODE (XEXP (operands[0], 0)) == PLUS
&& GET_CODE (XEXP (XEXP (operands[0], 0), 0)) == REG
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (operands[0], 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& !(XINT (XEXP (XEXP (operands[0], 0), 1), 0) %4)
&& REGNO (XEXP (XEXP (operands[2], 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (operands[2], 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 3;
 
else
return false;
 
switch (flag)
{
case 1:
str1 = XSTR (XEXP (operands[0], 0), 0);
str2 = XSTR (XEXP (XEXP (XEXP (operands[2], 0), 0), 0), 0);
if (strcmp (str1, str2) == 0)
okflag = 1;
else
okflag = 0;
break;
case 2:
str1 = XSTR (XEXP (XEXP (XEXP (operands[0], 0), 0), 0), 0);
str2 = XSTR (XEXP (XEXP (XEXP (operands[2], 0), 0), 0), 0);
if (strcmp(str1,str2) == 0)
okflag = 1;
else
okflag = 0;
break;
case 3:
offset1 = XINT (XEXP (XEXP (operands[0], 0), 1), 0);
offset2 = XINT (XEXP (XEXP (operands[2], 0), 1), 0);
offsetsign = offset1 >> ((sizeof (offset1) * 8) -1);
if (((offset2-offset1) == 2) && offsetsign != 0)
okflag = 1;
else
okflag = 0;
break;
default:
okflag = 0;
}
if (okflag == 1)
{
HOST_WIDE_INT val;
operands[4] = gen_rtx_MEM (SImode, XEXP (operands[0], 0));
 
val = (XINT (operands[3], 0) << 16) + (XINT (operands[1], 0) & 0xFFFF);
operands[5] = gen_rtx_CONST_INT (VOIDmode, val);
return true;
}
 
return false;
}
 
/* Expanders */
 
/* Subregs are non-orthogonal for us, because our registers are all
different sizes. */
static rtx
m32c_subreg (enum machine_mode outer,
rtx x, enum machine_mode inner, int byte)
{
int r, nr = -1;
 
/* Converting MEMs to different types that are the same size, we
just rewrite them. */
if (GET_CODE (x) == SUBREG
&& SUBREG_BYTE (x) == 0
&& GET_CODE (SUBREG_REG (x)) == MEM
&& (GET_MODE_SIZE (GET_MODE (x))
== GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
{
rtx oldx = x;
x = gen_rtx_MEM (GET_MODE (x), XEXP (SUBREG_REG (x), 0));
MEM_COPY_ATTRIBUTES (x, SUBREG_REG (oldx));
}
 
/* Push/pop get done as smaller push/pops. */
if (GET_CODE (x) == MEM
&& (GET_CODE (XEXP (x, 0)) == PRE_DEC
|| GET_CODE (XEXP (x, 0)) == POST_INC))
return gen_rtx_MEM (outer, XEXP (x, 0));
if (GET_CODE (x) == SUBREG
&& GET_CODE (XEXP (x, 0)) == MEM
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == PRE_DEC
|| GET_CODE (XEXP (XEXP (x, 0), 0)) == POST_INC))
return gen_rtx_MEM (outer, XEXP (XEXP (x, 0), 0));
 
if (GET_CODE (x) != REG)
return simplify_gen_subreg (outer, x, inner, byte);
 
r = REGNO (x);
if (r >= FIRST_PSEUDO_REGISTER || r == AP_REGNO)
return simplify_gen_subreg (outer, x, inner, byte);
 
if (IS_MEM_REGNO (r))
return simplify_gen_subreg (outer, x, inner, byte);
 
/* This is where the complexities of our register layout are
described. */
if (byte == 0)
nr = r;
else if (outer == HImode)
{
if (r == R0_REGNO && byte == 2)
nr = R2_REGNO;
else if (r == R0_REGNO && byte == 4)
nr = R1_REGNO;
else if (r == R0_REGNO && byte == 6)
nr = R3_REGNO;
else if (r == R1_REGNO && byte == 2)
nr = R3_REGNO;
else if (r == A0_REGNO && byte == 2)
nr = A1_REGNO;
}
else if (outer == SImode)
{
if (r == R0_REGNO && byte == 0)
nr = R0_REGNO;
else if (r == R0_REGNO && byte == 4)
nr = R1_REGNO;
}
if (nr == -1)
{
fprintf (stderr, "m32c_subreg %s %s %d\n",
mode_name[outer], mode_name[inner], byte);
debug_rtx (x);
gcc_unreachable ();
}
return gen_rtx_REG (outer, nr);
}
 
/* Used to emit move instructions. We split some moves,
and avoid mem-mem moves. */
int
m32c_prepare_move (rtx * operands, enum machine_mode mode)
{
if (TARGET_A16 && mode == PSImode)
return m32c_split_move (operands, mode, 1);
if ((GET_CODE (operands[0]) == MEM)
&& (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY))
{
rtx pmv = XEXP (operands[0], 0);
rtx dest_reg = XEXP (pmv, 0);
rtx dest_mod = XEXP (pmv, 1);
 
emit_insn (gen_rtx_SET (Pmode, dest_reg, dest_mod));
operands[0] = gen_rtx_MEM (mode, dest_reg);
}
if (!no_new_pseudos && MEM_P (operands[0]) && MEM_P (operands[1]))
operands[1] = copy_to_mode_reg (mode, operands[1]);
return 0;
}
 
#define DEBUG_SPLIT 0
 
/* Returns TRUE if the given PSImode move should be split. We split
for all r8c/m16c moves, since it doesn't support them, and for
POP.L as we can only *push* SImode. */
int
m32c_split_psi_p (rtx * operands)
{
#if DEBUG_SPLIT
fprintf (stderr, "\nm32c_split_psi_p\n");
debug_rtx (operands[0]);
debug_rtx (operands[1]);
#endif
if (TARGET_A16)
{
#if DEBUG_SPLIT
fprintf (stderr, "yes, A16\n");
#endif
return 1;
}
if (GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == POST_INC)
{
#if DEBUG_SPLIT
fprintf (stderr, "yes, pop.l\n");
#endif
return 1;
}
#if DEBUG_SPLIT
fprintf (stderr, "no, default\n");
#endif
return 0;
}
 
/* Split the given move. SPLIT_ALL is 0 if splitting is optional
(define_expand), 1 if it is not optional (define_insn_and_split),
and 3 for define_split (alternate api). */
int
m32c_split_move (rtx * operands, enum machine_mode mode, int split_all)
{
rtx s[4], d[4];
int parts, si, di, rev = 0;
int rv = 0, opi = 2;
enum machine_mode submode = HImode;
rtx *ops, local_ops[10];
 
/* define_split modifies the existing operands, but the other two
emit new insns. OPS is where we store the operand pairs, which
we emit later. */
if (split_all == 3)
ops = operands;
else
ops = local_ops;
 
/* Else HImode. */
if (mode == DImode)
submode = SImode;
 
/* Before splitting mem-mem moves, force one operand into a
register. */
if (!no_new_pseudos && MEM_P (operands[0]) && MEM_P (operands[1]))
{
#if DEBUG0
fprintf (stderr, "force_reg...\n");
debug_rtx (operands[1]);
#endif
operands[1] = force_reg (mode, operands[1]);
#if DEBUG0
debug_rtx (operands[1]);
#endif
}
 
parts = 2;
 
#if DEBUG_SPLIT
fprintf (stderr, "\nsplit_move %d all=%d\n", no_new_pseudos, split_all);
debug_rtx (operands[0]);
debug_rtx (operands[1]);
#endif
 
/* Note that split_all is not used to select the api after this
point, so it's safe to set it to 3 even with define_insn. */
/* None of the chips can move SI operands to sp-relative addresses,
so we always split those. */
if (m32c_extra_constraint_p (operands[0], 'S', "Ss"))
split_all = 3;
 
/* We don't need to split these. */
if (TARGET_A24
&& split_all != 3
&& (mode == SImode || mode == PSImode)
&& !(GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == POST_INC))
return 0;
 
/* First, enumerate the subregs we'll be dealing with. */
for (si = 0; si < parts; si++)
{
d[si] =
m32c_subreg (submode, operands[0], mode,
si * GET_MODE_SIZE (submode));
s[si] =
m32c_subreg (submode, operands[1], mode,
si * GET_MODE_SIZE (submode));
}
 
/* Split pushes by emitting a sequence of smaller pushes. */
if (GET_CODE (d[0]) == MEM && GET_CODE (XEXP (d[0], 0)) == PRE_DEC)
{
for (si = parts - 1; si >= 0; si--)
{
ops[opi++] = gen_rtx_MEM (submode,
gen_rtx_PRE_DEC (Pmode,
gen_rtx_REG (Pmode,
SP_REGNO)));
ops[opi++] = s[si];
}
 
rv = 1;
}
/* Likewise for pops. */
else if (GET_CODE (s[0]) == MEM && GET_CODE (XEXP (s[0], 0)) == POST_INC)
{
for (di = 0; di < parts; di++)
{
ops[opi++] = d[di];
ops[opi++] = gen_rtx_MEM (submode,
gen_rtx_POST_INC (Pmode,
gen_rtx_REG (Pmode,
SP_REGNO)));
}
rv = 1;
}
else if (split_all)
{
/* if d[di] == s[si] for any di < si, we'll early clobber. */
for (di = 0; di < parts - 1; di++)
for (si = di + 1; si < parts; si++)
if (reg_mentioned_p (d[di], s[si]))
rev = 1;
 
if (rev)
for (si = 0; si < parts; si++)
{
ops[opi++] = d[si];
ops[opi++] = s[si];
}
else
for (si = parts - 1; si >= 0; si--)
{
ops[opi++] = d[si];
ops[opi++] = s[si];
}
rv = 1;
}
/* Now emit any moves we may have accumulated. */
if (rv && split_all != 3)
{
int i;
for (i = 2; i < opi; i += 2)
emit_move_insn (ops[i], ops[i + 1]);
}
return rv;
}
 
/* The m32c has a number of opcodes that act like memcpy, strcmp, and
the like. For the R8C they expect one of the addresses to be in
R1L:An so we need to arrange for that. Otherwise, it's just a
matter of picking out the operands we want and emitting the right
pattern for them. All these expanders, which correspond to
patterns in blkmov.md, must return nonzero if they expand the insn,
or zero if they should FAIL. */
 
/* This is a memset() opcode. All operands are implied, so we need to
arrange for them to be in the right registers. The opcode wants
addresses, not [mem] syntax. $0 is the destination (MEM:BLK), $1
the count (HI), and $2 the value (QI). */
int
m32c_expand_setmemhi(rtx *operands)
{
rtx desta, count, val;
rtx desto, counto;
 
desta = XEXP (operands[0], 0);
count = operands[1];
val = operands[2];
 
desto = gen_reg_rtx (Pmode);
counto = gen_reg_rtx (HImode);
 
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
 
/* This looks like an arbitrary restriction, but this is by far the
most common case. For counts 8..14 this actually results in
smaller code with no speed penalty because the half-sized
constant can be loaded with a shorter opcode. */
if (GET_CODE (count) == CONST_INT
&& GET_CODE (val) == CONST_INT
&& ! (INTVAL (count) & 1)
&& (INTVAL (count) > 1)
&& (INTVAL (val) <= 7 && INTVAL (val) >= -8))
{
unsigned v = INTVAL (val) & 0xff;
v = v | (v << 8);
count = copy_to_mode_reg (HImode, GEN_INT (INTVAL (count) / 2));
val = copy_to_mode_reg (HImode, GEN_INT (v));
if (TARGET_A16)
emit_insn (gen_setmemhi_whi_op (desto, counto, val, desta, count));
else
emit_insn (gen_setmemhi_wpsi_op (desto, counto, val, desta, count));
return 1;
}
 
/* This is the generalized memset() case. */
if (GET_CODE (val) != REG
|| REGNO (val) < FIRST_PSEUDO_REGISTER)
val = copy_to_mode_reg (QImode, val);
 
if (GET_CODE (count) != REG
|| REGNO (count) < FIRST_PSEUDO_REGISTER)
count = copy_to_mode_reg (HImode, count);
 
if (TARGET_A16)
emit_insn (gen_setmemhi_bhi_op (desto, counto, val, desta, count));
else
emit_insn (gen_setmemhi_bpsi_op (desto, counto, val, desta, count));
 
return 1;
}
 
/* This is a memcpy() opcode. All operands are implied, so we need to
arrange for them to be in the right registers. The opcode wants
addresses, not [mem] syntax. $0 is the destination (MEM:BLK), $1
is the source (MEM:BLK), and $2 the count (HI). */
int
m32c_expand_movmemhi(rtx *operands)
{
rtx desta, srca, count;
rtx desto, srco, counto;
 
desta = XEXP (operands[0], 0);
srca = XEXP (operands[1], 0);
count = operands[2];
 
desto = gen_reg_rtx (Pmode);
srco = gen_reg_rtx (Pmode);
counto = gen_reg_rtx (HImode);
 
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
 
if (GET_CODE (srca) != REG
|| REGNO (srca) < FIRST_PSEUDO_REGISTER)
srca = copy_to_mode_reg (Pmode, srca);
 
/* Similar to setmem, but we don't need to check the value. */
if (GET_CODE (count) == CONST_INT
&& ! (INTVAL (count) & 1)
&& (INTVAL (count) > 1))
{
count = copy_to_mode_reg (HImode, GEN_INT (INTVAL (count) / 2));
if (TARGET_A16)
emit_insn (gen_movmemhi_whi_op (desto, srco, counto, desta, srca, count));
else
emit_insn (gen_movmemhi_wpsi_op (desto, srco, counto, desta, srca, count));
return 1;
}
 
/* This is the generalized memset() case. */
if (GET_CODE (count) != REG
|| REGNO (count) < FIRST_PSEUDO_REGISTER)
count = copy_to_mode_reg (HImode, count);
 
if (TARGET_A16)
emit_insn (gen_movmemhi_bhi_op (desto, srco, counto, desta, srca, count));
else
emit_insn (gen_movmemhi_bpsi_op (desto, srco, counto, desta, srca, count));
 
return 1;
}
 
/* This is a stpcpy() opcode. $0 is the destination (MEM:BLK) after
the copy, which should point to the NUL at the end of the string,
$1 is the destination (MEM:BLK), and $2 is the source (MEM:BLK).
Since our opcode leaves the destination pointing *after* the NUL,
we must emit an adjustment. */
int
m32c_expand_movstr(rtx *operands)
{
rtx desta, srca;
rtx desto, srco;
 
desta = XEXP (operands[1], 0);
srca = XEXP (operands[2], 0);
 
desto = gen_reg_rtx (Pmode);
srco = gen_reg_rtx (Pmode);
 
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
 
if (GET_CODE (srca) != REG
|| REGNO (srca) < FIRST_PSEUDO_REGISTER)
srca = copy_to_mode_reg (Pmode, srca);
 
emit_insn (gen_movstr_op (desto, srco, desta, srca));
/* desto ends up being a1, which allows this type of add through MOVA. */
emit_insn (gen_addpsi3 (operands[0], desto, GEN_INT (-1)));
 
return 1;
}
 
/* This is a strcmp() opcode. $0 is the destination (HI) which holds
<=>0 depending on the comparison, $1 is one string (MEM:BLK), and
$2 is the other (MEM:BLK). We must do the comparison, and then
convert the flags to a signed integer result. */
int
m32c_expand_cmpstr(rtx *operands)
{
rtx src1a, src2a;
 
src1a = XEXP (operands[1], 0);
src2a = XEXP (operands[2], 0);
 
if (GET_CODE (src1a) != REG
|| REGNO (src1a) < FIRST_PSEUDO_REGISTER)
src1a = copy_to_mode_reg (Pmode, src1a);
 
if (GET_CODE (src2a) != REG
|| REGNO (src2a) < FIRST_PSEUDO_REGISTER)
src2a = copy_to_mode_reg (Pmode, src2a);
 
emit_insn (gen_cmpstrhi_op (src1a, src2a, src1a, src2a));
emit_insn (gen_cond_to_int (operands[0]));
 
return 1;
}
 
 
typedef rtx (*shift_gen_func)(rtx, rtx, rtx);
 
static shift_gen_func
shift_gen_func_for (int mode, int code)
{
#define GFF(m,c,f) if (mode == m && code == c) return f
GFF(QImode, ASHIFT, gen_ashlqi3_i);
GFF(QImode, ASHIFTRT, gen_ashrqi3_i);
GFF(QImode, LSHIFTRT, gen_lshrqi3_i);
GFF(HImode, ASHIFT, gen_ashlhi3_i);
GFF(HImode, ASHIFTRT, gen_ashrhi3_i);
GFF(HImode, LSHIFTRT, gen_lshrhi3_i);
GFF(PSImode, ASHIFT, gen_ashlpsi3_i);
GFF(PSImode, ASHIFTRT, gen_ashrpsi3_i);
GFF(PSImode, LSHIFTRT, gen_lshrpsi3_i);
GFF(SImode, ASHIFT, TARGET_A16 ? gen_ashlsi3_16 : gen_ashlsi3_24);
GFF(SImode, ASHIFTRT, TARGET_A16 ? gen_ashrsi3_16 : gen_ashrsi3_24);
GFF(SImode, LSHIFTRT, TARGET_A16 ? gen_lshrsi3_16 : gen_lshrsi3_24);
#undef GFF
gcc_unreachable ();
}
 
/* The m32c only has one shift, but it takes a signed count. GCC
doesn't want this, so we fake it by negating any shift count when
we're pretending to shift the other way. Also, the shift count is
limited to -8..8. It's slightly better to use two shifts for 9..15
than to load the count into r1h, so we do that too. */
int
m32c_prepare_shift (rtx * operands, int scale, int shift_code)
{
enum machine_mode mode = GET_MODE (operands[0]);
shift_gen_func func = shift_gen_func_for (mode, shift_code);
rtx temp;
 
if (GET_CODE (operands[2]) == CONST_INT)
{
int maxc = TARGET_A24 && (mode == PSImode || mode == SImode) ? 32 : 8;
int count = INTVAL (operands[2]) * scale;
 
while (count > maxc)
{
temp = gen_reg_rtx (mode);
emit_insn (func (temp, operands[1], GEN_INT (maxc)));
operands[1] = temp;
count -= maxc;
}
while (count < -maxc)
{
temp = gen_reg_rtx (mode);
emit_insn (func (temp, operands[1], GEN_INT (-maxc)));
operands[1] = temp;
count += maxc;
}
emit_insn (func (operands[0], operands[1], GEN_INT (count)));
return 1;
}
 
temp = gen_reg_rtx (QImode);
if (scale < 0)
/* The pattern has a NEG that corresponds to this. */
emit_move_insn (temp, gen_rtx_NEG (QImode, operands[2]));
else if (TARGET_A16 && mode == SImode)
/* We do this because the code below may modify this, we don't
want to modify the origin of this value. */
emit_move_insn (temp, operands[2]);
else
/* We'll only use it for the shift, no point emitting a move. */
temp = operands[2];
 
if (TARGET_A16 && GET_MODE_SIZE (mode) == 4)
{
/* The m16c has a limit of -16..16 for SI shifts, even when the
shift count is in a register. Since there are so many targets
of these shifts, it's better to expand the RTL here than to
call a helper function.
 
