OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /openrisc/trunk/gnu-old/gcc-4.2.2/gcc/config/vax
    from Rev 154 to Rev 816
    Reverse comparison

Rev 154 → Rev 816

/vax.c
0,0 → 1,1322
/* Subroutines for insn-output.c for VAX.
Copyright (C) 1987, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002,
2004, 2005, 2007
Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "function.h"
#include "output.h"
#include "insn-attr.h"
#include "recog.h"
#include "expr.h"
#include "optabs.h"
#include "flags.h"
#include "debug.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
 
static void vax_output_function_prologue (FILE *, HOST_WIDE_INT);
static void vax_file_start (void);
static void vax_init_libfuncs (void);
static void vax_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static int vax_address_cost_1 (rtx);
static int vax_address_cost (rtx);
static bool vax_rtx_costs (rtx, int, int, int *);
static rtx vax_struct_value_rtx (tree, int);
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
 
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE vax_output_function_prologue
 
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START vax_file_start
#undef TARGET_ASM_FILE_START_APP_OFF
#define TARGET_ASM_FILE_START_APP_OFF true
 
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS vax_init_libfuncs
 
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK vax_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
 
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT
 
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS vax_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST vax_address_cost
 
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
 
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX vax_struct_value_rtx
 
struct gcc_target targetm = TARGET_INITIALIZER;
/* Set global variables as needed for the options enabled. */
 
void
override_options (void)
{
/* We're VAX floating point, not IEEE floating point. */
if (TARGET_G_FLOAT)
REAL_MODE_FORMAT (DFmode) = &vax_g_format;
}
 
/* Generate the assembly code for function entry. FILE is a stdio
stream to output the code to. SIZE is an int: how many units of
temporary storage to allocate.
 
Refer to the array `regs_ever_live' to determine which registers to
save; `regs_ever_live[I]' is nonzero if register number I is ever
used in the function. This function is responsible for knowing
which registers should not be saved even if used. */
 
static void
vax_output_function_prologue (FILE * file, HOST_WIDE_INT size)
{
int regno;
int mask = 0;
 
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (regs_ever_live[regno] && !call_used_regs[regno])
mask |= 1 << regno;
 
fprintf (file, "\t.word 0x%x\n", mask);
 
if (dwarf2out_do_frame ())
{
const char *label = dwarf2out_cfi_label ();
int offset = 0;
 
for (regno = FIRST_PSEUDO_REGISTER-1; regno >= 0; --regno)
if (regs_ever_live[regno] && !call_used_regs[regno])
dwarf2out_reg_save (label, regno, offset -= 4);
 
dwarf2out_reg_save (label, PC_REGNUM, offset -= 4);
dwarf2out_reg_save (label, FRAME_POINTER_REGNUM, offset -= 4);
dwarf2out_reg_save (label, ARG_POINTER_REGNUM, offset -= 4);
dwarf2out_def_cfa (label, FRAME_POINTER_REGNUM, -(offset - 4));
}
 
size -= STARTING_FRAME_OFFSET;
if (size >= 64)
asm_fprintf (file, "\tmovab %wd(%Rsp),%Rsp\n", -size);
else if (size)
asm_fprintf (file, "\tsubl2 $%wd,%Rsp\n", size);
}
 
/* When debugging with stabs, we want to output an extra dummy label
so that gas can distinguish between D_float and G_float prior to
processing the .stabs directive identifying type double. */
static void
vax_file_start (void)
{
default_file_start ();
 
if (write_symbols == DBX_DEBUG)
fprintf (asm_out_file, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR);
}
 
/* We can use the BSD C library routines for the libgcc calls that are
still generated, since that's what they boil down to anyways. When
ELF, avoid the user's namespace. */
 
static void
vax_init_libfuncs (void)
{
set_optab_libfunc (udiv_optab, SImode, TARGET_ELF ? "*__udiv" : "*udiv");
set_optab_libfunc (umod_optab, SImode, TARGET_ELF ? "*__urem" : "*urem");
}
 
/* This is like nonimmediate_operand with a restriction on the type of MEM. */
 
void
split_quadword_operands (rtx * operands, rtx * low, int n ATTRIBUTE_UNUSED)
{
int i;
/* Split operands. */
 
low[0] = low[1] = low[2] = 0;
for (i = 0; i < 3; i++)
{
if (low[i])
/* it's already been figured out */;
else if (MEM_P (operands[i])
&& (GET_CODE (XEXP (operands[i], 0)) == POST_INC))
{
rtx addr = XEXP (operands[i], 0);
operands[i] = low[i] = gen_rtx_MEM (SImode, addr);
if (which_alternative == 0 && i == 0)
{
addr = XEXP (operands[i], 0);
operands[i+1] = low[i+1] = gen_rtx_MEM (SImode, addr);
}
}
else
{
low[i] = operand_subword (operands[i], 0, 0, DImode);
operands[i] = operand_subword (operands[i], 1, 0, DImode);
}
}
}
void
print_operand_address (FILE * file, rtx addr)
{
rtx reg1, breg, ireg;
rtx offset;
 
retry:
switch (GET_CODE (addr))
{
case MEM:
fprintf (file, "*");
addr = XEXP (addr, 0);
goto retry;
 
case REG:
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
break;
 
case PRE_DEC:
fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
break;
 
case POST_INC:
fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
break;
 
case PLUS:
/* There can be either two or three things added here. One must be a
REG. One can be either a REG or a MULT of a REG and an appropriate
constant, and the third can only be a constant or a MEM.
 
We get these two or three things and put the constant or MEM in
OFFSET, the MULT or REG in IREG, and the REG in BREG. If we have
a register and can't tell yet if it is a base or index register,
put it into REG1. */
 
reg1 = 0; ireg = 0; breg = 0; offset = 0;
 
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| MEM_P (XEXP (addr, 0)))
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| MEM_P (XEXP (addr, 1)))
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 1)) == MULT)
{
ireg = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == MULT)
{
ireg = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (REG_P (XEXP (addr, 1)))
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (REG_P (XEXP (addr, 0)))
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else
gcc_unreachable ();
 
if (REG_P (addr))
{
if (reg1)
ireg = addr;
else
reg1 = addr;
}
else if (GET_CODE (addr) == MULT)
ireg = addr;
else
{
gcc_assert (GET_CODE (addr) == PLUS);
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| MEM_P (XEXP (addr, 0)))
{
if (offset)
{
if (CONST_INT_P (offset))
offset = plus_constant (XEXP (addr, 0), INTVAL (offset));
else
{
gcc_assert (CONST_INT_P (XEXP (addr, 0)));
offset = plus_constant (offset, INTVAL (XEXP (addr, 0)));
}
}
offset = XEXP (addr, 0);
}
else if (REG_P (XEXP (addr, 0)))
{
if (reg1)
ireg = reg1, breg = XEXP (addr, 0), reg1 = 0;
else
reg1 = XEXP (addr, 0);
}
else
{
gcc_assert (GET_CODE (XEXP (addr, 0)) == MULT);
gcc_assert (!ireg);
ireg = XEXP (addr, 0);
}
 
if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| MEM_P (XEXP (addr, 1)))
{
if (offset)
{
if (CONST_INT_P (offset))
offset = plus_constant (XEXP (addr, 1), INTVAL (offset));
else
{
gcc_assert (CONST_INT_P (XEXP (addr, 1)));
offset = plus_constant (offset, INTVAL (XEXP (addr, 1)));
}
}
offset = XEXP (addr, 1);
}
else if (REG_P (XEXP (addr, 1)))
{
if (reg1)
ireg = reg1, breg = XEXP (addr, 1), reg1 = 0;
else
reg1 = XEXP (addr, 1);
}
else
{
gcc_assert (GET_CODE (XEXP (addr, 1)) == MULT);
gcc_assert (!ireg);
ireg = XEXP (addr, 1);
}
}
 
/* If REG1 is nonzero, figure out if it is a base or index register. */
if (reg1)
{
if (breg != 0 || (offset && MEM_P (offset)))
{
gcc_assert (!ireg);
ireg = reg1;
}
else
breg = reg1;
}
 
if (offset != 0)
output_address (offset);
 
if (breg != 0)
fprintf (file, "(%s)", reg_names[REGNO (breg)]);
 
if (ireg != 0)
{
if (GET_CODE (ireg) == MULT)
ireg = XEXP (ireg, 0);
gcc_assert (REG_P (ireg));
fprintf (file, "[%s]", reg_names[REGNO (ireg)]);
}
break;
 
default:
output_addr_const (file, addr);
}
}
const char *
rev_cond_name (rtx op)
{
switch (GET_CODE (op))
{
case EQ:
return "neq";
case NE:
return "eql";
case LT:
return "geq";
case LE:
return "gtr";
case GT:
return "leq";
case GE:
return "lss";
case LTU:
return "gequ";
case LEU:
return "gtru";
case GTU:
return "lequ";
case GEU:
return "lssu";
 
default:
gcc_unreachable ();
}
}
 
int
vax_float_literal(rtx c)
{
enum machine_mode mode;
REAL_VALUE_TYPE r, s;
int i;
 
if (GET_CODE (c) != CONST_DOUBLE)
return 0;
 
mode = GET_MODE (c);
 
if (c == const_tiny_rtx[(int) mode][0]
|| c == const_tiny_rtx[(int) mode][1]
|| c == const_tiny_rtx[(int) mode][2])
return 1;
 
REAL_VALUE_FROM_CONST_DOUBLE (r, c);
 
for (i = 0; i < 7; i++)
{
int x = 1 << i;
bool ok;
REAL_VALUE_FROM_INT (s, x, 0, mode);
 
if (REAL_VALUES_EQUAL (r, s))
return 1;
ok = exact_real_inverse (mode, &s);
gcc_assert (ok);
if (REAL_VALUES_EQUAL (r, s))
return 1;
}
return 0;
}
 
 
/* Return the cost in cycles of a memory address, relative to register
indirect.
 
Each of the following adds the indicated number of cycles:
 
1 - symbolic address
1 - pre-decrement
1 - indexing and/or offset(register)
2 - indirect */
 
 
static int
vax_address_cost_1 (rtx addr)
{
int reg = 0, indexed = 0, indir = 0, offset = 0, predec = 0;
rtx plus_op0 = 0, plus_op1 = 0;
restart:
switch (GET_CODE (addr))
{
case PRE_DEC:
predec = 1;
case REG:
case SUBREG:
case POST_INC:
reg = 1;
break;
case MULT:
indexed = 1; /* 2 on VAX 2 */
break;
case CONST_INT:
/* byte offsets cost nothing (on a VAX 2, they cost 1 cycle) */
if (offset == 0)
offset = (unsigned HOST_WIDE_INT)(INTVAL(addr)+128) > 256;
break;
case CONST:
case SYMBOL_REF:
offset = 1; /* 2 on VAX 2 */
break;
case LABEL_REF: /* this is probably a byte offset from the pc */
if (offset == 0)
offset = 1;
break;
case PLUS:
if (plus_op0)
plus_op1 = XEXP (addr, 0);
else
plus_op0 = XEXP (addr, 0);
addr = XEXP (addr, 1);
goto restart;
case MEM:
indir = 2; /* 3 on VAX 2 */
addr = XEXP (addr, 0);
goto restart;
default:
break;
}
 
/* Up to 3 things can be added in an address. They are stored in
plus_op0, plus_op1, and addr. */
 
if (plus_op0)
{
addr = plus_op0;
plus_op0 = 0;
goto restart;
}
if (plus_op1)
{
addr = plus_op1;
plus_op1 = 0;
goto restart;
}
/* Indexing and register+offset can both be used (except on a VAX 2)
without increasing execution time over either one alone. */
if (reg && indexed && offset)
return reg + indir + offset + predec;
return reg + indexed + indir + offset + predec;
}
 
static int
vax_address_cost (rtx x)
{
return (1 + (REG_P (x) ? 0 : vax_address_cost_1 (x)));
}
 
/* Cost of an expression on a VAX. This version has costs tuned for the
CVAX chip (found in the VAX 3 series) with comments for variations on
other models.
 
