URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
Compare Revisions
- This comparison shows the changes necessary to convert path
/openrisc/trunk/orpsocv2/boards
- from Rev 71 to Rev 360
- ↔ Reverse comparison
Rev 71 → Rev 360
/xilinx/ml501/bench/WireDelay.v
File deleted
/xilinx/ml501/bench/ml501_testbench_defines.v
File deleted
\ No newline at end of file
/xilinx/ml501/bench/ml501_testbench.v
File deleted
/xilinx/ml501/bench/verilog/ddr2_model.v
0,0 → 1,2024
/**************************************************************************************** |
* |
* File Name: ddr2.v |
* Version: 5.80 |
* Model: BUS Functional |
* |
* Dependencies: ddr2_parameters.vh |
* |
* Description: Micron SDRAM DDR2 (Double Data Rate 2) |
* |
* Limitation: - doesn't check for average refresh timings |
* - positive ck and ck_n edges are used to form internal clock |
* - positive dqs and dqs_n edges are used to latch data |
* - test mode is not modeled |
* |
* Note: - Set simulator resolution to "ps" accuracy |
* - Set Debug = 0 to disable $display messages |
* |
* Disclaimer This software code and all associated documentation, comments or other |
* of Warranty: information (collectively "Software") is provided "AS IS" without |
* warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY |
* DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED |
* TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES |
* OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT |
* WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE |
* OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE. |
* FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR |
* THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, |
* ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE |
* OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI, |
* ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT, |
* INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, |
* WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, |
* OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE |
* THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH |
* DAMAGES. Because some jurisdictions prohibit the exclusion or |
* limitation of liability for consequential or incidental damages, the |
* above limitation may not apply to you. |
* |
* Copyright 2003 Micron Technology, Inc. All rights reserved. |
* |
* Rev Author Date Changes |
* --------------------------------------------------------------------------------------- |
* 1.00 JMK 07/29/03 Initial Release |
* 1.10 JMK 08/09/03 Timing Parameter updates to tIS, tIH, tDS, tDH |
* 2.20 JMK 08/07/03 General cleanup |
* 2.30 JMK 11/26/03 Added CL_MIN, CL_MAX, wl_min and wl_max parameters. |
* Added AL_MIN and AL_MAX parameters. |
* Removed support for OCD. |
* 2.40 JMK 01/15/04 Removed verilog 2001 constructs. |
* 2.50 JMK 01/29/04 Removed tRP checks during Precharge command. |
* 2.60 JMK 04/20/04 Fixed tWTR check. |
* 2.70 JMK 04/30/04 Added tRFC maximum check. |
* Combined Self Refresh and Power Down always blocks. |
* Added Reset Function (CKE LOW Anytime). |
* 2.80 JMK 08/19/04 Precharge is treated as NOP when bank is not active. |
* Added checks for tRAS, tWR, tRTP to any bank during Pre-All. |
* tRFC maximum violation will only display one time. |
* 2.90 JMK 11/05/04 Fixed DQS checking during write. |
* Fixed false tRFC max assertion during power up and self ref. |
* Added warning for 200us CKE low time during initialization. |
* Added -3, -3E, and -37V speed grades to ddr2_parameters.v |
* 3.00 JMK 04/22/05 Removed ODT off requirement during power down. |
* Added tAOND, tAOFD, tANPD, tAXPD, tAONPD, and tAOFPD parameters. |
* Added ODT status messages. |
* Updated the initialization sequence. |
* Disable ODT and CLK pins during self refresh. |
* Disable cmd and addr pins during power down and self refresh. |
* 3.10 JMK 06/07/05 Disable trpa checking if the part does not have 8 banks. |
* Changed tAXPD message from error to a warning. |
* Added tDSS checking. |
* Removed tDQSL checking during tWPRE and tWPST. |
* Fixed a burst order error during writes. |
* Renamed parameters file with .vh extension. |
* 3.20 JMK 07/18/05 Removed 14 tCK requirement from LMR to READ. |
* 3.30 JMK 08/03/05 Added check for interrupting a burst with auto precharge. |
* 4.00 JMK 11/21/05 Parameter names all UPPERCASE, signal names all lowercase. |
* Clock jitter can be tolerated within specification range. |
* Clock frequency is sampled from the CK pin. |
* Scaleable up to 64 DQ and 16 DQS bits. |
* Read data can be randomly skewed using RANDOM_OUT_DELAY. |
* Parameterized read and write DQS, and read DQ. |
* Initialization can be bypassed using initialize task. |
* 4.10 JMK 11/30/05 Fixed compile errors when `MAX_MEM was defined. |
* 4.20 JMK 12/09/05 Fixed memory addressing error when `MAX_MEM was defined. |
* 4.30 JMK 02/15/06 Added dummy write to initialization sequence. |
* Removed tWPST maximum checking. |
* Rising dqs_n edge latches data when enabled in EMR. |
* Fixed a sign error in the tJIT(cc) calculation. |
* 4.40 JMK 02/16/06 Fixed dummy write when`MAX_MEM was defined. |
* 4.50 JMK 02/27/06 Fixed extra tDQSS assertions. |
* Fixed tRCD and tWTR checking. |
* Errors entering Power Down or Self Refresh will cause reset. |
* Ignore dqs_n when disabled in EMR. |
* 5.00 JMK 04/24/06 Test stimulus now included from external file (subtest.vh) |
* Fixed tRFC max assertion during self refresh. |
* Fixed tANPD checking during Power Down. |
* Removed dummy write from initialization sequence. |
* 5.01 JMK 04/28/06 Fixed Auto Precharge to Load Mode, Refresh and Self Refresh. |
* Removed Auto Precharge error message during Power Down Enter. |
* 5.10 JMK 07/26/06 Created internal clock using ck and ck_n. |
* RDQS can only be enabled in EMR for x8 configurations. |
* CAS latency is checked vs frequency when DLL locks. |
* tMOD changed from tCK units to ns units. |
* Added 50 Ohm setting for Rtt in EMR. |
* Improved checking of DQS during writes. |
* 5.20 JMK 10/02/06 Fixed DQS checking for interrupting write to write and x16. |
* 5.30 JMK 05/25/07 Fixed checking for 0-Z transition on write postamble. |
* 5.50 JMK 05/30/08 Renamed ddr2_dimm.v to ddr2_module.v and added SODIMM support. |
* Added a register delay to ddr2_module.v when RDIMM is defined. |
* Added multi-chip package model support in ddr2_mcp.v |
* Added High Temp Self Refresh rate setting in EMRS2[7] |
* 5.70 JMK 04/23/09 Updated tRPA definition |
* Increased internal width to 72 bit DQ bus |
* 5.80 SPH 08/12/09 Fixed tRAS maximum violation (only check if bank still open) |
****************************************************************************************/ |
|
// DO NOT CHANGE THE TIMESCALE |
// MAKE SURE YOUR SIMULATOR USES "PS" RESOLUTION |
`timescale 1ps / 1ps |
|
module ddr2_model ( |
ck, |
ck_n, |
cke, |
cs_n, |
ras_n, |
cas_n, |
we_n, |
dm_rdqs, |
ba, |
addr, |
dq, |
dqs, |
dqs_n, |
rdqs_n, |
odt |
); |
|
`include "ddr2_model_parameters.vh" |
|
// text macros |
`define DQ_PER_DQS DQ_BITS/DQS_BITS |
`define BANKS (1<<BA_BITS) |
`define MAX_BITS (BA_BITS+ROW_BITS+COL_BITS-BL_BITS) |
`define MAX_SIZE (1<<(BA_BITS+ROW_BITS+COL_BITS-BL_BITS)) |
`define MEM_SIZE (1<<MEM_BITS) |
`define MAX_PIPE 2*(AL_MAX + CL_MAX) |
|
// Declare Ports |
input ck; |
input ck_n; |
input cke; |
input cs_n; |
input ras_n; |
input cas_n; |
input we_n; |
inout [DM_BITS-1:0] dm_rdqs; |
input [BA_BITS-1:0] ba; |
input [ADDR_BITS-1:0] addr; |
inout [DQ_BITS-1:0] dq; |
inout [DQS_BITS-1:0] dqs; |
inout [DQS_BITS-1:0] dqs_n; |
output [DQS_BITS-1:0] rdqs_n; |
input odt; |
|
// clock jitter |
real tck_avg; |
time tck_sample [TDLLK-1:0]; |
time tch_sample [TDLLK-1:0]; |
time tcl_sample [TDLLK-1:0]; |
time tck_i; |
time tch_i; |
time tcl_i; |
real tch_avg; |
real tcl_avg; |
time tm_ck_pos; |
time tm_ck_neg; |
real tjit_per_rtime; |
integer tjit_cc_time; |
real terr_nper_rtime; |
|
// clock skew |
real out_delay; |
integer dqsck [DQS_BITS-1:0]; |
integer dqsck_min; |
integer dqsck_max; |
integer dqsq_min; |
integer dqsq_max; |
integer seed; |
|
// Mode Registers |
reg burst_order; |
reg [BL_BITS:0] burst_length; |
integer cas_latency; |
integer additive_latency; |
reg dll_reset; |
reg dll_locked; |
reg dll_en; |
integer write_recovery; |
reg low_power; |
reg [1:0] odt_rtt; |
reg odt_en; |
reg [2:0] ocd; |
reg dqs_n_en; |
reg rdqs_en; |
reg out_en; |
integer read_latency; |
integer write_latency; |
|
// cmd encoding |
parameter LOAD_MODE = 4'b0000; |
parameter REFRESH = 4'b0001; |
parameter PRECHARGE = 4'b0010; |
parameter ACTIVATE = 4'b0011; |
parameter WRITE = 4'b0100; |
parameter READ = 4'b0101; |
parameter NOP = 4'b0111; |
parameter PWR_DOWN = 4'b1000; |
parameter SELF_REF = 4'b100; |
|
|
reg [8*9-1:0] cmd_string [9:0]; |
initial begin |
cmd_string[LOAD_MODE] = "Load Mode"; |
cmd_string[REFRESH ] = "Refresh "; |
cmd_string[PRECHARGE] = "Precharge"; |
cmd_string[ACTIVATE ] = "Activate "; |
cmd_string[WRITE ] = "Write "; |
cmd_string[READ ] = "Read "; |
cmd_string[NOP ] = "No Op "; |
cmd_string[PWR_DOWN ] = "Pwr Down "; |
cmd_string[SELF_REF ] = "Self Ref "; |
end |
|
// command state |
reg [`BANKS-1:0] active_bank; |
reg [`BANKS-1:0] auto_precharge_bank; |
reg [`BANKS-1:0] write_precharge_bank; |
reg [`BANKS-1:0] read_precharge_bank; |
reg [ROW_BITS-1:0] active_row [`BANKS-1:0]; |
reg in_power_down; |
reg in_self_refresh; |
reg [3:0] init_mode_reg; |
reg init_done; |
integer init_step; |
reg er_trfc_max; |
reg odt_state; |
reg prev_odt; |
|
// cmd timers/counters |
integer ref_cntr; |
integer ck_cntr; |
