URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
Compare Revisions
- This comparison shows the changes necessary to convert path
/openrisc/trunk/orpsocv2/boards/xilinx/ml501
- from Rev 478 to Rev 479
- ↔ Reverse comparison
Rev 478 → Rev 479
/rtl/verilog/include/or1200_defines.v
210,7 → 210,7
// Disable bursts if they are not supported by the |
// memory subsystem (only affect cache line fill) |
// |
`define OR1200_NO_BURSTS |
//`define OR1200_NO_BURSTS |
// |
|
// |
/rtl/verilog/xilinx_ddr2/xilinx_ddr2_if.v
1,15 → 1,14
////////////////////////////////////////////////////////////////////// |
//// //// |
//// Xilinx DDR2 controller Wishbone Interface //// |
//// Xilinx ML501 DDR2 controller Wishbone Interface //// |
//// //// |
//// Description //// |
//// Simple interface to the Xilinx MIG generated DDR2 controller//// |
//// //// |
//// To Do: //// |
//// Increase usage of cache BRAM to maximum (currently only //// |
//// 256 bytes out of about 8192) //// |
//// Make this a Wishbone B3 registered feedback burst friendly //// |
//// server. //// |
//// Use full capacity of BRAM //// |
//// Employ LRU replacement scheme //// |
//// Remove hard-coding of things relating to number of lines //// |
//// //// |
//// Author(s): //// |
//// - Julius Baxter, julius.baxter@orsoc.se //// |
42,38 → 41,34
//// //// |
////////////////////////////////////////////////////////////////////// |
/* |
* The controller is design to stream lots of data out at the DDR2 controller's |
* rate. All we implement here is enough to do the simplest accesses into a |
* small cache, which eases the domain crossing headaches. |
* This is an interface to the Xilinx MIG-sourced DDR2 controller. |
* |
* This was originally written to handle a DDR2 part which is doing burst length |
* of 4 as a minimum via a databus which is 64-bits wide. |
* The controller's interface is via FIFO buffers - one for address and control |
* the other is for data. The data FIFO interface is 128-bits wide. |
* |
* This means the smallest accesses is 4*64=256-bits or 32-bytes. |
* This module has a cache with different aspects on each port. As we're to |
* ultimately interface to a 32-bit wide Wishbone bus, one side is 32-bits |
* and the other is 128-bits wide to accommodate the DDR2 controller's data |
* path. |
* |
* We are bridging to a 32-bit wide system bus, so this means we must handle |
* accesses in 8-word lots. |
* At present, the cache controller doesn't employ associativity, so any |
* line can be used for any location. A round-robin approach to line |
* use is employed. TODO is LRU scheme instead of round robin. |
* |
* A simple cache mechanism has been implemented, meaning we check if the cached |
* data has been written to, and therefore needs writing back to the main memory |
* before any other access can occur. |
* The cache is a macro generated by Xilinx's IP generation tool. This is |
* because memories with dual-aspect ratios cannot be inferred via HDL. |
* |
* Cache memory: |
* The cache memory is a core-generated module, instantiating something out |
* of the XilinxCoreLib. The reason is because an arrangement or RAMB36s with |
* different sized A and B data in/out ports can't be instantiated directly |
* for some reason. |
* What we have is side A with 32-bits, and side B with 128-bits wide. |
* The size of lines, as set by the defines, controls how long each read |
* and write burst to/from the SDRAM is. |
* |
* TODO: |
* This only supports 8-words for now but can easily be expanded, although |
* multiple way/associativity caching will require some extra work to handle |
* multiple cached addresses. |
* There are two clock domains - the Wishbone and the DDR2 controller domain. |
* |
* But it should be easy enough to make this thing cache as much as its RAMB |
* resources allow (4-RAMB16s becuase due to the 128-bit DDR2-side interface) |
* which is about 8Kbyte. |
* A signal is sent to control logic in the DDR2 domain side to load and store |
* the contents of a particular line from and to the DDR2 controller's data |
* FIFOs. This loading and storing is done at the DDR2 clock domain's rate. |
* |
* The writing of address and control data is done from the Wishbone domain. |
* |
* Multi-cycle paths: |
* Write: |
* To indicate that a writeback is occuring, a system-bus domain (wishbone, in |
