OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /openrisc/trunk/gnu-src/gcc-4.2.2/gcc/config/xtensa
    from Rev 38 to Rev 154
    Reverse comparison

Rev 38 → Rev 154

/crti.asm
0,0 → 1,56
# Start .init and .fini sections.
# Copyright (C) 2003 Free Software Foundation, Inc.
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# In addition to the permissions in the GNU General Public License, the
# Free Software Foundation gives you unlimited permission to link the
# compiled version of this file into combinations with other programs,
# and to distribute those combinations without any restriction coming
# from the use of this file. (The General Public License restrictions
# do apply in other respects; for example, they cover modification of
# the file, and distribution when not linked into a combine
# executable.)
#
# GCC is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING. If not, write to the Free
# Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.
 
# This file just makes a stack frame for the contents of the .fini and
# .init sections. Users may put any desired instructions in those
# sections.
 
#include "xtensa-config.h"
 
.section .init
.globl _init
.type _init,@function
.align 4
_init:
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
entry sp, 64
#else
addi sp, sp, -32
s32i a0, sp, 0
#endif
 
.section .fini
.globl _fini
.type _fini,@function
.align 4
_fini:
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
entry sp, 64
#else
addi sp, sp, -32
s32i a0, sp, 0
#endif
/predicates.md
0,0 → 1,156
;; Predicate definitions for Xtensa.
;; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
(define_predicate "add_operand"
(ior (and (match_code "const_int")
(match_test "xtensa_simm8 (INTVAL (op))
|| xtensa_simm8x256 (INTVAL (op))"))
(match_operand 0 "register_operand")))
 
(define_predicate "arith_operand"
(ior (and (match_code "const_int")
(match_test "xtensa_simm8 (INTVAL (op))"))
(match_operand 0 "register_operand")))
 
;; Non-immediate operand excluding the constant pool.
(define_predicate "nonimmed_operand"
(ior (and (match_operand 0 "memory_operand")
(match_test "!constantpool_address_p (XEXP (op, 0))"))
(match_operand 0 "register_operand")))
 
;; Memory operand excluding the constant pool.
(define_predicate "mem_operand"
(and (match_operand 0 "memory_operand")
(match_test "!constantpool_address_p (XEXP (op, 0))")))
 
(define_predicate "mask_operand"
(ior (and (match_code "const_int")
(match_test "xtensa_mask_immediate (INTVAL (op))"))
(match_operand 0 "register_operand")))
 
(define_predicate "extui_fldsz_operand"
(and (match_code "const_int")
(match_test "xtensa_mask_immediate ((1 << INTVAL (op)) - 1)")))
 
(define_predicate "sext_operand"
(if_then_else (match_test "TARGET_SEXT")
(match_operand 0 "nonimmed_operand")
(match_operand 0 "mem_operand")))
 
(define_predicate "sext_fldsz_operand"
(and (match_code "const_int")
(match_test "INTVAL (op) >= 8 && INTVAL (op) <= 23")))
 
(define_predicate "lsbitnum_operand"
(and (match_code "const_int")
(match_test "BITS_BIG_ENDIAN
? (INTVAL (op) == BITS_PER_WORD - 1)
: (INTVAL (op) == 0)")))
 
(define_predicate "branch_operand"
(ior (and (match_code "const_int")
(match_test "xtensa_b4const_or_zero (INTVAL (op))"))
(match_operand 0 "register_operand")))
 
(define_predicate "ubranch_operand"
(ior (and (match_code "const_int")
(match_test "xtensa_b4constu (INTVAL (op))"))
(match_operand 0 "register_operand")))
 
(define_predicate "call_insn_operand"
(match_code "const_int,const,symbol_ref,reg")
{
if ((GET_CODE (op) == REG)
&& (op != arg_pointer_rtx)
&& ((REGNO (op) < FRAME_POINTER_REGNUM)
|| (REGNO (op) > LAST_VIRTUAL_REGISTER)))
return true;
 
if (CONSTANT_ADDRESS_P (op))
{
/* Direct calls only allowed to static functions with PIC. */
if (flag_pic)
{
tree callee, callee_sec, caller_sec;
 
if (GET_CODE (op) != SYMBOL_REF
|| !SYMBOL_REF_LOCAL_P (op) || SYMBOL_REF_EXTERNAL_P (op))
return false;
 
/* Don't attempt a direct call if the callee is known to be in
a different section, since there's a good chance it will be
out of range. */
 
if (flag_function_sections
|| DECL_ONE_ONLY (current_function_decl))
return false;
caller_sec = DECL_SECTION_NAME (current_function_decl);
callee = SYMBOL_REF_DECL (op);
if (callee)
{
if (DECL_ONE_ONLY (callee))
return false;
callee_sec = DECL_SECTION_NAME (callee);
if (((caller_sec == NULL_TREE) ^ (callee_sec == NULL_TREE))
|| (caller_sec != NULL_TREE
&& strcmp (TREE_STRING_POINTER (caller_sec),
TREE_STRING_POINTER (callee_sec)) != 0))
return false;
}
else if (caller_sec != NULL_TREE)
return false;
}
return true;
}
 
return false;
})
 
(define_predicate "move_operand"
(ior
(ior (match_operand 0 "register_operand")
(match_operand 0 "memory_operand"))
(ior (and (match_code "const_int")
(match_test "GET_MODE_CLASS (mode) == MODE_INT
&& xtensa_simm12b (INTVAL (op))"))
(and (match_code "const_int,const_double,const,symbol_ref,label_ref")
(match_test "TARGET_CONST16 && CONSTANT_P (op)
&& GET_MODE_SIZE (mode) % UNITS_PER_WORD == 0")))))
 
;; Accept the floating point constant 1 in the appropriate mode.
(define_predicate "const_float_1_operand"
(match_code "const_double")
{
REAL_VALUE_TYPE d;
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
return REAL_VALUES_EQUAL (d, dconst1);
})
 
(define_predicate "fpmem_offset_operand"
(and (match_code "const_int")
(match_test "xtensa_mem_offset (INTVAL (op), SFmode)")))
 
(define_predicate "branch_operator"
(match_code "eq,ne,lt,ge"))
 
(define_predicate "ubranch_operator"
(match_code "ltu,geu"))
 
(define_predicate "boolean_operator"
(match_code "eq,ne"))
/xtensa.c
0,0 → 1,2690
/* Subroutines for insn-output.c for Tensilica's Xtensa architecture.
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "insn-attr.h"
#include "insn-codes.h"
#include "recog.h"
#include "output.h"
#include "tree.h"
#include "expr.h"
#include "flags.h"
#include "reload.h"
#include "tm_p.h"
#include "function.h"
#include "toplev.h"
#include "optabs.h"
#include "libfuncs.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"
#include "tree-gimple.h"
 
 
/* Enumeration for all of the relational tests, so that we can build
arrays indexed by the test type, and not worry about the order
of EQ, NE, etc. */
 
enum internal_test
{
ITEST_EQ,
ITEST_NE,
ITEST_GT,
ITEST_GE,
ITEST_LT,
ITEST_LE,
ITEST_GTU,
ITEST_GEU,
ITEST_LTU,
ITEST_LEU,
ITEST_MAX
};
 
/* Cached operands, and operator to compare for use in set/branch on
condition codes. */
rtx branch_cmp[2];
 
/* what type of branch to use */
enum cmp_type branch_type;
 
/* Array giving truth value on whether or not a given hard register
can support a given mode. */
char xtensa_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
 
/* Current frame size calculated by compute_frame_size. */
unsigned xtensa_current_frame_size;
 
/* Largest block move to handle in-line. */
#define LARGEST_MOVE_RATIO 15
 
/* Define the structure for the machine field in struct function. */
struct machine_function GTY(())
{
int accesses_prev_frame;
bool need_a7_copy;
bool vararg_a7;
rtx vararg_a7_copy;
rtx set_frame_ptr_insn;
};
 
/* Vector, indexed by hard register number, which contains 1 for a
register that is allowable in a candidate for leaf function
treatment. */
 
const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER] =
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1
};
 
/* Map hard register number to register class */
const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER] =
{
RL_REGS, SP_REG, RL_REGS, RL_REGS,
RL_REGS, RL_REGS, RL_REGS, GR_REGS,
RL_REGS, RL_REGS, RL_REGS, RL_REGS,
RL_REGS, RL_REGS, RL_REGS, RL_REGS,
AR_REGS, AR_REGS, BR_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
ACC_REG,
};
 
/* Map register constraint character to register class. */
enum reg_class xtensa_char_to_class[256] =
{
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
};
 
static enum internal_test map_test_to_internal_test (enum rtx_code);
static rtx gen_int_relational (enum rtx_code, rtx, rtx, int *);
static rtx gen_float_relational (enum rtx_code, rtx, rtx);
static rtx gen_conditional_move (rtx);
static rtx fixup_subreg_mem (rtx);
static struct machine_function * xtensa_init_machine_status (void);
static bool xtensa_return_in_msb (tree);
static void printx (FILE *, signed int);
static void xtensa_function_epilogue (FILE *, HOST_WIDE_INT);
static rtx xtensa_builtin_saveregs (void);
static unsigned int xtensa_multibss_section_type_flags (tree, const char *,
int) ATTRIBUTE_UNUSED;
static section *xtensa_select_rtx_section (enum machine_mode, rtx,
unsigned HOST_WIDE_INT);
static bool xtensa_rtx_costs (rtx, int, int, int *);
static tree xtensa_build_builtin_va_list (void);
static bool xtensa_return_in_memory (tree, tree);
static tree xtensa_gimplify_va_arg_expr (tree, tree, tree *, tree *);
 
static const int reg_nonleaf_alloc_order[FIRST_PSEUDO_REGISTER] =
REG_ALLOC_ORDER;
 
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE. */
 
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE xtensa_function_epilogue
 
/* These hooks specify assembly directives for creating certain kinds
of integer object. */
 
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
 
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION xtensa_select_rtx_section
 
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | MASK_FUSED_MADD)
 
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS xtensa_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_0
 
#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST xtensa_build_builtin_va_list
 
#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
 
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY xtensa_return_in_memory
#undef TARGET_SPLIT_COMPLEX_ARG
#define TARGET_SPLIT_COMPLEX_ARG hook_bool_tree_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
 
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS xtensa_builtin_saveregs
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR xtensa_gimplify_va_arg_expr
 
#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB xtensa_return_in_msb
 
struct gcc_target targetm = TARGET_INITIALIZER;
 
/*
* Functions to test Xtensa immediate operand validity.
*/
 
bool
xtensa_simm8 (HOST_WIDE_INT v)
{
return v >= -128 && v <= 127;
}
 
 
bool
xtensa_simm8x256 (HOST_WIDE_INT v)
{
return (v & 255) == 0 && (v >= -32768 && v <= 32512);
}
 
 
bool
xtensa_simm12b (HOST_WIDE_INT v)
{
return v >= -2048 && v <= 2047;
}
 
 
static bool
xtensa_uimm8 (HOST_WIDE_INT v)
{
return v >= 0 && v <= 255;
}
 
 
static bool
xtensa_uimm8x2 (HOST_WIDE_INT v)
{
return (v & 1) == 0 && (v >= 0 && v <= 510);
}
 
 
static bool
xtensa_uimm8x4 (HOST_WIDE_INT v)
{
return (v & 3) == 0 && (v >= 0 && v <= 1020);
}
 
 
static bool
xtensa_b4const (HOST_WIDE_INT v)
{
switch (v)
{
case -1:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 10:
case 12:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
}
return false;
}
 
 
bool
xtensa_b4const_or_zero (HOST_WIDE_INT v)
{
if (v == 0)
return true;
return xtensa_b4const (v);
}
 
 
bool
xtensa_b4constu (HOST_WIDE_INT v)
{
switch (v)
{
case 32768:
case 65536:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 10:
case 12:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
}
return false;
}
 
 
bool
xtensa_mask_immediate (HOST_WIDE_INT v)
{
#define MAX_MASK_SIZE 16
int mask_size;
 
for (mask_size = 1; mask_size <= MAX_MASK_SIZE; mask_size++)
{
if ((v & 1) == 0)
return false;
v = v >> 1;
if (v == 0)
return true;
}
 
return false;
}
 
 
bool
xtensa_const_ok_for_letter_p (HOST_WIDE_INT v, int c)
{
switch (c)
{
case 'I': return xtensa_simm12b (v);
case 'J': return xtensa_simm8 (v);
case 'K': return (v == 0 || xtensa_b4const (v));
case 'L': return xtensa_b4constu (v);
case 'M': return (v >= -32 && v <= 95);
case 'N': return xtensa_simm8x256 (v);
case 'O': return (v == -1 || (v >= 1 && v <= 15));
case 'P': return xtensa_mask_immediate (v);
default: break;
}
return false;
}
 
 
/* This is just like the standard true_regnum() function except that it
works even when reg_renumber is not initialized. */
 
int
xt_true_regnum (rtx x)
{
if (GET_CODE (x) == REG)
{
if (reg_renumber
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (x)] >= 0)
return reg_renumber[REGNO (x)];
return REGNO (x);
}
if (GET_CODE (x) == SUBREG)
{
int base = xt_true_regnum (SUBREG_REG (x));
if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x), GET_MODE (x));
}
return -1;
}
 
 
int
xtensa_valid_move (enum machine_mode mode, rtx *operands)
{
/* Either the destination or source must be a register, and the
MAC16 accumulator doesn't count. */
 
if (register_operand (operands[0], mode))
{
int dst_regnum = xt_true_regnum (operands[0]);
 
/* The stack pointer can only be assigned with a MOVSP opcode. */
if (dst_regnum == STACK_POINTER_REGNUM)
return (mode == SImode
&& register_operand (operands[1], mode)
&& !ACC_REG_P (xt_true_regnum (operands[1])));
 
if (!ACC_REG_P (dst_regnum))
return true;
}
if (register_operand (operands[1], mode))
{
int src_regnum = xt_true_regnum (operands[1]);
if (!ACC_REG_P (src_regnum))
return true;
}
return FALSE;
}
 
 
int
smalloffset_mem_p (rtx op)
{
if (GET_CODE (op) == MEM)
{
rtx addr = XEXP (op, 0);
if (GET_CODE (addr) == REG)
return REG_OK_FOR_BASE_P (addr);
if (GET_CODE (addr) == PLUS)
{
rtx offset = XEXP (addr, 0);
HOST_WIDE_INT val;
if (GET_CODE (offset) != CONST_INT)
offset = XEXP (addr, 1);
if (GET_CODE (offset) != CONST_INT)
return FALSE;
 
val = INTVAL (offset);
return (val & 3) == 0 && (val >= 0 && val <= 60);
}
}
return FALSE;
}
 
 
int
constantpool_address_p (rtx addr)
{
rtx sym = addr;
 
if (GET_CODE (addr) == CONST)
{
rtx offset;
 
/* Only handle (PLUS (SYM, OFFSET)) form. */
addr = XEXP (addr, 0);
if (GET_CODE (addr) != PLUS)
return FALSE;
 
/* Make sure the address is word aligned. */
offset = XEXP (addr, 1);
if ((GET_CODE (offset) != CONST_INT)
|| ((INTVAL (offset) & 3) != 0))
return FALSE;
 
sym = XEXP (addr, 0);
}
 
if ((GET_CODE (sym) == SYMBOL_REF)
&& CONSTANT_POOL_ADDRESS_P (sym))
return TRUE;
return FALSE;
}
 
 
int
constantpool_mem_p (rtx op)
{
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) == MEM)
return constantpool_address_p (XEXP (op, 0));
return FALSE;
}
 
 
void
xtensa_extend_reg (rtx dst, rtx src)
{
rtx temp = gen_reg_rtx (SImode);
rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src)));
 
/* Generate paradoxical subregs as needed so that the modes match. */
src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0);
dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0);
 
emit_insn (gen_ashlsi3 (temp, src, shift));
emit_insn (gen_ashrsi3 (dst, temp, shift));
}
 
 
bool
xtensa_mem_offset (unsigned v, enum machine_mode mode)
{
switch (mode)
{
case BLKmode:
/* Handle the worst case for block moves. See xtensa_expand_block_move
where we emit an optimized block move operation if the block can be
moved in < "move_ratio" pieces. The worst case is when the block is
aligned but has a size of (3 mod 4) (does this happen?) so that the
last piece requires a byte load/store. */
return (xtensa_uimm8 (v)
&& xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO));
 
case QImode:
return xtensa_uimm8 (v);
 
case HImode:
return xtensa_uimm8x2 (v);
 
case DFmode:
return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4));
 
default:
break;
}
 
return xtensa_uimm8x4 (v);
}
 
 
bool
xtensa_extra_constraint (rtx op, int c)
{
/* Allow pseudo registers during reload. */
if (GET_CODE (op) != MEM)
return (c >= 'R' && c <= 'U'
&& reload_in_progress && GET_CODE (op) == REG
&& REGNO (op) >= FIRST_PSEUDO_REGISTER);
 
switch (c)
{
case 'R': return smalloffset_mem_p (op);
case 'T': return !TARGET_CONST16 && constantpool_mem_p (op);
case 'U': return !constantpool_mem_p (op);
default: break;
}
return false;
}
 
 
/* Make normal rtx_code into something we can index from an array. */
 
static enum internal_test
map_test_to_internal_test (enum rtx_code test_code)
{
enum internal_test test = ITEST_MAX;
 
switch (test_code)
{
default: break;
case EQ: test = ITEST_EQ; break;
case NE: test = ITEST_NE; break;
case GT: test = ITEST_GT; break;
case GE: test = ITEST_GE; break;
case LT: test = ITEST_LT; break;
case LE: test = ITEST_LE; break;
case GTU: test = ITEST_GTU; break;
case GEU: test = ITEST_GEU; break;
case LTU: test = ITEST_LTU; break;
case LEU: test = ITEST_LEU; break;
}
 
return test;
}
 
 
/* Generate the code to compare two integer values. The return value is
the comparison expression. */
 
static rtx
gen_int_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
rtx cmp0, /* first operand to compare */
rtx cmp1, /* second operand to compare */
int *p_invert /* whether branch needs to reverse test */)
{
struct cmp_info
{
enum rtx_code test_code; /* test code to use in insn */
bool (*const_range_p) (HOST_WIDE_INT); /* range check function */
int const_add; /* constant to add (convert LE -> LT) */
int reverse_regs; /* reverse registers in test */
int invert_const; /* != 0 if invert value if cmp1 is constant */
int invert_reg; /* != 0 if invert value if cmp1 is register */
int unsignedp; /* != 0 for unsigned comparisons. */
};
 
static struct cmp_info info[ (int)ITEST_MAX ] = {
 
{ EQ, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* EQ */
{ NE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* NE */
 
{ LT, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* GT */
{ GE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* GE */
{ LT, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* LT */
{ GE, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* LE */
 
{ LTU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* GTU */
{ GEU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* GEU */
{ LTU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* LTU */
{ GEU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* LEU */
};
 
enum internal_test test;
enum machine_mode mode;
struct cmp_info *p_info;
 
test = map_test_to_internal_test (test_code);
gcc_assert (test != ITEST_MAX);
 
p_info = &info[ (int)test ];
 
mode = GET_MODE (cmp0);
if (mode == VOIDmode)
mode = GET_MODE (cmp1);
 
/* Make sure we can handle any constants given to us. */
if (GET_CODE (cmp1) == CONST_INT)
{
HOST_WIDE_INT value = INTVAL (cmp1);
unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value;
 
/* if the immediate overflows or does not fit in the immediate field,
spill it to a register */
 
if ((p_info->unsignedp ?
(uvalue + p_info->const_add > uvalue) :
(value + p_info->const_add > value)) != (p_info->const_add > 0))
{
cmp1 = force_reg (mode, cmp1);
}
else if (!(p_info->const_range_p) (value + p_info->const_add))
{
cmp1 = force_reg (mode, cmp1);
}
}
else if ((GET_CODE (cmp1) != REG) && (GET_CODE (cmp1) != SUBREG))
{
cmp1 = force_reg (mode, cmp1);
}
 
/* See if we need to invert the result. */
*p_invert = ((GET_CODE (cmp1) == CONST_INT)
? p_info->invert_const
: p_info->invert_reg);
 
/* Comparison to constants, may involve adding 1 to change a LT into LE.
Comparison between two registers, may involve switching operands. */
if (GET_CODE (cmp1) == CONST_INT)
{
if (p_info->const_add != 0)
cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add);
 
}
else if (p_info->reverse_regs)
{
rtx temp = cmp0;
cmp0 = cmp1;
cmp1 = temp;
}
 
return gen_rtx_fmt_ee (p_info->test_code, VOIDmode, cmp0, cmp1);
}
 
 
/* Generate the code to compare two float values. The return value is
the comparison expression. */
 
static rtx
gen_float_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
rtx cmp0, /* first operand to compare */
rtx cmp1 /* second operand to compare */)
{
rtx (*gen_fn) (rtx, rtx, rtx);
rtx brtmp;
int reverse_regs, invert;
 
switch (test_code)
{
case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break;
case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break;
case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break;
case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break;
case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break;
case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break;
default:
fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */
}
 
if (reverse_regs)
{
rtx temp = cmp0;
cmp0 = cmp1;
cmp1 = temp;
}
 
brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM);
emit_insn (gen_fn (brtmp, cmp0, cmp1));
 
return gen_rtx_fmt_ee (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx);
}
 
 
void
xtensa_expand_conditional_branch (rtx *operands, enum rtx_code test_code)
{
enum cmp_type type = branch_type;
rtx cmp0 = branch_cmp[0];
rtx cmp1 = branch_cmp[1];
rtx cmp;
int invert;
rtx label1, label2;
 
switch (type)
{
case CMP_DF:
default:
fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
 
case CMP_SI:
invert = FALSE;
cmp = gen_int_relational (test_code, cmp0, cmp1, &invert);
break;
 
case CMP_SF:
if (!TARGET_HARD_FLOAT)
fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
invert = FALSE;
cmp = gen_float_relational (test_code, cmp0, cmp1);
break;
}
 
/* Generate the branch. */
 
label1 = gen_rtx_LABEL_REF (VOIDmode, operands[0]);
label2 = pc_rtx;
 
if (invert)
{
label2 = label1;
label1 = pc_rtx;
}
 
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode, cmp,
label1,
label2)));
}
 
 
static rtx
gen_conditional_move (rtx cmp)
{
enum rtx_code code = GET_CODE (cmp);
rtx op0 = branch_cmp[0];
rtx op1 = branch_cmp[1];
 
if (branch_type == CMP_SI)
{
/* Jump optimization calls get_condition() which canonicalizes
comparisons like (GE x <const>) to (GT x <const-1>).
Transform those comparisons back to GE, since that is the
comparison supported in Xtensa. We shouldn't have to
transform <LE x const> comparisons, because neither
xtensa_expand_conditional_branch() nor get_condition() will
produce them. */
 
if ((code == GT) && (op1 == constm1_rtx))
{
code = GE;
op1 = const0_rtx;
}
cmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
 
if (boolean_operator (cmp, VOIDmode))
{
/* Swap the operands to make const0 second. */
if (op0 == const0_rtx)
{
op0 = op1;
op1 = const0_rtx;
}
 
/* If not comparing against zero, emit a comparison (subtract). */
if (op1 != const0_rtx)
{
op0 = expand_binop (SImode, sub_optab, op0, op1,
0, 0, OPTAB_LIB_WIDEN);
op1 = const0_rtx;
}
}
else if (branch_operator (cmp, VOIDmode))
{
/* Swap the operands to make const0 second. */
if (op0 == const0_rtx)
{
op0 = op1;
op1 = const0_rtx;
 
switch (code)
{
case LT: code = GE; break;
case GE: code = LT; break;
default: gcc_unreachable ();
}
}
 
if (op1 != const0_rtx)
return 0;
}
else
return 0;
 
return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
}
 
if (TARGET_HARD_FLOAT && (branch_type == CMP_SF))
return gen_float_relational (code, op0, op1);
 
return 0;
}
 
 
int
xtensa_expand_conditional_move (rtx *operands, int isflt)
{
rtx cmp;
rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
 
if (!(cmp = gen_conditional_move (operands[1])))
return 0;
 
if (isflt)
gen_fn = (branch_type == CMP_SI
? gen_movsfcc_internal0
: gen_movsfcc_internal1);
else
gen_fn = (branch_type == CMP_SI
? gen_movsicc_internal0
: gen_movsicc_internal1);
 
emit_insn (gen_fn (operands[0], XEXP (cmp, 0),
operands[2], operands[3], cmp));
return 1;
}
 
 
int
xtensa_expand_scc (rtx *operands)
{
rtx dest = operands[0];
rtx cmp = operands[1];
rtx one_tmp, zero_tmp;
rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
 
if (!(cmp = gen_conditional_move (cmp)))
return 0;
 
one_tmp = gen_reg_rtx (SImode);
zero_tmp = gen_reg_rtx (SImode);
emit_insn (gen_movsi (one_tmp, const_true_rtx));
emit_insn (gen_movsi (zero_tmp, const0_rtx));
 
gen_fn = (branch_type == CMP_SI
? gen_movsicc_internal0
: gen_movsicc_internal1);
emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp));
return 1;
}
 
 
/* Split OP[1] into OP[2,3] and likewise for OP[0] into OP[0,1]. MODE is
for the output, i.e., the input operands are twice as big as MODE. */
 
void
xtensa_split_operand_pair (rtx operands[4], enum machine_mode mode)
{
switch (GET_CODE (operands[1]))
{
case REG:
operands[3] = gen_rtx_REG (mode, REGNO (operands[1]) + 1);
operands[2] = gen_rtx_REG (mode, REGNO (operands[1]));
break;
 
case MEM:
operands[3] = adjust_address (operands[1], mode, GET_MODE_SIZE (mode));
operands[2] = adjust_address (operands[1], mode, 0);
break;
 
case CONST_INT:
case CONST_DOUBLE:
split_double (operands[1], &operands[2], &operands[3]);
break;
 
default:
gcc_unreachable ();
}
 
switch (GET_CODE (operands[0]))
{
case REG:
operands[1] = gen_rtx_REG (mode, REGNO (operands[0]) + 1);
operands[0] = gen_rtx_REG (mode, REGNO (operands[0]));
break;
 
case MEM:
operands[1] = adjust_address (operands[0], mode, GET_MODE_SIZE (mode));
operands[0] = adjust_address (operands[0], mode, 0);
break;
 
default:
gcc_unreachable ();
}
}
 
 
/* Emit insns to move operands[1] into operands[0].
Return 1 if we have written out everything that needs to be done to
do the move. Otherwise, return 0 and the caller will emit the move
normally. */
 
int
xtensa_emit_move_sequence (rtx *operands, enum machine_mode mode)
{
if (CONSTANT_P (operands[1])
&& (GET_CODE (operands[1]) != CONST_INT
|| !xtensa_simm12b (INTVAL (operands[1]))))
{
if (!TARGET_CONST16)
operands[1] = force_const_mem (SImode, operands[1]);
 
/* PC-relative loads are always SImode, and CONST16 is only
supported in the movsi pattern, so add a SUBREG for any other
(smaller) mode. */
 
if (mode != SImode)
{
if (register_operand (operands[0], mode))
{
operands[0] = simplify_gen_subreg (SImode, operands[0], mode, 0);
emit_move_insn (operands[0], operands[1]);
return 1;
}
else
{
operands[1] = force_reg (SImode, operands[1]);
operands[1] = gen_lowpart_SUBREG (mode, operands[1]);
}
}
}
 
if (!(reload_in_progress | reload_completed)
&& !xtensa_valid_move (mode, operands))
operands[1] = force_reg (mode, operands[1]);
 
operands[1] = xtensa_copy_incoming_a7 (operands[1]);
 
/* During reload we don't want to emit (subreg:X (mem:Y)) since that
instruction won't be recognized after reload, so we remove the
subreg and adjust mem accordingly. */
if (reload_in_progress)
{
operands[0] = fixup_subreg_mem (operands[0]);
operands[1] = fixup_subreg_mem (operands[1]);
}
return 0;
}
 
 
static rtx
fixup_subreg_mem (rtx x)
{
if (GET_CODE (x) == SUBREG
&& GET_CODE (SUBREG_REG (x)) == REG
&& REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
{
rtx temp =
gen_rtx_SUBREG (GET_MODE (x),
reg_equiv_mem [REGNO (SUBREG_REG (x))],
SUBREG_BYTE (x));
x = alter_subreg (&temp);
}
return x;
}
 
 
/* Check if an incoming argument in a7 is expected to be used soon and
if OPND is a register or register pair that includes a7. If so,
create a new pseudo and copy a7 into that pseudo at the very
beginning of the function, followed by the special "set_frame_ptr"
unspec_volatile insn. The return value is either the original
operand, if it is not a7, or the new pseudo containing a copy of
the incoming argument. This is necessary because the register
allocator will ignore conflicts with a7 and may either assign some
other pseudo to a7 or use a7 as the hard_frame_pointer, clobbering
the incoming argument in a7. By copying the argument out of a7 as
the very first thing, and then immediately following that with an
unspec_volatile to keep the scheduler away, we should avoid any
problems. Putting the set_frame_ptr insn at the beginning, with
only the a7 copy before it, also makes it easier for the prologue
expander to initialize the frame pointer after the a7 copy and to
fix up the a7 copy to use the stack pointer instead of the frame
pointer. */
 
rtx
xtensa_copy_incoming_a7 (rtx opnd)
{
rtx entry_insns = 0;
rtx reg, tmp;
enum machine_mode mode;
 
if (!cfun->machine->need_a7_copy)
return opnd;
 
/* This function should never be called again once a7 has been copied. */
gcc_assert (!cfun->machine->set_frame_ptr_insn);
 
mode = GET_MODE (opnd);
 
/* The operand using a7 may come in a later instruction, so just return
the original operand if it doesn't use a7. */
reg = opnd;
if (GET_CODE (reg) == SUBREG)
{
gcc_assert (SUBREG_BYTE (reg) == 0);
reg = SUBREG_REG (reg);
}
if (GET_CODE (reg) != REG
|| REGNO (reg) > A7_REG
|| REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) <= A7_REG)
return opnd;
 
/* 1-word args will always be in a7; 2-word args in a6/a7. */
gcc_assert (REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) - 1 == A7_REG);
 
cfun->machine->need_a7_copy = false;
 
/* Copy a7 to a new pseudo at the function entry. Use gen_raw_REG to
create the REG for a7 so that hard_frame_pointer_rtx is not used. */
 
start_sequence ();
tmp = gen_reg_rtx (mode);
 
switch (mode)
{
case DFmode:
case DImode:
emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 0),
gen_rtx_REG (SImode, A7_REG - 1)));
emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 4),
gen_raw_REG (SImode, A7_REG)));
break;
case SFmode:
emit_insn (gen_movsf_internal (tmp, gen_raw_REG (mode, A7_REG)));
break;
case SImode:
emit_insn (gen_movsi_internal (tmp, gen_raw_REG (mode, A7_REG)));
break;
case HImode:
emit_insn (gen_movhi_internal (tmp, gen_raw_REG (mode, A7_REG)));
break;
case QImode:
emit_insn (gen_movqi_internal (tmp, gen_raw_REG (mode, A7_REG)));
break;
default:
gcc_unreachable ();
}
 
cfun->machine->set_frame_ptr_insn = emit_insn (gen_set_frame_ptr ());
entry_insns = get_insns ();
end_sequence ();
 
if (cfun->machine->vararg_a7)
{
/* This is called from within builtin_saveregs, which will insert the
saveregs code at the function entry, ahead of anything placed at
the function entry now. Instead, save the sequence to be inserted
at the beginning of the saveregs code. */
cfun->machine->vararg_a7_copy = entry_insns;
}
else
{
/* Put entry_insns after the NOTE that starts the function. If
this is inside a start_sequence, make the outer-level insn
chain current, so the code is placed at the start of the
function. */
push_topmost_sequence ();
/* Do not use entry_of_function() here. This is called from within
expand_function_start, when the CFG still holds GIMPLE. */
emit_insn_after (entry_insns, get_insns ());
pop_topmost_sequence ();
}
 
return tmp;
}
 
 
/* Try to expand a block move operation to a sequence of RTL move
instructions. If not optimizing, or if the block size is not a
constant, or if the block is too large, the expansion fails and GCC
falls back to calling memcpy().
 
operands[0] is the destination
operands[1] is the source
operands[2] is the length
operands[3] is the alignment */
 
int
xtensa_expand_block_move (rtx *operands)
{
static const enum machine_mode mode_from_align[] =
{
VOIDmode, QImode, HImode, VOIDmode, SImode,
};
 
rtx dst_mem = operands[0];
rtx src_mem = operands[1];
HOST_WIDE_INT bytes, align;
int num_pieces, move_ratio;
rtx temp[2];
enum machine_mode mode[2];
int amount[2];
bool active[2];
int phase = 0;
int next;
int offset_ld = 0;
int offset_st = 0;
rtx x;
 
/* If this is not a fixed size move, just call memcpy. */
if (!optimize || (GET_CODE (operands[2]) != CONST_INT))
return 0;
 
bytes = INTVAL (operands[2]);
align = INTVAL (operands[3]);
 
/* Anything to move? */
if (bytes <= 0)
return 0;
 
if (align > MOVE_MAX)
align = MOVE_MAX;
 
/* Decide whether to expand inline based on the optimization level. */
move_ratio = 4;
if (optimize > 2)
move_ratio = LARGEST_MOVE_RATIO;
num_pieces = (bytes / align) + (bytes % align); /* Close enough anyway. */
if (num_pieces > move_ratio)
return 0;
 
x = XEXP (dst_mem, 0);
if (!REG_P (x))
{
x = force_reg (Pmode, x);
dst_mem = replace_equiv_address (dst_mem, x);
}
 
x = XEXP (src_mem, 0);
if (!REG_P (x))
{
x = force_reg (Pmode, x);
src_mem = replace_equiv_address (src_mem, x);
}
 
active[0] = active[1] = false;
 
do
{
next = phase;
phase ^= 1;
 
if (bytes > 0)
{
int next_amount;
 
next_amount = (bytes >= 4 ? 4 : (bytes >= 2 ? 2 : 1));
next_amount = MIN (next_amount, align);
 
amount[next] = next_amount;
mode[next] = mode_from_align[next_amount];
temp[next] = gen_reg_rtx (mode[next]);
 
x = adjust_address (src_mem, mode[next], offset_ld);
emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
 
offset_ld += next_amount;
bytes -= next_amount;
active[next] = true;
}
 
if (active[phase])
{
active[phase] = false;
x = adjust_address (dst_mem, mode[phase], offset_st);
emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
 
offset_st += amount[phase];
}
}
while (active[next]);
 
return 1;
}
 
 
void
xtensa_expand_nonlocal_goto (rtx *operands)
{
rtx goto_handler = operands[1];
rtx containing_fp = operands[3];
 
/* Generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code
is too big to generate in-line. */
 
if (GET_CODE (containing_fp) != REG)
containing_fp = force_reg (Pmode, containing_fp);
 
goto_handler = replace_rtx (copy_rtx (goto_handler),
virtual_stack_vars_rtx,
containing_fp);
 
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"),
0, VOIDmode, 2,
containing_fp, Pmode,
goto_handler, Pmode);
}
 
 
static struct machine_function *
xtensa_init_machine_status (void)
{
return ggc_alloc_cleared (sizeof (struct machine_function));
}
 
 
void
xtensa_setup_frame_addresses (void)
{
/* Set flag to cause FRAME_POINTER_REQUIRED to be set. */
cfun->machine->accesses_prev_frame = 1;
 
emit_library_call
(gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"),
0, VOIDmode, 0);
}
 
 
/* Emit the assembly for the end of a zero-cost loop. Normally we just emit
a comment showing where the end of the loop is. However, if there is a
label or a branch at the end of the loop then we need to place a nop
there. If the loop ends with a label we need the nop so that branches
targeting that label will target the nop (and thus remain in the loop),
instead of targeting the instruction after the loop (and thus exiting
the loop). If the loop ends with a branch, we need the nop in case the
branch is targeting a location inside the loop. When the branch
executes it will cause the loop count to be decremented even if it is
taken (because it is the last instruction in the loop), so we need to
nop after the branch to prevent the loop count from being decremented
when the branch is taken. */
 
void
xtensa_emit_loop_end (rtx insn, rtx *operands)
{
char done = 0;
 
for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn))
{
switch (GET_CODE (insn))
{
case NOTE:
case BARRIER:
break;
 
case CODE_LABEL:
output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
done = 1;
break;
 
default:
{
rtx body = PATTERN (insn);
 
if (GET_CODE (body) == JUMP_INSN)
{
output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
done = 1;
}
else if ((GET_CODE (body) != USE)
&& (GET_CODE (body) != CLOBBER))
done = 1;
}
break;
}
}
 
output_asm_insn ("# loop end for %0", operands);
}
 
 
char *
xtensa_emit_call (int callop, rtx *operands)
{
static char result[64];
rtx tgt = operands[callop];
 
if (GET_CODE (tgt) == CONST_INT)
sprintf (result, "call8\t0x%lx", INTVAL (tgt));
else if (register_operand (tgt, VOIDmode))
sprintf (result, "callx8\t%%%d", callop);
else
sprintf (result, "call8\t%%%d", callop);
 
return result;
}
 
 
/* Return the debugger register number to use for 'regno'. */
 
int
xtensa_dbx_register_number (int regno)
{
int first = -1;
 
if (GP_REG_P (regno))
{
regno -= GP_REG_FIRST;
first = 0;
}
else if (BR_REG_P (regno))
{
regno -= BR_REG_FIRST;
first = 16;
}
else if (FP_REG_P (regno))
{
regno -= FP_REG_FIRST;
first = 48;
}
else if (ACC_REG_P (regno))
{
first = 0x200; /* Start of Xtensa special registers. */
regno = 16; /* ACCLO is special register 16. */
}
 