integer ck_load_mode; |
integer ck_write; |
integer ck_read; |
integer ck_write_ap; |
integer ck_power_down; |
integer ck_slow_exit_pd; |
integer ck_self_refresh; |
integer ck_cke; |
integer ck_odt; |
integer ck_dll_reset; |
integer ck_bank_write [`BANKS-1:0]; |
integer ck_bank_read [`BANKS-1:0]; |
time tm_refresh; |
time tm_precharge; |
time tm_precharge_all; |
time tm_activate; |
time tm_write_end; |
time tm_self_refresh; |
time tm_odt_en; |
time tm_bank_precharge [`BANKS-1:0]; |
time tm_bank_activate [`BANKS-1:0]; |
time tm_bank_write_end [`BANKS-1:0]; |
time tm_bank_read_end [`BANKS-1:0]; |
|
// pipelines |
reg [`MAX_PIPE:0] al_pipeline; |
reg [`MAX_PIPE:0] wr_pipeline; |
reg [`MAX_PIPE:0] rd_pipeline; |
reg [`MAX_PIPE:0] odt_pipeline; |
reg [BA_BITS-1:0] ba_pipeline [`MAX_PIPE:0]; |
reg [ROW_BITS-1:0] row_pipeline [`MAX_PIPE:0]; |
reg [COL_BITS-1:0] col_pipeline [`MAX_PIPE:0]; |
reg prev_cke; |
|
// data state |
reg [BL_MAX*DQ_BITS-1:0] memory_data; |
reg [BL_MAX*DQ_BITS-1:0] bit_mask; |
reg [BL_BITS-1:0] burst_position; |
reg [BL_BITS:0] burst_cntr; |
reg [DQ_BITS-1:0] dq_temp; |
reg [35:0] check_write_postamble; |
reg [35:0] check_write_preamble; |
reg [35:0] check_write_dqs_high; |
reg [35:0] check_write_dqs_low; |
reg [17:0] check_dm_tdipw; |
reg [71:0] check_dq_tdipw; |
|
// data timers/counters |
time tm_cke; |
time tm_odt; |
time tm_tdqss; |
time tm_dm [17:0]; |
time tm_dqs [17:0]; |
time tm_dqs_pos [35:0]; |
time tm_dqss_pos [35:0]; |
time tm_dqs_neg [35:0]; |
time tm_dq [71:0]; |
time tm_cmd_addr [22:0]; |
reg [8*7-1:0] cmd_addr_string [22:0]; |
initial begin |
cmd_addr_string[ 0] = "CS_N "; |
cmd_addr_string[ 1] = "RAS_N "; |
cmd_addr_string[ 2] = "CAS_N "; |
cmd_addr_string[ 3] = "WE_N "; |
cmd_addr_string[ 4] = "BA 0 "; |
cmd_addr_string[ 5] = "BA 1 "; |
cmd_addr_string[ 6] = "BA 2 "; |
cmd_addr_string[ 7] = "ADDR 0"; |
cmd_addr_string[ 8] = "ADDR 1"; |
cmd_addr_string[ 9] = "ADDR 2"; |
cmd_addr_string[10] = "ADDR 3"; |
cmd_addr_string[11] = "ADDR 4"; |
cmd_addr_string[12] = "ADDR 5"; |
cmd_addr_string[13] = "ADDR 6"; |
cmd_addr_string[14] = "ADDR 7"; |
cmd_addr_string[15] = "ADDR 8"; |
cmd_addr_string[16] = "ADDR 9"; |
cmd_addr_string[17] = "ADDR 10"; |
cmd_addr_string[18] = "ADDR 11"; |
cmd_addr_string[19] = "ADDR 12"; |
cmd_addr_string[20] = "ADDR 13"; |
cmd_addr_string[21] = "ADDR 14"; |
cmd_addr_string[22] = "ADDR 15"; |
end |
|
reg [8*5-1:0] dqs_string [1:0]; |
initial begin |
dqs_string[0] = "DQS "; |
dqs_string[1] = "DQS_N"; |
end |
|
// Memory Storage |
`ifdef MAX_MEM |
reg [BL_MAX*DQ_BITS-1:0] memory [0:`MAX_SIZE-1]; |
`else |
reg [BL_MAX*DQ_BITS-1:0] memory [0:`MEM_SIZE-1]; |
reg [`MAX_BITS-1:0] address [0:`MEM_SIZE-1]; |
reg [MEM_BITS:0] memory_index; |
reg [MEM_BITS:0] memory_used; |
`endif |
|
// receive |
reg ck_in; |
reg ck_n_in; |
reg cke_in; |
reg cs_n_in; |
reg ras_n_in; |
reg cas_n_in; |
reg we_n_in; |
reg [17:0] dm_in; |
reg [2:0] ba_in; |
reg [15:0] addr_in; |
reg [71:0] dq_in; |
reg [35:0] dqs_in; |
reg odt_in; |
|
reg [17:0] dm_in_pos; |
reg [17:0] dm_in_neg; |
reg [71:0] dq_in_pos; |
reg [71:0] dq_in_neg; |
reg dq_in_valid; |
reg dqs_in_valid; |
integer wdqs_cntr; |
integer wdq_cntr; |
integer wdqs_pos_cntr [35:0]; |
reg b2b_write; |
reg [35:0] prev_dqs_in; |
reg diff_ck; |
|
always @(ck ) ck_in <= #BUS_DELAY ck; |
always @(ck_n ) ck_n_in <= #BUS_DELAY ck_n; |
always @(cke ) cke_in <= #BUS_DELAY cke; |
always @(cs_n ) cs_n_in <= #BUS_DELAY cs_n; |
always @(ras_n ) ras_n_in <= #BUS_DELAY ras_n; |
always @(cas_n ) cas_n_in <= #BUS_DELAY cas_n; |
always @(we_n ) we_n_in <= #BUS_DELAY we_n; |
always @(dm_rdqs) dm_in <= #BUS_DELAY dm_rdqs; |
always @(ba ) ba_in <= #BUS_DELAY ba; |
always @(addr ) addr_in <= #BUS_DELAY addr; |
always @(dq ) dq_in <= #BUS_DELAY dq; |
always @(dqs or dqs_n) dqs_in <= #BUS_DELAY (dqs_n<<18) | dqs; |
always @(odt ) odt_in <= #BUS_DELAY odt; |
// create internal clock |
always @(posedge ck_in) diff_ck <= ck_in; |
always @(posedge ck_n_in) diff_ck <= ~ck_n_in; |
|
wire [17:0] dqs_even = dqs_in[17:0]; |
wire [17:0] dqs_odd = dqs_n_en ? dqs_in[35:18] : ~dqs_in[17:0]; |
wire [3:0] cmd_n_in = !cs_n_in ? {ras_n_in, cas_n_in, we_n_in} : NOP; //deselect = nop |
|
// transmit |
reg dqs_out_en; |
reg [DQS_BITS-1:0] dqs_out_en_dly; |
reg dqs_out; |
reg [DQS_BITS-1:0] dqs_out_dly; |
reg dq_out_en; |
reg [DQ_BITS-1:0] dq_out_en_dly; |
reg [DQ_BITS-1:0] dq_out; |
reg [DQ_BITS-1:0] dq_out_dly; |
integer rdqsen_cntr; |
integer rdqs_cntr; |
integer rdqen_cntr; |
integer rdq_cntr; |
|
bufif1 buf_dqs [DQS_BITS-1:0] (dqs, dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}}); |
bufif1 buf_dm [DM_BITS-1:0] (dm_rdqs, dqs_out_dly, dqs_out_en_dly & {DM_BITS {out_en}} & {DM_BITS{rdqs_en}}); |
bufif1 buf_dqs_n [DQS_BITS-1:0] (dqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}} & {DQS_BITS{dqs_n_en}}); |
bufif1 buf_rdqs_n [DQS_BITS-1:0] (rdqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}} & {DQS_BITS{dqs_n_en}} & {DQS_BITS{rdqs_en}}); |
bufif1 buf_dq [DQ_BITS-1:0] (dq, dq_out_dly, dq_out_en_dly & {DQ_BITS {out_en}}); |
|
initial begin |
if (BL_MAX < 2) |
$display("%m ERROR: BL_MAX parameter must be >= 2. \nBL_MAX = %d", BL_MAX); |
if ((1<<BO_BITS) > BL_MAX) |
$display("%m ERROR: 2^BO_BITS cannot be greater than BL_MAX parameter."); |
$timeformat (-12, 1, " ps", 1); |
reset_task; |
seed = RANDOM_SEED; |
ck_cntr = 0; |
end |
|
// calculate the absolute value of a real number |
function real abs_value; |
input arg; |
real arg; |
begin |
if (arg < 0.0) |
abs_value = -1.0 * arg; |
else |
abs_value = arg; |
end |
endfunction |
|
`ifdef MAX_MEM |
`else |
function get_index; |
input [`MAX_BITS-1:0] addr; |
begin : index |
get_index = 0; |
for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin |
if (address[memory_index] == addr) begin |
get_index = 1; |
disable index; |
end |
end |
end |
endfunction |
`endif |
|
task memory_write; |
input [BA_BITS-1:0] bank; |
input [ROW_BITS-1:0] row; |
input [COL_BITS-1:0] col; |
input [BL_MAX*DQ_BITS-1:0] data; |
reg [`MAX_BITS-1:0] addr; |
begin |
// chop off the lowest address bits |
addr = {bank, row, col}/BL_MAX; |
`ifdef MAX_MEM |
memory[addr] = data; |
`else |
if (get_index(addr)) begin |
address[memory_index] = addr; |
memory[memory_index] = data; |
end else if (memory_used == `MEM_SIZE) begin |
$display ("%m: at time %t ERROR: Memory overflow. Write to Address %h with Data %h will be lost.\nYou must increase the MEM_BITS parameter or define MAX_MEM.", $time, addr, data); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
address[memory_used] = addr; |
memory[memory_used] = data; |
memory_used = memory_used + 1; |
end |
`endif |
end |
endtask |
|
task memory_read; |
input [BA_BITS-1:0] bank; |
input [ROW_BITS-1:0] row; |
input [COL_BITS-1:0] col; |
output [BL_MAX*DQ_BITS-1:0] data; |
reg [`MAX_BITS-1:0] addr; |
begin |
// chop off the lowest address bits |
addr = {bank, row, col}/BL_MAX; |
`ifdef MAX_MEM |
data = memory[addr]; |
`else |
if (get_index(addr)) begin |
data = memory[memory_index]; |
end else begin |
data = {BL_MAX*DQ_BITS{1'bx}}; |
end |
`endif |
end |
endtask |
|
// Before this task runs, the model must be in a valid state for precharge power down. |
// After this task runs, NOP commands must be issued until tRFC has been met |
task initialize; |
input [ADDR_BITS-1:0] mode_reg0; |
input [ADDR_BITS-1:0] mode_reg1; |
input [ADDR_BITS-1:0] mode_reg2; |
input [ADDR_BITS-1:0] mode_reg3; |
begin |
if (DEBUG) $display ("%m: at time %t INFO: Performing Initialization Sequence", $time); |
cmd_task(1, NOP, 'bx, 'bx); |
cmd_task(1, PRECHARGE, 'bx, 1<<AP); // Precharege ALL |
cmd_task(1, LOAD_MODE, 3, mode_reg3); |
cmd_task(1, LOAD_MODE, 2, mode_reg2); |
cmd_task(1, LOAD_MODE, 1, mode_reg1); |
cmd_task(1, LOAD_MODE, 0, mode_reg0 | 'h100); // DLL Reset |
cmd_task(1, PRECHARGE, 'bx, 1<<AP); // Precharege ALL |
cmd_task(1, REFRESH, 'bx, 'bx); |
cmd_task(1, REFRESH, 'bx, 'bx); |
cmd_task(1, LOAD_MODE, 0, mode_reg0); |
cmd_task(1, LOAD_MODE, 1, mode_reg1 | 'h380); // OCD Default |
cmd_task(1, LOAD_MODE, 1, mode_reg1); |
cmd_task(0, NOP, 'bx, 'bx); |
end |
endtask |
|
task reset_task; |
integer i; |
begin |
// disable inputs |
dq_in_valid = 0; |
dqs_in_valid <= 0; |
wdqs_cntr = 0; |
wdq_cntr = 0; |
for (i=0; i<36; i=i+1) begin |
wdqs_pos_cntr[i] <= 0; |
end |
b2b_write <= 0; |
// disable outputs |
out_en = 0; |
dqs_n_en = 0; |
rdqs_en = 0; |
dq_out_en = 0; |
rdq_cntr = 0; |
dqs_out_en = 0; |
rdqs_cntr = 0; |
// disable ODT |
odt_en = 0; |
odt_state = 0; |
// reset bank state |
active_bank = {`BANKS{1'b1}}; |
auto_precharge_bank = 0; |
read_precharge_bank = 0; |
write_precharge_bank = 0; |
// require initialization sequence |
init_done = 0; |
init_step = 0; |
init_mode_reg = 0; |
// reset DLL |
dll_en = 0; |
dll_reset = 0; |
dll_locked = 0; |
ocd = 0; |
// exit power down and self refresh |
in_power_down = 0; |
in_self_refresh = 0; |
// clear pipelines |
al_pipeline = 0; |
wr_pipeline = 0; |
rd_pipeline = 0; |
odt_pipeline = 0; |
// clear memory |
`ifdef MAX_MEM |
for (i=0; i<=`MAX_SIZE; i=i+1) begin //erase memory ... one address at a time |
memory[i] <= 'bx; |
end |
`else |
memory_used <= 0; //erase memory |
`endif |
// clear maximum timing checks |
tm_refresh <= 'bx; |
for (i=0; i<`BANKS; i=i+1) begin |
tm_bank_activate[i] <= 'bx; |
end |
end |
endtask |
|
task chk_err; |
input samebank; |
input [BA_BITS-1:0] bank; |
input [3:0] fromcmd; |
input [3:0] cmd; |
reg err; |
begin |
// all matching case expressions will be evaluated |
casex ({samebank, fromcmd, cmd}) |