84,7 → 79,7
* "ddr2_write_done" is then sampled by the system-bus domain and "do_writeback" |
* So there are paths between: |
* ( register -> (sampled by) -> register ) |
* wb_clk:do_writeback -> ddr2_clk:do_writeback_ddr2_shifter |
* wb_clk:do_writeback -> ddr2_clk:do_writeback_ddr2 |
* wb_clk:do_writeback -> ddr2_clk:ddr2_write_done |
* ddr2_clk:ddr2_write_done -> wb_clk:do_writeback |
* |
99,8 → 94,8
* ddr2_clk:ddr2_read_done -> wb_clk:do_readfrom |
* wb_clk:do_readfrom -> ddr2_clk:ddr2_read_done |
* |
*/ |
module xilinx_ddr2_if ( |
*/ |
module xilinx_ddr2_if2 ( |
input [31:0] wb_adr_i, |
input wb_stb_i, |
input wb_cyc_i, |
111,7 → 106,7
input [31:0] wb_dat_i, |
output [31:0] wb_dat_o, |
output reg wb_ack_o, |
|
|
output [12:0] ddr2_a, |
output [1:0] ddr2_ba, |
output ddr2_ras_n, |
127,15 → 122,37
inout [7:0] ddr2_dqs_n, |
output [1:0] ddr2_ck, |
output [1:0] ddr2_ck_n, |
|
|
input ddr2_if_clk, |
input ddr2_if_rst, |
input ddr2_if_rst, |
input idly_clk_200, |
|
input wb_clk, |
input wb_rst); |
|
`include "xilinx_ddr2_params.v" |
|
// Define to add a counter, signaling error if the controller locks up |
// (no ack after a certain period of time) |
//`define ERR_COUNTER |
|
/* |
`define DDR2_CACHE_NUM_LINES 16 |
`define DDR2_CACHE_NUM_LINES_ENC_WIDTH 4 // log2(`DDR2_CACHE_NUM_LINES) |
*/ |
`define DDR2_CACHE_NUM_LINES 4 |
`define DDR2_CACHE_NUM_LINES_ENC_WIDTH 2 // log2(`DDR2_CACHE_NUM_LINES) |
|
`define DDR2_CACHE_NUM_WORDS_PER_LINE 256 |
`define DDR2_CACHE_ADDR_WIDTH_WORDS_PER_LINE 8 |
`define DDR2_CACHE_TAG_ADDR_WIDTH (32-`DDR2_CACHE_ADDR_WIDTH_WORDS_PER_LINE-2) |
|
`define DDR2_CACHE_DDR2_SIDE_NUM_WORDS_PER_LINE (`DDR2_CACHE_NUM_WORDS_PER_LINE/4) |
`define DDR2_CACHE_DDR2_SIDE_ADDR_WIDTH_NUM_WORDS_PER_LINE (`DDR2_CACHE_ADDR_WIDTH_WORDS_PER_LINE - 2) |
`define DDR2_CACHE_DDR2_SIDE_ADDR_WIDTH (`DDR2_CACHE_NUM_LINES_ENC_WIDTH + `DDR2_CACHE_DDR2_SIDE_ADDR_WIDTH_NUM_WORDS_PER_LINE) |
|
`define DDR2_CACHE_TAG_BITS 31:(`DDR2_CACHE_ADDR_WIDTH_WORDS_PER_LINE+2) |
|
wire ddr2_clk; // DDR2 iface domain clock. |
wire ddr2_rst; // reset from the ddr2 module |
|
146,28 → 163,38
wire wb_req_new; |
reg wb_req_new_r; |
|
reg wb_req_addr_hit; |
wire wb_req_addr_hit; |
|
reg cached_addr_valid; |
wire cached_addr_valid; |
|
reg [31:6] cached_addr; |
|
wire [31:(32 -`DDR2_CACHE_TAG_ADDR_WIDTH)] cached_addr; |
|
`define DDR2_BURST_8_DQ64_ADDR_WIDTH 4 // = log2(burst of 8 64-bits = 16 words) |
`define DDR2_BURST_4_DQ64_ADDR_WIDTH 3 // = log2(burst of 4 64-bits = 8 words) |
// This counts how many addresses we should write to the fifo - the number |
// of discrete FIFO transactions. |
reg [`DDR2_CACHE_ADDR_WIDTH_WORDS_PER_LINE-`DDR2_BURST_8_DQ64_ADDR_WIDTH - 1:0] addr_counter; |
|
wire cache_write; |
|
wire cache_hit; |
|
reg cache_dirty; |
|
reg [2:0] wb_req_cache_word_addr; |
|
wire wb_cache_en; |
|
reg do_writeback, do_writeback_r; |
wire do_writeback_start, do_writeback_finished; |
wire doing_writeback; |
|
// Wire to indicate writing to data FIFO of MIG has completed |
wire do_writeback_data_finished; |
// Wire to indicate that address FIFO of MIG should be written to to |
// initiate memory accesses. |
reg do_writeback_addresses, do_writeback_addresses_r; |
|
reg do_readfrom, do_readfrom_r; |
wire do_readfrom_start, do_readfrom_finished; |
wire doing_readfrom; |
|
reg do_af_write; |
|
// Domain crossing logic |
reg wb_clk_r; |
177,13 → 204,10
wire wb_clk_edge; |
reg [2:0] ddr2_clk_phase; |
// Sample when clk phase is 0 |
reg [7:0] do_writeback_ddr2_shifter; |
reg [7:0] do_writeback_ddr2_shifter_r; |
reg do_writeback_ddr2; |
reg do_writeback_ddr2_fifo_we; |
reg ddr2_write_done; |
|
// Currently, ddr2-side of cache is address is a single bit |
reg [1:0] ddr2_cache_addr; |
reg [`DDR2_CACHE_DDR2_SIDE_ADDR_WIDTH_NUM_WORDS_PER_LINE - 1:0] ddr2_cache_line_word_addr; |
wire [127:0] ddr2_cache_data_o; |
reg rd_data_valid_r; |
reg ddr2_read_done; |
193,8 → 217,11
wire app_wdf_afull; |
wire app_wdf_wren; |
wire app_af_wren; |
wire [30:0] writeback_af_addr; |
wire [30:0] readfrom_af_addr; |
wire [30:0] app_af_addr; |
wire [2:0] app_af_cmd; |
|
wire [(APPDATA_WIDTH)-1:0] app_wdf_data; |
wire [(APPDATA_WIDTH/8)-1:0] app_wdf_mask_data; |
wire rd_data_valid; |
201,8 → 228,87
wire [(APPDATA_WIDTH)-1:0] rd_data_fifo_out; |
wire phy_init_done; |