FIXME: The costs need review, particularly for TRUNCATE, FLOAT_EXTEND
and FLOAT_TRUNCATE. We need a -mcpu option to allow provision of
costs on a per cpu basis. */
 
static bool
vax_rtx_costs (rtx x, int code, int outer_code, int *total)
{
enum machine_mode mode = GET_MODE (x);
int i = 0; /* may be modified in switch */
const char *fmt = GET_RTX_FORMAT (code); /* may be modified in switch */
 
switch (code)
{
/* On a VAX, constants from 0..63 are cheap because they can use the
1 byte literal constant format. Compare to -1 should be made cheap
so that decrement-and-branch insns can be formed more easily (if
the value -1 is copied to a register some decrement-and-branch
patterns will not match). */
case CONST_INT:
if (INTVAL (x) == 0)
return true;
if (outer_code == AND)
{
*total = ((unsigned HOST_WIDE_INT) ~INTVAL (x) <= 077) ? 1 : 2;
return true;
}
if ((unsigned HOST_WIDE_INT) INTVAL (x) <= 077
|| (outer_code == COMPARE
&& INTVAL (x) == -1)
|| ((outer_code == PLUS || outer_code == MINUS)
&& (unsigned HOST_WIDE_INT) -INTVAL (x) <= 077))
{
*total = 1;
return true;
}
/* FALLTHRU */
 
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 3;
return true;
 
case CONST_DOUBLE:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
*total = vax_float_literal (x) ? 5 : 8;
else
*total = ((CONST_DOUBLE_HIGH (x) == 0
&& (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x) < 64)
|| (outer_code == PLUS
&& CONST_DOUBLE_HIGH (x) == -1
&& (unsigned HOST_WIDE_INT)-CONST_DOUBLE_LOW (x) < 64))
? 2 : 5;
return true;
 
case POST_INC:
*total = 2;
return true; /* Implies register operand. */
 
case PRE_DEC:
*total = 3;
return true; /* Implies register operand. */
 
case MULT:
switch (mode)
{
case DFmode:
*total = 16; /* 4 on VAX 9000 */
break;
case SFmode:
*total = 9; /* 4 on VAX 9000, 12 on VAX 2 */
break;
case DImode:
*total = 16; /* 6 on VAX 9000, 28 on VAX 2 */
break;
case SImode:
case HImode:
case QImode:
*total = 10; /* 3-4 on VAX 9000, 20-28 on VAX 2 */
break;
default:
*total = MAX_COST; /* Mode is not supported. */
return true;
}
break;
 
case UDIV:
if (mode != SImode)
{
*total = MAX_COST; /* Mode is not supported. */
return true;
}
*total = 17;
break;
 
case DIV:
if (mode == DImode)
*total = 30; /* Highly variable. */
else if (mode == DFmode)
/* divide takes 28 cycles if the result is not zero, 13 otherwise */
*total = 24;
else
*total = 11; /* 25 on VAX 2 */
break;
 
case MOD:
*total = 23;
break;
 
case UMOD:
if (mode != SImode)
{
*total = MAX_COST; /* Mode is not supported. */
return true;
}
*total = 29;
break;
 
case FLOAT:
*total = (6 /* 4 on VAX 9000 */
+ (mode == DFmode) + (GET_MODE (XEXP (x, 0)) != SImode));
break;
 
case FIX:
*total = 7; /* 17 on VAX 2 */
break;
 
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
if (mode == DImode)
*total = 12;
else
*total = 10; /* 6 on VAX 9000 */
break;
 
case ROTATE:
case ROTATERT:
*total = 6; /* 5 on VAX 2, 4 on VAX 9000 */
if (CONST_INT_P (XEXP (x, 1)))
fmt = "e"; /* all constant rotate counts are short */
break;
 
case PLUS:
case MINUS:
*total = (mode == DFmode) ? 13 : 8; /* 6/8 on VAX 9000, 16/15 on VAX 2 */
/* Small integer operands can use subl2 and addl2. */
if ((CONST_INT_P (XEXP (x, 1)))
&& (unsigned HOST_WIDE_INT)(INTVAL (XEXP (x, 1)) + 63) < 127)
fmt = "e";
break;
 
case IOR:
case XOR:
*total = 3;
break;
 
case AND:
/* AND is special because the first operand is complemented. */
*total = 3;
if (CONST_INT_P (XEXP (x, 0)))
{
if ((unsigned HOST_WIDE_INT)~INTVAL (XEXP (x, 0)) > 63)
*total = 4;
fmt = "e";
i = 1;
}
break;
 
case NEG:
if (mode == DFmode)
*total = 9;
else if (mode == SFmode)
*total = 6;
else if (mode == DImode)
*total = 4;
else
*total = 2;
break;
 
case NOT:
*total = 2;
break;
 
case ZERO_EXTRACT:
case SIGN_EXTRACT:
*total = 15;
break;
 
case MEM:
if (mode == DImode || mode == DFmode)
*total = 5; /* 7 on VAX 2 */
else
*total = 3; /* 4 on VAX 2 */
x = XEXP (x, 0);
if (!REG_P (x) && GET_CODE (x) != POST_INC)
*total += vax_address_cost_1 (x);
return true;
 
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
case TRUNCATE:
*total = 3; /* FIXME: Costs need to be checked */
break;
 
default:
return false;
}
 
/* Now look inside the expression. Operands which are not registers or
short constants add to the cost.
 
FMT and I may have been adjusted in the switch above for instructions
which require special handling. */
 
while (*fmt++ == 'e')
{
rtx op = XEXP (x, i);
 
i += 1;
code = GET_CODE (op);
 
/* A NOT is likely to be found as the first operand of an AND
(in which case the relevant cost is of the operand inside
the not) and not likely to be found anywhere else. */
if (code == NOT)
op = XEXP (op, 0), code = GET_CODE (op);
 
switch (code)
{
case CONST_INT:
if ((unsigned HOST_WIDE_INT)INTVAL (op) > 63
&& GET_MODE (x) != QImode)
*total += 1; /* 2 on VAX 2 */
break;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total += 1; /* 2 on VAX 2 */
break;
case CONST_DOUBLE:
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
{
/* Registers are faster than floating point constants -- even
those constants which can be encoded in a single byte. */
if (vax_float_literal (op))
*total += 1;
else
*total += (GET_MODE (x) == DFmode) ? 3 : 2;
}
else
{
if (CONST_DOUBLE_HIGH (op) != 0
|| (unsigned)CONST_DOUBLE_LOW (op) > 63)
*total += 2;
}
break;
case MEM:
*total += 1; /* 2 on VAX 2 */
if (!REG_P (XEXP (op, 0)))
*total += vax_address_cost_1 (XEXP (op, 0));
break;
case REG:
case SUBREG:
break;
default:
*total += 1;
break;
}
}
return true;
}
/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
Used for C++ multiple inheritance.
.mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
addl2 $DELTA, 4(ap) #adjust first argument
jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
*/
 
static void
vax_output_mi_thunk (FILE * file,
tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
fprintf (file, "\t.word 0x0ffc\n\taddl2 $" HOST_WIDE_INT_PRINT_DEC, delta);
asm_fprintf (file, ",4(%Rap)\n");
fprintf (file, "\tjmp ");
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
fprintf (file, "+2\n");
}
static rtx
vax_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, VAX_STRUCT_VALUE_REGNUM);
}
 
/* Worker function for NOTICE_UPDATE_CC. */
 
void
vax_notice_update_cc (rtx exp, rtx insn ATTRIBUTE_UNUSED)
{
if (GET_CODE (exp) == SET)
{
if (GET_CODE (SET_SRC (exp)) == CALL)
CC_STATUS_INIT;
else if (GET_CODE (SET_DEST (exp)) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (exp)) != PC)
{
cc_status.flags = 0;
/* The integer operations below don't set carry or
set it in an incompatible way. That's ok though
as the Z bit is all we need when doing unsigned
comparisons on the result of these insns (since
they're always with 0). Set CC_NO_OVERFLOW to
generate the correct unsigned branches. */
switch (GET_CODE (SET_SRC (exp)))
{
case NEG:
if (GET_MODE_CLASS (GET_MODE (exp)) == MODE_FLOAT)
break;
case AND:
case IOR:
case XOR:
case NOT:
case MEM:
case REG:
cc_status.flags = CC_NO_OVERFLOW;
break;
default:
break;
}
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);
}
}
else if (GET_CODE (exp) == PARALLEL
&& GET_CODE (XVECEXP (exp, 0, 0)) == SET)
{
if (GET_CODE (SET_SRC (XVECEXP (exp, 0, 0))) == CALL)
CC_STATUS_INIT;
else if (GET_CODE (SET_DEST (XVECEXP (exp, 0, 0))) != PC)
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (XVECEXP (exp, 0, 0));
cc_status.value2 = SET_SRC (XVECEXP (exp, 0, 0));
}
else
/* PARALLELs whose first element sets the PC are aob,
sob insns. They do change the cc's. */
CC_STATUS_INIT;
}
else
CC_STATUS_INIT;
if (cc_status.value1 && REG_P (cc_status.value1)
&& cc_status.value2
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
cc_status.value2 = 0;
if (cc_status.value1 && MEM_P (cc_status.value1)
&& cc_status.value2
&& MEM_P (cc_status.value2))
cc_status.value2 = 0;
/* Actual condition, one line up, should be that value2's address
depends on value1, but that is too much of a pain. */
}
 
/* Output integer move instructions. */
 
const char *
vax_output_int_move (rtx insn ATTRIBUTE_UNUSED, rtx *operands,
enum machine_mode mode)
{
switch (mode)
{
case SImode:
if (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST)
{
if (push_operand (operands[0], SImode))
return "pushab %a1";
return "movab %a1,%0";
}
if (operands[1] == const0_rtx)
return "clrl %0";
if (CONST_INT_P (operands[1])
&& (unsigned) INTVAL (operands[1]) >= 64)
{
int i = INTVAL (operands[1]);
if ((unsigned)(~i) < 64)
return "mcoml %N1,%0";
if ((unsigned)i < 0x100)
return "movzbl %1,%0";
if (i >= -0x80 && i < 0)
return "cvtbl %1,%0";
if ((unsigned)i < 0x10000)
return "movzwl %1,%0";
if (i >= -0x8000 && i < 0)
return "cvtwl %1,%0";
}
if (push_operand (operands[0], SImode))
return "pushl %1";
return "movl %1,%0";
 
case HImode:
if (CONST_INT_P (operands[1]))
{
int i = INTVAL (operands[1]);
if (i == 0)
return "clrw %0";
else if ((unsigned int)i < 64)
return "movw %1,%0";
else if ((unsigned int)~i < 64)
return "mcomw %H1,%0";
else if ((unsigned int)i < 256)
return "movzbw %1,%0";
}
return "movw %1,%0";
 
case QImode:
if (CONST_INT_P (operands[1]))
{
int i = INTVAL (operands[1]);
if (i == 0)
return "clrb %0";
else if ((unsigned int)~i < 64)
return "mcomb %B1,%0";
}
return "movb %1,%0";
 
default:
gcc_unreachable ();
}
}
 
/* Output integer add instructions.
 
The space-time-opcode tradeoffs for addition vary by model of VAX.
 
On a VAX 3 "movab (r1)[r2],r3" is faster than "addl3 r1,r2,r3",
but it not faster on other models.
 
"movab #(r1),r2" is usually shorter than "addl3 #,r1,r2", and is
faster on a VAX 3, but some VAXen (e.g. VAX 9000) will stall if
a register is used in an address too soon after it is set.
Compromise by using movab only when it is shorter than the add
or the base register in the address is one of sp, ap, and fp,
which are not modified very often. */
 
const char *
vax_output_int_add (rtx insn ATTRIBUTE_UNUSED, rtx *operands,
enum machine_mode mode)
{
switch (mode)
{
case SImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incl %0";
if (operands[2] == constm1_rtx)
return "decl %0";
if (CONST_INT_P (operands[2])
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subl2 $%n2,%0";
if (CONST_INT_P (operands[2])
&& (unsigned) INTVAL (operands[2]) >= 64
&& REG_P (operands[1])
&& ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768)
|| REGNO (operands[1]) > 11))
return "movab %c2(%1),%0";
return "addl2 %2,%0";
}
 
if (rtx_equal_p (operands[0], operands[2]))
return "addl2 %1,%0";
 
if (CONST_INT_P (operands[2])
&& INTVAL (operands[2]) < 32767
&& INTVAL (operands[2]) > -32768
&& REG_P (operands[1])
&& push_operand (operands[0], SImode))
return "pushab %c2(%1)";
 
if (CONST_INT_P (operands[2])
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subl3 $%n2,%1,%0";
 
if (CONST_INT_P (operands[2])
&& (unsigned) INTVAL (operands[2]) >= 64
&& REG_P (operands[1])
&& ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768)
|| REGNO (operands[1]) > 11))
return "movab %c2(%1),%0";
 
/* Add this if using gcc on a VAX 3xxx:
if (REG_P (operands[1]) && REG_P (operands[2]))
return "movab (%1)[%2],%0";
*/
return "addl3 %1,%2,%0";
 
case HImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incw %0";
if (operands[2] == constm1_rtx)
return "decw %0";
if (CONST_INT_P (operands[2])
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subw2 $%n2,%0";
return "addw2 %2,%0";
}
if (rtx_equal_p (operands[0], operands[2]))
return "addw2 %1,%0";
if (CONST_INT_P (operands[2])
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subw3 $%n2,%1,%0";
return "addw3 %1,%2,%0";
 
case QImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incb %0";
if (operands[2] == constm1_rtx)
return "decb %0";
if (CONST_INT_P (operands[2])
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subb2 $%n2,%0";
return "addb2 %2,%0";
}
if (rtx_equal_p (operands[0], operands[2]))
return "addb2 %1,%0";
if (CONST_INT_P (operands[2])
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subb3 $%n2,%1,%0";
return "addb3 %1,%2,%0";
 
default:
gcc_unreachable ();
}
}
 
/* Output a conditional branch. */
const char *
vax_output_conditional_branch (enum rtx_code code)
{
switch (code)
{
case EQ: return "jeql %l0";
case NE: return "jneq %l0";
case GT: return "jgtr %l0";
case LT: return "jlss %l0";
case GTU: return "jgtru %l0";
case LTU: return "jlssu %l0";
case GE: return "jgeq %l0";
case LE: return "jleq %l0";
case GEU: return "jgequ %l0";
case LEU: return "jlequ %l0";
default:
gcc_unreachable ();
}
}
 
/* 1 if X is an rtx for a constant that is a valid address. */
 
int
legitimate_constant_address_p (rtx x)
{
return (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF
|| CONST_INT_P (x) || GET_CODE (x) == CONST
|| GET_CODE (x) == HIGH);
}
 
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
 
int
legitimate_constant_p (rtx x ATTRIBUTE_UNUSED)
{
return 1;
}
 
/* The other macros defined here are used only in legitimate_address_p (). */
 
/* Nonzero if X is a hard reg that can be used as an index
or, if not strict, if it is a pseudo reg. */
#define INDEX_REGISTER_P(X, STRICT) \
(REG_P (X) && (!(STRICT) || REGNO_OK_FOR_INDEX_P (REGNO (X))))
 