/* When optimizing, we sometimes get asked about pseudo-registers
that don't represent hard registers. Return 0 for these. */
if (first == -1)
return 0;
 
return first + regno;
}
 
 
/* Argument support functions. */
 
/* Initialize CUMULATIVE_ARGS for a function. */
 
void
init_cumulative_args (CUMULATIVE_ARGS *cum, int incoming)
{
cum->arg_words = 0;
cum->incoming = incoming;
}
 
 
/* Advance the argument to the next argument position. */
 
void
function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type)
{
int words, max;
int *arg_words;
 
arg_words = &cum->arg_words;
max = MAX_ARGS_IN_REGISTERS;
 
words = (((mode != BLKmode)
? (int) GET_MODE_SIZE (mode)
: int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
 
if (*arg_words < max
&& (targetm.calls.must_pass_in_stack (mode, type)
|| *arg_words + words > max))
*arg_words = max;
 
*arg_words += words;
}
 
 
/* Return an RTL expression containing the register for the given mode,
or 0 if the argument is to be passed on the stack. INCOMING_P is nonzero
if this is an incoming argument to the current function. */
 
rtx
function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
int incoming_p)
{
int regbase, words, max;
int *arg_words;
int regno;
 
arg_words = &cum->arg_words;
regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST);
max = MAX_ARGS_IN_REGISTERS;
 
words = (((mode != BLKmode)
? (int) GET_MODE_SIZE (mode)
: int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
 
if (type && (TYPE_ALIGN (type) > BITS_PER_WORD))
{
int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_WORD;
*arg_words = (*arg_words + align - 1) & -align;
}
 
if (*arg_words + words > max)
return (rtx)0;
 
regno = regbase + *arg_words;
 
if (cum->incoming && regno <= A7_REG && regno + words > A7_REG)
cfun->machine->need_a7_copy = true;
 
return gen_rtx_REG (mode, regno);
}
 
 
int
function_arg_boundary (enum machine_mode mode, tree type)
{
unsigned int alignment;
 
alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
if (alignment < PARM_BOUNDARY)
alignment = PARM_BOUNDARY;
if (alignment > STACK_BOUNDARY)
alignment = STACK_BOUNDARY;
return alignment;
}
 
 
static bool
xtensa_return_in_msb (tree valtype)
{
return (TARGET_BIG_ENDIAN
&& AGGREGATE_TYPE_P (valtype)
&& int_size_in_bytes (valtype) >= UNITS_PER_WORD);
}
 
 
void
override_options (void)
{
int regno;
enum machine_mode mode;
 
if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT)
error ("boolean registers required for the floating-point option");
 
xtensa_char_to_class['q'] = SP_REG;
xtensa_char_to_class['a'] = GR_REGS;
xtensa_char_to_class['b'] = ((TARGET_BOOLEANS) ? BR_REGS : NO_REGS);
xtensa_char_to_class['f'] = ((TARGET_HARD_FLOAT) ? FP_REGS : NO_REGS);
xtensa_char_to_class['A'] = ((TARGET_MAC16) ? ACC_REG : NO_REGS);
xtensa_char_to_class['B'] = ((TARGET_SEXT) ? GR_REGS : NO_REGS);
xtensa_char_to_class['C'] = ((TARGET_MUL16) ? GR_REGS: NO_REGS);
xtensa_char_to_class['D'] = ((TARGET_DENSITY) ? GR_REGS: NO_REGS);
xtensa_char_to_class['d'] = ((TARGET_DENSITY) ? AR_REGS: NO_REGS);
xtensa_char_to_class['W'] = ((TARGET_CONST16) ? GR_REGS: NO_REGS);
 
/* Set up array giving whether a given register can hold a given mode. */
for (mode = VOIDmode;
mode != MAX_MACHINE_MODE;
mode = (enum machine_mode) ((int) mode + 1))
{
int size = GET_MODE_SIZE (mode);
enum mode_class class = GET_MODE_CLASS (mode);
 
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
int temp;
 
if (ACC_REG_P (regno))
temp = (TARGET_MAC16
&& (class == MODE_INT) && (size <= UNITS_PER_WORD));
else if (GP_REG_P (regno))
temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
else if (FP_REG_P (regno))
temp = (TARGET_HARD_FLOAT && (mode == SFmode));
else if (BR_REG_P (regno))
temp = (TARGET_BOOLEANS && (mode == CCmode));
else
temp = FALSE;
 
xtensa_hard_regno_mode_ok[(int) mode][regno] = temp;
}
}
 
init_machine_status = xtensa_init_machine_status;
 
/* Check PIC settings. PIC is only supported when using L32R
instructions, and some targets need to always use PIC. */
if (flag_pic && TARGET_CONST16)
error ("-f%s is not supported with CONST16 instructions",
(flag_pic > 1 ? "PIC" : "pic"));
else if (XTENSA_ALWAYS_PIC)
{
if (TARGET_CONST16)
error ("PIC is required but not supported with CONST16 instructions");
flag_pic = 1;
}
/* There's no need for -fPIC (as opposed to -fpic) on Xtensa. */
if (flag_pic > 1)
flag_pic = 1;
 
/* Hot/cold partitioning does not work on this architecture, because of
constant pools (the load instruction cannot necessarily reach that far).
Therefore disable it on this architecture. */
if (flag_reorder_blocks_and_partition)
{
flag_reorder_blocks_and_partition = 0;
flag_reorder_blocks = 1;
}
}
 
 
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand X. X is an RTL
expression.
 
CODE is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands
must be printed differently depending on the context. CODE
comes from the '%' specification that was used to request
printing of the operand. If the specification was just '%DIGIT'
then CODE is 0; if the specification was '%LTR DIGIT' then CODE
is the ASCII code for LTR.
 
If X is a register, this macro should print the register's name.
The names can be found in an array 'reg_names' whose type is
'char *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
 
When the machine description has a specification '%PUNCT' (a '%'
followed by a punctuation character), this macro is called with
a null pointer for X and the punctuation character for CODE.
 
'a', 'c', 'l', and 'n' are reserved.
 
The Xtensa specific codes are:
 
'd' CONST_INT, print as signed decimal
'x' CONST_INT, print as signed hexadecimal
'K' CONST_INT, print number of bits in mask for EXTUI
'R' CONST_INT, print (X & 0x1f)
'L' CONST_INT, print ((32 - X) & 0x1f)
'D' REG, print second register of double-word register operand
'N' MEM, print address of next word following a memory operand
'v' MEM, if memory reference is volatile, output a MEMW before it
't' any constant, add "@h" suffix for top 16 bits
'b' any constant, add "@l" suffix for bottom 16 bits
*/
 
static void
printx (FILE *file, signed int val)
{
/* Print a hexadecimal value in a nice way. */
if ((val > -0xa) && (val < 0xa))
fprintf (file, "%d", val);
else if (val < 0)
fprintf (file, "-0x%x", -val);
else
fprintf (file, "0x%x", val);
}
 
 
void
print_operand (FILE *file, rtx x, int letter)
{
if (!x)
error ("PRINT_OPERAND null pointer");
 
switch (letter)
{
case 'D':
if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
fprintf (file, "%s", reg_names[xt_true_regnum (x) + 1]);
else
output_operand_lossage ("invalid %%D value");
break;
 
case 'v':
if (GET_CODE (x) == MEM)
{
/* For a volatile memory reference, emit a MEMW before the
load or store. */
if (MEM_VOLATILE_P (x))
fprintf (file, "memw\n\t");
}
else
output_operand_lossage ("invalid %%v value");
break;
 
case 'N':
if (GET_CODE (x) == MEM
&& (GET_MODE (x) == DFmode || GET_MODE (x) == DImode))
{
x = adjust_address (x, GET_MODE (x) == DFmode ? SFmode : SImode, 4);
output_address (XEXP (x, 0));
}
else
output_operand_lossage ("invalid %%N value");
break;
 
case 'K':
if (GET_CODE (x) == CONST_INT)
{
int num_bits = 0;
unsigned val = INTVAL (x);
while (val & 1)
{
num_bits += 1;
val = val >> 1;
}
if ((val != 0) || (num_bits == 0) || (num_bits > 16))
fatal_insn ("invalid mask", x);
 
fprintf (file, "%d", num_bits);
}
else
output_operand_lossage ("invalid %%K value");
break;
 
case 'L':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", (32 - INTVAL (x)) & 0x1f);
else
output_operand_lossage ("invalid %%L value");
break;
 
case 'R':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", INTVAL (x) & 0x1f);
else
output_operand_lossage ("invalid %%R value");
break;
 
case 'x':
if (GET_CODE (x) == CONST_INT)
printx (file, INTVAL (x));
else
output_operand_lossage ("invalid %%x value");
break;
 
case 'd':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", INTVAL (x));
else
output_operand_lossage ("invalid %%d value");
break;
 
case 't':
case 'b':
if (GET_CODE (x) == CONST_INT)
{
printx (file, INTVAL (x));
fputs (letter == 't' ? "@h" : "@l", file);
}
else if (GET_CODE (x) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
if (GET_MODE (x) == SFmode)
{
long l;
REAL_VALUE_TO_TARGET_SINGLE (r, l);
fprintf (file, "0x%08lx@%c", l, letter == 't' ? 'h' : 'l');
}
else
output_operand_lossage ("invalid %%t/%%b value");
}
else if (GET_CODE (x) == CONST)
{
/* X must be a symbolic constant on ELF. Write an expression
suitable for 'const16' that sets the high or low 16 bits. */
if (GET_CODE (XEXP (x, 0)) != PLUS
|| (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
|| GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
output_operand_lossage ("invalid %%t/%%b value");
print_operand (file, XEXP (XEXP (x, 0), 0), 0);
fputs (letter == 't' ? "@h" : "@l", file);
/* There must be a non-alphanumeric character between 'h' or 'l'
and the number. The '-' is added by print_operand() already. */
if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
fputs ("+", file);
print_operand (file, XEXP (XEXP (x, 0), 1), 0);
}
else
{
output_addr_const (file, x);
fputs (letter == 't' ? "@h" : "@l", file);
}
break;
 
default:
if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
fprintf (file, "%s", reg_names[xt_true_regnum (x)]);
else if (GET_CODE (x) == MEM)
output_address (XEXP (x, 0));
else if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", INTVAL (x));
else
output_addr_const (file, x);
}
}
 
 
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression. */
 
void
print_operand_address (FILE *file, rtx addr)
{
if (!addr)
error ("PRINT_OPERAND_ADDRESS, null pointer");
 
switch (GET_CODE (addr))
{
default:
fatal_insn ("invalid address", addr);
break;
 
case REG:
fprintf (file, "%s, 0", reg_names [REGNO (addr)]);
break;
 
case PLUS:
{
rtx reg = (rtx)0;
rtx offset = (rtx)0;
rtx arg0 = XEXP (addr, 0);
rtx arg1 = XEXP (addr, 1);
 
if (GET_CODE (arg0) == REG)
{
reg = arg0;
offset = arg1;
}
else if (GET_CODE (arg1) == REG)
{
reg = arg1;
offset = arg0;
}
else
fatal_insn ("no register in address", addr);
 
if (CONSTANT_P (offset))
{
fprintf (file, "%s, ", reg_names [REGNO (reg)]);
output_addr_const (file, offset);
}
else
fatal_insn ("address offset not a constant", addr);
}
break;
 
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
output_addr_const (file, addr);
break;
}
}
 
 
void
xtensa_output_literal (FILE *file, rtx x, enum machine_mode mode, int labelno)
{
long value_long[2];
REAL_VALUE_TYPE r;
int size;
rtx first, second;
 
fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno);
 
switch (GET_MODE_CLASS (mode))
{
case MODE_FLOAT:
gcc_assert (GET_CODE (x) == CONST_DOUBLE);
 
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
switch (mode)
{
case SFmode:
REAL_VALUE_TO_TARGET_SINGLE (r, value_long[0]);
if (HOST_BITS_PER_LONG > 32)
value_long[0] &= 0xffffffff;
fprintf (file, "0x%08lx\n", value_long[0]);
break;
 
case DFmode:
REAL_VALUE_TO_TARGET_DOUBLE (r, value_long);
if (HOST_BITS_PER_LONG > 32)
{
value_long[0] &= 0xffffffff;
value_long[1] &= 0xffffffff;
}
fprintf (file, "0x%08lx, 0x%08lx\n",
value_long[0], value_long[1]);
break;
 
default:
gcc_unreachable ();
}
 
break;
 
case MODE_INT:
case MODE_PARTIAL_INT:
size = GET_MODE_SIZE (mode);
switch (size)
{
case 4:
output_addr_const (file, x);
fputs ("\n", file);
break;
 
case 8:
split_double (x, &first, &second);
output_addr_const (file, first);
fputs (", ", file);
output_addr_const (file, second);
fputs ("\n", file);
break;
 
default:
gcc_unreachable ();
}
break;
 
default:
gcc_unreachable ();
}
}
 
 
/* Return the bytes needed to compute the frame pointer from the current
stack pointer. */
 
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
#define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1))
 
long
compute_frame_size (int size)
{
/* Add space for the incoming static chain value. */
if (cfun->static_chain_decl != NULL)
size += (1 * UNITS_PER_WORD);
 
xtensa_current_frame_size =
XTENSA_STACK_ALIGN (size
+ current_function_outgoing_args_size
+ (WINDOW_SIZE * UNITS_PER_WORD));
return xtensa_current_frame_size;
}
 
 
int
xtensa_frame_pointer_required (void)
{
/* The code to expand builtin_frame_addr and builtin_return_addr
currently uses the hard_frame_pointer instead of frame_pointer.
This seems wrong but maybe it's necessary for other architectures.
This function is derived from the i386 code. */
 
if (cfun->machine->accesses_prev_frame)
return 1;
 
return 0;
}
 
 
void
xtensa_expand_prologue (void)
{
HOST_WIDE_INT total_size;
rtx size_rtx;
 
total_size = compute_frame_size (get_frame_size ());
size_rtx = GEN_INT (total_size);
 
if (total_size < (1 << (12+3)))
emit_insn (gen_entry (size_rtx, size_rtx));
else
{
/* Use a8 as a temporary since a0-a7 may be live. */
rtx tmp_reg = gen_rtx_REG (Pmode, A8_REG);
emit_insn (gen_entry (size_rtx, GEN_INT (MIN_FRAME_SIZE)));
emit_move_insn (tmp_reg, GEN_INT (total_size - MIN_FRAME_SIZE));
emit_insn (gen_subsi3 (tmp_reg, stack_pointer_rtx, tmp_reg));
emit_move_insn (stack_pointer_rtx, tmp_reg);
}
 
if (frame_pointer_needed)
{
if (cfun->machine->set_frame_ptr_insn)
{
rtx first, insn;
 
push_topmost_sequence ();
first = get_insns ();
pop_topmost_sequence ();
 
/* For all instructions prior to set_frame_ptr_insn, replace
hard_frame_pointer references with stack_pointer. */
for (insn = first;
insn != cfun->machine->set_frame_ptr_insn;
insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)),
hard_frame_pointer_rtx,
stack_pointer_rtx);
}
}
else
emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
}
}
 
 
/* Clear variables at function end. */
 
void
xtensa_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
xtensa_current_frame_size = 0;
}
 
 
rtx
xtensa_return_addr (int count, rtx frame)
{
rtx result, retaddr;
 
if (count == -1)
retaddr = gen_rtx_REG (Pmode, A0_REG);
else
{
rtx addr = plus_constant (frame, -4 * UNITS_PER_WORD);
addr = memory_address (Pmode, addr);
retaddr = gen_reg_rtx (Pmode);
emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr));
}
 
/* The 2 most-significant bits of the return address on Xtensa hold
the register window size. To get the real return address, these
bits must be replaced with the high bits from the current PC. */
 
result = gen_reg_rtx (Pmode);
emit_insn (gen_fix_return_addr (result, retaddr));
return result;
}
 
 
/* Create the va_list data type.
 
This structure is set up by __builtin_saveregs. The __va_reg field
points to a stack-allocated region holding the contents of the
incoming argument registers. The __va_ndx field is an index
initialized to the position of the first unnamed (variable)
argument. This same index is also used to address the arguments
passed in memory. Thus, the __va_stk field is initialized to point
to the position of the first argument in memory offset to account
for the arguments passed in registers and to account for the size
of the argument registers not being 16-byte aligned. E.G., there
are 6 argument registers of 4 bytes each, but we want the __va_ndx
for the first stack argument to have the maximal alignment of 16
bytes, so we offset the __va_stk address by 32 bytes so that
__va_stk[32] references the first argument on the stack. */
 
static tree
xtensa_build_builtin_va_list (void)
{
tree f_stk, f_reg, f_ndx, record, type_decl;
 
record = (*lang_hooks.types.make_type) (RECORD_TYPE);
type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
 
f_stk = build_decl (FIELD_DECL, get_identifier ("__va_stk"),
ptr_type_node);
f_reg = build_decl (FIELD_DECL, get_identifier ("__va_reg"),
ptr_type_node);
f_ndx = build_decl (FIELD_DECL, get_identifier ("__va_ndx"),
integer_type_node);
 
DECL_FIELD_CONTEXT (f_stk) = record;
DECL_FIELD_CONTEXT (f_reg) = record;
DECL_FIELD_CONTEXT (f_ndx) = record;
 
TREE_CHAIN (record) = type_decl;
TYPE_NAME (record) = type_decl;
TYPE_FIELDS (record) = f_stk;
TREE_CHAIN (f_stk) = f_reg;
TREE_CHAIN (f_reg) = f_ndx;
 
layout_type (record);
return record;
}
 
 
/* Save the incoming argument registers on the stack. Returns the
address of the saved registers. */
 
static rtx
xtensa_builtin_saveregs (void)
{
rtx gp_regs, dest;
int arg_words = current_function_args_info.arg_words;
int gp_left = MAX_ARGS_IN_REGISTERS - arg_words;
 
if (gp_left <= 0)
return const0_rtx;
 
/* Allocate the general-purpose register space. */
gp_regs = assign_stack_local
(BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1);
set_mem_alias_set (gp_regs, get_varargs_alias_set ());
 
/* Now store the incoming registers. */
dest = change_address (gp_regs, SImode,
plus_constant (XEXP (gp_regs, 0),
arg_words * UNITS_PER_WORD));
cfun->machine->need_a7_copy = true;
cfun->machine->vararg_a7 = true;
move_block_from_reg (GP_ARG_FIRST + arg_words, dest, gp_left);
gcc_assert (cfun->machine->vararg_a7_copy != 0);
emit_insn_before (cfun->machine->vararg_a7_copy, get_insns ());
 
return XEXP (gp_regs, 0);
}
 
 
/* Implement `va_start' for varargs and stdarg. We look at the
current function to fill in an initial va_list. */
 
void
xtensa_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
tree f_stk, stk;
tree f_reg, reg;
tree f_ndx, ndx;
tree t, u;
int arg_words;
 
arg_words = current_function_args_info.arg_words;
 
f_stk = TYPE_FIELDS (va_list_type_node);
f_reg = TREE_CHAIN (f_stk);
f_ndx = TREE_CHAIN (f_reg);
 
stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), valist, f_reg, NULL_TREE);
ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), valist, f_ndx, NULL_TREE);
 
/* Call __builtin_saveregs; save the result in __va_reg */
u = make_tree (ptr_type_node, expand_builtin_saveregs ());
t = build2 (MODIFY_EXPR, ptr_type_node, reg, u);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
 
/* Set the __va_stk member to ($arg_ptr - 32). */
u = make_tree (ptr_type_node, virtual_incoming_args_rtx);
u = fold_build2 (PLUS_EXPR, ptr_type_node, u,
build_int_cst (NULL_TREE, -32));
t = build2 (MODIFY_EXPR, ptr_type_node, stk, u);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
 
/* Set the __va_ndx member. If the first variable argument is on
the stack, adjust __va_ndx by 2 words to account for the extra
alignment offset for __va_stk. */
if (arg_words >= MAX_ARGS_IN_REGISTERS)
arg_words += 2;
u = build_int_cst (NULL_TREE, arg_words * UNITS_PER_WORD);
t = build2 (MODIFY_EXPR, integer_type_node, ndx, u);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
 
 
/* Implement `va_arg'. */
 
static tree
xtensa_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p,
tree *post_p ATTRIBUTE_UNUSED)
{
tree f_stk, stk;
tree f_reg, reg;
tree f_ndx, ndx;
tree type_size, array, orig_ndx, addr, size, va_size, t;
tree lab_false, lab_over, lab_false2;
bool indirect;
 
indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
if (indirect)
type = build_pointer_type (type);
 
/* Handle complex values as separate real and imaginary parts. */
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tree real_part, imag_part;
 
real_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
pre_p, NULL);
real_part = get_initialized_tmp_var (real_part, pre_p, NULL);
 
imag_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
pre_p, NULL);
imag_part = get_initialized_tmp_var (imag_part, pre_p, NULL);
 
return build2 (COMPLEX_EXPR, type, real_part, imag_part);
}
 
f_stk = TYPE_FIELDS (va_list_type_node);
f_reg = TREE_CHAIN (f_stk);
f_ndx = TREE_CHAIN (f_reg);
 
stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), valist, f_reg, NULL_TREE);
ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), valist, f_ndx, NULL_TREE);
 
type_size = size_in_bytes (type);
va_size = round_up (type_size, UNITS_PER_WORD);
gimplify_expr (&va_size, pre_p, NULL, is_gimple_val, fb_rvalue);
 
 
/* First align __va_ndx if necessary for this arg:
 
orig_ndx = (AP).__va_ndx;
if (__alignof__ (TYPE) > 4 )
orig_ndx = ((orig_ndx + __alignof__ (TYPE) - 1)
& -__alignof__ (TYPE)); */
 
orig_ndx = get_initialized_tmp_var (ndx, pre_p, NULL);
 
if (TYPE_ALIGN (type) > BITS_PER_WORD)
{
int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_UNIT;
 
t = build2 (PLUS_EXPR, integer_type_node, orig_ndx,
build_int_cst (NULL_TREE, align - 1));
t = build2 (BIT_AND_EXPR, integer_type_node, t,
build_int_cst (NULL_TREE, -align));
t = build2 (MODIFY_EXPR, integer_type_node, orig_ndx, t);
gimplify_and_add (t, pre_p);
}
 
 
/* Increment __va_ndx to point past the argument:
 
(AP).__va_ndx = orig_ndx + __va_size (TYPE); */
 
t = fold_convert (integer_type_node, va_size);
t = build2 (PLUS_EXPR, integer_type_node, orig_ndx, t);
t = build2 (MODIFY_EXPR, integer_type_node, ndx, t);
gimplify_and_add (t, pre_p);
 
 
/* Check if the argument is in registers:
 
if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4
&& !must_pass_in_stack (type))
__array = (AP).__va_reg; */
 
array = create_tmp_var (ptr_type_node, NULL);
 
lab_over = NULL;
if (!targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
{
lab_false = create_artificial_label ();
lab_over = create_artificial_label ();
 
t = build_int_cst (NULL_TREE, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD);
t = build2 (GT_EXPR, boolean_type_node, ndx, t);
t = build3 (COND_EXPR, void_type_node, t,
build1 (GOTO_EXPR, void_type_node, lab_false),
NULL_TREE);
gimplify_and_add (t, pre_p);
 
t = build2 (MODIFY_EXPR, void_type_node, array, reg);
gimplify_and_add (t, pre_p);
 
t = build1 (GOTO_EXPR, void_type_node, lab_over);
gimplify_and_add (t, pre_p);
 
t = build1 (LABEL_EXPR, void_type_node, lab_false);
gimplify_and_add (t, pre_p);
}
 
 
/* ...otherwise, the argument is on the stack (never split between
registers and the stack -- change __va_ndx if necessary):
 
else
{
if (orig_ndx <= __MAX_ARGS_IN_REGISTERS * 4)
(AP).__va_ndx = 32 + __va_size (TYPE);
__array = (AP).__va_stk;
} */
 
lab_false2 = create_artificial_label ();
 
t = build_int_cst (NULL_TREE, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD);
t = build2 (GT_EXPR, boolean_type_node, orig_ndx, t);
t = build3 (COND_EXPR, void_type_node, t,
build1 (GOTO_EXPR, void_type_node, lab_false2),
NULL_TREE);
gimplify_and_add (t, pre_p);
 
t = size_binop (PLUS_EXPR, va_size, size_int (32));
t = fold_convert (integer_type_node, t);
t = build2 (MODIFY_EXPR, integer_type_node, ndx, t);
gimplify_and_add (t, pre_p);
 
t = build1 (LABEL_EXPR, void_type_node, lab_false2);
gimplify_and_add (t, pre_p);
 
t = build2 (MODIFY_EXPR, void_type_node, array, stk);
gimplify_and_add (t, pre_p);
 
if (lab_over)
{
t = build1 (LABEL_EXPR, void_type_node, lab_over);
gimplify_and_add (t, pre_p);
}
 
 
/* Given the base array pointer (__array) and index to the subsequent
argument (__va_ndx), find the address:
 
__array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4
? sizeof (TYPE)
: __va_size (TYPE))
 
The results are endian-dependent because values smaller than one word
are aligned differently. */
 
 
if (BYTES_BIG_ENDIAN && TREE_CODE (type_size) == INTEGER_CST)
{
t = size_int (PARM_BOUNDARY / BITS_PER_UNIT);
t = fold_build2 (GE_EXPR, boolean_type_node, type_size, t);
t = fold_build3 (COND_EXPR, sizetype, t, va_size, type_size);
size = t;
}
else
size = va_size;
 
t = fold_convert (ptr_type_node, ndx);
addr = build2 (PLUS_EXPR, ptr_type_node, array, t);
t = fold_convert (ptr_type_node, size);
addr = build2 (MINUS_EXPR, ptr_type_node, addr, t);
 
addr = fold_convert (build_pointer_type (type), addr);
if (indirect)
addr = build_va_arg_indirect_ref (addr);
return build_va_arg_indirect_ref (addr);
}
 
 
enum reg_class
xtensa_preferred_reload_class (rtx x, enum reg_class class, int isoutput)
{
if (!isoutput && CONSTANT_P (x) && GET_CODE (x) == CONST_DOUBLE)
return NO_REGS;
 
/* Don't use the stack pointer or hard frame pointer for reloads!
The hard frame pointer would normally be OK except that it may
briefly hold an incoming argument in the prologue, and reload
won't know that it is live because the hard frame pointer is
treated specially. */
 
if (class == AR_REGS || class == GR_REGS)
return RL_REGS;
 
return class;
}
 
 
enum reg_class
xtensa_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x, int isoutput)
{
int regno;
 
if (GET_CODE (x) == SIGN_EXTEND)
x = XEXP (x, 0);
regno = xt_true_regnum (x);
 
if (!isoutput)
{
if (class == FP_REGS && constantpool_mem_p (x))
return RL_REGS;
}
 
if (ACC_REG_P (regno))
return ((class == GR_REGS || class == RL_REGS) ? NO_REGS : RL_REGS);
if (class == ACC_REG)
return (GP_REG_P (regno) ? NO_REGS : RL_REGS);
 
return NO_REGS;
}
 
 
void
order_regs_for_local_alloc (void)
{
if (!leaf_function_p ())
{
memcpy (reg_alloc_order, reg_nonleaf_alloc_order,
FIRST_PSEUDO_REGISTER * sizeof (int));
}
else
{
int i, num_arg_regs;
int nxt = 0;
 
/* Use the AR registers in increasing order (skipping a0 and a1)
but save the incoming argument registers for a last resort. */
num_arg_regs = current_function_args_info.arg_words;
if (num_arg_regs > MAX_ARGS_IN_REGISTERS)
num_arg_regs = MAX_ARGS_IN_REGISTERS;
for (i = GP_ARG_FIRST; i < 16 - num_arg_regs; i++)
reg_alloc_order[nxt++] = i + num_arg_regs;
for (i = 0; i < num_arg_regs; i++)
reg_alloc_order[nxt++] = GP_ARG_FIRST + i;
 
/* List the coprocessor registers in order. */
for (i = 0; i < BR_REG_NUM; i++)
reg_alloc_order[nxt++] = BR_REG_FIRST + i;
 
/* List the FP registers in order for now. */
for (i = 0; i < 16; i++)
reg_alloc_order[nxt++] = FP_REG_FIRST + i;
 
/* GCC requires that we list *all* the registers.... */
reg_alloc_order[nxt++] = 0; /* a0 = return address */
reg_alloc_order[nxt++] = 1; /* a1 = stack pointer */
reg_alloc_order[nxt++] = 16; /* pseudo frame pointer */
reg_alloc_order[nxt++] = 17; /* pseudo arg pointer */
 
reg_alloc_order[nxt++] = ACC_REG_FIRST; /* MAC16 accumulator */
}
}
 
 
/* Some Xtensa targets support multiple bss sections. If the section
name ends with ".bss", add SECTION_BSS to the flags. */
 
static unsigned int
xtensa_multibss_section_type_flags (tree decl, const char *name, int reloc)
{
unsigned int flags = default_section_type_flags (decl, name, reloc);
const char *suffix;
 
suffix = strrchr (name, '.');
if (suffix && strcmp (suffix, ".bss") == 0)
{
if (!decl || (TREE_CODE (decl) == VAR_DECL
&& DECL_INITIAL (decl) == NULL_TREE))
flags |= SECTION_BSS; /* @nobits */
else
warning (0, "only uninitialized variables can be placed in a "
".bss section");
}
 
return flags;
}
 
 
/* The literal pool stays with the function. */
 
static section *
xtensa_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
return function_section (current_function_decl);
}
 
 
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
 
static bool
xtensa_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case CONST_INT:
switch (outer_code)
{
case SET:
if (xtensa_simm12b (INTVAL (x)))
{
*total = 4;
return true;
}
break;
case PLUS:
if (xtensa_simm8 (INTVAL (x))
|| xtensa_simm8x256 (INTVAL (x)))
{
*total = 0;
return true;
}
break;
case AND:
if (xtensa_mask_immediate (INTVAL (x)))
{
*total = 0;
return true;
}
break;
case COMPARE:
if ((INTVAL (x) == 0) || xtensa_b4const (INTVAL (x)))
{
*total = 0;
return true;
}
break;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
case ROTATE:
case ROTATERT:
/* No way to tell if X is the 2nd operand so be conservative. */
default: break;
}
if (xtensa_simm12b (INTVAL (x)))
*total = 5;
else if (TARGET_CONST16)
*total = COSTS_N_INSNS (2);
else
*total = 6;
return true;
 
case CONST:
case LABEL_REF:
case SYMBOL_REF:
if (TARGET_CONST16)
*total = COSTS_N_INSNS (2);
else
*total = 5;
return true;
 
case CONST_DOUBLE:
if (TARGET_CONST16)
*total = COSTS_N_INSNS (4);
else
*total = 7;
return true;
 
case MEM:
{
int num_words =
(GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ? 2 : 1;
 
if (memory_address_p (GET_MODE (x), XEXP ((x), 0)))
*total = COSTS_N_INSNS (num_words);
else
*total = COSTS_N_INSNS (2*num_words);
return true;
}
 
case FFS:
*total = COSTS_N_INSNS (TARGET_NSA ? 5 : 50);
return true;
 
case NOT:
*total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 3 : 2);
return true;
 
case AND:
case IOR:
case XOR:
if (GET_MODE (x) == DImode)
*total = COSTS_N_INSNS (2);
else
*total = COSTS_N_INSNS (1);
return true;
 
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (GET_MODE (x) == DImode)
*total = COSTS_N_INSNS (50);
else
*total = COSTS_N_INSNS (1);
return true;
 
case ABS:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == SFmode)
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
else if (xmode == DFmode)
*total = COSTS_N_INSNS (50);
else
*total = COSTS_N_INSNS (4);
return true;
}
 
case PLUS:
case MINUS:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == SFmode)
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
else if (xmode == DFmode || xmode == DImode)
*total = COSTS_N_INSNS (50);
else
*total = COSTS_N_INSNS (1);
return true;
}
 
case NEG:
*total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 4 : 2);
return true;
 
case MULT:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == SFmode)
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50);
else if (xmode == DFmode || xmode == DImode)
*total = COSTS_N_INSNS (50);
else if (TARGET_MUL32)
*total = COSTS_N_INSNS (4);
else if (TARGET_MAC16)
*total = COSTS_N_INSNS (16);
else if (TARGET_MUL16)
*total = COSTS_N_INSNS (12);
else
*total = COSTS_N_INSNS (50);
return true;
}
 
case DIV:
case MOD:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == SFmode)
{
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50);
return true;
}
else if (xmode == DFmode)
{
*total = COSTS_N_INSNS (50);
return true;
}
}
/* Fall through. */
 
case UDIV:
case UMOD:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == DImode)
*total = COSTS_N_INSNS (50);
else if (TARGET_DIV32)
*total = COSTS_N_INSNS (32);
else
*total = COSTS_N_INSNS (50);
return true;
}
 
case SQRT:
if (GET_MODE (x) == SFmode)
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50);
else
*total = COSTS_N_INSNS (50);
return true;
 
case SMIN:
case UMIN:
case SMAX:
case UMAX:
*total = COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50);
return true;
 
case SIGN_EXTRACT:
case SIGN_EXTEND:
*total = COSTS_N_INSNS (TARGET_SEXT ? 1 : 2);
return true;
 
case ZERO_EXTRACT:
case ZERO_EXTEND:
*total = COSTS_N_INSNS (1);
return true;
 
default:
return false;
}
}
 
/* Worker function for TARGET_RETURN_IN_MEMORY. */
 
static bool
xtensa_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
{
return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)
> 4 * UNITS_PER_WORD);
}
 
#include "gt-xtensa.h"
/crtn.asm
0,0 → 1,50
# End of .init and .fini sections.
# Copyright (C) 2003 Free Software Foundation, Inc.
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2, or (at your option)
# any later version.
#
# In addition to the permissions in the GNU General Public License, the
# Free Software Foundation gives you unlimited permission to link the
# compiled version of this file into combinations with other programs,
# and to distribute those combinations without any restriction coming
# from the use of this file. (The General Public License restrictions
# do apply in other respects; for example, they cover modification of
# the file, and distribution when not linked into a combine
# executable.)
#
# GCC is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING. If not, write to the Free
# Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301, USA.
 
# This file just makes sure that the .fini and .init sections do in
# fact return. Users may put any desired instructions in those sections.
# This file is the last thing linked into any executable.
 
#include "xtensa-config.h"
 
.section .init
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
retw
#else
l32i a0, sp, 0
addi sp, sp, 32
ret
#endif
 
.section .fini
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
retw
#else
l32i a0, sp, 0
addi sp, sp, 32
ret
#endif
/linux.h
0,0 → 1,61
/* Xtensa Linux configuration.
Derived from the configuration for GCC for Intel i386 running Linux.
Copyright (C) 2001, 2002, 2003, 2006, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#define TARGET_OS_CPP_BUILTINS() LINUX_TARGET_OS_CPP_BUILTINS()
 
#undef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC "%{posix:-D_POSIX_SOURCE} %{pthread:-D_REENTRANT}"
 
#undef TARGET_VERSION
#define TARGET_VERSION fputs (" (Xtensa GNU/Linux with ELF)", stderr);
 
#undef WCHAR_TYPE
#define WCHAR_TYPE "long int"
 
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE 32
 
#undef ASM_SPEC
#define ASM_SPEC \
"%{v} \
%{mtext-section-literals:--text-section-literals} \
%{mno-text-section-literals:--no-text-section-literals} \
%{mtarget-align:--target-align} \
%{mno-target-align:--no-target-align} \
%{mlongcalls:--longcalls} \
%{mno-longcalls:--no-longcalls}"
 
#define GLIBC_DYNAMIC_LINKER "/lib/ld.so.1"
 
#undef LINK_SPEC
#define LINK_SPEC \
"%{shared:-shared} \
%{!shared: \
%{!ibcs: \
%{!static: \
%{rdynamic:-export-dynamic} \
%{!dynamic-linker:-dynamic-linker " LINUX_DYNAMIC_LINKER "}} \
%{static:-static}}}"
 
#undef LOCAL_LABEL_PREFIX
#define LOCAL_LABEL_PREFIX "."
 