The resulting code looks something like this:
 
cmp.b r1h,-16
jge.b 1f
shl.l -16,dest
add.b r1h,16
1f: cmp.b r1h,16
jle.b 1f
shl.l 16,dest
sub.b r1h,16
1f: shl.l r1h,dest
 
We take advantage of the fact that "negative" shifts are
undefined to skip one of the comparisons. */
 
rtx count;
rtx label, lref, insn, tempvar;
 
emit_move_insn (operands[0], operands[1]);
 
count = temp;
label = gen_label_rtx ();
lref = gen_rtx_LABEL_REF (VOIDmode, label);
LABEL_NUSES (label) ++;
 
tempvar = gen_reg_rtx (mode);
 
if (shift_code == ASHIFT)
{
/* This is a left shift. We only need check positive counts. */
emit_jump_insn (gen_cbranchqi4 (gen_rtx_LE (VOIDmode, 0, 0),
count, GEN_INT (16), label));
emit_insn (func (tempvar, operands[0], GEN_INT (8)));
emit_insn (func (operands[0], tempvar, GEN_INT (8)));
insn = emit_insn (gen_addqi3 (count, count, GEN_INT (-16)));
emit_label_after (label, insn);
}
else
{
/* This is a right shift. We only need check negative counts. */
emit_jump_insn (gen_cbranchqi4 (gen_rtx_GE (VOIDmode, 0, 0),
count, GEN_INT (-16), label));
emit_insn (func (tempvar, operands[0], GEN_INT (-8)));
emit_insn (func (operands[0], tempvar, GEN_INT (-8)));
insn = emit_insn (gen_addqi3 (count, count, GEN_INT (16)));
emit_label_after (label, insn);
}
operands[1] = operands[0];
emit_insn (func (operands[0], operands[0], count));
return 1;
}
 
operands[2] = temp;
return 0;
}
 
/* The m32c has a limited range of operations that work on PSImode
values; we have to expand to SI, do the math, and truncate back to
PSI. Yes, this is expensive, but hopefully gcc will learn to avoid
those cases. */
void
m32c_expand_neg_mulpsi3 (rtx * operands)
{
/* operands: a = b * i */
rtx temp1; /* b as SI */
rtx scale /* i as SI */;
rtx temp2; /* a*b as SI */
 
temp1 = gen_reg_rtx (SImode);
temp2 = gen_reg_rtx (SImode);
if (GET_CODE (operands[2]) != CONST_INT)
{
scale = gen_reg_rtx (SImode);
emit_insn (gen_zero_extendpsisi2 (scale, operands[2]));
}
else
scale = copy_to_mode_reg (SImode, operands[2]);
 
emit_insn (gen_zero_extendpsisi2 (temp1, operands[1]));
temp2 = expand_simple_binop (SImode, MULT, temp1, scale, temp2, 1, OPTAB_LIB);
emit_insn (gen_truncsipsi2 (operands[0], temp2));
}
 
static rtx compare_op0, compare_op1;
 
void
m32c_pend_compare (rtx *operands)
{
compare_op0 = operands[0];
compare_op1 = operands[1];
}
 
void
m32c_unpend_compare (void)
{
switch (GET_MODE (compare_op0))
{
case QImode:
emit_insn (gen_cmpqi_op (compare_op0, compare_op1));
case HImode:
emit_insn (gen_cmphi_op (compare_op0, compare_op1));
case PSImode:
emit_insn (gen_cmppsi_op (compare_op0, compare_op1));
}
}
 
void
m32c_expand_scc (int code, rtx *operands)
{
enum machine_mode mode = TARGET_A16 ? QImode : HImode;
 
emit_insn (gen_rtx_SET (mode,
operands[0],
gen_rtx_fmt_ee (code,
mode,
compare_op0,
compare_op1)));
}
 
/* Pattern Output Functions */
 
/* Returns a (OP (reg:CC FLG_REGNO) (const_int 0)) from some other
match_operand rtx's OP. */
rtx
m32c_cmp_flg_0 (rtx cmp)
{
return gen_rtx_fmt_ee (GET_CODE (cmp),
GET_MODE (cmp),
gen_rtx_REG (CCmode, FLG_REGNO),
GEN_INT (0));
}
 
int
m32c_expand_movcc (rtx *operands)
{
rtx rel = operands[1];
rtx cmp;
 
if (GET_CODE (rel) != EQ && GET_CODE (rel) != NE)
return 1;
if (GET_CODE (operands[2]) != CONST_INT
|| GET_CODE (operands[3]) != CONST_INT)
return 1;
emit_insn (gen_cmpqi(XEXP (rel, 0), XEXP (rel, 1)));
if (GET_CODE (rel) == NE)
{
rtx tmp = operands[2];
operands[2] = operands[3];
operands[3] = tmp;
}
 
cmp = gen_rtx_fmt_ee (GET_CODE (rel),
GET_MODE (rel),
compare_op0,
compare_op1);
 
emit_move_insn (operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
cmp,
operands[2],
operands[3]));
return 0;
}
 
/* Used for the "insv" pattern. Return nonzero to fail, else done. */
int
m32c_expand_insv (rtx *operands)
{
rtx op0, src0, p;
int mask;
 
if (INTVAL (operands[1]) != 1)
return 1;
 
/* Our insv opcode (bset, bclr) can only insert a one-bit constant. */
if (GET_CODE (operands[3]) != CONST_INT)
return 1;
if (INTVAL (operands[3]) != 0
&& INTVAL (operands[3]) != 1
&& INTVAL (operands[3]) != -1)
return 1;
 
mask = 1 << INTVAL (operands[2]);
 
op0 = operands[0];
if (GET_CODE (op0) == SUBREG
&& SUBREG_BYTE (op0) == 0)
{
rtx sub = SUBREG_REG (op0);
if (GET_MODE (sub) == HImode || GET_MODE (sub) == QImode)
op0 = sub;
}
 
if (no_new_pseudos
|| (GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0)))
src0 = op0;
else
{
src0 = gen_reg_rtx (GET_MODE (op0));
emit_move_insn (src0, op0);
}
 
if (GET_MODE (op0) == HImode
&& INTVAL (operands[2]) >= 8
&& GET_MODE (op0) == MEM)
{
/* We are little endian. */
rtx new_mem = gen_rtx_MEM (QImode, plus_constant (XEXP (op0, 0), 1));
MEM_COPY_ATTRIBUTES (new_mem, op0);
mask >>= 8;
}
 
/* First, we generate a mask with the correct polarity. If we are
storing a zero, we want an AND mask, so invert it. */
if (INTVAL (operands[3]) == 0)
{
/* Storing a zero, use an AND mask */
if (GET_MODE (op0) == HImode)
mask ^= 0xffff;
else
mask ^= 0xff;
}
/* Now we need to properly sign-extend the mask in case we need to
fall back to an AND or OR opcode. */
if (GET_MODE (op0) == HImode)
{
if (mask & 0x8000)
mask -= 0x10000;
}
else
{
if (mask & 0x80)
mask -= 0x100;
}
 
switch ( (INTVAL (operands[3]) ? 4 : 0)
+ ((GET_MODE (op0) == HImode) ? 2 : 0)
+ (TARGET_A24 ? 1 : 0))
{
case 0: p = gen_andqi3_16 (op0, src0, GEN_INT (mask)); break;
case 1: p = gen_andqi3_24 (op0, src0, GEN_INT (mask)); break;
case 2: p = gen_andhi3_16 (op0, src0, GEN_INT (mask)); break;
case 3: p = gen_andhi3_24 (op0, src0, GEN_INT (mask)); break;
case 4: p = gen_iorqi3_16 (op0, src0, GEN_INT (mask)); break;
case 5: p = gen_iorqi3_24 (op0, src0, GEN_INT (mask)); break;
case 6: p = gen_iorhi3_16 (op0, src0, GEN_INT (mask)); break;
case 7: p = gen_iorhi3_24 (op0, src0, GEN_INT (mask)); break;
}
 
emit_insn (p);
return 0;
}
 
const char *
m32c_scc_pattern(rtx *operands, RTX_CODE code)
{
static char buf[30];
if (GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) == R0_REGNO)
{
if (code == EQ)
return "stzx\t#1,#0,r0l";
if (code == NE)
return "stzx\t#0,#1,r0l";
}
sprintf(buf, "bm%s\t0,%%h0\n\tand.b\t#1,%%0", GET_RTX_NAME (code));
return buf;
}
 
/* Returns TRUE if the current function is a leaf, and thus we can
determine which registers an interrupt function really needs to
save. The logic below is mostly about finding the insn sequence
that's the function, versus any sequence that might be open for the
current insn. */
static int
m32c_leaf_function_p (void)
{
rtx saved_first, saved_last;
struct sequence_stack *seq;
int rv;
 
saved_first = cfun->emit->x_first_insn;
saved_last = cfun->emit->x_last_insn;
for (seq = cfun->emit->sequence_stack; seq && seq->next; seq = seq->next)
;
if (seq)
{
cfun->emit->x_first_insn = seq->first;
cfun->emit->x_last_insn = seq->last;
}
 
rv = leaf_function_p ();
 
cfun->emit->x_first_insn = saved_first;
cfun->emit->x_last_insn = saved_last;
return rv;
}
 
/* Returns TRUE if the current function needs to use the ENTER/EXIT
opcodes. If the function doesn't need the frame base or stack
pointer, it can use the simpler RTS opcode. */
static bool
m32c_function_needs_enter (void)
{
rtx insn;
struct sequence_stack *seq;
rtx sp = gen_rtx_REG (Pmode, SP_REGNO);
rtx fb = gen_rtx_REG (Pmode, FB_REGNO);
 
insn = get_insns ();
for (seq = cfun->emit->sequence_stack;
seq;
insn = seq->first, seq = seq->next);
 
while (insn)
{
if (reg_mentioned_p (sp, insn))
return true;
if (reg_mentioned_p (fb, insn))
return true;
insn = NEXT_INSN (insn);
}
return false;
}
 
/* Mark all the subexpressions of the PARALLEL rtx PAR as
frame-related. Return PAR.
 
dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
PARALLEL rtx other than the first if they do not have the
FRAME_RELATED flag set on them. So this function is handy for
marking up 'enter' instructions. */
static rtx
m32c_all_frame_related (rtx par)
{
int len = XVECLEN (par, 0);
int i;
 
for (i = 0; i < len; i++)
F (XVECEXP (par, 0, i));
 
return par;
}
 
/* Emits the prologue. See the frame layout comment earlier in this
file. We can reserve up to 256 bytes with the ENTER opcode, beyond
that we manually update sp. */
void
m32c_emit_prologue (void)
{
int frame_size, extra_frame_size = 0, reg_save_size;
int complex_prologue = 0;
 
cfun->machine->is_leaf = m32c_leaf_function_p ();
if (interrupt_p (cfun->decl))
{
cfun->machine->is_interrupt = 1;
complex_prologue = 1;
}
 
reg_save_size = m32c_pushm_popm (PP_justcount);
 
if (interrupt_p (cfun->decl))
emit_insn (gen_pushm (GEN_INT (cfun->machine->intr_pushm)));
 
frame_size =
m32c_initial_elimination_offset (FB_REGNO, SP_REGNO) - reg_save_size;
if (frame_size == 0
&& !cfun->machine->is_interrupt
&& !m32c_function_needs_enter ())
cfun->machine->use_rts = 1;
 
if (frame_size > 254)
{
extra_frame_size = frame_size - 254;
frame_size = 254;
}
if (cfun->machine->use_rts == 0)
F (emit_insn (m32c_all_frame_related
(TARGET_A16
? gen_prologue_enter_16 (GEN_INT (frame_size))
: gen_prologue_enter_24 (GEN_INT (frame_size)))));
 
if (extra_frame_size)
{
complex_prologue = 1;
if (TARGET_A16)
F (emit_insn (gen_addhi3 (gen_rtx_REG (HImode, SP_REGNO),
gen_rtx_REG (HImode, SP_REGNO),
GEN_INT (-extra_frame_size))));
else
F (emit_insn (gen_addpsi3 (gen_rtx_REG (PSImode, SP_REGNO),
gen_rtx_REG (PSImode, SP_REGNO),
GEN_INT (-extra_frame_size))));
}
 
complex_prologue += m32c_pushm_popm (PP_pushm);
 
/* This just emits a comment into the .s file for debugging. */
if (complex_prologue)
emit_insn (gen_prologue_end ());
}
 
/* Likewise, for the epilogue. The only exception is that, for
interrupts, we must manually unwind the frame as the REIT opcode
doesn't do that. */
void
m32c_emit_epilogue (void)
{
/* This just emits a comment into the .s file for debugging. */
if (m32c_pushm_popm (PP_justcount) > 0 || cfun->machine->is_interrupt)
emit_insn (gen_epilogue_start ());
 
m32c_pushm_popm (PP_popm);
 
if (cfun->machine->is_interrupt)
{
enum machine_mode spmode = TARGET_A16 ? HImode : PSImode;
 
emit_move_insn (gen_rtx_REG (spmode, A0_REGNO),
gen_rtx_REG (spmode, FP_REGNO));
emit_move_insn (gen_rtx_REG (spmode, SP_REGNO),
gen_rtx_REG (spmode, A0_REGNO));
if (TARGET_A16)
emit_insn (gen_pophi_16 (gen_rtx_REG (HImode, FP_REGNO)));
else
emit_insn (gen_poppsi (gen_rtx_REG (PSImode, FP_REGNO)));
emit_insn (gen_popm (GEN_INT (cfun->machine->intr_pushm)));
emit_jump_insn (gen_epilogue_reit (GEN_INT (TARGET_A16 ? 4 : 6)));
}
else if (cfun->machine->use_rts)
emit_jump_insn (gen_epilogue_rts ());
else
emit_jump_insn (gen_epilogue_exitd (GEN_INT (TARGET_A16 ? 2 : 4)));
emit_barrier ();
}
 
void
m32c_emit_eh_epilogue (rtx ret_addr)
{
/* R0[R2] has the stack adjustment. R1[R3] has the address to
return to. We have to fudge the stack, pop everything, pop SP
(fudged), and return (fudged). This is actually easier to do in
assembler, so punt to libgcc. */
emit_jump_insn (gen_eh_epilogue (ret_addr, cfun->machine->eh_stack_adjust));
/* emit_insn (gen_rtx_CLOBBER (HImode, gen_rtx_REG (HImode, R0L_REGNO))); */
emit_barrier ();
}
 
/* Indicate which flags must be properly set for a given conditional. */
static int
flags_needed_for_conditional (rtx cond)
{
switch (GET_CODE (cond))
{
case LE:
case GT:
return FLAGS_OSZ;
case LEU:
case GTU:
return FLAGS_ZC;
case LT:
case GE:
return FLAGS_OS;
case LTU:
case GEU:
return FLAGS_C;
case EQ:
case NE:
return FLAGS_Z;
default:
return FLAGS_N;
}
}
 
#define DEBUG_CMP 0
 
/* Returns true if a compare insn is redundant because it would only
set flags that are already set correctly. */
static bool
m32c_compare_redundant (rtx cmp, rtx *operands)
{
int flags_needed;
int pflags;
rtx prev, pp, next;
rtx op0, op1, op2;
#if DEBUG_CMP
int prev_icode, i;
#endif
 
op0 = operands[0];
op1 = operands[1];
op2 = operands[2];
 
#if DEBUG_CMP
fprintf(stderr, "\n\033[32mm32c_compare_redundant\033[0m\n");
debug_rtx(cmp);
for (i=0; i<2; i++)
{
fprintf(stderr, "operands[%d] = ", i);
debug_rtx(operands[i]);
}
#endif
 
next = next_nonnote_insn (cmp);
if (!next || !INSN_P (next))
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by insn\n");
debug_rtx(next);
#endif
return false;
}
if (GET_CODE (PATTERN (next)) == SET
&& GET_CODE (XEXP ( PATTERN (next), 1)) == IF_THEN_ELSE)
{
next = XEXP (XEXP (PATTERN (next), 1), 0);
}
else if (GET_CODE (PATTERN (next)) == SET)
{
/* If this is a conditional, flags_needed will be something
other than FLAGS_N, which we test below. */
next = XEXP (PATTERN (next), 1);
}
else
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by conditional\n");
debug_rtx(next);
#endif
return false;
}
#if DEBUG_CMP
fprintf(stderr, "conditional is: ");
debug_rtx(next);
#endif
 
flags_needed = flags_needed_for_conditional (next);
if (flags_needed == FLAGS_N)
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by conditional\n");
debug_rtx(next);
#endif
return false;
}
 
/* Compare doesn't set overflow and carry the same way that
arithmetic instructions do, so we can't replace those. */
if (flags_needed & FLAGS_OC)
return false;
 
prev = cmp;
do {
prev = prev_nonnote_insn (prev);
if (!prev)
{
#if DEBUG_CMP
fprintf(stderr, "No previous insn.\n");
#endif
return false;
}
if (!INSN_P (prev))
{
#if DEBUG_CMP
fprintf(stderr, "Previous insn is a non-insn.\n");
#endif
return false;
}
pp = PATTERN (prev);
if (GET_CODE (pp) != SET)
{
#if DEBUG_CMP
fprintf(stderr, "Previous insn is not a SET.\n");
#endif
return false;
}
pflags = get_attr_flags (prev);
 
/* Looking up attributes of previous insns corrupted the recog
tables. */
INSN_UID (cmp) = -1;
recog (PATTERN (cmp), cmp, 0);
 
if (pflags == FLAGS_N
&& reg_mentioned_p (op0, pp))
{
#if DEBUG_CMP
fprintf(stderr, "intermediate non-flags insn uses op:\n");
debug_rtx(prev);
#endif
return false;
}
} while (pflags == FLAGS_N);
#if DEBUG_CMP
fprintf(stderr, "previous flag-setting insn:\n");
debug_rtx(prev);
debug_rtx(pp);
#endif
 
if (GET_CODE (pp) == SET
&& GET_CODE (XEXP (pp, 0)) == REG
&& REGNO (XEXP (pp, 0)) == FLG_REGNO
&& GET_CODE (XEXP (pp, 1)) == COMPARE)
{
/* Adjacent cbranches must have the same operands to be
redundant. */
rtx pop0 = XEXP (XEXP (pp, 1), 0);
rtx pop1 = XEXP (XEXP (pp, 1), 1);
#if DEBUG_CMP
fprintf(stderr, "adjacent cbranches\n");
debug_rtx(pop0);
debug_rtx(pop1);
#endif
if (rtx_equal_p (op0, pop0)
&& rtx_equal_p (op1, pop1))
return true;
#if DEBUG_CMP
fprintf(stderr, "prev cmp not same\n");
#endif
return false;
}
 
/* Else the previous insn must be a SET, with either the source or
dest equal to operands[0], and operands[1] must be zero. */
 
if (!rtx_equal_p (op1, const0_rtx))
{
#if DEBUG_CMP
fprintf(stderr, "operands[1] not const0_rtx\n");
#endif
return false;
}
if (GET_CODE (pp) != SET)
{
#if DEBUG_CMP
fprintf (stderr, "pp not set\n");
#endif
return false;
}
if (!rtx_equal_p (op0, SET_SRC (pp))
&& !rtx_equal_p (op0, SET_DEST (pp)))
{
#if DEBUG_CMP
fprintf(stderr, "operands[0] not found in set\n");
#endif
return false;
}
 
#if DEBUG_CMP
fprintf(stderr, "cmp flags %x prev flags %x\n", flags_needed, pflags);
#endif
if ((pflags & flags_needed) == flags_needed)
return true;
 
return false;
}
 
/* Return the pattern for a compare. This will be commented out if
the compare is redundant, else a normal pattern is returned. Thus,
the assembler output says where the compare would have been. */
char *
m32c_output_compare (rtx insn, rtx *operands)
{
static char template[] = ";cmp.b\t%1,%0";
/* ^ 5 */
 
template[5] = " bwll"[GET_MODE_SIZE(GET_MODE(operands[0]))];
if (m32c_compare_redundant (insn, operands))
{
#if DEBUG_CMP
fprintf(stderr, "cbranch: cmp not needed\n");
#endif
return template;
}
 
#if DEBUG_CMP
fprintf(stderr, "cbranch: cmp needed: `%s'\n", template);
#endif
return template + 1;
}
 
/* The Global `targetm' Variable. */
 
struct gcc_target targetm = TARGET_INITIALIZER;
 
#include "gt-m32c.h"
/minmax.md
0,0 → 1,58
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; min, max
 
(define_insn "sminqi3"
[(set (match_operand:QI 0 "mra_operand" "=RhlSd,RhlSd,??Rmm,??Rmm,Raa,Raa")
(smin:QI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0")
(match_operand:QI 2 "mrai_operand" "iRhlSdRaa,?Rmm,iRhlSdRaa,?Rmm,iRhlSd,?Rmm")))]
"TARGET_A24"
"min.b\t%2,%0"
[(set_attr "flags" "n")]
)
 
(define_insn "sminhi3"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,RhiSd,??Rmm,??Rmm")
(smin:HI (match_operand:HI 1 "mra_operand" "%0,0,0,0")
(match_operand:HI 2 "mrai_operand" "iRhiSd,?Rmm,iRhiSd,?Rmm")))]
"TARGET_A24"
"min.w\t%2,%0"
[(set_attr "flags" "n")]
)
 
(define_insn "smaxqi3"
[(set (match_operand:QI 0 "mra_operand" "=RhlSd,RhlSd,??Rmm,??Rmm,Raa,Raa")
(smax:QI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0")
(match_operand:QI 2 "mrai_operand" "iRhlSdRaa,?Rmm,iRhlSdRaa,?Rmm,iRhlSd,?Rmm")))]
"TARGET_A24"
"max.b\t%2,%0"
[(set_attr "flags" "n")]
)
 
(define_insn "smaxhi3"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,RhiSd,??Rmm,??Rmm")
(smax:HI (match_operand:HI 1 "mra_operand" "%0,0,0,0")
(match_operand:HI 2 "mrai_operand" "iRhiSd,?Rmm,iRhiSd,?Rmm")))]
"TARGET_A24"
"max.w\t%2,%0"
[(set_attr "flags" "n")]
)
/blkmov.md
0,0 → 1,242
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2006, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; various block move instructions
 
;; R8C:
;; SMOVB - while (r3--) { *a1-- = *r1ha0--; } - memcpy
;; SMOVF - while (r3--) { *a1++ = *r1ha0++; } - memcpy
;; SSTR - while (r3--) { *a1++ = [r0l,r0]; } - memset
 
;; M32CM:
;; SCMPU - while (*a0 && *a0 != *a1) { a0++; a1++; } - strcmp
;; SIN - while (r3--) { *a1++ = *a0; }
;; SMOVB - while (r3--) { *a1-- = *a0--; } - memcpy
;; SMOVF - while (r3--) { *a1++ = *a0++; } - memcpy
;; SMOVU - while (*a1++ = *a0++) ; - strcpy
;; SOUT - while (r3--) { *a1 = *a0++; }
;; SSTR - while (r3--) { *a1++ = [r0l,r0]; } - memset
 
 
 
;; 0 = destination (mem:BLK ...)
;; 1 = source (mem:BLK ...)
;; 2 = count
;; 3 = alignment
(define_expand "movmemhi"
[(match_operand 0 "ap_operand" "")
(match_operand 1 "ap_operand" "")
(match_operand 2 "m32c_r3_operand" "")
(match_operand 3 "" "")
]
""
"if (m32c_expand_movmemhi(operands)) DONE; FAIL;"
)
 
;; We can't use mode macros for these because M16C uses r1h to extend
;; the source address, for copying data from ROM to RAM. We don't yet
;; support that, but we need to zero our r1h, so the patterns differ.
 