|
assign cache_hit = (cached_addr == wb_adr_i[31:6]) & cached_addr_valid; |
wire [`DDR2_CACHE_NUM_LINES - 1 :0] cache_line_addr_validate; |
wire [`DDR2_CACHE_NUM_LINES - 1 :0] cache_line_addr_invalidate; |
wire [`DDR2_CACHE_NUM_LINES - 1 :0] cache_line_addr_valid; |
wire [`DDR2_CACHE_NUM_LINES - 1 :0] cache_line_hit; |
wire [`DDR2_CACHE_TAG_BITS] cache_line_addr [0:`DDR2_CACHE_NUM_LINES-1] ; |
|
// Cache control signals |
// Wishbone side |
wire [`DDR2_CACHE_ADDR_WIDTH_WORDS_PER_LINE-1:0] wb_cache_adr; |
wire [3:0] wb_cache_sel_we; |
// DDR side |
wire ddr2_cache_en; |
wire [15:0] ddr2_cache_we; |
|
reg wb_bursting; // Indicate if burst is enabled |
reg [3:0] wb_burst_addr; // Burst counter, up to 16 |
wire [1:0] wb_burst_addr_4beat; |
wire [2:0] wb_burst_addr_8beat; |
wire wb_burst_addr_incr; |
wire ack_err; |
reg ack_err_r; |
|
|
|
// Decoded select line |
wire [`DDR2_CACHE_NUM_LINES-1:0] selected_cache_line; |
wire [`DDR2_CACHE_NUM_LINES_ENC_WIDTH-1:0] selected_cache_line_enc; |
reg [`DDR2_CACHE_NUM_LINES_ENC_WIDTH-1:0] selected_cache_line_enc_ddr2_clk; |
|
genvar i; |
generate |
for (i=0;i<`DDR2_CACHE_NUM_LINES;i=i+1) begin : cache_addr |
xilinx_ddr2_wb_if_cache_adr_reg cache_addr_reg_inst |
( .adr_i(wb_adr_i[`DDR2_CACHE_TAG_BITS]), |
.validate(cache_line_addr_validate[i]), |
.invalidate(cache_line_addr_invalidate[i]), |
.cache_hit(cache_line_hit[i]), |
.adr_valid(cache_line_addr_valid[i]), |
.cached_adr_o(cache_line_addr[i]), |
.clk(wb_clk), |
.rst(wb_rst)); |
end |
endgenerate |
|
wire start_writeback, start_fill; |
|
xilinx_ddr2_wb_if_cache_control xilinx_ddr2_wb_if_cache_control0 |
( |
// Outputs |
.start_writeback (start_writeback), |
.start_fill (start_fill), |
.cache_line_validate (cache_line_addr_validate), |
.cache_line_invalidate (cache_line_addr_invalidate), |
.selected_cache_line (selected_cache_line), |
.selected_cache_line_enc (selected_cache_line_enc), |
// Inputs |
.cache_line_addr_valid (cache_line_addr_valid), |
.cache_line_addr_hit (cache_line_hit), |
.wb_req (wb_req), |
.cache_write (cache_write), |
.writeback_done (do_writeback_finished), |
.fill_done (do_readfrom_finished), |
.wb_clk (wb_clk), |
.wb_rst (wb_rst)); |
|
defparam xilinx_ddr2_wb_if_cache_control0.num_lines = `DDR2_CACHE_NUM_LINES; |
defparam xilinx_ddr2_wb_if_cache_control0.num_lines_log2 = `DDR2_CACHE_NUM_LINES_ENC_WIDTH; |
|
assign cached_addr = selected_cache_line[0] ? cache_line_addr[0] : |
selected_cache_line[1] ? cache_line_addr[1] : |
selected_cache_line[2] ? cache_line_addr[2] : |
selected_cache_line[3] ? cache_line_addr[3] : 0; |
|
assign cache_write = wb_req & wb_we_i & wb_ack_o; |
|
assign cache_hit = |(selected_cache_line & cache_line_hit); |
|
assign cached_addr_valid = |(selected_cache_line & cache_line_addr_valid); |
|
assign wb_req_addr_hit = (wb_req & cache_hit & cached_addr_valid); |
|
// Wishbone request detection |
assign wb_req = wb_stb_i & wb_cyc_i & phy_init_done; |
|
210,63 → 316,118
wb_req_r <= wb_req; |
|
assign wb_req_new = wb_req & !wb_req_r; |
|
|
always @(posedge wb_clk) |
wb_req_new_r <= wb_req_new; |
|
always @(posedge wb_clk) |
if (wb_rst) |
wb_bursting <= 0; |
// Reset if acking end of transfer |
else if (wb_ack_o && wb_cti_i == 3'b111) |
wb_bursting <= 0; |
// Set if beginning new transaction and incrementing burst indicated |
// TODO - double check if this burst is going to go over a cache line |
// boundary - if so don't allow burst, fall back to classic cycles. |
else if (wb_req_new) |
wb_bursting <= (wb_cti_i == 3'b010); |
|
// Help constrain additions to appropriate bit-width for wrapping |
assign wb_burst_addr_4beat = wb_adr_i[3:2] + 1; |
assign wb_burst_addr_8beat = wb_adr_i[4:2] + 1; |
|
// Register whether it's a hit or not |
// As more lines are added, add them to this check. |
// Increment burst address whenever we get a hit when reading, or |
// when acking and writing. |
assign wb_burst_addr_incr = (wb_req_addr_hit & (!wb_we_i | |
(wb_we_i & wb_ack_o))); |
|
// Calculate burst address depending on burst type indicator |
always @(posedge wb_clk) |
if (wb_rst) |
wb_req_addr_hit <= 0; |
else |
wb_req_addr_hit <= wb_req & cache_hit & cached_addr_valid; |
wb_burst_addr <= 0; |
else if (wb_req_new) |
// When we have a bursting read to an address which is in cache then |