/* Nonzero if X is a hard reg that can be used as a base reg
or, if not strict, if it is a pseudo reg. */
#define BASE_REGISTER_P(X, STRICT) \
(REG_P (X) && (!(STRICT) || REGNO_OK_FOR_BASE_P (REGNO (X))))
 
#ifdef NO_EXTERNAL_INDIRECT_ADDRESS
 
/* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
are no SYMBOL_REFs for external symbols present. */
 
static int
indirectable_constant_address_p (rtx x)
{
if (!CONSTANT_ADDRESS_P (x))
return 0;
if (GET_CODE (x) == CONST && GET_CODE (XEXP ((x), 0)) == PLUS)
x = XEXP (XEXP (x, 0), 0);
if (GET_CODE (x) == SYMBOL_REF && !SYMBOL_REF_LOCAL_P (x))
return 0;
 
return 1;
}
 
#else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
 
static int
indirectable_constant_address_p (rtx x)
{
return CONSTANT_ADDRESS_P (x);
}
 
#endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
 
/* Nonzero if X is an address which can be indirected. External symbols
could be in a sharable image library, so we disallow those. */
 
static int
indirectable_address_p(rtx x, int strict)
{
if (indirectable_constant_address_p (x))
return 1;
if (BASE_REGISTER_P (x, strict))
return 1;
if (GET_CODE (x) == PLUS
&& BASE_REGISTER_P (XEXP (x, 0), strict)
&& indirectable_constant_address_p (XEXP (x, 1)))
return 1;
return 0;
}
 
/* Return 1 if x is a valid address not using indexing.
(This much is the easy part.) */
static int
nonindexed_address_p (rtx x, int strict)
{
rtx xfoo0;
if (REG_P (x))
{
extern rtx *reg_equiv_mem;
if (!reload_in_progress
|| reg_equiv_mem[REGNO (x)] == 0
|| indirectable_address_p (reg_equiv_mem[REGNO (x)], strict))
return 1;
}
if (indirectable_constant_address_p (x))
return 1;
if (indirectable_address_p (x, strict))
return 1;
xfoo0 = XEXP (x, 0);
if (MEM_P (x) && indirectable_address_p (xfoo0, strict))
return 1;
if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
&& BASE_REGISTER_P (xfoo0, strict))
return 1;
return 0;
}
 
/* 1 if PROD is either a reg times size of mode MODE and MODE is less
than or equal 8 bytes, or just a reg if MODE is one byte. */
 
static int
index_term_p (rtx prod, enum machine_mode mode, int strict)
{
rtx xfoo0, xfoo1;
 
if (GET_MODE_SIZE (mode) == 1)
return BASE_REGISTER_P (prod, strict);
 
if (GET_CODE (prod) != MULT || GET_MODE_SIZE (mode) > 8)
return 0;
 
xfoo0 = XEXP (prod, 0);
xfoo1 = XEXP (prod, 1);
 
if (CONST_INT_P (xfoo0)
&& INTVAL (xfoo0) == (int)GET_MODE_SIZE (mode)
&& INDEX_REGISTER_P (xfoo1, strict))
return 1;
 
if (CONST_INT_P (xfoo1)
&& INTVAL (xfoo1) == (int)GET_MODE_SIZE (mode)
&& INDEX_REGISTER_P (xfoo0, strict))
return 1;
 
return 0;
}
 
/* Return 1 if X is the sum of a register
and a valid index term for mode MODE. */
static int
reg_plus_index_p (rtx x, enum machine_mode mode, int strict)
{
rtx xfoo0, xfoo1;
 
if (GET_CODE (x) != PLUS)
return 0;
 
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
 
if (BASE_REGISTER_P (xfoo0, strict) && index_term_p (xfoo1, mode, strict))
return 1;
 
if (BASE_REGISTER_P (xfoo1, strict) && index_term_p (xfoo0, mode, strict))
return 1;
 
return 0;
}
 
/* legitimate_address_p returns 1 if it recognizes an RTL expression "x"
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address. */
int
legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
rtx xfoo0, xfoo1;
 
if (nonindexed_address_p (x, strict))
return 1;
 
if (GET_CODE (x) != PLUS)
return 0;
 
/* Handle <address>[index] represented with index-sum outermost */
 
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
 
if (index_term_p (xfoo0, mode, strict)
&& nonindexed_address_p (xfoo1, strict))
return 1;
 
if (index_term_p (xfoo1, mode, strict)
&& nonindexed_address_p (xfoo0, strict))
return 1;
 
/* Handle offset(reg)[index] with offset added outermost */
 
if (indirectable_constant_address_p (xfoo0)
&& (BASE_REGISTER_P (xfoo1, strict)
|| reg_plus_index_p (xfoo1, mode, strict)))
return 1;
 
if (indirectable_constant_address_p (xfoo1)
&& (BASE_REGISTER_P (xfoo0, strict)
|| reg_plus_index_p (xfoo0, mode, strict)))
return 1;
 
return 0;
}
 
/* Return 1 if x (a legitimate address expression) has an effect that
depends on the machine mode it is used for. On the VAX, the predecrement
and postincrement address depend thus (the amount of decrement or
increment being the length of the operand) and all indexed address depend
thus (because the index scale factor is the length of the operand). */
 
int
vax_mode_dependent_address_p (rtx x)
{
rtx xfoo0, xfoo1;
 
if (GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_DEC)
return 1;
if (GET_CODE (x) != PLUS)
return 0;
 
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
 
if (CONSTANT_ADDRESS_P (xfoo0) && REG_P (xfoo1))
return 0;
if (CONSTANT_ADDRESS_P (xfoo1) && REG_P (xfoo0))
return 0;
 
return 1;
}
/vax.opt
0,0 → 1,47
; Options for the VAX port of the compiler.
 
; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
 
md
Target RejectNegative InverseMask(G_FLOAT)
Target DFLOAT double precision code
 
md-float
Target RejectNegative InverseMask(G_FLOAT)
Target DFLOAT double precision code
 
mg
Target RejectNegative Mask(G_FLOAT)
Generate GFLOAT double precision code
 
mg-float
Target RejectNegative Mask(G_FLOAT) MaskExists
Generate GFLOAT double precision code
 
mgnu
Target RejectNegative InverseMask(UNIX_ASM)
Generate code for GNU assembler (gas)
 
munix
Target RejectNegative Mask(UNIX_ASM)
Generate code for UNIX assembler
 
mvaxc-alignment
Target RejectNegative Mask(VAXC_ALIGNMENT)
Use VAXC structure conventions
/openbsd.h
0,0 → 1,45
/* Configuration fragment for a VAX OpenBSD target.
Copyright (C) 2000, 2002, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* Amend common OpenBSD definitions for VAX target. */
 
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
builtin_define ("__unix__"); \
builtin_define ("__OpenBSD__"); \
builtin_assert ("system=unix"); \
builtin_assert ("system=OpenBSD"); \
} \
while (0)
 
/* Layout of source language data types. */
 
/* This must agree with <machine/ansi.h> */
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
 
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
 
#undef WCHAR_TYPE
#define WCHAR_TYPE "int"
 
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE 32
/vax-modes.def
0,0 → 1,22
/* VAX extra machine modes.
Copyright (C) 2003, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* We just need to reset the floating point formats. */
RESET_FLOAT_FORMAT (SF, vax_f_format);
RESET_FLOAT_FORMAT (DF, vax_d_format);
/openbsd1.h
0,0 → 1,22
/* Configuration fragment for a VAX OpenBSD target.
Copyright (C) 2000, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* Set up definitions before picking up the common openbsd.h file. */
#define OBSD_OLD_GAS
#define OBSD_NO_DYNAMIC_LIBRARIES
/vax.h
0,0 → 1,919
/* Definitions of target machine for GNU compiler. VAX version.
Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
 
/* Target CPU builtins. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define ("__vax__"); \
builtin_assert ("cpu=vax"); \
builtin_assert ("machine=vax"); \
if (TARGET_G_FLOAT) \
{ \
builtin_define ("__GFLOAT"); \
builtin_define ("__GFLOAT__"); \
} \
} \
while (0)
 
#define VMS_TARGET 0
 
/* Use -J option for long branch support with Unix assembler. */
 
#define ASM_SPEC "-J"
 
/* Choose proper libraries depending on float format.
Note that there are no profiling libraries for g-format.
Also use -lg for the sake of dbx. */
 
#define LIB_SPEC "%{g:-lg}\
%{mg:%{lm:-lmg} -lcg \
%{p:%eprofiling not supported with -mg\n}\
%{pg:%eprofiling not supported with -mg\n}}\
%{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
 
/* Print subsidiary information on the compiler version in use. */
 
#ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
#define TARGET_NAME "vax"
#endif
#define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
 
/* Run-time compilation parameters selecting different hardware subsets. */
 
/* Nonzero if ELF. Redefined by vax/elf.h. */
#define TARGET_ELF 0
 
/* Default target_flags if no switches specified. */
 
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT (MASK_UNIX_ASM)
#endif
 
#define OVERRIDE_OPTIONS override_options ()
 
/* Target machine storage layout */
 
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is not true on the VAX. */
#define BITS_BIG_ENDIAN 0
 
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is not true on the VAX. */
#define BYTES_BIG_ENDIAN 0
 
/* Define this if most significant word of a multiword number is the lowest
numbered. */
/* This is not true on the VAX. */
#define WORDS_BIG_ENDIAN 0
 
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
 
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
 
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 16
 
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
 
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
 
/* A bit-field declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS (!TARGET_VAXC_ALIGNMENT)
 
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 32
 
/* No structure field wants to be aligned rounder than this. */
#define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
 
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 0
 
/* Let's keep the stack somewhat aligned. */
#define STACK_BOUNDARY 32
 
/* The table of an ADDR_DIFF_VEC must be contiguous with the case
opcode, it is part of the case instruction. */
#define ADDR_VEC_ALIGN(ADDR_VEC) 0
/* Standard register usage. */
 
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 16
 
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the VAX, these are the AP, FP, SP and PC. */
#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
 
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
 
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the VAX, all registers are one word long. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
 
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On the VAX, all registers can hold all modes. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
 
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) 1
 
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
 
/* VAX pc is overloaded on a register. */
#define PC_REGNUM VAX_PC_REGNUM
 
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM VAX_SP_REGNUM
 
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM VAX_FP_REGNUM
 
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 1
 
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM VAX_AP_REGNUM
 
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 0
 
/* Register in which address to store a structure value
is passed to a function. */
#define VAX_STRUCT_VALUE_REGNUM 1
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
 
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
 
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
 
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
 
For any two classes, it is very desirable that there be another
class that represents their union. */
 
/* The VAX has only one kind of registers, so NO_REGS and ALL_REGS
are the only classes. */
 
enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
 
#define N_REG_CLASSES (int) LIM_REG_CLASSES
 
/* Since GENERAL_REGS is the same class as ALL_REGS,
don't give it a different class number; just make it an alias. */
 
#define GENERAL_REGS ALL_REGS
 
/* Give names of register classes as strings for dump file. */
 
#define REG_CLASS_NAMES \
{ "NO_REGS", "ALL_REGS" }
 
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
 
#define REG_CLASS_CONTENTS {{0}, {0xffff}}
 
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
 
#define REGNO_REG_CLASS(REGNO) ALL_REGS
 
/* The class value for index registers, and the one for base regs. */
 
#define INDEX_REG_CLASS ALL_REGS
#define BASE_REG_CLASS ALL_REGS
 
/* Get reg_class from a letter such as appears in the machine description. */
 
#define REG_CLASS_FROM_LETTER(C) NO_REGS
 
/* The letters I, J, K, L, M, N, and O in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
 
`I' is the constant zero.
`J' is a value between 0 .. 63 (inclusive)
`K' is a value between -128 and 127 (inclusive)
'L' is a value between -32768 and 32767 (inclusive)
`M' is a value between 0 and 255 (inclusive)
'N' is a value between 0 and 65535 (inclusive)
`O' is a value between -63 and -1 (inclusive) */
 
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
( (C) == 'I' ? (VALUE) == 0 \
: (C) == 'J' ? 0 <= (VALUE) && (VALUE) < 64 \
: (C) == 'O' ? -63 <= (VALUE) && (VALUE) < 0 \
: (C) == 'K' ? -128 <= (VALUE) && (VALUE) < 128 \
: (C) == 'M' ? 0 <= (VALUE) && (VALUE) < 256 \
: (C) == 'L' ? -32768 <= (VALUE) && (VALUE) < 32768 \
: (C) == 'N' ? 0 <= (VALUE) && (VALUE) < 65536 \
: 0)
 
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
 
`G' is a floating-point zero. */
 
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
|| (VALUE) == CONST0_RTX (SFmode)) \
: 0)
 
/* Optional extra constraints for this machine.
 