/* Always enable "-fpic" for Xtensa Linux. */
#define XTENSA_ALWAYS_PIC 1
/xtensa.h
0,0 → 1,1223
/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
/* Get Xtensa configuration settings */
#include "xtensa-config.h"
 
/* Standard GCC variables that we reference. */
extern int current_function_calls_alloca;
extern int optimize;
 
/* External variables defined in xtensa.c. */
 
/* comparison type */
enum cmp_type {
CMP_SI, /* four byte integers */
CMP_DI, /* eight byte integers */
CMP_SF, /* single precision floats */
CMP_DF, /* double precision floats */
CMP_MAX /* max comparison type */
};
 
extern struct rtx_def * branch_cmp[2]; /* operands for compare */
extern enum cmp_type branch_type; /* what type of branch to use */
extern unsigned xtensa_current_frame_size;
 
/* Macros used in the machine description to select various Xtensa
configuration options. */
#define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
#define TARGET_DENSITY XCHAL_HAVE_DENSITY
#define TARGET_MAC16 XCHAL_HAVE_MAC16
#define TARGET_MUL16 XCHAL_HAVE_MUL16
#define TARGET_MUL32 XCHAL_HAVE_MUL32
#define TARGET_DIV32 XCHAL_HAVE_DIV32
#define TARGET_NSA XCHAL_HAVE_NSA
#define TARGET_MINMAX XCHAL_HAVE_MINMAX
#define TARGET_SEXT XCHAL_HAVE_SEXT
#define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
#define TARGET_HARD_FLOAT XCHAL_HAVE_FP
#define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
#define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
#define TARGET_ABS XCHAL_HAVE_ABS
#define TARGET_ADDX XCHAL_HAVE_ADDX
 
#define TARGET_DEFAULT ( \
(XCHAL_HAVE_L32R ? 0 : MASK_CONST16))
 
#define OVERRIDE_OPTIONS override_options ()
 
/* Reordering blocks for Xtensa is not a good idea unless the compiler
understands the range of conditional branches. Currently all branch
relaxation for Xtensa is handled in the assembler, so GCC cannot do a
good job of reordering blocks. Do not enable reordering unless it is
explicitly requested. */
#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
do \
{ \
flag_reorder_blocks = 0; \
} \
while (0)
 
/* Target CPU builtins. */
#define TARGET_CPU_CPP_BUILTINS() \
do { \
builtin_assert ("cpu=xtensa"); \
builtin_assert ("machine=xtensa"); \
builtin_define ("__xtensa__"); \
builtin_define ("__XTENSA__"); \
builtin_define ("__XTENSA_WINDOWED_ABI__"); \
builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
if (!TARGET_HARD_FLOAT) \
builtin_define ("__XTENSA_SOFT_FLOAT__"); \
} while (0)
 
#define CPP_SPEC " %(subtarget_cpp_spec) "
 
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif
 
#define EXTRA_SPECS \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
 
#ifdef __XTENSA_EB__
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#else
#define LIBGCC2_WORDS_BIG_ENDIAN 0
#endif
 
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
 
 
/* Target machine storage layout */
 
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
 
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
 
/* Define this if most significant word of a multiword number is the lowest. */
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
 
#define MAX_BITS_PER_WORD 32
 
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
#define MIN_UNITS_PER_WORD 4
 
/* Width of a floating point register. */
#define UNITS_PER_FPREG 4
 
/* Size in bits of various types on the target machine. */
#define INT_TYPE_SIZE 32
#define SHORT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
 
/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY 32
 
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
 
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
 
/* Alignment of field after 'int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
 
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
 
/* There is no point aligning anything to a rounder boundary than this. */
#define BIGGEST_ALIGNMENT 128
 
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
 
/* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
for QImode, because there is no 8-bit load from memory with sign
extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
loads both with and without sign extension. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
do { \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
{ \
if ((MODE) == QImode) \
(UNSIGNEDP) = 1; \
(MODE) = SImode; \
} \
} while (0)
 
/* Imitate the way many other C compilers handle alignment of
bitfields and the structures that contain them. */
#define PCC_BITFIELD_TYPE_MATTERS 1
 
/* Disable the use of word-sized or smaller complex modes for structures,
and for function arguments in particular, where they cause problems with
register a7. The xtensa_copy_incoming_a7 function assumes that there is
a single reference to an argument in a7, but with small complex modes the
real and imaginary components may be extracted separately, leading to two
uses of the register, only one of which would be replaced. */
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
((MODE) == CQImode || (MODE) == CHImode)
 
/* Align string constants and constructors to at least a word boundary.
The typical use of this macro is to increase alignment for string
constants to be word aligned so that 'strcpy' calls that copy
constants can be done inline. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
&& (ALIGN) < BITS_PER_WORD \
? BITS_PER_WORD \
: (ALIGN))
 
/* Align arrays, unions and records to at least a word boundary.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. Another is to
cause character arrays to be word-aligned so that 'strcpy' calls
that copy constants to character arrays can be done inline. */
#undef DATA_ALIGNMENT
#define DATA_ALIGNMENT(TYPE, ALIGN) \
((((ALIGN) < BITS_PER_WORD) \
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
 
/* Operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
 
/* Xtensa loads are zero-extended by default. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
 
/* Standard register usage. */
 
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
 
The fake frame pointer and argument pointer will never appear in
the generated code, since they will always be eliminated and replaced
by either the stack pointer or the hard frame pointer.
 
0 - 15 AR[0] - AR[15]
16 FRAME_POINTER (fake = initial sp)
17 ARG_POINTER (fake = initial sp + framesize)
18 BR[0] for floating-point CC
19 - 34 FR[0] - FR[15]
35 MAC16 accumulator */
 
#define FIRST_PSEUDO_REGISTER 36
 
/* Return the stabs register number to use for REGNO. */
#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
 
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ \
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, \
}
 
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{ \
1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, \
}
 
/* For non-leaf procedures on Xtensa processors, the allocation order
is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
want to use the lowest numbered registers first to minimize
register window overflows. However, local-alloc is not smart
enough to consider conflicts with incoming arguments. If an
incoming argument in a2 is live throughout the function and
local-alloc decides to use a2, then the incoming argument must
either be spilled or copied to another register. To get around
this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
reg_alloc_order for leaf functions such that lowest numbered
registers are used first with the exception that the incoming
argument registers are not used until after other register choices
have been exhausted. */
 
#define REG_ALLOC_ORDER \
{ 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
18, \
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
0, 1, 16, 17, \
35, \
}
 
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
 
/* For Xtensa, the only point of this is to prevent GCC from otherwise
giving preference to call-used registers. To minimize window
overflows for the AR registers, we want to give preference to the
lower-numbered AR registers. For other register files, which are
not windowed, we still prefer call-used registers, if there are any. */
extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
#define LEAF_REGISTERS xtensa_leaf_regs
 
/* For Xtensa, no remapping is necessary, but this macro must be
defined if LEAF_REGISTERS is defined. */
#define LEAF_REG_REMAP(REGNO) (REGNO)
 
/* This must be declared if LEAF_REGISTERS is set. */
extern int leaf_function;
 
/* Internal macros to classify a register number. */
 
/* 16 address registers + fake registers */
#define GP_REG_FIRST 0
#define GP_REG_LAST 17
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
 
/* Coprocessor registers */
#define BR_REG_FIRST 18
#define BR_REG_LAST 18
#define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
 
/* 16 floating-point registers */
#define FP_REG_FIRST 19
#define FP_REG_LAST 34
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
 
/* MAC16 accumulator */
#define ACC_REG_FIRST 35
#define ACC_REG_LAST 35
#define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
 
#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
 
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(FP_REG_P (REGNO) ? \
((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
 
/* Value is 1 if hard register REGNO can hold a value of machine-mode
MODE. */
extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
 
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
 
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
 
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
 
/* Base register for access to local variables of the function. */
#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
 
/* The register number of the frame pointer register, which is used to
access automatic variables in the stack frame. For Xtensa, this
register never appears in the output. It is always eliminated to
either the stack pointer or the hard frame pointer. */
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
 
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in 'reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
 
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
 
/* If the static chain is passed in memory, these macros provide rtx
giving 'mem' expressions that denote where they are stored.
'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
seen by the calling and called functions, respectively. */
 
#define STATIC_CHAIN \
gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
 
#define STATIC_CHAIN_INCOMING \
gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
 
/* For now we don't try to use the full set of boolean registers. Without
software pipelining of FP operations, there's not much to gain and it's
a real pain to get them reloaded. */
#define FPCC_REGNUM (BR_REG_FIRST + 0)
 
/* It is as good or better to call a constant function address than to
call an address kept in a register. */
#define NO_FUNCTION_CSE 1
 
/* Xtensa processors have "register windows". GCC does not currently
take advantage of the possibility for variable-sized windows; instead,
we use a fixed window size of 8. */
 
#define INCOMING_REGNO(OUT) \
((GP_REG_P (OUT) && \
((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
(OUT) - WINDOW_SIZE : (OUT))
 
#define OUTGOING_REGNO(IN) \
((GP_REG_P (IN) && \
((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
(IN) + WINDOW_SIZE : (IN))
 
 
/* Define the classes of registers for register constraints in the
machine description. */
enum reg_class
{
NO_REGS, /* no registers in set */
BR_REGS, /* coprocessor boolean registers */
FP_REGS, /* floating point registers */
ACC_REG, /* MAC16 accumulator */
SP_REG, /* sp register (aka a1) */
RL_REGS, /* preferred reload regs (not sp or fp) */
GR_REGS, /* integer registers except sp */
AR_REGS, /* all integer registers */
ALL_REGS, /* all registers */
LIM_REG_CLASSES /* max value + 1 */
};
 
#define N_REG_CLASSES (int) LIM_REG_CLASSES
 
#define GENERAL_REGS AR_REGS
 
/* An initializer containing the names of the register classes as C
string constants. These names are used in writing some of the
debugging dumps. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"BR_REGS", \
"FP_REGS", \
"ACC_REG", \
"SP_REG", \
"RL_REGS", \
"GR_REGS", \
"AR_REGS", \
"ALL_REGS" \
}
 
/* Contents of the register classes. The Nth integer specifies the
contents of class N. The way the integer MASK is interpreted is
that register R is in the class if 'MASK & (1 << R)' is 1. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000 }, /* no registers */ \
{ 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
{ 0xfff80000, 0x00000007 }, /* floating-point registers */ \
{ 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
{ 0x00000002, 0x00000000 }, /* stack pointer register */ \
{ 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
{ 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
{ 0x0003ffff, 0x00000000 }, /* integer registers */ \
{ 0xffffffff, 0x0000000f } /* all registers */ \
}
 
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more that one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
 
#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
 
/* Use the Xtensa AR register file for base registers.
No index registers. */
#define BASE_REG_CLASS AR_REGS
#define INDEX_REG_CLASS NO_REGS
 
/* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
16 AR registers may be explicitly used in the RTL, as either
incoming or outgoing arguments. */
#define SMALL_REGISTER_CLASSES 1
 
 
/* REGISTER AND CONSTANT CLASSES */
 
/* Get reg_class from a letter such as appears in the machine
description.
 
Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
 
DEFINED REGISTER CLASSES:
 
'a' general-purpose registers except sp
'q' sp (aka a1)
'D' general-purpose registers (only if density option enabled)
'd' general-purpose registers, including sp (only if density enabled)
'A' MAC16 accumulator (only if MAC16 option enabled)
'B' general-purpose registers (only if sext instruction enabled)
'C' general-purpose registers (only if mul16 option enabled)
'W' general-purpose registers (only if const16 option enabled)
'b' coprocessor boolean registers
'f' floating-point registers
*/
 
extern enum reg_class xtensa_char_to_class[256];
 
#define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
 
/* The letters I, J, K, L, M, N, O, and P in a register constraint
string can be used to stand for particular ranges of immediate
operands. This macro defines what the ranges are. C is the
letter, and VALUE is a constant value. Return 1 if VALUE is
in the range specified by C.
 
For Xtensa:
 
I = 12-bit signed immediate for MOVI
J = 8-bit signed immediate for ADDI
K = 4-bit value in (b4const U {0})
L = 4-bit value in b4constu
M = 7-bit immediate value for MOVI.N
N = 8-bit unsigned immediate shifted left by 8 bits for ADDMI
O = 4-bit immediate for ADDI.N
P = valid immediate mask value for EXTUI */
 
#define CONST_OK_FOR_LETTER_P xtensa_const_ok_for_letter_p
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
 
 
/* Other letters can be defined in a machine-dependent fashion to
stand for particular classes of registers or other arbitrary
operand types.
 
R = memory that can be accessed with a 4-bit unsigned offset
T = memory in a constant pool (addressable with a pc-relative load)
U = memory *NOT* in a constant pool
 
The offset range should not be checked here (except to distinguish
denser versions of the instructions for which more general versions
are available). Doing so leads to problems in reloading: an
argptr-relative address may become invalid when the phony argptr is
eliminated in favor of the stack pointer (the offset becomes too
large to fit in the instruction's immediate field); a reload is
generated to fix this but the RTL is not immediately updated; in
the meantime, the constraints are checked and none match. The
solution seems to be to simply skip the offset check here. The
address will be checked anyway because of the code in
GO_IF_LEGITIMATE_ADDRESS. */
 
#define EXTRA_CONSTRAINT xtensa_extra_constraint
 
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
xtensa_preferred_reload_class (X, CLASS, 0)
 
#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
xtensa_preferred_reload_class (X, CLASS, 1)
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
xtensa_secondary_reload_class (CLASS, MODE, X, 0)
 
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
xtensa_secondary_reload_class (CLASS, MODE, X, 1)
 
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_UNITS(mode, size) \
((GET_MODE_SIZE (mode) + (size) - 1) / (size))
 
#define CLASS_MAX_NREGS(CLASS, MODE) \
(CLASS_UNITS (MODE, UNITS_PER_WORD))
 
 
/* Stack layout; function entry, exit and calling. */
 
#define STACK_GROWS_DOWNWARD
 
/* Offset within stack frame to start allocating local variables at. */
#define STARTING_FRAME_OFFSET \
current_function_outgoing_args_size
 
/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
they are eliminated to either the stack pointer or hard frame pointer. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
 
#define CAN_ELIMINATE(FROM, TO) 1
 
/* Specify the initial difference between the specified pair of registers. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
do { \
compute_frame_size (get_frame_size ()); \
switch (FROM) \
{ \
case FRAME_POINTER_REGNUM: \
(OFFSET) = 0; \
break; \
case ARG_POINTER_REGNUM: \
(OFFSET) = xtensa_current_frame_size; \
break; \
default: \
gcc_unreachable (); \
} \
} while (0)
 
/* If defined, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable
'current_function_outgoing_args_size'. No space will be pushed
onto the stack for each call; instead, the function prologue
should increase the stack frame size by this amount. */
#define ACCUMULATE_OUTGOING_ARGS 1
 
/* Offset from the argument pointer register to the first argument's
address. On some machines it may depend on the data type of the
function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
location above the first argument's address. */
#define FIRST_PARM_OFFSET(FNDECL) 0
 
/* Align stack frames on 128 bits for Xtensa. This is necessary for
128-bit datatypes defined in TIE (e.g., for Vectra). */
#define STACK_BOUNDARY 128
 
/* Functions do not pop arguments off the stack. */
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
 
/* Use a fixed register window size of 8. */
#define WINDOW_SIZE 8
 
/* Symbolic macros for the registers used to return integer, floating
point, and values of coprocessor and user-defined modes. */
#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
 
/* Symbolic macros for the first/last argument registers. */
#define GP_ARG_FIRST (GP_REG_FIRST + 2)
#define GP_ARG_LAST (GP_REG_FIRST + 7)
#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
#define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
 
#define MAX_ARGS_IN_REGISTERS 6
 
/* Don't worry about compatibility with PCC. */
#define DEFAULT_PCC_STRUCT_RETURN 0
 
/* Define how to find the value returned by a library function
assuming the value has mode MODE. Because we have defined
TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
perform the same promotions as PROMOTE_MODE. */
#define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
? SImode : (MODE), \
OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
 
#define LIBCALL_VALUE(MODE) \
XTENSA_LIBCALL_VALUE ((MODE), 0)
 
#define LIBCALL_OUTGOING_VALUE(MODE) \
XTENSA_LIBCALL_VALUE ((MODE), 1)
 
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
? SImode: TYPE_MODE (VALTYPE), \
OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
 
#define FUNCTION_VALUE(VALTYPE, FUNC) \
XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
 
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
 
/* A C expression that is nonzero if REGNO is the number of a hard
register in which the values of called function may come back. A
register whose use for returning values is limited to serving as
the second of a pair (for a value of type 'double', say) need not
be recognized by this macro. If the machine has register windows,
so that the caller and the called function use different registers
for the return value, this macro should recognize only the caller's
register numbers. */
#define FUNCTION_VALUE_REGNO_P(N) \
((N) == GP_RETURN)
 
/* A C expression that is nonzero if REGNO is the number of a hard
register in which function arguments are sometimes passed. This
does *not* include implicit arguments such as the static chain and
the structure-value address. On many machines, no registers can be
used for this purpose since all function arguments are pushed on
the stack. */
#define FUNCTION_ARG_REGNO_P(N) \
((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
 
/* Record the number of argument words seen so far, along with a flag to
indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
is used for both incoming and outgoing args, so a separate flag is
needed. */
typedef struct xtensa_args
{
int arg_words;
int incoming;
} CUMULATIVE_ARGS;
 
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
init_cumulative_args (&CUM, 0)
 
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
init_cumulative_args (&CUM, 1)
 
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
function_arg_advance (&CUM, MODE, TYPE)
 
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg (&CUM, MODE, TYPE, FALSE)
 
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
function_arg (&CUM, MODE, TYPE, TRUE)
 
#define FUNCTION_ARG_BOUNDARY function_arg_boundary
 
/* Profiling Xtensa code is typically done with the built-in profiling
feature of Tensilica's instruction set simulator, which does not
require any compiler support. Profiling code on a real (i.e.,
non-simulated) Xtensa processor is currently only supported by
GNU/Linux with glibc. The glibc version of _mcount doesn't require
counter variables. The _mcount function needs the current PC and
the current return address to identify an arc in the call graph.
Pass the current return address as the first argument; the current
PC is available as a0 in _mcount's register window. Both of these
values contain window size information in the two most significant
bits; we assume that _mcount will mask off those bits. The call to
_mcount uses a window size of 8 to make sure that it doesn't clobber
any incoming argument values. */
 
#define NO_PROFILE_COUNTERS 1
 
#define FUNCTION_PROFILER(FILE, LABELNO) \
do { \
fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
if (flag_pic) \
{ \
fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
fprintf (FILE, "\tcallx8\ta8\n"); \
} \
else \
fprintf (FILE, "\tcall8\t_mcount\n"); \
} while (0)
 
/* Stack pointer value doesn't matter at exit. */
#define EXIT_IGNORE_STACK 1
 
/* A C statement to output, on the stream FILE, assembler code for a
block of data that contains the constant parts of a trampoline.
This code should not include a label--the label is taken care of
automatically.
 
For Xtensa, the trampoline must perform an entry instruction with a
minimal stack frame in order to get some free registers. Once the
actual call target is known, the proper stack frame size is extracted
from the entry instruction at the target and the current frame is
adjusted to match. The trampoline then transfers control to the
instruction following the entry at the target. Note: this assumes
that the target begins with an entry instruction. */
 
/* minimum frame = reg save area (4 words) plus static chain (1 word)
and the total number of words must be a multiple of 128 bits */
#define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
 
#define TRAMPOLINE_TEMPLATE(STREAM) \
do { \
fprintf (STREAM, "\t.begin no-transform\n"); \
fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
\
/* save the return address */ \
fprintf (STREAM, "\tmov\ta10, a0\n"); \
\
/* Use a CALL0 instruction to skip past the constants and in the \
process get the PC into A0. This allows PC-relative access to \
the constants without relying on L32R, which may not always be \
available. */ \
\
fprintf (STREAM, "\tcall0\t.Lskipconsts\n"); \
fprintf (STREAM, "\t.align\t4\n"); \
fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
fprintf (STREAM, ".Lskipconsts:\n"); \
\
/* store the static chain */ \
fprintf (STREAM, "\taddi\ta0, a0, 3\n"); \
fprintf (STREAM, "\tl32i\ta8, a0, 0\n"); \
fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20); \
\
/* set the proper stack pointer value */ \
fprintf (STREAM, "\tl32i\ta8, a0, 4\n"); \
fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
TARGET_BIG_ENDIAN ? 8 : 12); \
fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
\
/* restore the return address */ \
fprintf (STREAM, "\tmov\ta0, a10\n"); \
\
/* jump to the instruction following the entry */ \
fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
fprintf (STREAM, "\tjx\ta8\n"); \
fprintf (STREAM, "\t.byte\t0\n"); \
fprintf (STREAM, "\t.end no-transform\n"); \
} while (0)
 
/* Size in bytes of the trampoline, as an integer. Make sure this is
a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
#define TRAMPOLINE_SIZE 60
 
/* Alignment required for trampolines, in bits. */
#define TRAMPOLINE_ALIGNMENT (32)
 
/* A C statement to initialize the variable parts of a trampoline. */
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
do { \
rtx addr = ADDR; \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"), \
0, VOIDmode, 1, addr, Pmode); \
} while (0)
 
/* Implement `va_start' for varargs and stdarg. */
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
xtensa_va_start (valist, nextarg)
 
/* If defined, a C expression that produces the machine-specific code
to setup the stack so that arbitrary frames can be accessed.
 
On Xtensa, a stack back-trace must always begin from the stack pointer,
so that the register overflow save area can be located. However, the
stack-walking code in GCC always begins from the hard_frame_pointer
register, not the stack pointer. The frame pointer is usually equal
to the stack pointer, but the __builtin_return_address and
__builtin_frame_address functions will not work if count > 0 and
they are called from a routine that uses alloca. These functions
are not guaranteed to work at all if count > 0 so maybe that is OK.
 
A nicer solution would be to allow the architecture-specific files to
specify whether to start from the stack pointer or frame pointer. That
would also allow us to skip the machine->accesses_prev_frame stuff that
we currently need to ensure that there is a frame pointer when these
builtin functions are used. */
 
#define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
 
/* A C expression whose value is RTL representing the address in a
stack frame where the pointer to the caller's frame is stored.
Assume that FRAMEADDR is an RTL expression for the address of the
stack frame itself.
 
For Xtensa, there is no easy way to get the frame pointer if it is
not equivalent to the stack pointer. Moreover, the result of this
macro is used for continuing to walk back up the stack, so it must
return the stack pointer address. Thus, there is some inconsistency
here in that __builtin_frame_address will return the frame pointer
when count == 0 and the stack pointer when count > 0. */
 
#define DYNAMIC_CHAIN_ADDRESS(frame) \
gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
 
/* Define this if the return address of a particular stack frame is
accessed from the frame pointer of the previous stack frame. */
#define RETURN_ADDR_IN_PREVIOUS_FRAME
 
/* A C expression whose value is RTL representing the value of the
return address for the frame COUNT steps up from the current
frame, after the prologue. */
#define RETURN_ADDR_RTX xtensa_return_addr
 
/* Addressing modes, and classification of registers for them. */
 
/* C expressions which are nonzero if register number NUM is suitable
for use as a base or index register in operand addresses. It may
be either a suitable hard register or a pseudo register that has
been allocated such a hard register. The difference between an
index register and a base register is that the index register may
be scaled. */
 
#define REGNO_OK_FOR_BASE_P(NUM) \
(GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
 
#define REGNO_OK_FOR_INDEX_P(NUM) 0
 
/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
valid for use as a base or index register. For hard registers, it
should always accept those which the hardware permits and reject
the others. Whether the macro accepts or rejects pseudo registers
must be controlled by `REG_OK_STRICT'. This usually requires two
variant definitions, of which `REG_OK_STRICT' controls the one
actually used. The difference between an index register and a base
register is that the index register may be scaled. */
 
#ifdef REG_OK_STRICT
 
#define REG_OK_FOR_INDEX_P(X) 0
#define REG_OK_FOR_BASE_P(X) \
REGNO_OK_FOR_BASE_P (REGNO (X))
 
#else /* !REG_OK_STRICT */
 
#define REG_OK_FOR_INDEX_P(X) 0
#define REG_OK_FOR_BASE_P(X) \
((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
 
#endif /* !REG_OK_STRICT */
 
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
 
/* Identify valid Xtensa addresses. */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
do { \
rtx xinsn = (ADDR); \
\
/* allow constant pool addresses */ \
if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
&& !TARGET_CONST16 && constantpool_address_p (xinsn)) \
goto LABEL; \
\
while (GET_CODE (xinsn) == SUBREG) \
xinsn = SUBREG_REG (xinsn); \
\
/* allow base registers */ \
if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
goto LABEL; \
\
/* check for "register + offset" addressing */ \
if (GET_CODE (xinsn) == PLUS) \
{ \
rtx xplus0 = XEXP (xinsn, 0); \
rtx xplus1 = XEXP (xinsn, 1); \
enum rtx_code code0; \
enum rtx_code code1; \
\
while (GET_CODE (xplus0) == SUBREG) \
xplus0 = SUBREG_REG (xplus0); \
code0 = GET_CODE (xplus0); \
\
while (GET_CODE (xplus1) == SUBREG) \
xplus1 = SUBREG_REG (xplus1); \
code1 = GET_CODE (xplus1); \
\
/* swap operands if necessary so the register is first */ \
if (code0 != REG && code1 == REG) \
{ \
xplus0 = XEXP (xinsn, 1); \
xplus1 = XEXP (xinsn, 0); \
code0 = GET_CODE (xplus0); \
code1 = GET_CODE (xplus1); \
} \
\
if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
&& code1 == CONST_INT \
&& xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
{ \
goto LABEL; \
} \
} \
} while (0)
 
/* A C expression that is 1 if the RTX X is a constant which is a
valid address. This is defined to be the same as 'CONSTANT_P (X)',
but rejecting CONST_DOUBLE. */
#define CONSTANT_ADDRESS_P(X) \
((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
|| (GET_CODE (X) == CONST)))
 
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) 1
 
/* A C expression that is nonzero if X is a legitimate immediate
operand on the target machine when generating position independent
code. */
#define LEGITIMATE_PIC_OPERAND_P(X) \
((GET_CODE (X) != SYMBOL_REF \
|| (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
&& GET_CODE (X) != LABEL_REF \
&& GET_CODE (X) != CONST)
 
/* Tell GCC how to use ADDMI to generate addresses. */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
do { \
rtx xinsn = (X); \
if (GET_CODE (xinsn) == PLUS) \
{ \
rtx plus0 = XEXP (xinsn, 0); \
rtx plus1 = XEXP (xinsn, 1); \
\
if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
{ \
plus0 = XEXP (xinsn, 1); \
plus1 = XEXP (xinsn, 0); \
} \
\
if (GET_CODE (plus0) == REG \
&& GET_CODE (plus1) == CONST_INT \
&& !xtensa_mem_offset (INTVAL (plus1), MODE) \
&& !xtensa_simm8 (INTVAL (plus1)) \
&& xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
&& xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
{ \
rtx temp = gen_reg_rtx (Pmode); \
emit_insn (gen_rtx_SET (Pmode, temp, \
gen_rtx_PLUS (Pmode, plus0, \
GEN_INT (INTVAL (plus1) & ~0xff)))); \
(X) = gen_rtx_PLUS (Pmode, temp, \
GEN_INT (INTVAL (plus1) & 0xff)); \
goto WIN; \
} \
} \
} while (0)
 
 
/* Treat constant-pool references as "mode dependent" since they can
only be accessed with SImode loads. This works around a bug in the
combiner where a constant pool reference is temporarily converted
to an HImode load, which is then assumed to zero-extend based on
our definition of LOAD_EXTEND_OP. This is wrong because the high
bits of a 16-bit value in the constant pool are now sign-extended
by default. */
 
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
do { \
if (constantpool_address_p (ADDR)) \
goto LABEL; \
} while (0)
 
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE (SImode)
 
/* Define this as 1 if 'char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
 
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
#define MAX_MOVE_MAX 4
 
/* Prefer word-sized loads. */
#define SLOW_BYTE_ACCESS 1
 
/* Shift instructions ignore all but the low-order few bits. */
#define SHIFT_COUNT_TRUNCATED 1
 
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
 
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
 
/* A function address in a call instruction is a word address (for
indexing purposes) so give the MEM rtx a words's mode. */
#define FUNCTION_MODE SImode
 
/* A C expression for the cost of moving data from a register in
class FROM to one in class TO. The classes are expressed using
the enumeration values such as 'GENERAL_REGS'. A value of 2 is
the default; other values are interpreted relative to that. */
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
(((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
? 2 \
: (reg_class_subset_p ((FROM), AR_REGS) \
&& reg_class_subset_p ((TO), AR_REGS) \
? 2 \
: (reg_class_subset_p ((FROM), AR_REGS) \
&& (TO) == ACC_REG \
? 3 \
: ((FROM) == ACC_REG \
&& reg_class_subset_p ((TO), AR_REGS) \
? 3 \
: 10))))
 
#define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
 
#define BRANCH_COST 3
 
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ \
"a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
"a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
"fp", "argp", "b0", \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
"acc" \
}
 
/* If defined, a C initializer for an array of structures containing a
name and a register number. This macro defines additional names
for hard registers, thus allowing the 'asm' option in declarations
to refer to registers using alternate names. */
#define ADDITIONAL_REGISTER_NAMES \
{ \
{ "a1", 1 + GP_REG_FIRST } \
}
 
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
 
/* Recognize machine-specific patterns that may appear within
constants. Used for PIC-specific UNSPECs. */
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
do { \
if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
{ \
switch (XINT ((X), 1)) \
{ \
case UNSPEC_PLT: \
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
fputs ("@PLT", (STREAM)); \
break; \
default: \
goto FAIL; \
} \
break; \
} \
else \
goto FAIL; \
} while (0)
 
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.global\t"
 
/* Declare an uninitialized external linkage data object. */
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
 
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
LOCAL_LABEL_PREFIX, VALUE)
 
/* This is how to output an element of a case-vector that is relative.
This is used for pc-relative code. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
do { \
fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
LOCAL_LABEL_PREFIX, (VALUE), \
LOCAL_LABEL_PREFIX, (REL)); \
} while (0)
 
/* This is how to output an assembler line that says to advance the
location counter to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(STREAM, LOG) \
do { \
if ((LOG) != 0) \
fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
} while (0)
 
/* Indicate that jump tables go in the text section. This is
necessary when compiling PIC code. */
#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
 
 
/* Define the strings to put out for each section in the object file. */
#define TEXT_SECTION_ASM_OP "\t.text"
#define DATA_SECTION_ASM_OP "\t.data"
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
 
 
/* Define output to appear before the constant pool. */
#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
do { \
if ((SIZE) > 0) \
{ \
resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
switch_to_section (function_section (FUNDECL)); \
fprintf (FILE, "\t.literal_position\n"); \
} \
} while (0)
 
 
/* A C statement (with or without semicolon) to output a constant in
the constant pool, if it needs special treatment. */
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
do { \
xtensa_output_literal (FILE, X, MODE, LABELNO); \
goto JUMPTO; \
} while (0)
 
/* How to start an assembler comment. */
#define ASM_COMMENT_START "#"
 
/* Exception handling TODO!! */
#define DWARF_UNWIND_INFO 0
 
/* Xtensa constant pool breaks the devices in crtstuff.c to control
section in where code resides. We have to write it as asm code. Use
a MOVI and let the assembler relax it -- for the .init and .fini
sections, the assembler knows to put the literal in the right
place. */
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
callx8\ta8\n" \
TEXT_SECTION_ASM_OP);
/lib2funcs.S
0,0 → 1,190
/* Assembly functions for libgcc2.
Copyright (C) 2001 Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
 
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
 
#include "xtensa-config.h"
 
/* __xtensa_libgcc_window_spill: This function flushes out all but the
current register window. This is used to set up the stack so that
arbitrary frames can be accessed. */
 
.align 4
.global __xtensa_libgcc_window_spill
.type __xtensa_libgcc_window_spill,@function
__xtensa_libgcc_window_spill:
entry sp, 32
movi a2, 0
syscall
retw
.size __xtensa_libgcc_window_spill,.-__xtensa_libgcc_window_spill
 
 
/* __xtensa_nonlocal_goto: This code does all the hard work of a
nonlocal goto on Xtensa. It is here in the library to avoid the
code size bloat of generating it in-line. There are two
arguments:
 
a2 = frame pointer for the procedure containing the label
a3 = goto handler address
 
This function never returns to its caller but instead goes directly
to the address of the specified goto handler. */
 
.align 4
.global __xtensa_nonlocal_goto
.type __xtensa_nonlocal_goto,@function
__xtensa_nonlocal_goto:
entry sp, 32
 
/* flush registers */
mov a5, a2
movi a2, 0
syscall
mov a2, a5
 
/* Because the save area for a0-a3 is stored one frame below
the one identified by a2, the only way to restore those
registers is to unwind the stack. If alloca() were never
called, we could just unwind until finding the sp value
matching a2. However, a2 is a frame pointer, not a stack
pointer, and may not be encountered during the unwinding.
The solution is to unwind until going _past_ the value
given by a2. This involves keeping three stack pointer
values during the unwinding:
 
next = sp of frame N-1
cur = sp of frame N
prev = sp of frame N+1
 
When next > a2, the desired save area is stored relative
to prev. At this point, cur will be the same as a2
except in the alloca() case.
 
Besides finding the values to be restored to a0-a3, we also
need to find the current window size for the target
function. This can be extracted from the high bits of the
return address, initially in a0. As the unwinding
proceeds, the window size is taken from the value of a0
saved _two_ frames below the current frame. */
 
addi a5, sp, -16 # a5 = prev - save area
l32i a6, a5, 4
addi a6, a6, -16 # a6 = cur - save area
mov a8, a0 # a8 = return address (for window size)
j .Lfirstframe
 
.Lnextframe:
l32i a8, a5, 0 # next return address (for window size)
mov a5, a6 # advance prev
addi a6, a7, -16 # advance cur
.Lfirstframe:
l32i a7, a6, 4 # a7 = next
bge a2, a7, .Lnextframe
 
/* At this point, prev (a5) points to the save area with the saved
values of a0-a3. Copy those values into the save area at the
current sp so they will be reloaded when the return from this
function underflows. We don't have to worry about exceptions
while updating the current save area, because the windows have
already been flushed. */
 
addi a4, sp, -16 # a4 = save area of this function
l32i a6, a5, 0
l32i a7, a5, 4
s32i a6, a4, 0
s32i a7, a4, 4
l32i a6, a5, 8
l32i a7, a5, 12
s32i a6, a4, 8
s32i a7, a4, 12
/* Set return address to goto handler. Use the window size bits
from the return address two frames below the target. */
extui a8, a8, 30, 2 # get window size from return addr.
slli a3, a3, 2 # get goto handler addr. << 2
ssai 2
src a0, a8, a3 # combine them with a funnel shift
 
retw
.size __xtensa_nonlocal_goto,.-__xtensa_nonlocal_goto
 
 
/* __xtensa_sync_caches: This function is called after writing a trampoline
on the stack to force all the data writes to memory and invalidate the
instruction cache. a2 is the address of the new trampoline.
 
After the trampoline data is written out, it must be flushed out of
the data cache into memory. We use DHWB in case we have a writeback
cache. At least one DHWB instruction is needed for each data cache
line which may be touched by the trampoline. An ISYNC instruction
must follow the DHWBs.
 