{1'b0, LOAD_MODE, 4'b0xxx } : begin if (ck_cntr - ck_load_mode < TMRD) $display ("%m: at time %t ERROR: tMRD violation during %s", $time, cmd_string[cmd]); end |
{1'b0, LOAD_MODE, 4'b100x } : begin if (ck_cntr - ck_load_mode < TMRD) begin $display ("%m: at time %t INFO: Load Mode to Reset condition.", $time); init_done = 0; end end |
{1'b0, REFRESH , 4'b0xxx } : begin if ($time - tm_refresh < TRFC_MIN) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]); end |
{1'b0, REFRESH , PWR_DOWN } : ; // 1 tCK |
{1'b0, REFRESH , SELF_REF } : begin if ($time - tm_refresh < TRFC_MIN) begin $display ("%m: at time %t INFO: Refresh to Reset condition", $time); init_done = 0; end end |
{1'b0, PRECHARGE, 4'b000x } : begin if ($time - tm_precharge_all < TRPA) $display ("%m: at time %t ERROR: tRPA violation during %s", $time, cmd_string[cmd]); |
if ($time - tm_precharge < TRP) $display ("%m: at time %t ERROR: tRP violation during %s", $time, cmd_string[cmd]); end |
{1'b1, PRECHARGE, PRECHARGE} : begin if (DEBUG && ($time - tm_precharge_all < TRPA)) $display ("%m: at time %t INFO: Precharge All interruption during %s", $time, cmd_string[cmd]); |
if (DEBUG && ($time - tm_bank_precharge[bank] < TRP)) $display ("%m: at time %t INFO: Precharge bank %d interruption during %s", $time, cmd_string[cmd], bank); end |
{1'b1, PRECHARGE, ACTIVATE } : begin if ($time - tm_precharge_all < TRPA) $display ("%m: at time %t ERROR: tRPA violation during %s", $time, cmd_string[cmd]); |
if ($time - tm_bank_precharge[bank] < TRP) $display ("%m: at time %t ERROR: tRP violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b0, PRECHARGE, PWR_DOWN } : ; //1 tCK, can be concurrent with auto precharge |
{1'b0, PRECHARGE, SELF_REF } : begin if (($time - tm_precharge_all < TRPA) || ($time - tm_precharge < TRP)) begin $display ("%m: at time %t INFO: Precharge to Reset condition", $time); init_done = 0; end end |
{1'b0, ACTIVATE , REFRESH } : begin if ($time - tm_activate < TRC) $display ("%m: at time %t ERROR: tRC violation during %s", $time, cmd_string[cmd]); end |
{1'b1, ACTIVATE , PRECHARGE} : begin if (($time - tm_bank_activate[bank] > TRAS_MAX) && (active_bank[bank] === 1'b1)) $display ("%m: at time %t ERROR: tRAS maximum violation during %s to bank %d", $time, cmd_string[cmd], bank); |
if ($time - tm_bank_activate[bank] < TRAS_MIN) $display ("%m: at time %t ERROR: tRAS minimum violation during %s to bank %d", $time, cmd_string[cmd], bank);end |
{1'b0, ACTIVATE , ACTIVATE } : begin if ($time - tm_activate < TRRD) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b1, ACTIVATE , ACTIVATE } : begin if ($time - tm_bank_activate[bank] < TRC) $display ("%m: at time %t ERROR: tRC violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b1, ACTIVATE , 4'b010x } : ; // tRCD is checked outside this task |
{1'b1, ACTIVATE , PWR_DOWN } : ; // 1 tCK |
{1'b1, WRITE , PRECHARGE} : begin if ((ck_cntr - ck_bank_write[bank] <= write_latency + burst_length/2) || ($time - tm_bank_write_end[bank] < TWR)) $display ("%m: at time %t ERROR: tWR violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b0, WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b0, WRITE , READ } : begin if ((ck_load_mode < ck_write) && (ck_cntr - ck_write < write_latency + burst_length/2 + 2 - additive_latency)) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b0, WRITE , PWR_DOWN } : begin if ((ck_load_mode < ck_write) && ( |
|write_precharge_bank |
|| (ck_cntr - ck_write_ap < 1) |
|| (ck_cntr - ck_write < write_latency + burst_length/2 + 2) |
|| ($time - tm_write_end < TWTR))) begin $display ("%m: at time %t INFO: Write to Reset condition", $time); init_done = 0; end end |
{1'b1, READ , PRECHARGE} : begin if ((ck_cntr - ck_bank_read[bank] < additive_latency + burst_length/2) || ($time - tm_bank_read_end[bank] < TRTP)) $display ("%m: at time %t ERROR: tRTP violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b0, READ , WRITE } : begin if ((ck_load_mode < ck_read) && (ck_cntr - ck_read < read_latency + burst_length/2 + 1 - write_latency)) $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b0, READ , READ } : begin if (ck_cntr - ck_read < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end |
{1'b0, READ , PWR_DOWN } : begin if ((ck_load_mode < ck_read) && (ck_cntr - ck_read < read_latency + burst_length/2 + 1)) begin $display ("%m: at time %t INFO: Read to Reset condition", $time); init_done = 0; end end |
{1'b0, PWR_DOWN , 4'b00xx } : begin if (ck_cntr - ck_power_down < TXP) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end |
{1'b0, PWR_DOWN , WRITE } : begin if (ck_cntr - ck_power_down < TXP) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end |
{1'b0, PWR_DOWN , READ } : begin if (ck_cntr - ck_slow_exit_pd < TXARDS - additive_latency) $display ("%m: at time %t ERROR: tXARDS violation during %s", $time, cmd_string[cmd]); |
else if (ck_cntr - ck_power_down < TXARD) $display ("%m: at time %t ERROR: tXARD violation during %s", $time, cmd_string[cmd]); end |
{1'b0, SELF_REF , 4'b00xx } : begin if ($time - tm_self_refresh < TXSNR) $display ("%m: at time %t ERROR: tXSNR violation during %s", $time, cmd_string[cmd]); end |
{1'b0, SELF_REF , WRITE } : begin if ($time - tm_self_refresh < TXSNR) $display ("%m: at time %t ERROR: tXSNR violation during %s", $time, cmd_string[cmd]); end |
{1'b0, SELF_REF , READ } : begin if (ck_cntr - ck_self_refresh < TXSRD) $display ("%m: at time %t ERROR: tXSRD violation during %s", $time, cmd_string[cmd]); end |
{1'b0, 4'b100x , 4'b100x } : begin if (ck_cntr - ck_cke < TCKE) begin $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); init_done = 0; end end |
endcase |
end |
endtask |
|
task cmd_task; |
input cke; |
input [2:0] cmd; |
input [BA_BITS-1:0] bank; |
input [ADDR_BITS-1:0] addr; |
reg [`BANKS:0] i; |
integer j; |
reg [`BANKS:0] tfaw_cntr; |
reg [COL_BITS-1:0] col; |
begin |
|
// tRFC max check |
if (!er_trfc_max && !in_self_refresh) begin |
if ($time - tm_refresh > TRFC_MAX) begin |
$display ("%m: at time %t ERROR: tRFC maximum violation during %s", $time, cmd_string[cmd]); |
er_trfc_max = 1; |
end |
end |
if (cke) begin |
if ((cmd < NOP) && ((cmd != PRECHARGE) || !addr[AP])) begin |
for (j=0; j<NOP; j=j+1) begin |
chk_err(1'b0, bank, j, cmd); |
chk_err(1'b1, bank, j, cmd); |
end |
chk_err(1'b0, bank, PWR_DOWN, cmd); |
chk_err(1'b0, bank, SELF_REF, cmd); |
end |
|
case (cmd) |
LOAD_MODE : begin |
if (|active_bank) begin |
$display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d", $time, cmd_string[cmd], bank); |
case (bank) |
0 : begin |
// Burst Length |
burst_length = 1<<addr[2:0]; |
if ((burst_length >= BL_MIN) && (burst_length <= BL_MAX)) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = %d", $time, cmd_string[cmd], bank, burst_length); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal Burst Length = %d", $time, cmd_string[cmd], bank, burst_length); |
end |
// Burst Order |
burst_order = addr[3]; |
if (!burst_order) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Sequential", $time, cmd_string[cmd], bank); |
end else if (burst_order) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Interleaved", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal Burst Order = %d", $time, cmd_string[cmd], bank, burst_order); |
end |
// CAS Latency |
cas_latency = addr[6:4]; |
read_latency = cas_latency + additive_latency; |
write_latency = read_latency - 1; |
if ((cas_latency >= CL_MIN) && (cas_latency <= CL_MAX)) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency); |
end |
// Test Mode |
if (!addr[7]) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Test Mode = Normal", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal Test Mode = %d", $time, cmd_string[cmd], bank, addr[7]); |
end |
// DLL Reset |
dll_reset = addr[8]; |
if (!dll_reset) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Normal", $time, cmd_string[cmd], bank); |
end else if (dll_reset) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Reset DLL", $time, cmd_string[cmd], bank); |
dll_locked = 0; |
ck_dll_reset <= ck_cntr; |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal DLL Reset = %d", $time, cmd_string[cmd], bank, dll_reset); |
end |
// Write Recovery |
write_recovery = addr[11:9] + 1; |
if ((write_recovery >= WR_MIN) && (write_recovery <= WR_MAX)) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery); |
end |
// Power Down Mode |
low_power = addr[12]; |
if (!low_power) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = Fast Exit", $time, cmd_string[cmd], bank); |
end else if (low_power) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = Slow Exit", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal Power Down Mode = %d", $time, cmd_string[cmd], bank, low_power); |
end |
end |
1 : begin |
// DLL Enable |
dll_en = !addr[0]; |
if (!dll_en) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Disabled", $time, cmd_string[cmd], bank); |
end else if (dll_en) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Enabled", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal DLL Enable = %d", $time, cmd_string[cmd], bank, dll_en); |
end |
// Output Drive Strength |
if (!addr[1]) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = Full", $time, cmd_string[cmd], bank); |
end else if (addr[1]) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = Reduced", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal Output Drive Strength = %d", $time, cmd_string[cmd], bank, addr[1]); |
end |
// ODT Rtt |
odt_rtt = {addr[6], addr[2]}; |
if (odt_rtt == 2'b00) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = Disabled", $time, cmd_string[cmd], bank); |
odt_en = 0; |