;; 0 = dest (out)
;; 1 = src (out)
;; 2 = count (out)
;; 3 = dest (in)
;; 4 = src (in)
;; 5 = count (in)
(define_insn "movmemhi_bhi_op"
[(set (mem:QI (match_operand:HI 3 "ap_operand" "0"))
(mem:QI (match_operand:HI 4 "ap_operand" "1")))
(set (match_operand:HI 2 "m32c_r3_operand" "=R3w")
(const_int 0))
(set (match_operand:HI 0 "ap_operand" "=Ra1")
(plus:HI (match_dup 3)
(zero_extend:HI (match_operand:HI 5 "m32c_r3_operand" "2"))))
(set (match_operand:HI 1 "ap_operand" "=Ra0")
(plus:HI (match_dup 4)
(zero_extend:HI (match_dup 5))))
(use (reg:HI R1_REGNO))]
"TARGET_A16"
"mov.b:q\t#0,r1h\n\tsmovf.b\t; %0[0..%2-1]=r1h%1[]"
)
(define_insn "movmemhi_bpsi_op"
[(set (mem:QI (match_operand:PSI 3 "ap_operand" "0"))
(mem:QI (match_operand:PSI 4 "ap_operand" "1")))
(set (match_operand:HI 2 "m32c_r3_operand" "=R3w")
(const_int 0))
(set (match_operand:PSI 0 "ap_operand" "=Ra1")
(plus:PSI (match_dup 3)
(zero_extend:PSI (match_operand:HI 5 "m32c_r3_operand" "2"))))
(set (match_operand:PSI 1 "ap_operand" "=Ra0")
(plus:PSI (match_dup 4)
(zero_extend:PSI (match_dup 5))))]
"TARGET_A24"
"smovf.b\t; %0[0..%2-1]=%1[]"
)
(define_insn "movmemhi_whi_op"
[(set (mem:HI (match_operand:HI 3 "ap_operand" "0"))
(mem:HI (match_operand:HI 4 "ap_operand" "1")))
(set (match_operand:HI 2 "m32c_r3_operand" "=R3w")
(const_int 0))
(set (match_operand:HI 0 "ap_operand" "=Ra1")
(plus:HI (match_dup 3)
(zero_extend:HI (match_operand:HI 5 "m32c_r3_operand" "2"))))
(set (match_operand:HI 1 "ap_operand" "=Ra0")
(plus:HI (match_dup 4)
(zero_extend:HI (match_dup 5))))
(use (reg:HI R1_REGNO))]
"TARGET_A16"
"mov.b:q\t#0,r1h\n\tsmovf.w\t; %0[0..%2-1]=r1h%1[]"
)
(define_insn "movmemhi_wpsi_op"
[(set (mem:HI (match_operand:PSI 3 "ap_operand" "0"))
(mem:HI (match_operand:PSI 4 "ap_operand" "1")))
(set (match_operand:HI 2 "m32c_r3_operand" "=R3w")
(const_int 0))
(set (match_operand:PSI 0 "ap_operand" "=Ra1")
(plus:PSI (match_dup 3)
(zero_extend:PSI (match_operand:HI 5 "m32c_r3_operand" "2"))))
(set (match_operand:PSI 1 "ap_operand" "=Ra0")
(plus:PSI (match_dup 4)
(zero_extend:PSI (match_dup 5))))]
"TARGET_A24"
"smovf.w\t; %0[0..%2-1]=%1[]"
)
 
 
 
;; 0 = destination (mem:BLK ...)
;; 1 = number of bytes
;; 2 = value to store
;; 3 = alignment
(define_expand "setmemhi"
[(match_operand 0 "ap_operand" "")
(match_operand 1 "m32c_r3_operand" "")
(match_operand 2 "m32c_r0_operand" "")
(match_operand 3 "" "")
]
"TARGET_A24"
"if (m32c_expand_setmemhi(operands)) DONE; FAIL;"
)
 
;; 0 = address (out)
;; 1 = count (out)
;; 2 = value (in)
;; 3 = address (in)
;; 4 = count (in)
(define_insn "setmemhi_b<mode>_op"
[(set (mem:QI (match_operand:HPSI 3 "ap_operand" "0"))
(match_operand:QI 2 "m32c_r0_operand" "R0w"))
(set (match_operand:HI 1 "m32c_r3_operand" "=R3w")
(const_int 0))
(set (match_operand:HPSI 0 "ap_operand" "=Ra1")
(plus:HPSI (match_dup 3)
(zero_extend:HPSI (match_operand:HI 4 "m32c_r3_operand" "1"))))]
"TARGET_A24"
"sstr.b\t; %0[0..%1-1]=%2"
)
 
(define_insn "setmemhi_w<mode>_op"
[(set (mem:HI (match_operand:HPSI 3 "ap_operand" "0"))
(match_operand:HI 2 "m32c_r0_operand" "R0w"))
(set (match_operand:HI 1 "m32c_r3_operand" "=R3w")
(const_int 0))
(set (match_operand:HPSI 0 "ap_operand" "=Ra1")
(plus:HPSI (match_dup 3)
(zero_extend:HPSI (match_operand:HI 4 "m32c_r3_operand" "1"))))]
"TARGET_A24"
"sstr.w\t; %0[0..%1-1]=%2"
)
 
 
;; SCMPU sets the flags according to the result of the string
;; comparison. GCC wants the result to be a signed value reflecting
;; the result, which it then compares to zero. Hopefully we can
;; optimize that later (see peephole in cond.md). Meanwhile, the
;; strcmp builtin is expanded to a SCMPU followed by a flags-to-int
;; pattern in cond.md.
 
;; 0 = result:HI
;; 1 = destination (mem:BLK ...)
;; 2 = source (mem:BLK ...)
;; 3 = alignment
 
(define_expand "cmpstrsi"
[(match_operand:HI 0 "" "")
(match_operand 1 "ap_operand" "")
(match_operand 2 "ap_operand" "")
(match_operand 3 "" "")
]
"TARGET_A24"
"if (m32c_expand_cmpstr(operands)) DONE; FAIL;"
)
 
;; 0 = string1
;; 1 = string2
 
(define_insn "cmpstrhi_op"
[(set (reg:CC FLG_REGNO)
(compare:CC (mem:BLK (match_operand:PSI 0 "ap_operand" "Ra0"))
(mem:BLK (match_operand:PSI 1 "ap_operand" "Ra1"))))
(clobber (match_operand:PSI 2 "ap_operand" "=0"))
(clobber (match_operand:PSI 3 "ap_operand" "=1"))]
"TARGET_A24"
"scmpu.b\t; flags := strcmp(*%0,*%1)"
[(set_attr "flags" "oszc")]
)
 
 
 
;; Note that SMOVU leaves the address registers pointing *after*
;; the NUL at the end of the string. This is not what gcc expects; it
;; expects the address registers to point *at* the NUL. The expander
;; must emit a suitable add insn.
 
;; 0 = target: set to &NUL in dest
;; 1 = destination (mem:BLK ...)
;; 2 = source (mem:BLK ...)
 
(define_expand "movstr"
[(match_operand 0 "" "")
(match_operand 1 "ap_operand" "")
(match_operand 2 "ap_operand" "")
]
"TARGET_A24"
"if (m32c_expand_movstr(operands)) DONE; FAIL;"
)
 
;; 0 = dest (out)
;; 1 = src (out) (clobbered)
;; 2 = dest (in)
;; 3 = src (in)
(define_insn "movstr_op"
[(set (mem:BLK (match_operand:PSI 2 "ap_operand" "0"))
(mem:BLK (match_operand:PSI 3 "ap_operand" "1")))
(set (match_operand:PSI 0 "ap_operand" "=Ra1")
(plus:PSI (match_dup 2)
(unspec:PSI [(const_int 0)] UNS_SMOVU)))
(set (match_operand:PSI 1 "ap_operand" "=Ra0")
(plus:PSI (match_dup 3)
(unspec:PSI [(const_int 0)] UNS_SMOVU)))]
"TARGET_A24"
"smovu.b\t; while (*%2++ := *%3++) != 0"
[(set_attr "flags" "*")]
)
/m32c-lib1.S
0,0 → 1,228
/* libgcc routines for R8C/M16C/M32C
Copyright (C) 2005
Free Software Foundation, Inc.
Contributed by Red Hat.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.
 
In addition to the permissions in the GNU General Public License,
the Free Software Foundation gives you unlimited permission to link
the compiled version of this file into combinations with other
programs, and to distribute those combinations without any
restriction coming from the use of this file. (The General Public
License restrictions do apply in other respects; for example, they
cover modification of the file, and distribution when not linked
into a combine executable.)
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
 
#if defined(__r8c_cpu__) || defined(__m16c_cpu__)
#define A16
#define A(n,w) n
#define W w
#else
#define A24
#define A(n,w) w
#define W l
#endif
 
 
#ifdef L__m32c_memregs
 
/* Warning: these memory locations are used as a register bank. They
*must* end up consecutive in any final executable, so you may *not*
use the otherwise obvious ".comm" directive to allocate space for
them. */
 
.bss
.global mem0
mem0: .space 1
.global mem1
mem1: .space 1
.global mem2
mem2: .space 1
.global mem3
mem3: .space 1
.global mem4
mem4: .space 1
.global mem5
mem5: .space 1
.global mem6
mem6: .space 1
.global mem7
mem7: .space 1
.global mem8
mem8: .space 1
.global mem9
mem9: .space 1
.global mem10
mem10: .space 1
.global mem11
mem11: .space 1
.global mem12
mem12: .space 1
.global mem13
mem13: .space 1
.global mem14
mem14: .space 1
.global mem15
mem15: .space 1
 
#endif
 
#ifdef L__m32c_eh_return
.text
.global __m32c_eh_return
__m32c_eh_return:
 
/* At this point, r0 has the stack adjustment, r1r3 has the
address to return to. The stack looks like this:
 
old_ra
old_fp
<- unwound sp
...
fb
through
r0
<- sp
 
What we need to do is restore all the registers, update the
stack, and return to the right place.
*/
 
stc sp,a0
add.W A(#16,#24),a0
/* a0 points to the current stack, just above the register
save areas */
 
mov.w a0,a1
exts.w r0
sub.W A(r0,r2r0),a1
sub.W A(#3,#4),a1
/* a1 points to the new stack. */
 
/* This is for the "rts" below. */
mov.w r1,[a1]
#ifdef A16
mov.w r2,r1
mov.b r1l,2[a1]
#else
mov.w r2,2[a1]
#endif
 
/* This is for the "popc sp" below. */
mov.W a1,[a0]
 
popm r0,r1,r2,r3,a0,a1,sb,fb
popc sp
rts
#endif
 
/* SImode arguments for SI foo(SI,SI) functions. */
#ifdef A16
#define SAL 5[fb]
#define SAH 7[fb]
#define SBL 9[fb]
#define SBH 11[fb]
#else
#define SAL 8[fb]
#define SAH 10[fb]
#define SBL 12[fb]
#define SBH 14[fb]
#endif
 
#ifdef L__m32c_mulsi3
.text
.global ___mulsi3
___mulsi3:
enter #0
push.w r2
mov.w SAL,r0
mulu.w SBL,r0 /* writes to r2r0 */
mov.w r0,mem0
mov.w r2,mem2
mov.w SAL,r0
mulu.w SBH,r0 /* writes to r2r0 */
add.w r0,mem2
mov.w SAH,r0
mulu.w SBL,r0 /* writes to r2r0 */
add.w r0,mem2
pop.w r2
exitd
#endif
 
#ifdef L__m32c_cmpsi2
.text
.global ___cmpsi2
___cmpsi2:
enter #0
cmp.w SBH,SAH
jgt cmpsi_gt
jlt cmpsi_lt
cmp.w SBL,SAL
jgt cmpsi_gt
jlt cmpsi_lt
mov.w #1,r0
exitd
cmpsi_gt:
mov.w #2,r0
exitd
cmpsi_lt:
mov.w #0,r0
exitd
#endif
 
#ifdef L__m32c_ucmpsi2
.text
.global ___ucmpsi2
___ucmpsi2:
enter #0
cmp.w SBH,SAH
jgtu cmpsi_gt
jltu cmpsi_lt
cmp.w SBL,SAL
jgtu cmpsi_gt
jltu cmpsi_lt
mov.w #1,r0
exitd
cmpsi_gt:
mov.w #2,r0
exitd
cmpsi_lt:
mov.w #0,r0
exitd
#endif
 
#ifdef L__m32c_jsri16
.data
m32c_jsri_addr:
.byte 0, 0, 0
m32c_jsri_ret:
.byte 0, 0, 0
 
.text
.global m32c_jsri16
m32c_jsri16:
pop.w m32c_jsri_ret
pop.b m32c_jsri_ret+2
pop.w m32c_jsri_addr
push.b m32c_jsri_ret+2
push.w m32c_jsri_ret
jmpi.a m32c_jsri_addr
 
#endif
/m32c-pragma.c
0,0 → 1,96
/* M32C Pragma support
Copyright (C) 2004, 2007 Free Software Foundation, Inc.
Contributed by Red Hat, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#include <stdio.h>
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "toplev.h"
#include "c-pragma.h"
#include "cpplib.h"
#include "hard-reg-set.h"
#include "output.h"
#include "m32c-protos.h"
#include "function.h"
#define MAX_RECOG_OPERANDS 10
#include "reload.h"
#include "target.h"
 
/* Implements the "GCC memregs" pragma. This pragma takes only an
integer, and is semantically identical to the -memregs= command
line option. The only catch is, the programmer should only use
this pragma at the beginning of the file (preferably, in some
project-wide header) to avoid ABI changes related to changing the
list of available "registers". */
static void
m32c_pragma_memregs (cpp_reader * reader ATTRIBUTE_UNUSED)
{
/* on off */
tree val;
enum cpp_ttype type;
HOST_WIDE_INT i;
static char new_number[3];
 
type = pragma_lex (&val);
if (type == CPP_NUMBER)
{
if (host_integerp (val, 1))
{
i = tree_low_cst (val, 1);
 
type = pragma_lex (&val);
if (type != CPP_EOF)
warning (0, "junk at end of #pragma GCC memregs [0..16]");
 
if (0 <= i && i <= 16)
{
if (!ok_to_change_target_memregs)
{
warning (0,
"#pragma GCC memregs must precede any function decls");
return;
}
new_number[0] = (i / 10) + '0';
new_number[1] = (i % 10) + '0';
new_number[2] = 0;
target_memregs = new_number;
m32c_conditional_register_usage ();
}
else
{
warning (0, "#pragma GCC memregs takes a number [0..16]");
}
 
return;
}
}
 
error ("#pragma GCC memregs takes a number [0..16]");
}
 
/* Implements REGISTER_TARGET_PRAGMAS. */
void
m32c_register_pragmas (void)
{
c_register_pragma ("GCC", "memregs", m32c_pragma_memregs);
}
/m32c.h
0,0 → 1,675
/* Target Definitions for R8C/M16C/M32C
Copyright (C) 2005, 2007
Free Software Foundation, Inc.
Contributed by Red Hat.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#ifndef GCC_M32C_H
#define GCC_M32C_H
 
/* Controlling the Compilation Driver, `gcc'. */
 
#undef STARTFILE_SPEC
#define STARTFILE_SPEC "crt0.o%s crtbegin.o%s"
 
/* There are four CPU series we support, but they basically break down
into two families - the R8C/M16C families, with 16 bit address
registers and one set of opcodes, and the M32CM/M32C group, with 24
bit address registers and a different set of opcodes. The
assembler doesn't care except for which opcode set is needed; the
big difference is in the memory maps, which we cover in
LIB_SPEC. */
 
#undef ASM_SPEC
#define ASM_SPEC "\
%{mcpu=r8c:--m16c} \
%{mcpu=m16c:--m16c} \
%{mcpu=m32cm:--m32c} \
%{mcpu=m32c:--m32c} "
 
/* The default is R8C hardware. We support a simulator, which has its
own libgloss and link map, plus one default link map for each chip
family. Most of the logic here is making sure we do the right
thing when no CPU is specified, which defaults to R8C. */
#undef LIB_SPEC
#define LIB_SPEC "-( -lc %{msim*:-lsim}%{!msim*:-lnosys} -) \
%{msim*:%{!T*: %{mcpu=m32cm:-Tsim24.ld}%{mcpu=m32c:-Tsim24.ld} \
%{!mcpu=m32cm:%{!mcpu=m32c:-Tsim16.ld}}}} \
%{!T*:%{!msim*: %{mcpu=m16c:-Tm16c.ld} \
%{mcpu=m32cm:-Tm32cm.ld} \
%{mcpu=m32c:-Tm32c.ld} \
%{!mcpu=m16c:%{!mcpu=m32cm:%{!mcpu=m32c:-Tr8c.ld}}}}} \
"
 
/* Run-time Target Specification */
 
/* Nothing unusual here. */
#define TARGET_CPU_CPP_BUILTINS() \
{ \
builtin_assert ("cpu=m32c"); \
builtin_assert ("machine=m32c"); \
builtin_define ("__m32c__=1"); \
if (TARGET_R8C) \
builtin_define ("__r8c_cpu__=1"); \
if (TARGET_M16C) \
builtin_define ("__m16c_cpu__=1"); \
if (TARGET_M32CM) \
builtin_define ("__m32cm_cpu__=1"); \
if (TARGET_M32C) \
builtin_define ("__m32c_cpu__=1"); \
}
 
/* The pragma handlers need to know if we've started processing
functions yet, as the memregs pragma should only be given at the
beginning of the file. This variable starts off TRUE and later
becomes FALSE. */
extern int ok_to_change_target_memregs;
extern int target_memregs;
 
/* TARGET_CPU is a multi-way option set in m32c.opt. While we could
use enums or defines for this, this and m32c.opt are the only
places that know (or care) what values are being used. */
#define TARGET_R8C (target_cpu == 'r')
#define TARGET_M16C (target_cpu == '6')
#define TARGET_M32CM (target_cpu == 'm')
#define TARGET_M32C (target_cpu == '3')
 
/* Address register sizes. Warning: these are used all over the place
to select between the two CPU families in general. */
#define TARGET_A16 (TARGET_R8C || TARGET_M16C)
#define TARGET_A24 (TARGET_M32CM || TARGET_M32C)
 
#define TARGET_VERSION fprintf (stderr, " (m32c)");
 
#define OVERRIDE_OPTIONS m32c_override_options ();
 
/* Defining data structures for per-function information */
 
typedef struct machine_function GTY (())
{
/* How much we adjust the stack when returning from an exception
handler. */
rtx eh_stack_adjust;
 
/* TRUE if the current function is an interrupt handler. */
int is_interrupt;
 
/* TRUE if the current function is a leaf function. Currently, this
only affects saving $a0 in interrupt functions. */
int is_leaf;
 
/* Bitmask that keeps track of which registers are used in an
interrupt function, so we know which ones need to be saved and
restored. */
int intr_pushm;
/* Likewise, one element for each memreg that needs to be saved. */
char intr_pushmem[16];
 
/* TRUE if the current function can use a simple RTS to return, instead
of the longer ENTER/EXIT pair. */
int use_rts;
}
machine_function;
 
#define INIT_EXPANDERS m32c_init_expanders ()
 
/* Storage Layout */
 
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN 0
#define WORDS_BIG_ENDIAN 0
 
/* We can do QI, HI, and SI operations pretty much equally well, but
GCC expects us to have a "native" format, so we pick the one that
matches "int". Pointers are 16 bits for R8C/M16C (when TARGET_A16
is true) and 24 bits for M32CM/M32C (when TARGET_A24 is true), but
24 bit pointers are stored in 32 bit words. */
#define BITS_PER_UNIT 8
#define UNITS_PER_WORD 2
#define POINTER_SIZE (TARGET_A16 ? 16 : 32)
#define POINTERS_EXTEND_UNSIGNED 1
 