We have to flush the i-cache to make sure that the new values get used.
At least one IHI instruction is needed for each i-cache line which may
be touched by the trampoline. An ISYNC instruction is also needed to
make sure that the modified instructions are loaded into the instruction
fetch buffer. */
 
#define TRAMPOLINE_SIZE 60
 
.text
.align 4
.global __xtensa_sync_caches
.type __xtensa_sync_caches,@function
__xtensa_sync_caches:
entry sp, 32
#if XCHAL_DCACHE_SIZE > 0
# Flush the trampoline from the data cache
extui a4, a2, 0, XCHAL_DCACHE_LINEWIDTH
addi a4, a4, TRAMPOLINE_SIZE
addi a4, a4, (1 << XCHAL_DCACHE_LINEWIDTH) - 1
srli a4, a4, XCHAL_DCACHE_LINEWIDTH
mov a3, a2
.Ldcache_loop:
dhwb a3, 0
addi a3, a3, (1 << XCHAL_DCACHE_LINEWIDTH)
addi a4, a4, -1
bnez a4, .Ldcache_loop
isync
#endif
#if XCHAL_ICACHE_SIZE > 0
# Invalidate the corresponding lines in the instruction cache
extui a4, a2, 0, XCHAL_ICACHE_LINEWIDTH
addi a4, a4, TRAMPOLINE_SIZE
addi a4, a4, (1 << XCHAL_ICACHE_LINEWIDTH) - 1
srli a4, a4, XCHAL_ICACHE_LINEWIDTH
.Licache_loop:
ihi a2, 0
addi a2, a2, (1 << XCHAL_ICACHE_LINEWIDTH)
addi a4, a4, -1
bnez a4, .Licache_loop
isync
#endif
retw
.size __xtensa_sync_caches,.-__xtensa_sync_caches
/elf.h
0,0 → 1,101
/* Xtensa/Elf configuration.
Derived from the configuration for GCC for Intel i386 running Linux.
Copyright (C) 2001,2003, 2007 Free Software Foundation, Inc.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#define TARGET_SECTION_TYPE_FLAGS xtensa_multibss_section_type_flags
 
/* Don't assume anything about the header files. */
#define NO_IMPLICIT_EXTERN_C
 
#undef ASM_APP_ON
#define ASM_APP_ON "#APP\n"
 
#undef ASM_APP_OFF
#define ASM_APP_OFF "#NO_APP\n"
 
#undef MD_EXEC_PREFIX
#undef MD_STARTFILE_PREFIX
 
#undef TARGET_VERSION
#define TARGET_VERSION fputs (" (Xtensa/ELF)", stderr);
 
#undef WCHAR_TYPE
#define WCHAR_TYPE "short unsigned int"
 
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE 16
 
#undef ASM_SPEC
#define ASM_SPEC \
"%{v} \
%{mtext-section-literals:--text-section-literals} \
%{mno-text-section-literals:--no-text-section-literals} \
%{mtarget-align:--target-align} \
%{mno-target-align:--no-target-align} \
%{mlongcalls:--longcalls} \
%{mno-longcalls:--no-longcalls}"
 
#undef LIB_SPEC
#define LIB_SPEC "-lc -lsim -lc -lhandlers-sim -lhal"
 
#undef STARTFILE_SPEC
#define STARTFILE_SPEC \
"crt1-sim%O%s crt0%O%s crti%O%s crtbegin%O%s _vectors%O%s"
 
#undef ENDFILE_SPEC
#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
 
#undef LINK_SPEC
#define LINK_SPEC \
"%{shared:-shared} \
%{!shared: \
%{!static: \
%{rdynamic:-export-dynamic} \
%{static:-static}}}"
 
#undef LOCAL_LABEL_PREFIX
#define LOCAL_LABEL_PREFIX "."
 
/* Avoid dots for compatibility with VxWorks. */
#undef NO_DOLLAR_IN_LABEL
#define NO_DOT_IN_LABEL
 
/* Do not force "-fpic" for this target. */
#define XTENSA_ALWAYS_PIC 0
 
/* Search for headers in $tooldir/arch/include and for libraries and
startfiles in $tooldir/arch/lib. */
#define GCC_DRIVER_HOST_INITIALIZATION \
do \
{ \
char *tooldir, *archdir; \
tooldir = concat (tooldir_base_prefix, spec_machine, \
dir_separator_str, NULL); \
if (!IS_ABSOLUTE_PATH (tooldir)) \
tooldir = concat (standard_exec_prefix, spec_machine, dir_separator_str, \
spec_version, dir_separator_str, tooldir, NULL); \
archdir = concat (tooldir, "arch", dir_separator_str, NULL); \
add_prefix (&startfile_prefixes, \
concat (archdir, "lib", dir_separator_str, NULL), \
"GCC", PREFIX_PRIORITY_LAST, 0, 1); \
add_prefix (&include_prefixes, archdir, \
"GCC", PREFIX_PRIORITY_LAST, 0, 0); \
} \
while (0)
 
/ieee754-df.S
0,0 → 1,2365
/* IEEE-754 double-precision functions for Xtensa
Copyright (C) 2006 Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
 
In addition to the permissions in the GNU General Public License,
the Free Software Foundation gives you unlimited permission to link
the compiled version of this file into combinations with other
programs, and to distribute those combinations without any
restriction coming from the use of this file. (The General Public
License restrictions do apply in other respects; for example, they
cover modification of the file, and distribution when not linked
into a combine executable.)
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
 
#ifdef __XTENSA_EB__
#define xh a2
#define xl a3
#define yh a4
#define yl a5
#else
#define xh a3
#define xl a2
#define yh a5
#define yl a4
#endif
 
/* Warning! The branch displacements for some Xtensa branch instructions
are quite small, and this code has been carefully laid out to keep
branch targets in range. If you change anything, be sure to check that
the assembler is not relaxing anything to branch over a jump. */
 
#ifdef L_negdf2
 
.align 4
.global __negdf2
.type __negdf2, @function
__negdf2:
leaf_entry sp, 16
movi a4, 0x80000000
xor xh, xh, a4
leaf_return
 
#endif /* L_negdf2 */
 
#ifdef L_addsubdf3
 
/* Addition */
__adddf3_aux:
/* Handle NaNs and Infinities. (This code is placed before the
start of the function just to keep it in range of the limited
branch displacements.) */
 
.Ladd_xnan_or_inf:
/* If y is neither Infinity nor NaN, return x. */
bnall yh, a6, 1f
/* If x is a NaN, return it. Otherwise, return y. */
slli a7, xh, 12
or a7, a7, xl
beqz a7, .Ladd_ynan_or_inf
1: leaf_return
 
.Ladd_ynan_or_inf:
/* Return y. */
mov xh, yh
mov xl, yl
leaf_return
 
.Ladd_opposite_signs:
/* Operand signs differ. Do a subtraction. */
slli a7, a6, 11
xor yh, yh, a7
j .Lsub_same_sign
 
.align 4
.global __adddf3
.type __adddf3, @function
__adddf3:
leaf_entry sp, 16
movi a6, 0x7ff00000
 
/* Check if the two operands have the same sign. */
xor a7, xh, yh
bltz a7, .Ladd_opposite_signs
 
.Ladd_same_sign:
/* Check if either exponent == 0x7ff (i.e., NaN or Infinity). */
ball xh, a6, .Ladd_xnan_or_inf
ball yh, a6, .Ladd_ynan_or_inf
 
/* Compare the exponents. The smaller operand will be shifted
right by the exponent difference and added to the larger
one. */
extui a7, xh, 20, 12
extui a8, yh, 20, 12
bltu a7, a8, .Ladd_shiftx
 
.Ladd_shifty:
/* Check if the smaller (or equal) exponent is zero. */
bnone yh, a6, .Ladd_yexpzero
 
/* Replace yh sign/exponent with 0x001. */
or yh, yh, a6
slli yh, yh, 11
srli yh, yh, 11
 
.Ladd_yexpdiff:
/* Compute the exponent difference. Optimize for difference < 32. */
sub a10, a7, a8
bgeui a10, 32, .Ladd_bigshifty
/* Shift yh/yl right by the exponent difference. Any bits that are
shifted out of yl are saved in a9 for rounding the result. */
ssr a10
movi a9, 0
src a9, yl, a9
src yl, yh, yl
srl yh, yh
 
.Ladd_addy:
/* Do the 64-bit addition. */
add xl, xl, yl
add xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, 1
1:
/* Check if the add overflowed into the exponent. */
extui a10, xh, 20, 12
beq a10, a7, .Ladd_round
mov a8, a7
j .Ladd_carry
 
.Ladd_yexpzero:
/* y is a subnormal value. Replace its sign/exponent with zero,
i.e., no implicit "1.0", and increment the apparent exponent
because subnormals behave as if they had the minimum (nonzero)
exponent. Test for the case when both exponents are zero. */
slli yh, yh, 12
srli yh, yh, 12
bnone xh, a6, .Ladd_bothexpzero
addi a8, a8, 1
j .Ladd_yexpdiff
 
.Ladd_bothexpzero:
/* Both exponents are zero. Handle this as a special case. There
is no need to shift or round, and the normal code for handling
a carry into the exponent field will not work because it
assumes there is an implicit "1.0" that needs to be added. */
add xl, xl, yl
add xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, 1
1: leaf_return
 
.Ladd_bigshifty:
/* Exponent difference > 64 -- just return the bigger value. */
bgeui a10, 64, 1b
 
/* Shift yh/yl right by the exponent difference. Any bits that are
shifted out are saved in a9 for rounding the result. */
ssr a10
sll a11, yl /* lost bits shifted out of yl */
src a9, yh, yl
srl yl, yh
movi yh, 0
beqz a11, .Ladd_addy
or a9, a9, a10 /* any positive, nonzero value will work */
j .Ladd_addy
 
.Ladd_xexpzero:
/* Same as "yexpzero" except skip handling the case when both
exponents are zero. */
slli xh, xh, 12
srli xh, xh, 12
addi a7, a7, 1
j .Ladd_xexpdiff
 
.Ladd_shiftx:
/* Same thing as the "shifty" code, but with x and y swapped. Also,
because the exponent difference is always nonzero in this version,
the shift sequence can use SLL and skip loading a constant zero. */
bnone xh, a6, .Ladd_xexpzero
 
or xh, xh, a6
slli xh, xh, 11
srli xh, xh, 11
 
.Ladd_xexpdiff:
sub a10, a8, a7
bgeui a10, 32, .Ladd_bigshiftx
ssr a10
sll a9, xl
src xl, xh, xl
srl xh, xh
 
.Ladd_addx:
add xl, xl, yl
add xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, 1
1:
/* Check if the add overflowed into the exponent. */
extui a10, xh, 20, 12
bne a10, a8, .Ladd_carry
 
.Ladd_round:
/* Round up if the leftover fraction is >= 1/2. */
bgez a9, 1f
addi xl, xl, 1
beqz xl, .Ladd_roundcarry
 
/* Check if the leftover fraction is exactly 1/2. */
slli a9, a9, 1
beqz a9, .Ladd_exactlyhalf
1: leaf_return
 
.Ladd_bigshiftx:
/* Mostly the same thing as "bigshifty".... */
bgeui a10, 64, .Ladd_returny
 
ssr a10
sll a11, xl
src a9, xh, xl
srl xl, xh
movi xh, 0
beqz a11, .Ladd_addx
or a9, a9, a10
j .Ladd_addx
 
.Ladd_returny:
mov xh, yh
mov xl, yl
leaf_return
 
.Ladd_carry:
/* The addition has overflowed into the exponent field, so the
value needs to be renormalized. The mantissa of the result
can be recovered by subtracting the original exponent and
adding 0x100000 (which is the explicit "1.0" for the
mantissa of the non-shifted operand -- the "1.0" for the
shifted operand was already added). The mantissa can then
be shifted right by one bit. The explicit "1.0" of the
shifted mantissa then needs to be replaced by the exponent,
incremented by one to account for the normalizing shift.
It is faster to combine these operations: do the shift first
and combine the additions and subtractions. If x is the
original exponent, the result is:
shifted mantissa - (x << 19) + (1 << 19) + (x << 20)
or:
shifted mantissa + ((x + 1) << 19)
Note that the exponent is incremented here by leaving the
explicit "1.0" of the mantissa in the exponent field. */
 
/* Shift xh/xl right by one bit. Save the lsb of xl. */
mov a10, xl
ssai 1
src xl, xh, xl
srl xh, xh
 
/* See explanation above. The original exponent is in a8. */
addi a8, a8, 1
slli a8, a8, 19
add xh, xh, a8
 
/* Return an Infinity if the exponent overflowed. */
ball xh, a6, .Ladd_infinity
/* Same thing as the "round" code except the msb of the leftover
fraction is bit 0 of a10, with the rest of the fraction in a9. */
bbci.l a10, 0, 1f
addi xl, xl, 1
beqz xl, .Ladd_roundcarry
beqz a9, .Ladd_exactlyhalf
1: leaf_return
 
.Ladd_infinity:
/* Clear the mantissa. */
movi xl, 0
srli xh, xh, 20
slli xh, xh, 20
 
/* The sign bit may have been lost in a carry-out. Put it back. */
slli a8, a8, 1
or xh, xh, a8
leaf_return
 
.Ladd_exactlyhalf:
/* Round down to the nearest even value. */
srli xl, xl, 1
slli xl, xl, 1
leaf_return
 
.Ladd_roundcarry:
/* xl is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi xh, xh, 1
/* Overflow to the exponent is OK. */
leaf_return
 
 
/* Subtraction */
__subdf3_aux:
/* Handle NaNs and Infinities. (This code is placed before the
start of the function just to keep it in range of the limited
branch displacements.) */
 
.Lsub_xnan_or_inf:
/* If y is neither Infinity nor NaN, return x. */
bnall yh, a6, 1f
/* Both x and y are either NaN or Inf, so the result is NaN. */
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
1: leaf_return
 
.Lsub_ynan_or_inf:
/* Negate y and return it. */
slli a7, a6, 11
xor xh, yh, a7
mov xl, yl
leaf_return
 
.Lsub_opposite_signs:
/* Operand signs differ. Do an addition. */
slli a7, a6, 11
xor yh, yh, a7
j .Ladd_same_sign
 
.align 4
.global __subdf3
.type __subdf3, @function
__subdf3:
leaf_entry sp, 16
movi a6, 0x7ff00000
 
/* Check if the two operands have the same sign. */
xor a7, xh, yh
bltz a7, .Lsub_opposite_signs
 
.Lsub_same_sign:
/* Check if either exponent == 0x7ff (i.e., NaN or Infinity). */
ball xh, a6, .Lsub_xnan_or_inf
ball yh, a6, .Lsub_ynan_or_inf
 
/* Compare the operands. In contrast to addition, the entire
value matters here. */
extui a7, xh, 20, 11
extui a8, yh, 20, 11
bltu xh, yh, .Lsub_xsmaller
beq xh, yh, .Lsub_compare_low
 
.Lsub_ysmaller:
/* Check if the smaller (or equal) exponent is zero. */
bnone yh, a6, .Lsub_yexpzero
 
/* Replace yh sign/exponent with 0x001. */
or yh, yh, a6
slli yh, yh, 11
srli yh, yh, 11
 
.Lsub_yexpdiff:
/* Compute the exponent difference. Optimize for difference < 32. */
sub a10, a7, a8
bgeui a10, 32, .Lsub_bigshifty
/* Shift yh/yl right by the exponent difference. Any bits that are
shifted out of yl are saved in a9 for rounding the result. */
ssr a10
movi a9, 0
src a9, yl, a9
src yl, yh, yl
srl yh, yh
 
.Lsub_suby:
/* Do the 64-bit subtraction. */
sub xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, -1
1: sub xl, xl, yl
 
/* Subtract the leftover bits in a9 from zero and propagate any
borrow from xh/xl. */
neg a9, a9
beqz a9, 1f
addi a5, xh, -1
moveqz xh, a5, xl
addi xl, xl, -1
1:
/* Check if the subtract underflowed into the exponent. */
extui a10, xh, 20, 11
beq a10, a7, .Lsub_round
j .Lsub_borrow
 
.Lsub_compare_low:
/* The high words are equal. Compare the low words. */
bltu xl, yl, .Lsub_xsmaller
bltu yl, xl, .Lsub_ysmaller
/* The operands are equal. Return 0.0. */
movi xh, 0
movi xl, 0
1: leaf_return
 
.Lsub_yexpzero:
/* y is a subnormal value. Replace its sign/exponent with zero,
i.e., no implicit "1.0". Unless x is also a subnormal, increment
y's apparent exponent because subnormals behave as if they had
the minimum (nonzero) exponent. */
slli yh, yh, 12
srli yh, yh, 12
bnone xh, a6, .Lsub_yexpdiff
addi a8, a8, 1
j .Lsub_yexpdiff
 
.Lsub_bigshifty:
/* Exponent difference > 64 -- just return the bigger value. */
bgeui a10, 64, 1b
 
/* Shift yh/yl right by the exponent difference. Any bits that are
shifted out are saved in a9 for rounding the result. */
ssr a10
sll a11, yl /* lost bits shifted out of yl */
src a9, yh, yl
srl yl, yh
movi yh, 0
beqz a11, .Lsub_suby
or a9, a9, a10 /* any positive, nonzero value will work */
j .Lsub_suby
 
.Lsub_xsmaller:
/* Same thing as the "ysmaller" code, but with x and y swapped and
with y negated. */
bnone xh, a6, .Lsub_xexpzero
 
or xh, xh, a6
slli xh, xh, 11
srli xh, xh, 11
 
.Lsub_xexpdiff:
sub a10, a8, a7
bgeui a10, 32, .Lsub_bigshiftx
ssr a10
movi a9, 0
src a9, xl, a9
src xl, xh, xl
srl xh, xh
 
/* Negate y. */
slli a11, a6, 11
xor yh, yh, a11
 
.Lsub_subx:
sub xl, yl, xl
sub xh, yh, xh
bgeu yl, xl, 1f
addi xh, xh, -1
1:
/* Subtract the leftover bits in a9 from zero and propagate any
borrow from xh/xl. */
neg a9, a9
beqz a9, 1f
addi a5, xh, -1
moveqz xh, a5, xl
addi xl, xl, -1
1:
/* Check if the subtract underflowed into the exponent. */
extui a10, xh, 20, 11
bne a10, a8, .Lsub_borrow
 
.Lsub_round:
/* Round up if the leftover fraction is >= 1/2. */
bgez a9, 1f
addi xl, xl, 1
beqz xl, .Lsub_roundcarry
 
/* Check if the leftover fraction is exactly 1/2. */
slli a9, a9, 1
beqz a9, .Lsub_exactlyhalf
1: leaf_return
 
.Lsub_xexpzero:
/* Same as "yexpzero". */
slli xh, xh, 12
srli xh, xh, 12
bnone yh, a6, .Lsub_xexpdiff
addi a7, a7, 1
j .Lsub_xexpdiff
 
.Lsub_bigshiftx:
/* Mostly the same thing as "bigshifty", but with the sign bit of the
shifted value set so that the subsequent subtraction flips the
sign of y. */
bgeui a10, 64, .Lsub_returny
 
ssr a10
sll a11, xl
src a9, xh, xl
srl xl, xh
slli xh, a6, 11 /* set sign bit of xh */
beqz a11, .Lsub_subx
or a9, a9, a10
j .Lsub_subx
 
.Lsub_returny:
/* Negate and return y. */
slli a7, a6, 11
xor xh, yh, a7
mov xl, yl
leaf_return
 
.Lsub_borrow:
/* The subtraction has underflowed into the exponent field, so the
value needs to be renormalized. Shift the mantissa left as
needed to remove any leading zeros and adjust the exponent
accordingly. If the exponent is not large enough to remove
all the leading zeros, the result will be a subnormal value. */
 
slli a8, xh, 12
beqz a8, .Lsub_xhzero
do_nsau a6, a8, a7, a11
srli a8, a8, 12
bge a6, a10, .Lsub_subnormal
addi a6, a6, 1
 
.Lsub_shift_lt32:
/* Shift the mantissa (a8/xl/a9) left by a6. */
ssl a6
src a8, a8, xl
src xl, xl, a9
sll a9, a9
 
/* Combine the shifted mantissa with the sign and exponent,
decrementing the exponent by a6. (The exponent has already
been decremented by one due to the borrow from the subtraction,
but adding the mantissa will increment the exponent by one.) */
srli xh, xh, 20
sub xh, xh, a6
slli xh, xh, 20
add xh, xh, a8
j .Lsub_round
 
.Lsub_exactlyhalf:
/* Round down to the nearest even value. */
srli xl, xl, 1
slli xl, xl, 1
leaf_return
 
.Lsub_roundcarry:
/* xl is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi xh, xh, 1
/* Overflow to the exponent is OK. */
leaf_return
 
.Lsub_xhzero:
/* When normalizing the result, all the mantissa bits in the high
word are zero. Shift by "20 + (leading zero count of xl) + 1". */
do_nsau a6, xl, a7, a11
addi a6, a6, 21
blt a10, a6, .Lsub_subnormal
 
.Lsub_normalize_shift:
bltui a6, 32, .Lsub_shift_lt32
 
ssl a6
src a8, xl, a9
sll xl, a9
movi a9, 0
 
srli xh, xh, 20
sub xh, xh, a6
slli xh, xh, 20
add xh, xh, a8
j .Lsub_round
 
.Lsub_subnormal:
/* The exponent is too small to shift away all the leading zeros.
Set a6 to the current exponent (which has already been
decremented by the borrow) so that the exponent of the result
will be zero. Do not add 1 to a6 in this case, because: (1)
adding the mantissa will not increment the exponent, so there is
no need to subtract anything extra from the exponent to
compensate, and (2) the effective exponent of a subnormal is 1
not 0 so the shift amount must be 1 smaller than normal. */
mov a6, a10
j .Lsub_normalize_shift
 
#endif /* L_addsubdf3 */
 
#ifdef L_muldf3
 
/* Multiplication */
__muldf3_aux:
 
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
(This code is placed before the start of the function just to
keep it in range of the limited branch displacements.) */
 
.Lmul_xexpzero:
/* Clear the sign bit of x. */
slli xh, xh, 1
srli xh, xh, 1
 
/* If x is zero, return zero. */
or a10, xh, xl
beqz a10, .Lmul_return_zero
 
/* Normalize x. Adjust the exponent in a8. */
beqz xh, .Lmul_xh_zero
do_nsau a10, xh, a11, a12
addi a10, a10, -11
ssl a10
src xh, xh, xl
sll xl, xl
movi a8, 1
sub a8, a8, a10
j .Lmul_xnormalized
.Lmul_xh_zero:
do_nsau a10, xl, a11, a12
addi a10, a10, -11
movi a8, -31
sub a8, a8, a10
ssl a10
bltz a10, .Lmul_xl_srl
sll xh, xl
movi xl, 0
j .Lmul_xnormalized
.Lmul_xl_srl:
srl xh, xl
sll xl, xl
j .Lmul_xnormalized
.Lmul_yexpzero:
/* Clear the sign bit of y. */
slli yh, yh, 1
srli yh, yh, 1
 
/* If y is zero, return zero. */
or a10, yh, yl
beqz a10, .Lmul_return_zero
 
/* Normalize y. Adjust the exponent in a9. */
beqz yh, .Lmul_yh_zero
do_nsau a10, yh, a11, a12
addi a10, a10, -11
ssl a10
src yh, yh, yl
sll yl, yl
movi a9, 1
sub a9, a9, a10
j .Lmul_ynormalized
.Lmul_yh_zero:
do_nsau a10, yl, a11, a12
addi a10, a10, -11
movi a9, -31
sub a9, a9, a10
ssl a10
bltz a10, .Lmul_yl_srl
sll yh, yl
movi yl, 0
j .Lmul_ynormalized
.Lmul_yl_srl:
srl yh, yl
sll yl, yl
j .Lmul_ynormalized
 
.Lmul_return_zero:
/* Return zero with the appropriate sign bit. */
srli xh, a7, 31
slli xh, xh, 31
movi xl, 0
j .Lmul_done
 
.Lmul_xnan_or_inf:
/* If y is zero, return NaN. */
bnez yl, 1f
slli a8, yh, 1
bnez a8, 1f
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
j .Lmul_done
1:
/* If y is NaN, return y. */
bnall yh, a6, .Lmul_returnx
slli a8, yh, 12
or a8, a8, yl
beqz a8, .Lmul_returnx
 
.Lmul_returny:
mov xh, yh
mov xl, yl
 
.Lmul_returnx:
/* Set the sign bit and return. */
extui a7, a7, 31, 1
slli xh, xh, 1
ssai 1
src xh, a7, xh
j .Lmul_done
 
.Lmul_ynan_or_inf:
/* If x is zero, return NaN. */
bnez xl, .Lmul_returny
slli a8, xh, 1
bnez a8, .Lmul_returny
movi a7, 0x80000 /* make it a quiet NaN */
or xh, yh, a7
j .Lmul_done
 
.align 4
.global __muldf3
.type __muldf3, @function
__muldf3:
leaf_entry sp, 32
#if __XTENSA_CALL0_ABI__
addi sp, sp, -32
s32i a12, sp, 16
s32i a13, sp, 20
s32i a14, sp, 24
s32i a15, sp, 28
#endif
movi a6, 0x7ff00000
 
/* Get the sign of the result. */
xor a7, xh, yh
 
/* Check for NaN and infinity. */
ball xh, a6, .Lmul_xnan_or_inf
ball yh, a6, .Lmul_ynan_or_inf
 
/* Extract the exponents. */
extui a8, xh, 20, 11
extui a9, yh, 20, 11
 
beqz a8, .Lmul_xexpzero
.Lmul_xnormalized:
beqz a9, .Lmul_yexpzero
.Lmul_ynormalized:
 
/* Add the exponents. */
add a8, a8, a9
 
/* Replace sign/exponent fields with explicit "1.0". */
movi a10, 0x1fffff
or xh, xh, a6
and xh, xh, a10
or yh, yh, a6
and yh, yh, a10
 
/* Multiply 64x64 to 128 bits. The result ends up in xh/xl/a6.
The least-significant word of the result is thrown away except
that if it is nonzero, the lsb of a6 is set to 1. */
#if XCHAL_HAVE_MUL32_HIGH
 
/* Compute a6 with any carry-outs in a10. */
movi a10, 0
mull a6, xl, yh
mull a11, xh, yl
add a6, a6, a11
bgeu a6, a11, 1f
addi a10, a10, 1
1:
muluh a11, xl, yl
add a6, a6, a11
bgeu a6, a11, 1f
addi a10, a10, 1
1:
/* If the low word of the result is nonzero, set the lsb of a6. */
mull a11, xl, yl
beqz a11, 1f
movi a9, 1
or a6, a6, a9
1:
/* Compute xl with any carry-outs in a9. */
movi a9, 0
mull a11, xh, yh
add a10, a10, a11
bgeu a10, a11, 1f
addi a9, a9, 1
1:
muluh a11, xh, yl
add a10, a10, a11
bgeu a10, a11, 1f
addi a9, a9, 1
1:
muluh xl, xl, yh
add xl, xl, a10
bgeu xl, a10, 1f
addi a9, a9, 1
1:
/* Compute xh. */
muluh xh, xh, yh
add xh, xh, a9
 
#else
 
/* Break the inputs into 16-bit chunks and compute 16 32-bit partial
products. These partial products are:
 
0 xll * yll
 
1 xll * ylh
2 xlh * yll
 
3 xll * yhl
4 xlh * ylh
5 xhl * yll
 
6 xll * yhh
7 xlh * yhl
8 xhl * ylh
9 xhh * yll
 
10 xlh * yhh
11 xhl * yhl
12 xhh * ylh
 
13 xhl * yhh
14 xhh * yhl
 
15 xhh * yhh
 
where the input chunks are (hh, hl, lh, ll). If using the Mul16
or Mul32 multiplier options, these input chunks must be stored in
separate registers. For Mac16, the UMUL.AA.* opcodes can specify
that the inputs come from either half of the registers, so there
is no need to shift them out ahead of time. If there is no
multiply hardware, the 16-bit chunks can be extracted when setting
up the arguments to the separate multiply function. */
 
/* Save a7 since it is needed to hold a temporary value. */
s32i a7, sp, 4
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
/* Calling a separate multiply function will clobber a0 and requires
use of a8 as a temporary, so save those values now. (The function
uses a custom ABI so nothing else needs to be saved.) */
s32i a0, sp, 0
s32i a8, sp, 8
#endif
 
#if XCHAL_HAVE_MUL16 || XCHAL_HAVE_MUL32
 
#define xlh a12
#define ylh a13
#define xhh a14
#define yhh a15
 
/* Get the high halves of the inputs into registers. */
srli xlh, xl, 16
srli ylh, yl, 16
srli xhh, xh, 16
srli yhh, yh, 16
 
#define xll xl
#define yll yl
#define xhl xh
#define yhl yh
 
#if XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MUL16
/* Clear the high halves of the inputs. This does not matter
for MUL16 because the high bits are ignored. */
extui xl, xl, 0, 16
extui xh, xh, 0, 16
extui yl, yl, 0, 16
extui yh, yh, 0, 16
#endif
#endif /* MUL16 || MUL32 */
 
 
#if XCHAL_HAVE_MUL16
 
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
mul16u dst, xreg ## xhalf, yreg ## yhalf
 
#elif XCHAL_HAVE_MUL32
 
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
mull dst, xreg ## xhalf, yreg ## yhalf
 
#elif XCHAL_HAVE_MAC16
 
/* The preprocessor insists on inserting a space when concatenating after
a period in the definition of do_mul below. These macros are a workaround
using underscores instead of periods when doing the concatenation. */
#define umul_aa_ll umul.aa.ll
#define umul_aa_lh umul.aa.lh
#define umul_aa_hl umul.aa.hl
#define umul_aa_hh umul.aa.hh
 
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
umul_aa_ ## xhalf ## yhalf xreg, yreg; \
rsr dst, ACCLO
 
#else /* no multiply hardware */
#define set_arg_l(dst, src) \
extui dst, src, 0, 16
#define set_arg_h(dst, src) \
srli dst, src, 16
 
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
set_arg_ ## xhalf (a13, xreg); \
set_arg_ ## yhalf (a14, yreg); \
call0 .Lmul_mulsi3; \
mov dst, a12
#endif
 
/* Add pp1 and pp2 into a10 with carry-out in a9. */
do_mul(a10, xl, l, yl, h) /* pp 1 */
do_mul(a11, xl, h, yl, l) /* pp 2 */
movi a9, 0
add a10, a10, a11
bgeu a10, a11, 1f
addi a9, a9, 1
1:
/* Initialize a6 with a9/a10 shifted into position. Note that
this value can be safely incremented without any carry-outs. */
ssai 16
src a6, a9, a10
 
/* Compute the low word into a10. */
do_mul(a11, xl, l, yl, l) /* pp 0 */
sll a10, a10
add a10, a10, a11
bgeu a10, a11, 1f
addi a6, a6, 1
1:
/* Compute the contributions of pp0-5 to a6, with carry-outs in a9.
This is good enough to determine the low half of a6, so that any
nonzero bits from the low word of the result can be collapsed
into a6, freeing up a register. */
movi a9, 0
do_mul(a11, xl, l, yh, l) /* pp 3 */
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
do_mul(a11, xl, h, yl, h) /* pp 4 */
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
do_mul(a11, xh, l, yl, l) /* pp 5 */
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
/* Collapse any nonzero bits from the low word into a6. */
beqz a10, 1f
movi a11, 1
or a6, a6, a11
1:
/* Add pp6-9 into a11 with carry-outs in a10. */
do_mul(a7, xl, l, yh, h) /* pp 6 */
do_mul(a11, xh, h, yl, l) /* pp 9 */
movi a10, 0
add a11, a11, a7
bgeu a11, a7, 1f
addi a10, a10, 1
1:
do_mul(a7, xl, h, yh, l) /* pp 7 */
add a11, a11, a7
bgeu a11, a7, 1f
addi a10, a10, 1
1:
do_mul(a7, xh, l, yl, h) /* pp 8 */
add a11, a11, a7
bgeu a11, a7, 1f
addi a10, a10, 1
1:
/* Shift a10/a11 into position, and add low half of a11 to a6. */
src a10, a10, a11
add a10, a10, a9
sll a11, a11
add a6, a6, a11
bgeu a6, a11, 1f
addi a10, a10, 1
1:
/* Add pp10-12 into xl with carry-outs in a9. */
movi a9, 0
do_mul(xl, xl, h, yh, h) /* pp 10 */
add xl, xl, a10
bgeu xl, a10, 1f
addi a9, a9, 1
1:
do_mul(a10, xh, l, yh, l) /* pp 11 */
add xl, xl, a10
bgeu xl, a10, 1f
addi a9, a9, 1
1:
do_mul(a10, xh, h, yl, h) /* pp 12 */
add xl, xl, a10
bgeu xl, a10, 1f
addi a9, a9, 1
1:
/* Add pp13-14 into a11 with carry-outs in a10. */
do_mul(a11, xh, l, yh, h) /* pp 13 */
do_mul(a7, xh, h, yh, l) /* pp 14 */
movi a10, 0
add a11, a11, a7
bgeu a11, a7, 1f
addi a10, a10, 1
1:
/* Shift a10/a11 into position, and add low half of a11 to a6. */
src a10, a10, a11
add a10, a10, a9
sll a11, a11
add xl, xl, a11
bgeu xl, a11, 1f
addi a10, a10, 1
1:
/* Compute xh. */
do_mul(xh, xh, h, yh, h) /* pp 15 */
add xh, xh, a10
 
/* Restore values saved on the stack during the multiplication. */
l32i a7, sp, 4
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
l32i a0, sp, 0
l32i a8, sp, 8
#endif
#endif
 
/* Shift left by 12 bits, unless there was a carry-out from the
multiply, in which case, shift by 11 bits and increment the
exponent. Note: It is convenient to use the constant 0x3ff
instead of 0x400 when removing the extra exponent bias (so that
it is easy to construct 0x7fe for the overflow check). Reverse
the logic here to decrement the exponent sum by one unless there
was a carry-out. */
movi a4, 11
srli a5, xh, 21 - 12
bnez a5, 1f
addi a4, a4, 1
addi a8, a8, -1
1: ssl a4
src xh, xh, xl
src xl, xl, a6
sll a6, a6
 
/* Subtract the extra bias from the exponent sum (plus one to account
for the explicit "1.0" of the mantissa that will be added to the
exponent in the final result). */
movi a4, 0x3ff
sub a8, a8, a4
/* Check for over/underflow. The value in a8 is one less than the
final exponent, so values in the range 0..7fd are OK here. */
slli a4, a4, 1 /* 0x7fe */
bgeu a8, a4, .Lmul_overflow
.Lmul_round:
/* Round. */
bgez a6, .Lmul_rounded
addi xl, xl, 1
beqz xl, .Lmul_roundcarry
slli a6, a6, 1
beqz a6, .Lmul_exactlyhalf
 
.Lmul_rounded:
/* Add the exponent to the mantissa. */
slli a8, a8, 20
add xh, xh, a8
 
.Lmul_addsign:
/* Add the sign bit. */
srli a7, a7, 31
slli a7, a7, 31
or xh, xh, a7
 
.Lmul_done:
#if __XTENSA_CALL0_ABI__
l32i a12, sp, 16
l32i a13, sp, 20
l32i a14, sp, 24
l32i a15, sp, 28
addi sp, sp, 32
#endif
leaf_return
 
.Lmul_exactlyhalf:
/* Round down to the nearest even value. */
srli xl, xl, 1
slli xl, xl, 1
j .Lmul_rounded
 
.Lmul_roundcarry:
/* xl is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi xh, xh, 1
/* Overflow is OK -- it will be added to the exponent. */
j .Lmul_rounded
 
.Lmul_overflow:
bltz a8, .Lmul_underflow
/* Return +/- Infinity. */
addi a8, a4, 1 /* 0x7ff */
slli xh, a8, 20
movi xl, 0
j .Lmul_addsign
 
.Lmul_underflow:
/* Create a subnormal value, where the exponent field contains zero,
but the effective exponent is 1. The value of a8 is one less than
the actual exponent, so just negate it to get the shift amount. */
neg a8, a8
mov a9, a6
ssr a8
bgeui a8, 32, .Lmul_bigshift
/* Shift xh/xl right. Any bits that are shifted out of xl are saved
in a6 (combined with the shifted-out bits currently in a6) for
rounding the result. */
sll a6, xl
src xl, xh, xl
srl xh, xh
j 1f
 
.Lmul_bigshift:
bgeui a8, 64, .Lmul_flush_to_zero
sll a10, xl /* lost bits shifted out of xl */
src a6, xh, xl
srl xl, xh
movi xh, 0
or a9, a9, a10
 
/* Set the exponent to zero. */
1: movi a8, 0
 
/* Pack any nonzero bits shifted out into a6. */
beqz a9, .Lmul_round
movi a9, 1
or a6, a6, a9
j .Lmul_round
.Lmul_flush_to_zero:
/* Return zero with the appropriate sign bit. */
srli xh, a7, 31
slli xh, xh, 31
movi xl, 0
j .Lmul_done
 
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
/* For Xtensa processors with no multiply hardware, this simplified
version of _mulsi3 is used for multiplying 16-bit chunks of
the floating-point mantissas. It uses a custom ABI: the inputs
are passed in a13 and a14, the result is returned in a12, and
a8 and a15 are clobbered. */
.align 4
.Lmul_mulsi3:
movi a12, 0
.Lmul_mult_loop:
add a15, a14, a12
extui a8, a13, 0, 1
movnez a12, a15, a8
 
do_addx2 a15, a14, a12, a15
extui a8, a13, 1, 1
movnez a12, a15, a8
 
do_addx4 a15, a14, a12, a15
extui a8, a13, 2, 1
movnez a12, a15, a8
 
do_addx8 a15, a14, a12, a15
extui a8, a13, 3, 1
movnez a12, a15, a8
 
srli a13, a13, 4
slli a14, a14, 4
bnez a13, .Lmul_mult_loop
ret
#endif /* !MUL16 && !MUL32 && !MAC16 */
#endif /* L_muldf3 */
 