end else if (odt_rtt == 2'b01) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 75 Ohm", $time, cmd_string[cmd], bank); |
odt_en = 1; |
tm_odt_en <= $time; |
end else if (odt_rtt == 2'b10) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 150 Ohm", $time, cmd_string[cmd], bank); |
odt_en = 1; |
tm_odt_en <= $time; |
end else if (odt_rtt == 2'b11) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 50 Ohm", $time, cmd_string[cmd], bank); |
odt_en = 1; |
tm_odt_en <= $time; |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal ODT Rtt = %d", $time, cmd_string[cmd], bank, odt_rtt); |
odt_en = 0; |
end |
// Additive Latency |
additive_latency = addr[5:3]; |
read_latency = cas_latency + additive_latency; |
write_latency = read_latency - 1; |
if ((additive_latency >= AL_MIN) && (additive_latency <= AL_MAX)) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = %d", $time, cmd_string[cmd], bank, additive_latency); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal Additive Latency = %d", $time, cmd_string[cmd], bank, additive_latency); |
end |
// OCD Program |
ocd = addr[9:7]; |
if (ocd == 3'b000) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d OCD Program = OCD Exit", $time, cmd_string[cmd], bank); |
end else if (ocd == 3'b111) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d OCD Program = OCD Default", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal OCD Program = %b", $time, cmd_string[cmd], bank, ocd); |
end |
|
// DQS_N Enable |
dqs_n_en = !addr[10]; |
if (!dqs_n_en) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d DQS_N Enable = Disabled", $time, cmd_string[cmd], bank); |
end else if (dqs_n_en) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d DQS_N Enable = Enabled", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal DQS_N Enable = %d", $time, cmd_string[cmd], bank, dqs_n_en); |
end |
// RDQS Enable |
rdqs_en = addr[11]; |
if (!rdqs_en) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d RDQS Enable = Disabled", $time, cmd_string[cmd], bank); |
end else if (rdqs_en) begin |
`ifdef x8 |
if (DEBUG) $display ("%m: at time %t INFO: %s %d RDQS Enable = Enabled", $time, cmd_string[cmd], bank); |
`else |
$display ("%m: at time %t WARNING: %s %d Illegal RDQS Enable. RDQS only exists on a x8 part", $time, cmd_string[cmd], bank); |
rdqs_en = 0; |
`endif |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal RDQS Enable = %d", $time, cmd_string[cmd], bank, rdqs_en); |
end |
// Output Enable |
out_en = !addr[12]; |
if (!out_en) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Enable = Disabled", $time, cmd_string[cmd], bank); |
end else if (out_en) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Enable = Enabled", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal Output Enable = %d", $time, cmd_string[cmd], bank, out_en); |
end |
end |
2 : begin |
// High Temperature Self Refresh rate |
if (!addr[7]) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d High Temperature Self Refresh rate = Disabled", $time, cmd_string[cmd], bank); |
end else if (addr[1]) begin |
if (DEBUG) $display ("%m: at time %t INFO: %s %d High Temperature Self Refresh rate = Enabled", $time, cmd_string[cmd], bank); |
end else begin |
$display ("%m: at time %t ERROR: %s %d Illegal High Temperature Self Refresh rate = %d", $time, cmd_string[cmd], bank, addr[7]); |
end |
if ((addr & ~(1<<7)) !== 0) begin |
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bits must be programmed to zero", $time, cmd_string[cmd], bank); |
end |
end |
3 : begin |
if (addr !== 0) begin |
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bits must be programmed to zero", $time, cmd_string[cmd], bank); |
end |
end |
endcase |
init_mode_reg[bank] = 1; |
ck_load_mode <= ck_cntr; |
end |
end |
REFRESH : begin |
if (|active_bank) begin |
$display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (DEBUG) $display ("%m: at time %t INFO: %s", $time, cmd_string[cmd]); |
er_trfc_max = 0; |
ref_cntr = ref_cntr + 1; |
tm_refresh <= $time; |
end |
end |
PRECHARGE : begin |
if (addr[AP]) begin |
// tRPA timing applies when the PRECHARGE (ALL) command is issued, regardless of |
// the number of banks already open or closed. |
for (i=0; i<`BANKS; i=i+1) begin |
for (j=0; j<NOP; j=j+1) begin |
chk_err(1'b0, i, j, cmd); |
chk_err(1'b1, i, j, cmd); |
end |
chk_err(1'b0, i, PWR_DOWN, cmd); |
chk_err(1'b0, i, SELF_REF, cmd); |
end |
if (|auto_precharge_bank) begin |
$display ("%m: at time %t ERROR: %s All Failure. Auto Precharge is scheduled.", $time, cmd_string[cmd]); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (DEBUG) $display ("%m: at time %t INFO: %s All", $time, cmd_string[cmd]); |
active_bank = 0; |
tm_precharge_all <= $time; |
end |
end else begin |
// A PRECHARGE command is allowed if there is no open row in that bank (idle state) |
// or if the previously open row is already in the process of precharging. |
// However, the precharge period will be determined by the last PRECHARGE command issued to the bank. |
if (auto_precharge_bank[bank]) begin |
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d", $time, cmd_string[cmd], bank); |
active_bank[bank] = 1'b0; |
tm_bank_precharge[bank] <= $time; |
tm_precharge <= $time; |
end |
end |
end |
ACTIVATE : begin |
if (`BANKS == 8) begin |
tfaw_cntr = 0; |
for (i=0; i<`BANKS; i=i+1) begin |
if ($time - tm_bank_activate[i] < TFAW) begin |
tfaw_cntr = tfaw_cntr + 1; |
end |
end |
if (tfaw_cntr > 3) begin |
$display ("%m: at time %t ERROR: tFAW violation during %s to bank %d", $time, cmd_string[cmd], bank); |
end |
end |
|
if (!init_done) begin |
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]); |
if (STOP_ON_ERROR) $stop(0); |
end else if (active_bank[bank]) begin |
$display ("%m: at time %t ERROR: %s Failure. Bank %d must be Precharged.", $time, cmd_string[cmd], bank); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (addr >= 1<<ROW_BITS) begin |
$display ("%m: at time %t WARNING: row = %h does not exist. Maximum row = %h", $time, addr, (1<<ROW_BITS)-1); |
end |
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d row %h", $time, cmd_string[cmd], bank, addr); |
active_bank[bank] = 1'b1; |
active_row[bank] = addr; |
tm_bank_activate[bank] <= $time; |
tm_activate <= $time; |
end |
|
end |
WRITE : begin |
if (!init_done) begin |
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]); |
if (STOP_ON_ERROR) $stop(0); |
end else if (!active_bank[bank]) begin |
$display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank); |
if (STOP_ON_ERROR) $stop(0); |
end else if (auto_precharge_bank[bank]) begin |
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank); |
if (STOP_ON_ERROR) $stop(0); |
end else if ((ck_cntr - ck_write < burst_length/2) && (ck_cntr - ck_write)%2) begin |
$display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (addr[AP]) begin |
auto_precharge_bank[bank] = 1'b1; |
write_precharge_bank[bank] = 1'b1; |
end |
col = ((addr>>1) & -1*(1<<AP)) | (addr & {AP{1'b1}}); |
if (col >= 1<<COL_BITS) begin |
$display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1); |
end |
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]); |
wr_pipeline[2*write_latency + 1] = 1; |
ba_pipeline[2*write_latency + 1] = bank; |
row_pipeline[2*write_latency + 1] = active_row[bank]; |
col_pipeline[2*write_latency + 1] = col; |
ck_bank_write[bank] <= ck_cntr; |
ck_write <= ck_cntr; |
end |
end |
READ : begin |
if (!dll_locked) |
$display ("%m: at time %t WARNING: %s prior to DLL locked. Failing to wait for synchronization to occur may result in a violation of the tAC or tDQSCK parameters.", $time, cmd_string[cmd]); |
if (!init_done) begin |
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]); |
if (STOP_ON_ERROR) $stop(0); |
end else if (!active_bank[bank]) begin |
$display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank); |
if (STOP_ON_ERROR) $stop(0); |
end else if (auto_precharge_bank[bank]) begin |
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank); |
if (STOP_ON_ERROR) $stop(0); |
end else if ((ck_cntr - ck_read < burst_length/2) && (ck_cntr - ck_read)%2) begin |
$display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (addr[AP]) begin |
auto_precharge_bank[bank] = 1'b1; |
read_precharge_bank[bank] = 1'b1; |
end |
col = ((addr>>1) & -1*(1<<AP)) | (addr & {AP{1'b1}}); |
if (col >= 1<<COL_BITS) begin |
$display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1); |
end |
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]); |
rd_pipeline[2*read_latency - 1] = 1; |
ba_pipeline[2*read_latency - 1] = bank; |
row_pipeline[2*read_latency - 1] = active_row[bank]; |
col_pipeline[2*read_latency - 1] = col; |
ck_bank_read[bank] <= ck_cntr; |
ck_read <= ck_cntr; |
end |
end |
NOP: begin |
if (in_power_down) begin |
if (DEBUG) $display ("%m: at time %t INFO: Power Down Exit", $time); |
in_power_down = 0; |
if (|active_bank & low_power) begin // slow exit active power down |
ck_slow_exit_pd <= ck_cntr; |
end |
ck_power_down <= ck_cntr; |
end |
if (in_self_refresh) begin |
if ($time - tm_cke < TISXR) |
$display ("%m: at time %t ERROR: tISXR violation during Self Refresh Exit", $time); |
if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Exit", $time); |
in_self_refresh = 0; |
ck_dll_reset <= ck_cntr; |
ck_self_refresh <= ck_cntr; |
tm_self_refresh <= $time; |
tm_refresh <= $time; |
end |
end |
endcase |
if ((prev_cke !== 1) && (cmd !== NOP)) begin |
$display ("%m: at time %t ERROR: NOP or Deselect is required when CKE goes active.", $time); |
end |
if (!init_done) begin |
case (init_step) |
0 : begin |
if ($time < 200000000) |
$display ("%m: at time %t WARNING: 200 us is required before CKE goes active.", $time); |