/* These match the alignment enforced by the two types of stack operations. */
#define PARM_BOUNDARY (TARGET_A16 ? 8 : 16)
#define STACK_BOUNDARY (TARGET_A16 ? 8 : 16)
 
/* We do this because we care more about space than about speed. For
the chips with 16 bit busses, we could set these to 16 if
desired. */
#define FUNCTION_BOUNDARY 8
#define BIGGEST_ALIGNMENT 8
 
#define STRICT_ALIGNMENT 0
#define SLOW_BYTE_ACCESS 1
 
/* Layout of Source Language Data Types */
 
#define INT_TYPE_SIZE 16
#define SHORT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
 
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
 
#define DEFAULT_SIGNED_CHAR 1
 
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE (TARGET_A16 ? "int" : "long int")
 
/* REGISTER USAGE */
 
/* Register Basics */
 
/* Register layout:
 
[r0h][r0l] $r0 (16 bits, or two 8 bit halves)
[--------] $r2 (16 bits)
[r1h][r1l] $r1 (16 bits, or two 8 bit halves)
[--------] $r3 (16 bits)
[---][--------] $a0 (might be 24 bits)
[---][--------] $a1 (might be 24 bits)
[---][--------] $sb (might be 24 bits)
[---][--------] $fb (might be 24 bits)
[---][--------] $sp (might be 24 bits)
[-------------] $pc (20 or 24 bits)
[---] $flg (CPU flags)
[---][--------] $argp (virtual)
[--------] $mem0 (all 16 bits)
. . .
[--------] $mem14
*/
 
#define FIRST_PSEUDO_REGISTER 20
 
/* Note that these two tables are modified based on which CPU family
you select; see m32c_conditional_register_usage for details. */
 
/* r0 r2 r1 r3 - a0 a1 sb fb - sp pc flg argp - mem0..mem14 */
#define FIXED_REGISTERS { 0, 0, 0, 0, \
0, 0, 1, 0, \
1, 1, 0, 1, \
0, 0, 0, 0, 0, 0, 0, 0 }
#define CALL_USED_REGISTERS { 1, 1, 1, 1, \
1, 1, 1, 0, \
1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1 }
 
#define CONDITIONAL_REGISTER_USAGE m32c_conditional_register_usage ();
 
/* The *_REGNO theme matches m32c.md and most register number
arguments; the PC_REGNUM is the odd one out. */
#ifndef PC_REGNO
#define PC_REGNO 9
#endif
#define PC_REGNUM PC_REGNO
 
/* Order of Allocation of Registers */
 
#define REG_ALLOC_ORDER { \
0, 1, 2, 3, 4, 5, /* r0..r3, a0, a1 */ \
12, 13, 14, 15, 16, 17, 18, /* mem0..mem7 */ \
6, 7, 8, 9, 10, 11 /* sb, fb, sp, pc, flg, ap */ }
 
/* How Values Fit in Registers */
 
#define HARD_REGNO_NREGS(R,M) m32c_hard_regno_nregs (R, M)
#define HARD_REGNO_MODE_OK(R,M) m32c_hard_regno_ok (R, M)
#define MODES_TIEABLE_P(M1,M2) m32c_modes_tieable_p (M1, M2)
#define AVOID_CCMODE_COPIES
 
/* Register Classes */
 
/* Most registers are special purpose in some form or another, so this
table is pretty big. Class names are used for constraints also;
for example the HL_REGS class (HL below) is "Rhl" in the md files.
See m32c_reg_class_from_constraint for the mapping. There's some
duplication so that we can better isolate the reason for using
constraints in the md files from the actual registers used; for
example we may want to exclude a1a0 from SI_REGS in the future,
without precluding their use as HImode registers. */
 
/* m7654 - m3210 - argp flg pc sp - fb sb a1 a0 - r3 r1 r2 r0 */
/* mmPAR */
#define REG_CLASS_CONTENTS \
{ { 0x00000000 }, /* NO */\
{ 0x00000100 }, /* SP - sp */\
{ 0x00000080 }, /* FB - fb */\
{ 0x00000040 }, /* SB - sb */\
{ 0x000001c0 }, /* CR - sb fb sp */\
{ 0x00000001 }, /* R0 - r0 */\
{ 0x00000004 }, /* R1 - r1 */\
{ 0x00000002 }, /* R2 - r2 */\
{ 0x00000008 }, /* R3 - r3 */\
{ 0x00000003 }, /* R02 - r0r2 */\
{ 0x00000005 }, /* HL - r0 r1 */\
{ 0x00000005 }, /* QI - r0 r1 */\
{ 0x0000000a }, /* R23 - r2 r3 */\
{ 0x0000000f }, /* R03 - r0r2 r1r3 */\
{ 0x0000000f }, /* DI - r0r2r1r3 + mems */\
{ 0x00000010 }, /* A0 - a0 */\
{ 0x00000020 }, /* A1 - a1 */\
{ 0x00000030 }, /* A - a0 a1 */\
{ 0x000000f0 }, /* AD - a0 a1 sb fp */\
{ 0x000001f0 }, /* PS - a0 a1 sb fp sp */\
{ 0x0000000f }, /* SI - r0r2 r1r3 a0a1 */\
{ 0x0000003f }, /* HI - r0 r1 r2 r3 a0 a1 */\
{ 0x0000003f }, /* RA - r0..r3 a0 a1 */\
{ 0x0000007f }, /* GENERAL */\
{ 0x00000400 }, /* FLG */\
{ 0x000001ff }, /* HC - r0l r1 r2 r3 a0 a1 sb fb sp */\
{ 0x000ff000 }, /* MEM */\
{ 0x000ff003 }, /* R02_A_MEM */\
{ 0x000ff005 }, /* A_HL_MEM */\
{ 0x000ff00c }, /* R1_R3_A_MEM */\
{ 0x000ff00f }, /* R03_MEM */\
{ 0x000ff03f }, /* A_HI_MEM */\
{ 0x000ff0ff }, /* A_AD_CR_MEM_SI */\
{ 0x000ff1ff }, /* ALL */\
}
 
enum reg_class
{
NO_REGS,
SP_REGS,
FB_REGS,
SB_REGS,
CR_REGS,
R0_REGS,
R1_REGS,
R2_REGS,
R3_REGS,
R02_REGS,
HL_REGS,
QI_REGS,
R23_REGS,
R03_REGS,
DI_REGS,
A0_REGS,
A1_REGS,
A_REGS,
AD_REGS,
PS_REGS,
SI_REGS,
HI_REGS,
RA_REGS,
GENERAL_REGS,
FLG_REGS,
HC_REGS,
MEM_REGS,
R02_A_MEM_REGS,
A_HL_MEM_REGS,
R1_R3_A_MEM_REGS,
R03_MEM_REGS,
A_HI_MEM_REGS,
A_AD_CR_MEM_SI_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
 
#define N_REG_CLASSES LIM_REG_CLASSES
 
#define REG_CLASS_NAMES {\
"NO_REGS", \
"SP_REGS", \
"FB_REGS", \
"SB_REGS", \
"CR_REGS", \
"R0_REGS", \
"R1_REGS", \
"R2_REGS", \
"R3_REGS", \
"R02_REGS", \
"HL_REGS", \
"QI_REGS", \
"R23_REGS", \
"R03_REGS", \
"DI_REGS", \
"A0_REGS", \
"A1_REGS", \
"A_REGS", \
"AD_REGS", \
"PS_REGS", \
"SI_REGS", \
"HI_REGS", \
"RA_REGS", \
"GENERAL_REGS", \
"FLG_REGS", \
"HC_REGS", \
"MEM_REGS", \
"R02_A_MEM_REGS", \
"A_HL_MEM_REGS", \
"R1_R3_A_MEM_REGS", \
"R03_MEM_REGS", \
"A_HI_MEM_REGS", \
"A_AD_CR_MEM_SI_REGS", \
"ALL_REGS", \
}
 
#define REGNO_REG_CLASS(R) m32c_regno_reg_class (R)
 
/* We support simple displacements off address registers, nothing else. */
#define BASE_REG_CLASS A_REGS
#define INDEX_REG_CLASS NO_REGS
 
/* We primarily use the new "long" constraint names, with the initial
letter classifying the constraint type and following letters
specifying which. The types are:
 
I - integer values
R - register classes
S - memory references (M was used)
A - addresses (currently unused)
*/
 
#define CONSTRAINT_LEN(CHAR,STR) \
((CHAR) == 'I' ? 3 \
: (CHAR) == 'R' ? 3 \
: (CHAR) == 'S' ? 2 \
: (CHAR) == 'A' ? 2 \
: DEFAULT_CONSTRAINT_LEN(CHAR,STR))
#define REG_CLASS_FROM_CONSTRAINT(CHAR,STR) \
m32c_reg_class_from_constraint (CHAR, STR)
 
#define REGNO_OK_FOR_BASE_P(NUM) m32c_regno_ok_for_base_p (NUM)
#define REGNO_OK_FOR_INDEX_P(NUM) 0
 
#define PREFERRED_RELOAD_CLASS(X,CLASS) m32c_preferred_reload_class (X, CLASS)
#define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) m32c_preferred_output_reload_class (X, CLASS)
#define LIMIT_RELOAD_CLASS(MODE,CLASS) m32c_limit_reload_class (MODE, CLASS)
 
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,X) m32c_secondary_reload_class (CLASS, MODE, X)
 
#define SMALL_REGISTER_CLASSES 1
 
#define CLASS_LIKELY_SPILLED_P(C) m32c_class_likely_spilled_p (C)
 
#define CLASS_MAX_NREGS(C,M) m32c_class_max_nregs (C, M)
 
#define CANNOT_CHANGE_MODE_CLASS(F,T,C) m32c_cannot_change_mode_class(F,T,C)
 
#define CONST_OK_FOR_CONSTRAINT_P(VALUE,C,STR) \
m32c_const_ok_for_constraint_p (VALUE, C, STR)
#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(VALUE,C,STR) 0
#define EXTRA_CONSTRAINT_STR(VALUE,C,STR) \
m32c_extra_constraint_p (VALUE, C, STR)
#define EXTRA_MEMORY_CONSTRAINT(C,STR) \
m32c_extra_memory_constraint (C, STR)
#define EXTRA_ADDRESS_CONSTRAINT(C,STR) \
m32c_extra_address_constraint (C, STR)
 
/* STACK AND CALLING */
 
/* Frame Layout */
 
/* Standard push/pop stack, no surprises here. */
 
#define STACK_GROWS_DOWNWARD 1
#define STACK_PUSH_CODE PRE_DEC
#define FRAME_GROWS_DOWNWARD 1
 
#define STARTING_FRAME_OFFSET 0
#define FIRST_PARM_OFFSET(F) 0
 
#define RETURN_ADDR_RTX(COUNT,FA) m32c_return_addr_rtx (COUNT)
 
#define INCOMING_RETURN_ADDR_RTX m32c_incoming_return_addr_rtx()
#define INCOMING_FRAME_SP_OFFSET (TARGET_A24 ? 4 : 3)
 
/* Exception Handling Support */
 
#define EH_RETURN_DATA_REGNO(N) m32c_eh_return_data_regno (N)
#define EH_RETURN_STACKADJ_RTX m32c_eh_return_stackadj_rtx ()
 
/* Registers That Address the Stack Frame */
 
#ifndef FP_REGNO
#define FP_REGNO 7
#endif
#ifndef SP_REGNO
#define SP_REGNO 8
#endif
#define AP_REGNO 11
 
#define STACK_POINTER_REGNUM SP_REGNO
#define FRAME_POINTER_REGNUM FP_REGNO
#define ARG_POINTER_REGNUM AP_REGNO
 
/* The static chain must be pointer-capable. */
#define STATIC_CHAIN_REGNUM A0_REGNO
 
#define DWARF_FRAME_REGISTERS 20
#define DWARF_FRAME_REGNUM(N) m32c_dwarf_frame_regnum (N)
#define DBX_REGISTER_NUMBER(N) m32c_dwarf_frame_regnum (N)
 
/* Eliminating Frame Pointer and Arg Pointer */
 
/* If the frame pointer isn't used, we detect it manually. But the
stack pointer doesn't have as flexible addressing as the frame
pointer, so we always assume we have it. */
#define FRAME_POINTER_REQUIRED 1
 
#define ELIMINABLE_REGS \
{{AP_REGNO, SP_REGNO}, \
{AP_REGNO, FB_REGNO}, \
{FB_REGNO, SP_REGNO}}
 
#define CAN_ELIMINATE(FROM,TO) 1
#define INITIAL_ELIMINATION_OFFSET(FROM,TO,VAR) \
(VAR) = m32c_initial_elimination_offset(FROM,TO)
 
/* Passing Function Arguments on the Stack */
 
#define PUSH_ARGS 1
#define PUSH_ROUNDING(N) m32c_push_rounding (N)
#define RETURN_POPS_ARGS(D,T,S) 0
#define CALL_POPS_ARGS(C) 0
 
/* Passing Arguments in Registers */
 
#define FUNCTION_ARG(CA,MODE,TYPE,NAMED) \
m32c_function_arg (&(CA),MODE,TYPE,NAMED)
 
typedef struct m32c_cumulative_args
{
/* For address of return value buffer (structures are returned by
passing the address of a buffer as an invisible first argument.
This identifies it). If set, the current parameter will be put
on the stack, regardless of type. */
int force_mem;
/* First parm is 1, parm 0 is hidden pointer for returning
aggregates. */
int parm_num;
} m32c_cumulative_args;
 
#define CUMULATIVE_ARGS m32c_cumulative_args
#define INIT_CUMULATIVE_ARGS(CA,FNTYPE,LIBNAME,FNDECL,N_NAMED_ARGS) \
m32c_init_cumulative_args (&(CA),FNTYPE,LIBNAME,FNDECL,N_NAMED_ARGS)
#define FUNCTION_ARG_ADVANCE(CA,MODE,TYPE,NAMED) \
m32c_function_arg_advance (&(CA),MODE,TYPE,NAMED)
#define FUNCTION_ARG_BOUNDARY(MODE,TYPE) (TARGET_A16 ? 8 : 16)
#define FUNCTION_ARG_REGNO_P(r) m32c_function_arg_regno_p (r)
 
/* How Scalar Function Values Are Returned */
 
#define FUNCTION_VALUE(VT,F) m32c_function_value (VT, F)
#define LIBCALL_VALUE(MODE) m32c_libcall_value (MODE)
 
#define FUNCTION_VALUE_REGNO_P(r) ((r) == R0_REGNO || (r) == MEM0_REGNO)
 
/* How Large Values Are Returned */
 
#define DEFAULT_PCC_STRUCT_RETURN 1
 
/* Function Entry and Exit */
 
#define EXIT_IGNORE_STACK 0
#define EPILOGUE_USES(REGNO) m32c_epilogue_uses(REGNO)
#define EH_USES(REGNO) 0 /* FIXME */
 
/* Generating Code for Profiling */
 
#define FUNCTION_PROFILER(FILE,LABELNO)
 
/* Implementing the Varargs Macros */
 
/* Trampolines for Nested Functions */
 
#define TRAMPOLINE_SIZE m32c_trampoline_size ()
#define TRAMPOLINE_ALIGNMENT m32c_trampoline_alignment ()
#define INITIALIZE_TRAMPOLINE(a,fn,sc) m32c_initialize_trampoline (a, fn, sc)
 
/* Addressing Modes */
 
#define HAVE_PRE_DECREMENT 1
#define HAVE_POST_INCREMENT 1
#define CONSTANT_ADDRESS_P(X) CONSTANT_P(X)
#define MAX_REGS_PER_ADDRESS 1
 
/* This is passed to the macros below, so that they can be implemented
in m32c.c. */
#ifdef REG_OK_STRICT
#define REG_OK_STRICT_V 1
#else
#define REG_OK_STRICT_V 0
#endif
 
#define GO_IF_LEGITIMATE_ADDRESS(MODE,X,LABEL) \
if (m32c_legitimate_address_p (MODE, X, REG_OK_STRICT_V)) \
goto LABEL;
 
#define REG_OK_FOR_BASE_P(X) m32c_reg_ok_for_base_p (X, REG_OK_STRICT_V)
#define REG_OK_FOR_INDEX_P(X) 0
 
/* #define FIND_BASE_TERM(X) when we do unspecs for symrefs */
 
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
if (m32c_legitimize_address(&(X),OLDX,MODE)) \
goto win;
 
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
if (m32c_legitimize_reload_address(&(X),MODE,OPNUM,TYPE,IND_LEVELS)) \
goto win;
 
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
if (m32c_mode_dependent_address (ADDR)) \
goto LABEL;
 
#define LEGITIMATE_CONSTANT_P(X) m32c_legitimate_constant_p (X)
 
/* Condition Code Status */
 
#define REVERSIBLE_CC_MODE(MODE) 1
 
/* Describing Relative Costs of Operations */
 
#define REGISTER_MOVE_COST(MODE,FROM,TO) \
m32c_register_move_cost (MODE, FROM, TO)
#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
m32c_memory_move_cost (MODE, CLASS, IN)
 
/* Dividing the Output into Sections (Texts, Data, ...) */
 
#define TEXT_SECTION_ASM_OP ".text"
#define DATA_SECTION_ASM_OP ".data"
#define BSS_SECTION_ASM_OP ".bss"
 
#define CTOR_LIST_BEGIN
#define CTOR_LIST_END
#define DTOR_LIST_BEGIN
#define DTOR_LIST_END
#define CTORS_SECTION_ASM_OP "\t.section\t.init_array,\"aw\",%init_array"
#define DTORS_SECTION_ASM_OP "\t.section\t.fini_array,\"aw\",%fini_array"
#define INIT_ARRAY_SECTION_ASM_OP "\t.section\t.init_array,\"aw\",%init_array"
#define FINI_ARRAY_SECTION_ASM_OP "\t.section\t.fini_array,\"aw\",%fini_array"
 
/* The Overall Framework of an Assembler File */
 
#define ASM_COMMENT_START ";"
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
 
/* Output and Generation of Labels */
 
#define GLOBAL_ASM_OP "\t.global\t"
 
/* Output of Assembler Instructions */
 
#define REGISTER_NAMES { \
"r0", "r2", "r1", "r3", \
"a0", "a1", "sb", "fb", "sp", \
"pc", "flg", "argp", \
"mem0", "mem2", "mem4", "mem6", "mem8", "mem10", "mem12", "mem14", \
}
 
#define ADDITIONAL_REGISTER_NAMES { \
{"r0l", 0}, \
{"r1l", 2}, \
{"r0r2", 0}, \
{"r1r3", 2}, \
{"a0a1", 4}, \
{"r0r2r1r3", 0} }
 
#define PRINT_OPERAND(S,X,C) m32c_print_operand (S, X, C)
#define PRINT_OPERAND_PUNCT_VALID_P(C) m32c_print_operand_punct_valid_p (C)
#define PRINT_OPERAND_ADDRESS(S,X) m32c_print_operand_address (S, X)
 
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX "_"
 
#define ASM_OUTPUT_REG_PUSH(S,R) m32c_output_reg_push (S, R)
#define ASM_OUTPUT_REG_POP(S,R) m32c_output_reg_pop (S, R)
 
/* Output of Dispatch Tables */
 
#define ASM_OUTPUT_ADDR_VEC_ELT(S,V) \
fprintf (S, "\t.word L%d\n", V)
 
/* Assembler Commands for Exception Regions */
 
#define DWARF_CIE_DATA_ALIGNMENT -1
 
/* Assembler Commands for Alignment */
 
#define ASM_OUTPUT_ALIGN(STREAM,POWER) \
fprintf (STREAM, "\t.p2align\t%d\n", POWER);
 
/* Controlling Debugging Information Format */
 
#define DWARF2_ADDR_SIZE 4
 
/* Miscellaneous Parameters */
 
#define HAS_LONG_COND_BRANCH false
#define HAS_LONG_UNCOND_BRANCH true
#define CASE_VECTOR_MODE SImode
#define LOAD_EXTEND_OP(MEM) ZERO_EXTEND
 
#define MOVE_MAX 4
#define TRULY_NOOP_TRUNCATION(op,ip) 1
 
#define STORE_FLAG_VALUE 1
 
/* 16 or 24 bit pointers */
#define Pmode (TARGET_A16 ? HImode : PSImode)
#define FUNCTION_MODE QImode
 
#define REGISTER_TARGET_PRAGMAS() m32c_register_pragmas()
 
#endif
/prologue.md
0,0 → 1,149
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; Prologue and epilogue patterns
 
(define_expand "prologue"
[(const_int 1)]
""
"m32c_emit_prologue(); DONE;"
)
 
; For the next two, operands[0] is the amount of stack space we want
; to reserve.
 