For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
address. */
 
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' \
? MEM_P (OP) && !mode_dependent_address_p (XEXP (OP, 0)) \
: 0)
 
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
 
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
 
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
/* On the VAX, this is always the size of MODE in words,
since all registers are the same size. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Stack layout; function entry, exit and calling. */
 
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
 
/* Define this to nonzero if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD 1
 
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
 
/* Given an rtx for the address of a frame,
return an rtx for the address of the word in the frame
that holds the dynamic chain--the previous frame's address. */
#define DYNAMIC_CHAIN_ADDRESS(FRAME) plus_constant ((FRAME), 12)
 
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the VAX, -(sp) pushes only the bytes of the operands. */
#define PUSH_ROUNDING(BYTES) (BYTES)
 
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 4
 
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
 
On the VAX, the RET insn pops a maximum of 255 args for any function. */
 
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
((SIZE) > 255 * 4 ? 0 : (SIZE))
 
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
 
/* On the VAX the return value is in R0 regardless. */
 
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
 
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
 
/* On the VAX the return value is in R0 regardless. */
 
#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
 
/* Define this if PCC uses the nonreentrant convention for returning
structure and union values. */
 
#define PCC_STATIC_STRUCT_RETURN
 
/* 1 if N is a possible register number for a function value.
On the VAX, R0 is the only register thus used. */
 
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
 
/* 1 if N is a possible register number for function argument passing.
On the VAX, no registers are used in this way. */
 
#define FUNCTION_ARG_REGNO_P(N) 0
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
 
On the VAX, this is a single integer, which is a number of bytes
of arguments scanned so far. */
 
#define CUMULATIVE_ARGS int
 
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
 
On the VAX, the offset starts at 0. */
 
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
((CUM) = 0)
 
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
 
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
: (int_size_in_bytes (TYPE) + 3) & ~3))
 
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
 
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
 
/* On the VAX all args are pushed. */
 
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
 
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
 
#define VAX_FUNCTION_PROFILER_NAME "mcount"
#define FUNCTION_PROFILER(FILE, LABELNO) \
do \
{ \
char label[256]; \
ASM_GENERATE_INTERNAL_LABEL (label, "LP", (LABELNO)); \
fprintf (FILE, "\tmovab "); \
assemble_name (FILE, label); \
asm_fprintf (FILE, ",%Rr0\n\tjsb %s\n", \
VAX_FUNCTION_PROFILER_NAME); \
} \
while (0)
 
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
 
#define EXIT_IGNORE_STACK 1
 
/* Store in the variable DEPTH the initial difference between the
frame pointer reg contents and the stack pointer reg contents,
as of the start of the function body. This depends on the layout
of the fixed parts of the stack frame and on how registers are saved.
 
On the VAX, FRAME_POINTER_REQUIRED is always 1, so the definition of this
macro doesn't matter. But it must be defined. */
 
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
 
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
 
/* On the VAX, the trampoline contains an entry mask and two instructions:
.word NN
movl $STATIC,r0 (store the functions static chain)
jmp *$FUNCTION (jump to function code at address FUNCTION) */
 
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
assemble_aligned_integer (2, const0_rtx); \
assemble_aligned_integer (2, GEN_INT (0x8fd0)); \
assemble_aligned_integer (4, const0_rtx); \
assemble_aligned_integer (1, GEN_INT (0x50 + STATIC_CHAIN_REGNUM)); \
assemble_aligned_integer (2, GEN_INT (0x9f17)); \
assemble_aligned_integer (4, const0_rtx); \
}
 
/* Length in units of the trampoline for entering a nested function. */
 
#define TRAMPOLINE_SIZE 15
 
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
 
/* We copy the register-mask from the function's pure code
to the start of the trampoline. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx_MEM (HImode, TRAMP), \
gen_rtx_MEM (HImode, FNADDR)); \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT); \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 11)), \
plus_constant (FNADDR, 2)); \
emit_insn (gen_sync_istream ()); \
}
 
/* Byte offset of return address in a stack frame. The "saved PC" field
is in element [4] when treating the frame as an array of longwords. */
 
#define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
 
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame.
FRAMEADDR is already the frame pointer of the COUNT frame, so we
can ignore COUNT. */
 
#define RETURN_ADDR_RTX(COUNT, FRAME) \
((COUNT == 0) \
? gen_rtx_MEM (Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
: (rtx) 0)
 
/* Addressing modes, and classification of registers for them. */
 
#define HAVE_POST_INCREMENT 1
 
#define HAVE_PRE_DECREMENT 1
 
/* Macros to check register numbers against specific register classes. */
 
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
 
#define REGNO_OK_FOR_INDEX_P(regno) \
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
#define REGNO_OK_FOR_BASE_P(regno) \
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
/* Maximum number of registers that can appear in a valid memory address. */
 
#define MAX_REGS_PER_ADDRESS 2
 
/* 1 if X is an rtx for a constant that is a valid address. */
 
#define CONSTANT_ADDRESS_P(X) legitimate_constant_address_p (X)
 
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
 
#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
 
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
 
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
 
#ifndef REG_OK_STRICT
 
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) 1
 
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) 1
 
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction. */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ if (legitimate_address_p ((MODE), (X), 0)) goto ADDR; }
 
#else
 
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
 
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
 
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction. */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ if (legitimate_address_p ((MODE), (X), 1)) goto ADDR; }
 
#endif
 
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
{ if (vax_mode_dependent_address_p (ADDR)) goto LABEL; }
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE HImode
 
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE 1
 
/* Indicate that jump tables go in the text section. This is
necessary when compiling PIC code. */
#define JUMP_TABLES_IN_TEXT_SECTION 1
 
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
 
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
 
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 8
 
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 0
 
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
/* #define SHIFT_COUNT_TRUNCATED */
 
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
 
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
 
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
 
/* This machine doesn't use IEEE floats. */
 
#define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
 
/* Specify the cost of a branch insn; roughly the number of extra insns that
should be added to avoid a branch.
 
Branches are extremely cheap on the VAX while the shift insns often
used to replace branches can be expensive. */
 
#define BRANCH_COST 0
/* Tell final.c how to eliminate redundant test instructions. */
 
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). No extra ones are needed for the VAX. */
 
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
 
#define NOTICE_UPDATE_CC(EXP, INSN) \
vax_notice_update_cc ((EXP), (INSN))
 
#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
{ if (cc_status.flags & CC_NO_OVERFLOW) \
return NO_OV; \
return NORMAL; \
}
/* Control the assembler format that we output. */
 
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will end at
the end of the line. */
 
#define ASM_COMMENT_START "#"
 
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
 
#define ASM_APP_ON "#APP\n"
 
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
 
#define ASM_APP_OFF "#NO_APP\n"
 
/* Output before read-only data. */
 
#define TEXT_SECTION_ASM_OP "\t.text"
 
/* Output before writable data. */
 
#define DATA_SECTION_ASM_OP "\t.data"
 
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above).
The register names will be prefixed by REGISTER_PREFIX, if any. */
 
#define REGISTER_PREFIX ""
#define REGISTER_NAMES \
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc", }
 
/* This is BSD, so it wants DBX format. */
 
#define DBX_DEBUGGING_INFO 1
 
/* Do not break .stabs pseudos into continuations. */
 
#define DBX_CONTIN_LENGTH 0
 
/* This is the char to use for continuation (in case we need to turn
continuation back on). */
 
#define DBX_CONTIN_CHAR '?'
 
/* Don't use the `xsfoo;' construct in DBX output; this system
doesn't support it. */
 
#define DBX_NO_XREFS
 
/* Output the .stabs for a C `static' variable in the data section. */
#define DBX_STATIC_STAB_DATA_SECTION
 
/* VAX specific: which type character is used for type double? */
 
#define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
 
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
 
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP ".globl "
 
/* The prefix to add to user-visible assembler symbols. */
 
#define USER_LABEL_PREFIX "_"
 
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
 
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s%ld", PREFIX, (long)(NUM))
 
/* This is how to output an insn to push a register on the stack.
It need not be very fast code. */
 
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
 
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
 
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tmovl (%s)+,%s\n", reg_names[STACK_POINTER_REGNUM], \
reg_names[REGNO])
 
/* This is how to output an element of a case-vector that is absolute.
(The VAX does not use such vectors,
but we must define this macro anyway.) */
 
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
do \
{ \
char label[256]; \
ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));\
fprintf (FILE, "\t.long "); \
assemble_name (FILE, label); \
fprintf (FILE, "\n"); \
} \
while (0)
 
/* This is how to output an element of a case-vector that is relative. */
 
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do \
{ \
char label[256]; \
ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
fprintf (FILE, "\t.word "); \
assemble_name (FILE, label); \
ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
fprintf (FILE, "-"); \
assemble_name (FILE, label); \
fprintf (FILE, "\n"); \
} \
while (0)
 
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
 
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
fprintf (FILE, "\t.align %d\n", (LOG))
 
/* This is how to output an assembler line
that says to advance the location counter by SIZE bytes. */
 
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.space %u\n", (int)(SIZE))
 
/* This says how to output an assembler line
to define a global common symbol. */
 
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs (".comm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
 
/* This says how to output an assembler line
to define a local common symbol. */
 
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( fputs (".lcomm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
 
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
 
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
 
/* Print an instruction operand X on file FILE.
CODE is the code from the %-spec that requested printing this operand;
if `%z3' was used to print operand 3, then CODE is 'z'.
 
VAX operand formatting codes:
 
letter print
C reverse branch condition
D 64-bit immediate operand
B the low 8 bits of the complement of a constant operand
H the low 16 bits of the complement of a constant operand
M a mask for the N highest bits of a word
N the complement of a constant integer operand
P constant operand plus 1
R 32 - constant operand
b the low 8 bits of a negated constant operand
h the low 16 bits of a negated constant operand
# 'd' or 'g' depending on whether dfloat or gfloat is used
| register prefix */
 
/* The purpose of D is to get around a quirk or bug in VAX assembler
whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
which is not a 64-bit minus one. As a workaround, we output negative
values in hex. */
#if HOST_BITS_PER_WIDE_INT == 64
# define NEG_HWI_PRINT_HEX16 HOST_WIDE_INT_PRINT_HEX
#else
# define NEG_HWI_PRINT_HEX16 "0xffffffff%08lx"
#endif
 
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '#' || (CODE) == '|')
 
#define PRINT_OPERAND(FILE, X, CODE) \
{ if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
else if (CODE == '|') \
fputs (REGISTER_PREFIX, FILE); \
else if (CODE == 'C') \
fputs (rev_cond_name (X), FILE); \
else if (CODE == 'D' && CONST_INT_P (X) && INTVAL (X) < 0) \
fprintf (FILE, "$" NEG_HWI_PRINT_HEX16, INTVAL (X)); \
else if (CODE == 'P' && CONST_INT_P (X)) \
fprintf (FILE, "$" HOST_WIDE_INT_PRINT_DEC, INTVAL (X) + 1); \
else if (CODE == 'N' && CONST_INT_P (X)) \
fprintf (FILE, "$" HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (X)); \
/* rotl instruction cannot deal with negative arguments. */ \
else if (CODE == 'R' && CONST_INT_P (X)) \
fprintf (FILE, "$" HOST_WIDE_INT_PRINT_DEC, 32 - INTVAL (X)); \
else if (CODE == 'H' && CONST_INT_P (X)) \
fprintf (FILE, "$%d", (int) (0xffff & ~ INTVAL (X))); \
else if (CODE == 'h' && CONST_INT_P (X)) \
fprintf (FILE, "$%d", (short) - INTVAL (x)); \
else if (CODE == 'B' && CONST_INT_P (X)) \
fprintf (FILE, "$%d", (int) (0xff & ~ INTVAL (X))); \
else if (CODE == 'b' && CONST_INT_P (X)) \
fprintf (FILE, "$%d", (int) (0xff & - INTVAL (X))); \
else if (CODE == 'M' && CONST_INT_P (X)) \
fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
else if (REG_P (X)) \
fprintf (FILE, "%s", reg_names[REGNO (X)]); \
else if (MEM_P (X)) \
output_address (XEXP (X, 0)); \
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
{ char dstr[30]; \
real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (X), \
sizeof (dstr), 0, 1); \
fprintf (FILE, "$0f%s", dstr); } \
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
{ char dstr[30]; \
real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (X), \
sizeof (dstr), 0, 1); \
fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
else { putc ('$', FILE); output_addr_const (FILE, X); }}
 
/* Print a memory operand whose address is X, on file FILE.
This uses a function in output-vax.c. */
 
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
print_operand_address (FILE, ADDR)
 
/* This is a blatent lie. However, it's good enough, since we don't
actually have any code whatsoever for which this isn't overridden
by the proper FDE definition. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, PC_REGNUM)
 
/netbsd.h
0,0 → 1,47
/* Definitions of target machine for GNU compiler.
NetBSD/vax a.out version.
Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2007
Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
 
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
NETBSD_OS_CPP_BUILTINS_AOUT(); \
} \
while (0)
 
#undef CPP_SPEC
#define CPP_SPEC NETBSD_CPP_SPEC
 
/* Make gcc agree with <machine/ansi.h> */
 
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
 
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
 
/* Until they use ELF or something that handles dwarf2 unwinds
and initialization stuff better. Use sjlj exceptions. */
#undef DWARF2_UNWIND_INFO
 
/* We use gas, not the UNIX assembler. */
#undef TARGET_DEFAULT
#define TARGET_DEFAULT 0
/vax-protos.h
0,0 → 1,40
/* Definitions of target machine for GNU compiler. VAX version.
Copyright (C) 2000, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
extern void override_options (void);
 
extern int legitimate_constant_address_p (rtx);
extern int legitimate_constant_p (rtx);
extern int legitimate_address_p (enum machine_mode, rtx, int);
extern int vax_mode_dependent_address_p (rtx);
 
#ifdef RTX_CODE
extern const char *rev_cond_name (rtx);
extern void split_quadword_operands (rtx *, rtx *, int);
extern void print_operand_address (FILE *, rtx);
extern int vax_float_literal (rtx);
extern void vax_notice_update_cc (rtx, rtx);
extern const char * vax_output_int_move (rtx, rtx *, enum machine_mode);
extern const char * vax_output_int_add (rtx, rtx *, enum machine_mode);
extern const char * vax_output_conditional_branch (enum rtx_code);
#endif /* RTX_CODE */
 