// if (cmd_chk + 200000000 > $time) |
// $display("%m: at time %t WARNING: NOP or DESELECT is required for 200 us before CKE is brought high", $time); |
init_step = init_step + 1; |
end |
1 : if (dll_en) init_step = init_step + 1; |
2 : begin |
if (&init_mode_reg && dll_reset) begin |
active_bank = {`BANKS{1'b1}}; // require Precharge All or bank Precharges |
ref_cntr = 0; // require refresh |
init_step = init_step + 1; |
end |
end |
3 : if (ref_cntr == 2) begin |
init_step = init_step + 1; |
end |
4 : if (!dll_reset) init_step = init_step + 1; |
5 : if (ocd == 3'b111) init_step = init_step + 1; |
6 : begin |
if (ocd == 3'b000) begin |
if (DEBUG) $display ("%m: at time %t INFO: Initialization Sequence is complete", $time); |
init_done = 1; |
end |
end |
endcase |
end |
end else if (prev_cke) begin |
if ((!init_done) && (init_step > 1)) begin |
$display ("%m: at time %t ERROR: CKE must remain active until the initialization sequence is complete.", $time); |
if (STOP_ON_ERROR) $stop(0); |
end |
case (cmd) |
REFRESH : begin |
for (j=0; j<NOP; j=j+1) begin |
chk_err(1'b0, bank, j, SELF_REF); |
end |
chk_err(1'b0, bank, PWR_DOWN, SELF_REF); |
chk_err(1'b0, bank, SELF_REF, SELF_REF); |
if (|active_bank) begin |
$display ("%m: at time %t ERROR: Self Refresh Failure. All banks must be Precharged.", $time); |
if (STOP_ON_ERROR) $stop(0); |
init_done = 0; |
end else if (odt_en && odt_state) begin |
$display ("%m: at time %t ERROR: ODT must be off prior to entering Self Refresh", $time); |
if (STOP_ON_ERROR) $stop(0); |
init_done = 0; |
end else if (!init_done) begin |
$display ("%m: at time %t ERROR: Self Refresh Failure. Initialization sequence is not complete.", $time); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Enter", $time); |
in_self_refresh = 1; |
dll_locked = 0; |
end |
end |
NOP : begin |
// entering slow_exit or precharge power down and tANPD has not been satisfied |
if ((low_power || (active_bank == 0)) && (ck_cntr - ck_odt < TANPD)) |
$display ("%m: at time %t WARNING: tANPD violation during %s. Synchronous or asynchronous change in termination resistance is possible.", $time, cmd_string[PWR_DOWN]); |
for (j=0; j<NOP; j=j+1) begin |
chk_err(1'b0, bank, j, PWR_DOWN); |
end |
chk_err(1'b0, bank, PWR_DOWN, PWR_DOWN); |
chk_err(1'b0, bank, SELF_REF, PWR_DOWN); |
|
if (!init_done) begin |
$display ("%m: at time %t ERROR: Power Down Failure. Initialization sequence is not complete.", $time); |
if (STOP_ON_ERROR) $stop(0); |
end else begin |
if (DEBUG) begin |
if (|active_bank) begin |
$display ("%m: at time %t INFO: Active Power Down Enter", $time); |
end else begin |
$display ("%m: at time %t INFO: Precharge Power Down Enter", $time); |
end |
end |
in_power_down = 1; |
end |
end |
default : begin |
$display ("%m: at time %t ERROR: NOP, Deselect, or Refresh is required when CKE goes inactive.", $time); |
init_done = 0; |
end |
endcase |
if (!init_done) begin |
if (DEBUG) $display ("%m: at time %t WARNING: Reset has occurred. Device must be re-initialized.", $time); |
reset_task; |
end |
end |
prev_cke = cke; |
end |
endtask |
|
task data_task; |
reg [BA_BITS-1:0] bank; |
reg [ROW_BITS-1:0] row; |
reg [COL_BITS-1:0] col; |
integer i; |
integer j; |
begin |
|
if (diff_ck) begin |
for (i=0; i<36; i=i+1) begin |
if (dq_in_valid && dll_locked && ($time - tm_dqs_neg[i] < $rtoi(TDSS*tck_avg))) |
$display ("%m: at time %t ERROR: tDSS violation on %s bit %d", $time, dqs_string[i/18], i%18); |
if (check_write_dqs_high[i]) |
$display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period.", $time, dqs_string[i/18], i%18); |
end |
check_write_dqs_high <= 0; |
end else begin |
for (i=0; i<36; i=i+1) begin |
if (dll_locked && dq_in_valid) begin |
tm_tdqss = abs_value(1.0*tm_ck_pos - tm_dqss_pos[i]); |
if ((tm_tdqss < tck_avg/2.0) && (tm_tdqss > TDQSS*tck_avg)) |
$display ("%m: at time %t ERROR: tDQSS violation on %s bit %d", $time, dqs_string[i/18], i%18); |
end |
if (check_write_dqs_low[i]) |
$display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period", $time, dqs_string[i/18], i%18); |
end |
check_write_preamble <= 0; |
check_write_postamble <= 0; |
check_write_dqs_low <= 0; |
end |
|
if (wr_pipeline[0] || rd_pipeline[0]) begin |
bank = ba_pipeline[0]; |
row = row_pipeline[0]; |
col = col_pipeline[0]; |
burst_cntr = 0; |
memory_read(bank, row, col, memory_data); |
end |
|
// burst counter |
if (burst_cntr < burst_length) begin |
burst_position = col ^ burst_cntr; |
if (!burst_order) begin |
burst_position[BO_BITS-1:0] = col + burst_cntr; |
end |
burst_cntr = burst_cntr + 1; |
end |
|
// write dqs counter |
if (wr_pipeline[WDQS_PRE + 1]) begin |
wdqs_cntr = WDQS_PRE + burst_length + WDQS_PST - 1; |
end |
// write dqs |
if ((wdqs_cntr == burst_length + WDQS_PST) && (wdq_cntr == 0)) begin //write preamble |
check_write_preamble <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}}; |
end |
if (wdqs_cntr > 1) begin // write data |
if ((wdqs_cntr - WDQS_PST)%2) begin |
check_write_dqs_high <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}}; |
end else begin |
check_write_dqs_low <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}}; |
end |
end |
if (wdqs_cntr == WDQS_PST) begin // write postamble |
check_write_postamble <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}}; |
end |
if (wdqs_cntr > 0) begin |
wdqs_cntr = wdqs_cntr - 1; |
end |
|
// write dq |
if (dq_in_valid) begin // write data |
bit_mask = 0; |
if (diff_ck) begin |
for (i=0; i<DM_BITS; i=i+1) begin |
bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_neg[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS)); |
end |
memory_data = (dq_in_neg<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask); |
end else begin |
for (i=0; i<DM_BITS; i=i+1) begin |
bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_pos[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS)); |
end |
memory_data = (dq_in_pos<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask); |
end |
dq_temp = memory_data>>(burst_position*DQ_BITS); |
if (DEBUG) $display ("%m: at time %t INFO: WRITE @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp); |
if (burst_cntr%BL_MIN == 0) begin |
memory_write(bank, row, col, memory_data); |
end |
end |
if (wr_pipeline[1]) begin |
wdq_cntr = burst_length; |
end |
if (wdq_cntr > 0) begin |
wdq_cntr = wdq_cntr - 1; |
dq_in_valid = 1'b1; |
end else begin |
dq_in_valid = 1'b0; |
dqs_in_valid <= 1'b0; |
for (i=0; i<36; i=i+1) begin |
wdqs_pos_cntr[i] <= 0; |
end |
end |
if (wr_pipeline[0]) begin |
b2b_write <= 1'b0; |
end |
if (wr_pipeline[2]) begin |
if (dqs_in_valid) begin |
b2b_write <= 1'b1; |
end |
dqs_in_valid <= 1'b1; |
end |
// read dqs enable counter |
if (rd_pipeline[RDQSEN_PRE]) begin |
rdqsen_cntr = RDQSEN_PRE + burst_length + RDQSEN_PST - 1; |
end |
if (rdqsen_cntr > 0) begin |
rdqsen_cntr = rdqsen_cntr - 1; |
dqs_out_en = 1'b1; |
end else begin |
dqs_out_en = 1'b0; |
end |
|
// read dqs counter |
if (rd_pipeline[RDQS_PRE]) begin |
rdqs_cntr = RDQS_PRE + burst_length + RDQS_PST - 1; |
end |
// read dqs |
if ((rdqs_cntr >= burst_length + RDQS_PST) && (rdq_cntr == 0)) begin //read preamble |
dqs_out = 1'b0; |
end else if (rdqs_cntr > RDQS_PST) begin // read data |
dqs_out = rdqs_cntr - RDQS_PST; |
end else if (rdqs_cntr > 0) begin // read postamble |
dqs_out = 1'b0; |
end else begin |
dqs_out = 1'b1; |
end |
if (rdqs_cntr > 0) begin |
rdqs_cntr = rdqs_cntr - 1; |
end |
|
// read dq enable counter |
if (rd_pipeline[RDQEN_PRE]) begin |
rdqen_cntr = RDQEN_PRE + burst_length + RDQEN_PST; |
end |
if (rdqen_cntr > 0) begin |
rdqen_cntr = rdqen_cntr - 1; |
dq_out_en = 1'b1; |
end else begin |
dq_out_en = 1'b0; |
end |
// read dq |
if (rd_pipeline[0]) begin |
rdq_cntr = burst_length; |
end |
if (rdq_cntr > 0) begin // read data |
dq_temp = memory_data>>(burst_position*DQ_BITS); |
dq_out = dq_temp; |
if (DEBUG) $display ("%m: at time %t INFO: READ @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp); |
rdq_cntr = rdq_cntr - 1; |
end else begin |
dq_out = {DQ_BITS{1'b1}}; |
end |
|
// delay signals prior to output |
if (RANDOM_OUT_DELAY && (dqs_out_en || |dqs_out_en_dly || dq_out_en || |dq_out_en_dly)) begin |
for (i=0; i<DQS_BITS; i=i+1) begin |
// DQSCK requirements |
// 1.) less than tDQSCK |
// 2.) greater than -tDQSCK |
// 3.) cannot change more than tQHS + tDQSQ from previous DQS edge |
dqsck_max = TDQSCK; |
if (dqsck_max > dqsck[i] + TQHS + TDQSQ) begin |
dqsck_max = dqsck[i] + TQHS + TDQSQ; |
end |
dqsck_min = -1*TDQSCK; |
if (dqsck_min < dqsck[i] - TQHS - TDQSQ) begin |
dqsck_min = dqsck[i] - TQHS - TDQSQ; |
end |
|
// DQSQ requirements |
// 1.) less than tAC - DQSCK |
// 2.) less than tDQSQ |
// 3.) greater than -tAC |
// 4.) greater than tQH from previous DQS edge |
dqsq_min = -1*TAC; |
if (dqsq_min < dqsck[i] - TQHS) begin |
dqsq_min = dqsck[i] - TQHS; |
end |
if (dqsck_min == dqsck_max) begin |
dqsck[i] = dqsck_min; |
end else begin |
dqsck[i] = $dist_uniform(seed, dqsck_min, dqsck_max); |
end |
dqsq_max = TAC; |
if (dqsq_max > TDQSQ + dqsck[i]) begin |
dqsq_max = TDQSQ + dqsck[i]; |
end |
|
dqs_out_en_dly[i] <= #(tck_avg/2.0 + ($random % TAC)) dqs_out_en; |
dqs_out_dly[i] <= #(tck_avg/2.0 + dqsck[i]) dqs_out; |
for (j=0; j<`DQ_PER_DQS; j=j+1) begin |
if (dq_out_en) begin // tLZ2 |
dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + $dist_uniform(seed, -2*TAC, dqsq_max)) dq_out_en; |
end else begin // tHZ |
dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + ($random % TAC)) dq_out_en; |
end |
if (dqsq_min == dqsq_max) begin |
dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + dqsq_min) dq_out[i*`DQ_PER_DQS + j]; |
end else begin |
dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + $dist_uniform(seed, dqsq_min, dqsq_max)) dq_out[i*`DQ_PER_DQS + j]; |
end |
end |
end |
end else begin |
out_delay = tck_avg/2.0; |
dqs_out_en_dly <= #(out_delay) {DQS_BITS{dqs_out_en}}; |
dqs_out_dly <= #(out_delay) {DQS_BITS{dqs_out }}; |
dq_out_en_dly <= #(out_delay) {DQ_BITS {dq_out_en }}; |
dq_out_dly <= #(out_delay) {DQ_BITS {dq_out }}; |
end |
end |
endtask |
|
always @(diff_ck) begin : main |
integer i; |
|
if (!in_self_refresh && (diff_ck !== 1'b0) && (diff_ck !== 1'b1)) |
$display ("%m: at time %t ERROR: CK and CK_N are not allowed to go to an unknown state.", $time); |
data_task; |
if (diff_ck) begin |
// check setup of command signals |
if ($time > TIS) begin |
if ($time - tm_cke < TIS) |
$display ("%m: at time %t ERROR: tIS violation on CKE by %t", $time, tm_cke + TIS - $time); |
if (cke_in) begin |
for (i=0; i<22; i=i+1) begin |
if ($time - tm_cmd_addr[i] < TIS) |
$display ("%m: at time %t ERROR: tIS violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIS - $time); |
end |
end |
end |
|
// update current state |
if (!dll_locked && !in_self_refresh && (ck_cntr - ck_dll_reset == TDLLK)) begin |
// check CL value against the clock frequency |
if (cas_latency*tck_avg < CL_TIME) |
$display ("%m: at time %t ERROR: CAS Latency = %d is illegal @tCK(avg) = %f", $time, cas_latency, tck_avg); |
// check WR value against the clock frequency |
if (write_recovery*tck_avg < TWR) |
$display ("%m: at time %t ERROR: Write Recovery = %d is illegal @tCK(avg) = %f", $time, write_recovery, tck_avg); |
dll_locked = 1; |
end |
if (|auto_precharge_bank) begin |
for (i=0; i<`BANKS; i=i+1) begin |
// Write with Auto Precharge Calculation |
// 1. Meet minimum tRAS requirement |
// 2. Write Latency PLUS BL/2 cycles PLUS WR after Write command |
if (write_precharge_bank[i] |
&& ($time - tm_bank_activate[i] >= TRAS_MIN) |
&& (ck_cntr - ck_bank_write[i] >= write_latency + burst_length/2 + write_recovery)) begin |
|
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i); |
write_precharge_bank[i] = 0; |
active_bank[i] = 0; |
auto_precharge_bank[i] = 0; |
ck_write_ap = ck_cntr; |
tm_bank_precharge[i] = $time; |
tm_precharge = $time; |
end |
// Read with Auto Precharge Calculation |
// 1. Meet minimum tRAS requirement |
// 2. Additive Latency plus BL/2 cycles after Read command |
// 3. tRTP after the last 4-bit prefetch |
if (read_precharge_bank[i] |
&& ($time - tm_bank_activate[i] >= TRAS_MIN) |
&& (ck_cntr - ck_bank_read[i] >= additive_latency + burst_length/2)) begin |
|
read_precharge_bank[i] = 0; |
// In case the internal precharge is pushed out by tRTP, tRP starts at the point where |
// the internal precharge happens (not at the next rising clock edge after this event). |
if ($time - tm_bank_read_end[i] < TRTP) begin |
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", tm_bank_read_end[i] + TRTP, i); |
active_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0; |
auto_precharge_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0; |
tm_bank_precharge[i] <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP; |
tm_precharge <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP; |
end else begin |
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i); |
active_bank[i] = 0; |
auto_precharge_bank[i] = 0; |
tm_bank_precharge[i] = $time; |
tm_precharge = $time; |
end |
end |
end |
end |
|
// respond to incoming command |
if (cke_in ^ prev_cke) begin |
ck_cke <= ck_cntr; |
end |
|
cmd_task(cke_in, cmd_n_in, ba_in, addr_in); |
if ((cmd_n_in == WRITE) || (cmd_n_in == READ)) begin |
al_pipeline[2*additive_latency] = 1'b1; |
end |
if (al_pipeline[0]) begin |
// check tRCD after additive latency |
if ($time - tm_bank_activate[ba_pipeline[2*cas_latency - 1]] < TRCD) begin |
if (rd_pipeline[2*cas_latency - 1]) begin |
$display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[READ]); |
end else begin |
$display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[WRITE]); |
end |
end |
// check tWTR after additive latency |
if (rd_pipeline[2*cas_latency - 1]) begin |
if ($time - tm_write_end < TWTR) |
$display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]); |
end |
end |
if (rd_pipeline[2*(cas_latency - burst_length/2 + 2) - 1]) begin |
tm_bank_read_end[ba_pipeline[2*(cas_latency - burst_length/2 + 2) - 1]] <= $time; |
end |
for (i=0; i<`BANKS; i=i+1) begin |
if ((ck_cntr - ck_bank_write[i] > write_latency) && (ck_cntr - ck_bank_write[i] <= write_latency + burst_length/2)) begin |
tm_bank_write_end[i] <= $time; |
tm_write_end <= $time; |
end |
end |
|
// clk pin is disabled during self refresh |
if (!in_self_refresh) begin |
tjit_cc_time = $time - tm_ck_pos - tck_i; |
tck_i = $time - tm_ck_pos; |
tck_avg = tck_avg - tck_sample[ck_cntr%TDLLK]/$itor(TDLLK); |
tck_avg = tck_avg + tck_i/$itor(TDLLK); |
tck_sample[ck_cntr%TDLLK] = tck_i; |
tjit_per_rtime = tck_i - tck_avg; |
|
if (dll_locked) begin |
// check accumulated error |
terr_nper_rtime = 0; |
for (i=0; i<50; i=i+1) begin |
terr_nper_rtime = terr_nper_rtime + tck_sample[i] - tck_avg; |
terr_nper_rtime = abs_value(terr_nper_rtime); |
case (i) |
0 :; |
1 : if (terr_nper_rtime - TERR_2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(2per) violation by %f ps.", $time, terr_nper_rtime - TERR_2PER); |
2 : if (terr_nper_rtime - TERR_3PER >= 1.0) $display ("%m: at time %t ERROR: tERR(3per) violation by %f ps.", $time, terr_nper_rtime - TERR_3PER); |
3 : if (terr_nper_rtime - TERR_4PER >= 1.0) $display ("%m: at time %t ERROR: tERR(4per) violation by %f ps.", $time, terr_nper_rtime - TERR_4PER); |
4 : if (terr_nper_rtime - TERR_5PER >= 1.0) $display ("%m: at time %t ERROR: tERR(5per) violation by %f ps.", $time, terr_nper_rtime - TERR_5PER); |
5,6,7,8,9 : if (terr_nper_rtime - TERR_N1PER >= 1.0) $display ("%m: at time %t ERROR: tERR(n1per) violation by %f ps.", $time, terr_nper_rtime - TERR_N1PER); |
default : if (terr_nper_rtime - TERR_N2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(n2per) violation by %f ps.", $time, terr_nper_rtime - TERR_N2PER); |
endcase |
end |
|
// check tCK min/max/jitter |
if (abs_value(tjit_per_rtime) - TJIT_PER >= 1.0) |
$display ("%m: at time %t ERROR: tJIT(per) violation by %f ps.", $time, abs_value(tjit_per_rtime) - TJIT_PER); |
if (abs_value(tjit_cc_time) - TJIT_CC >= 1.0) |
$display ("%m: at time %t ERROR: tJIT(cc) violation by %f ps.", $time, abs_value(tjit_cc_time) - TJIT_CC); |
if (TCK_MIN - tck_avg >= 1.0) |
$display ("%m: at time %t ERROR: tCK(avg) minimum violation by %f ps.", $time, TCK_MIN - tck_avg); |
if (tck_avg - TCK_MAX >= 1.0) |
$display ("%m: at time %t ERROR: tCK(avg) maximum violation by %f ps.", $time, tck_avg - TCK_MAX); |
if (tm_ck_pos + TCK_MIN - TJIT_PER > $time) |
$display ("%m: at time %t ERROR: tCK(abs) minimum violation by %t", $time, tm_ck_pos + TCK_MIN - TJIT_PER - $time); |
if (tm_ck_pos + TCK_MAX + TJIT_PER < $time) |
$display ("%m: at time %t ERROR: tCK(abs) maximum violation by %t", $time, $time - tm_ck_pos - TCK_MAX - TJIT_PER); |
|
// check tCL |
if (tm_ck_neg + TCL_MIN*tck_avg - TJIT_DUTY > $time) |
$display ("%m: at time %t ERROR: tCL(abs) minimum violation on CLK by %t", $time, tm_ck_neg + TCL_MIN*tck_avg - TJIT_DUTY - $time); |
if (tm_ck_neg + TCL_MAX*tck_avg + TJIT_DUTY < $time) |
$display ("%m: at time %t ERROR: tCL(abs) maximum violation on CLK by %t", $time, $time - tm_ck_neg - TCL_MAX*tck_avg - TJIT_DUTY); |
if (tcl_avg < TCL_MIN*tck_avg) |
$display ("%m: at time %t ERROR: tCL(avg) minimum violation on CLK by %t", $time, TCL_MIN*tck_avg - tcl_avg); |
if (tcl_avg > TCL_MAX*tck_avg) |
$display ("%m: at time %t ERROR: tCL(avg) maximum violation on CLK by %t", $time, tcl_avg - TCL_MAX*tck_avg); |
end |
|
// calculate the tch avg jitter |
tch_avg = tch_avg - tch_sample[ck_cntr%TDLLK]/$itor(TDLLK); |
tch_avg = tch_avg + tch_i/$itor(TDLLK); |
tch_sample[ck_cntr%TDLLK] = tch_i; |
|
// update timers/counters |
tcl_i <= $time - tm_ck_neg; |
end |
|
prev_odt <= odt_in; |
// update timers/counters |
ck_cntr <= ck_cntr + 1; |
tm_ck_pos <= $time; |
end else begin |
// clk pin is disabled during self refresh |
if (!in_self_refresh) begin |
if (dll_locked) begin |
if (tm_ck_pos + TCH_MIN*tck_avg - TJIT_DUTY > $time) |
$display ("%m: at time %t ERROR: tCH(abs) minimum violation on CLK by %t", $time, tm_ck_pos + TCH_MIN*tck_avg - TJIT_DUTY + $time); |
if (tm_ck_pos + TCH_MAX*tck_avg + TJIT_DUTY < $time) |
$display ("%m: at time %t ERROR: tCH(abs) maximum violation on CLK by %t", $time, $time - tm_ck_pos - TCH_MAX*tck_avg - TJIT_DUTY); |
if (tch_avg < TCH_MIN*tck_avg) |
$display ("%m: at time %t ERROR: tCH(avg) minimum violation on CLK by %t", $time, TCH_MIN*tck_avg - tch_avg); |
if (tch_avg > TCH_MAX*tck_avg) |
$display ("%m: at time %t ERROR: tCH(avg) maximum violation on CLK by %t", $time, tch_avg - TCH_MAX*tck_avg); |
end |
|
// calculate the tcl avg jitter |
tcl_avg = tcl_avg - tcl_sample[ck_cntr%TDLLK]/$itor(TDLLK); |
tcl_avg = tcl_avg + tcl_i/$itor(TDLLK); |
tcl_sample[ck_cntr%TDLLK] = tcl_i; |
|
// update timers/counters |
tch_i <= $time - tm_ck_pos; |
end |
tm_ck_neg <= $time; |
end |
|
// on die termination |
if (odt_en) begin |
// clk pin is disabled during self refresh |
if (!in_self_refresh && diff_ck) begin |
if ($time - tm_odt < TIS) begin |
$display ("%m: at time %t ERROR: tIS violation on ODT by %t", $time, tm_odt + TIS - $time); |
end |
if (prev_odt ^ odt_in) begin |
if (!dll_locked) |
$display ("%m: at time %t WARNING: tDLLK violation during ODT transition.", $time); |