; We assume dwarf2out will process each set in sequence.
(define_insn "prologue_enter_16"
[(set (mem:HI (pre_dec:HI (reg:HI SP_REGNO)))
(reg:HI FB_REGNO))
(set (reg:HI FB_REGNO)
(reg:HI SP_REGNO))
(set (reg:HI SP_REGNO)
(minus:HI (reg:HI SP_REGNO)
(match_operand 0 "const_int_operand" "i")))
]
"TARGET_A16"
"enter\t%0"
[(set_attr "flags" "x")]
)
 
(define_insn "prologue_enter_24"
[(set (mem:SI (pre_dec:PSI (reg:PSI SP_REGNO)))
(reg:SI FB_REGNO))
(set (reg:PSI FB_REGNO)
(reg:PSI SP_REGNO))
(set (reg:PSI SP_REGNO)
(minus:PSI (reg:PSI SP_REGNO)
(match_operand 0 "const_int_operand" "i")))
]
"TARGET_A24"
"enter\t%0"
[(set_attr "flags" "x")]
)
 
; Just a comment, for debugging the assembler output.
(define_insn "prologue_end"
[(unspec_volatile [(const_int 0)] UNS_PROLOGUE_END)]
""
"; end of prologue"
[(set_attr "flags" "n")]
)
 
 
 
(define_expand "epilogue"
[(const_int 1)]
""
"m32c_emit_epilogue(); DONE;"
)
 
(define_expand "eh_return"
[(match_operand:PSI 0 "" "")]
""
"m32c_emit_eh_epilogue(operands[0]); DONE;"
)
 
(define_insn "eh_epilogue"
[(set (pc)
(unspec_volatile [(match_operand 0 "m32c_r1_operand" "")
(match_operand 1 "m32c_r0_operand" "")
] UNS_EH_EPILOGUE))]
""
"jmp.a\t__m32c_eh_return"
[(set_attr "flags" "x")]
)
 
(define_insn "epilogue_exitd"
[(set (reg:PSI SP_REGNO)
(reg:PSI FB_REGNO))
(set (reg:PSI FB_REGNO)
(mem:PSI (reg:PSI SP_REGNO)))
(set (reg:PSI SP_REGNO)
(plus:PSI (reg:PSI SP_REGNO)
(match_operand 0 "const_int_operand" "i")))
(return)
]
""
"exitd"
[(set_attr "flags" "x")]
)
 
(define_insn "epilogue_reit"
[(set (reg:PSI SP_REGNO)
(plus:PSI (reg:PSI SP_REGNO)
(match_operand 0 "const_int_operand" "i")))
(return)
]
""
"reit"
[(set_attr "flags" "x")]
)
 
(define_insn "epilogue_rts"
[(return)
]
""
"rts"
[(set_attr "flags" "x")]
)
 
(define_insn "epilogue_start"
[(unspec_volatile [(const_int 0)] UNS_EPILOGUE_START)]
""
"; start of epilogue"
[(set_attr "flags" "n")]
)
 
 
; These are used by the prologue/epilogue code.
 
(define_insn "pushm"
[(unspec [(match_operand 0 "const_int_operand" "i")] UNS_PUSHM)]
""
"pushm\t%p0"
[(set_attr "flags" "n")]
)
 
(define_insn "popm"
[(unspec [(match_operand 0 "const_int_operand" "i")] UNS_POPM)]
""
"popm\t%p0"
[(set_attr "flags" "n")]
)
/m32c.abi
0,0 → 1,132
Target Definitions for R8C/M16C/M32C
Copyright (C) 2005, 2007
Free Software Foundation, Inc.
Contributed by Red Hat.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>.
 
 
These are just some random notes I used during development of this
port. Please don't consider these to be "official" specifications,
just additional information to help make the code easier to
understand.
 
 
Frame
=====
 
+--------------------
| incoming args
+--------------------
| return Address
osp -> +--------------------
| saved fp
fp -> +--------------------
| local data
+--------------------
| saved regs
+--------------------
| outgoing args (opt)
sp -> +--------------------
 
Argument Passing
================
 
r8c, m16c
---------
 
First arg may be passed in r1l or r1 if it (1) fits (QImode or
HImode), (2) is named, and (3) is an integer or pointer type (no
structs, floats, etc). Otherwise, it's passed on the stack.
 
Second arg may be passed in r2, same restrictions (but not QImode),
even if the first arg is passed on the stack.
 
Third and further args are passed on the stack. No padding is used,
stack "alignment" is 8 bits.
 
m32cm, m32c
-----------
First arg may be passed in r0l or r0, same restrictions as above.
 
Second and further args are passed on the stack. Padding is used
after QImode parameters (i.e. lower-addressed byte is the value,
higher-addressed byte is the padding), stack "alignment" is 16 bits.
 
 
Return Value
============
 
r8c, m16c
---------
 
QImode in r0l
HImode in r0
near pointer in r0
(desired)
SImode in r2r0
far pointer in r2r0
(actual)
Anything bigger than 16 bits is returned in memory, at mem0 (mem0
through mem15 are provided by libgcc.a)
 
Aggregate values (regardless of size) are returned by pushing a
pointer to a temporary area on the stack after the args are pushed.
The function fills in this area with the value. Note that this
pointer on the stack does not affect how register arguments, if any,
are configured.
 
m32cm, m32c
-----------
Same.
 
 
Registers Preserved Across Calls
================================
 
r8c, m16c
---------
sb, fb, sp (i.e. nearly all registers are call clobbered)
 
m32cm, m32c
-----------
r1, r2, r3, a0, a1, sb, fb, sp
(except when used for return values)
 
 
Interrupt Handlers
==================
 
The stack frame is slightly different for interrupt handlers, because
(1) we don't have a usable parent frame, and (2) we have to use
special instructions to return and thus must save/restore everything
differently.
 
+--------------------
| program state
osp -> +--------------------
| return address
+--------------------
| saved r0..fp (pushm)
fp -> +--------------------
| local data
+--------------------
| saved regs mem0..mem15
+--------------------
| outgoing args (opt)
sp -> +--------------------
 
/muldiv.md
0,0 → 1,261
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; multiply and divide
 
; Here is the pattern for the const_int.
(define_insn "mulqihi3_c"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,??Rmm")
(mult:HI (sign_extend:HI (match_operand:QI 1 "mra_operand" "%0,0"))
(match_operand 2 "immediate_operand" "i,i")))]
""
"mul.b\t%2,%1"
[(set_attr "flags" "o")]
)
 
; Here is the pattern for registers and such.
(define_insn "mulqihi3_r"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,RhiSd,??Rmm,??Rmm,Raa,Raa")
(mult:HI (sign_extend:HI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0"))
(sign_extend:HI (match_operand:QI 2 "mra_operand" "RqiSd,?Rmm,RqiSd,?Rmm,RhlSd,?Rmm"))))]
""
"mul.b\t%2,%1"
[(set_attr "flags" "o")]
)
 
; Don't try to sign_extend a const_int. Same for all other multiplies.
(define_expand "mulqihi3"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,RhiSd,??Rmm,??Rmm,Raa,Raa")
(mult:HI (sign_extend:HI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0"))
(match_operand:QI 2 "mra_operand" "RqiSd,?Rmm,RqiSd,?Rmm,RhlSd,?Rmm")))]
""
"{ if (GET_MODE (operands[2]) != VOIDmode)
operands[2] = gen_rtx_SIGN_EXTEND (HImode, operands[2]); }"
)
 
(define_insn "umulqihi3_c"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,??Rmm")
(mult:HI (zero_extend:HI (match_operand:QI 1 "mra_operand" "%0,0"))
(match_operand 2 "immediate_operand" "i,i")))]
""
"mulu.b\t%U2,%1"
[(set_attr "flags" "o")]
)
 
(define_insn "umulqihi3_r"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,RhiSd,??Rmm,??Rmm,Raa,Raa")
(mult:HI (zero_extend:HI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0"))
(zero_extend:HI (match_operand:QI 2 "mra_operand" "RqiSd,?Rmm,RqiSd,?Rmm,RhlSd,?Rmm"))))]
""
"mulu.b\t%U2,%1"
[(set_attr "flags" "o")]
)
 
(define_expand "umulqihi3"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,RhiSd,??Rmm,??Rmm,Raa,Raa")
(mult:HI (zero_extend:HI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0"))
(match_operand:QI 2 "mra_operand" "RqiSd,?Rmm,RqiSd,?Rmm,RhlSd,?Rmm")))]
""
"{ if (GET_MODE (operands[2]) != VOIDmode)
operands[2] = gen_rtx_ZERO_EXTEND (HImode, operands[2]); }"
)
 
(define_insn "mulhisi3_c"
[(set (match_operand:SI 0 "ra_operand" "=Rsi")
(mult:SI (sign_extend:SI (match_operand:HI 1 "mra_operand" "%0"))
(match_operand 2 "immediate_operand" "i")))]
""
"mul.w\t%2,%1"
[(set_attr "flags" "o")]
)
 
(define_insn "mulhisi3_r"
[(set (match_operand:SI 0 "mra_operand" "=Rsi,Rsi")
(mult:SI (sign_extend:SI (match_operand:HI 1 "mra_operand" "%0,0"))
(sign_extend:SI (match_operand:HI 2 "mra_operand" "RhiSd,?Rmm"))))]
""
"mul.w\t%2,%1"
[(set_attr "flags" "o")]
)
 
(define_expand "mulhisi3"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm")
(mult:SI (sign_extend:SI (match_operand:HI 1 "mra_operand" "%0,0,0,0"))
(match_operand:HI 2 "mra_operand" "RhiSd,?Rmm,RhiSd,?Rmm")))]
""
"{ if (GET_MODE (operands[2]) != VOIDmode)
operands[2] = gen_rtx_SIGN_EXTEND (SImode, operands[2]); }"
)
 
(define_insn "umulhisi3_c"
[(set (match_operand:SI 0 "ra_operand" "=Rsi")
(mult:SI (zero_extend:SI (match_operand:HI 1 "mra_operand" "%0"))
(match_operand 2 "immediate_operand" "i")))]
""
"mulu.w\t%u2,%1"
[(set_attr "flags" "o")]
)
 
(define_insn "umulhisi3_r"
[(set (match_operand:SI 0 "mra_operand" "=Rsi,Rsi")
(mult:SI (zero_extend:SI (match_operand:HI 1 "mra_operand" "%0,0"))
(zero_extend:SI (match_operand:HI 2 "mra_operand" "RhiSd,?Rmm"))))]
""
"mulu.w\t%u2,%1"
[(set_attr "flags" "o")]
)
 
(define_expand "umulhisi3"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm")
(mult:SI (zero_extend:SI (match_operand:HI 1 "mra_operand" "%0,0,0,0"))
(match_operand:HI 2 "mra_operand" "RhiSd,?Rmm,RhiSd,?Rmm")))]
""
"{ if (GET_MODE (operands[2]) != VOIDmode)
operands[2] = gen_rtx_ZERO_EXTEND (SImode, operands[2]); }"
)
 
 
; GCC expects to be able to multiply pointer-sized integers too, but
; fortunately it only multiplies by powers of two, although sometimes
; they're negative.
(define_insn "mulpsi3_op"
[(set (match_operand:PSI 0 "mra_operand" "=RsiSd")
(mult:PSI (match_operand:PSI 1 "mra_operand" "%0")
(match_operand 2 "m32c_psi_scale" "Ilb")))]
"TARGET_A24"
"shl.l\t%b2,%0"
[(set_attr "flags" "szc")]
)
 
(define_expand "mulpsi3"
[(set (match_operand:PSI 0 "mra_operand" "=RsiSd")
(mult:PSI (match_operand:PSI 1 "mra_operand" "%0")
(match_operand 2 "m32c_psi_scale" "Ilb")))]
"TARGET_A24"
"if (GET_CODE (operands[2]) != CONST_INT
|| ! m32c_psi_scale (operands[2], PSImode))
{
m32c_expand_neg_mulpsi3 (operands);
DONE;
}"
)
 
 
 
(define_expand "divmodqi4"
[(set (match_dup 4)
(sign_extend:HI (match_operand:QI 1 "register_operand" "0,0")))
(parallel [(set (match_operand:QI 0 "register_operand" "=R0w,R0w")
(div:QI (match_dup 4)
(match_operand:QI 2 "general_operand" "iRqiSd,?Rmm")))
(set (match_operand:QI 3 "register_operand" "=&R0h,&R0h")
(mod:QI (match_dup 4) (match_dup 2)))
])]
"0"
"operands[4] = gen_reg_rtx (HImode);"
)
 
(define_insn "divmodqi4_n"
[(set (match_operand:QI 0 "register_operand" "=R0l,R0l")
(div:QI (match_operand:HI 1 "register_operand" "R0w,R0w")
(match_operand:QI 2 "general_operand" "iRqiSd,?Rmm")))
(set (match_operand:QI 3 "register_operand" "=R0h,R0h")
(mod:QI (match_dup 1) (match_dup 2)))
]
"0"
"div.b\t%2"
[(set_attr "flags" "o")]
)
 
(define_expand "udivmodqi4"
[(set (match_dup 4)
(zero_extend:HI (match_operand:QI 1 "register_operand" "0,0")))
(parallel [(set (match_operand:QI 0 "register_operand" "=R0l,R0l")
(udiv:QI (match_dup 4)
(match_operand:QI 2 "general_operand" "iRqiSd,?Rmm")))
(set (match_operand:QI 3 "register_operand" "=&R0h,&R0h")
(umod:QI (match_dup 4) (match_dup 2)))
])]
"0"
"operands[4] = gen_reg_rtx (HImode);"
)
 
(define_insn "udivmodqi4_n"
[(set (match_operand:QI 0 "register_operand" "=R0l,R0l")
(udiv:QI (match_operand:HI 1 "register_operand" "R0w,R0w")
(match_operand:QI 2 "general_operand" "iRqiSd,?Rmm")))
(set (match_operand:QI 3 "register_operand" "=R0h,R0h")
(umod:QI (match_dup 1) (match_dup 2)))
]
"0"
"divu.b\t%2"
[(set_attr "flags" "o")]
)
 
(define_expand "divmodhi4"
[(set (match_dup 4)
(sign_extend:SI (match_operand:HI 1 "register_operand" "0,0")))
(parallel [(set (match_operand:HI 0 "register_operand" "=R0w,R0w")
(div:HI (match_dup 4)
(match_operand:HI 2 "general_operand" "iRhiSd,?Rmm")))
(set (match_operand:HI 3 "register_operand" "=R2w,R2w")
(mod:HI (match_dup 4) (match_dup 2)))
])]
""
"operands[4] = gen_reg_rtx (SImode);"
)
 
(define_insn "divmodhi4_n"
[(set (match_operand:HI 0 "m32c_r0_operand" "=R0w,R0w")
(div:HI (match_operand:SI 1 "m32c_r0_operand" "R02,R02")
(match_operand:HI 2 "m32c_notr2_operand" "iR1wR3wRaaSd,?Rmm")))
(set (match_operand:HI 3 "m32c_r2_operand" "=R2w,R2w")
(mod:HI (match_dup 1) (match_dup 2)))
]
""
"div.w\t%2"
[(set_attr "flags" "o")]
)
 
(define_expand "udivmodhi4"
[(set (match_dup 4)
(zero_extend:SI (match_operand:HI 1 "register_operand" "0,0")))
(parallel [(set (match_operand:HI 0 "register_operand" "=R0w,R0w")
(udiv:HI (match_dup 4)
(match_operand:HI 2 "general_operand" "iRhiSd,?Rmm")))
(set (match_operand:HI 3 "register_operand" "=R2w,R2w")
(umod:HI (match_dup 4) (match_dup 2)))
])]
""
"operands[4] = gen_reg_rtx (SImode);"
)
 
(define_insn "udivmodhi4_n"
[(set (match_operand:HI 0 "m32c_r0_operand" "=R0w,R0w")
(udiv:HI (match_operand:SI 1 "m32c_r0_operand" "R02,R02")
(match_operand:HI 2 "m32c_notr2_operand" "iR1wR3wRaaSd,?Rmm")))
(set (match_operand:HI 3 "m32c_r2_operand" "=R2w,R2w")
(umod:HI (match_dup 1) (match_dup 2)))
]
""
"divu.w\t%2"
[(set_attr "flags" "o")]
)
/bitops.md
0,0 → 1,416
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; Bit-wise operations (and, ior, xor, shift)
 
; On the R8C and M16C, "address" for bit instructions is usually (but
; not always!) the *bit* address, not the *byte* address. This
; confuses gcc, so we avoid cases where gcc would produce the wrong
; code. We're left with absolute addresses and registers, and the odd
; case of shifting a bit by a variable.
 
; On the M32C, "address" for bit instructions is a regular address,
; and the bit number is stored in a separate field. Thus, we can let
; gcc do more interesting things. However, the M32C cannot set all
; the bits in a 16 bit register, which the R8C/M16C can do.
 
; However, it all means that we end up with two sets of patterns, one
; for each chip.
 
;;----------------------------------------------------------------------
 
;; First off, all the ways we can set one bit, other than plain IOR.
 
(define_insn "bset_qi"
[(set (match_operand:QI 0 "memsym_operand" "+Si")
(ior:QI (subreg:QI (ashift:HI (const_int 1)
(subreg:QI (match_operand:HI 1 "a_qi_operand" "Raa") 0)) 0)
(match_operand:QI 2 "" "0")))]
"TARGET_A16"
"bset\t%0[%1]"
[(set_attr "flags" "n")]
)
 
(define_insn "bset_hi"
[(set (zero_extract:HI (match_operand:QI 0 "memsym_operand" "+Si")
(const_int 1)
(zero_extend:HI (subreg:QI (match_operand:HI 1 "a_qi_operand" "Raa") 0)))
(const_int 1))]
"TARGET_A16"
"bset\t%0[%1]"
[(set_attr "flags" "n")]
)
 
;;----------------------------------------------------------------------
 
;; Now all the ways we can clear one bit, other than plain AND.
 
; This is odd because the shift patterns use QI counts, but we can't
; easily put QI in $aN without causing problems elsewhere.
(define_insn "bclr_qi"
[(set (zero_extract:HI (match_operand:QI 0 "memsym_operand" "+Si")
(const_int 1)
(zero_extend:HI (subreg:QI (match_operand:HI 1 "a_qi_operand" "Raa") 0)))
(const_int 0))]
"TARGET_A16"
"bclr\t%0[%1]"
[(set_attr "flags" "n")]
)
 
 
;;----------------------------------------------------------------------
 
;; Now the generic patterns.
 