#ifdef REAL_VALUE_TYPE
extern int check_float_value (enum machine_mode, REAL_VALUE_TYPE *, int);
#endif /* REAL_VALUE_TYPE */
/netbsd-elf.h
0,0 → 1,59
/* Definitions of target machine for GNU compiler,
for NetBSD/vax ELF systems.
Copyright (C) 2002, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* Names to predefine in the preprocessor for this target OS. */
#undef TARGET_OS_CPP_BUILTINS
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
NETBSD_OS_CPP_BUILTINS_ELF(); \
} \
while (0)
 
#undef CPP_SPEC
#define CPP_SPEC NETBSD_CPP_SPEC
 
#define NETBSD_ENTRY_POINT "__start"
 
#undef LINK_SPEC
#if 1
/* FIXME: We must link all executables statically until PIC support
is added to the compiler. */
#define LINK_SPEC \
"%{assert*} %{R*} %{rpath*} \
%{shared:%ethe -shared option is not currently supported for VAX ELF} \
%{!shared: \
-dc -dp \
%{!nostdlib: \
%{!r*: \
%{!e*:-e %(netbsd_entry_point)}}} \
%{!static:-static} \
%{static:-static}}"
#else
#define LINK_SPEC NETBSD_LINK_SPEC_ELF
#endif
 
#define EXTRA_SPECS \
{ "netbsd_entry_point", NETBSD_ENTRY_POINT },
 
/* We use gas, not the UNIX assembler. */
#undef TARGET_DEFAULT
#define TARGET_DEFAULT 0
 
/vaxv.h
0,0 → 1,65
/* Definitions of target machine for GNU compiler. VAX sysV version.
Copyright (C) 1988, 1993, 1996, 2000, 2002, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
builtin_define_std ("unix"); \
builtin_assert ("system=svr3"); \
\
builtin_define_std ("vax"); \
if (TARGET_G_FLOAT) \
builtin_define_std ("GFLOAT"); \
} \
while (0)
 
/* Output #ident as a .ident. */
 
#define ASM_OUTPUT_IDENT(FILE, NAME) fprintf (FILE, "\t.ident \"%s\"\n", NAME);
 
#undef DBX_DEBUGGING_INFO
#define SDB_DEBUGGING_INFO 1
 
#undef LIB_SPEC
 
/* The .file command should always begin the output. */
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
 
#undef ASM_OUTPUT_ALIGN
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
fprintf(FILE, "\t.align %d\n", 1 << (LOG))
 
#undef ASM_OUTPUT_LOCAL
#define ASM_OUTPUT_LOCAL(FILE,NAME,SIZE,ROUNDED) \
( switch_to_section (data_section), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ":\n\t.space %u\n", (int)(ROUNDED)))
 
#define ASM_OUTPUT_ASCII(FILE,PTR,LEN) \
do { \
const unsigned char *s = (const unsigned char *)(PTR);\
size_t i, limit = (LEN); \
for (i = 0; i < limit; s++, i++) \
{ \
if ((i % 8) == 0) \
fputs ("\n\t.byte\t", (FILE)); \
fprintf ((FILE), "%s0x%x", (i%8?",":""), (unsigned)*s); \
} \
fputs ("\n", (FILE)); \
} while (0)
/elf.h
0,0 → 1,89
/* Target definitions for GNU compiler for VAX using ELF
Copyright (C) 2002, 2004, 2005, 2007 Free Software Foundation, Inc.
Contributed by Matt Thomas <matt@3am-software.com>
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#undef TARGET_ELF
#define TARGET_ELF 1
 
#undef REGISTER_PREFIX
#undef REGISTER_NAMES
#define REGISTER_PREFIX "%"
#define REGISTER_NAMES \
{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
"%r8", "%r9", "%r10", "%r11", "%ap", "%fp", "%sp", "%pc", }
 
#undef SIZE_TYPE
#define SIZE_TYPE "long unsigned int"
 
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "long int"
 
/* Profiling routine. */
#undef VAX_FUNCTION_PROFILER_NAME
#define VAX_FUNCTION_PROFILER_NAME "__mcount"
 
/* Let's be re-entrant. */
#undef PCC_STATIC_STRUCT_RETURN
 
/* Before the prologue, the top of the frame is below the argument
count pushed by the CALLS and before the start of the saved registers. */
#define INCOMING_FRAME_SP_OFFSET 0
 
/* We use R2-R5 (call-clobbered) registers for exceptions. */
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 2 : INVALID_REGNUM)
 
/* Place the top of the stack for the DWARF2 EH stackadj value. */
#define EH_RETURN_STACKADJ_RTX \
gen_rtx_MEM (SImode, \
plus_constant (gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM),\
-4))
 
/* Simple store the return handler into the call frame. */
#define EH_RETURN_HANDLER_RTX \
gen_rtx_MEM (Pmode, \
plus_constant (gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM),\
16))
 
 
/* Reserve the top of the stack for exception handler stackadj value. */
#undef STARTING_FRAME_OFFSET
#define STARTING_FRAME_OFFSET -4
 
/* The VAX wants no space between the case instruction and the jump table. */
#undef ASM_OUTPUT_BEFORE_CASE_LABEL
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE)
 
#undef OVERRIDE_OPTIONS
#define OVERRIDE_OPTIONS \
do \
{ \
/* Do generic VAX overrides. */ \
override_options (); \
\
/* Turn off function CSE if we're doing PIC. */ \
if (flag_pic) \
flag_no_function_cse = 1; \
} \
while (0)
 
/* VAX ELF is always gas; override the generic VAX ASM_SPEC. */
 
#undef ASM_SPEC
#define ASM_SPEC ""
 
/ultrix.h
0,0 → 1,41
/* Output variables, constants and external declarations, for GNU compiler.
Copyright (C) 1999, 2002, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
 
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
builtin_define_std ("unix"); \
builtin_define_std ("ultrix"); \
builtin_define_std ("bsd4_2"); \
builtin_assert ("system=unix"); \
builtin_assert ("system=bsd"); \
\
builtin_define_std ("vax"); \
if (TARGET_G_FLOAT) \
builtin_define_std ("GFLOAT"); \
} \
while (0)
 
/* These are as defined in /usr/include/sys/stdtypes.h.
These values are for ultrix 4.2 on the VAX. */
#define SIZE_TYPE "unsigned int"
#define PTRDIFF_TYPE "int"
#define WCHAR_TYPE "unsigned int"
#define WCHAR_TYPE_SIZE 32
/vax.md
0,0 → 1,1555
;; Machine description for GNU compiler, VAX Version
;; Copyright (C) 1987, 1988, 1991, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
;; 2002, 2004, 2005, 2007 Free Software Foundation, Inc.
 
;; This file is part of GCC.
 
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
 
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
 
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
 
;;- Instruction patterns. When multiple patterns apply,
;;- the first one in the file is chosen.
;;-
;;- See file "rtl.def" for documentation on define_insn, match_*, et al.
;;-
;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code
;;- updates for most instructions.
 
;; UNSPEC_VOLATILE usage:
 
(define_constants
[(VUNSPEC_BLOCKAGE 0) ; `blockage' insn to prevent scheduling across an
; insn in the code.
(VUNSPEC_SYNC_ISTREAM 1) ; sequence of insns to sync the I-stream
(VAX_AP_REGNUM 12) ; Register 12 contains the argument pointer
(VAX_FP_REGNUM 13) ; Register 13 contains the frame pointer
(VAX_SP_REGNUM 14) ; Register 14 contains the stack pointer
(VAX_PC_REGNUM 15) ; Register 15 contains the program counter
]
)
 
;; Integer modes supported on VAX, with a mapping from machine mode
;; to mnemonic suffix. DImode is always a special case.
(define_mode_macro VAXint [QI HI SI])
(define_mode_attr isfx [(QI "b") (HI "w") (SI "l")])
 
;; Similar for float modes supported on VAX.
(define_mode_macro VAXfp [SF DF])
(define_mode_attr fsfx [(SF "f") (DF "%#")])
 
;; Some output patterns want integer immediates with a prefix...
(define_mode_attr iprefx [(QI "B") (HI "H") (SI "N")])
 
;; We don't want to allow a constant operand for test insns because
;; (set (cc0) (const_int foo)) has no mode information. Such insns will
;; be folded while optimizing anyway.
 
(define_insn "tst<mode>"
[(set (cc0)
(match_operand:VAXint 0 "nonimmediate_operand" "g"))]
""
"tst<VAXint:isfx> %0")
 
(define_insn "tst<mode>"
[(set (cc0)
(match_operand:VAXfp 0 "general_operand" "gF"))]
""
"tst<VAXfp:fsfx> %0")
 
(define_insn "cmp<mode>"
[(set (cc0)
(compare (match_operand:VAXint 0 "nonimmediate_operand" "g")
(match_operand:VAXint 1 "general_operand" "g")))]
""
"cmp<VAXint:isfx> %0,%1")
 
(define_insn "cmp<mode>"
[(set (cc0)
(compare (match_operand:VAXfp 0 "general_operand" "gF,gF")
(match_operand:VAXfp 1 "general_operand" "G,gF")))]
""
"@
tst<VAXfp:fsfx> %0
cmp<VAXfp:fsfx> %0,%1")
 
(define_insn "*bit<mode>"
[(set (cc0)
(and:VAXint (match_operand:VAXint 0 "general_operand" "g")
(match_operand:VAXint 1 "general_operand" "g")))]
""
"bit<VAXint:isfx> %0,%1")
 
;; The VAX has no sCOND insns. It does have add/subtract with carry
;; which could be used to implement the sltu and sgeu patterns. However,
;; to do this properly requires a complete rewrite of the compare insns
;; to keep them together with the sltu/sgeu insns until after the
;; reload pass is complete. The previous implementation didn't do this
;; and has been deleted.
 
(define_insn "mov<mode>"
[(set (match_operand:VAXfp 0 "nonimmediate_operand" "=g,g")
(match_operand:VAXfp 1 "general_operand" "G,gF"))]
""
"@
clr<VAXfp:fsfx> %0
mov<VAXfp:fsfx> %1,%0")
 
;; Some VAXen don't support this instruction.
;;(define_insn "movti"
;; [(set (match_operand:TI 0 "general_operand" "=g")
;; (match_operand:TI 1 "general_operand" "g"))]
;; ""
;; "movh %1,%0")
 
(define_insn "movdi"
[(set (match_operand:DI 0 "nonimmediate_operand" "=g,g")
(match_operand:DI 1 "general_operand" "I,g"))]
""
"@
clrq %0
movq %D1,%0")
 
;; The VAX move instructions have space-time tradeoffs. On a MicroVAX
;; register-register mov instructions take 3 bytes and 2 CPU cycles. clrl
;; takes 2 bytes and 3 cycles. mov from constant to register takes 2 cycles
;; if the constant is smaller than 4 bytes, 3 cycles for a longword
;; constant. movz, mneg, and mcom are as fast as mov, so movzwl is faster
;; than movl for positive constants that fit in 16 bits but not 6 bits. cvt
;; instructions take 4 cycles. inc takes 3 cycles. The machine description
;; is willing to trade 1 byte for 1 cycle (clrl instead of movl $0; cvtwl
;; instead of movl).
 
;; Cycle counts for other models may vary (on a VAX 750 they are similar,
;; but on a VAX 9000 most move and add instructions with one constant
;; operand take 1 cycle).
 
;; Loads of constants between 64 and 128 used to be done with
;; "addl3 $63,#,dst" but this is slower than movzbl and takes as much space.
 
(define_insn "mov<mode>"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g")
(match_operand:VAXint 1 "general_operand" "g"))]
""
"* return vax_output_int_move (insn, operands, <MODE>mode);")
 
(define_insn "movstricthi"
[(set (strict_low_part (match_operand:HI 0 "register_operand" "+g"))
(match_operand:HI 1 "general_operand" "g"))]
""
"*
{
if (CONST_INT_P (operands[1]))
{
int i = INTVAL (operands[1]);
if (i == 0)
return \"clrw %0\";
else if ((unsigned int)i < 64)
return \"movw %1,%0\";
else if ((unsigned int)~i < 64)
return \"mcomw %H1,%0\";
else if ((unsigned int)i < 256)
return \"movzbw %1,%0\";
}
return \"movw %1,%0\";
}")
 
(define_insn "movstrictqi"
[(set (strict_low_part (match_operand:QI 0 "register_operand" "+g"))
(match_operand:QI 1 "general_operand" "g"))]
""
"*
{
if (CONST_INT_P (operands[1]))
{
int i = INTVAL (operands[1]);
if (i == 0)
return \"clrb %0\";
else if ((unsigned int)~i < 64)
return \"mcomb %B1,%0\";
}
return \"movb %1,%0\";
}")
 
;; This is here to accept 4 arguments and pass the first 3 along
;; to the movmemhi1 pattern that really does the work.
(define_expand "movmemhi"
[(set (match_operand:BLK 0 "general_operand" "=g")
(match_operand:BLK 1 "general_operand" "g"))
(use (match_operand:HI 2 "general_operand" "g"))
(match_operand 3 "" "")]
""
"
emit_insn (gen_movmemhi1 (operands[0], operands[1], operands[2]));
DONE;
")
 
;; The definition of this insn does not really explain what it does,
;; but it should suffice
;; that anything generated as this insn will be recognized as one
;; and that it won't successfully combine with anything.
(define_insn "movmemhi1"
[(set (match_operand:BLK 0 "memory_operand" "=m")
(match_operand:BLK 1 "memory_operand" "m"))
(use (match_operand:HI 2 "general_operand" "g"))
(clobber (reg:SI 0))
(clobber (reg:SI 1))
(clobber (reg:SI 2))
(clobber (reg:SI 3))
(clobber (reg:SI 4))
(clobber (reg:SI 5))]
""
"movc3 %2,%1,%0")
;; Extension and truncation insns.
 