// initialise the address to the next word in the burst sequence. |
// If it's a miss, or it's a write, then we just take what's on the |
// bus. |
wb_burst_addr <= !(wb_req_addr_hit & !wb_we_i) ? wb_adr_i[5:2] : |
wb_bte_i==2'b01 ? {wb_adr_i[5:4], wb_burst_addr_4beat }: |
wb_bte_i==2'b10 ? {wb_adr_i[5], wb_burst_addr_8beat }: |
wb_bte_i==2'b11 ? wb_adr_i[5:2] + 1 : |
wb_adr_i[5:2]; |
else if (wb_burst_addr_incr & wb_bte_i==2'b01) |
wb_burst_addr[1:0] <= wb_burst_addr[1:0] + 1; |
else if (wb_burst_addr_incr & wb_bte_i==2'b10) |
wb_burst_addr[2:0] <= wb_burst_addr[2:0] + 1; |
else if (wb_burst_addr_incr & wb_bte_i==2'b11) |
wb_burst_addr[3:0] <= wb_burst_addr[3:0] + 1; |
|
`ifdef ERR_COUNTER |
reg [26:0] ack_err_cntr; |
|
always @(posedge wb_clk) |
if (wb_rst) |
ack_err_cntr <= 0; |
else if (!wb_req) |
ack_err_cntr <= 0; |
else if (|ack_err_cntr) |
ack_err_cntr <= ack_err_cntr + 1; |
else if (wb_req_new & !(|ack_err_cntr)) |
ack_err_cntr <= 1; |
|
assign ack_err = (&ack_err_cntr); |
|
always @(posedge wb_clk) |
ack_err_r <= ack_err; |
|
assign wb_err_o = ack_err_r; |
|
`else // !`ifdef ERR_COUNTER |
|
assign ack_err = 0; |
always @(posedge wb_clk) |
ack_err_r <= 0; |
|
assign wb_err_o = 0; |
|
`endif |
|
always @(posedge wb_clk) |
if (wb_rst) |
wb_ack_o <= 0; |
else |
wb_ack_o <= wb_req_addr_hit & !wb_ack_o & !wb_ack_o_r; |
wb_ack_o <= wb_req_addr_hit & |
( |
// Simple acks on classic cycles |
(!wb_bursting && !wb_ack_o && !wb_ack_o_r) |
// De-assert ack when we see the final transaction |
|| (wb_bursting && !(wb_cti_i==3'b111)) |
); |
|
always @(posedge wb_clk) |
wb_ack_o_r <= wb_ack_o; |
|
// Address valid logic |
// Writeback/readfrom lower address generation |
always @(posedge wb_clk) |
if (wb_rst) |
cached_addr_valid <= 0; |
else if (do_readfrom_finished) |
cached_addr_valid <= 1; |
else if ( do_writeback_finished ) // Data written back, cache not valid |
cached_addr_valid <= 0; |
else if (wb_req & !cache_hit & cached_addr_valid & !cache_dirty) |
// Invalidate cache so a readfrom begins |
cached_addr_valid <= 0; |
addr_counter <= 0; |
else if (app_af_wren) |
addr_counter <= addr_counter+1; |
|
// Address cacheing |
// Determine if we're writing access requests into DDR2 interface AF |
always @(posedge wb_clk) |
if (wb_rst) |
cached_addr <= 0; |
else if (do_readfrom_start) |
cached_addr <= wb_adr_i[31:6]; |
do_af_write <= 0; |
else if (do_readfrom_start | do_writeback_data_finished) |
do_af_write <= 1; |
else if ((&addr_counter)) // Stop when counter rolls over |
do_af_write <= 0; |
|
// Cache dirty signal |
always @(posedge wb_clk) |
if (wb_rst) |
cache_dirty <= 0; |
else if (wb_req & wb_we_i & wb_req_addr_hit & wb_ack_o) |
cache_dirty <= 1; |
else if (!cached_addr_valid & cache_dirty) |
cache_dirty <= 0; |
|
// Wishbone side of cache enable. Important! |
// 1. Enable on first access, if it's not a write |
// 2. Enable if we've just refreshed the cache |
// 3. Enable on ACK'ing for a write |
assign wb_cache_en = (wb_req_new & !wb_we_i) | do_readfrom_finished | |
(wb_req_addr_hit & wb_stb_i & !wb_we_i & !wb_ack_o) | |
(wb_ack_o & wb_we_i); |
// Wishbone side of cache enable. Always enabled unless doing DDR2-side |
// things (fill or writeback). |
assign wb_cache_en = !(do_readfrom | do_writeback); |
|
|
// Writeback detect logic |
always @(posedge wb_clk) |
if (wb_rst) |
273,17 → 434,32
do_writeback <= 0; |
else if (ddr2_write_done) // DDR2 domain signal |
do_writeback <= 0; |
else if (wb_req & !cache_hit & cached_addr_valid & !doing_writeback & cache_dirty) |
else if (start_writeback) |
do_writeback <= 1; |
|
|
|
always @(posedge wb_clk) |
do_writeback_r <= do_writeback; |
|
// Detect falling edge of do_writeback |
assign do_writeback_data_finished = !do_writeback & do_writeback_r; |
|
always @(posedge wb_clk) |
if (wb_rst) |
do_writeback_addresses <= 0; |
else if (do_writeback_data_finished) |
do_writeback_addresses <= 1; |
else if ((&addr_counter)) |
do_writeback_addresses <= 0; |
|
always @(posedge wb_clk) |
do_writeback_addresses_r <= do_writeback_addresses; |
|
// Detect rising edge of do_writeback |
assign do_writeback_start = do_writeback & !do_writeback_r; |
assign do_writeback_finished = !do_writeback & do_writeback_r; |
assign doing_writeback = do_writeback | do_writeback_r; |
|
// Detect falling edge of address writing control signal |