#ifdef L_divdf3
 
/* Division */
__divdf3_aux:
 
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
(This code is placed before the start of the function just to
keep it in range of the limited branch displacements.) */
 
.Ldiv_yexpzero:
/* Clear the sign bit of y. */
slli yh, yh, 1
srli yh, yh, 1
 
/* Check for division by zero. */
or a10, yh, yl
beqz a10, .Ldiv_yzero
 
/* Normalize y. Adjust the exponent in a9. */
beqz yh, .Ldiv_yh_zero
do_nsau a10, yh, a11, a9
addi a10, a10, -11
ssl a10
src yh, yh, yl
sll yl, yl
movi a9, 1
sub a9, a9, a10
j .Ldiv_ynormalized
.Ldiv_yh_zero:
do_nsau a10, yl, a11, a9
addi a10, a10, -11
movi a9, -31
sub a9, a9, a10
ssl a10
bltz a10, .Ldiv_yl_srl
sll yh, yl
movi yl, 0
j .Ldiv_ynormalized
.Ldiv_yl_srl:
srl yh, yl
sll yl, yl
j .Ldiv_ynormalized
 
.Ldiv_yzero:
/* y is zero. Return NaN if x is also zero; otherwise, infinity. */
slli xh, xh, 1
srli xh, xh, 1
or xl, xl, xh
srli xh, a7, 31
slli xh, xh, 31
or xh, xh, a6
bnez xl, 1f
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
1: movi xl, 0
leaf_return
 
.Ldiv_xexpzero:
/* Clear the sign bit of x. */
slli xh, xh, 1
srli xh, xh, 1
 
/* If x is zero, return zero. */
or a10, xh, xl
beqz a10, .Ldiv_return_zero
 
/* Normalize x. Adjust the exponent in a8. */
beqz xh, .Ldiv_xh_zero
do_nsau a10, xh, a11, a8
addi a10, a10, -11
ssl a10
src xh, xh, xl
sll xl, xl
movi a8, 1
sub a8, a8, a10
j .Ldiv_xnormalized
.Ldiv_xh_zero:
do_nsau a10, xl, a11, a8
addi a10, a10, -11
movi a8, -31
sub a8, a8, a10
ssl a10
bltz a10, .Ldiv_xl_srl
sll xh, xl
movi xl, 0
j .Ldiv_xnormalized
.Ldiv_xl_srl:
srl xh, xl
sll xl, xl
j .Ldiv_xnormalized
.Ldiv_return_zero:
/* Return zero with the appropriate sign bit. */
srli xh, a7, 31
slli xh, xh, 31
movi xl, 0
leaf_return
 
.Ldiv_xnan_or_inf:
/* Set the sign bit of the result. */
srli a7, yh, 31
slli a7, a7, 31
xor xh, xh, a7
/* If y is NaN or Inf, return NaN. */
bnall yh, a6, 1f
movi a4, 0x80000 /* make it a quiet NaN */
or xh, xh, a4
1: leaf_return
 
.Ldiv_ynan_or_inf:
/* If y is Infinity, return zero. */
slli a8, yh, 12
or a8, a8, yl
beqz a8, .Ldiv_return_zero
/* y is NaN; return it. */
mov xh, yh
mov xl, yl
leaf_return
 
.Ldiv_highequal1:
bltu xl, yl, 2f
j 3f
 
.align 4
.global __divdf3
.type __divdf3, @function
__divdf3:
leaf_entry sp, 16
movi a6, 0x7ff00000
 
/* Get the sign of the result. */
xor a7, xh, yh
 
/* Check for NaN and infinity. */
ball xh, a6, .Ldiv_xnan_or_inf
ball yh, a6, .Ldiv_ynan_or_inf
 
/* Extract the exponents. */
extui a8, xh, 20, 11
extui a9, yh, 20, 11
 
beqz a9, .Ldiv_yexpzero
.Ldiv_ynormalized:
beqz a8, .Ldiv_xexpzero
.Ldiv_xnormalized:
 
/* Subtract the exponents. */
sub a8, a8, a9
 
/* Replace sign/exponent fields with explicit "1.0". */
movi a10, 0x1fffff
or xh, xh, a6
and xh, xh, a10
or yh, yh, a6
and yh, yh, a10
 
/* Set SAR for left shift by one. */
ssai (32 - 1)
 
/* The first digit of the mantissa division must be a one.
Shift x (and adjust the exponent) as needed to make this true. */
bltu yh, xh, 3f
beq yh, xh, .Ldiv_highequal1
2: src xh, xh, xl
sll xl, xl
addi a8, a8, -1
3:
/* Do the first subtraction and shift. */
sub xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, -1
1: sub xl, xl, yl
src xh, xh, xl
sll xl, xl
 
/* Put the quotient into a10/a11. */
movi a10, 0
movi a11, 1
 
/* Divide one bit at a time for 52 bits. */
movi a9, 52
#if XCHAL_HAVE_LOOPS
loop a9, .Ldiv_loopend
#endif
.Ldiv_loop:
/* Shift the quotient << 1. */
src a10, a10, a11
sll a11, a11
 
/* Is this digit a 0 or 1? */
bltu xh, yh, 3f
beq xh, yh, .Ldiv_highequal2
 
/* Output a 1 and subtract. */
2: addi a11, a11, 1
sub xh, xh, yh
bgeu xl, yl, 1f
addi xh, xh, -1
1: sub xl, xl, yl
 
/* Shift the dividend << 1. */
3: src xh, xh, xl
sll xl, xl
 
#if !XCHAL_HAVE_LOOPS
addi a9, a9, -1
bnez a9, .Ldiv_loop
#endif
.Ldiv_loopend:
 
/* Add the exponent bias (less one to account for the explicit "1.0"
of the mantissa that will be added to the exponent in the final
result). */
movi a9, 0x3fe
add a8, a8, a9
/* Check for over/underflow. The value in a8 is one less than the
final exponent, so values in the range 0..7fd are OK here. */
addmi a9, a9, 0x400 /* 0x7fe */
bgeu a8, a9, .Ldiv_overflow
 
.Ldiv_round:
/* Round. The remainder (<< 1) is in xh/xl. */
bltu xh, yh, .Ldiv_rounded
beq xh, yh, .Ldiv_highequal3
.Ldiv_roundup:
addi a11, a11, 1
beqz a11, .Ldiv_roundcarry
 
.Ldiv_rounded:
mov xl, a11
/* Add the exponent to the mantissa. */
slli a8, a8, 20
add xh, a10, a8
 
.Ldiv_addsign:
/* Add the sign bit. */
srli a7, a7, 31
slli a7, a7, 31
or xh, xh, a7
leaf_return
 
.Ldiv_highequal2:
bgeu xl, yl, 2b
j 3b
 
.Ldiv_highequal3:
bltu xl, yl, .Ldiv_rounded
bne xl, yl, .Ldiv_roundup
 
/* Remainder is exactly half the divisor. Round even. */
addi a11, a11, 1
beqz a11, .Ldiv_roundcarry
srli a11, a11, 1
slli a11, a11, 1
j .Ldiv_rounded
 
.Ldiv_overflow:
bltz a8, .Ldiv_underflow
/* Return +/- Infinity. */
addi a8, a9, 1 /* 0x7ff */
slli xh, a8, 20
movi xl, 0
j .Ldiv_addsign
 
.Ldiv_underflow:
/* Create a subnormal value, where the exponent field contains zero,
but the effective exponent is 1. The value of a8 is one less than
the actual exponent, so just negate it to get the shift amount. */
neg a8, a8
ssr a8
bgeui a8, 32, .Ldiv_bigshift
/* Shift a10/a11 right. Any bits that are shifted out of a11 are
saved in a6 for rounding the result. */
sll a6, a11
src a11, a10, a11
srl a10, a10
j 1f
 
.Ldiv_bigshift:
bgeui a8, 64, .Ldiv_flush_to_zero
sll a9, a11 /* lost bits shifted out of a11 */
src a6, a10, a11
srl a11, a10
movi a10, 0
or xl, xl, a9
 
/* Set the exponent to zero. */
1: movi a8, 0
 
/* Pack any nonzero remainder (in xh/xl) into a6. */
or xh, xh, xl
beqz xh, 1f
movi a9, 1
or a6, a6, a9
/* Round a10/a11 based on the bits shifted out into a6. */
1: bgez a6, .Ldiv_rounded
addi a11, a11, 1
beqz a11, .Ldiv_roundcarry
slli a6, a6, 1
bnez a6, .Ldiv_rounded
srli a11, a11, 1
slli a11, a11, 1
j .Ldiv_rounded
 
.Ldiv_roundcarry:
/* a11 is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi a10, a10, 1
/* Overflow to the exponent field is OK. */
j .Ldiv_rounded
 
.Ldiv_flush_to_zero:
/* Return zero with the appropriate sign bit. */
srli xh, a7, 31
slli xh, xh, 31
movi xl, 0
leaf_return
 
#endif /* L_divdf3 */
 
#ifdef L_cmpdf2
 
/* Equal and Not Equal */
 
.align 4
.global __eqdf2
.global __nedf2
.set __nedf2, __eqdf2
.type __eqdf2, @function
__eqdf2:
leaf_entry sp, 16
bne xl, yl, 2f
bne xh, yh, 4f
 
/* The values are equal but NaN != NaN. Check the exponent. */
movi a6, 0x7ff00000
ball xh, a6, 3f
 
/* Equal. */
movi a2, 0
leaf_return
 
/* Not equal. */
2: movi a2, 1
leaf_return
 
/* Check if the mantissas are nonzero. */
3: slli a7, xh, 12
or a7, a7, xl
j 5f
 
/* Check if x and y are zero with different signs. */
4: or a7, xh, yh
slli a7, a7, 1
or a7, a7, xl /* xl == yl here */
 
/* Equal if a7 == 0, where a7 is either abs(x | y) or the mantissa
or x when exponent(x) = 0x7ff and x == y. */
5: movi a2, 0
movi a3, 1
movnez a2, a3, a7
leaf_return
 
 
/* Greater Than */
 
.align 4
.global __gtdf2
.type __gtdf2, @function
__gtdf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 2f
1: bnall yh, a6, .Lle_cmp
 
/* Check if y is a NaN. */
slli a7, yh, 12
or a7, a7, yl
beqz a7, .Lle_cmp
movi a2, 0
leaf_return
 
/* Check if x is a NaN. */
2: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, 0
leaf_return
 
 
/* Less Than or Equal */
 
.align 4
.global __ledf2
.type __ledf2, @function
__ledf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 2f
1: bnall yh, a6, .Lle_cmp
 
/* Check if y is a NaN. */
slli a7, yh, 12
or a7, a7, yl
beqz a7, .Lle_cmp
movi a2, 1
leaf_return
 
/* Check if x is a NaN. */
2: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, 1
leaf_return
 
.Lle_cmp:
/* Check if x and y have different signs. */
xor a7, xh, yh
bltz a7, .Lle_diff_signs
 
/* Check if x is negative. */
bltz xh, .Lle_xneg
 
/* Check if x <= y. */
bltu xh, yh, 4f
bne xh, yh, 5f
bltu yl, xl, 5f
4: movi a2, 0
leaf_return
 
.Lle_xneg:
/* Check if y <= x. */
bltu yh, xh, 4b
bne yh, xh, 5f
bgeu xl, yl, 4b
5: movi a2, 1
leaf_return
 
.Lle_diff_signs:
bltz xh, 4b
 
/* Check if both x and y are zero. */
or a7, xh, yh
slli a7, a7, 1
or a7, a7, xl
or a7, a7, yl
movi a2, 1
movi a3, 0
moveqz a2, a3, a7
leaf_return
 
 
/* Greater Than or Equal */
 
.align 4
.global __gedf2
.type __gedf2, @function
__gedf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 2f
1: bnall yh, a6, .Llt_cmp
 
/* Check if y is a NaN. */
slli a7, yh, 12
or a7, a7, yl
beqz a7, .Llt_cmp
movi a2, -1
leaf_return
 
/* Check if x is a NaN. */
2: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, -1
leaf_return
 
 
/* Less Than */
 
.align 4
.global __ltdf2
.type __ltdf2, @function
__ltdf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 2f
1: bnall yh, a6, .Llt_cmp
 
/* Check if y is a NaN. */
slli a7, yh, 12
or a7, a7, yl
beqz a7, .Llt_cmp
movi a2, 0
leaf_return
 
/* Check if x is a NaN. */
2: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, 0
leaf_return
 
.Llt_cmp:
/* Check if x and y have different signs. */
xor a7, xh, yh
bltz a7, .Llt_diff_signs
 
/* Check if x is negative. */
bltz xh, .Llt_xneg
 
/* Check if x < y. */
bltu xh, yh, 4f
bne xh, yh, 5f
bgeu xl, yl, 5f
4: movi a2, -1
leaf_return
 
.Llt_xneg:
/* Check if y < x. */
bltu yh, xh, 4b
bne yh, xh, 5f
bltu yl, xl, 4b
5: movi a2, 0
leaf_return
 
.Llt_diff_signs:
bgez xh, 5b
 
/* Check if both x and y are nonzero. */
or a7, xh, yh
slli a7, a7, 1
or a7, a7, xl
or a7, a7, yl
movi a2, 0
movi a3, -1
movnez a2, a3, a7
leaf_return
 
 
/* Unordered */
 
.align 4
.global __unorddf2
.type __unorddf2, @function
__unorddf2:
leaf_entry sp, 16
movi a6, 0x7ff00000
ball xh, a6, 3f
1: ball yh, a6, 4f
2: movi a2, 0
leaf_return
 
3: slli a7, xh, 12
or a7, a7, xl
beqz a7, 1b
movi a2, 1
leaf_return
 
4: slli a7, yh, 12
or a7, a7, yl
beqz a7, 2b
movi a2, 1
leaf_return
 
#endif /* L_cmpdf2 */
 
#ifdef L_fixdfsi
 
.align 4
.global __fixdfsi
.type __fixdfsi, @function
__fixdfsi:
leaf_entry sp, 16
 
/* Check for NaN and Infinity. */
movi a6, 0x7ff00000
ball xh, a6, .Lfixdfsi_nan_or_inf
 
/* Extract the exponent and check if 0 < (exp - 0x3fe) < 32. */
extui a4, xh, 20, 11
extui a5, a6, 19, 10 /* 0x3fe */
sub a4, a4, a5
bgei a4, 32, .Lfixdfsi_maxint
blti a4, 1, .Lfixdfsi_zero
 
/* Add explicit "1.0" and shift << 11. */
or a7, xh, a6
ssai (32 - 11)
src a5, a7, xl
 
/* Shift back to the right, based on the exponent. */
ssl a4 /* shift by 32 - a4 */
srl a5, a5
 
/* Negate the result if sign != 0. */
neg a2, a5
movgez a2, a5, a7
leaf_return
 
.Lfixdfsi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, xh, 12
or a4, a4, xl
beqz a4, .Lfixdfsi_maxint
 
/* Translate NaN to +maxint. */
movi xh, 0
 
.Lfixdfsi_maxint:
slli a4, a6, 11 /* 0x80000000 */
addi a5, a4, -1 /* 0x7fffffff */
movgez a4, a5, xh
mov a2, a4
leaf_return
 
.Lfixdfsi_zero:
movi a2, 0
leaf_return
 
#endif /* L_fixdfsi */
 
#ifdef L_fixdfdi
 
.align 4
.global __fixdfdi
.type __fixdfdi, @function
__fixdfdi:
leaf_entry sp, 16
 
/* Check for NaN and Infinity. */
movi a6, 0x7ff00000
ball xh, a6, .Lfixdfdi_nan_or_inf
 
/* Extract the exponent and check if 0 < (exp - 0x3fe) < 64. */
extui a4, xh, 20, 11
extui a5, a6, 19, 10 /* 0x3fe */
sub a4, a4, a5
bgei a4, 64, .Lfixdfdi_maxint
blti a4, 1, .Lfixdfdi_zero
 
/* Add explicit "1.0" and shift << 11. */
or a7, xh, a6
ssai (32 - 11)
src xh, a7, xl
sll xl, xl
 
/* Shift back to the right, based on the exponent. */
ssl a4 /* shift by 64 - a4 */
bgei a4, 32, .Lfixdfdi_smallshift
srl xl, xh
movi xh, 0
 
.Lfixdfdi_shifted:
/* Negate the result if sign != 0. */
bgez a7, 1f
neg xl, xl
neg xh, xh
beqz xl, 1f
addi xh, xh, -1
1: leaf_return
 
.Lfixdfdi_smallshift:
src xl, xh, xl
srl xh, xh
j .Lfixdfdi_shifted
 
.Lfixdfdi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, xh, 12
or a4, a4, xl
beqz a4, .Lfixdfdi_maxint
 
/* Translate NaN to +maxint. */
movi xh, 0
 
.Lfixdfdi_maxint:
slli a7, a6, 11 /* 0x80000000 */
bgez xh, 1f
mov xh, a7
movi xl, 0
leaf_return
 
1: addi xh, a7, -1 /* 0x7fffffff */
movi xl, -1
leaf_return
 
.Lfixdfdi_zero:
movi xh, 0
movi xl, 0
leaf_return
 
#endif /* L_fixdfdi */
 
#ifdef L_fixunsdfsi
 
.align 4
.global __fixunsdfsi
.type __fixunsdfsi, @function
__fixunsdfsi:
leaf_entry sp, 16
 
/* Check for NaN and Infinity. */
movi a6, 0x7ff00000
ball xh, a6, .Lfixunsdfsi_nan_or_inf
 
/* Extract the exponent and check if 0 <= (exp - 0x3ff) < 32. */
extui a4, xh, 20, 11
extui a5, a6, 20, 10 /* 0x3ff */
sub a4, a4, a5
bgei a4, 32, .Lfixunsdfsi_maxint
bltz a4, .Lfixunsdfsi_zero
 
/* Add explicit "1.0" and shift << 11. */
or a7, xh, a6
ssai (32 - 11)
src a5, a7, xl
 
/* Shift back to the right, based on the exponent. */
addi a4, a4, 1
beqi a4, 32, .Lfixunsdfsi_bigexp
ssl a4 /* shift by 32 - a4 */
srl a5, a5
 
/* Negate the result if sign != 0. */
neg a2, a5
movgez a2, a5, a7
leaf_return
 
.Lfixunsdfsi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, xh, 12
or a4, a4, xl
beqz a4, .Lfixunsdfsi_maxint
 
/* Translate NaN to 0xffffffff. */
movi a2, -1
leaf_return
 
.Lfixunsdfsi_maxint:
slli a4, a6, 11 /* 0x80000000 */
movi a5, -1 /* 0xffffffff */
movgez a4, a5, xh
mov a2, a4
leaf_return
 
.Lfixunsdfsi_zero:
movi a2, 0
leaf_return
 
.Lfixunsdfsi_bigexp:
/* Handle unsigned maximum exponent case. */
bltz xh, 1f
mov a2, a5 /* no shift needed */
leaf_return
 
/* Return 0x80000000 if negative. */
1: slli a2, a6, 11
leaf_return
 
#endif /* L_fixunsdfsi */
 
#ifdef L_fixunsdfdi
 
.align 4
.global __fixunsdfdi
.type __fixunsdfdi, @function
__fixunsdfdi:
leaf_entry sp, 16
 
/* Check for NaN and Infinity. */
movi a6, 0x7ff00000
ball xh, a6, .Lfixunsdfdi_nan_or_inf
 
/* Extract the exponent and check if 0 <= (exp - 0x3ff) < 64. */
extui a4, xh, 20, 11
extui a5, a6, 20, 10 /* 0x3ff */
sub a4, a4, a5
bgei a4, 64, .Lfixunsdfdi_maxint
bltz a4, .Lfixunsdfdi_zero
 
/* Add explicit "1.0" and shift << 11. */
or a7, xh, a6
ssai (32 - 11)
src xh, a7, xl
sll xl, xl
 
/* Shift back to the right, based on the exponent. */
addi a4, a4, 1
beqi a4, 64, .Lfixunsdfdi_bigexp
ssl a4 /* shift by 64 - a4 */
bgei a4, 32, .Lfixunsdfdi_smallshift
srl xl, xh
movi xh, 0
 
.Lfixunsdfdi_shifted:
/* Negate the result if sign != 0. */
bgez a7, 1f
neg xl, xl
neg xh, xh
beqz xl, 1f
addi xh, xh, -1
1: leaf_return
 
.Lfixunsdfdi_smallshift:
src xl, xh, xl
srl xh, xh
j .Lfixunsdfdi_shifted
 
.Lfixunsdfdi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, xh, 12
or a4, a4, xl
beqz a4, .Lfixunsdfdi_maxint
 
/* Translate NaN to 0xffffffff.... */
1: movi xh, -1
movi xl, -1
leaf_return
 
.Lfixunsdfdi_maxint:
bgez xh, 1b
2: slli xh, a6, 11 /* 0x80000000 */
movi xl, 0
leaf_return
 
.Lfixunsdfdi_zero:
movi xh, 0
movi xl, 0
leaf_return
 
.Lfixunsdfdi_bigexp:
/* Handle unsigned maximum exponent case. */
bltz a7, 2b
leaf_return /* no shift needed */
 
#endif /* L_fixunsdfdi */
 
#ifdef L_floatsidf
 
.align 4
.global __floatunsidf
.type __floatunsidf, @function
__floatunsidf:
leaf_entry sp, 16
beqz a2, .Lfloatsidf_return_zero
 
/* Set the sign to zero and jump to the floatsidf code. */
movi a7, 0
j .Lfloatsidf_normalize
 
.align 4
.global __floatsidf
.type __floatsidf, @function
__floatsidf:
leaf_entry sp, 16
 
/* Check for zero. */
beqz a2, .Lfloatsidf_return_zero
 
/* Save the sign. */
extui a7, a2, 31, 1
 
/* Get the absolute value. */
#if XCHAL_HAVE_ABS
abs a2, a2
#else
neg a4, a2
movltz a2, a4, a2
#endif
 
.Lfloatsidf_normalize:
/* Normalize with the first 1 bit in the msb. */
do_nsau a4, a2, a5, a6
ssl a4
sll a5, a2
 
/* Shift the mantissa into position. */
srli xh, a5, 11
slli xl, a5, (32 - 11)
 
/* Set the exponent. */
movi a5, 0x41d /* 0x3fe + 31 */
sub a5, a5, a4
slli a5, a5, 20
add xh, xh, a5
 
/* Add the sign and return. */
slli a7, a7, 31
or xh, xh, a7
leaf_return
 
.Lfloatsidf_return_zero:
movi a3, 0
leaf_return
 
#endif /* L_floatsidf */
 
#ifdef L_floatdidf
 
.align 4
.global __floatundidf
.type __floatundidf, @function
__floatundidf:
leaf_entry sp, 16
 
/* Check for zero. */
or a4, xh, xl
beqz a4, 2f
 
/* Set the sign to zero and jump to the floatdidf code. */
movi a7, 0
j .Lfloatdidf_normalize
 
.align 4
.global __floatdidf
.type __floatdidf, @function
__floatdidf:
leaf_entry sp, 16
 
/* Check for zero. */
or a4, xh, xl
beqz a4, 2f
 
/* Save the sign. */
extui a7, xh, 31, 1
 
/* Get the absolute value. */
bgez xh, .Lfloatdidf_normalize
neg xl, xl
neg xh, xh
beqz xl, .Lfloatdidf_normalize
addi xh, xh, -1
 
.Lfloatdidf_normalize:
/* Normalize with the first 1 bit in the msb of xh. */
beqz xh, .Lfloatdidf_bigshift
do_nsau a4, xh, a5, a6
ssl a4
src xh, xh, xl
sll xl, xl
 
.Lfloatdidf_shifted:
/* Shift the mantissa into position, with rounding bits in a6. */
ssai 11
sll a6, xl
src xl, xh, xl
srl xh, xh
 
/* Set the exponent. */
movi a5, 0x43d /* 0x3fe + 63 */
sub a5, a5, a4
slli a5, a5, 20
add xh, xh, a5
 
/* Add the sign. */
slli a7, a7, 31
or xh, xh, a7
 
/* Round up if the leftover fraction is >= 1/2. */
bgez a6, 2f
addi xl, xl, 1
beqz xl, .Lfloatdidf_roundcarry
 
/* Check if the leftover fraction is exactly 1/2. */
slli a6, a6, 1
beqz a6, .Lfloatdidf_exactlyhalf
2: leaf_return
 
.Lfloatdidf_bigshift:
/* xh is zero. Normalize with first 1 bit of xl in the msb of xh. */
do_nsau a4, xl, a5, a6
ssl a4
sll xh, xl
movi xl, 0
addi a4, a4, 32
j .Lfloatdidf_shifted
 
.Lfloatdidf_exactlyhalf:
/* Round down to the nearest even value. */
srli xl, xl, 1
slli xl, xl, 1
leaf_return
 
.Lfloatdidf_roundcarry:
/* xl is always zero when the rounding increment overflows, so
there's no need to round it to an even value. */
addi xh, xh, 1
/* Overflow to the exponent is OK. */
leaf_return
 
#endif /* L_floatdidf */
 
#ifdef L_truncdfsf2
 
.align 4
.global __truncdfsf2
.type __truncdfsf2, @function
__truncdfsf2:
leaf_entry sp, 16
 
/* Adjust the exponent bias. */
movi a4, (0x3ff - 0x7f) << 20
sub a5, xh, a4
 
/* Check for underflow. */
xor a6, xh, a5
bltz a6, .Ltrunc_underflow
extui a6, a5, 20, 11
beqz a6, .Ltrunc_underflow
 
/* Check for overflow. */
movi a4, 255
bge a6, a4, .Ltrunc_overflow
 
/* Shift a5/xl << 3 into a5/a4. */
ssai (32 - 3)
src a5, a5, xl
sll a4, xl
 
.Ltrunc_addsign:
/* Add the sign bit. */
extui a6, xh, 31, 1
slli a6, a6, 31
or a2, a6, a5
 
/* Round up if the leftover fraction is >= 1/2. */
bgez a4, 1f
addi a2, a2, 1
/* Overflow to the exponent is OK. The answer will be correct. */
 
/* Check if the leftover fraction is exactly 1/2. */
slli a4, a4, 1
beqz a4, .Ltrunc_exactlyhalf
1: leaf_return
 
.Ltrunc_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
 
.Ltrunc_overflow:
/* Check if exponent == 0x7ff. */
movi a4, 0x7ff00000
bnall xh, a4, 1f
 
/* Check if mantissa is nonzero. */
slli a5, xh, 12
or a5, a5, xl
beqz a5, 1f
 
/* Shift a4 to set a bit in the mantissa, making a quiet NaN. */
srli a4, a4, 1
 
1: slli a4, a4, 4 /* 0xff000000 or 0xff800000 */
/* Add the sign bit. */
extui a6, xh, 31, 1
ssai 1
src a2, a6, a4
leaf_return
 
.Ltrunc_underflow:
/* Find shift count for a subnormal. Flush to zero if >= 32. */
extui a6, xh, 20, 11
movi a5, 0x3ff - 0x7f
sub a6, a5, a6
addi a6, a6, 1
bgeui a6, 32, 1f
 
/* Replace the exponent with an explicit "1.0". */
slli a5, a5, 13 /* 0x700000 */
or a5, a5, xh
slli a5, a5, 11
srli a5, a5, 11
 
/* Shift the mantissa left by 3 bits (into a5/a4). */
ssai (32 - 3)
src a5, a5, xl
sll a4, xl
 
/* Shift right by a6. */
ssr a6
sll a7, a4
src a4, a5, a4
srl a5, a5
beqz a7, .Ltrunc_addsign
or a4, a4, a6 /* any positive, nonzero value will work */
j .Ltrunc_addsign
 
/* Return +/- zero. */
1: extui a2, xh, 31, 1
slli a2, a2, 31
leaf_return
 
#endif /* L_truncdfsf2 */
 
#ifdef L_extendsfdf2
 
.align 4
.global __extendsfdf2
.type __extendsfdf2, @function
__extendsfdf2:
leaf_entry sp, 16
 
/* Save the sign bit and then shift it off. */
extui a5, a2, 31, 1
slli a5, a5, 31
slli a4, a2, 1
 
/* Extract and check the exponent. */
extui a6, a2, 23, 8
beqz a6, .Lextend_expzero
addi a6, a6, 1
beqi a6, 256, .Lextend_nan_or_inf
 
/* Shift >> 3 into a4/xl. */
srli a4, a4, 4
slli xl, a2, (32 - 3)
 
/* Adjust the exponent bias. */
movi a6, (0x3ff - 0x7f) << 20
add a4, a4, a6
 
/* Add the sign bit. */
or xh, a4, a5
leaf_return
 
.Lextend_nan_or_inf:
movi a4, 0x7ff00000
 
/* Check for NaN. */
slli a7, a2, 9
beqz a7, 1f
 
slli a6, a6, 11 /* 0x80000 */
or a4, a4, a6
 
/* Add the sign and return. */
1: or xh, a4, a5
movi xl, 0
leaf_return
 
.Lextend_expzero:
beqz a4, 1b
 
/* Normalize it to have 8 zero bits before the first 1 bit. */
do_nsau a7, a4, a2, a3
addi a7, a7, -8
ssl a7
sll a4, a4
/* Shift >> 3 into a4/xl. */
slli xl, a4, (32 - 3)
srli a4, a4, 3
 
/* Set the exponent. */
movi a6, 0x3fe - 0x7f
sub a6, a6, a7
slli a6, a6, 20
add a4, a4, a6
 
/* Add the sign and return. */
or xh, a4, a5
leaf_return
 
#endif /* L_extendsfdf2 */
 
 
/t-linux
0,0 → 1,2365
EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o crtbeginT.o
/xtensa.md
0,0 → 1,2133
;; GCC machine description for Tensilica's Xtensa architecture.
;; Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007
; Free Software Foundation, Inc.
;; Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
 
;; This file is part of GCC.
 
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
 
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
 
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
 
 
(define_constants [
(A0_REG 0)
(A1_REG 1)
(A7_REG 7)
(A8_REG 8)
 
(UNSPEC_NSAU 1)
(UNSPEC_NOP 2)
(UNSPEC_PLT 3)
(UNSPEC_RET_ADDR 4)
(UNSPECV_SET_FP 1)
(UNSPECV_ENTRY 2)
])
 
;; Attributes.
 
(define_attr "type"
"unknown,jump,call,load,store,move,arith,multi,nop,farith,fmadd,fdiv,fsqrt,fconv,fload,fstore,mul16,mul32,div32,mac16,rsr,wsr"
(const_string "unknown"))
 
(define_attr "mode"
"unknown,none,QI,HI,SI,DI,SF,DF,BL"
(const_string "unknown"))
 
(define_attr "length" "" (const_int 1))
 
;; Describe a user's asm statement.
(define_asm_attributes
[(set_attr "type" "multi")])
 
;; Pipeline model.
 
;; The Xtensa basically has simple 5-stage RISC pipeline.
;; Most instructions complete in 1 cycle, and it is OK to assume that
;; everything is fully pipelined. The exceptions have special insn
;; reservations in the pipeline description below. The Xtensa can
;; issue one instruction per cycle, so defining CPU units is unnecessary.
 
(define_insn_reservation "xtensa_any_insn" 1
(eq_attr "type" "!load,fload,rsr,mul16,mul32,fmadd,fconv")
"nothing")
 
(define_insn_reservation "xtensa_memory" 2
(eq_attr "type" "load,fload")
"nothing")
 
(define_insn_reservation "xtensa_sreg" 2
(eq_attr "type" "rsr")
"nothing")
 
(define_insn_reservation "xtensa_mul16" 2
(eq_attr "type" "mul16")
"nothing")
 
(define_insn_reservation "xtensa_mul32" 2
(eq_attr "type" "mul32")
"nothing")
 
(define_insn_reservation "xtensa_fmadd" 4
(eq_attr "type" "fmadd")
"nothing")
 
(define_insn_reservation "xtensa_fconv" 2
(eq_attr "type" "fconv")
"nothing")
;; Include predicate definitions
 
(include "predicates.md")
 
;; Addition.
 
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=D,D,a,a,a")
(plus:SI (match_operand:SI 1 "register_operand" "%d,d,r,r,r")
(match_operand:SI 2 "add_operand" "d,O,r,J,N")))]
""
"@
add.n\t%0, %1, %2
addi.n\t%0, %1, %d2
add\t%0, %1, %2
addi\t%0, %1, %d2
addmi\t%0, %1, %x2"
[(set_attr "type" "arith,arith,arith,arith,arith")
(set_attr "mode" "SI")
(set_attr "length" "2,2,3,3,3")])
 
(define_insn "*addx2"
[(set (match_operand:SI 0 "register_operand" "=a")
(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r")
(const_int 2))
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_ADDX"
"addx2\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "*addx4"
[(set (match_operand:SI 0 "register_operand" "=a")
(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r")
(const_int 4))
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_ADDX"
"addx4\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "*addx8"
[(set (match_operand:SI 0 "register_operand" "=a")
(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r")
(const_int 8))
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_ADDX"
"addx8\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "addsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(plus:SF (match_operand:SF 1 "register_operand" "%f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"add.s\t%0, %1, %2"
[(set_attr "type" "fmadd")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; Subtraction.
 
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(minus:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
""
"sub\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "*subx2"
[(set (match_operand:SI 0 "register_operand" "=a")
(minus:SI (mult:SI (match_operand:SI 1 "register_operand" "r")
(const_int 2))
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_ADDX"
"subx2\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "*subx4"
[(set (match_operand:SI 0 "register_operand" "=a")
(minus:SI (mult:SI (match_operand:SI 1 "register_operand" "r")
(const_int 4))
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_ADDX"
"subx4\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "*subx8"
[(set (match_operand:SI 0 "register_operand" "=a")
(minus:SI (mult:SI (match_operand:SI 1 "register_operand" "r")
(const_int 8))
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_ADDX"
"subx8\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "subsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(minus:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"sub.s\t%0, %1, %2"
[(set_attr "type" "fmadd")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; Multiplication.
 
(define_insn "mulsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(mult:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_MUL32"
"mull\t%0, %1, %2"
[(set_attr "type" "mul32")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "mulhisi3"
[(set (match_operand:SI 0 "register_operand" "=C,A")
(mult:SI (sign_extend:SI
(match_operand:HI 1 "register_operand" "%r,r"))
(sign_extend:SI
(match_operand:HI 2 "register_operand" "r,r"))))]
"TARGET_MUL16 || TARGET_MAC16"
"@
mul16s\t%0, %1, %2
mul.aa.ll\t%1, %2"
[(set_attr "type" "mul16,mac16")
(set_attr "mode" "SI")
(set_attr "length" "3,3")])
 
(define_insn "umulhisi3"
[(set (match_operand:SI 0 "register_operand" "=C,A")
(mult:SI (zero_extend:SI
(match_operand:HI 1 "register_operand" "%r,r"))
(zero_extend:SI
(match_operand:HI 2 "register_operand" "r,r"))))]
"TARGET_MUL16 || TARGET_MAC16"
"@
mul16u\t%0, %1, %2
umul.aa.ll\t%1, %2"
[(set_attr "type" "mul16,mac16")
(set_attr "mode" "SI")
(set_attr "length" "3,3")])
 
(define_insn "muladdhisi"
[(set (match_operand:SI 0 "register_operand" "=A")
(plus:SI (mult:SI (sign_extend:SI
(match_operand:HI 1 "register_operand" "%r"))
(sign_extend:SI
(match_operand:HI 2 "register_operand" "r")))
(match_operand:SI 3 "register_operand" "0")))]
"TARGET_MAC16"
"mula.aa.ll\t%1, %2"
[(set_attr "type" "mac16")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "mulsubhisi"
[(set (match_operand:SI 0 "register_operand" "=A")
(minus:SI (match_operand:SI 1 "register_operand" "0")
(mult:SI (sign_extend:SI
(match_operand:HI 2 "register_operand" "%r"))
(sign_extend:SI
(match_operand:HI 3 "register_operand" "r")))))]
"TARGET_MAC16"
"muls.aa.ll\t%2, %3"
[(set_attr "type" "mac16")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "mulsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(mult:SF (match_operand:SF 1 "register_operand" "%f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"mul.s\t%0, %1, %2"
[(set_attr "type" "fmadd")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
(define_insn "muladdsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(plus:SF (mult:SF (match_operand:SF 1 "register_operand" "%f")
(match_operand:SF 2 "register_operand" "f"))
(match_operand:SF 3 "register_operand" "0")))]
"TARGET_HARD_FLOAT && TARGET_FUSED_MADD"
"madd.s\t%0, %1, %2"
[(set_attr "type" "fmadd")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
(define_insn "mulsubsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(minus:SF (match_operand:SF 1 "register_operand" "0")
(mult:SF (match_operand:SF 2 "register_operand" "%f")
(match_operand:SF 3 "register_operand" "f"))))]
"TARGET_HARD_FLOAT && TARGET_FUSED_MADD"
"msub.s\t%0, %2, %3"
[(set_attr "type" "fmadd")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; Division.
 