(define_insn "truncsiqi2"
[(set (match_operand:QI 0 "nonimmediate_operand" "=g")
(truncate:QI (match_operand:SI 1 "nonimmediate_operand" "g")))]
""
"cvtlb %1,%0")
 
(define_insn "truncsihi2"
[(set (match_operand:HI 0 "nonimmediate_operand" "=g")
(truncate:HI (match_operand:SI 1 "nonimmediate_operand" "g")))]
""
"cvtlw %1,%0")
 
(define_insn "trunchiqi2"
[(set (match_operand:QI 0 "nonimmediate_operand" "=g")
(truncate:QI (match_operand:HI 1 "nonimmediate_operand" "g")))]
""
"cvtwb %1,%0")
 
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "g")))]
""
"cvtwl %1,%0")
 
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "nonimmediate_operand" "=g")
(sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"cvtbw %1,%0")
 
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"cvtbl %1,%0")
 
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "nonimmediate_operand" "=g")
(float_extend:DF (match_operand:SF 1 "general_operand" "gF")))]
""
"cvtf%# %1,%0")
 
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "nonimmediate_operand" "=g")
(float_truncate:SF (match_operand:DF 1 "general_operand" "gF")))]
""
"cvt%#f %1,%0")
 
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "g")))]
""
"movzwl %1,%0")
 
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "nonimmediate_operand" "=g")
(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"movzbw %1,%0")
 
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"movzbl %1,%0")
;; Fix-to-float conversion insns.
 
(define_insn "float<VAXint:mode><VAXfp:mode>2"
[(set (match_operand:VAXfp 0 "nonimmediate_operand" "=g")
(float:VAXfp (match_operand:VAXint 1 "nonimmediate_operand" "g")))]
""
"cvt<VAXint:isfx><VAXfp:fsfx> %1,%0")
 
;; Float-to-fix conversion insns.
 
(define_insn "fix_trunc<VAXfp:mode><VAXint:mode>2"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g")
(fix:VAXint (fix:VAXfp (match_operand:VAXfp 1 "general_operand" "gF"))))]
""
"cvt<VAXfp:fsfx><VAXint:isfx> %1,%0")
;;- All kinds of add instructions.
 
(define_insn "add<mode>3"
[(set (match_operand:VAXfp 0 "nonimmediate_operand" "=g,g,g")
(plus:VAXfp (match_operand:VAXfp 1 "general_operand" "0,gF,gF")
(match_operand:VAXfp 2 "general_operand" "gF,0,gF")))]
""
"@
add<VAXfp:fsfx>2 %2,%0
add<VAXfp:fsfx>2 %1,%0
add<VAXfp:fsfx>3 %1,%2,%0")
 
(define_insn "add<mode>3"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g")
(plus:VAXint (match_operand:VAXint 1 "general_operand" "g")
(match_operand:VAXint 2 "general_operand" "g")))]
""
"* return vax_output_int_add (insn, operands, <MODE>mode);")
 
;; The add-with-carry (adwc) instruction only accepts two operands.
(define_insn "adddi3"
[(set (match_operand:DI 0 "nonimmediate_operand" "=ro>,ro>")
(plus:DI (match_operand:DI 1 "general_operand" "%0,ro>")
(match_operand:DI 2 "general_operand" "Fro,F")))]
""
"*
{
rtx low[3];
const char *pattern;
int carry = 1;
 
split_quadword_operands (operands, low, 3);
/* Add low parts. */
if (rtx_equal_p (operands[0], operands[1]))
{
if (low[2] == const0_rtx)
/* Should examine operand, punt if not POST_INC. */
pattern = \"tstl %0\", carry = 0;
else if (low[2] == const1_rtx)
pattern = \"incl %0\";
else
pattern = \"addl2 %2,%0\";
}
else
{
if (low[2] == const0_rtx)
pattern = \"movl %1,%0\", carry = 0;
else
pattern = \"addl3 %2,%1,%0\";
}
if (pattern)
output_asm_insn (pattern, low);
if (!carry)
/* If CARRY is 0, we don't have any carry value to worry about. */
return get_insn_template (CODE_FOR_addsi3, insn);
/* %0 = C + %1 + %2 */
if (!rtx_equal_p (operands[0], operands[1]))
output_asm_insn ((operands[1] == const0_rtx
? \"clrl %0\"
: \"movl %1,%0\"), operands);
return \"adwc %2,%0\";
}")
;;- All kinds of subtract instructions.
 
(define_insn "sub<mode>3"
[(set (match_operand:VAXfp 0 "nonimmediate_operand" "=g,g")
(minus:VAXfp (match_operand:VAXfp 1 "general_operand" "0,gF")
(match_operand:VAXfp 2 "general_operand" "gF,gF")))]
""
"@
sub<VAXfp:fsfx>2 %2,%0
sub<VAXfp:fsfx>3 %2,%1,%0")
 
(define_insn "sub<mode>3"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g,g")
(minus:VAXint (match_operand:VAXint 1 "general_operand" "0,g")
(match_operand:VAXint 2 "general_operand" "g,g")))]
""
"@
sub<VAXint:isfx>2 %2,%0
sub<VAXint:isfx>3 %2,%1,%0")
 
;; The subtract-with-carry (sbwc) instruction only takes two operands.
(define_insn "subdi3"
[(set (match_operand:DI 0 "nonimmediate_operand" "=or>,or>")
(minus:DI (match_operand:DI 1 "general_operand" "0,or>")
(match_operand:DI 2 "general_operand" "For,F")))]
""
"*
{
rtx low[3];
const char *pattern;
int carry = 1;
 
split_quadword_operands (operands, low, 3);
/* Subtract low parts. */
if (rtx_equal_p (operands[0], operands[1]))
{
if (low[2] == const0_rtx)
pattern = 0, carry = 0;
else if (low[2] == constm1_rtx)
pattern = \"decl %0\";
else
pattern = \"subl2 %2,%0\";
}
else
{
if (low[2] == constm1_rtx)
pattern = \"decl %0\";
else if (low[2] == const0_rtx)
pattern = get_insn_template (CODE_FOR_movsi, insn), carry = 0;
else
pattern = \"subl3 %2,%1,%0\";
}
if (pattern)
output_asm_insn (pattern, low);
if (carry)
{
if (!rtx_equal_p (operands[0], operands[1]))
return \"movl %1,%0\;sbwc %2,%0\";
return \"sbwc %2,%0\";
/* %0 = %2 - %1 - C */
}
return get_insn_template (CODE_FOR_subsi3, insn);
}")
;;- Multiply instructions.
 
(define_insn "mul<mode>3"
[(set (match_operand:VAXfp 0 "nonimmediate_operand" "=g,g,g")
(mult:VAXfp (match_operand:VAXfp 1 "general_operand" "0,gF,gF")
(match_operand:VAXfp 2 "general_operand" "gF,0,gF")))]
""
"@
mul<VAXfp:fsfx>2 %2,%0
mul<VAXfp:fsfx>2 %1,%0
mul<VAXfp:fsfx>3 %1,%2,%0")
 
(define_insn "mul<mode>3"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g,g,g")
(mult:VAXint (match_operand:VAXint 1 "general_operand" "0,g,g")
(match_operand:VAXint 2 "general_operand" "g,0,g")))]
""
"@
mul<VAXint:isfx>2 %2,%0
mul<VAXint:isfx>2 %1,%0
mul<VAXint:isfx>3 %1,%2,%0")
 
(define_insn "mulsidi3"
[(set (match_operand:DI 0 "nonimmediate_operand" "=g")
(mult:DI (sign_extend:DI
(match_operand:SI 1 "nonimmediate_operand" "g"))
(sign_extend:DI
(match_operand:SI 2 "nonimmediate_operand" "g"))))]
""
"emul %1,%2,$0,%0")
 
(define_insn ""
[(set (match_operand:DI 0 "nonimmediate_operand" "=g")
(plus:DI
(mult:DI (sign_extend:DI
(match_operand:SI 1 "nonimmediate_operand" "g"))
(sign_extend:DI
(match_operand:SI 2 "nonimmediate_operand" "g")))
(sign_extend:DI (match_operand:SI 3 "nonimmediate_operand" "g"))))]
""
"emul %1,%2,%3,%0")
 
;; 'F' constraint means type CONST_DOUBLE
(define_insn ""
[(set (match_operand:DI 0 "nonimmediate_operand" "=g")
(plus:DI
(mult:DI (sign_extend:DI
(match_operand:SI 1 "nonimmediate_operand" "g"))
(sign_extend:DI
(match_operand:SI 2 "nonimmediate_operand" "g")))
(match_operand:DI 3 "immediate_operand" "F")))]
"GET_CODE (operands[3]) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (operands[3]) == (CONST_DOUBLE_LOW (operands[3]) >> 31)"
"*
{
if (CONST_DOUBLE_HIGH (operands[3]))
operands[3] = GEN_INT (CONST_DOUBLE_LOW (operands[3]));
return \"emul %1,%2,%3,%0\";
}")
;;- Divide instructions.
 
(define_insn "div<mode>3"
[(set (match_operand:VAXfp 0 "nonimmediate_operand" "=g,g")
(div:VAXfp (match_operand:VAXfp 1 "general_operand" "0,gF")
(match_operand:VAXfp 2 "general_operand" "gF,gF")))]
""
"@
div<VAXfp:fsfx>2 %2,%0
div<VAXfp:fsfx>3 %2,%1,%0")
 
(define_insn "div<mode>3"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g,g")
(div:VAXint (match_operand:VAXint 1 "general_operand" "0,g")
(match_operand:VAXint 2 "general_operand" "g,g")))]
""
"@
div<VAXint:isfx>2 %2,%0
div<VAXint:isfx>3 %2,%1,%0")
 
;This is left out because it is very slow;
;we are better off programming around the "lack" of this insn.
;(define_insn "divmoddisi4"
; [(set (match_operand:SI 0 "general_operand" "=g")
; (div:SI (match_operand:DI 1 "general_operand" "g")
; (match_operand:SI 2 "general_operand" "g")))
; (set (match_operand:SI 3 "general_operand" "=g")
; (mod:SI (match_operand:DI 1 "general_operand" "g")
; (match_operand:SI 2 "general_operand" "g")))]
; ""
; "ediv %2,%1,%0,%3")
;; Bit-and on the VAX is done with a clear-bits insn.
(define_expand "and<mode>3"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "")
(and:VAXint (not:VAXint (match_operand:VAXint 1 "general_operand" ""))
(match_operand:VAXint 2 "general_operand" "")))]
""
"
{
rtx op1 = operands[1];
 
/* If there is a constant argument, complement that one. */
if (CONST_INT_P (operands[2]) && !CONST_INT_P (op1))
{
operands[1] = operands[2];
operands[2] = op1;
op1 = operands[1];
}
 
if (CONST_INT_P (op1))
operands[1] = GEN_INT (~INTVAL (op1));
else
operands[1] = expand_unop (<MODE>mode, one_cmpl_optab, op1, 0, 1);
}")
 
(define_insn "*and<mode>"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g,g")
(and:VAXint (not:VAXint (match_operand:VAXint 1 "general_operand" "g,g"))
(match_operand:VAXint 2 "general_operand" "0,g")))]
""
"@
bic<VAXint:isfx>2 %1,%0
bic<VAXint:isfx>3 %1,%2,%0")
 
;; The following used to be needed because constant propagation can
;; create them starting from the bic insn patterns above. This is no
;; longer a problem. However, having these patterns allows optimization
;; opportunities in combine.c.
 
(define_insn "*and<mode>_const_int"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g,g")
(and:VAXint (match_operand:VAXint 1 "general_operand" "0,g")
(match_operand:VAXint 2 "const_int_operand" "n,n")))]
""
"@
bic<VAXint:isfx>2 %<VAXint:iprefx>2,%0
bic<VAXint:isfx>3 %<VAXint:iprefx>2,%1,%0")
 
;;- Bit set instructions.
 
(define_insn "ior<mode>3"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g,g,g")
(ior:VAXint (match_operand:VAXint 1 "general_operand" "0,g,g")
(match_operand:VAXint 2 "general_operand" "g,0,g")))]
""
"@
bis<VAXint:isfx>2 %2,%0
bis<VAXint:isfx>2 %1,%0
bis<VAXint:isfx>3 %2,%1,%0")
 
;;- xor instructions.
 