assign do_writeback_finished = !do_writeback_addresses & |
do_writeback_addresses_r; |
|
// DDR2 Read detect logic |
always @(posedge wb_clk) |
if (wb_rst) |
290,28 → 466,36
do_readfrom <= 0; |
else if (ddr2_read_done) // DDR2 domain signal |
do_readfrom <= 0; |
else if (wb_req & !cache_hit & !cached_addr_valid & !doing_readfrom & !cache_dirty) |
else if (start_fill) |
do_readfrom <= 1; |
|
always @(posedge wb_clk) |
do_readfrom_r <= do_readfrom; |
|
// Detect line fill request rising edge |
assign do_readfrom_start = do_readfrom & !do_readfrom_r; |
// Detect line fill request falling edge |
assign do_readfrom_finished = !do_readfrom & do_readfrom_r; |
assign doing_readfrom = do_readfrom | do_readfrom_r; |
|
// Address fifo signals |
assign app_af_wren = (do_writeback_finished | do_readfrom_start); |
assign app_af_cmd[0] = do_readfrom_start; // 1 - read, 0 - write |
assign app_af_wren = (do_readfrom_r | do_writeback_addresses_r) & |
!app_af_afull & do_af_write ; |
assign app_af_cmd[0] = do_readfrom; // 1 - read, 0 - write |
assign app_af_cmd[2:1] = 0; |
assign app_af_addr = do_readfrom_start ? {2'd0, wb_adr_i[31:6],3'd0} : |
{2'd0,cached_addr,3'd0}; |
|
assign writeback_af_addr = {1'd0, cached_addr, addr_counter, 3'd0}; |
|
assign readfrom_af_addr = {1'd0, wb_adr_i[`DDR2_CACHE_TAG_BITS], |
addr_counter, 3'd0}; |
|
assign app_af_addr = doing_readfrom ? readfrom_af_addr : writeback_af_addr; |
assign app_wdf_wren = do_writeback_ddr2_fifo_we; |
assign app_wdf_data = ddr2_cache_data_o; |
assign app_wdf_mask_data = 0; |
|
always @(posedge wb_clk) if (wb_rst) wb_clk_r <= 0; else wb_clk_r <= ~wb_clk_r; |
always @(posedge wb_clk) |
if (wb_rst) wb_clk_r <= 0; else wb_clk_r <= ~wb_clk_r; |
always @(posedge ddr2_clk) wb_clk_in_ddr2_clk <= wb_clk_r; |
always @(posedge ddr2_clk) wb_clk_in_ddr2_clk_r <= wb_clk_in_ddr2_clk; |
|
324,43 → 508,36
ddr2_clk_phase <= 0; |
else |
ddr2_clk_phase <= ddr2_clk_phase + 1; |
|
always @(posedge ddr2_clk) |
do_writeback_ddr2_fifo_we <= (do_writeback_ddr2_shifter_r[0]) | |
(do_writeback_ddr2_shifter_r[2]) | |
(do_writeback_ddr2_shifter_r[4]) | |
(do_writeback_ddr2_shifter_r[6]); |
|
// Kick off counting when we see that the wb_clk domain is |
// doing a writeback. |
always @(posedge ddr2_clk) |
if (ddr2_rst) |
do_writeback_ddr2_shifter <= 4'h0; |
else if (|do_writeback_ddr2_shifter) |
do_writeback_ddr2_shifter <= {do_writeback_ddr2_shifter[6:0], 1'b0}; |
else if (!(|ddr2_clk_phase) & do_writeback & !ddr2_write_done) // sample WB domain |
do_writeback_ddr2_shifter <= 1; |
|
|
do_writeback_ddr2 <= 0; |
else if (&ddr2_cache_line_word_addr) |
do_writeback_ddr2 <= 0; |
else if (!(|ddr2_clk_phase) & do_writeback & // sample WB domain |
!ddr2_write_done) |
do_writeback_ddr2 <= 1; |
|
always @(posedge ddr2_clk) |
do_writeback_ddr2_shifter_r <= do_writeback_ddr2_shifter; |
if (ddr2_rst) |
ddr2_cache_line_word_addr <= 0; |
else if (rd_data_valid | (do_writeback_ddr2 & !app_wdf_afull)) |
ddr2_cache_line_word_addr <= ddr2_cache_line_word_addr + 1; |
else if (ddr2_write_done | ddr2_read_done) |
ddr2_cache_line_word_addr <= 0; |
|
always @(posedge ddr2_clk) |
do_writeback_ddr2_fifo_we <= (do_writeback_ddr2 & !app_wdf_afull); |
|
always @(posedge ddr2_clk) |
if (ddr2_rst) |
ddr2_write_done <= 0; |
else if (do_writeback_ddr2_shifter[7]) |
else if ((&ddr2_cache_line_word_addr)) |
ddr2_write_done <= 1; |
else if ((!(|ddr2_clk_phase)) & !do_writeback) // sample WB domain |
ddr2_write_done <= 0; |
|
|
always @(posedge ddr2_clk) |
if (ddr2_rst) |
ddr2_cache_addr <= 0; |
else if (rd_data_valid | do_writeback_ddr2_fifo_we) |
ddr2_cache_addr <= ddr2_cache_addr + 1; |
|
always @(posedge ddr2_clk) |
rd_data_valid_r <= rd_data_valid; |
|
// Read done signaling to WB domain |
367,23 → 544,27
always @(posedge ddr2_clk) |
if (ddr2_rst) |
ddr2_read_done <= 0; |
// Detect read data valid falling edge |
else if (!rd_data_valid & rd_data_valid_r) |
else if (rd_data_valid_r & (&ddr2_cache_line_word_addr)) |
ddr2_read_done <= 1; |
else if (!(|ddr2_clk_phase) & !do_readfrom) // Read WB domain |
ddr2_read_done <= 0; |
|
wire [3:0] wb_cache_adr; |
assign wb_cache_adr = wb_adr_i[5:2]; |
wire [3:0] wb_cache_sel_we; |
assign wb_cache_sel_we = {4{wb_we_i}} & wb_sel_i; |
wire ddr2_cache_en; |
wire [15:0] ddr2_cache_we; |
assign ddr2_cache_en = rd_data_valid | (|do_writeback_ddr2_shifter); |