(define_insn "divsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(div:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_DIV32"
"quos\t%0, %1, %2"
[(set_attr "type" "div32")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "udivsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(udiv:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_DIV32"
"quou\t%0, %1, %2"
[(set_attr "type" "div32")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "divsf3"
[(set (match_operand:SF 0 "register_operand" "=f")
(div:SF (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_HARD_FLOAT_DIV"
"div.s\t%0, %1, %2"
[(set_attr "type" "fdiv")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
(define_insn "*recipsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(div:SF (match_operand:SF 1 "const_float_1_operand" "")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_HARD_FLOAT_RECIP && flag_unsafe_math_optimizations"
"recip.s\t%0, %2"
[(set_attr "type" "fdiv")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; Remainders.
 
(define_insn "modsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(mod:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_DIV32"
"rems\t%0, %1, %2"
[(set_attr "type" "div32")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "umodsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(umod:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_DIV32"
"remu\t%0, %1, %2"
[(set_attr "type" "div32")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
;; Square roots.
 
(define_insn "sqrtsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(sqrt:SF (match_operand:SF 1 "register_operand" "f")))]
"TARGET_HARD_FLOAT_SQRT"
"sqrt.s\t%0, %1"
[(set_attr "type" "fsqrt")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
(define_insn "*rsqrtsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(div:SF (match_operand:SF 1 "const_float_1_operand" "")
(sqrt:SF (match_operand:SF 2 "register_operand" "f"))))]
"TARGET_HARD_FLOAT_RSQRT && flag_unsafe_math_optimizations"
"rsqrt.s\t%0, %2"
[(set_attr "type" "fsqrt")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; Absolute value.
 
(define_insn "abssi2"
[(set (match_operand:SI 0 "register_operand" "=a")
(abs:SI (match_operand:SI 1 "register_operand" "r")))]
"TARGET_ABS"
"abs\t%0, %1"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "abssf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(abs:SF (match_operand:SF 1 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"abs.s\t%0, %1"
[(set_attr "type" "farith")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; Min and max.
 
(define_insn "sminsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(smin:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_MINMAX"
"min\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "uminsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(umin:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_MINMAX"
"minu\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "smaxsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(smax:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_MINMAX"
"max\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "umaxsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(umax:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))]
"TARGET_MINMAX"
"maxu\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
;; Find first bit.
 
(define_expand "ffssi2"
[(set (match_operand:SI 0 "register_operand" "")
(ffs:SI (match_operand:SI 1 "register_operand" "")))]
"TARGET_NSA"
{
rtx temp = gen_reg_rtx (SImode);
emit_insn (gen_negsi2 (temp, operands[1]));
emit_insn (gen_andsi3 (temp, temp, operands[1]));
emit_insn (gen_nsau (temp, temp));
emit_insn (gen_negsi2 (temp, temp));
emit_insn (gen_addsi3 (operands[0], temp, GEN_INT (32)));
DONE;
})
 
;; There is no RTL operator corresponding to NSAU.
(define_insn "nsau"
[(set (match_operand:SI 0 "register_operand" "=a")
(unspec:SI [(match_operand:SI 1 "register_operand" "r")] UNSPEC_NSAU))]
"TARGET_NSA"
"nsau\t%0, %1"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
;; Negation and one's complement.
 
(define_insn "negsi2"
[(set (match_operand:SI 0 "register_operand" "=a")
(neg:SI (match_operand:SI 1 "register_operand" "r")))]
""
"neg\t%0, %1"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_expand "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "")
(not:SI (match_operand:SI 1 "register_operand" "")))]
""
{
rtx temp = gen_reg_rtx (SImode);
emit_insn (gen_movsi (temp, constm1_rtx));
emit_insn (gen_xorsi3 (operands[0], temp, operands[1]));
DONE;
})
 
(define_insn "negsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(neg:SF (match_operand:SF 1 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"neg.s\t%0, %1"
[(set_attr "type" "farith")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; Logical instructions.
 
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(and:SI (match_operand:SI 1 "register_operand" "%r,r")
(match_operand:SI 2 "mask_operand" "P,r")))]
""
"@
extui\t%0, %1, 0, %K2
and\t%0, %1, %2"
[(set_attr "type" "arith,arith")
(set_attr "mode" "SI")
(set_attr "length" "3,3")])
 
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(ior:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))]
""
"or\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=a")
(xor:SI (match_operand:SI 1 "register_operand" "%r")
(match_operand:SI 2 "register_operand" "r")))]
""
"xor\t%0, %1, %2"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
;; Zero-extend instructions.
 
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(zero_extend:SI (match_operand:HI 1 "nonimmed_operand" "r,U")))]
""
"@
extui\t%0, %1, 0, 16
l16ui\t%0, %1"
[(set_attr "type" "arith,load")
(set_attr "mode" "SI")
(set_attr "length" "3,3")])
 
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(zero_extend:SI (match_operand:QI 1 "nonimmed_operand" "r,U")))]
""
"@
extui\t%0, %1, 0, 8
l8ui\t%0, %1"
[(set_attr "type" "arith,load")
(set_attr "mode" "SI")
(set_attr "length" "3,3")])
 
;; Sign-extend instructions.
 
(define_expand "extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extend:SI (match_operand:HI 1 "register_operand" "")))]
""
{
if (sext_operand (operands[1], HImode))
emit_insn (gen_extendhisi2_internal (operands[0], operands[1]));
else
xtensa_extend_reg (operands[0], operands[1]);
DONE;
})
 
(define_insn "extendhisi2_internal"
[(set (match_operand:SI 0 "register_operand" "=B,a")
(sign_extend:SI (match_operand:HI 1 "sext_operand" "r,U")))]
""
"@
sext\t%0, %1, 15
l16si\t%0, %1"
[(set_attr "type" "arith,load")
(set_attr "mode" "SI")
(set_attr "length" "3,3")])
 
(define_expand "extendqisi2"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extend:SI (match_operand:QI 1 "register_operand" "")))]
""
{
if (TARGET_SEXT)
emit_insn (gen_extendqisi2_internal (operands[0], operands[1]));
else
xtensa_extend_reg (operands[0], operands[1]);
DONE;
})
 
(define_insn "extendqisi2_internal"
[(set (match_operand:SI 0 "register_operand" "=B")
(sign_extend:SI (match_operand:QI 1 "register_operand" "r")))]
"TARGET_SEXT"
"sext\t%0, %1, 7"
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
;; Field extract instructions.
 
(define_expand "extv"
[(set (match_operand:SI 0 "register_operand" "")
(sign_extract:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")
(match_operand:SI 3 "const_int_operand" "")))]
"TARGET_SEXT"
{
if (!sext_fldsz_operand (operands[2], SImode))
FAIL;
 
/* We could expand to a right shift followed by SEXT but that's
no better than the standard left and right shift sequence. */
if (!lsbitnum_operand (operands[3], SImode))
FAIL;
 
emit_insn (gen_extv_internal (operands[0], operands[1],
operands[2], operands[3]));
DONE;
})
 
(define_insn "extv_internal"
[(set (match_operand:SI 0 "register_operand" "=a")
(sign_extract:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "sext_fldsz_operand" "i")
(match_operand:SI 3 "lsbitnum_operand" "i")))]
"TARGET_SEXT"
{
int fldsz = INTVAL (operands[2]);
operands[2] = GEN_INT (fldsz - 1);
return "sext\t%0, %1, %2";
}
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_expand "extzv"
[(set (match_operand:SI 0 "register_operand" "")
(zero_extract:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "const_int_operand" "")
(match_operand:SI 3 "const_int_operand" "")))]
""
{
if (!extui_fldsz_operand (operands[2], SImode))
FAIL;
emit_insn (gen_extzv_internal (operands[0], operands[1],
operands[2], operands[3]));
DONE;
})
 
(define_insn "extzv_internal"
[(set (match_operand:SI 0 "register_operand" "=a")
(zero_extract:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "extui_fldsz_operand" "i")
(match_operand:SI 3 "const_int_operand" "i")))]
""
{
int shift;
if (BITS_BIG_ENDIAN)
shift = (32 - (INTVAL (operands[2]) + INTVAL (operands[3]))) & 0x1f;
else
shift = INTVAL (operands[3]) & 0x1f;
operands[3] = GEN_INT (shift);
return "extui\t%0, %1, %3, %2";
}
[(set_attr "type" "arith")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
;; Conversions.
 
(define_insn "fix_truncsfsi2"
[(set (match_operand:SI 0 "register_operand" "=a")
(fix:SI (match_operand:SF 1 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"trunc.s\t%0, %1, 0"
[(set_attr "type" "fconv")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
(define_insn "fixuns_truncsfsi2"
[(set (match_operand:SI 0 "register_operand" "=a")
(unsigned_fix:SI (match_operand:SF 1 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"utrunc.s\t%0, %1, 0"
[(set_attr "type" "fconv")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
(define_insn "floatsisf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(float:SF (match_operand:SI 1 "register_operand" "a")))]
"TARGET_HARD_FLOAT"
"float.s\t%0, %1, 0"
[(set_attr "type" "fconv")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
(define_insn "floatunssisf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(unsigned_float:SF (match_operand:SI 1 "register_operand" "a")))]
"TARGET_HARD_FLOAT"
"ufloat.s\t%0, %1, 0"
[(set_attr "type" "fconv")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; Data movement instructions.
 
;; 64-bit Integer moves
 
(define_expand "movdi"
[(set (match_operand:DI 0 "nonimmed_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
{
if (CONSTANT_P (operands[1]) && !TARGET_CONST16)
operands[1] = force_const_mem (DImode, operands[1]);
 
if (!register_operand (operands[0], DImode)
&& !register_operand (operands[1], DImode))
operands[1] = force_reg (DImode, operands[1]);
 
operands[1] = xtensa_copy_incoming_a7 (operands[1]);
})
 
(define_insn_and_split "movdi_internal"
[(set (match_operand:DI 0 "nonimmed_operand" "=a,W,a,a,U")
(match_operand:DI 1 "move_operand" "r,i,T,U,r"))]
"register_operand (operands[0], DImode)
|| register_operand (operands[1], DImode)"
"#"
"reload_completed"
[(set (match_dup 0) (match_dup 2))
(set (match_dup 1) (match_dup 3))]
{
xtensa_split_operand_pair (operands, SImode);
if (reg_overlap_mentioned_p (operands[0], operands[3]))
{
rtx tmp;
tmp = operands[0], operands[0] = operands[1], operands[1] = tmp;
tmp = operands[2], operands[2] = operands[3], operands[3] = tmp;
}
})
 
;; 32-bit Integer moves
 
(define_expand "movsi"
[(set (match_operand:SI 0 "nonimmed_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
{
if (xtensa_emit_move_sequence (operands, SImode))
DONE;
})
 
(define_insn "movsi_internal"
[(set (match_operand:SI 0 "nonimmed_operand" "=D,D,D,D,R,R,a,q,a,W,a,a,U,*a,*A")
(match_operand:SI 1 "move_operand" "M,D,d,R,D,d,r,r,I,i,T,U,r,*A,*r"))]
"xtensa_valid_move (SImode, operands)"
"@
movi.n\t%0, %x1
mov.n\t%0, %1
mov.n\t%0, %1
%v1l32i.n\t%0, %1
%v0s32i.n\t%1, %0
%v0s32i.n\t%1, %0
mov\t%0, %1
movsp\t%0, %1
movi\t%0, %x1
const16\t%0, %t1\;const16\t%0, %b1
%v1l32r\t%0, %1
%v1l32i\t%0, %1
%v0s32i\t%1, %0
rsr\t%0, ACCLO
wsr\t%1, ACCLO"
[(set_attr "type" "move,move,move,load,store,store,move,move,move,move,load,load,store,rsr,wsr")
(set_attr "mode" "SI")
(set_attr "length" "2,2,2,2,2,2,3,3,3,6,3,3,3,3,3")])
 
;; 16-bit Integer moves
 
(define_expand "movhi"
[(set (match_operand:HI 0 "nonimmed_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
{
if (xtensa_emit_move_sequence (operands, HImode))
DONE;
})
 
(define_insn "movhi_internal"
[(set (match_operand:HI 0 "nonimmed_operand" "=D,D,a,a,a,U,*a,*A")
(match_operand:HI 1 "move_operand" "M,d,r,I,U,r,*A,*r"))]
"xtensa_valid_move (HImode, operands)"
"@
movi.n\t%0, %x1
mov.n\t%0, %1
mov\t%0, %1
movi\t%0, %x1
%v1l16ui\t%0, %1
%v0s16i\t%1, %0
rsr\t%0, ACCLO
wsr\t%1, ACCLO"
[(set_attr "type" "move,move,move,move,load,store,rsr,wsr")
(set_attr "mode" "HI")
(set_attr "length" "2,2,3,3,3,3,3,3")])
 
;; 8-bit Integer moves
 
(define_expand "movqi"
[(set (match_operand:QI 0 "nonimmed_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
{
if (xtensa_emit_move_sequence (operands, QImode))
DONE;
})
 
(define_insn "movqi_internal"
[(set (match_operand:QI 0 "nonimmed_operand" "=D,D,a,a,a,U,*a,*A")
(match_operand:QI 1 "move_operand" "M,d,r,I,U,r,*A,*r"))]
"xtensa_valid_move (QImode, operands)"
"@
movi.n\t%0, %x1
mov.n\t%0, %1
mov\t%0, %1
movi\t%0, %x1
%v1l8ui\t%0, %1
%v0s8i\t%1, %0
rsr\t%0, ACCLO
wsr\t%1, ACCLO"
[(set_attr "type" "move,move,move,move,load,store,rsr,wsr")
(set_attr "mode" "QI")
(set_attr "length" "2,2,3,3,3,3,3,3")])
 
;; 32-bit floating point moves
 
(define_expand "movsf"
[(set (match_operand:SF 0 "nonimmed_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
{
if (!TARGET_CONST16 && CONSTANT_P (operands[1]))
operands[1] = force_const_mem (SFmode, operands[1]);
 
if ((!register_operand (operands[0], SFmode)
&& !register_operand (operands[1], SFmode))
|| (FP_REG_P (xt_true_regnum (operands[0]))
&& !(reload_in_progress | reload_completed)
&& (constantpool_mem_p (operands[1])
|| CONSTANT_P (operands[1]))))
operands[1] = force_reg (SFmode, operands[1]);
 
operands[1] = xtensa_copy_incoming_a7 (operands[1]);
})
 
(define_insn "movsf_internal"
[(set (match_operand:SF 0 "nonimmed_operand" "=f,f,U,D,D,R,a,f,a,W,a,a,U")
(match_operand:SF 1 "move_operand" "f,U,f,d,R,d,r,r,f,iF,T,U,r"))]
"((register_operand (operands[0], SFmode)
|| register_operand (operands[1], SFmode))
&& !(FP_REG_P (xt_true_regnum (operands[0]))
&& (constantpool_mem_p (operands[1]) || CONSTANT_P (operands[1]))))"
"@
mov.s\t%0, %1
%v1lsi\t%0, %1
%v0ssi\t%1, %0
mov.n\t%0, %1
%v1l32i.n\t%0, %1
%v0s32i.n\t%1, %0
mov\t%0, %1
wfr\t%0, %1
rfr\t%0, %1
const16\t%0, %t1\;const16\t%0, %b1
%v1l32r\t%0, %1
%v1l32i\t%0, %1
%v0s32i\t%1, %0"
[(set_attr "type" "farith,fload,fstore,move,load,store,move,farith,farith,move,load,load,store")
(set_attr "mode" "SF")
(set_attr "length" "3,3,3,2,2,2,3,3,3,6,3,3,3")])
 
(define_insn "*lsiu"
[(set (match_operand:SF 0 "register_operand" "=f")
(mem:SF (plus:SI (match_operand:SI 1 "register_operand" "+a")
(match_operand:SI 2 "fpmem_offset_operand" "i"))))
(set (match_dup 1)
(plus:SI (match_dup 1) (match_dup 2)))]
"TARGET_HARD_FLOAT"
{
if (volatile_refs_p (PATTERN (insn)))
output_asm_insn ("memw", operands);
return "lsiu\t%0, %1, %2";
}
[(set_attr "type" "fload")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
(define_insn "*ssiu"
[(set (mem:SF (plus:SI (match_operand:SI 0 "register_operand" "+a")
(match_operand:SI 1 "fpmem_offset_operand" "i")))
(match_operand:SF 2 "register_operand" "f"))
(set (match_dup 0)
(plus:SI (match_dup 0) (match_dup 1)))]
"TARGET_HARD_FLOAT"
{
if (volatile_refs_p (PATTERN (insn)))
output_asm_insn ("memw", operands);
return "ssiu\t%2, %0, %1";
}
[(set_attr "type" "fstore")
(set_attr "mode" "SF")
(set_attr "length" "3")])
 
;; 64-bit floating point moves
 
(define_expand "movdf"
[(set (match_operand:DF 0 "nonimmed_operand" "")
(match_operand:DF 1 "general_operand" ""))]
""
{
if (CONSTANT_P (operands[1]) && !TARGET_CONST16)
operands[1] = force_const_mem (DFmode, operands[1]);
 
if (!register_operand (operands[0], DFmode)
&& !register_operand (operands[1], DFmode))
operands[1] = force_reg (DFmode, operands[1]);
 
operands[1] = xtensa_copy_incoming_a7 (operands[1]);
})
 
(define_insn_and_split "movdf_internal"
[(set (match_operand:DF 0 "nonimmed_operand" "=a,W,a,a,U")
(match_operand:DF 1 "move_operand" "r,iF,T,U,r"))]
"register_operand (operands[0], DFmode)
|| register_operand (operands[1], DFmode)"
"#"
"reload_completed"
[(set (match_dup 0) (match_dup 2))
(set (match_dup 1) (match_dup 3))]
{
xtensa_split_operand_pair (operands, SFmode);
if (reg_overlap_mentioned_p (operands[0], operands[3]))
{
rtx tmp;
tmp = operands[0], operands[0] = operands[1], operands[1] = tmp;
tmp = operands[2], operands[2] = operands[3], operands[3] = tmp;
}
})
 
;; Block moves
 
(define_expand "movmemsi"
[(parallel [(set (match_operand:BLK 0 "" "")
(match_operand:BLK 1 "" ""))
(use (match_operand:SI 2 "arith_operand" ""))
(use (match_operand:SI 3 "const_int_operand" ""))])]
""
{
if (!xtensa_expand_block_move (operands))
FAIL;
DONE;
})
 
;; Shift instructions.
 
(define_expand "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "")
(ashift:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "arith_operand" "")))]
""
{
operands[1] = xtensa_copy_incoming_a7 (operands[1]);
})
 
(define_insn "ashlsi3_internal"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(ashift:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "arith_operand" "J,r")))]
""
"@
slli\t%0, %1, %R2
ssl\t%2\;sll\t%0, %1"
[(set_attr "type" "arith,arith")
(set_attr "mode" "SI")
(set_attr "length" "3,6")])
 
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "arith_operand" "J,r")))]
""
"@
srai\t%0, %1, %R2
ssr\t%2\;sra\t%0, %1"
[(set_attr "type" "arith,arith")
(set_attr "mode" "SI")
(set_attr "length" "3,6")])
 
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(lshiftrt:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "arith_operand" "J,r")))]
""
{
if (which_alternative == 0)
{
if ((INTVAL (operands[2]) & 0x1f) < 16)
return "srli\t%0, %1, %R2";
else
return "extui\t%0, %1, %R2, %L2";
}
return "ssr\t%2\;srl\t%0, %1";
}
[(set_attr "type" "arith,arith")
(set_attr "mode" "SI")
(set_attr "length" "3,6")])
 
(define_insn "rotlsi3"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(rotate:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "arith_operand" "J,r")))]
""
"@
ssai\t%L2\;src\t%0, %1, %1
ssl\t%2\;src\t%0, %1, %1"
[(set_attr "type" "multi,multi")
(set_attr "mode" "SI")
(set_attr "length" "6,6")])
 
(define_insn "rotrsi3"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(rotatert:SI (match_operand:SI 1 "register_operand" "r,r")
(match_operand:SI 2 "arith_operand" "J,r")))]
""
"@
ssai\t%R2\;src\t%0, %1, %1
ssr\t%2\;src\t%0, %1, %1"
[(set_attr "type" "multi,multi")
(set_attr "mode" "SI")
(set_attr "length" "6,6")])
 
;; Comparisons.
 
;; Handle comparisons by stashing away the operands and then using that
;; information in the subsequent conditional branch.
 
(define_expand "cmpsi"
[(set (cc0)
(compare:CC (match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "nonmemory_operand" "")))]
""
{
branch_cmp[0] = operands[0];
branch_cmp[1] = operands[1];
branch_type = CMP_SI;
DONE;
})
 
(define_expand "tstsi"
[(set (cc0)
(match_operand:SI 0 "register_operand" ""))]
""
{
branch_cmp[0] = operands[0];
branch_cmp[1] = const0_rtx;
branch_type = CMP_SI;
DONE;
})
 
(define_expand "cmpsf"
[(set (cc0)
(compare:CC (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "register_operand" "")))]
"TARGET_HARD_FLOAT"
{
branch_cmp[0] = operands[0];
branch_cmp[1] = operands[1];
branch_type = CMP_SF;
DONE;
})
 
;; Conditional branches.
 
(define_expand "beq"
[(set (pc)
(if_then_else (eq (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, EQ);
DONE;
})
 
(define_expand "bne"
[(set (pc)
(if_then_else (ne (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, NE);
DONE;
})
 
(define_expand "bgt"
[(set (pc)
(if_then_else (gt (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, GT);
DONE;
})
 
(define_expand "bge"
[(set (pc)
(if_then_else (ge (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, GE);
DONE;
})
 
(define_expand "blt"
[(set (pc)
(if_then_else (lt (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, LT);
DONE;
})
 
(define_expand "ble"
[(set (pc)
(if_then_else (le (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, LE);
DONE;
})
 
(define_expand "bgtu"
[(set (pc)
(if_then_else (gtu (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, GTU);
DONE;
})
 
(define_expand "bgeu"
[(set (pc)
(if_then_else (geu (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, GEU);
DONE;
})
 
(define_expand "bltu"
[(set (pc)
(if_then_else (ltu (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, LTU);
DONE;
})
 
(define_expand "bleu"
[(set (pc)
(if_then_else (leu (cc0) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
{
xtensa_expand_conditional_branch (operands, LEU);
DONE;
})
 
;; Branch patterns for standard integer comparisons
 
(define_insn "*btrue"
[(set (pc)
(if_then_else (match_operator 3 "branch_operator"
[(match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "branch_operand" "K,r")])
(label_ref (match_operand 2 "" ""))
(pc)))]
""
{
if (which_alternative == 1)
{
switch (GET_CODE (operands[3]))
{
case EQ: return "beq\t%0, %1, %2";
case NE: return "bne\t%0, %1, %2";
case LT: return "blt\t%0, %1, %2";
case GE: return "bge\t%0, %1, %2";
default: gcc_unreachable ();
}
}
else if (INTVAL (operands[1]) == 0)
{
switch (GET_CODE (operands[3]))
{
case EQ: return (TARGET_DENSITY
? "beqz.n\t%0, %2"
: "beqz\t%0, %2");
case NE: return (TARGET_DENSITY
? "bnez.n\t%0, %2"
: "bnez\t%0, %2");
case LT: return "bltz\t%0, %2";
case GE: return "bgez\t%0, %2";
default: gcc_unreachable ();
}
}
else
{
switch (GET_CODE (operands[3]))
{
case EQ: return "beqi\t%0, %d1, %2";
case NE: return "bnei\t%0, %d1, %2";
case LT: return "blti\t%0, %d1, %2";
case GE: return "bgei\t%0, %d1, %2";
default: gcc_unreachable ();
}
}
gcc_unreachable ();
}
[(set_attr "type" "jump,jump")
(set_attr "mode" "none")
(set_attr "length" "3,3")])
 
(define_insn "*bfalse"
[(set (pc)
(if_then_else (match_operator 3 "branch_operator"
[(match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "branch_operand" "K,r")])
(pc)
(label_ref (match_operand 2 "" ""))))]
""
{
if (which_alternative == 1)
{
switch (GET_CODE (operands[3]))
{
case EQ: return "bne\t%0, %1, %2";
case NE: return "beq\t%0, %1, %2";
case LT: return "bge\t%0, %1, %2";
case GE: return "blt\t%0, %1, %2";
default: gcc_unreachable ();
}
}
else if (INTVAL (operands[1]) == 0)
{
switch (GET_CODE (operands[3]))
{
case EQ: return (TARGET_DENSITY
? "bnez.n\t%0, %2"
: "bnez\t%0, %2");
case NE: return (TARGET_DENSITY
? "beqz.n\t%0, %2"
: "beqz\t%0, %2");
case LT: return "bgez\t%0, %2";
case GE: return "bltz\t%0, %2";
default: gcc_unreachable ();
}
}
else
{
switch (GET_CODE (operands[3]))
{
case EQ: return "bnei\t%0, %d1, %2";
case NE: return "beqi\t%0, %d1, %2";
case LT: return "bgei\t%0, %d1, %2";
case GE: return "blti\t%0, %d1, %2";
default: gcc_unreachable ();
}
}
gcc_unreachable ();
}
[(set_attr "type" "jump,jump")
(set_attr "mode" "none")
(set_attr "length" "3,3")])
 
(define_insn "*ubtrue"
[(set (pc)
(if_then_else (match_operator 3 "ubranch_operator"
[(match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "ubranch_operand" "L,r")])
(label_ref (match_operand 2 "" ""))
(pc)))]
""
{
if (which_alternative == 1)
{
switch (GET_CODE (operands[3]))
{
case LTU: return "bltu\t%0, %1, %2";
case GEU: return "bgeu\t%0, %1, %2";
default: gcc_unreachable ();
}
}
else
{
switch (GET_CODE (operands[3]))
{
case LTU: return "bltui\t%0, %d1, %2";
case GEU: return "bgeui\t%0, %d1, %2";
default: gcc_unreachable ();
}
}
gcc_unreachable ();
}
[(set_attr "type" "jump,jump")
(set_attr "mode" "none")
(set_attr "length" "3,3")])
 
(define_insn "*ubfalse"
[(set (pc)
(if_then_else (match_operator 3 "ubranch_operator"
[(match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "ubranch_operand" "L,r")])
(pc)
(label_ref (match_operand 2 "" ""))))]
""
{
if (which_alternative == 1)
{
switch (GET_CODE (operands[3]))
{
case LTU: return "bgeu\t%0, %1, %2";
case GEU: return "bltu\t%0, %1, %2";
default: gcc_unreachable ();
}
}
else
{
switch (GET_CODE (operands[3]))
{
case LTU: return "bgeui\t%0, %d1, %2";
case GEU: return "bltui\t%0, %d1, %2";
default: gcc_unreachable ();
}
}
gcc_unreachable ();
}
[(set_attr "type" "jump,jump")
(set_attr "mode" "none")
(set_attr "length" "3,3")])
 
;; Branch patterns for bit testing
 
(define_insn "*bittrue"
[(set (pc)
(if_then_else (match_operator 3 "boolean_operator"
[(zero_extract:SI
(match_operand:SI 0 "register_operand" "r,r")
(const_int 1)
(match_operand:SI 1 "arith_operand" "J,r"))
(const_int 0)])
(label_ref (match_operand 2 "" ""))
(pc)))]
""
{
if (which_alternative == 0)
{
unsigned bitnum = INTVAL(operands[1]) & 0x1f;
operands[1] = GEN_INT(bitnum);
switch (GET_CODE (operands[3]))
{
case EQ: return "bbci\t%0, %d1, %2";
case NE: return "bbsi\t%0, %d1, %2";
default: gcc_unreachable ();
}
}
else
{
switch (GET_CODE (operands[3]))
{
case EQ: return "bbc\t%0, %1, %2";
case NE: return "bbs\t%0, %1, %2";
default: gcc_unreachable ();
}
}
gcc_unreachable ();
}
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_insn "*bitfalse"
[(set (pc)
(if_then_else (match_operator 3 "boolean_operator"
[(zero_extract:SI
(match_operand:SI 0 "register_operand" "r,r")
(const_int 1)
(match_operand:SI 1 "arith_operand" "J,r"))
(const_int 0)])
(pc)
(label_ref (match_operand 2 "" ""))))]
""
{
if (which_alternative == 0)
{
unsigned bitnum = INTVAL (operands[1]) & 0x1f;
operands[1] = GEN_INT (bitnum);
switch (GET_CODE (operands[3]))
{
case EQ: return "bbsi\t%0, %d1, %2";
case NE: return "bbci\t%0, %d1, %2";
default: gcc_unreachable ();
}
}
else
{
switch (GET_CODE (operands[3]))
{
case EQ: return "bbs\t%0, %1, %2";
case NE: return "bbc\t%0, %1, %2";
default: gcc_unreachable ();
}
}
gcc_unreachable ();
}
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_insn "*masktrue"
[(set (pc)
(if_then_else (match_operator 3 "boolean_operator"
[(and:SI (match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "register_operand" "r"))
(const_int 0)])
(label_ref (match_operand 2 "" ""))
(pc)))]
""
{
switch (GET_CODE (operands[3]))
{
case EQ: return "bnone\t%0, %1, %2";
case NE: return "bany\t%0, %1, %2";
default: gcc_unreachable ();
}
}
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_insn "*maskfalse"
[(set (pc)
(if_then_else (match_operator 3 "boolean_operator"
[(and:SI (match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "register_operand" "r"))
(const_int 0)])
(pc)
(label_ref (match_operand 2 "" ""))))]
""
{
switch (GET_CODE (operands[3]))
{
case EQ: return "bany\t%0, %1, %2";
case NE: return "bnone\t%0, %1, %2";
default: gcc_unreachable ();
}
}
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
 
;; Define the loop insns used by bct optimization to represent the
;; start and end of a zero-overhead loop (in loop.c). This start
;; template generates the loop insn; the end template doesn't generate
;; any instructions since loop end is handled in hardware.
 
(define_insn "zero_cost_loop_start"
[(set (pc)
(if_then_else (eq (match_operand:SI 0 "register_operand" "a")
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (reg:SI 19)
(plus:SI (match_dup 0) (const_int -1)))]
""
"loopnez\t%0, %l1"
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_insn "zero_cost_loop_end"
[(set (pc)
(if_then_else (ne (reg:SI 19) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))
(set (reg:SI 19)
(plus:SI (reg:SI 19) (const_int -1)))]
""
{
xtensa_emit_loop_end (insn, operands);
return "";
}
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "0")])
 
;; Setting a register from a comparison.
 
(define_expand "seq"
[(set (match_operand:SI 0 "register_operand" "")
(match_dup 1))]
""
{
operands[1] = gen_rtx_EQ (SImode, branch_cmp[0], branch_cmp[1]);
if (!xtensa_expand_scc (operands))
FAIL;
DONE;
})
 
(define_expand "sne"
[(set (match_operand:SI 0 "register_operand" "")
(match_dup 1))]
""
{
operands[1] = gen_rtx_NE (SImode, branch_cmp[0], branch_cmp[1]);
if (!xtensa_expand_scc (operands))
FAIL;
DONE;
})
 
(define_expand "sgt"
[(set (match_operand:SI 0 "register_operand" "")
(match_dup 1))]
""
{
operands[1] = gen_rtx_GT (SImode, branch_cmp[0], branch_cmp[1]);
if (!xtensa_expand_scc (operands))
FAIL;
DONE;
})
 
(define_expand "sge"
[(set (match_operand:SI 0 "register_operand" "")
(match_dup 1))]
""
{
operands[1] = gen_rtx_GE (SImode, branch_cmp[0], branch_cmp[1]);
if (!xtensa_expand_scc (operands))
FAIL;
DONE;
})
 
(define_expand "slt"
[(set (match_operand:SI 0 "register_operand" "")
(match_dup 1))]
""
{
operands[1] = gen_rtx_LT (SImode, branch_cmp[0], branch_cmp[1]);
if (!xtensa_expand_scc (operands))
FAIL;
DONE;
})
 
(define_expand "sle"
[(set (match_operand:SI 0 "register_operand" "")
(match_dup 1))]
""
{
operands[1] = gen_rtx_LE (SImode, branch_cmp[0], branch_cmp[1]);
if (!xtensa_expand_scc (operands))
FAIL;
DONE;
})
 
;; Conditional moves.
 
(define_expand "movsicc"
[(set (match_operand:SI 0 "register_operand" "")
(if_then_else:SI (match_operand 1 "comparison_operator" "")
(match_operand:SI 2 "register_operand" "")
(match_operand:SI 3 "register_operand" "")))]
""
{
if (!xtensa_expand_conditional_move (operands, 0))
FAIL;
DONE;
})
 
(define_expand "movsfcc"
[(set (match_operand:SF 0 "register_operand" "")
(if_then_else:SF (match_operand 1 "comparison_operator" "")
(match_operand:SF 2 "register_operand" "")
(match_operand:SF 3 "register_operand" "")))]
""
{
if (!xtensa_expand_conditional_move (operands, 1))
FAIL;
DONE;
})
 
(define_insn "movsicc_internal0"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(if_then_else:SI (match_operator 4 "branch_operator"
[(match_operand:SI 1 "register_operand" "r,r")
(const_int 0)])
(match_operand:SI 2 "register_operand" "r,0")
(match_operand:SI 3 "register_operand" "0,r")))]
""
{
if (which_alternative == 0)
{
switch (GET_CODE (operands[4]))
{
case EQ: return "moveqz\t%0, %2, %1";
case NE: return "movnez\t%0, %2, %1";
case LT: return "movltz\t%0, %2, %1";
case GE: return "movgez\t%0, %2, %1";
default: gcc_unreachable ();
}
}
else
{
switch (GET_CODE (operands[4]))
{
case EQ: return "movnez\t%0, %3, %1";
case NE: return "moveqz\t%0, %3, %1";
case LT: return "movgez\t%0, %3, %1";
case GE: return "movltz\t%0, %3, %1";
default: gcc_unreachable ();
}
}
gcc_unreachable ();
}
[(set_attr "type" "move,move")
(set_attr "mode" "SI")
(set_attr "length" "3,3")])
 
(define_insn "movsicc_internal1"
[(set (match_operand:SI 0 "register_operand" "=a,a")
(if_then_else:SI (match_operator 4 "boolean_operator"
[(match_operand:CC 1 "register_operand" "b,b")
(const_int 0)])
(match_operand:SI 2 "register_operand" "r,0")
(match_operand:SI 3 "register_operand" "0,r")))]
"TARGET_BOOLEANS"
{
int isEq = (GET_CODE (operands[4]) == EQ);
switch (which_alternative)
{
case 0:
if (isEq) return "movf\t%0, %2, %1";
return "movt\t%0, %2, %1";
case 1:
if (isEq) return "movt\t%0, %3, %1";
return "movf\t%0, %3, %1";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "move,move")
(set_attr "mode" "SI")
(set_attr "length" "3,3")])
 
(define_insn "movsfcc_internal0"
[(set (match_operand:SF 0 "register_operand" "=a,a,f,f")
(if_then_else:SF (match_operator 4 "branch_operator"
[(match_operand:SI 1 "register_operand" "r,r,r,r")
(const_int 0)])
(match_operand:SF 2 "register_operand" "r,0,f,0")
(match_operand:SF 3 "register_operand" "0,r,0,f")))]
""
{
switch (which_alternative)
{
case 0:
switch (GET_CODE (operands[4]))
{
case EQ: return "moveqz\t%0, %2, %1";
case NE: return "movnez\t%0, %2, %1";
case LT: return "movltz\t%0, %2, %1";
case GE: return "movgez\t%0, %2, %1";
default: gcc_unreachable ();
}
break;
case 1:
switch (GET_CODE (operands[4]))
{
case EQ: return "movnez\t%0, %3, %1";
case NE: return "moveqz\t%0, %3, %1";
case LT: return "movgez\t%0, %3, %1";
case GE: return "movltz\t%0, %3, %1";
default: gcc_unreachable ();
}
break;
case 2:
switch (GET_CODE (operands[4]))
{
case EQ: return "moveqz.s %0, %2, %1";
case NE: return "movnez.s %0, %2, %1";
case LT: return "movltz.s %0, %2, %1";
case GE: return "movgez.s %0, %2, %1";
default: gcc_unreachable ();
}
break;
case 3:
switch (GET_CODE (operands[4]))
{
case EQ: return "movnez.s %0, %3, %1";
case NE: return "moveqz.s %0, %3, %1";
case LT: return "movgez.s %0, %3, %1";
case GE: return "movltz.s %0, %3, %1";
default: gcc_unreachable ();
}
break;
default:
gcc_unreachable ();
}
gcc_unreachable ();
}
[(set_attr "type" "move,move,move,move")
(set_attr "mode" "SF")
(set_attr "length" "3,3,3,3")])
 
(define_insn "movsfcc_internal1"
[(set (match_operand:SF 0 "register_operand" "=a,a,f,f")
(if_then_else:SF (match_operator 4 "boolean_operator"
[(match_operand:CC 1 "register_operand" "b,b,b,b")
(const_int 0)])
(match_operand:SF 2 "register_operand" "r,0,f,0")
(match_operand:SF 3 "register_operand" "0,r,0,f")))]
"TARGET_BOOLEANS"
{
int isEq = (GET_CODE (operands[4]) == EQ);
switch (which_alternative)
{
case 0:
if (isEq) return "movf\t%0, %2, %1";
return "movt\t%0, %2, %1";
case 1:
if (isEq) return "movt\t%0, %3, %1";
return "movf\t%0, %3, %1";
case 2:
if (isEq) return "movf.s\t%0, %2, %1";
return "movt.s\t%0, %2, %1";
case 3:
if (isEq) return "movt.s\t%0, %3, %1";
return "movf.s\t%0, %3, %1";
default:
gcc_unreachable ();
}
}
[(set_attr "type" "move,move,move,move")
(set_attr "mode" "SF")
(set_attr "length" "3,3,3,3")])
 
;; Floating-point comparisons.
 