(define_insn "xor<mode>3"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g,g,g")
(xor:VAXint (match_operand:VAXint 1 "general_operand" "0,g,g")
(match_operand:VAXint 2 "general_operand" "g,0,g")))]
""
"@
xor<VAXint:isfx>2 %2,%0
xor<VAXint:isfx>2 %1,%0
xor<VAXint:isfx>3 %2,%1,%0")
 
(define_insn "neg<mode>2"
[(set (match_operand:VAXfp 0 "nonimmediate_operand" "=g")
(neg:VAXfp (match_operand:VAXfp 1 "general_operand" "gF")))]
""
"mneg<VAXfp:fsfx> %1,%0")
 
(define_insn "neg<mode>2"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g")
(neg:VAXint (match_operand:VAXint 1 "general_operand" "g")))]
""
"mneg<VAXint:isfx> %1,%0")
 
(define_insn "one_cmpl<mode>2"
[(set (match_operand:VAXint 0 "nonimmediate_operand" "=g")
(not:VAXint (match_operand:VAXint 1 "general_operand" "g")))]
""
"mcom<VAXint:isfx> %1,%0")
 
;; Arithmetic right shift on the VAX works by negating the shift count,
;; then emitting a right shift with the shift count negated. This means
;; that all actual shift counts in the RTL will be positive. This
;; prevents converting shifts to ZERO_EXTRACTs with negative positions,
;; which isn't valid.
(define_expand "ashrsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"
{
if (!CONST_INT_P (operands[2]))
operands[2] = gen_rtx_NEG (QImode, negate_rtx (QImode, operands[2]));
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "const_int_operand" "n")))]
""
"ashl $%n2,%1,%0")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "g")
(neg:QI (match_operand:QI 2 "general_operand" "g"))))]
""
"ashl %2,%1,%0")
 
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(ashift:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"*
{
if (operands[2] == const1_rtx && rtx_equal_p (operands[0], operands[1]))
return \"addl2 %0,%0\";
if (REG_P (operands[1])
&& CONST_INT_P (operands[2]))
{
int i = INTVAL (operands[2]);
if (i == 1)
return \"addl3 %1,%1,%0\";
if (i == 2)
return \"moval 0[%1],%0\";
if (i == 3)
return \"movad 0[%1],%0\";
}
return \"ashl %2,%1,%0\";
}")
 
;; Arithmetic right shift on the VAX works by negating the shift count.
(define_expand "ashrdi3"
[(set (match_operand:DI 0 "general_operand" "=g")
(ashiftrt:DI (match_operand:DI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"
{
operands[2] = gen_rtx_NEG (QImode, negate_rtx (QImode, operands[2]));
}")
 
(define_insn "ashldi3"
[(set (match_operand:DI 0 "nonimmediate_operand" "=g")
(ashift:DI (match_operand:DI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"ashq %2,%1,%0")
 
(define_insn ""
[(set (match_operand:DI 0 "nonimmediate_operand" "=g")
(ashiftrt:DI (match_operand:DI 1 "general_operand" "g")
(neg:QI (match_operand:QI 2 "general_operand" "g"))))]
""
"ashq %2,%1,%0")
 
;; We used to have expand_shift handle logical right shifts by using extzv,
;; but this make it very difficult to do lshrdi3. Since the VAX is the
;; only machine with this kludge, it's better to just do this with a
;; define_expand and remove that case from expand_shift.
 
(define_expand "lshrsi3"
[(set (match_dup 3)
(minus:QI (const_int 32)
(match_dup 4)))
(set (match_operand:SI 0 "general_operand" "=g")
(zero_extract:SI (match_operand:SI 1 "register_operand" "r")
(match_dup 3)
(match_operand:SI 2 "register_operand" "g")))]
""
"
{
operands[3] = gen_reg_rtx (QImode);
operands[4] = gen_lowpart (QImode, operands[2]);
}")
 
;; Rotate right on the VAX works by negating the shift count.
(define_expand "rotrsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(rotatert:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"
{
if (!CONST_INT_P (operands[2]))
operands[2] = gen_rtx_NEG (QImode, negate_rtx (QImode, operands[2]));
}")
 
(define_insn "rotlsi3"
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(rotate:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"rotl %2,%1,%0")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(rotatert:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "const_int_operand" "n")))]
""
"rotl %R2,%1,%0")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(rotatert:SI (match_operand:SI 1 "general_operand" "g")
(neg:QI (match_operand:QI 2 "general_operand" "g"))))]
""
"rotl %2,%1,%0")
 
;This insn is probably slower than a multiply and an add.
;(define_insn ""
; [(set (match_operand:SI 0 "general_operand" "=g")
; (mult:SI (plus:SI (match_operand:SI 1 "general_operand" "g")
; (match_operand:SI 2 "general_operand" "g"))
; (match_operand:SI 3 "general_operand" "g")))]
; ""
; "index %1,$0x80000000,$0x7fffffff,%3,%2,%0")
;; Special cases of bit-field insns which we should
;; recognize in preference to the general case.
;; These handle aligned 8-bit and 16-bit fields,
;; which can usually be done with move instructions.
 
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+ro")
(match_operand:QI 1 "const_int_operand" "n")
(match_operand:SI 2 "const_int_operand" "n"))
(match_operand:SI 3 "general_operand" "g"))]
"(INTVAL (operands[1]) == 8 || INTVAL (operands[1]) == 16)
&& INTVAL (operands[2]) % INTVAL (operands[1]) == 0
&& (REG_P (operands[0])
|| !mode_dependent_address_p (XEXP (operands[0], 0)))"
"*
{
if (REG_P (operands[0]))
{
if (INTVAL (operands[2]) != 0)
return \"insv %3,%2,%1,%0\";
}
else
operands[0]
= adjust_address (operands[0],
INTVAL (operands[1]) == 8 ? QImode : HImode,
INTVAL (operands[2]) / 8);
 
CC_STATUS_INIT;
if (INTVAL (operands[1]) == 8)
return \"movb %3,%0\";
return \"movw %3,%0\";
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=&g")
(zero_extract:SI (match_operand:SI 1 "register_operand" "ro")
(match_operand:QI 2 "const_int_operand" "n")
(match_operand:SI 3 "const_int_operand" "n")))]
"(INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16)
&& INTVAL (operands[3]) % INTVAL (operands[2]) == 0
&& (REG_P (operands[1])
|| !mode_dependent_address_p (XEXP (operands[1], 0)))"
"*
{
if (REG_P (operands[1]))
{
if (INTVAL (operands[3]) != 0)
return \"extzv %3,%2,%1,%0\";
}
else
operands[1]
= adjust_address (operands[1],
INTVAL (operands[2]) == 8 ? QImode : HImode,
INTVAL (operands[3]) / 8);
 
if (INTVAL (operands[2]) == 8)
return \"movzbl %1,%0\";
return \"movzwl %1,%0\";
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(sign_extract:SI (match_operand:SI 1 "register_operand" "ro")
(match_operand:QI 2 "const_int_operand" "n")
(match_operand:SI 3 "const_int_operand" "n")))]
"(INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16)
&& INTVAL (operands[3]) % INTVAL (operands[2]) == 0
&& (REG_P (operands[1])
|| !mode_dependent_address_p (XEXP (operands[1], 0)))"
"*
{
if (REG_P (operands[1]))
{
if (INTVAL (operands[3]) != 0)
return \"extv %3,%2,%1,%0\";
}
else
operands[1]
= adjust_address (operands[1],
INTVAL (operands[2]) == 8 ? QImode : HImode,
INTVAL (operands[3]) / 8);
 
if (INTVAL (operands[2]) == 8)
return \"cvtbl %1,%0\";
return \"cvtwl %1,%0\";
}")
;; Register-only SImode cases of bit-field insns.
 
(define_insn ""
[(set (cc0)
(compare
(sign_extract:SI (match_operand:SI 0 "register_operand" "r")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g")))]
""
"cmpv %2,%1,%0,%3")
 
(define_insn ""
[(set (cc0)
(compare
(zero_extract:SI (match_operand:SI 0 "register_operand" "r")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g")))]
""
"cmpzv %2,%1,%0,%3")
 
;; When the field position and size are constant and the destination
;; is a register, extv and extzv are much slower than a rotate followed
;; by a bicl or sign extension. Because we might end up choosing ext[z]v
;; anyway, we can't allow immediate values for the primary source operand.
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(sign_extract:SI (match_operand:SI 1 "register_operand" "ro")
(match_operand:QI 2 "general_operand" "g")
(match_operand:SI 3 "general_operand" "g")))]
""
"*
{
if (!CONST_INT_P (operands[3])
|| !CONST_INT_P (operands[2])
|| !REG_P (operands[0])
|| (INTVAL (operands[2]) != 8 && INTVAL (operands[2]) != 16))
return \"extv %3,%2,%1,%0\";
if (INTVAL (operands[2]) == 8)
return \"rotl %R3,%1,%0\;cvtbl %0,%0\";
return \"rotl %R3,%1,%0\;cvtwl %0,%0\";
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(zero_extract:SI (match_operand:SI 1 "register_operand" "ro")
(match_operand:QI 2 "general_operand" "g")
(match_operand:SI 3 "general_operand" "g")))]
""
"*
{
if (!CONST_INT_P (operands[3])
|| !CONST_INT_P (operands[2])
|| !REG_P (operands[0]))
return \"extzv %3,%2,%1,%0\";
if (INTVAL (operands[2]) == 8)
return \"rotl %R3,%1,%0\;movzbl %0,%0\";
if (INTVAL (operands[2]) == 16)
return \"rotl %R3,%1,%0\;movzwl %0,%0\";
if (INTVAL (operands[3]) & 31)
return \"rotl %R3,%1,%0\;bicl2 %M2,%0\";
if (rtx_equal_p (operands[0], operands[1]))
return \"bicl2 %M2,%0\";
return \"bicl3 %M2,%1,%0\";
}")
 
;; Non-register cases.
;; nonimmediate_operand is used to make sure that mode-ambiguous cases
;; don't match these (and therefore match the cases above instead).
 
(define_insn ""
[(set (cc0)
(compare
(sign_extract:SI (match_operand:QI 0 "memory_operand" "m")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g")))]
""
"cmpv %2,%1,%0,%3")
 
(define_insn ""
[(set (cc0)
(compare
(zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "rm")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g")))]
""
"cmpzv %2,%1,%0,%3")
 
(define_insn "extv"
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(sign_extract:SI (match_operand:QI 1 "memory_operand" "m")
(match_operand:QI 2 "general_operand" "g")
(match_operand:SI 3 "general_operand" "g")))]
""
"*
{
if (!REG_P (operands[0])
|| !CONST_INT_P (operands[2])
|| !CONST_INT_P (operands[3])
|| (INTVAL (operands[2]) != 8 && INTVAL (operands[2]) != 16)
|| INTVAL (operands[2]) + INTVAL (operands[3]) > 32
|| side_effects_p (operands[1])
|| (MEM_P (operands[1])
&& mode_dependent_address_p (XEXP (operands[1], 0))))
return \"extv %3,%2,%1,%0\";
if (INTVAL (operands[2]) == 8)
return \"rotl %R3,%1,%0\;cvtbl %0,%0\";
return \"rotl %R3,%1,%0\;cvtwl %0,%0\";
}")
 
(define_expand "extzv"
[(set (match_operand:SI 0 "general_operand" "")
(zero_extract:SI (match_operand:SI 1 "general_operand" "")
(match_operand:QI 2 "general_operand" "")
(match_operand:SI 3 "general_operand" "")))]
""
"")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(zero_extract:SI (match_operand:QI 1 "memory_operand" "m")
(match_operand:QI 2 "general_operand" "g")
(match_operand:SI 3 "general_operand" "g")))]
""
"*
{
if (!REG_P (operands[0])
|| !CONST_INT_P (operands[2])
|| !CONST_INT_P (operands[3])
|| INTVAL (operands[2]) + INTVAL (operands[3]) > 32
|| side_effects_p (operands[1])
|| (MEM_P (operands[1])
&& mode_dependent_address_p (XEXP (operands[1], 0))))
return \"extzv %3,%2,%1,%0\";
if (INTVAL (operands[2]) == 8)
return \"rotl %R3,%1,%0\;movzbl %0,%0\";
if (INTVAL (operands[2]) == 16)
return \"rotl %R3,%1,%0\;movzwl %0,%0\";
return \"rotl %R3,%1,%0\;bicl2 %M2,%0\";
}")
 
(define_expand "insv"
[(set (zero_extract:SI (match_operand:SI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" ""))
(match_operand:SI 3 "general_operand" ""))]
""
"")
 
(define_insn ""
[(set (zero_extract:SI (match_operand:QI 0 "memory_operand" "+g")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g"))]
""
"insv %3,%2,%1,%0")
 
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g"))]
""
"insv %3,%2,%1,%0")
;; Unconditional jump
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jbr %l0")
 
;; Conditional jumps
(define_code_macro any_cond [eq ne gt lt gtu ltu ge le geu leu])
 
(define_insn "b<code>"
[(set (pc)
(if_then_else (any_cond (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"* return vax_output_conditional_branch (<CODE>);")
 
;; Recognize reversed jumps.
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(cc0)
(const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))))]
""
"j%C0 %l1") ; %C0 negates condition
;; Recognize jbs, jlbs, jbc and jlbc instructions. Note that the operand
;; of jlbs and jlbc insns are SImode in the hardware. However, if it is
;; memory, we use QImode in the insn. So we can't use those instructions
;; for mode-dependent addresses.
 
(define_insn ""
[(set (pc)
(if_then_else
(ne (zero_extract:SI (match_operand:QI 0 "memory_operand" "Q,g")
(const_int 1)
(match_operand:SI 1 "general_operand" "I,g"))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"@
jlbs %0,%l2
jbs %1,%0,%l2")
 
(define_insn ""
[(set (pc)
(if_then_else
(eq (zero_extract:SI (match_operand:QI 0 "memory_operand" "Q,g")
(const_int 1)
(match_operand:SI 1 "general_operand" "I,g"))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"@
jlbc %0,%l2
jbc %1,%0,%l2")
 
(define_insn ""
[(set (pc)
(if_then_else
(ne (zero_extract:SI (match_operand:SI 0 "register_operand" "r,r")
(const_int 1)
(match_operand:SI 1 "general_operand" "I,g"))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"@
jlbs %0,%l2
jbs %1,%0,%l2")
 
(define_insn ""
[(set (pc)
(if_then_else
(eq (zero_extract:SI (match_operand:SI 0 "register_operand" "r,r")
(const_int 1)
(match_operand:SI 1 "general_operand" "I,g"))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"@
jlbc %0,%l2
jbc %1,%0,%l2")
;; Subtract-and-jump and Add-and-jump insns.
;; These are not used when output is for the Unix assembler
;; because it does not know how to modify them to reach far.
 