// Lower word address uses potentially bursting address counter |
assign wb_cache_adr = wb_bursting ? |
{wb_adr_i[(`DDR2_CACHE_ADDR_WIDTH_WORDS_PER_LINE+2)-1:6],wb_burst_addr}: |
wb_adr_i[(`DDR2_CACHE_ADDR_WIDTH_WORDS_PER_LINE+2)-1:2]; |
|
assign wb_cache_sel_we = {4{wb_we_i & wb_ack_o}} & wb_sel_i; |
assign ddr2_cache_en = (rd_data_valid |do_writeback_ddr2); |
assign ddr2_cache_we = {16{rd_data_valid}}; |
|
always @(posedge ddr2_clk) |
if (!(|ddr2_clk_phase)) // Read WB domain |
selected_cache_line_enc_ddr2_clk <= selected_cache_line_enc; |
|
|
// Xilinx Coregen true dual-port RAMB array. |
|
// Xilinx Coregen true dual-port RAMB |
// Wishbone side : 32-bit |
// DDR2 side : 128-bit |
xilinx_ddr2_if_cache cache_mem0 |
392,7 → 573,7
.clka(wb_clk), |
.ena(wb_cache_en), |
.wea(wb_cache_sel_we), |
.addra({8'd0,wb_cache_adr}), |
.addra({2'd0, selected_cache_line_enc,wb_cache_adr}), |
.dina(wb_dat_i), |
.douta(wb_dat_o), |
|
400,91 → 581,312
.clkb(ddr2_clk), |
.enb(ddr2_cache_en), |
.web(ddr2_cache_we), |
.addrb({8'd0,ddr2_cache_addr}), |
.addrb({2'd0, selected_cache_line_enc_ddr2_clk, |
ddr2_cache_line_word_addr}), |
.dinb(rd_data_fifo_out), |
.doutb(ddr2_cache_data_o)); |
|
|
ddr2_mig # |
( |
.BANK_WIDTH (BANK_WIDTH), |
.CKE_WIDTH (CKE_WIDTH), |
.CLK_WIDTH (CLK_WIDTH), |
.COL_WIDTH (COL_WIDTH), |
.CS_NUM (CS_NUM), |
.CS_WIDTH (CS_WIDTH), |
.CS_BITS (CS_BITS), |
.DM_WIDTH (DM_WIDTH), |
.DQ_WIDTH (DQ_WIDTH), |
.DQ_PER_DQS (DQ_PER_DQS), |
.DQ_BITS (DQ_BITS), |
.DQS_WIDTH (DQS_WIDTH), |
.DQS_BITS (DQS_BITS), |
.HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE), |
.ODT_WIDTH (ODT_WIDTH), |
.ROW_WIDTH (ROW_WIDTH), |
.APPDATA_WIDTH (APPDATA_WIDTH), |
.ADDITIVE_LAT (ADDITIVE_LAT), |
.BURST_LEN (BURST_LEN), |
.BURST_TYPE (BURST_TYPE), |
.CAS_LAT (CAS_LAT), |
.ECC_ENABLE (ECC_ENABLE), |
.MULTI_BANK_EN (MULTI_BANK_EN), |
.ODT_TYPE (ODT_TYPE), |
.REDUCE_DRV (REDUCE_DRV), |
.REG_ENABLE (REG_ENABLE), |
.TREFI_NS (TREFI_NS), |
.TRAS (TRAS), |
.TRCD (TRCD), |
.TRFC (TRFC), |
.TRP (TRP), |
.TRTP (TRTP), |
.TWR (TWR), |
.TWTR (TWTR), |
.SIM_ONLY (SIM_ONLY), |
.RST_ACT_LOW (RST_ACT_LOW), |
.CLK_TYPE (CLK_TYPE), |
.DLL_FREQ_MODE (DLL_FREQ_MODE), |
.CLK_PERIOD (CLK_PERIOD) |
) |
.BANK_WIDTH (BANK_WIDTH), |
.CKE_WIDTH (CKE_WIDTH), |
.CLK_WIDTH (CLK_WIDTH), |
.COL_WIDTH (COL_WIDTH), |
.CS_NUM (CS_NUM), |
.CS_WIDTH (CS_WIDTH), |
.CS_BITS (CS_BITS), |
.DM_WIDTH (DM_WIDTH), |
.DQ_WIDTH (DQ_WIDTH), |
.DQ_PER_DQS (DQ_PER_DQS), |
.DQ_BITS (DQ_BITS), |
.DQS_WIDTH (DQS_WIDTH), |
.DQS_BITS (DQS_BITS), |
.HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE), |
.ODT_WIDTH (ODT_WIDTH), |
.ROW_WIDTH (ROW_WIDTH), |
.APPDATA_WIDTH (APPDATA_WIDTH), |
.ADDITIVE_LAT (ADDITIVE_LAT), |
.BURST_LEN (BURST_LEN), |
.BURST_TYPE (BURST_TYPE), |
.CAS_LAT (CAS_LAT), |
.ECC_ENABLE (ECC_ENABLE), |
.MULTI_BANK_EN (MULTI_BANK_EN), |
.ODT_TYPE (ODT_TYPE), |
.REDUCE_DRV (REDUCE_DRV), |
.REG_ENABLE (REG_ENABLE), |
.TREFI_NS (TREFI_NS), |
.TRAS (TRAS), |
.TRCD (TRCD), |
.TRFC (TRFC), |
.TRP (TRP), |
.TRTP (TRTP), |
.TWR (TWR), |
.TWTR (TWTR), |
.SIM_ONLY (SIM_ONLY), |
.RST_ACT_LOW (RST_ACT_LOW), |
.CLK_TYPE (CLK_TYPE), |
.DLL_FREQ_MODE (DLL_FREQ_MODE), |
.CLK_PERIOD (CLK_PERIOD) |
) |
ddr2_mig0 |
( |
.sys_clk (ddr2_if_clk), |
.idly_clk_200 (idly_clk_200), |
.sys_rst_n (ddr2_if_rst), // Act. high, sync. to ddr2_if_clk |
.ddr2_ras_n (ddr2_ras_n), |
.ddr2_cas_n (ddr2_cas_n), |
.ddr2_we_n (ddr2_we_n), |
.ddr2_cs_n (ddr2_cs_n), |
.ddr2_cke (ddr2_cke), |
.ddr2_odt (ddr2_odt), |
.ddr2_dm (ddr2_dm), |
.ddr2_dq (ddr2_dq), |
.ddr2_dqs (ddr2_dqs), |
.ddr2_dqs_n (ddr2_dqs_n), |
.ddr2_ck (ddr2_ck), |
.ddr2_ck_n (ddr2_ck_n), |
.ddr2_ba (ddr2_ba), |
.ddr2_a (ddr2_a), |
|
.sys_clk (ddr2_if_clk), |
.idly_clk_200 (idly_clk_200), |
.sys_rst_n (ddr2_if_rst), |
.ddr2_ras_n (ddr2_ras_n), |
.ddr2_cas_n (ddr2_cas_n), |
.ddr2_we_n (ddr2_we_n), |
.ddr2_cs_n (ddr2_cs_n), |
.ddr2_cke (ddr2_cke), |
.ddr2_odt (ddr2_odt), |
.ddr2_dm (ddr2_dm), |
.ddr2_dq (ddr2_dq), |
.ddr2_dqs (ddr2_dqs), |
.ddr2_dqs_n (ddr2_dqs_n), |
.ddr2_ck (ddr2_ck), |
.ddr2_ck_n (ddr2_ck_n), |
.ddr2_ba (ddr2_ba), |
.ddr2_a (ddr2_a), |
|
.clk0_tb (ddr2_clk), |
.rst0_tb (ddr2_rst), |
.usr_clk (wb_clk), |
.app_af_afull (app_af_afull), |
.app_wdf_afull (app_wdf_afull), |
.rd_data_valid (rd_data_valid), |
.rd_data_fifo_out (rd_data_fifo_out), |