(define_insn "andqi3_16"
[(set (match_operand:QI 0 "mra_operand" "=Sp,Rqi,RhlSd,RhlSd,??Rmm,??Rmm")
(and:QI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0")
(match_operand 2 "mrai_operand" "Imb,Imb,iRhlSd,?Rmm,iRhlSd,?Rmm")))]
"TARGET_A16"
"@
bclr\t%B2,%0
bclr\t%B2,%h0
and.b\t%x2,%0
and.b\t%x2,%0
and.b\t%x2,%0
and.b\t%x2,%0"
[(set_attr "flags" "n,n,sz,sz,sz,sz")]
)
 
(define_insn "andhi3_16"
[(set (match_operand:HI 0 "mra_operand" "=Sp,Sp,Rhi,RhiSd,??Rmm,RhiSd,??Rmm")
(and:HI (match_operand:HI 1 "mra_operand" "%0,0,0,0,0,0,0")
(match_operand:HI 2 "mrai_operand" "Imb,Imw,Imw,iRhiSd,?Rmm,?Rmm,iRhiSd")))]
"TARGET_A16"
"@
bclr\t%B2,%0
bclr\t%B2-8,1+%0
bclr\t%B2,%0
and.w\t%X2,%0
and.w\t%X2,%0
and.w\t%X2,%0
and.w\t%X2,%0"
[(set_attr "flags" "n,n,n,sz,sz,sz,sz")]
)
 
(define_insn "andsi3"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm,??Rmm,RsiSd")
(and:SI (match_operand:SI 1 "mra_operand" "%0,0,0,0,0,0")
(match_operand:SI 2 "mrai_operand" "i,?Rmm,i,RsiSd,?Rmm,RsiSd")))]
""
"*
switch (which_alternative)
{
case 0:
output_asm_insn (\"and.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"and.w %X2,%H0\";
case 1:
return \"and.w %h2,%h0\;and.w %H2,%H0\";
case 2:
output_asm_insn (\"and.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"and.w %X2,%H0\";
case 3:
return \"and.w %h2,%h0\;and.w %H2,%H0\";
case 4:
return \"and.w %h2,%h0\;and.w %H2,%H0\";
case 5:
return \"and.w %h2,%h0\;and.w %H2,%H0\";
}"
[(set_attr "flags" "x,x,x,x,x,x")]
)
 
 
(define_insn "iorqi3_16"
[(set (match_operand:QI 0 "mra_operand" "=Sp,Rqi,RqiSd,??Rmm,RqiSd,??Rmm")
(ior:QI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0")
(match_operand:QI 2 "mrai_operand" "Ilb,Ilb,iRhlSd,iRhlSd,?Rmm,?Rmm")))]
"TARGET_A16"
"@
bset\t%B2,%0
bset\t%B2,%h0
or.b\t%x2,%0
or.b\t%x2,%0
or.b\t%x2,%0
or.b\t%x2,%0"
[(set_attr "flags" "n,n,sz,sz,sz,sz")]
)
 
(define_insn "iorhi3_16"
[(set (match_operand:HI 0 "mra_operand" "=Sp,Sp,Rhi,RhiSd,RhiSd,??Rmm,??Rmm")
(ior:HI (match_operand:HI 1 "mra_operand" "%0,0,0,0,0,0,0")
(match_operand:HI 2 "mrai_operand" "Imb,Imw,Ilw,iRhiSd,?Rmm,iRhiSd,?Rmm")))]
"TARGET_A16"
"@
bset %B2,%0
bset\t%B2-8,1+%0
bset\t%B2,%0
or.w\t%X2,%0
or.w\t%X2,%0
or.w\t%X2,%0
or.w\t%X2,%0"
[(set_attr "flags" "n,n,n,sz,sz,sz,sz")]
)
 
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
(define_insn "andqi3_24"
[(set (match_operand:QI 0 "mra_operand" "=Sd,Rqi,RhlSd,RhlSd,??Rmm,??Rmm")
(and:QI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0,0")
(match_operand 2 "mrai_operand" "Imb,Imb,iRhlSd,?Rmm,iRhlSd,?Rmm")))]
"TARGET_A24"
"@
bclr\t%B2,%0
bclr\t%B2,%0
and.b\t%x2,%0
and.b\t%x2,%0
and.b\t%x2,%0
and.b\t%x2,%0"
[(set_attr "flags" "n,n,sz,sz,sz,sz")]
)
 
(define_insn "andhi3_24"
[(set (match_operand:HI 0 "mra_operand" "=Sd,Sd,Rqi,Rqi,RhiSd,??Rmm,RhiSd,??Rmm")
(and:HI (match_operand:HI 1 "mra_operand" "%0,0,0,0,0,0,0,0")
(match_operand:HI 2 "mrai_operand" "Imb,Imw,Imb,Imw,iRhiSd,?Rmm,?Rmm,iRhiSd")))]
"TARGET_A24"
"@
bclr\t%B2,%0
bclr\t%B2-8,1+%0
bclr\t%B2,%h0
bclr\t%B2-8,%H0
and.w\t%X2,%0
and.w\t%X2,%0
and.w\t%X2,%0
and.w\t%X2,%0"
[(set_attr "flags" "n,n,n,n,sz,sz,sz,sz")]
)
 
 
 
(define_insn "iorqi3_24"
[(set (match_operand:QI 0 "mra_operand" "=RqiSd,RqiSd,??Rmm,RqiSd,??Rmm")
(ior:QI (match_operand:QI 1 "mra_operand" "%0,0,0,0,0")
(match_operand:QI 2 "mrai_operand" "Ilb,iRhlSd,iRhlSd,?Rmm,?Rmm")))]
"TARGET_A24"
"@
bset\t%B2,%0
or.b\t%x2,%0
or.b\t%x2,%0
or.b\t%x2,%0
or.b\t%x2,%0"
[(set_attr "flags" "n,sz,sz,sz,sz")]
)
 
(define_insn "iorhi3_24"
[(set (match_operand:HI 0 "mra_operand" "=Sd,Sd,Rqi,Rqi,RhiSd,RhiSd,??Rmm,??Rmm")
(ior:HI (match_operand:HI 1 "mra_operand" "%0,0,0,0,0,0,0,0")
(match_operand:HI 2 "mrai_operand" "Ilb,Ilw,Ilb,Ilw,iRhiSd,?Rmm,iRhiSd,?Rmm")))]
"TARGET_A24"
"@
bset\t%B2,%0
bset\t%B2-8,1+%0
bset\t%B2,%h0
bset\t%B2-8,%H0
or.w\t%X2,%0
or.w\t%X2,%0
or.w\t%X2,%0
or.w\t%X2,%0"
[(set_attr "flags" "n,n,n,n,sz,sz,sz,sz")]
)
 
 
; ----------------------------------------------------------------------
 
(define_expand "andqi3"
[(set (match_operand:QI 0 "mra_operand" "")
(and:QI (match_operand:QI 1 "mra_operand" "")
(match_operand:QI 2 "mrai_operand" "")))]
""
"if (TARGET_A16)
emit_insn (gen_andqi3_16 (operands[0], operands[1], operands[2]));
else
emit_insn (gen_andqi3_24 (operands[0], operands[1], operands[2]));
DONE;"
)
 
(define_expand "andhi3"
[(set (match_operand:HI 0 "mra_operand" "")
(and:HI (match_operand:HI 1 "mra_operand" "")
(match_operand:HI 2 "mrai_operand" "")))]
""
"if (TARGET_A16)
emit_insn (gen_andhi3_16 (operands[0], operands[1], operands[2]));
else
emit_insn (gen_andhi3_24 (operands[0], operands[1], operands[2]));
DONE;"
)
 
(define_expand "iorqi3"
[(set (match_operand:QI 0 "mra_operand" "")
(ior:QI (match_operand:QI 1 "mra_operand" "")
(match_operand:QI 2 "mrai_operand" "")))]
""
"if (TARGET_A16)
emit_insn (gen_iorqi3_16 (operands[0], operands[1], operands[2]));
else
emit_insn (gen_iorqi3_24 (operands[0], operands[1], operands[2]));
DONE;"
)
 
(define_expand "iorhi3"
[(set (match_operand:HI 0 "mra_operand" "")
(ior:HI (match_operand:HI 1 "mra_operand" "")
(match_operand:HI 2 "mrai_operand" "")))]
""
"if (TARGET_A16)
emit_insn (gen_iorhi3_16 (operands[0], operands[1], operands[2]));
else
emit_insn (gen_iorhi3_24 (operands[0], operands[1], operands[2]));
DONE;"
)
 
(define_insn "iorsi3"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm,??Rmm,RsiSd")
(ior:SI (match_operand:SI 1 "mra_operand" "%0,0,0,0,0,0")
(match_operand:SI 2 "mrai_operand" "i,?Rmm,i,RsiSd,?Rmm,RsiSd")))]
""
"*
switch (which_alternative)
{
case 0:
output_asm_insn (\"or.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"or.w %X2,%H0\";
case 1:
return \"or.w %h2,%h0\;or.w %H2,%H0\";
case 2:
output_asm_insn (\"or.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"or.w %X2,%H0\";
case 3:
return \"or.w %h2,%h0\;or.w %H2,%H0\";
case 4:
return \"or.w %h2,%h0\;or.w %H2,%H0\";
case 5:
return \"or.w %h2,%h0\;or.w %H2,%H0\";
}"
[(set_attr "flags" "x,x,x,x,x,x")]
)
 
(define_insn "xorqi3"
[(set (match_operand:QI 0 "mra_operand" "=RhlSd,RhlSd,??Rmm,??Rmm")
(xor:QI (match_operand:QI 1 "mra_operand" "%0,0,0,0")
(match_operand:QI 2 "mrai_operand" "iRhlSd,?Rmm,iRhlSd,?Rmm")))]
""
"xor.b\t%x2,%0"
[(set_attr "flags" "sz,sz,sz,sz")]
)
 
(define_insn "xorhi3"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,RhiSd,??Rmm,??Rmm")
(xor:HI (match_operand:HI 1 "mra_operand" "%0,0,0,0")
(match_operand:HI 2 "mrai_operand" "iRhiSd,?Rmm,iRhiSd,?Rmm")))]
""
"xor.w\t%X2,%0"
[(set_attr "flags" "sz,sz,sz,sz")]
)
 
(define_insn "xorsi3"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm,??Rmm,RsiSd")
(xor:SI (match_operand:SI 1 "mra_operand" "%0,0,0,0,0,0")
(match_operand:SI 2 "mrai_operand" "i,?Rmm,i,RsiSd,?Rmm,RsiSd")))]
""
"*
switch (which_alternative)
{
case 0:
output_asm_insn (\"xor.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"xor.w %X2,%H0\";
case 1:
return \"xor.w %h2,%h0\;xor.w %H2,%H0\";
case 2:
output_asm_insn (\"xor.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"xor.w %X2,%H0\";
case 3:
return \"xor.w %h2,%h0\;xor.w %H2,%H0\";
case 4:
return \"xor.w %h2,%h0\;xor.w %H2,%H0\";
case 5:
return \"xor.w %h2,%h0\;xor.w %H2,%H0\";
}"
[(set_attr "flags" "x,x,x,x,x,x")]
)
 
(define_insn "one_cmplqi2"
[(set (match_operand:QI 0 "mra_operand" "=RhlSd,??Rmm")
(not:QI (match_operand:QI 1 "mra_operand" "0,0")))]
""
"not.b\t%0"
[(set_attr "flags" "sz,sz")]
)
 
(define_insn "one_cmplhi2"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,??Rmm")
(not:HI (match_operand:HI 1 "mra_operand" "0,0")))]
""
"not.w\t%0"
[(set_attr "flags" "sz,sz")]
)
 
; Optimizations using bit opcodes
 
; We need this because combine only looks at three insns at a time,
; and the bclr_qi pattern uses four - mov, shift, not, and. GCC
; should never expand this pattern, because it only shifts a constant
; by a constant, so gcc should do that itself.
(define_insn "shift1_qi"
[(set (match_operand:QI 0 "mra_operand" "=Rqi")
(ashift:QI (const_int 1)
(match_operand 1 "const_int_operand" "In4")))]
""
"mov.b\t#1,%0\n\tshl.b\t%1,%0"
)
(define_insn "shift1_hi"
[(set (match_operand:HI 0 "mra_operand" "=Rhi")
(ashift:HI (const_int 1)
(match_operand 1 "const_int_operand" "In4")))]
""
"mov.w\t#1,%0\n\tshl.w\t%1,%0"
)
 
; Generic insert-bit expander, needed so that we can use the bit
; opcodes for volatile bitfields.
 
(define_expand "insv"
[(set (zero_extract:HI (match_operand:HI 0 "mra_operand" "")
(match_operand 1 "const_int_operand" "")
(match_operand 2 "const_int_operand" ""))
(match_operand:HI 3 "const_int_operand" ""))]
""
"if (m32c_expand_insv (operands))
FAIL;
DONE;"
)
/mov.md
0,0 → 1,456
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; move, push, extend, etc.
 
;; Be careful to never create an alternative that has memory as both
;; src and dest, as that makes gcc think that mem-mem moves in general
;; are supported. While the chip does support this, it only has two
;; address registers and sometimes gcc requires more than that. One
;; example is code like this: a = *b where both a and b are spilled to
;; the stack.
 
;; Match push/pop before mov.b for passing char as arg,
;; e.g. stdlib/efgcvt.c.
(define_insn "movqi_op"
[(set (match_operand:QI 0 "m32c_nonimmediate_operand"
"=Rqi*Rmm, <, RqiSd*Rmm, SdSs, Rqi*Rmm, Sd")
(match_operand:QI 1 "m32c_any_operand"
"iRqi*Rmm, iRqiSd*Rmm, >, Rqi*Rmm, SdSs, i"))]
"m32c_mov_ok (operands, QImode)"
"@
mov.b\t%1,%0
push.b\t%1
pop.b\t%0
mov.b\t%1,%0
mov.b\t%1,%0
mov.b\t%1,%0"
[(set_attr "flags" "sz,*,*,sz,sz,sz")]
)
 
(define_expand "movqi"
[(set (match_operand:QI 0 "nonimmediate_operand" "=RqiSd*Rmm")
(match_operand:QI 1 "general_operand" "iRqiSd*Rmm"))]
""
"if (m32c_prepare_move (operands, QImode)) DONE;"
)
 
 
(define_insn "movhi_op"
[(set (match_operand:HI 0 "m32c_nonimmediate_operand"
"=Rhi*Rmm, Sd, SdSs, *Rcr, RhiSd*Rmm, <, RhiSd*Rmm, <, *Rcr")
(match_operand:HI 1 "m32c_any_operand"
"iRhi*RmmSdSs, i, Rhi*Rmm, RhiSd*Rmm, *Rcr, iRhiSd*Rmm, >, *Rcr, >"))]
"m32c_mov_ok (operands, HImode)"
"@
mov.w\t%1,%0
mov.w\t%1,%0
mov.w\t%1,%0
ldc\t%1,%0
stc\t%1,%0
push.w\t%1
pop.w\t%0
pushc\t%1
popc\t%0"
[(set_attr "flags" "sz,sz,sz,n,n,n,n,n,n")]
)
 
(define_expand "movhi"
[(set (match_operand:HI 0 "m32c_nonimmediate_operand" "=RhiSd*Rmm")
(match_operand:HI 1 "m32c_any_operand" "iRhiSd*Rmm"))]
""
"if (m32c_prepare_move (operands, HImode)) DONE;"
)
 
 
(define_insn "movpsi_op"
[(set (match_operand:PSI 0 "m32c_nonimmediate_operand"
"=Raa, SdRmmRpi, Rcl, RpiSd*Rmm, <, <, Rcl, RpiRaa*Rmm")
(match_operand:PSI 1 "m32c_any_operand"
"sIU3, iSdRmmRpi, iRpiSd*Rmm, Rcl, Rpi*Rmm, Rcl, >, >"))]
"TARGET_A24 && m32c_mov_ok (operands, PSImode)"
"@
mov.l:s\t%1,%0
mov.l\t%1,%0
ldc\t%1,%0
stc\t%1,%0
push.l\t%1
pushc\t%1
popc\t%0
#"
[(set_attr "flags" "sz,sz,n,n,n,n,n,*")]
)
 
 
;; The intention here is to combine the add with the move to create an
;; indexed move. GCC doesn't always figure this out itself.
 
(define_peephole2
[(set (match_operand:HPSI 0 "register_operand" "")
(plus:HPSI (match_operand:HPSI 1 "register_operand" "")
(match_operand:HPSI 2 "immediate_operand" "")))
(set (match_operand:QHSI 3 "nonimmediate_operand" "")
(mem:QHSI (match_operand:HPSI 4 "register_operand" "")))]
"REGNO (operands[0]) == REGNO (operands[1])
&& REGNO (operands[0]) == REGNO (operands[4])
&& (rtx_equal_p (operands[0], operands[3])
|| (dead_or_set_p (peep2_next_insn (1), operands[4])
&& ! reg_mentioned_p (operands[0], operands[3])))"
[(set (match_dup 3)
(mem:QHSI (plus:HPSI (match_dup 1)
(match_dup 2))))]
"")
 
(define_peephole2
[(set (match_operand:HPSI 0 "register_operand" "")
(plus:HPSI (match_operand:HPSI 1 "register_operand" "")
(match_operand:HPSI 2 "immediate_operand" "")))
(set (mem:QHSI (match_operand:HPSI 4 "register_operand" ""))
(match_operand:QHSI 3 "m32c_any_operand" ""))]
"REGNO (operands[0]) == REGNO (operands[1])
&& REGNO (operands[0]) == REGNO (operands[4])
&& dead_or_set_p (peep2_next_insn (1), operands[4])
&& ! reg_mentioned_p (operands[0], operands[3])"
[(set (mem:QHSI (plus:HPSI (match_dup 1)
(match_dup 2)))
(match_dup 3))]
"")
 
; Peephole to generate SImode mov instructions for storing an
; immediate double data to a memory location.
(define_peephole2
[(set (match_operand:HI 0 "memory_operand" "")
(match_operand 1 "const_int_operand" ""))
(set (match_operand:HI 2 "memory_operand" "")
(match_operand 3 "const_int_operand" ""))]
"TARGET_A24 && m32c_immd_dbl_mov (operands, HImode)"
[(set (match_dup 4) (match_dup 5))]
""
)
 
; Some PSI moves must be split.
(define_split
[(set (match_operand:PSI 0 "m32c_nonimmediate_operand" "")
(match_operand:PSI 1 "m32c_any_operand" ""))]
"reload_completed && m32c_split_psi_p (operands)"
[(set (match_dup 2)
(match_dup 3))
(set (match_dup 4)
(match_dup 5))]
"m32c_split_move (operands, PSImode, 3);"
)
 
(define_expand "movpsi"
[(set (match_operand:PSI 0 "m32c_nonimmediate_operand" "")
(match_operand:PSI 1 "m32c_any_operand" ""))]
""
"if (m32c_prepare_move (operands, PSImode)) DONE;"
)
 
 
 
(define_expand "movsi"
[(set (match_operand:SI 0 "m32c_nonimmediate_operand" "=RsiSd*Rmm")
(match_operand:SI 1 "m32c_any_operand" "iRsiSd*Rmm"))]
""
"if (m32c_split_move (operands, SImode, 0)) DONE;"
)
 
; All SI moves are split if TARGET_A16
(define_insn_and_split "movsi_splittable"
[(set (match_operand:SI 0 "m32c_nonimmediate_operand" "=Rsi<*Rmm,RsiSd*Rmm,Ss")
(match_operand:SI 1 "m32c_any_operand" "iRsiSd*Rmm,iRsi>*Rmm,Rsi*Rmm"))]
"TARGET_A16"
"#"
"TARGET_A16 && reload_completed"
[(pc)]
"m32c_split_move (operands, SImode, 1); DONE;"
)
 
; The movsi pattern doesn't always match because sometimes the modes
; don't match.
(define_insn "push_a01_l"
[(set (mem:SI (pre_dec:PSI (reg:PSI SP_REGNO)))
(match_operand 0 "a_operand" "Raa"))]
""
"push.l\t%0"
[(set_attr "flags" "n")]
)
 
(define_insn "movsi_24"
[(set (match_operand:SI 0 "m32c_nonimmediate_operand" "=Rsi*Rmm, Sd, RsiSd*Rmm, <")
(match_operand:SI 1 "m32c_any_operand" "iRsiSd*Rmm, iRsi*Rmm, >, iRsiRaaSd*Rmm"))]
"TARGET_A24"
"@
mov.l\t%1,%0
mov.l\t%1,%0
#
push.l\t%1"
[(set_attr "flags" "sz,sz,*,n")]
)
 
(define_expand "movdi"
[(set (match_operand:DI 0 "m32c_nonimmediate_operand" "=RdiSd*Rmm")
(match_operand:DI 1 "m32c_any_operand" "iRdiSd*Rmm"))]
""
"if (m32c_split_move (operands, DImode, 0)) DONE;"
)
 
(define_insn_and_split "movdi_splittable"
[(set (match_operand:DI 0 "m32c_nonimmediate_operand" "=Rdi<*Rmm,RdiSd*Rmm")
(match_operand:DI 1 "m32c_any_operand" "iRdiSd*Rmm,iRdi>*Rmm"))]
""
"#"
"reload_completed"
[(pc)]
"m32c_split_move (operands, DImode, 1); DONE;"
)
 
 
 
 
(define_insn "pushqi"
[(set (mem:QI (pre_dec:PSI (reg:PSI SP_REGNO)))
(match_operand:QI 0 "mrai_operand" "iRqiSd*Rmm"))]
""
"push.b\t%0"
[(set_attr "flags" "n")]
)
 
(define_expand "pushhi"
[(set (mem:HI (pre_dec:PSI (reg:PSI SP_REGNO)))
(match_operand:HI 0 "" ""))]
""
"if (TARGET_A16)
gen_pushhi_16 (operands[0]);
else
gen_pushhi_24 (operands[0]);
DONE;"
)
 
(define_insn "pushhi_16"
[(set (mem:HI (pre_dec:HI (reg:HI SP_REGNO)))
(match_operand:HI 0 "mrai_operand" "iRhiSd*Rmm,Rcr"))]
"TARGET_A16"
"@
push.w\t%0
pushc\t%0"
[(set_attr "flags" "n,n")]
)
 
(define_insn "pushhi_24"
[(set (mem:HI (pre_dec:PSI (reg:PSI SP_REGNO)))
(match_operand:HI 0 "mrai_operand" "iRhiSd*Rmm"))]
"TARGET_A24"
"push.w\t%0"
[(set_attr "flags" "n")]
)
 
;(define_insn "pushpi"
; [(set (mem:PSI (pre_dec:PSI (reg:PSI SP_REGNO)))
; (match_operand:PI 0 "mrai_operand" "iRaa,Rcr"))]
; "TARGET_A24"
; "@
; push.l\t%0
; pushc\t%0"
; )
 
(define_insn "pushsi"
[(set (mem:SI (pre_dec:PSI (reg:PSI SP_REGNO)))
(match_operand:SI 0 "mrai_operand" "iRsiSd*Rmm"))]
"TARGET_A24"
"push.l\t%0"
[(set_attr "flags" "n")]
)
 