if (odt_in && ($time - tm_odt_en < TMOD)) |
$display ("%m: at time %t ERROR: tMOD violation during ODT transition", $time); |
if ($time - tm_self_refresh < TXSNR) |
$display ("%m: at time %t ERROR: tXSNR violation during ODT transition", $time); |
if (in_self_refresh) |
$display ("%m: at time %t ERROR: Illegal ODT transition during Self Refresh.", $time); |
|
// async ODT mode applies: |
// 1.) during active power down with slow exit |
// 2.) during precharge power down |
// 3.) if tANPD has not been satisfied |
// 4.) until tAXPD has been satisfied |
if ((in_power_down && (low_power || (active_bank == 0))) || (ck_cntr - ck_slow_exit_pd < TAXPD)) begin |
if (ck_cntr - ck_slow_exit_pd < TAXPD) |
$display ("%m: at time %t WARNING: tAXPD violation during ODT transition. Synchronous or asynchronous change in termination resistance is possible.", $time); |
if (odt_in) begin |
if (DEBUG) $display ("%m: at time %t INFO: Async On Die Termination = %d", $time + TAONPD, 1'b1); |
odt_state <= #(TAONPD) 1'b1; |
end else begin |
if (DEBUG) $display ("%m: at time %t INFO: Async On Die Termination = %d", $time + TAOFPD, 1'b0); |
odt_state <= #(TAOFPD) 1'b0; |
end |
// sync ODT mode applies: |
// 1.) during normal operation |
// 2.) during active power down with fast exit |
end else begin |
if (odt_in) begin |
i = TAOND*2; |
odt_pipeline[i] = 1'b1; |
end else begin |
i = TAOFD*2; |
odt_pipeline[i] = 1'b1; |
end |
end |
ck_odt <= ck_cntr; |
end |
end |
if (odt_pipeline[0]) begin |
odt_state = ~odt_state; |
if (DEBUG) $display ("%m: at time %t INFO: Sync On Die Termination = %d", $time, odt_state); |
end |
end |
|
// shift pipelines |
if (|wr_pipeline || |rd_pipeline || |al_pipeline) begin |
al_pipeline = al_pipeline>>1; |
wr_pipeline = wr_pipeline>>1; |
rd_pipeline = rd_pipeline>>1; |
for (i=0; i<`MAX_PIPE; i=i+1) begin |
ba_pipeline[i] = ba_pipeline[i+1]; |
row_pipeline[i] = row_pipeline[i+1]; |
col_pipeline[i] = col_pipeline[i+1]; |
end |
end |
if (|odt_pipeline) begin |
odt_pipeline = odt_pipeline>>1; |
end |
end |
|
// receiver(s) |
task dqs_even_receiver; |
input [4:0] i; |
reg [71:0] bit_mask; |
begin |
bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS); |
if (dqs_even[i]) begin |
if (rdqs_en) begin // rdqs disables dm |
dm_in_pos[i] = 1'b0; |
end else begin |
dm_in_pos[i] = dm_in[i]; |
end |
dq_in_pos = (dq_in & bit_mask) | (dq_in_pos & ~bit_mask); |
end |
end |
endtask |
|
always @(posedge dqs_even[ 0]) dqs_even_receiver( 0); |
always @(posedge dqs_even[ 1]) dqs_even_receiver( 1); |
always @(posedge dqs_even[ 2]) dqs_even_receiver( 2); |
always @(posedge dqs_even[ 3]) dqs_even_receiver( 3); |
always @(posedge dqs_even[ 4]) dqs_even_receiver( 4); |
always @(posedge dqs_even[ 5]) dqs_even_receiver( 5); |
always @(posedge dqs_even[ 6]) dqs_even_receiver( 6); |
always @(posedge dqs_even[ 7]) dqs_even_receiver( 7); |
always @(posedge dqs_even[ 8]) dqs_even_receiver( 8); |
always @(posedge dqs_even[ 9]) dqs_even_receiver( 9); |
always @(posedge dqs_even[10]) dqs_even_receiver(10); |
always @(posedge dqs_even[11]) dqs_even_receiver(11); |
always @(posedge dqs_even[12]) dqs_even_receiver(12); |
always @(posedge dqs_even[13]) dqs_even_receiver(13); |
always @(posedge dqs_even[14]) dqs_even_receiver(14); |
always @(posedge dqs_even[15]) dqs_even_receiver(15); |
always @(posedge dqs_even[16]) dqs_even_receiver(16); |
always @(posedge dqs_even[17]) dqs_even_receiver(17); |
|
task dqs_odd_receiver; |
input [4:0] i; |
reg [71:0] bit_mask; |
begin |
bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS); |
if (dqs_odd[i]) begin |
if (rdqs_en) begin // rdqs disables dm |
dm_in_neg[i] = 1'b0; |
end else begin |
dm_in_neg[i] = dm_in[i]; |
end |
dq_in_neg = (dq_in & bit_mask) | (dq_in_neg & ~bit_mask); |
end |
end |
endtask |
|
always @(posedge dqs_odd[ 0]) dqs_odd_receiver( 0); |
always @(posedge dqs_odd[ 1]) dqs_odd_receiver( 1); |
always @(posedge dqs_odd[ 2]) dqs_odd_receiver( 2); |
always @(posedge dqs_odd[ 3]) dqs_odd_receiver( 3); |
always @(posedge dqs_odd[ 4]) dqs_odd_receiver( 4); |
always @(posedge dqs_odd[ 5]) dqs_odd_receiver( 5); |
always @(posedge dqs_odd[ 6]) dqs_odd_receiver( 6); |
always @(posedge dqs_odd[ 7]) dqs_odd_receiver( 7); |
always @(posedge dqs_odd[ 8]) dqs_odd_receiver( 8); |
always @(posedge dqs_odd[ 9]) dqs_odd_receiver( 9); |
always @(posedge dqs_odd[10]) dqs_odd_receiver(10); |
always @(posedge dqs_odd[11]) dqs_odd_receiver(11); |
always @(posedge dqs_odd[12]) dqs_odd_receiver(12); |
always @(posedge dqs_odd[13]) dqs_odd_receiver(13); |
always @(posedge dqs_odd[14]) dqs_odd_receiver(14); |
always @(posedge dqs_odd[15]) dqs_odd_receiver(15); |
always @(posedge dqs_odd[16]) dqs_odd_receiver(16); |
always @(posedge dqs_odd[17]) dqs_odd_receiver(17); |
|
// Processes to check hold and pulse width of control signals |
always @(cke_in) begin |
if ($time > TIH) begin |
if ($time - tm_ck_pos < TIH) |
$display ("%m: at time %t ERROR: tIH violation on CKE by %t", $time, tm_ck_pos + TIH - $time); |
end |
if (dll_locked && ($time - tm_cke < $rtoi(TIPW*tck_avg))) |
$display ("%m: at time %t ERROR: tIPW violation on CKE by %t", $time, tm_cke + TIPW*tck_avg - $time); |
tm_cke = $time; |
end |
always @(odt_in) begin |
if (odt_en && !in_self_refresh) begin |
if ($time - tm_ck_pos < TIH) |
$display ("%m: at time %t ERROR: tIH violation on ODT by %t", $time, tm_ck_pos + TIH - $time); |
if (dll_locked && ($time - tm_odt < $rtoi(TIPW*tck_avg))) |
$display ("%m: at time %t ERROR: tIPW violation on ODT by %t", $time, tm_odt + TIPW*tck_avg - $time); |
end |
tm_odt = $time; |
end |
|
task cmd_addr_timing_check; |
input i; |
reg [4:0] i; |
begin |
if (prev_cke) begin |
if ($time - tm_ck_pos < TIH) |
$display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time); |
if (dll_locked && ($time - tm_cmd_addr[i] < $rtoi(TIPW*tck_avg))) |
$display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW*tck_avg - $time); |
end |
tm_cmd_addr[i] = $time; |
end |
endtask |
|
always @(cs_n_in ) cmd_addr_timing_check( 0); |
always @(ras_n_in ) cmd_addr_timing_check( 1); |
always @(cas_n_in ) cmd_addr_timing_check( 2); |
always @(we_n_in ) cmd_addr_timing_check( 3); |
always @(ba_in [ 0]) cmd_addr_timing_check( 4); |
always @(ba_in [ 1]) cmd_addr_timing_check( 5); |
always @(ba_in [ 2]) cmd_addr_timing_check( 6); |
always @(addr_in[ 0]) cmd_addr_timing_check( 7); |
always @(addr_in[ 1]) cmd_addr_timing_check( 8); |
always @(addr_in[ 2]) cmd_addr_timing_check( 9); |
always @(addr_in[ 3]) cmd_addr_timing_check(10); |
always @(addr_in[ 4]) cmd_addr_timing_check(11); |
always @(addr_in[ 5]) cmd_addr_timing_check(12); |
always @(addr_in[ 6]) cmd_addr_timing_check(13); |
always @(addr_in[ 7]) cmd_addr_timing_check(14); |
always @(addr_in[ 8]) cmd_addr_timing_check(15); |
always @(addr_in[ 9]) cmd_addr_timing_check(16); |
always @(addr_in[10]) cmd_addr_timing_check(17); |
always @(addr_in[11]) cmd_addr_timing_check(18); |
always @(addr_in[12]) cmd_addr_timing_check(19); |
always @(addr_in[13]) cmd_addr_timing_check(20); |
always @(addr_in[14]) cmd_addr_timing_check(21); |
always @(addr_in[15]) cmd_addr_timing_check(22); |
|
// Processes to check setup and hold of data signals |
task dm_timing_check; |
input i; |
reg [4:0] i; |
begin |
if (dqs_in_valid) begin |
if ($time - tm_dqs[i] < TDH) |
$display ("%m: at time %t ERROR: tDH violation on DM bit %d by %t", $time, i, tm_dqs[i] + TDH - $time); |
if (check_dm_tdipw[i]) begin |
if (dll_locked && ($time - tm_dm[i] < $rtoi(TDIPW*tck_avg))) |
$display ("%m: at time %t ERROR: tDIPW violation on DM bit %d by %t", $time, i, tm_dm[i] + TDIPW*tck_avg - $time); |
end |
end |
check_dm_tdipw[i] <= 1'b0; |
tm_dm[i] = $time; |
end |
endtask |
|
always @(dm_in[ 0]) dm_timing_check( 0); |
always @(dm_in[ 1]) dm_timing_check( 1); |
always @(dm_in[ 2]) dm_timing_check( 2); |
always @(dm_in[ 3]) dm_timing_check( 3); |
always @(dm_in[ 4]) dm_timing_check( 4); |
always @(dm_in[ 5]) dm_timing_check( 5); |
always @(dm_in[ 6]) dm_timing_check( 6); |
always @(dm_in[ 7]) dm_timing_check( 7); |
always @(dm_in[ 8]) dm_timing_check( 8); |
always @(dm_in[ 9]) dm_timing_check( 9); |
always @(dm_in[10]) dm_timing_check(10); |
always @(dm_in[11]) dm_timing_check(11); |
always @(dm_in[12]) dm_timing_check(12); |
always @(dm_in[13]) dm_timing_check(13); |
always @(dm_in[14]) dm_timing_check(14); |
always @(dm_in[15]) dm_timing_check(15); |
always @(dm_in[16]) dm_timing_check(16); |
always @(dm_in[17]) dm_timing_check(17); |
|
task dq_timing_check; |
input i; |
reg [6:0] i; |
begin |
if (dqs_in_valid) begin |
if ($time - tm_dqs[i/`DQ_PER_DQS] < TDH) |
$display ("%m: at time %t ERROR: tDH violation on DQ bit %d by %t", $time, i, tm_dqs[i/`DQ_PER_DQS] + TDH - $time); |
if (check_dq_tdipw[i]) begin |
if (dll_locked && ($time - tm_dq[i] < $rtoi(TDIPW*tck_avg))) |
$display ("%m: at time %t ERROR: tDIPW violation on DQ bit %d by %t", $time, i, tm_dq[i] + TDIPW*tck_avg - $time); |
end |
end |
check_dq_tdipw[i] <= 1'b0; |
tm_dq[i] = $time; |
end |
endtask |
|
always @(dq_in[ 0]) dq_timing_check( 0); |
always @(dq_in[ 1]) dq_timing_check( 1); |
always @(dq_in[ 2]) dq_timing_check( 2); |
always @(dq_in[ 3]) dq_timing_check( 3); |
always @(dq_in[ 4]) dq_timing_check( 4); |
always @(dq_in[ 5]) dq_timing_check( 5); |
always @(dq_in[ 6]) dq_timing_check( 6); |
always @(dq_in[ 7]) dq_timing_check( 7); |
always @(dq_in[ 8]) dq_timing_check( 8); |
always @(dq_in[ 9]) dq_timing_check( 9); |
always @(dq_in[10]) dq_timing_check(10); |
always @(dq_in[11]) dq_timing_check(11); |
always @(dq_in[12]) dq_timing_check(12); |