.app_af_wren (app_af_wren), |
.app_af_cmd (app_af_cmd), |
.app_af_addr (app_af_addr), |
.app_wdf_wren (app_wdf_wren), |
.app_wdf_data (app_wdf_data), |
.app_wdf_mask_data (app_wdf_mask_data), |
.phy_init_done (phy_init_done) |
.usr_clk (wb_clk), |
.app_af_afull (app_af_afull), |
.app_wdf_afull (app_wdf_afull), |
.rd_data_valid (rd_data_valid), |
.rd_data_fifo_out (rd_data_fifo_out), |
.app_af_wren (app_af_wren), |
.app_af_cmd (app_af_cmd), |
.app_af_addr (app_af_addr), |
.app_wdf_wren (app_wdf_wren), |
.app_wdf_data (app_wdf_data), |
.app_wdf_mask_data (app_wdf_mask_data), |
.phy_init_done (phy_init_done) |
); |
|
|
|
endmodule // ml501_ddr2_if |
endmodule // xilinx_ddr2_if2 |
|
// Local Variables: |
// verilog-library-directories:("." "ddr2_mig") |
// verilog-library-extensions:(".v" ".h") |
// End: |
|
|
module xilinx_ddr2_wb_if_cache_adr_reg |
(adr_i, validate, invalidate, |
cached_adr_o, cache_hit, adr_valid, |
clk, rst); |
|
parameter full_adr_width = 32; |
parameter word_adr_width = 2; // 4 bytes per word |
parameter line_adr_width = 8; // 256 words per "line" |
|
parameter tag_width = full_adr_width - line_adr_width - word_adr_width; |
|
|
input [full_adr_width-1: word_adr_width + line_adr_width] adr_i; |
input validate; |
input invalidate; |
output [full_adr_width-1: word_adr_width + line_adr_width] cached_adr_o; |
output cache_hit; |
output reg adr_valid; |
|
input clk, rst; |
|
reg [tag_width-1:0] cached_adr; |
|
assign cached_adr_o = cached_adr; |
|
always @(posedge clk) |
if (rst) |
cached_adr <= 0; |
else if (validate) |
cached_adr <= adr_i; |
|
always @(posedge clk) |
if (rst) |
adr_valid <= 0; |
else if (validate) |
adr_valid <= 1; |
else if (invalidate) |
adr_valid <= 0; |
|
assign cache_hit = (adr_i == cached_adr); |
|
endmodule // xilinx_ddr2_wb_if_cache_adr_reg |
|
module xilinx_ddr2_wb_if_cache_control |
( cache_line_addr_valid, cache_line_addr_hit, |
wb_req, |
cache_write, |
writeback_done, fill_done, |
start_writeback, start_fill, |
cache_line_validate, cache_line_invalidate, |
selected_cache_line, selected_cache_line_enc, |
wb_clk, wb_rst); |
|
parameter num_lines = 16; |
parameter num_lines_log2 = 4; |
|
input [num_lines-1:0] cache_line_addr_valid; |
input [num_lines-1:0] cache_line_addr_hit; |
|
input wb_req; |
input cache_write; |
input writeback_done, fill_done; |
|
output reg start_writeback; |
output reg start_fill; |
output reg [num_lines-1:0] cache_line_validate; |
output reg [num_lines-1:0] cache_line_invalidate; |
|
output [num_lines-1:0] selected_cache_line; |
output reg [num_lines_log2-1:0] selected_cache_line_enc; |
|
input wb_clk, wb_rst; |
|
reg [num_lines-1:0] dirty; |
|
reg [num_lines-1:0] selected_cache_line_from_miss; |
|
reg selected_cache_line_new; |
|
reg invalidate_clean_line; |
|
reg [num_lines-1:0] selected_cache_line_r; |
reg [num_lines-1:0] selected_cache_line_r2; |
|
reg wb_req_r; |
|
wire wb_req_new; |
reg wb_req_new_r; |
|
always @(posedge wb_clk) |
wb_req_r <= wb_req; |
|
assign wb_req_new = wb_req & !wb_req_r; |
|
always @(posedge wb_clk) |
wb_req_new_r <= wb_req_new; |
|
// Select a cache line when we miss. Currently very simply is round robin |
always @(posedge wb_clk) |
if (wb_rst) |
selected_cache_line_from_miss <= 1; |
else if (wb_req_new_r & !(|selected_cache_line_r)) // miss,no line selected |
// Shift select bit one |
selected_cache_line_from_miss |
<= {selected_cache_line_from_miss[num_lines-2:0], |
selected_cache_line_from_miss[num_lines-1]}; |
|
|
// Line selection logic, when line address is valid and hit, we select |
always @(posedge wb_clk) |
if (wb_rst) |
selected_cache_line_r <= 0; |
else if (wb_req_new) |
selected_cache_line_r <= cache_line_addr_valid & cache_line_addr_hit; |
else if (wb_req_new_r & !(|selected_cache_line_r)) |
selected_cache_line_r <= selected_cache_line_from_miss; |
|
always @(posedge wb_clk) |
selected_cache_line_r2 <= selected_cache_line_r; |
|
assign selected_cache_line = selected_cache_line_r2; |
|
// A new line of cache has been selected |
always @(posedge wb_clk) |
if (wb_rst) |
selected_cache_line_new <= 0; |
else if (wb_req_new & (&(cache_line_addr_valid & cache_line_addr_hit))) |
// New line address selected |
selected_cache_line_new <= 1; |
else if ((!selected_cache_line_new) & wb_req_new_r) |