(define_expand "pophi"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd*Rmm,Rcr")
(mem:HI (post_inc:HI (reg:HI SP_REGNO))))]
""
"if (TARGET_A16)
gen_pophi_16 (operands[0]);
else
gen_pophi_24 (operands[0]);
DONE;"
)
 
(define_insn "pophi_16"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd*Rmm,Rcr")
(mem:HI (post_inc:HI (reg:HI SP_REGNO))))]
"TARGET_A16"
"@
pop.w\t%0
popc\t%0"
[(set_attr "flags" "n,n")]
)
 
(define_insn "pophi_24"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd*Rmm")
(mem:HI (post_inc:PSI (reg:PSI SP_REGNO))))]
"TARGET_A24"
"pop.w\t%0"
[(set_attr "flags" "n")]
)
 
(define_insn "poppsi"
[(set (match_operand:PSI 0 "cr_operand" "=Rcl")
(mem:PSI (post_inc:PSI (reg:PSI SP_REGNO))))]
"TARGET_A24"
"popc\t%0"
[(set_attr "flags" "n")]
)
 
 
;; Rhl used here as an HI-mode Rxl
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "m32c_nonimmediate_operand" "=RhlSd*Rmm")
(sign_extend:HI (match_operand:QI 1 "mra_operand" "0")))]
""
"exts.b\t%1"
[(set_attr "flags" "sz")]
)
 
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=R03")
(sign_extend:SI (match_operand:HI 1 "r0123_operand" "0")))]
""
"*
if (REGNO(operands[0]) == 0) return \"exts.w\t%1\";
else return \"mov.w r1,r3 | sha.w #-8,r3 | sha.w #-7,r3\";"
[(set_attr "flags" "x")]
)
 
(define_insn "extendpsisi2"
[(set (match_operand:SI 0 "mr_operand" "=R03Sd*Rmm")
(sign_extend:SI (match_operand:PSI 1 "mr_operand" "0")))]
""
"; expand psi %1 to si %0"
[(set_attr "flags" "n")]
)
 
(define_insn "zero_extendpsisi2"
[(set (match_operand:SI 0 "mr_operand" "=R03Sd*Rmm")
(zero_extend:SI (match_operand:PSI 1 "mr_operand" "0")))]
""
"; expand psi %1 to si %0"
[(set_attr "flags" "n")]
)
 
(define_insn "zero_extendhipsi2"
[(set (match_operand:PSI 0 "register_operand" "=Raa")
(truncate:PSI (zero_extend:SI (match_operand:HI 1 "register_operand" "R03"))))]
""
"mov.w\t%1,%0"
[(set_attr "flags" "sz")]
)
 
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "m32c_nonimmediate_operand" "=RsiSd")
(zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0")))]
""
"mov.w\t#0,%H0"
[(set_attr "flags" "x")]
)
 
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "m32c_nonimmediate_operand" "=Rhl,RhiSd*Rmm")
(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,0")))]
""
"@
mov.b\t#0,%H0
and.w\t#255,%0"
[(set_attr "flags" "x,x")]
)
 
(define_insn "truncsipsi2_16"
[(set (match_operand:PSI 0 "m32c_nonimmediate_operand" "=RsiRadSd*Rmm,Raa,Rcr,RsiSd*Rmm")
(truncate:PSI (match_operand:SI 1 "nonimmediate_operand" "0,RsiSd*Rmm,RsiSd*Rmm,Rcr")))]
"TARGET_A16"
"@
; no-op trunc si %1 to psi %0
#
ldc\t%1,%0
stc\t%1,%0"
[(set_attr "flags" "n,*,n,n")]
)
 
(define_insn "trunchiqi2"
[(set (match_operand:QI 0 "m32c_nonimmediate_operand" "=RqiRmmSd")
(truncate:QI (match_operand:HI 1 "mra_qi_operand" "0")))]
""
"; no-op trunc hi %1 to qi %0"
[(set_attr "flags" "n")]
)
 
(define_insn "truncsipsi2_24"
[(set (match_operand:PSI 0 "m32c_nonimmediate_operand" "=RsiSd*Rmm,Raa,!Rcl,RsiSd*Rmm")
(truncate:PSI (match_operand:SI 1 "m32c_nonimmediate_operand" "0,RsiSd*Rmm,RsiSd*Rmm,!Rcl")))]
"TARGET_A24"
"@
; no-op trunc si %1 to psi %0
mov.l\t%1,%0
ldc\t%1,%0
stc\t%1,%0"
[(set_attr "flags" "n,sz,n,n")]
)
 
(define_expand "truncsipsi2"
[(set (match_operand:PSI 0 "m32c_nonimmediate_operand" "=RsiRadSd*Rmm,Raa,Rcr,RsiSd*Rmm")
(truncate:PSI (match_operand:SI 1 "m32c_nonimmediate_operand" "0,RsiSd*Rmm,RsiSd*Rmm,Rcr")))]
""
""
)
 
(define_expand "reload_inqi"
[(set (match_operand:QI 2 "" "=&Rqi")
(match_operand:QI 1 "" ""))
(set (match_operand:QI 0 "" "")
(match_dup 2))
]
""
"")
 
(define_expand "reload_outqi"
[(set (match_operand:QI 2 "" "=&Rqi")
(match_operand:QI 1 "" ""))
(set (match_operand:QI 0 "" "")
(match_dup 2))
]
""
"")
 
(define_expand "reload_inhi"
[(set (match_operand:HI 2 "" "=&Rhi")
(match_operand:HI 1 "" ""))
(set (match_operand:HI 0 "" "")
(match_dup 2))
]
""
"")
 
(define_expand "reload_outhi"
[(set (match_operand:HI 2 "" "=&Rhi")
(match_operand:HI 1 "" ""))
(set (match_operand:HI 0 "" "")
(match_dup 2))
]
""
"")
/addsub.md
0,0 → 1,248
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; add, sub
 
(define_insn "addqi3"
[(set (match_operand:QI 0 "mra_or_sp_operand"
"=SdRhl,SdRhl,??Rmm,??Rmm, *Raa,*Raa,SdRhl,??Rmm")
(plus:QI (match_operand:QI 1 "mra_operand"
"%0,0,0,0, 0,0,0,0")
(match_operand:QI 2 "mrai_operand"
"iSdRhl,?Rmm,iSdRhl,?Rmm, iSdRhl,?Rmm,*Raa,*Raa")))]
""
"add.b\t%2,%0"
[(set_attr "flags" "oszc")]
)
 
(define_insn "addhi3"
[(set (match_operand:HI 0 "m32c_nonimmediate_operand"
"=SdRhi,SdRhi,??Rmm,??Rmm, SdRhi,??Rmm, Rhi, Raw, Raw, !Rsp")
(plus:HI (match_operand:HI 1 "m32c_any_operand"
"%0,0,0,0, 0,0, Raw, Rfb, Rfb, 0")
(match_operand:HI 2 "m32c_any_operand"
"IU2sSdRhi,?Rmm,IU2sSdRhi,?Rmm, IM2,IM2, IS2IU2, I00, IS1, i")))]
""
"@
add.w\t%2,%0
add.w\t%2,%0
add.w\t%2,%0
add.w\t%2,%0
sub.w\t%m2,%0
sub.w\t%m2,%0
mova\t%d2[%1],%0
stc\t%1,%0
mova\t%D2[%1],%0
add.w\t%2,%0"
[(set_attr "flags" "oszc,oszc,oszc,oszc,oszc,oszc,n,n,n,oszc")]
)
 
(define_insn "addpsi3"
[(set (match_operand:PSI 0 "m32c_nonimmediate_operand" "=Rpi,Raa,SdRpi,SdRpi,Rsp*Rmm, Rpi,Rpi")
(plus:PSI (match_operand:PSI 1 "m32c_nonimmediate_operand" "0,0,0,0,0, Raa,Rad")
(match_operand:PSI 2 "m32c_any_operand" "Is3,IS1,iSdRpi,?Rmm,i, i,IS2")))]
"TARGET_A24"
"@
add.l:q\t%2,%0
addx\t%2,%0
add.l\t%2,%0
add.l\t%2,%0
add.l\t%2,%0
mova\t%d2[%1],%0
mova\t%D2[%1],%0"
[(set_attr "flags" "oszc,oszc,oszc,oszc,oszc,n,n")]
)
 
(define_expand "addsi3"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm")
(plus:SI (match_operand:SI 1 "mra_operand" "%0,0,0,0")
(match_operand:SI 2 "mrai_operand" "iRsiSd,?Rmm,iRsiSd,?Rmm")))]
"TARGET_A24 ||TARGET_A16"
""
)
 
(define_insn "addsi3_1"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,??Rmm,RsiSd,RsiSd,??Rmm,??Rmm,??Rmm,RsiSd")
(plus:SI (match_operand:SI 1 "mra_operand" "%0,0,0,0,0,0,0,0")
(match_operand 2 "mrai_operand" "IU2,IU2,i,?Rmm,i,RsiSd,?Rmm,RsiSd")))]
"TARGET_A16"
"*
switch (which_alternative)
{
case 0:
return \"add.w %X2,%h0\;adcf.w %H0\";
case 1:
return \"add.w %X2,%h0\;adcf.w %H0\";
case 2:
output_asm_insn (\"add.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"adc.w %X2,%H0\";
case 3:
return \"add.w %h2,%h0\;adc.w %H2,%H0\";
case 4:
output_asm_insn (\"add.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"adc.w %X2,%H0\";
case 5:
return \"add.w %h2,%h0\;adc.w %H2,%H0\";
case 6:
return \"add.w %h2,%h0\;adc.w %H2,%H0\";
case 7:
return \"add.w %h2,%h0\;adc.w %H2,%H0\";
}"
[(set_attr "flags" "x,x,x,x,x,x,x,x")]
)
 
(define_insn "addsi3_2"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm")
(plus:SI (match_operand:SI 1 "mra_operand" "%0,0,0,0")
(match_operand:SI 2 "mrai_operand" "iRsiSd,?Rmm,iRsiSd,?Rmm")))]
"TARGET_A24"
"add.l\t%2,%0"
[(set_attr "flags" "oszc")]
)
 
(define_insn "subqi3"
[(set (match_operand:QI 0 "mra_or_sp_operand"
"=SdRhl,SdRhl,??Rmm,??Rmm, Raa,Raa,SdRhl,??Rmm, *Rsp")
(minus:QI (match_operand:QI 1 "mra_operand"
"0,0,0,0, 0,0,0,0, 0")
(match_operand:QI 2 "mrai_operand"
"iSdRhl,?Rmm,iSdRhl,?Rmm, iSdRhl,?Rmm,Raa,Raa, i")))]
""
"sub.b\t%2,%0"
[(set_attr "flags" "oszc")]
)
 
(define_insn "subhi3"
[(set (match_operand:HI 0 "mra_operand"
"=SdRhi,SdRhi,??Rmm,??Rmm, SdRhi,??Rmm")
(minus:HI (match_operand:HI 1 "mras_operand"
"0,0,0,0, 0,0")
(match_operand:HI 2 "mrai_operand"
"IU2SdRhi,?Rmm,IU2SdRhi,?Rmm, IM2,IM2")))]
""
"@
sub.w\t%2,%0
sub.w\t%2,%0
sub.w\t%2,%0
sub.w\t%2,%0
add.w\t%m2,%0
add.w\t%m2,%0"
[(set_attr "flags" "oszc,oszc,oszc,oszc,oszc,oszc")]
)
 
(define_insn "subpsi3"
[(set (match_operand:PSI 0 "mra_operand" "=RpiSd,RpiSd,??Rmm,??Rmm")
(minus:PSI (match_operand:PSI 1 "mra_operand" "0,0,0,0")
(match_operand:PSI 2 "mrai_operand" "iRpiSd,?Rmm,iRpiSd,?Rmm")))]
"TARGET_A24"
"sub.%&\t%2,%0"
[(set_attr "flags" "oszc")]
)
 
(define_expand "subsi3"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm")
(minus:SI (match_operand:SI 1 "mra_operand" "0,0,0,0")
(match_operand:SI 2 "mrai_operand" "iRsiSd,?Rmm,iRsiSd,?Rmm")))]
"TARGET_A24 ||TARGET_A16"
""
)
 
(define_insn "subsi3_1"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm,??Rmm,RsiSd")
(minus:SI (match_operand:SI 1 "mra_operand" "0,0,0,0,0,0")
(match_operand:SI 2 "mrai_operand" "i,?Rmm,i,RsiSd,?Rmm,RsiSd")))]
"TARGET_A16"
"*
switch (which_alternative)
{
case 0:
output_asm_insn (\"sub.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"sbb.w %X2,%H0\";
case 1:
return \"sub.w %h2,%h0\;sbb.w %H2,%H0\";
case 2:
output_asm_insn (\"sub.w %X2,%h0\",operands);
operands[2]= GEN_INT (INTVAL (operands[2]) >> 16);
return \"sbb.w %X2,%H0\";
case 3:
return \"sub.w %h2,%h0\;sbb.w %H2,%H0\";
case 4:
return \"sub.w %h2,%h0\;sbb.w %H2,%H0\";
case 5:
return \"sub.w %h2,%h0\;sbb.w %H2,%H0\";
}"
[(set_attr "flags" "x,x,x,x,x,x")]
)
 
(define_insn "subsi3_2"
[(set (match_operand:SI 0 "mra_operand" "=RsiSd,RsiSd,??Rmm,??Rmm")
(minus:SI (match_operand:SI 1 "mra_operand" "0,0,0,0")
(match_operand:SI 2 "mrai_operand" "iRsiSd,?Rmm,iRsiSd,?Rmm")))]
"TARGET_A24"
"sub.l\t%2,%0"
[(set_attr "flags" "oszc,oszc,oszc,oszc")]
)
 
(define_insn "negqi2"
[(set (match_operand:QI 0 "mra_operand" "=SdRhl,??Rmm")
(neg:QI (match_operand:QI 1 "mra_operand" "0,0")))]
""
"neg.b\t%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "neghi2"
[(set (match_operand:HI 0 "mra_operand" "=SdRhi,??Rmm")
(neg:HI (match_operand:HI 1 "mra_operand" "0,0")))]
""
"neg.w\t%0"
[(set_attr "flags" "oszc,oszc")]
)
 
; We can negate an SImode by operating on the subparts. GCC deals
; with this itself for larger modes, but not SI.
(define_insn "negsi2"
[(set (match_operand:SI 0 "mra_operand" "=SdR03,??Rmm")
(neg:SI (match_operand:SI 1 "mra_operand" "0,0")))]
""
"not.w %h0 | not.w %H0 | add.w #1,%h0 | adcf.w %H0"
[(set_attr "flags" "x")]
)
 
(define_insn "absqi2"
[(set (match_operand:QI 0 "mra_operand" "=RhlSd,??Rmm")
(abs:QI (match_operand:QI 1 "mra_operand" "0,0")))]
""
"abs.b\t%0"
[(set_attr "flags" "oszc")]
)
 
(define_insn "abshi2"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd,??Rmm")
(abs:HI (match_operand:HI 1 "mra_operand" "0,0")))]
""
"abs.w\t%0"
[(set_attr "flags" "oszc")]
)
/m32c.md
0,0 → 1,81
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
(define_constants
[(R0_REGNO 0)
(R2_REGNO 1)
(R1_REGNO 2)
(R3_REGNO 3)
 
(A0_REGNO 4)
(A1_REGNO 5)
(SB_REGNO 6)
(FB_REGNO 7)
 
(SP_REGNO 8)
(PC_REGNO 9)
(FLG_REGNO 10)
(MEM0_REGNO 12)
(MEM7_REGNO 19)
])
 
(define_constants
[(UNS_PROLOGUE_END 1)
(UNS_EPILOGUE_START 2)
(UNS_EH_EPILOGUE 3)
(UNS_PUSHM 4)
(UNS_POPM 5)
(UNS_SMOVF 6)
(UNS_SSTR 7)
(UNS_SCMPU 8)
(UNS_SMOVU 9)
])
 
;; n = no change, x = clobbered. The first 16 values are chosen such
;; that the enum has one bit set for each flag.
(define_attr "flags" "x,c,z,zc,s,sc,sz,szc,o,oc,oz,ozc,os,osc,osz,oszc,n" (const_string "n"))
(define_asm_attributes [(set_attr "flags" "x")])
 
(define_mode_macro QHI [QI HI])
(define_mode_macro HPSI [(HI "TARGET_A16") (PSI "TARGET_A24")])
(define_mode_macro QHPSI [QI HI (PSI "TARGET_A24")])
(define_mode_macro QHSI [QI HI (SI "TARGET_A24")])
(define_mode_attr bwl [(QI "b") (HI "w") (PSI "l") (SI "l")])
 
(define_code_macro any_cond [eq ne gt ge lt le gtu geu ltu leu])
(define_code_macro eqne_cond [eq ne])
(define_code_macro gl_cond [gt ge lt le gtu geu ltu leu])
 
 
 
(define_insn "nop"
[(const_int 0)]
""
"nop"
[(set_attr "flags" "n")]
)
 
(define_insn "no_insn"
[(const_int 1)]
""
""
[(set_attr "flags" "n")]
)
/m32c.opt
0,0 → 1,44
; Target Options for R8C/M16C/M32C
; Copyright (C) 2005 2007
; Free Software Foundation, Inc.
; Contributed by Red Hat.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it
; under the terms of the GNU General Public License as published
; by the Free Software Foundation; either version 3, or (at your
; option) any later version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT
; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
; License for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
 
msim
Target
-msim Use simulator runtime
 
mcpu=r8c
Target RejectNegative Var(target_cpu,'r') Init('r')
-mcpu=r8c Compile code for R8C variants
 
mcpu=m16c
Target RejectNegative Var(target_cpu,'6')
-mcpu=m16c Compile code for M16C variants
 
mcpu=m32cm
Target RejectNegative Var(target_cpu,'m')
-mcpu=m32cm Compile code for M32CM variants
 
mcpu=m32c
Target RejectNegative Var(target_cpu,'3')
-mcpu=m32c Compile code for M32C variants
 
memregs=
Target RejectNegative Joined Var(target_memregs_string)
-memregs= Number of memreg bytes (default: 16, range: 0..16)
/t-m32c
0,0 → 1,69
# Target Makefile Fragment for R8C/M16C/M32C
# Copyright (C) 2005, 2007
# Free Software Foundation, Inc.
# Contributed by Red Hat.
#
# This file is part of GCC.
#
# GCC is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published
# by the Free Software Foundation; either version 3, or (at your
# option) any later version.
#
# GCC is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING3. If not see
# <http://www.gnu.org/licenses/>.
 