(define_insn "seq_sf"
[(set (match_operand:CC 0 "register_operand" "=b")
(eq:CC (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"oeq.s\t%0, %1, %2"
[(set_attr "type" "farith")
(set_attr "mode" "BL")
(set_attr "length" "3")])
 
(define_insn "slt_sf"
[(set (match_operand:CC 0 "register_operand" "=b")
(lt:CC (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"olt.s\t%0, %1, %2"
[(set_attr "type" "farith")
(set_attr "mode" "BL")
(set_attr "length" "3")])
 
(define_insn "sle_sf"
[(set (match_operand:CC 0 "register_operand" "=b")
(le:CC (match_operand:SF 1 "register_operand" "f")
(match_operand:SF 2 "register_operand" "f")))]
"TARGET_HARD_FLOAT"
"ole.s\t%0, %1, %2"
[(set_attr "type" "farith")
(set_attr "mode" "BL")
(set_attr "length" "3")])
 
;; Unconditional branches.
 
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"j\t%l0"
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_expand "indirect_jump"
[(set (pc)
(match_operand 0 "register_operand" ""))]
""
{
rtx dest = operands[0];
if (GET_CODE (dest) != REG || GET_MODE (dest) != Pmode)
operands[0] = copy_to_mode_reg (Pmode, dest);
 
emit_jump_insn (gen_indirect_jump_internal (dest));
DONE;
})
 
(define_insn "indirect_jump_internal"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))]
""
"jx\t%0"
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
 
(define_expand "tablejump"
[(use (match_operand:SI 0 "register_operand" ""))
(use (label_ref (match_operand 1 "" "")))]
""
{
rtx target = operands[0];
if (flag_pic)
{
/* For PIC, the table entry is relative to the start of the table. */
rtx label = gen_reg_rtx (SImode);
target = gen_reg_rtx (SImode);
emit_move_insn (label, gen_rtx_LABEL_REF (SImode, operands[1]));
emit_insn (gen_addsi3 (target, operands[0], label));
}
emit_jump_insn (gen_tablejump_internal (target, operands[1]));
DONE;
})
 
(define_insn "tablejump_internal"
[(set (pc)
(match_operand:SI 0 "register_operand" "r"))
(use (label_ref (match_operand 1 "" "")))]
""
"jx\t%0"
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
;; Function calls.
 
(define_expand "sym_PLT"
[(const (unspec [(match_operand:SI 0 "" "")] UNSPEC_PLT))]
""
"")
 
(define_expand "call"
[(call (match_operand 0 "memory_operand" "")
(match_operand 1 "" ""))]
""
{
rtx addr = XEXP (operands[0], 0);
if (flag_pic && GET_CODE (addr) == SYMBOL_REF
&& (!SYMBOL_REF_LOCAL_P (addr) || SYMBOL_REF_EXTERNAL_P (addr)))
addr = gen_sym_PLT (addr);
if (!call_insn_operand (addr, VOIDmode))
XEXP (operands[0], 0) = copy_to_mode_reg (Pmode, addr);
})
 
(define_insn "call_internal"
[(call (mem (match_operand:SI 0 "call_insn_operand" "n,i,r"))
(match_operand 1 "" "i,i,i"))]
""
{
return xtensa_emit_call (0, operands);
}
[(set_attr "type" "call")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_expand "call_value"
[(set (match_operand 0 "register_operand" "")
(call (match_operand 1 "memory_operand" "")
(match_operand 2 "" "")))]
""
{
rtx addr = XEXP (operands[1], 0);
if (flag_pic && GET_CODE (addr) == SYMBOL_REF
&& (!SYMBOL_REF_LOCAL_P (addr) || SYMBOL_REF_EXTERNAL_P (addr)))
addr = gen_sym_PLT (addr);
if (!call_insn_operand (addr, VOIDmode))
XEXP (operands[1], 0) = copy_to_mode_reg (Pmode, addr);
})
 
;; Cannot combine constraints for operand 0 into "afvb":
;; reload.c:find_reloads seems to assume that grouped constraints somehow
;; specify related register classes, and when they don't the constraints
;; fail to match. By not grouping the constraints, we get the correct
;; behavior.
(define_insn "call_value_internal"
[(set (match_operand 0 "register_operand" "=af,af,af,v,v,v,b,b,b")
(call (mem (match_operand:SI 1 "call_insn_operand"
"n,i,r,n,i,r,n,i,r"))
(match_operand 2 "" "i,i,i,i,i,i,i,i,i")))]
""
{
return xtensa_emit_call (1, operands);
}
[(set_attr "type" "call")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_insn "entry"
[(set (reg:SI A1_REG)
(unspec_volatile:SI [(match_operand:SI 0 "const_int_operand" "i")
(match_operand:SI 1 "const_int_operand" "i")]
UNSPECV_ENTRY))]
""
{
if (frame_pointer_needed)
output_asm_insn (".frame\ta7, %0", operands);
else
output_asm_insn (".frame\tsp, %0", operands);
return "entry\tsp, %1";
}
[(set_attr "type" "move")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
(define_insn "return"
[(return)
(use (reg:SI A0_REG))]
"reload_completed"
{
return (TARGET_DENSITY ? "retw.n" : "retw");
}
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "2")])
 
;; Miscellaneous instructions.
 
(define_expand "prologue"
[(const_int 0)]
""
{
xtensa_expand_prologue ();
DONE;
})
 
(define_expand "epilogue"
[(return)]
""
{
emit_jump_insn (gen_return ());
DONE;
})
 
(define_insn "nop"
[(const_int 0)]
""
{
return (TARGET_DENSITY ? "nop.n" : "nop");
}
[(set_attr "type" "nop")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_expand "nonlocal_goto"
[(match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")
(match_operand:SI 3 "" "")]
""
{
xtensa_expand_nonlocal_goto (operands);
DONE;
})
 
;; Setting up a frame pointer is tricky for Xtensa because GCC doesn't
;; know if a frame pointer is required until the reload pass, and
;; because there may be an incoming argument value in the hard frame
;; pointer register (a7). If there is an incoming argument in that
;; register, the "set_frame_ptr" insn gets inserted immediately after
;; the insn that copies the incoming argument to a pseudo or to the
;; stack. This serves several purposes here: (1) it keeps the
;; optimizer from copy-propagating or scheduling the use of a7 as an
;; incoming argument away from the beginning of the function; (2) we
;; can use a post-reload splitter to expand away the insn if a frame
;; pointer is not required, so that the post-reload scheduler can do
;; the right thing; and (3) it makes it easy for the prologue expander
;; to search for this insn to determine whether it should add a new insn
;; to set up the frame pointer.
 
(define_insn "set_frame_ptr"
[(set (reg:SI A7_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_SET_FP))]
""
{
if (frame_pointer_needed)
return "mov\ta7, sp";
return "";
}
[(set_attr "type" "move")
(set_attr "mode" "SI")
(set_attr "length" "3")])
 
;; Post-reload splitter to remove fp assignment when it's not needed.
(define_split
[(set (reg:SI A7_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_SET_FP))]
"reload_completed && !frame_pointer_needed"
[(unspec [(const_int 0)] UNSPEC_NOP)]
"")
 
;; The preceding splitter needs something to split the insn into;
;; things start breaking if the result is just a "use" so instead we
;; generate the following insn.
(define_insn "*unspec_nop"
[(unspec [(const_int 0)] UNSPEC_NOP)]
""
""
[(set_attr "type" "nop")
(set_attr "mode" "none")
(set_attr "length" "0")])
 
;; The fix_return_addr pattern sets the high 2 bits of an address in a
;; register to match the high bits of the current PC.
(define_insn "fix_return_addr"
[(set (match_operand:SI 0 "register_operand" "=a")
(unspec:SI [(match_operand:SI 1 "register_operand" "r")]
UNSPEC_RET_ADDR))
(clobber (match_scratch:SI 2 "=r"))
(clobber (match_scratch:SI 3 "=r"))]
""
"mov\t%2, a0\;call0\t0f\;.align\t4\;0:\;mov\t%3, a0\;mov\ta0, %2\;\
srli\t%3, %3, 30\;slli\t%0, %1, 2\;ssai\t2\;src\t%0, %3, %0"
[(set_attr "type" "multi")
(set_attr "mode" "SI")
(set_attr "length" "24")])
 
;; Instructions for the Xtensa "boolean" option.
 
(define_insn "*booltrue"
[(set (pc)
(if_then_else (match_operator 2 "boolean_operator"
[(match_operand:CC 0 "register_operand" "b")
(const_int 0)])
(label_ref (match_operand 1 "" ""))
(pc)))]
"TARGET_BOOLEANS"
{
if (GET_CODE (operands[2]) == EQ)
return "bf\t%0, %1";
else
return "bt\t%0, %1";
}
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
 
(define_insn "*boolfalse"
[(set (pc)
(if_then_else (match_operator 2 "boolean_operator"
[(match_operand:CC 0 "register_operand" "b")
(const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))))]
"TARGET_BOOLEANS"
{
if (GET_CODE (operands[2]) == EQ)
return "bt\t%0, %1";
else
return "bf\t%0, %1";
}
[(set_attr "type" "jump")
(set_attr "mode" "none")
(set_attr "length" "3")])
/xtensa.opt
0,0 → 1,39
; Options for the Tensilica Xtensa port of the compiler.
 
; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;
; This file is part of GCC.
;
; GCC is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free
; Software Foundation; either version 3, or (at your option) any later
; version.
;
; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
; WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
; for more details.
;
; You should have received a copy of the GNU General Public License
; along with GCC; see the file COPYING3. If not see
; <http://www.gnu.org/licenses/>.
 
mconst16
Target Report Mask(CONST16)
Use CONST16 instruction to load constants
 
mfused-madd
Target Report Mask(FUSED_MADD)
Enable fused multiply/add and multiply/subtract FP instructions
 
mlongcalls
Target
Use indirect CALLXn instructions for large programs
 
mtarget-align
Target
Automatically align branch targets to reduce branch penalties
 
mtext-section-literals
Target
Intersperse literal pools with code in the text section
/t-xtensa
0,0 → 1,21
LIB1ASMSRC = xtensa/lib1funcs.asm
LIB1ASMFUNCS = _mulsi3 _nsau _divsi3 _modsi3 _udivsi3 _umodsi3 \
_negsf2 _addsubsf3 _mulsf3 _divsf3 _cmpsf2 _fixsfsi _fixsfdi \
_fixunssfsi _fixunssfdi _floatsisf _floatunsisf \
_floatdisf _floatundisf \
_negdf2 _addsubdf3 _muldf3 _divdf3 _cmpdf2 _fixdfsi _fixdfdi \
_fixunsdfsi _fixunsdfdi _floatsidf _floatunsidf \
_floatdidf _floatundidf \
_truncdfsf2 _extendsfdf2
 
LIB2FUNCS_EXTRA = $(srcdir)/config/xtensa/lib2funcs.S
 
$(T)crti.o: $(srcdir)/config/xtensa/crti.asm $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
-c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/xtensa/crti.asm
$(T)crtn.o: $(srcdir)/config/xtensa/crtn.asm $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
-c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/xtensa/crtn.asm
 
$(out_object_file): gt-xtensa.h
gt-xtensa.h : s-gtype ; @true
/lib1funcs.asm
0,0 → 1,484
/* Assembly functions for the Xtensa version of libgcc1.
Copyright (C) 2001, 2002, 2003, 2005, 2006 Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
 
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
 
#include "xtensa-config.h"
 
# Define macros for the ABS and ADDX* instructions to handle cases
# where they are not included in the Xtensa processor configuration.
 
.macro do_abs dst, src, tmp
#if XCHAL_HAVE_ABS
abs \dst, \src
#else
neg \tmp, \src
movgez \tmp, \src, \src
mov \dst, \tmp
#endif
.endm
 
.macro do_addx2 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
addx2 \dst, \as, \at
#else
slli \tmp, \as, 1
add \dst, \tmp, \at
#endif
.endm
 
.macro do_addx4 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
addx4 \dst, \as, \at
#else
slli \tmp, \as, 2
add \dst, \tmp, \at
#endif
.endm
 
.macro do_addx8 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
addx8 \dst, \as, \at
#else
slli \tmp, \as, 3
add \dst, \tmp, \at
#endif
.endm
 
# Define macros for leaf function entry and return, supporting either the
# standard register windowed ABI or the non-windowed call0 ABI. These
# macros do not allocate any extra stack space, so they only work for
# leaf functions that do not need to spill anything to the stack.
 
.macro leaf_entry reg, size
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
entry \reg, \size
#else
/* do nothing */
#endif
.endm
 
.macro leaf_return
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
retw
#else
ret
#endif
.endm
 
 
#ifdef L_mulsi3
.align 4
.global __mulsi3
.type __mulsi3,@function
__mulsi3:
leaf_entry sp, 16
 
#if XCHAL_HAVE_MUL16
or a4, a2, a3
srai a4, a4, 16
bnez a4, .LMUL16
mul16u a2, a2, a3
leaf_return
.LMUL16:
srai a4, a2, 16
srai a5, a3, 16
mul16u a7, a4, a3
mul16u a6, a5, a2
mul16u a4, a2, a3
add a7, a7, a6
slli a7, a7, 16
add a2, a7, a4
 
#elif XCHAL_HAVE_MAC16
mul.aa.hl a2, a3
mula.aa.lh a2, a3
rsr a5, ACCLO
umul.aa.ll a2, a3
rsr a4, ACCLO
slli a5, a5, 16
add a2, a4, a5
 
#else /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */
 
# Multiply one bit at a time, but unroll the loop 4x to better
# exploit the addx instructions and avoid overhead.
# Peel the first iteration to save a cycle on init.
 
# Avoid negative numbers.
xor a5, a2, a3 # top bit is 1 iff one of the inputs is negative
do_abs a3, a3, a6
do_abs a2, a2, a6
 
# Swap so the second argument is smaller.
sub a7, a2, a3
mov a4, a3
movgez a4, a2, a7 # a4 = max(a2, a3)
movltz a3, a2, a7 # a3 = min(a2, a3)
 
movi a2, 0
extui a6, a3, 0, 1
movnez a2, a4, a6
 
do_addx2 a7, a4, a2, a7
extui a6, a3, 1, 1
movnez a2, a7, a6
 
do_addx4 a7, a4, a2, a7
extui a6, a3, 2, 1
movnez a2, a7, a6
 
do_addx8 a7, a4, a2, a7
extui a6, a3, 3, 1
movnez a2, a7, a6
 
bgeui a3, 16, .Lmult_main_loop
neg a3, a2
movltz a2, a3, a5
leaf_return
 
.align 4
.Lmult_main_loop:
srli a3, a3, 4
slli a4, a4, 4
 
add a7, a4, a2
extui a6, a3, 0, 1
movnez a2, a7, a6
 
do_addx2 a7, a4, a2, a7
extui a6, a3, 1, 1
movnez a2, a7, a6
 
do_addx4 a7, a4, a2, a7
extui a6, a3, 2, 1
movnez a2, a7, a6
 
do_addx8 a7, a4, a2, a7
extui a6, a3, 3, 1
movnez a2, a7, a6
 
bgeui a3, 16, .Lmult_main_loop
 
neg a3, a2
movltz a2, a3, a5
 
#endif /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */
 
leaf_return
.size __mulsi3,.-__mulsi3
 
#endif /* L_mulsi3 */
 
 
# Define a macro for the NSAU (unsigned normalize shift amount)
# instruction, which computes the number of leading zero bits,
# to handle cases where it is not included in the Xtensa processor
# configuration.
 
.macro do_nsau cnt, val, tmp, a
#if XCHAL_HAVE_NSA
nsau \cnt, \val
#else
mov \a, \val
movi \cnt, 0
extui \tmp, \a, 16, 16
bnez \tmp, 0f
movi \cnt, 16
slli \a, \a, 16
0:
extui \tmp, \a, 24, 8
bnez \tmp, 1f
addi \cnt, \cnt, 8
slli \a, \a, 8
1:
movi \tmp, __nsau_data
extui \a, \a, 24, 8
add \tmp, \tmp, \a
l8ui \tmp, \tmp, 0
add \cnt, \cnt, \tmp
#endif /* !XCHAL_HAVE_NSA */
.endm
 
#ifdef L_nsau
.section .rodata
.align 4
.global __nsau_data
.type __nsau_data,@object
__nsau_data:
#if !XCHAL_HAVE_NSA
.byte 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4
.byte 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
.byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
.byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#endif /* !XCHAL_HAVE_NSA */
.size __nsau_data,.-__nsau_data
.hidden __nsau_data
#endif /* L_nsau */
 
 
#ifdef L_udivsi3
.align 4
.global __udivsi3
.type __udivsi3,@function
__udivsi3:
leaf_entry sp, 16
bltui a3, 2, .Lle_one # check if the divisor <= 1
 
mov a6, a2 # keep dividend in a6
do_nsau a5, a6, a2, a7 # dividend_shift = nsau(dividend)
do_nsau a4, a3, a2, a7 # divisor_shift = nsau(divisor)
bgeu a5, a4, .Lspecial
 
sub a4, a4, a5 # count = divisor_shift - dividend_shift
ssl a4
sll a3, a3 # divisor <<= count
movi a2, 0 # quotient = 0
 
# test-subtract-and-shift loop; one quotient bit on each iteration
#if XCHAL_HAVE_LOOPS
loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
bltu a6, a3, .Lzerobit
sub a6, a6, a3
addi a2, a2, 1
.Lzerobit:
slli a2, a2, 1
srli a3, a3, 1
#if !XCHAL_HAVE_LOOPS
addi a4, a4, -1
bnez a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:
 
bltu a6, a3, .Lreturn
addi a2, a2, 1 # increment quotient if dividend >= divisor
.Lreturn:
leaf_return
 
.Lle_one:
beqz a3, .Lerror # if divisor == 1, return the dividend
leaf_return
 
.Lspecial:
# return dividend >= divisor
bltu a6, a3, .Lreturn0
movi a2, 1
leaf_return
 
.Lerror:
# just return 0; could throw an exception
 
.Lreturn0:
movi a2, 0
leaf_return
.size __udivsi3,.-__udivsi3
 
#endif /* L_udivsi3 */
 
 
#ifdef L_divsi3
.align 4
.global __divsi3
.type __divsi3,@function
__divsi3:
leaf_entry sp, 16
xor a7, a2, a3 # sign = dividend ^ divisor
do_abs a6, a2, a4 # udividend = abs(dividend)
do_abs a3, a3, a4 # udivisor = abs(divisor)
bltui a3, 2, .Lle_one # check if udivisor <= 1
do_nsau a5, a6, a2, a8 # udividend_shift = nsau(udividend)
do_nsau a4, a3, a2, a8 # udivisor_shift = nsau(udivisor)
bgeu a5, a4, .Lspecial
 
sub a4, a4, a5 # count = udivisor_shift - udividend_shift
ssl a4
sll a3, a3 # udivisor <<= count
movi a2, 0 # quotient = 0
 
# test-subtract-and-shift loop; one quotient bit on each iteration
#if XCHAL_HAVE_LOOPS
loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
bltu a6, a3, .Lzerobit
sub a6, a6, a3
addi a2, a2, 1
.Lzerobit:
slli a2, a2, 1
srli a3, a3, 1
#if !XCHAL_HAVE_LOOPS
addi a4, a4, -1
bnez a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:
 
bltu a6, a3, .Lreturn
addi a2, a2, 1 # increment quotient if udividend >= udivisor
.Lreturn:
neg a5, a2
movltz a2, a5, a7 # return (sign < 0) ? -quotient : quotient
leaf_return
 
.Lle_one:
beqz a3, .Lerror
neg a2, a6 # if udivisor == 1, then return...
movgez a2, a6, a7 # (sign < 0) ? -udividend : udividend
leaf_return
 
.Lspecial:
bltu a6, a3, .Lreturn0 # if dividend < divisor, return 0
movi a2, 1
movi a4, -1
movltz a2, a4, a7 # else return (sign < 0) ? -1 : 1
leaf_return
 
.Lerror:
# just return 0; could throw an exception
 
.Lreturn0:
movi a2, 0
leaf_return
.size __divsi3,.-__divsi3
 
#endif /* L_divsi3 */
 
 
#ifdef L_umodsi3
.align 4
.global __umodsi3
.type __umodsi3,@function
__umodsi3:
leaf_entry sp, 16
bltui a3, 2, .Lle_one # check if the divisor is <= 1
 
do_nsau a5, a2, a6, a7 # dividend_shift = nsau(dividend)
do_nsau a4, a3, a6, a7 # divisor_shift = nsau(divisor)
bgeu a5, a4, .Lspecial
 
sub a4, a4, a5 # count = divisor_shift - dividend_shift
ssl a4
sll a3, a3 # divisor <<= count
 
# test-subtract-and-shift loop
#if XCHAL_HAVE_LOOPS
loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
bltu a2, a3, .Lzerobit
sub a2, a2, a3
.Lzerobit:
srli a3, a3, 1
#if !XCHAL_HAVE_LOOPS
addi a4, a4, -1
bnez a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:
 
.Lspecial:
bltu a2, a3, .Lreturn
sub a2, a2, a3 # subtract once more if dividend >= divisor
.Lreturn:
leaf_return
 
.Lle_one:
# the divisor is either 0 or 1, so just return 0.
# someday we may want to throw an exception if the divisor is 0.
movi a2, 0
leaf_return
.size __umodsi3,.-__umodsi3
 
#endif /* L_umodsi3 */
 
 
#ifdef L_modsi3
.align 4
.global __modsi3
.type __modsi3,@function
__modsi3:
leaf_entry sp, 16
mov a7, a2 # save original (signed) dividend
do_abs a2, a2, a4 # udividend = abs(dividend)
do_abs a3, a3, a4 # udivisor = abs(divisor)
bltui a3, 2, .Lle_one # check if udivisor <= 1
do_nsau a5, a2, a6, a8 # udividend_shift = nsau(udividend)
do_nsau a4, a3, a6, a8 # udivisor_shift = nsau(udivisor)
bgeu a5, a4, .Lspecial
 
sub a4, a4, a5 # count = udivisor_shift - udividend_shift
ssl a4
sll a3, a3 # udivisor <<= count
 
# test-subtract-and-shift loop
#if XCHAL_HAVE_LOOPS
loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
bltu a2, a3, .Lzerobit
sub a2, a2, a3
.Lzerobit:
srli a3, a3, 1
#if !XCHAL_HAVE_LOOPS
addi a4, a4, -1
bnez a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:
 
.Lspecial:
bltu a2, a3, .Lreturn
sub a2, a2, a3 # subtract once more if udividend >= udivisor
.Lreturn:
bgez a7, .Lpositive
neg a2, a2 # if (dividend < 0), return -udividend
.Lpositive:
leaf_return
 
.Lle_one:
# udivisor is either 0 or 1, so just return 0.
# someday we may want to throw an exception if udivisor is 0.
movi a2, 0
leaf_return
.size __modsi3,.-__modsi3
 
#endif /* L_modsi3 */
 
#include "ieee754-df.S"
#include "ieee754-sf.S"
/t-elf
0,0 → 1,6
# Build CRT files and libgcc with the "longcalls" option
CRTSTUFF_T_CFLAGS += -mlongcalls
CRTSTUFF_T_CFLAGS_S += -mlongcalls
TARGET_LIBGCC2_CFLAGS += -mlongcalls
 
EXTRA_MULTILIB_PARTS = crti.o crtn.o crtbegin.o crtend.o
/xtensa-protos.h
0,0 → 1,84
/* Prototypes of target machine for GNU compiler for Xtensa.
Copyright 2001, 2002, 2003, 2004, 2005, 2007
Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
 
#ifndef __XTENSA_PROTOS_H__
#define __XTENSA_PROTOS_H__
 
/* Functions to test whether an immediate fits in a given field. */
extern bool xtensa_simm8 (HOST_WIDE_INT);
extern bool xtensa_simm8x256 (HOST_WIDE_INT);
extern bool xtensa_simm12b (HOST_WIDE_INT);
extern bool xtensa_b4const_or_zero (HOST_WIDE_INT);
extern bool xtensa_b4constu (HOST_WIDE_INT);
extern bool xtensa_mask_immediate (HOST_WIDE_INT);
extern bool xtensa_const_ok_for_letter_p (HOST_WIDE_INT, int);
extern bool xtensa_mem_offset (unsigned, enum machine_mode);
 
/* Functions within xtensa.c that we reference. */
#ifdef RTX_CODE
extern int xt_true_regnum (rtx);
extern int xtensa_valid_move (enum machine_mode, rtx *);
extern int smalloffset_mem_p (rtx);
extern int constantpool_address_p (rtx);
extern int constantpool_mem_p (rtx);
extern void xtensa_extend_reg (rtx, rtx);
extern bool xtensa_extra_constraint (rtx, int);
extern void xtensa_expand_conditional_branch (rtx *, enum rtx_code);
extern int xtensa_expand_conditional_move (rtx *, int);
extern int xtensa_expand_scc (rtx *);
extern int xtensa_expand_block_move (rtx *);
extern void xtensa_split_operand_pair (rtx *, enum machine_mode);
extern int xtensa_emit_move_sequence (rtx *, enum machine_mode);
extern rtx xtensa_copy_incoming_a7 (rtx);
extern void xtensa_expand_nonlocal_goto (rtx *);
extern void xtensa_emit_loop_end (rtx, rtx *);
extern char *xtensa_emit_call (int, rtx *);
 
#ifdef TREE_CODE
extern void init_cumulative_args (CUMULATIVE_ARGS *, int);
extern void xtensa_va_start (tree, rtx);
#endif /* TREE_CODE */
 
extern void print_operand (FILE *, rtx, int);
extern void print_operand_address (FILE *, rtx);
extern void xtensa_output_literal (FILE *, rtx, enum machine_mode, int);
extern rtx xtensa_return_addr (int, rtx);
extern enum reg_class xtensa_preferred_reload_class (rtx, enum reg_class, int);
extern enum reg_class xtensa_secondary_reload_class (enum reg_class,
enum machine_mode, rtx,
int);
#endif /* RTX_CODE */
 
#ifdef TREE_CODE
extern void function_arg_advance (CUMULATIVE_ARGS *, enum machine_mode, tree);
extern struct rtx_def *function_arg (CUMULATIVE_ARGS *, enum machine_mode,
tree, int);
#endif /* TREE_CODE */
 
extern void xtensa_setup_frame_addresses (void);
extern int xtensa_dbx_register_number (int);
extern void override_options (void);
extern long compute_frame_size (int);
extern int xtensa_frame_pointer_required (void);
extern void xtensa_expand_prologue (void);
extern void order_regs_for_local_alloc (void);
 
#endif /* !__XTENSA_PROTOS_H__ */
/ieee754-sf.S
0,0 → 1,1734
/* IEEE-754 single-precision functions for Xtensa
Copyright (C) 2006 Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
 
This file is part of GCC.
 
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
 
In addition to the permissions in the GNU General Public License,
the Free Software Foundation gives you unlimited permission to link
the compiled version of this file into combinations with other
programs, and to distribute those combinations without any
restriction coming from the use of this file. (The General Public
License restrictions do apply in other respects; for example, they
cover modification of the file, and distribution when not linked
into a combine executable.)
 
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
 
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
 
#ifdef __XTENSA_EB__
#define xh a2
#define xl a3
#define yh a4
#define yl a5
#else
#define xh a3
#define xl a2
#define yh a5
#define yl a4
#endif
 
/* Warning! The branch displacements for some Xtensa branch instructions
are quite small, and this code has been carefully laid out to keep
branch targets in range. If you change anything, be sure to check that
the assembler is not relaxing anything to branch over a jump. */
 
#ifdef L_negsf2
 
.align 4
.global __negsf2
.type __negsf2, @function
__negsf2:
leaf_entry sp, 16
movi a4, 0x80000000
xor a2, a2, a4
leaf_return
 
#endif /* L_negsf2 */
 
#ifdef L_addsubsf3
 
/* Addition */
__addsf3_aux:
 
/* Handle NaNs and Infinities. (This code is placed before the
start of the function just to keep it in range of the limited
branch displacements.) */
 
.Ladd_xnan_or_inf:
/* If y is neither Infinity nor NaN, return x. */
bnall a3, a6, 1f
/* If x is a NaN, return it. Otherwise, return y. */
slli a7, a2, 9
beqz a7, .Ladd_ynan_or_inf
1: leaf_return
 
.Ladd_ynan_or_inf:
/* Return y. */
mov a2, a3
leaf_return
 
.Ladd_opposite_signs:
/* Operand signs differ. Do a subtraction. */
slli a7, a6, 8
xor a3, a3, a7
j .Lsub_same_sign
 
.align 4
.global __addsf3
.type __addsf3, @function
__addsf3:
leaf_entry sp, 16
movi a6, 0x7f800000
 
/* Check if the two operands have the same sign. */
xor a7, a2, a3
bltz a7, .Ladd_opposite_signs
 
.Ladd_same_sign:
/* Check if either exponent == 0x7f8 (i.e., NaN or Infinity). */
ball a2, a6, .Ladd_xnan_or_inf
ball a3, a6, .Ladd_ynan_or_inf
 
/* Compare the exponents. The smaller operand will be shifted
right by the exponent difference and added to the larger
one. */
extui a7, a2, 23, 9
extui a8, a3, 23, 9
bltu a7, a8, .Ladd_shiftx
 
.Ladd_shifty:
/* Check if the smaller (or equal) exponent is zero. */
bnone a3, a6, .Ladd_yexpzero
 
/* Replace y sign/exponent with 0x008. */
or a3, a3, a6
slli a3, a3, 8
srli a3, a3, 8
 
.Ladd_yexpdiff:
/* Compute the exponent difference. */
sub a10, a7, a8
 
/* Exponent difference > 32 -- just return the bigger value. */
bgeui a10, 32, 1f
/* Shift y right by the exponent difference. Any bits that are
shifted out of y are saved in a9 for rounding the result. */
ssr a10
movi a9, 0
src a9, a3, a9
srl a3, a3
 
/* Do the addition. */
add a2, a2, a3
 
/* Check if the add overflowed into the exponent. */
extui a10, a2, 23, 9
beq a10, a7, .Ladd_round
mov a8, a7
j .Ladd_carry
 
.Ladd_yexpzero:
/* y is a subnormal value. Replace its sign/exponent with zero,
i.e., no implicit "1.0", and increment the apparent exponent
because subnormals behave as if they had the minimum (nonzero)
exponent. Test for the case when both exponents are zero. */
slli a3, a3, 9
srli a3, a3, 9
bnone a2, a6, .Ladd_bothexpzero
addi a8, a8, 1
j .Ladd_yexpdiff
 
.Ladd_bothexpzero:
/* Both exponents are zero. Handle this as a special case. There
is no need to shift or round, and the normal code for handling
a carry into the exponent field will not work because it
assumes there is an implicit "1.0" that needs to be added. */
add a2, a2, a3
1: leaf_return
 
.Ladd_xexpzero:
/* Same as "yexpzero" except skip handling the case when both
exponents are zero. */
slli a2, a2, 9
srli a2, a2, 9
addi a7, a7, 1
j .Ladd_xexpdiff
 
.Ladd_shiftx:
/* Same thing as the "shifty" code, but with x and y swapped. Also,
because the exponent difference is always nonzero in this version,
the shift sequence can use SLL and skip loading a constant zero. */
bnone a2, a6, .Ladd_xexpzero
 
or a2, a2, a6
slli a2, a2, 8
srli a2, a2, 8
 
.Ladd_xexpdiff:
sub a10, a8, a7
bgeui a10, 32, .Ladd_returny
ssr a10
sll a9, a2
srl a2, a2
 
add a2, a2, a3
 
/* Check if the add overflowed into the exponent. */
extui a10, a2, 23, 9
bne a10, a8, .Ladd_carry
 
.Ladd_round:
/* Round up if the leftover fraction is >= 1/2. */
bgez a9, 1f
addi a2, a2, 1
 
/* Check if the leftover fraction is exactly 1/2. */
slli a9, a9, 1
beqz a9, .Ladd_exactlyhalf
1: leaf_return
 
.Ladd_returny:
mov a2, a3
leaf_return
 
.Ladd_carry:
/* The addition has overflowed into the exponent field, so the
value needs to be renormalized. The mantissa of the result
can be recovered by subtracting the original exponent and
adding 0x800000 (which is the explicit "1.0" for the
mantissa of the non-shifted operand -- the "1.0" for the
shifted operand was already added). The mantissa can then
be shifted right by one bit. The explicit "1.0" of the
shifted mantissa then needs to be replaced by the exponent,
incremented by one to account for the normalizing shift.
It is faster to combine these operations: do the shift first
and combine the additions and subtractions. If x is the
original exponent, the result is:
shifted mantissa - (x << 22) + (1 << 22) + (x << 23)
or:
shifted mantissa + ((x + 1) << 22)
Note that the exponent is incremented here by leaving the
explicit "1.0" of the mantissa in the exponent field. */
 
/* Shift x right by one bit. Save the lsb. */
mov a10, a2
srli a2, a2, 1
 
/* See explanation above. The original exponent is in a8. */
addi a8, a8, 1
slli a8, a8, 22
add a2, a2, a8
 
/* Return an Infinity if the exponent overflowed. */
ball a2, a6, .Ladd_infinity
/* Same thing as the "round" code except the msb of the leftover
fraction is bit 0 of a10, with the rest of the fraction in a9. */
bbci.l a10, 0, 1f
addi a2, a2, 1
beqz a9, .Ladd_exactlyhalf
1: leaf_return
 
.Ladd_infinity:
/* Clear the mantissa. */
srli a2, a2, 23
slli a2, a2, 23
 
/* The sign bit may have been lost in a carry-out. Put it back. */
slli a8, a8, 1
or a2, a2, a8
leaf_return
 
.Ladd_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
 
 
/* Subtraction */
__subsf3_aux:
/* Handle NaNs and Infinities. (This code is placed before the
start of the function just to keep it in range of the limited
branch displacements.) */
 
.Lsub_xnan_or_inf:
/* If y is neither Infinity nor NaN, return x. */
bnall a3, a6, 1f
/* Both x and y are either NaN or Inf, so the result is NaN. */
movi a4, 0x400000 /* make it a quiet NaN */
or a2, a2, a4
1: leaf_return
 
.Lsub_ynan_or_inf:
/* Negate y and return it. */
slli a7, a6, 8
xor a2, a3, a7
leaf_return
 
.Lsub_opposite_signs:
/* Operand signs differ. Do an addition. */
slli a7, a6, 8
xor a3, a3, a7
j .Ladd_same_sign
 
.align 4
.global __subsf3
.type __subsf3, @function
__subsf3:
leaf_entry sp, 16
movi a6, 0x7f800000
 
/* Check if the two operands have the same sign. */
xor a7, a2, a3
bltz a7, .Lsub_opposite_signs
 
.Lsub_same_sign:
/* Check if either exponent == 0x7f8 (i.e., NaN or Infinity). */
ball a2, a6, .Lsub_xnan_or_inf
ball a3, a6, .Lsub_ynan_or_inf
 
/* Compare the operands. In contrast to addition, the entire
value matters here. */
extui a7, a2, 23, 8
extui a8, a3, 23, 8
bltu a2, a3, .Lsub_xsmaller
 
.Lsub_ysmaller:
/* Check if the smaller (or equal) exponent is zero. */
bnone a3, a6, .Lsub_yexpzero
 
/* Replace y sign/exponent with 0x008. */
or a3, a3, a6
slli a3, a3, 8
srli a3, a3, 8
 