;; Normal sob insns.
 
(define_insn ""
[(set (pc)
(if_then_else
(gt (plus:SI (match_operand:SI 0 "nonimmediate_operand" "+g")
(const_int -1))
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"!TARGET_UNIX_ASM"
"jsobgtr %0,%l1")
 
(define_insn ""
[(set (pc)
(if_then_else
(ge (plus:SI (match_operand:SI 0 "nonimmediate_operand" "+g")
(const_int -1))
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"!TARGET_UNIX_ASM"
"jsobgeq %0,%l1")
 
;; Normal aob insns. Define a version for when operands[1] is a constant.
(define_insn ""
[(set (pc)
(if_then_else
(lt (plus:SI (match_operand:SI 0 "nonimmediate_operand" "+g")
(const_int 1))
(match_operand:SI 1 "general_operand" "g"))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int 1)))]
"!TARGET_UNIX_ASM"
"jaoblss %1,%0,%l2")
 
(define_insn ""
[(set (pc)
(if_then_else
(lt (match_operand:SI 0 "nonimmediate_operand" "+g")
(match_operand:SI 1 "general_operand" "g"))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int 1)))]
"!TARGET_UNIX_ASM && CONST_INT_P (operands[1])"
"jaoblss %P1,%0,%l2")
 
(define_insn ""
[(set (pc)
(if_then_else
(le (plus:SI (match_operand:SI 0 "nonimmediate_operand" "+g")
(const_int 1))
(match_operand:SI 1 "general_operand" "g"))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int 1)))]
"!TARGET_UNIX_ASM"
"jaobleq %1,%0,%l2")
 
(define_insn ""
[(set (pc)
(if_then_else
(le (match_operand:SI 0 "nonimmediate_operand" "+g")
(match_operand:SI 1 "general_operand" "g"))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int 1)))]
"!TARGET_UNIX_ASM && CONST_INT_P (operands[1])"
"jaobleq %P1,%0,%l2")
 
;; Something like a sob insn, but compares against -1.
;; This finds `while (foo--)' which was changed to `while (--foo != -1)'.
 
(define_insn ""
[(set (pc)
(if_then_else
(ne (match_operand:SI 0 "nonimmediate_operand" "+g")
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
""
"decl %0\;jgequ %l1")
(define_expand "call_pop"
[(parallel [(call (match_operand:QI 0 "memory_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(set (reg:SI VAX_SP_REGNUM)
(plus:SI (reg:SI VAX_SP_REGNUM)
(match_operand:SI 3 "immediate_operand" "")))])]
""
{
gcc_assert (INTVAL (operands[3]) <= 255 * 4 && INTVAL (operands[3]) % 4 == 0);
 
/* Operand 1 is the number of bytes to be popped by DW_CFA_GNU_args_size
during EH unwinding. We must include the argument count pushed by
the calls instruction. */
operands[1] = GEN_INT (INTVAL (operands[3]) + 4);
})
 
(define_insn "*call_pop"
[(call (match_operand:QI 0 "memory_operand" "m")
(match_operand:SI 1 "const_int_operand" "n"))
(set (reg:SI VAX_SP_REGNUM) (plus:SI (reg:SI VAX_SP_REGNUM)
(match_operand:SI 2 "immediate_operand" "i")))]
""
{
operands[1] = GEN_INT ((INTVAL (operands[1]) - 4) / 4);
return "calls %1,%0";
})
 
(define_expand "call_value_pop"
[(parallel [(set (match_operand 0 "" "")
(call (match_operand:QI 1 "memory_operand" "")
(match_operand:SI 2 "const_int_operand" "")))
(set (reg:SI VAX_SP_REGNUM)
(plus:SI (reg:SI VAX_SP_REGNUM)
(match_operand:SI 4 "immediate_operand" "")))])]
""
{
gcc_assert (INTVAL (operands[4]) <= 255 * 4 && INTVAL (operands[4]) % 4 == 0);
 
/* Operand 2 is the number of bytes to be popped by DW_CFA_GNU_args_size
during EH unwinding. We must include the argument count pushed by
the calls instruction. */
operands[2] = GEN_INT (INTVAL (operands[4]) + 4);
})
 
(define_insn "*call_value_pop"
[(set (match_operand 0 "" "")
(call (match_operand:QI 1 "memory_operand" "m")
(match_operand:SI 2 "const_int_operand" "n")))
(set (reg:SI VAX_SP_REGNUM) (plus:SI (reg:SI VAX_SP_REGNUM)
(match_operand:SI 3 "immediate_operand" "i")))]
""
"*
{
operands[2] = GEN_INT ((INTVAL (operands[2]) - 4) / 4);
return \"calls %2,%1\";
}")
 
(define_expand "call"
[(call (match_operand:QI 0 "memory_operand" "")
(match_operand:SI 1 "const_int_operand" ""))]
""
"
{
/* Operand 1 is the number of bytes to be popped by DW_CFA_GNU_args_size
during EH unwinding. We must include the argument count pushed by
the calls instruction. */
operands[1] = GEN_INT (INTVAL (operands[1]) + 4);
}")
 
(define_insn "*call"
[(call (match_operand:QI 0 "memory_operand" "m")
(match_operand:SI 1 "const_int_operand" ""))]
""
"calls $0,%0")
 
(define_expand "call_value"
[(set (match_operand 0 "" "")
(call (match_operand:QI 1 "memory_operand" "")
(match_operand:SI 2 "const_int_operand" "")))]
""
"
{
/* Operand 2 is the number of bytes to be popped by DW_CFA_GNU_args_size
during EH unwinding. We must include the argument count pushed by
the calls instruction. */
operands[2] = GEN_INT (INTVAL (operands[2]) + 4);
}")
 
(define_insn "*call_value"
[(set (match_operand 0 "" "")
(call (match_operand:QI 1 "memory_operand" "m")
(match_operand:SI 2 "const_int_operand" "")))]
""
"calls $0,%1")
 
;; Call subroutine returning any type.
 
(define_expand "untyped_call"
[(parallel [(call (match_operand 0 "" "")
(const_int 0))
(match_operand 1 "" "")
(match_operand 2 "" "")])]
""
"
{
int i;
 
emit_call_insn (gen_call_pop (operands[0], const0_rtx, NULL, const0_rtx));
 
for (i = 0; i < XVECLEN (operands[2], 0); i++)
{
rtx set = XVECEXP (operands[2], 0, i);
emit_move_insn (SET_DEST (set), SET_SRC (set));
}
 
/* The optimizer does not know that the call sets the function value
registers we stored in the result block. We avoid problems by
claiming that all hard registers are used and clobbered at this
point. */
emit_insn (gen_blockage ());
 
DONE;
}")
 
;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
;; all of memory. This blocks insns from being moved across this point.
 
(define_insn "blockage"
[(unspec_volatile [(const_int 0)] VUNSPEC_BLOCKAGE)]
""
"")
 
(define_insn "return"
[(return)]
""
"ret")
 
(define_expand "epilogue"
[(return)]
""
"
{
emit_jump_insn (gen_return ());
DONE;
}")
 
(define_insn "nop"
[(const_int 0)]
""
"nop")
 
;; This had a wider constraint once, and it had trouble.
;; If you are tempted to try `g', please don't--it's not worth
;; the risk we will reopen the same bug.
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))]
""
"jmp (%0)")
 
;; This is here to accept 5 arguments (as passed by expand_end_case)
;; and pass the first 4 along to the casesi1 pattern that really does
;; the actual casesi work. We emit a jump here to the default label
;; _before_ the casesi so that we can be sure that the casesi never
;; drops through.
;; This is suboptimal perhaps, but so is much of the rest of this
;; machine description. For what it's worth, HPPA uses the same trick.
;;
;; operand 0 is index
;; operand 1 is the minimum bound (a const_int)
;; operand 2 is the maximum bound - minimum bound + 1 (also a const_int)
;; operand 3 is CODE_LABEL for the table;
;; operand 4 is the CODE_LABEL to go to if index out of range (ie. default).
;;
;; We emit:
;; i = index - minimum_bound
;; if (i > (maximum_bound - minimum_bound + 1) goto default;
;; casesi (i, 0, table);
;;
(define_expand "casesi"
[(match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")
(match_operand 3 "" "")
(match_operand 4 "" "")]
""
{
/* i = index - minimum_bound;
But only if the lower bound is not already zero. */
if (operands[1] != const0_rtx)
{
rtx index = gen_reg_rtx (SImode);
emit_insn (gen_addsi3 (index,
operands[0],
GEN_INT (-INTVAL (operands[1]))));
operands[0] = index;
}
 
/* if (i > (maximum_bound - minimum_bound + 1) goto default; */
emit_insn (gen_cmpsi (operands[0], operands[2]));
emit_jump_insn (gen_bgtu (operands[4]));
 
/* casesi (i, 0, table); */
emit_jump_insn (gen_casesi1 (operands[0], operands[2], operands[3]));
DONE;
})
 
;; This insn is a bit of a lier. It actually falls through if no case
;; matches. But, we prevent that from ever happening by emitting a jump
;; before this, see the define_expand above.
(define_insn "casesi1"
[(match_operand:SI 1 "const_int_operand" "n")
(set (pc)
(plus:SI (sign_extend:SI
(mem:HI (plus:SI (mult:SI (match_operand:SI 0 "general_operand" "g")
(const_int 2))
(pc))))
(label_ref:SI (match_operand 2 "" ""))))]
""
"casel %0,$0,%1")
;;- load or push effective address
;; These come after the move and add/sub patterns
;; because we don't want pushl $1 turned into pushad 1.
;; or addl3 r1,r2,r3 turned into movab 0(r1)[r2],r3.
 
;; It does not work to use constraints to distinguish pushes from moves,
;; because < matches any autodecrement, not just a push.
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(match_operand:QI 1 "address_operand" "p"))]
""
"*
{
if (push_operand (operands[0], SImode))
return \"pushab %a1\";
else
return \"movab %a1,%0\";
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(match_operand:HI 1 "address_operand" "p"))]
""
"*
{
if (push_operand (operands[0], SImode))
return \"pushaw %a1\";
else
return \"movaw %a1,%0\";
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(match_operand:SI 1 "address_operand" "p"))]
""
"*
{
if (push_operand (operands[0], SImode))
return \"pushal %a1\";
else
return \"moval %a1,%0\";
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(match_operand:DI 1 "address_operand" "p"))]
""
"*
{
if (push_operand (operands[0], SImode))
return \"pushaq %a1\";
else
return \"movaq %a1,%0\";
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(match_operand:SF 1 "address_operand" "p"))]
""
"*
{
if (push_operand (operands[0], SImode))
return \"pushaf %a1\";
else
return \"movaf %a1,%0\";
}")
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=g")
(match_operand:DF 1 "address_operand" "p"))]
""
"*
{
if (push_operand (operands[0], SImode))
return \"pushad %a1\";
else
return \"movad %a1,%0\";
}")
;; These used to be peepholes, but it is more straightforward to do them
;; as single insns. However, we must force the output to be a register
;; if it is not an offsettable address so that we know that we can assign
;; to it twice.
 
;; If we had a good way of evaluating the relative costs, these could be
;; machine-independent.
 
;; Optimize extzv ...,z; andl2 ...,z
;; or ashl ...,z; andl2 ...,z
;; with other operands constant. This is what the combiner converts the
;; above sequences to before attempting to recognize the new insn.
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=ro")
(and:SI (ashiftrt:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "const_int_operand" "n"))
(match_operand:SI 3 "const_int_operand" "n")))]
"(INTVAL (operands[3]) & ~((1 << (32 - INTVAL (operands[2]))) - 1)) == 0"
"*
{
unsigned long mask1 = INTVAL (operands[3]);
unsigned long mask2 = (1 << (32 - INTVAL (operands[2]))) - 1;
 
if ((mask1 & mask2) != mask1)
operands[3] = GEN_INT (mask1 & mask2);
 
return \"rotl %R2,%1,%0\;bicl2 %N3,%0\";
}")
 
;; left-shift and mask
;; The only case where `ashl' is better is if the mask only turns off
;; bits that the ashl would anyways, in which case it should have been
;; optimized away.
 
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=ro")
(and:SI (ashift:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "const_int_operand" "n"))
(match_operand:SI 3 "const_int_operand" "n")))]
""
"*
{
operands[3]
= GEN_INT (INTVAL (operands[3]) & ~((1 << INTVAL (operands[2])) - 1));
return \"rotl %2,%1,%0\;bicl2 %N3,%0\";
}")
 
;; Instruction sequence to sync the VAX instruction stream.
(define_insn "sync_istream"
[(unspec_volatile [(const_int 0)] VUNSPEC_SYNC_ISTREAM)]
""
"movpsl -(%|sp)\;pushal 1(%|pc)\;rei")
/bsd.h
0,0 → 1,31
/* Definitions of target machine for GNU compiler. BSD version.
Copyright (C) 2002, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
 
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
 
#define TARGET_OS_CPP_BUILTINS() \
do \
{ \
builtin_define_std ("unix"); \
builtin_assert ("system=bsd"); \
\
builtin_define_std ("vax"); \
if (TARGET_G_FLOAT) \
builtin_define_std ("GFLOAT"); \
} \
while (0)
/t-memfuncs
0,0 → 1,3
LIB2FUNCS_EXTRA = \
$(srcdir)/config/memcmp.c $(srcdir)/config/memcpy.c \
$(srcdir)/config/memmove.c $(srcdir)/config/memset.c

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.