// Didn't select one last time, so we must have forced ourselves to |
// select a new one |
selected_cache_line_new <= 1; |
else if (selected_cache_line_new) |
selected_cache_line_new <= 0; |
|
always @(posedge wb_clk) |
if (wb_rst) |
dirty <= 0; |
else if (cache_write) |
dirty <= dirty | selected_cache_line_r; |
else if (writeback_done) |
dirty <= dirty & ~(selected_cache_line_r); |
|
// Validate the cache line address in the register when line filled |
always @(posedge wb_clk) |
if (wb_rst) |
cache_line_validate <= 0; |
else if (fill_done) |
cache_line_validate <= selected_cache_line_r; |
else if (|cache_line_validate) |
cache_line_validate <= 0; |
|
// Invalidate the cache line address in the register when line written back |
always @(posedge wb_clk) |
if (wb_rst) |
cache_line_invalidate <= 0; |
else if (writeback_done | invalidate_clean_line) |
cache_line_invalidate <= selected_cache_line_r; |
else if (|cache_line_invalidate) |
cache_line_invalidate <= 0; |
|
// Initiate-writeback logic |
always @(posedge wb_clk) |
if (wb_rst) |
start_writeback <= 0; |
else if (selected_cache_line_new & (|(dirty & selected_cache_line_r)) & |
(|(selected_cache_line_r & cache_line_addr_valid)) & |
!(|(cache_line_addr_hit & selected_cache_line_r))) |
start_writeback <= 1; |
else if (start_writeback) |
start_writeback <= 0; |
|
// Invalidate lines which we haven't written to so we can fill them |
always @(posedge wb_clk) |
if (wb_rst) |
invalidate_clean_line <= 0; |
else if (invalidate_clean_line) |
invalidate_clean_line <= 0; |
else if ((selected_cache_line_new) & // New line selected |
!(|(dirty & selected_cache_line_r)) & // It's not dirty |
// It's valid, but we've selected it so we're trashing it |
(|(selected_cache_line_r & cache_line_addr_valid)) & |
!(|(cache_line_addr_hit & selected_cache_line_r))) // Not a hit |
invalidate_clean_line <= 1; |
|
reg invalidate_clean_line_r; |
always @(posedge wb_clk) |
invalidate_clean_line_r <= invalidate_clean_line; |
|
|
// Initiate-fill logic |
always @(posedge wb_clk) |
if (wb_rst) |
start_fill <= 0; |
else if (((selected_cache_line_new) & // New line selected |
// not valid |
!(|(cache_line_addr_valid & selected_cache_line_r))) | |
writeback_done | invalidate_clean_line_r |
) |
start_fill <= 1; |
else if (start_fill) |
start_fill <= 0; |
|
// Relies on there only being 4 lines |
always @(posedge wb_clk) |
if (selected_cache_line_r[0]) |
selected_cache_line_enc <= 0; |
else if (selected_cache_line_r[1]) |
selected_cache_line_enc <= 1; |
else if (selected_cache_line_r[2]) |
selected_cache_line_enc <= 2; |
else if (selected_cache_line_r[3]) |
selected_cache_line_enc <= 3; |
|
|
endmodule // xilinx_ddr2_wb_if_cache_control |
/backend/par/bin/ml501.ucf
707,9 → 707,9
## DDR2 clock domain nets |
NET "*/xilinx_ddr2_if0/ddr2_read_done" TNM_NET = "DDR2_READ_DONE_GRP"; |
NET "*/xilinx_ddr2_if0/ddr2_write_done" TNM_NET = "DDR2_WRITE_DONE_GRP"; |
NET "*/xilinx_ddr2_if0/do_writeback_ddr2_shifter*" TNM_NET = "DDR2_WRITEBACK_SHIFTER"; |
|
TIMEGRP "DDR2_MC_REGS" = "DDR2_READ_DONE_GRP" "DDR2_WRITE_DONE_GRP" "DDR2_WRITEBACK_SHIFTER"; |
|
TIMEGRP "DDR2_MC_REGS" = "DDR2_READ_DONE_GRP" "DDR2_WRITE_DONE_GRP"; |
## System bus (wishbone) domain nets |
NET "*/xilinx_ddr2_if0/do_writeback*" TNM_NET = "WB_DO_WRITEBACK"; |
NET "*/xilinx_ddr2_if0/do_readfrom*" TNM_NET = "WB_DO_READFROM"; |
/backend/par/bin/Makefile
187,7 → 187,7
|
|
clean: |
$(Q)rm -rf *.* |
$(Q)rm -rf *.* xlnx_auto* |
|
clean-syn: |
$(Q)$(MAKE) -C $(SYN_RUN_DIR) distclean |
/sim/bin/Makefile
162,6 → 162,7
BOOTROM_SRC=$(shell ls $(BOARD_BOOTROM_SW_DIR)/* | grep -v $(BOOTROM_FILE)) |
BOOTROM_VERILOG=$(BOARD_BOOTROM_SW_DIR)/$(BOOTROM_FILE) |
|
.phony: $(BOOTROM_VERILOG) |
bootrom: $(BOOTROM_VERILOG) |
|
$(BOOTROM_VERILOG): $(BOOTROM_SRC) |
/sw/board/include/board.h
9,11 → 9,14
// Uncomment the appropriate bootloader define. This will effect the bootrom.S |
// file, which is compiled and converted into Verilog for inclusion at |
// synthesis time. See bootloader/bootloader.S for details on each option. |
|
#ifndef PRELOAD_RAM |
#define BOOTROM_SPI_FLASH |
//#define BOOTROM_GOTO_RESET |
//#define BOOTROM_LOOP_AT_ZERO |
//#define BOOTROM_LOOP_IN_ROM |
#else |
#define BOOTROM_GOTO_RESET |
#endif |
|
// Address bootloader should start from in FLASH |
// Last 256KB of 2MB flash - offset 0x1c0000 (2MB-256KB) |