.Lsub_yexpdiff:
/* Compute the exponent difference. */
sub a10, a7, a8
 
/* Exponent difference > 32 -- just return the bigger value. */
bgeui a10, 32, 1f
/* Shift y right by the exponent difference. Any bits that are
shifted out of y are saved in a9 for rounding the result. */
ssr a10
movi a9, 0
src a9, a3, a9
srl a3, a3
 
sub a2, a2, a3
 
/* Subtract the leftover bits in a9 from zero and propagate any
borrow from a2. */
neg a9, a9
addi a10, a2, -1
movnez a2, a10, a9
 
/* Check if the subtract underflowed into the exponent. */
extui a10, a2, 23, 8
beq a10, a7, .Lsub_round
j .Lsub_borrow
 
.Lsub_yexpzero:
/* Return zero if the inputs are equal. (For the non-subnormal
case, subtracting the "1.0" will cause a borrow from the exponent
and this case can be detected when handling the borrow.) */
beq a2, a3, .Lsub_return_zero
 
/* y is a subnormal value. Replace its sign/exponent with zero,
i.e., no implicit "1.0". Unless x is also a subnormal, increment
y's apparent exponent because subnormals behave as if they had
the minimum (nonzero) exponent. */
slli a3, a3, 9
srli a3, a3, 9
bnone a2, a6, .Lsub_yexpdiff
addi a8, a8, 1
j .Lsub_yexpdiff
 
.Lsub_returny:
/* Negate and return y. */
slli a7, a6, 8
xor a2, a3, a7
1: leaf_return
 
.Lsub_xsmaller:
/* Same thing as the "ysmaller" code, but with x and y swapped and
with y negated. */
bnone a2, a6, .Lsub_xexpzero
 
or a2, a2, a6
slli a2, a2, 8
srli a2, a2, 8
 
.Lsub_xexpdiff:
sub a10, a8, a7
bgeui a10, 32, .Lsub_returny
ssr a10
movi a9, 0
src a9, a2, a9
srl a2, a2
 
/* Negate y. */
slli a11, a6, 8
xor a3, a3, a11
 
sub a2, a3, a2
 
neg a9, a9
addi a10, a2, -1
movnez a2, a10, a9
 
/* Check if the subtract underflowed into the exponent. */
extui a10, a2, 23, 8
bne a10, a8, .Lsub_borrow
 
.Lsub_round:
/* Round up if the leftover fraction is >= 1/2. */
bgez a9, 1f
addi a2, a2, 1
 
/* Check if the leftover fraction is exactly 1/2. */
slli a9, a9, 1
beqz a9, .Lsub_exactlyhalf
1: leaf_return
 
.Lsub_xexpzero:
/* Same as "yexpzero". */
beq a2, a3, .Lsub_return_zero
slli a2, a2, 9
srli a2, a2, 9
bnone a3, a6, .Lsub_xexpdiff
addi a7, a7, 1
j .Lsub_xexpdiff
 
.Lsub_return_zero:
movi a2, 0
leaf_return
 
.Lsub_borrow:
/* The subtraction has underflowed into the exponent field, so the
value needs to be renormalized. Shift the mantissa left as
needed to remove any leading zeros and adjust the exponent
accordingly. If the exponent is not large enough to remove
all the leading zeros, the result will be a subnormal value. */
 
slli a8, a2, 9
beqz a8, .Lsub_xzero
do_nsau a6, a8, a7, a11
srli a8, a8, 9
bge a6, a10, .Lsub_subnormal
addi a6, a6, 1
 
.Lsub_normalize_shift:
/* Shift the mantissa (a8/a9) left by a6. */
ssl a6
src a8, a8, a9
sll a9, a9
 
/* Combine the shifted mantissa with the sign and exponent,
decrementing the exponent by a6. (The exponent has already
been decremented by one due to the borrow from the subtraction,
but adding the mantissa will increment the exponent by one.) */
srli a2, a2, 23
sub a2, a2, a6
slli a2, a2, 23
add a2, a2, a8
j .Lsub_round
 
.Lsub_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
 
.Lsub_xzero:
/* If there was a borrow from the exponent, and the mantissa and
guard digits are all zero, then the inputs were equal and the
result should be zero. */
beqz a9, .Lsub_return_zero
 
/* Only the guard digit is nonzero. Shift by min(24, a10). */
addi a11, a10, -24
movi a6, 24
movltz a6, a10, a11
j .Lsub_normalize_shift
 
.Lsub_subnormal:
/* The exponent is too small to shift away all the leading zeros.
Set a6 to the current exponent (which has already been
decremented by the borrow) so that the exponent of the result
will be zero. Do not add 1 to a6 in this case, because: (1)
adding the mantissa will not increment the exponent, so there is
no need to subtract anything extra from the exponent to
compensate, and (2) the effective exponent of a subnormal is 1
not 0 so the shift amount must be 1 smaller than normal. */
mov a6, a10
j .Lsub_normalize_shift
 
#endif /* L_addsubsf3 */
 
#ifdef L_mulsf3
 
/* Multiplication */
__mulsf3_aux:
 
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
(This code is placed before the start of the function just to
keep it in range of the limited branch displacements.) */
 
.Lmul_xexpzero:
/* Clear the sign bit of x. */
slli a2, a2, 1
srli a2, a2, 1
 
/* If x is zero, return zero. */
beqz a2, .Lmul_return_zero
 
/* Normalize x. Adjust the exponent in a8. */
do_nsau a10, a2, a11, a12
addi a10, a10, -8
ssl a10
sll a2, a2
movi a8, 1
sub a8, a8, a10
j .Lmul_xnormalized
.Lmul_yexpzero:
/* Clear the sign bit of y. */
slli a3, a3, 1
srli a3, a3, 1
 
/* If y is zero, return zero. */
beqz a3, .Lmul_return_zero
 
/* Normalize y. Adjust the exponent in a9. */
do_nsau a10, a3, a11, a12
addi a10, a10, -8
ssl a10
sll a3, a3
movi a9, 1
sub a9, a9, a10
j .Lmul_ynormalized
 
.Lmul_return_zero:
/* Return zero with the appropriate sign bit. */
srli a2, a7, 31
slli a2, a2, 31
j .Lmul_done
 
.Lmul_xnan_or_inf:
/* If y is zero, return NaN. */
slli a8, a3, 1
bnez a8, 1f
movi a4, 0x400000 /* make it a quiet NaN */
or a2, a2, a4
j .Lmul_done
1:
/* If y is NaN, return y. */
bnall a3, a6, .Lmul_returnx
slli a8, a3, 9
beqz a8, .Lmul_returnx
 
.Lmul_returny:
mov a2, a3
 
.Lmul_returnx:
/* Set the sign bit and return. */
extui a7, a7, 31, 1
slli a2, a2, 1
ssai 1
src a2, a7, a2
j .Lmul_done
 
.Lmul_ynan_or_inf:
/* If x is zero, return NaN. */
slli a8, a2, 1
bnez a8, .Lmul_returny
movi a7, 0x400000 /* make it a quiet NaN */
or a2, a3, a7
j .Lmul_done
 
.align 4
.global __mulsf3
.type __mulsf3, @function
__mulsf3:
leaf_entry sp, 32
#if __XTENSA_CALL0_ABI__
addi sp, sp, -32
s32i a12, sp, 16
s32i a13, sp, 20
s32i a14, sp, 24
s32i a15, sp, 28
#endif
movi a6, 0x7f800000
 
/* Get the sign of the result. */
xor a7, a2, a3
 
/* Check for NaN and infinity. */
ball a2, a6, .Lmul_xnan_or_inf
ball a3, a6, .Lmul_ynan_or_inf
 
/* Extract the exponents. */
extui a8, a2, 23, 8
extui a9, a3, 23, 8
 
beqz a8, .Lmul_xexpzero
.Lmul_xnormalized:
beqz a9, .Lmul_yexpzero
.Lmul_ynormalized:
 
/* Add the exponents. */
add a8, a8, a9
 
/* Replace sign/exponent fields with explicit "1.0". */
movi a10, 0xffffff
or a2, a2, a6
and a2, a2, a10
or a3, a3, a6
and a3, a3, a10
 
/* Multiply 32x32 to 64 bits. The result ends up in a2/a6. */
 
#if XCHAL_HAVE_MUL32_HIGH
 
mull a6, a2, a3
muluh a2, a2, a3
 
#else
 
/* Break the inputs into 16-bit chunks and compute 4 32-bit partial
products. These partial products are:
 
0 xl * yl
 
1 xl * yh
2 xh * yl
 
3 xh * yh
 
If using the Mul16 or Mul32 multiplier options, these input
chunks must be stored in separate registers. For Mac16, the
UMUL.AA.* opcodes can specify that the inputs come from either
half of the registers, so there is no need to shift them out
ahead of time. If there is no multiply hardware, the 16-bit
chunks can be extracted when setting up the arguments to the
separate multiply function. */
 
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
/* Calling a separate multiply function will clobber a0 and requires
use of a8 as a temporary, so save those values now. (The function
uses a custom ABI so nothing else needs to be saved.) */
s32i a0, sp, 0
s32i a8, sp, 4
#endif
 
#if XCHAL_HAVE_MUL16 || XCHAL_HAVE_MUL32
 
#define a2h a4
#define a3h a5
 
/* Get the high halves of the inputs into registers. */
srli a2h, a2, 16
srli a3h, a3, 16
 
#define a2l a2
#define a3l a3
 
#if XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MUL16
/* Clear the high halves of the inputs. This does not matter
for MUL16 because the high bits are ignored. */
extui a2, a2, 0, 16
extui a3, a3, 0, 16
#endif
#endif /* MUL16 || MUL32 */
 
 
#if XCHAL_HAVE_MUL16
 
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
mul16u dst, xreg ## xhalf, yreg ## yhalf
 
#elif XCHAL_HAVE_MUL32
 
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
mull dst, xreg ## xhalf, yreg ## yhalf
 
#elif XCHAL_HAVE_MAC16
 
/* The preprocessor insists on inserting a space when concatenating after
a period in the definition of do_mul below. These macros are a workaround
using underscores instead of periods when doing the concatenation. */
#define umul_aa_ll umul.aa.ll
#define umul_aa_lh umul.aa.lh
#define umul_aa_hl umul.aa.hl
#define umul_aa_hh umul.aa.hh
 
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
umul_aa_ ## xhalf ## yhalf xreg, yreg; \
rsr dst, ACCLO
 
#else /* no multiply hardware */
#define set_arg_l(dst, src) \
extui dst, src, 0, 16
#define set_arg_h(dst, src) \
srli dst, src, 16
 
#define do_mul(dst, xreg, xhalf, yreg, yhalf) \
set_arg_ ## xhalf (a13, xreg); \
set_arg_ ## yhalf (a14, yreg); \
call0 .Lmul_mulsi3; \
mov dst, a12
#endif
 
/* Add pp1 and pp2 into a6 with carry-out in a9. */
do_mul(a6, a2, l, a3, h) /* pp 1 */
do_mul(a11, a2, h, a3, l) /* pp 2 */
movi a9, 0
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
/* Shift the high half of a9/a6 into position in a9. Note that
this value can be safely incremented without any carry-outs. */
ssai 16
src a9, a9, a6
 
/* Compute the low word into a6. */
do_mul(a11, a2, l, a3, l) /* pp 0 */
sll a6, a6
add a6, a6, a11
bgeu a6, a11, 1f
addi a9, a9, 1
1:
/* Compute the high word into a2. */
do_mul(a2, a2, h, a3, h) /* pp 3 */
add a2, a2, a9
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
/* Restore values saved on the stack during the multiplication. */
l32i a0, sp, 0
l32i a8, sp, 4
#endif
#endif
 
/* Shift left by 9 bits, unless there was a carry-out from the
multiply, in which case, shift by 8 bits and increment the
exponent. */
movi a4, 9
srli a5, a2, 24 - 9
beqz a5, 1f
addi a4, a4, -1
addi a8, a8, 1
1: ssl a4
src a2, a2, a6
sll a6, a6
 
/* Subtract the extra bias from the exponent sum (plus one to account
for the explicit "1.0" of the mantissa that will be added to the
exponent in the final result). */
movi a4, 0x80
sub a8, a8, a4
/* Check for over/underflow. The value in a8 is one less than the
final exponent, so values in the range 0..fd are OK here. */
movi a4, 0xfe
bgeu a8, a4, .Lmul_overflow
.Lmul_round:
/* Round. */
bgez a6, .Lmul_rounded
addi a2, a2, 1
slli a6, a6, 1
beqz a6, .Lmul_exactlyhalf
 
.Lmul_rounded:
/* Add the exponent to the mantissa. */
slli a8, a8, 23
add a2, a2, a8
 
.Lmul_addsign:
/* Add the sign bit. */
srli a7, a7, 31
slli a7, a7, 31
or a2, a2, a7
 
.Lmul_done:
#if __XTENSA_CALL0_ABI__
l32i a12, sp, 16
l32i a13, sp, 20
l32i a14, sp, 24
l32i a15, sp, 28
addi sp, sp, 32
#endif
leaf_return
 
.Lmul_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
j .Lmul_rounded
 
.Lmul_overflow:
bltz a8, .Lmul_underflow
/* Return +/- Infinity. */
movi a8, 0xff
slli a2, a8, 23
j .Lmul_addsign
 
.Lmul_underflow:
/* Create a subnormal value, where the exponent field contains zero,
but the effective exponent is 1. The value of a8 is one less than
the actual exponent, so just negate it to get the shift amount. */
neg a8, a8
mov a9, a6
ssr a8
bgeui a8, 32, .Lmul_flush_to_zero
/* Shift a2 right. Any bits that are shifted out of a2 are saved
in a6 (combined with the shifted-out bits currently in a6) for
rounding the result. */
sll a6, a2
srl a2, a2
 
/* Set the exponent to zero. */
movi a8, 0
 
/* Pack any nonzero bits shifted out into a6. */
beqz a9, .Lmul_round
movi a9, 1
or a6, a6, a9
j .Lmul_round
.Lmul_flush_to_zero:
/* Return zero with the appropriate sign bit. */
srli a2, a7, 31
slli a2, a2, 31
j .Lmul_done
 
#if !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MUL32 && !XCHAL_HAVE_MAC16
/* For Xtensa processors with no multiply hardware, this simplified
version of _mulsi3 is used for multiplying 16-bit chunks of
the floating-point mantissas. It uses a custom ABI: the inputs
are passed in a13 and a14, the result is returned in a12, and
a8 and a15 are clobbered. */
.align 4
.Lmul_mulsi3:
movi a12, 0
.Lmul_mult_loop:
add a15, a14, a12
extui a8, a13, 0, 1
movnez a12, a15, a8
 
do_addx2 a15, a14, a12, a15
extui a8, a13, 1, 1
movnez a12, a15, a8
 
do_addx4 a15, a14, a12, a15
extui a8, a13, 2, 1
movnez a12, a15, a8
 
do_addx8 a15, a14, a12, a15
extui a8, a13, 3, 1
movnez a12, a15, a8
 
srli a13, a13, 4
slli a14, a14, 4
bnez a13, .Lmul_mult_loop
ret
#endif /* !MUL16 && !MUL32 && !MAC16 */
#endif /* L_mulsf3 */
 
#ifdef L_divsf3
 
/* Division */
__divsf3_aux:
 
/* Handle unusual cases (zeros, subnormals, NaNs and Infinities).
(This code is placed before the start of the function just to
keep it in range of the limited branch displacements.) */
 
.Ldiv_yexpzero:
/* Clear the sign bit of y. */
slli a3, a3, 1
srli a3, a3, 1
 
/* Check for division by zero. */
beqz a3, .Ldiv_yzero
 
/* Normalize y. Adjust the exponent in a9. */
do_nsau a10, a3, a4, a5
addi a10, a10, -8
ssl a10
sll a3, a3
movi a9, 1
sub a9, a9, a10
j .Ldiv_ynormalized
 
.Ldiv_yzero:
/* y is zero. Return NaN if x is also zero; otherwise, infinity. */
slli a4, a2, 1
srli a4, a4, 1
srli a2, a7, 31
slli a2, a2, 31
or a2, a2, a6
bnez a4, 1f
movi a4, 0x400000 /* make it a quiet NaN */
or a2, a2, a4
1: leaf_return
 
.Ldiv_xexpzero:
/* Clear the sign bit of x. */
slli a2, a2, 1
srli a2, a2, 1
 
/* If x is zero, return zero. */
beqz a2, .Ldiv_return_zero
 
/* Normalize x. Adjust the exponent in a8. */
do_nsau a10, a2, a4, a5
addi a10, a10, -8
ssl a10
sll a2, a2
movi a8, 1
sub a8, a8, a10
j .Ldiv_xnormalized
.Ldiv_return_zero:
/* Return zero with the appropriate sign bit. */
srli a2, a7, 31
slli a2, a2, 31
leaf_return
 
.Ldiv_xnan_or_inf:
/* Set the sign bit of the result. */
srli a7, a3, 31
slli a7, a7, 31
xor a2, a2, a7
/* If y is NaN or Inf, return NaN. */
bnall a3, a6, 1f
movi a4, 0x400000 /* make it a quiet NaN */
or a2, a2, a4
1: leaf_return
 
.Ldiv_ynan_or_inf:
/* If y is Infinity, return zero. */
slli a8, a3, 9
beqz a8, .Ldiv_return_zero
/* y is NaN; return it. */
mov a2, a3
leaf_return
 
.align 4
.global __divsf3
.type __divsf3, @function
__divsf3:
leaf_entry sp, 16
movi a6, 0x7f800000
 
/* Get the sign of the result. */
xor a7, a2, a3
 
/* Check for NaN and infinity. */
ball a2, a6, .Ldiv_xnan_or_inf
ball a3, a6, .Ldiv_ynan_or_inf
 
/* Extract the exponents. */
extui a8, a2, 23, 8
extui a9, a3, 23, 8
 
beqz a9, .Ldiv_yexpzero
.Ldiv_ynormalized:
beqz a8, .Ldiv_xexpzero
.Ldiv_xnormalized:
 
/* Subtract the exponents. */
sub a8, a8, a9
 
/* Replace sign/exponent fields with explicit "1.0". */
movi a10, 0xffffff
or a2, a2, a6
and a2, a2, a10
or a3, a3, a6
and a3, a3, a10
 
/* The first digit of the mantissa division must be a one.
Shift x (and adjust the exponent) as needed to make this true. */
bltu a3, a2, 1f
slli a2, a2, 1
addi a8, a8, -1
1:
/* Do the first subtraction and shift. */
sub a2, a2, a3
slli a2, a2, 1
 
/* Put the quotient into a10. */
movi a10, 1
 
/* Divide one bit at a time for 23 bits. */
movi a9, 23
#if XCHAL_HAVE_LOOPS
loop a9, .Ldiv_loopend
#endif
.Ldiv_loop:
/* Shift the quotient << 1. */
slli a10, a10, 1
 
/* Is this digit a 0 or 1? */
bltu a2, a3, 1f
 
/* Output a 1 and subtract. */
addi a10, a10, 1
sub a2, a2, a3
 
/* Shift the dividend << 1. */
1: slli a2, a2, 1
 
#if !XCHAL_HAVE_LOOPS
addi a9, a9, -1
bnez a9, .Ldiv_loop
#endif
.Ldiv_loopend:
 
/* Add the exponent bias (less one to account for the explicit "1.0"
of the mantissa that will be added to the exponent in the final
result). */
addi a8, a8, 0x7e
/* Check for over/underflow. The value in a8 is one less than the
final exponent, so values in the range 0..fd are OK here. */
movi a4, 0xfe
bgeu a8, a4, .Ldiv_overflow
.Ldiv_round:
/* Round. The remainder (<< 1) is in a2. */
bltu a2, a3, .Ldiv_rounded
addi a10, a10, 1
beq a2, a3, .Ldiv_exactlyhalf
 
.Ldiv_rounded:
/* Add the exponent to the mantissa. */
slli a8, a8, 23
add a2, a10, a8
 
.Ldiv_addsign:
/* Add the sign bit. */
srli a7, a7, 31
slli a7, a7, 31
or a2, a2, a7
leaf_return
 
.Ldiv_overflow:
bltz a8, .Ldiv_underflow
/* Return +/- Infinity. */
addi a8, a4, 1 /* 0xff */
slli a2, a8, 23
j .Ldiv_addsign
 
.Ldiv_exactlyhalf:
/* Remainder is exactly half the divisor. Round even. */
srli a10, a10, 1
slli a10, a10, 1
j .Ldiv_rounded
 
.Ldiv_underflow:
/* Create a subnormal value, where the exponent field contains zero,
but the effective exponent is 1. The value of a8 is one less than
the actual exponent, so just negate it to get the shift amount. */
neg a8, a8
ssr a8
bgeui a8, 32, .Ldiv_flush_to_zero
/* Shift a10 right. Any bits that are shifted out of a10 are
saved in a6 for rounding the result. */
sll a6, a10
srl a10, a10
 
/* Set the exponent to zero. */
movi a8, 0
 
/* Pack any nonzero remainder (in a2) into a6. */
beqz a2, 1f
movi a9, 1
or a6, a6, a9
/* Round a10 based on the bits shifted out into a6. */
1: bgez a6, .Ldiv_rounded
addi a10, a10, 1
slli a6, a6, 1
bnez a6, .Ldiv_rounded
srli a10, a10, 1
slli a10, a10, 1
j .Ldiv_rounded
 
.Ldiv_flush_to_zero:
/* Return zero with the appropriate sign bit. */
srli a2, a7, 31
slli a2, a2, 31
leaf_return
 
#endif /* L_divsf3 */
 
#ifdef L_cmpsf2
 
/* Equal and Not Equal */
 
.align 4
.global __eqsf2
.global __nesf2
.set __nesf2, __eqsf2
.type __eqsf2, @function
__eqsf2:
leaf_entry sp, 16
bne a2, a3, 4f
 
/* The values are equal but NaN != NaN. Check the exponent. */
movi a6, 0x7f800000
ball a2, a6, 3f
 
/* Equal. */
movi a2, 0
leaf_return
 
/* Not equal. */
2: movi a2, 1
leaf_return
 
/* Check if the mantissas are nonzero. */
3: slli a7, a2, 9
j 5f
 
/* Check if x and y are zero with different signs. */
4: or a7, a2, a3
slli a7, a7, 1
 
/* Equal if a7 == 0, where a7 is either abs(x | y) or the mantissa
or x when exponent(x) = 0x7f8 and x == y. */
5: movi a2, 0
movi a3, 1
movnez a2, a3, a7
leaf_return
 
 
/* Greater Than */
 
.align 4
.global __gtsf2
.type __gtsf2, @function
__gtsf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 2f
1: bnall a3, a6, .Lle_cmp
 
/* Check if y is a NaN. */
slli a7, a3, 9
beqz a7, .Lle_cmp
movi a2, 0
leaf_return
 
/* Check if x is a NaN. */
2: slli a7, a2, 9
beqz a7, 1b
movi a2, 0
leaf_return
 
 
/* Less Than or Equal */
 
.align 4
.global __lesf2
.type __lesf2, @function
__lesf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 2f
1: bnall a3, a6, .Lle_cmp
 
/* Check if y is a NaN. */
slli a7, a3, 9
beqz a7, .Lle_cmp
movi a2, 1
leaf_return
 
/* Check if x is a NaN. */
2: slli a7, a2, 9
beqz a7, 1b
movi a2, 1
leaf_return
 
.Lle_cmp:
/* Check if x and y have different signs. */
xor a7, a2, a3
bltz a7, .Lle_diff_signs
 
/* Check if x is negative. */
bltz a2, .Lle_xneg
 
/* Check if x <= y. */
bltu a3, a2, 5f
4: movi a2, 0
leaf_return
 
.Lle_xneg:
/* Check if y <= x. */
bgeu a2, a3, 4b
5: movi a2, 1
leaf_return
 
.Lle_diff_signs:
bltz a2, 4b
 
/* Check if both x and y are zero. */
or a7, a2, a3
slli a7, a7, 1
movi a2, 1
movi a3, 0
moveqz a2, a3, a7
leaf_return
 
 
/* Greater Than or Equal */
 
.align 4
.global __gesf2
.type __gesf2, @function
__gesf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 2f
1: bnall a3, a6, .Llt_cmp
 
/* Check if y is a NaN. */
slli a7, a3, 9
beqz a7, .Llt_cmp
movi a2, -1
leaf_return
 
/* Check if x is a NaN. */
2: slli a7, a2, 9
beqz a7, 1b
movi a2, -1
leaf_return
 
 
/* Less Than */
 
.align 4
.global __ltsf2
.type __ltsf2, @function
__ltsf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 2f
1: bnall a3, a6, .Llt_cmp
 
/* Check if y is a NaN. */
slli a7, a3, 9
beqz a7, .Llt_cmp
movi a2, 0
leaf_return
 
/* Check if x is a NaN. */
2: slli a7, a2, 9
beqz a7, 1b
movi a2, 0
leaf_return
 
.Llt_cmp:
/* Check if x and y have different signs. */
xor a7, a2, a3
bltz a7, .Llt_diff_signs
 
/* Check if x is negative. */
bltz a2, .Llt_xneg
 
/* Check if x < y. */
bgeu a2, a3, 5f
4: movi a2, -1
leaf_return
 
.Llt_xneg:
/* Check if y < x. */
bltu a3, a2, 4b
5: movi a2, 0
leaf_return
 
.Llt_diff_signs:
bgez a2, 5b
 
/* Check if both x and y are nonzero. */
or a7, a2, a3
slli a7, a7, 1
movi a2, 0
movi a3, -1
movnez a2, a3, a7
leaf_return
 
 
/* Unordered */
 
.align 4
.global __unordsf2
.type __unordsf2, @function
__unordsf2:
leaf_entry sp, 16
movi a6, 0x7f800000
ball a2, a6, 3f
1: ball a3, a6, 4f
2: movi a2, 0
leaf_return
 
3: slli a7, a2, 9
beqz a7, 1b
movi a2, 1
leaf_return
 
4: slli a7, a3, 9
beqz a7, 2b
movi a2, 1
leaf_return
 
#endif /* L_cmpsf2 */
 
#ifdef L_fixsfsi
 
.align 4
.global __fixsfsi
.type __fixsfsi, @function
__fixsfsi:
leaf_entry sp, 16
 
/* Check for NaN and Infinity. */
movi a6, 0x7f800000
ball a2, a6, .Lfixsfsi_nan_or_inf
 
/* Extract the exponent and check if 0 < (exp - 0x7e) < 32. */
extui a4, a2, 23, 8
addi a4, a4, -0x7e
bgei a4, 32, .Lfixsfsi_maxint
blti a4, 1, .Lfixsfsi_zero
 
/* Add explicit "1.0" and shift << 8. */
or a7, a2, a6
slli a5, a7, 8
 
/* Shift back to the right, based on the exponent. */
ssl a4 /* shift by 32 - a4 */
srl a5, a5
 
/* Negate the result if sign != 0. */
neg a2, a5
movgez a2, a5, a7
leaf_return
 
.Lfixsfsi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, a2, 9
beqz a4, .Lfixsfsi_maxint
 
/* Translate NaN to +maxint. */
movi a2, 0
 
.Lfixsfsi_maxint:
slli a4, a6, 8 /* 0x80000000 */
addi a5, a4, -1 /* 0x7fffffff */
movgez a4, a5, a2
mov a2, a4
leaf_return
 
.Lfixsfsi_zero:
movi a2, 0
leaf_return
 
#endif /* L_fixsfsi */
 
#ifdef L_fixsfdi
 
.align 4
.global __fixsfdi
.type __fixsfdi, @function
__fixsfdi:
leaf_entry sp, 16
 
/* Check for NaN and Infinity. */
movi a6, 0x7f800000
ball a2, a6, .Lfixsfdi_nan_or_inf
 
/* Extract the exponent and check if 0 < (exp - 0x7e) < 64. */
extui a4, a2, 23, 8
addi a4, a4, -0x7e
bgei a4, 64, .Lfixsfdi_maxint
blti a4, 1, .Lfixsfdi_zero
 
/* Add explicit "1.0" and shift << 8. */
or a7, a2, a6
slli xh, a7, 8
 
/* Shift back to the right, based on the exponent. */
ssl a4 /* shift by 64 - a4 */
bgei a4, 32, .Lfixsfdi_smallshift
srl xl, xh
movi xh, 0
 
.Lfixsfdi_shifted:
/* Negate the result if sign != 0. */
bgez a7, 1f
neg xl, xl
neg xh, xh
beqz xl, 1f
addi xh, xh, -1
1: leaf_return
 
.Lfixsfdi_smallshift:
movi xl, 0
sll xl, xh
srl xh, xh
j .Lfixsfdi_shifted
 
.Lfixsfdi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, a2, 9
beqz a4, .Lfixsfdi_maxint
 
/* Translate NaN to +maxint. */
movi a2, 0
 
.Lfixsfdi_maxint:
slli a7, a6, 8 /* 0x80000000 */
bgez a2, 1f
mov xh, a7
movi xl, 0
leaf_return
 
1: addi xh, a7, -1 /* 0x7fffffff */
movi xl, -1
leaf_return
 
.Lfixsfdi_zero:
movi xh, 0
movi xl, 0
leaf_return
 
#endif /* L_fixsfdi */
 
#ifdef L_fixunssfsi
 
.align 4
.global __fixunssfsi
.type __fixunssfsi, @function
__fixunssfsi:
leaf_entry sp, 16
 
/* Check for NaN and Infinity. */
movi a6, 0x7f800000
ball a2, a6, .Lfixunssfsi_nan_or_inf
 
/* Extract the exponent and check if 0 <= (exp - 0x7f) < 32. */
extui a4, a2, 23, 8
addi a4, a4, -0x7f
bgei a4, 32, .Lfixunssfsi_maxint
bltz a4, .Lfixunssfsi_zero
 
/* Add explicit "1.0" and shift << 8. */
or a7, a2, a6
slli a5, a7, 8
 
/* Shift back to the right, based on the exponent. */
addi a4, a4, 1
beqi a4, 32, .Lfixunssfsi_bigexp
ssl a4 /* shift by 32 - a4 */
srl a5, a5
 
/* Negate the result if sign != 0. */
neg a2, a5
movgez a2, a5, a7
leaf_return
 
.Lfixunssfsi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, a2, 9
beqz a4, .Lfixunssfsi_maxint
 
/* Translate NaN to 0xffffffff. */
movi a2, -1
leaf_return
 
.Lfixunssfsi_maxint:
slli a4, a6, 8 /* 0x80000000 */
movi a5, -1 /* 0xffffffff */
movgez a4, a5, a2
mov a2, a4
leaf_return
 
.Lfixunssfsi_zero:
movi a2, 0
leaf_return
 
.Lfixunssfsi_bigexp:
/* Handle unsigned maximum exponent case. */
bltz a2, 1f
mov a2, a5 /* no shift needed */
leaf_return
 
/* Return 0x80000000 if negative. */
1: slli a2, a6, 8
leaf_return
 
#endif /* L_fixunssfsi */
 
#ifdef L_fixunssfdi
 
.align 4
.global __fixunssfdi
.type __fixunssfdi, @function
__fixunssfdi:
leaf_entry sp, 16
 
/* Check for NaN and Infinity. */
movi a6, 0x7f800000
ball a2, a6, .Lfixunssfdi_nan_or_inf
 
/* Extract the exponent and check if 0 <= (exp - 0x7f) < 64. */
extui a4, a2, 23, 8
addi a4, a4, -0x7f
bgei a4, 64, .Lfixunssfdi_maxint
bltz a4, .Lfixunssfdi_zero
 
/* Add explicit "1.0" and shift << 8. */
or a7, a2, a6
slli xh, a7, 8
 
/* Shift back to the right, based on the exponent. */
addi a4, a4, 1
beqi a4, 64, .Lfixunssfdi_bigexp
ssl a4 /* shift by 64 - a4 */
bgei a4, 32, .Lfixunssfdi_smallshift
srl xl, xh
movi xh, 0
 
.Lfixunssfdi_shifted:
/* Negate the result if sign != 0. */
bgez a7, 1f
neg xl, xl
neg xh, xh
beqz xl, 1f
addi xh, xh, -1
1: leaf_return
 
.Lfixunssfdi_smallshift:
movi xl, 0
src xl, xh, xl
srl xh, xh
j .Lfixunssfdi_shifted
 
.Lfixunssfdi_nan_or_inf:
/* Handle Infinity and NaN. */
slli a4, a2, 9
beqz a4, .Lfixunssfdi_maxint
 
/* Translate NaN to 0xffffffff.... */
1: movi xh, -1
movi xl, -1
leaf_return
 
.Lfixunssfdi_maxint:
bgez a2, 1b
2: slli xh, a6, 8 /* 0x80000000 */
movi xl, 0
leaf_return
 
.Lfixunssfdi_zero:
movi xh, 0
movi xl, 0
leaf_return
 
.Lfixunssfdi_bigexp:
/* Handle unsigned maximum exponent case. */
bltz a7, 2b
movi xl, 0
leaf_return /* no shift needed */
 
#endif /* L_fixunssfdi */
 
#ifdef L_floatsisf
 
.align 4
.global __floatunsisf
.type __floatunsisf, @function
__floatunsisf:
leaf_entry sp, 16
beqz a2, .Lfloatsisf_return
 
/* Set the sign to zero and jump to the floatsisf code. */
movi a7, 0
j .Lfloatsisf_normalize
 
.align 4
.global __floatsisf
.type __floatsisf, @function
__floatsisf:
leaf_entry sp, 16
 
/* Check for zero. */
beqz a2, .Lfloatsisf_return
 
/* Save the sign. */
extui a7, a2, 31, 1
 
/* Get the absolute value. */
#if XCHAL_HAVE_ABS
abs a2, a2
#else
neg a4, a2
movltz a2, a4, a2
#endif
 
.Lfloatsisf_normalize:
/* Normalize with the first 1 bit in the msb. */
do_nsau a4, a2, a5, a6
ssl a4
sll a5, a2
 
/* Shift the mantissa into position, with rounding bits in a6. */
srli a2, a5, 8
slli a6, a5, (32 - 8)
 
/* Set the exponent. */
movi a5, 0x9d /* 0x7e + 31 */
sub a5, a5, a4
slli a5, a5, 23
add a2, a2, a5
 
/* Add the sign. */
slli a7, a7, 31
or a2, a2, a7
 
/* Round up if the leftover fraction is >= 1/2. */
bgez a6, .Lfloatsisf_return
addi a2, a2, 1 /* Overflow to the exponent is OK. */
 
/* Check if the leftover fraction is exactly 1/2. */
slli a6, a6, 1
beqz a6, .Lfloatsisf_exactlyhalf
 
.Lfloatsisf_return:
leaf_return
 
.Lfloatsisf_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
 
#endif /* L_floatsisf */
 
#ifdef L_floatdisf
 
.align 4
.global __floatundisf
.type __floatundisf, @function
__floatundisf:
leaf_entry sp, 16
 
/* Check for zero. */
or a4, xh, xl
beqz a4, 2f
 
/* Set the sign to zero and jump to the floatdisf code. */
movi a7, 0
j .Lfloatdisf_normalize
 
.align 4
.global __floatdisf
.type __floatdisf, @function
__floatdisf:
leaf_entry sp, 16
 
/* Check for zero. */
or a4, xh, xl
beqz a4, 2f
 
/* Save the sign. */
extui a7, xh, 31, 1
 
/* Get the absolute value. */
bgez xh, .Lfloatdisf_normalize
neg xl, xl
neg xh, xh
beqz xl, .Lfloatdisf_normalize
addi xh, xh, -1
 
.Lfloatdisf_normalize:
/* Normalize with the first 1 bit in the msb of xh. */
beqz xh, .Lfloatdisf_bigshift
do_nsau a4, xh, a5, a6
ssl a4
src xh, xh, xl
sll xl, xl
 
.Lfloatdisf_shifted:
/* Shift the mantissa into position, with rounding bits in a6. */
ssai 8
sll a5, xl
src a6, xh, xl
srl xh, xh
beqz a5, 1f
movi a5, 1
or a6, a6, a5
1:
/* Set the exponent. */
movi a5, 0xbd /* 0x7e + 63 */
sub a5, a5, a4
slli a5, a5, 23
add a2, xh, a5
 
/* Add the sign. */
slli a7, a7, 31
or a2, a2, a7
 
/* Round up if the leftover fraction is >= 1/2. */
bgez a6, 2f
addi a2, a2, 1 /* Overflow to the exponent is OK. */
 
/* Check if the leftover fraction is exactly 1/2. */
slli a6, a6, 1
beqz a6, .Lfloatdisf_exactlyhalf
2: leaf_return
 
.Lfloatdisf_bigshift:
/* xh is zero. Normalize with first 1 bit of xl in the msb of xh. */
do_nsau a4, xl, a5, a6
ssl a4
sll xh, xl
movi xl, 0
addi a4, a4, 32
j .Lfloatdisf_shifted
 
.Lfloatdisf_exactlyhalf:
/* Round down to the nearest even value. */
srli a2, a2, 1
slli a2, a2, 1
leaf_return
 
#endif /* L_floatdisf */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.