LIB1ASMSRC = m32c/m32c-lib1.S
 
LIB1ASMFUNCS = \
__m32c_memregs \
__m32c_eh_return \
__m32c_mulsi3 \
__m32c_cmpsi2 \
__m32c_ucmpsi2 \
__m32c_jsri16
 
LIB2FUNCS_EXTRA = $(srcdir)/config/m32c/m32c-lib2.c
 
# floating point emulation libraries
 
FPBIT = fp-bit.c
DPBIT = dp-bit.c
 
fp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT' > fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c
 
dp-bit.c: $(srcdir)/config/fp-bit.c
cat $(srcdir)/config/fp-bit.c > dp-bit.c
 
# target-specific files
 
md_file = md
 
MD_FILES = m32c predicates addsub bitops blkmov cond jump minmax mov muldiv prologue shift
 
# Doing it this way lets the gen* programs report the right line numbers.
 
md : $(MD_FILES:%=$(srcdir)/config/m32c/%.md) $(srcdir)/config/m32c/t-m32c
for md in $(MD_FILES); do \
echo "(include \"$(srcdir)/config/m32c/$$md.md\")"; \
done > md
 
m32c-pragma.o: $(srcdir)/config/m32c/m32c-pragma.c $(RTL_H) $(TREE_H) $(CONFIG_H)
$(CC) -c $(ALL_CFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) $<
 
# We support four CPU series, but R8C and M16C share one multilib, and
# M32C and M32CM share another.
 
MULTILIB_OPTIONS = mcpu=m32cm
MULTILIB_DIRNAMES = m32cm
MULTILIB_MATCHES = mcpu?m32cm=mcpu?m32c mcpu?r8c=mcpu?m16c
 
EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o
/m32c-modes.def
0,0 → 1,29
/* Target-Specific Modes for R8C/M16C/M32C
Copyright (C) 2005, 2007
Free Software Foundation, Inc.
Contributed by Red Hat.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* 24-bit pointers, whole */
/*INT_MODE (PI, 3);*/
 
/* 24-bit pointers, in 32-bit units */
PARTIAL_INT_MODE (SI);
 
/* 48-bit MULEX result */
/* INT_MODE (MI, 6); */
/jump.md
0,0 → 1,91
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; jump, conditionals, calls, etc
 
(define_insn "indirect_jump_16"
[(set (pc)
(match_operand:HI 0 "register_operand" "Rhi"))]
"TARGET_A16"
; "jmpi.a\t%0"
; no 16 bit jmpi in r8c
"push.b #0 | push.w\t%0 | rts"
[(set_attr "flags" "x")]
)
 
(define_insn "indirect_jump_24"
[(set (pc)
(match_operand:PSI 0 "register_operand" "Rpi"))]
"TARGET_A24"
"jmpi.a\t%0"
[(set_attr "flags" "n")]
)
 
(define_expand "indirect_jump"
[(match_operand 0 "register_operand" "")]
""
"if (TARGET_A16)
emit_jump_insn (gen_indirect_jump_16(operands[0]));
else
emit_jump_insn (gen_indirect_jump_24(operands[0]));
DONE;"
)
 
; We can replace this with jmp.s when gas supports relaxing. m32c
; opcodes are too complicated to try to compute their sizes here, it's
; far easier (and more reliable) to let gas worry about it.
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jmp.a\t%l0"
[(set_attr "flags" "n")]
)
 
; No 16 bit indirect calls on r8c/m16c. */
(define_insn "call"
[(call (match_operand:QI 0 "memory_operand" "Si,SaSb,?Rmm")
(match_operand 1 "" ""))
(use (match_operand 2 "immediate_operand" ""))]
""
"*
switch (which_alternative) {
case 0: return \"jsr.a\t%0\";
case 1: return TARGET_A16 ? \"push.w %a0 | jsr.a\tm32c_jsri16\" : \"jsri.a\t%a0\";
case 2: return \"jsri.a\t%a0\";
}"
[(set_attr "flags" "x")]
)
 
(define_insn "call_value"
[(set (match_operand 0 "m32c_return_operand" "=RdiRmmRpa,RdiRmmRpa,RdiRmmRpa")
(call (match_operand:QI 1 "memory_operand" "Si,SaSb,?Rmm")
(match_operand 2 "" "")))
(use (match_operand 3 "immediate_operand" ""))]
""
"*
switch (which_alternative) {
case 0: return \"jsr.a\t%1\";
case 1: return TARGET_A16 ? \"push.w %a1 | jsr.a\tm32c_jsri16\" : \"jsri.a\t%a1\";
case 2: return \"jsri.a\t%a1\";
}"
[(set_attr "flags" "x,x,x")]
)
/m32c-lib2.c
0,0 → 1,139
/* libgcc routines for R8C/M16C/M32C
Copyright (C) 2005
Free Software Foundation, Inc.
Contributed by Red Hat.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.
 
In addition to the permissions in the GNU General Public License,
the Free Software Foundation gives you unlimited permission to link
the compiled version of this file into combinations with other
programs, and to distribute those combinations without any
restriction coming from the use of this file. (The General Public
License restrictions do apply in other respects; for example, they
cover modification of the file, and distribution when not linked
into a combine executable.)
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
 
typedef int HItype __attribute__ ((mode (HI)));
typedef unsigned int UHItype __attribute__ ((mode (HI)));
typedef int SItype __attribute__ ((mode (SI)));
typedef unsigned int USItype __attribute__ ((mode (SI)));
 
typedef int word_type __attribute__ ((mode (__word__)));
 
USItype udivmodsi4 (USItype num, USItype den, word_type modwanted);
SItype __divsi3 (SItype a, SItype b);
SItype __modsi3 (SItype a, SItype b);
SItype __udivsi3 (SItype a, SItype b);
SItype __umodsi3 (SItype a, SItype b);
 
USItype
udivmodsi4 (USItype num, USItype den, word_type modwanted)
{
USItype bit = 1;
USItype res = 0;
 
while (den < num && bit && !(den & (1L << 31)))
{
den <<= 1;
bit <<= 1;
}
while (bit)
{
if (num >= den)
{
num -= den;
res |= bit;
}
bit >>= 1;
den >>= 1;
}
if (modwanted)
return num;
return res;
}
 
 
 
SItype
__divsi3 (SItype a, SItype b)
{
word_type neg = 0;
SItype res;
 
if (a < 0)
{
a = -a;
neg = !neg;
}
 
if (b < 0)
{
b = -b;
neg = !neg;
}
 
res = udivmodsi4 (a, b, 0);
 
if (neg)
res = -res;
 
return res;
}
 
 
 
SItype
__modsi3 (SItype a, SItype b)
{
word_type neg = 0;
SItype res;
 
if (a < 0)
{
a = -a;
neg = 1;
}
 
if (b < 0)
b = -b;
 
res = udivmodsi4 (a, b, 1);
 
if (neg)
res = -res;
 
return res;
}
 
 
 
 
SItype
__udivsi3 (SItype a, SItype b)
{
return udivmodsi4 (a, b, 0);
}
 
 
 
SItype
__umodsi3 (SItype a, SItype b)
{
return udivmodsi4 (a, b, 1);
}
/shift.md
0,0 → 1,352
;; Machine Descriptions for R8C/M16C/M32C
;; Copyright (C) 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Red Hat.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
;; bit shifting
 
; Shifts are unusual for m32c. We only support shifting in one
; "direction" but the shift count is signed. Also, immediate shift
; counts have a limited range, and variable shift counts have to be in
; $r1h which GCC normally doesn't even know about.
 
; Other than compensating for the above, the patterns below are pretty
; straightforward.
 
(define_insn "ashlqi3_i"
[(set (match_operand:QI 0 "mra_operand" "=RqiSd*Rmm,RqiSd*Rmm")
(ashift:QI (match_operand:QI 1 "mra_operand" "0,0")
(match_operand:QI 2 "mrai_operand" "In4,RqiSd")))
(clobber (match_scratch:HI 3 "=X,R1w"))]
""
"@
sha.b\t%2,%0
mov.b\t%2,r1h\n\tsha.b\tr1h,%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "ashrqi3_i"
[(set (match_operand:QI 0 "mra_operand" "=RqiSd*Rmm,RqiSd*Rmm")
(ashiftrt:QI (match_operand:QI 1 "mra_operand" "0,0")
(neg:QI (match_operand:QI 2 "mrai_operand" "In4,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
""
"@
sha.b\t%2,%0
mov.b\t%2,r1h\n\tsha.b\tr1h,%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "lshrqi3_i"
[(set (match_operand:QI 0 "mra_operand" "=RqiSd*Rmm,RqiSd*Rmm")
(lshiftrt:QI (match_operand:QI 1 "mra_operand" "0,0")
(neg:QI (match_operand:QI 2 "mrai_operand" "In4,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
""
"@
shl.b\t%2,%0
mov.b\t%2,r1h\n\tshl.b\tr1h,%0"
[(set_attr "flags" "szc,szc")]
)
 
 
(define_expand "ashlqi3"
[(parallel [(set (match_operand:QI 0 "mra_operand" "")
(ashift:QI (match_operand:QI 1 "mra_operand" "")
(match_operand:QI 2 "general_operand" "")))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, 1, ASHIFT))
DONE;"
)
 
(define_expand "ashrqi3"
[(parallel [(set (match_operand:QI 0 "mra_operand" "")
(ashiftrt:QI (match_operand:QI 1 "mra_operand" "")
(neg:QI (match_operand:QI 2 "general_operand" ""))))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, -1, ASHIFTRT))
DONE;"
)
 
(define_expand "lshrqi3"
[(parallel [(set (match_operand:QI 0 "mra_operand" "")
(lshiftrt:QI (match_operand:QI 1 "mra_operand" "")
(neg:QI (match_operand:QI 2 "general_operand" ""))))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, -1, LSHIFTRT))
DONE;"
)
 
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
(define_insn "ashlhi3_i"
[(set (match_operand:HI 0 "mra_operand" "=SdRhi*Rmm,SdRhi*Rmm")
(ashift:HI (match_operand:HI 1 "mra_operand" "0,0")
(match_operand:QI 2 "mrai_operand" "In4,RqiSd")))
(clobber (match_scratch:HI 3 "=X,R1w"))]
""
"@
sha.w\t%2,%0
mov.b\t%2,r1h\n\tsha.w\tr1h,%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "ashrhi3_i"
[(set (match_operand:HI 0 "mra_operand" "=SdRhi*Rmm,SdRhi*Rmm")
(ashiftrt:HI (match_operand:HI 1 "mra_operand" "0,0")
(neg:QI (match_operand:QI 2 "mrai_operand" "In4,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
""
"@
sha.w\t%2,%0
mov.b\t%2,r1h\n\tsha.w\tr1h,%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "lshrhi3_i"
[(set (match_operand:HI 0 "mra_operand" "=RhiSd*Rmm,RhiSd*Rmm")
(lshiftrt:HI (match_operand:HI 1 "mra_operand" "0,0")
(neg:QI (match_operand:QI 2 "mrai_operand" "In4,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
""
"@
shl.w\t%2,%0
mov.b\t%2,r1h\n\tshl.w\tr1h,%0"
[(set_attr "flags" "szc,szc")]
)
 
 
(define_expand "ashlhi3"
[(parallel [(set (match_operand:HI 0 "mra_operand" "")
(ashift:HI (match_operand:HI 1 "mra_operand" "")
(match_operand:QI 2 "general_operand" "")))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, 1, ASHIFT))
DONE;"
)
 
(define_expand "ashrhi3"
[(parallel [(set (match_operand:HI 0 "mra_operand" "")
(ashiftrt:HI (match_operand:HI 1 "mra_operand" "")
(neg:QI (match_operand:QI 2 "general_operand" ""))))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, -1, ASHIFTRT))
DONE;"
)
 
(define_expand "lshrhi3"
[(parallel [(set (match_operand:HI 0 "mra_operand" "")
(lshiftrt:HI (match_operand:HI 1 "mra_operand" "")
(neg:QI (match_operand:QI 2 "general_operand" ""))))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, -1, LSHIFTRT))
DONE;"
)
 
 
 
 
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
 
(define_insn "ashlpsi3_i"
[(set (match_operand:PSI 0 "mra_operand" "=R02RaaSd*Rmm,R02RaaSd*Rmm")
(ashift:PSI (match_operand:PSI 1 "mra_operand" "0,0")
(match_operand:QI 2 "mrai_operand" "In4,RqiSd")))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A24"
"@
sha.l\t%2,%0
mov.b\t%2,r1h\n\tsha.l\tr1h,%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "ashrpsi3_i"
[(set (match_operand:PSI 0 "mra_operand" "=R02RaaSd*Rmm,R02RaaSd*Rmm")
(ashiftrt:PSI (match_operand:PSI 1 "mra_operand" "0,0")
(neg:QI (match_operand:QI 2 "mrai_operand" "In4,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A24"
"@
sha.l\t%2,%0
mov.b\t%2,r1h\n\tsha.l\tr1h,%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "lshrpsi3_i"
[(set (match_operand:PSI 0 "mra_operand" "=R02RaaSd,??Rmm")
(lshiftrt:PSI (match_operand:PSI 1 "mra_operand" "0,0")
(neg:QI (match_operand:QI 2 "shiftcount_operand" "In4,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A24"
"@
shl.l\t%2,%0
mov.b\t%2,r1h\n\tshl.l\tr1h,%0"
[(set_attr "flags" "szc,szc")]
)
 
 
(define_expand "ashlpsi3"
[(parallel [(set (match_operand:PSI 0 "mra_operand" "")
(ashift:PSI (match_operand:PSI 1 "mra_operand" "")
(match_operand:QI 2 "mrai_operand" "")))
(clobber (match_scratch:HI 3 ""))])]
"TARGET_A24"
"if (m32c_prepare_shift (operands, 1, ASHIFT))
DONE;"
)
 
(define_expand "ashrpsi3"
[(parallel [(set (match_operand:PSI 0 "mra_operand" "")
(ashiftrt:PSI (match_operand:PSI 1 "mra_operand" "")
(neg:QI (match_operand:QI 2 "mrai_operand" ""))))
(clobber (match_scratch:HI 3 ""))])]
"TARGET_A24"
"if (m32c_prepare_shift (operands, -1, ASHIFTRT))
DONE;"
)
 
(define_expand "lshrpsi3"
[(parallel [(set (match_operand:PSI 0 "mra_operand" "")
(lshiftrt:PSI (match_operand:PSI 1 "mra_operand" "")
(neg:QI (match_operand:QI 2 "mrai_operand" ""))))
(clobber (match_scratch:HI 3 ""))])]
"TARGET_A24"
"if (m32c_prepare_shift (operands, -1, LSHIFTRT))
DONE;"
)
 
; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
; The m16c has a maximum shift count of -16..16, even when in a
; register. It's optimal to use multiple shifts of -8..8 rather than
; loading larger constants into R1H multiple time. The m32c can shift
; -32..32 either via immediates or in registers. Hence, separate
; patterns.
 
 
(define_insn "ashlsi3_16"
[(set (match_operand:SI 0 "r0123_operand" "=R03,R03")
(ashift:SI (match_operand:SI 1 "r0123_operand" "0,0")
(match_operand:QI 2 "shiftcount_operand" "In4,RqiSd")))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A16"
"@
sha.l\t%2,%0
mov.b\t%2,r1h\n\tsha.l\tr1h,%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "ashrsi3_16"
[(set (match_operand:SI 0 "r0123_operand" "=R03,R03")
(ashiftrt:SI (match_operand:SI 1 "r0123_operand" "0,0")
(neg:QI (match_operand:QI 2 "shiftcount_operand" "In4,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A16"
"@
sha.l\t%2,%0
mov.b\t%2,r1h\n\tsha.l\tr1h,%0"
[(set_attr "flags" "oszc,oszc")]
)
 
(define_insn "lshrsi3_16"
[(set (match_operand:SI 0 "r0123_operand" "=R03,R03")
(lshiftrt:SI (match_operand:SI 1 "r0123_operand" "0,0")
(neg:QI (match_operand:QI 2 "shiftcount_operand" "In4,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A16"
"@
shl.l\t%2,%0
mov.b\t%2,r1h\n\tshl.l\tr1h,%0"
[(set_attr "flags" "szc,szc")]
)
 
 
 
(define_insn "ashlsi3_24"
[(set (match_operand:SI 0 "r0123_operand" "=R03,R03")
(ashift:SI (match_operand:SI 1 "r0123_operand" "0,0")
(match_operand:QI 2 "longshiftcount_operand" "In6,RqiSd")))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A24"
"@
sha.l\t%2,%0
mov.b\t%2,r1h\n\tsha.l\tr1h,%0"
)
 
(define_insn "ashrsi3_24"
[(set (match_operand:SI 0 "r0123_operand" "=R03,R03")
(ashiftrt:SI (match_operand:SI 1 "r0123_operand" "0,0")
(neg:QI (match_operand:QI 2 "longshiftcount_operand" "In6,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A24"
"@
sha.l\t%2,%0
mov.b\t%2,r1h\n\tsha.l\tr1h,%0"
)
 
(define_insn "lshrsi3_24"
[(set (match_operand:SI 0 "r0123_operand" "=R03,R03")
(lshiftrt:SI (match_operand:SI 1 "r0123_operand" "0,0")
(neg:QI (match_operand:QI 2 "longshiftcount_operand" "In6,RqiSd"))))
(clobber (match_scratch:HI 3 "=X,R1w"))]
"TARGET_A24"
"@
shl.l\t%2,%0
mov.b\t%2,r1h\n\tshl.l\tr1h,%0"
)
 
 
 
 
(define_expand "ashlsi3"
[(parallel [(set (match_operand:SI 0 "r0123_operand" "")
(ashift:SI (match_operand:SI 1 "r0123_operand" "")
(match_operand:QI 2 "mrai_operand" "")))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, 1, ASHIFT))
DONE;"
)
 
(define_expand "ashrsi3"
[(parallel [(set (match_operand:SI 0 "r0123_operand" "")
(ashiftrt:SI (match_operand:SI 1 "r0123_operand" "")
(neg:QI (match_operand:QI 2 "mrai_operand" ""))))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, -1, ASHIFTRT))
DONE;"
)
 
(define_expand "lshrsi3"
[(parallel [(set (match_operand:SI 0 "r0123_operand" "")
(lshiftrt:SI (match_operand:SI 1 "r0123_operand" "")
(neg:QI (match_operand:QI 2 "mrai_operand" ""))))
(clobber (match_scratch:HI 3 ""))])]
""
"if (m32c_prepare_shift (operands, -1, LSHIFTRT))
DONE;"
)
/m32c-protos.h
0,0 → 1,118
/* Target Prototypes for R8C/M16C/M32C
Copyright (C) 2005, 2007
Free Software Foundation, Inc.
Contributed by Red Hat.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#define MM enum machine_mode
#define UINT unsigned int
 
int m32c_class_likely_spilled_p (int);
void m32c_conditional_register_usage (void);
int m32c_const_ok_for_constraint_p (HOST_WIDE_INT, char, const char *);
UINT m32c_dwarf_frame_regnum (int);
int m32c_eh_return_data_regno (int);
void m32c_emit_epilogue (void);
void m32c_emit_prologue (void);
int m32c_epilogue_uses (int);
int m32c_extra_address_constraint (char, const char *);
int m32c_extra_memory_constraint (char, const char *);
int m32c_function_arg_regno_p (int);
void m32c_init_expanders (void);
int m32c_initial_elimination_offset (int, int);
void m32c_output_reg_pop (FILE *, int);
void m32c_output_reg_push (FILE *, int);
void m32c_override_options (void);
int m32c_print_operand_punct_valid_p (int);
int m32c_push_rounding (int);
int m32c_reg_class_from_constraint (char, const char *);
void m32c_register_pragmas (void);
int m32c_regno_ok_for_base_p (int);
int m32c_trampoline_alignment (void);
int m32c_trampoline_size (void);
void m32c_unpend_compare (void);
 
#if defined(RTX_CODE) && defined(TREE_CODE)
 
rtx m32c_function_arg (CUMULATIVE_ARGS *, MM, tree, int);
rtx m32c_function_value (tree, tree);
 
#endif
 
#ifdef RTX_CODE
 
int m32c_cannot_change_mode_class (MM, MM, int);
int m32c_class_max_nregs (int, MM);
rtx m32c_cmp_flg_0 (rtx);
rtx m32c_eh_return_stackadj_rtx (void);
void m32c_emit_eh_epilogue (rtx);
int m32c_expand_cmpstr (rtx *);
int m32c_expand_insv (rtx *);
int m32c_expand_movcc (rtx *);
int m32c_expand_movmemhi (rtx *);
int m32c_expand_movstr (rtx *);
void m32c_expand_neg_mulpsi3 (rtx *);
int m32c_expand_setmemhi (rtx *);
void m32c_expand_scc (int, rtx *);
int m32c_extra_constraint_p (rtx, char, const char *);
int m32c_extra_constraint_p2 (rtx, char, const char *);
int m32c_hard_regno_nregs (int, MM);
int m32c_hard_regno_ok (int, MM);
bool m32c_immd_dbl_mov (rtx *, MM);
rtx m32c_incoming_return_addr_rtx (void);
void m32c_initialize_trampoline (rtx, rtx, rtx);
int m32c_legitimate_address_p (MM, rtx, int);
int m32c_legitimate_constant_p (rtx);
int m32c_legitimize_address (rtx *, rtx, MM);
int m32c_legitimize_reload_address (rtx *, MM, int, int, int);
rtx m32c_libcall_value (MM);
int m32c_limit_reload_class (MM, int);
int m32c_memory_move_cost (MM, int, int);
int m32c_mode_dependent_address (rtx);
int m32c_modes_tieable_p (MM, MM);
bool m32c_mov_ok (rtx *, MM);
char * m32c_output_compare (rtx, rtx *);
void m32c_pend_compare (rtx *);
int m32c_preferred_output_reload_class (rtx, int);
int m32c_preferred_reload_class (rtx, int);
int m32c_prepare_move (rtx *, MM);
int m32c_prepare_shift (rtx *, int, int);
void m32c_print_operand (FILE *, rtx, int);
void m32c_print_operand_address (FILE *, rtx);
int m32c_reg_ok_for_base_p (rtx, int);
int m32c_register_move_cost (MM, int, int);
MM m32c_regno_reg_class (int);
rtx m32c_return_addr_rtx (int);
const char *m32c_scc_pattern (rtx *, RTX_CODE);
int m32c_secondary_reload_class (int, MM, rtx);
int m32c_split_move (rtx *, MM, int);
int m32c_split_psi_p (rtx *);
 
#endif
 
#ifdef TREE_CODE
 
void m32c_function_arg_advance (CUMULATIVE_ARGS *, MM, tree, int);
tree m32c_gimplify_va_arg_expr (tree, tree, tree *, tree *);
void m32c_init_cumulative_args (CUMULATIVE_ARGS *, tree, rtx, tree, int);
bool m32c_promote_function_return (tree);
 
#endif
 
#undef MM
#undef UINT

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.