always @(dq_in[13]) dq_timing_check(13); |
always @(dq_in[14]) dq_timing_check(14); |
always @(dq_in[15]) dq_timing_check(15); |
always @(dq_in[16]) dq_timing_check(16); |
always @(dq_in[17]) dq_timing_check(17); |
always @(dq_in[18]) dq_timing_check(18); |
always @(dq_in[19]) dq_timing_check(19); |
always @(dq_in[20]) dq_timing_check(20); |
always @(dq_in[21]) dq_timing_check(21); |
always @(dq_in[22]) dq_timing_check(22); |
always @(dq_in[23]) dq_timing_check(23); |
always @(dq_in[24]) dq_timing_check(24); |
always @(dq_in[25]) dq_timing_check(25); |
always @(dq_in[26]) dq_timing_check(26); |
always @(dq_in[27]) dq_timing_check(27); |
always @(dq_in[28]) dq_timing_check(28); |
always @(dq_in[29]) dq_timing_check(29); |
always @(dq_in[30]) dq_timing_check(30); |
always @(dq_in[31]) dq_timing_check(31); |
always @(dq_in[32]) dq_timing_check(32); |
always @(dq_in[33]) dq_timing_check(33); |
always @(dq_in[34]) dq_timing_check(34); |
always @(dq_in[35]) dq_timing_check(35); |
always @(dq_in[36]) dq_timing_check(36); |
always @(dq_in[37]) dq_timing_check(37); |
always @(dq_in[38]) dq_timing_check(38); |
always @(dq_in[39]) dq_timing_check(39); |
always @(dq_in[40]) dq_timing_check(40); |
always @(dq_in[41]) dq_timing_check(41); |
always @(dq_in[42]) dq_timing_check(42); |
always @(dq_in[43]) dq_timing_check(43); |
always @(dq_in[44]) dq_timing_check(44); |
always @(dq_in[45]) dq_timing_check(45); |
always @(dq_in[46]) dq_timing_check(46); |
always @(dq_in[47]) dq_timing_check(47); |
always @(dq_in[48]) dq_timing_check(48); |
always @(dq_in[49]) dq_timing_check(49); |
always @(dq_in[50]) dq_timing_check(50); |
always @(dq_in[51]) dq_timing_check(51); |
always @(dq_in[52]) dq_timing_check(52); |
always @(dq_in[53]) dq_timing_check(53); |
always @(dq_in[54]) dq_timing_check(54); |
always @(dq_in[55]) dq_timing_check(55); |
always @(dq_in[56]) dq_timing_check(56); |
always @(dq_in[57]) dq_timing_check(57); |
always @(dq_in[58]) dq_timing_check(58); |
always @(dq_in[59]) dq_timing_check(59); |
always @(dq_in[60]) dq_timing_check(60); |
always @(dq_in[61]) dq_timing_check(61); |
always @(dq_in[62]) dq_timing_check(62); |
always @(dq_in[63]) dq_timing_check(63); |
always @(dq_in[64]) dq_timing_check(64); |
always @(dq_in[65]) dq_timing_check(65); |
always @(dq_in[66]) dq_timing_check(66); |
always @(dq_in[67]) dq_timing_check(67); |
always @(dq_in[68]) dq_timing_check(68); |
always @(dq_in[69]) dq_timing_check(69); |
always @(dq_in[70]) dq_timing_check(70); |
always @(dq_in[71]) dq_timing_check(71); |
|
task dqs_pos_timing_check; |
input i; |
reg [5:0] i; |
reg [3:0] j; |
begin |
if (dqs_in_valid && ((wdqs_pos_cntr[i] < burst_length/2) || b2b_write) && (dqs_n_en || i<18)) begin |
if (dqs_in[i] ^ prev_dqs_in[i]) begin |
if (dll_locked) begin |
if (check_write_preamble[i]) begin |
if ($time - tm_dqs_neg[i] < $rtoi(TWPRE*tck_avg)) |
$display ("%m: at time %t ERROR: tWPRE violation on &s bit %d", $time, dqs_string[i/18], i%18); |
end else if (check_write_postamble[i]) begin |
if ($time - tm_dqs_neg[i] < $rtoi(TWPST*tck_avg)) |
$display ("%m: at time %t ERROR: tWPST violation on %s bit %d", $time, dqs_string[i/18], i%18); |
end else begin |
if ($time - tm_dqs_neg[i] < $rtoi(TDQSL*tck_avg)) |
$display ("%m: at time %t ERROR: tDQSL violation on %s bit %d", $time, dqs_string[i/18], i%18); |
end |
end |
if ($time - tm_dm[i%18] < TDS) |
$display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%18] + TDS - $time); |
if (!dq_out_en) begin |
for (j=0; j<`DQ_PER_DQS; j=j+1) begin |
if ($time - tm_dq[i*`DQ_PER_DQS+j] < TDS) |
$display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[i*`DQ_PER_DQS+j] + TDS - $time); |
check_dq_tdipw[i*`DQ_PER_DQS+j] <= 1'b1; |
end |
end |
if ((wdqs_pos_cntr[i] < burst_length/2) && !b2b_write) begin |
wdqs_pos_cntr[i] <= wdqs_pos_cntr[i] + 1; |
end else begin |
wdqs_pos_cntr[i] <= 1; |
end |
check_dm_tdipw[i%18] <= 1'b1; |
check_write_preamble[i] <= 1'b0; |
check_write_postamble[i] <= 1'b0; |
check_write_dqs_low[i] <= 1'b0; |
tm_dqs[i%18] <= $time; |
end else begin |
$display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/18], i%18); |
end |
end |
tm_dqss_pos[i] <= $time; |
tm_dqs_pos[i] = $time; |
prev_dqs_in[i] <= dqs_in[i]; |
end |
endtask |
|
always @(posedge dqs_in[ 0]) dqs_pos_timing_check( 0); |
always @(posedge dqs_in[ 1]) dqs_pos_timing_check( 1); |
always @(posedge dqs_in[ 2]) dqs_pos_timing_check( 2); |
always @(posedge dqs_in[ 3]) dqs_pos_timing_check( 3); |
always @(posedge dqs_in[ 4]) dqs_pos_timing_check( 4); |
always @(posedge dqs_in[ 5]) dqs_pos_timing_check( 5); |
always @(posedge dqs_in[ 6]) dqs_pos_timing_check( 6); |
always @(posedge dqs_in[ 7]) dqs_pos_timing_check( 7); |
always @(posedge dqs_in[ 8]) dqs_pos_timing_check( 8); |
always @(posedge dqs_in[ 9]) dqs_pos_timing_check( 9); |
always @(posedge dqs_in[10]) dqs_pos_timing_check(10); |
always @(posedge dqs_in[11]) dqs_pos_timing_check(11); |
always @(posedge dqs_in[12]) dqs_pos_timing_check(12); |
always @(posedge dqs_in[13]) dqs_pos_timing_check(13); |
always @(posedge dqs_in[14]) dqs_pos_timing_check(14); |
always @(posedge dqs_in[15]) dqs_pos_timing_check(15); |
always @(posedge dqs_in[16]) dqs_pos_timing_check(16); |
always @(posedge dqs_in[17]) dqs_pos_timing_check(17); |
always @(negedge dqs_in[18]) dqs_pos_timing_check(18); |
always @(negedge dqs_in[19]) dqs_pos_timing_check(19); |
always @(negedge dqs_in[20]) dqs_pos_timing_check(20); |
always @(negedge dqs_in[21]) dqs_pos_timing_check(21); |
always @(negedge dqs_in[22]) dqs_pos_timing_check(22); |
always @(negedge dqs_in[23]) dqs_pos_timing_check(23); |
always @(negedge dqs_in[24]) dqs_pos_timing_check(24); |
always @(negedge dqs_in[25]) dqs_pos_timing_check(25); |
always @(negedge dqs_in[26]) dqs_pos_timing_check(26); |
always @(negedge dqs_in[27]) dqs_pos_timing_check(27); |
always @(negedge dqs_in[28]) dqs_pos_timing_check(28); |
always @(negedge dqs_in[29]) dqs_pos_timing_check(29); |
always @(negedge dqs_in[30]) dqs_pos_timing_check(30); |
always @(negedge dqs_in[31]) dqs_pos_timing_check(31); |
always @(negedge dqs_in[32]) dqs_neg_timing_check(32); |
always @(negedge dqs_in[33]) dqs_neg_timing_check(33); |
always @(negedge dqs_in[34]) dqs_neg_timing_check(34); |
always @(negedge dqs_in[35]) dqs_neg_timing_check(35); |
|
task dqs_neg_timing_check; |
input i; |
reg [5:0] i; |
reg [3:0] j; |
begin |
if (dqs_in_valid && (wdqs_pos_cntr[i] > 0) && check_write_dqs_high[i] && (dqs_n_en || i < 18)) begin |
if (dqs_in[i] ^ prev_dqs_in[i]) begin |
if (dll_locked) begin |
if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg)) |
$display ("%m: at time %t ERROR: tDQSH violation on %s bit %d", $time, dqs_string[i/18], i%18); |
if ($time - tm_ck_pos < $rtoi(TDSH*tck_avg)) |
$display ("%m: at time %t ERROR: tDSH violation on %s bit %d", $time, dqs_string[i/18], i%18); |
end |
if ($time - tm_dm[i%18] < TDS) |
$display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%18] + TDS - $time); |
if (!dq_out_en) begin |
for (j=0; j<`DQ_PER_DQS; j=j+1) begin |
if ($time - tm_dq[i*`DQ_PER_DQS+j] < TDS) |
$display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[i*`DQ_PER_DQS+j] + TDS - $time); |
check_dq_tdipw[i*`DQ_PER_DQS+j] <= 1'b1; |
end |
end |
check_dm_tdipw[i%18] <= 1'b1; |
check_write_dqs_high[i] <= 1'b0; |
tm_dqs[i%18] <= $time; |
end else begin |
$display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/18], i%18); |
end |
end |
tm_dqs_neg[i] = $time; |
prev_dqs_in[i] <= dqs_in[i]; |
end |
endtask |
|
always @(negedge dqs_in[ 0]) dqs_neg_timing_check( 0); |
always @(negedge dqs_in[ 1]) dqs_neg_timing_check( 1); |
always @(negedge dqs_in[ 2]) dqs_neg_timing_check( 2); |
always @(negedge dqs_in[ 3]) dqs_neg_timing_check( 3); |
always @(negedge dqs_in[ 4]) dqs_neg_timing_check( 4); |
always @(negedge dqs_in[ 5]) dqs_neg_timing_check( 5); |
always @(negedge dqs_in[ 6]) dqs_neg_timing_check( 6); |
always @(negedge dqs_in[ 7]) dqs_neg_timing_check( 7); |
always @(negedge dqs_in[ 8]) dqs_neg_timing_check( 8); |
always @(negedge dqs_in[ 9]) dqs_neg_timing_check( 9); |
always @(negedge dqs_in[10]) dqs_neg_timing_check(10); |
always @(negedge dqs_in[11]) dqs_neg_timing_check(11); |
always @(negedge dqs_in[12]) dqs_neg_timing_check(12); |
always @(negedge dqs_in[13]) dqs_neg_timing_check(13); |
always @(negedge dqs_in[14]) dqs_neg_timing_check(14); |
always @(negedge dqs_in[15]) dqs_neg_timing_check(15); |
always @(negedge dqs_in[16]) dqs_neg_timing_check(16); |
always @(negedge dqs_in[17]) dqs_neg_timing_check(17); |
always @(posedge dqs_in[18]) dqs_neg_timing_check(18); |
always @(posedge dqs_in[19]) dqs_neg_timing_check(19); |
always @(posedge dqs_in[20]) dqs_neg_timing_check(20); |
always @(posedge dqs_in[21]) dqs_neg_timing_check(21); |
always @(posedge dqs_in[22]) dqs_neg_timing_check(22); |
always @(posedge dqs_in[23]) dqs_neg_timing_check(23); |
always @(posedge dqs_in[24]) dqs_neg_timing_check(24); |
always @(posedge dqs_in[25]) dqs_neg_timing_check(25); |
always @(posedge dqs_in[26]) dqs_neg_timing_check(26); |
always @(posedge dqs_in[27]) dqs_neg_timing_check(27); |
always @(posedge dqs_in[28]) dqs_neg_timing_check(28); |
always @(posedge dqs_in[29]) dqs_neg_timing_check(29); |
always @(posedge dqs_in[30]) dqs_neg_timing_check(30); |
always @(posedge dqs_in[31]) dqs_neg_timing_check(31); |
always @(posedge dqs_in[32]) dqs_neg_timing_check(32); |
always @(posedge dqs_in[33]) dqs_neg_timing_check(33); |
always @(posedge dqs_in[34]) dqs_neg_timing_check(34); |
always @(posedge dqs_in[35]) dqs_neg_timing_check(35); |
|
endmodule |
/xilinx/ml501/bench/verilog/eth_stim.v
0,0 → 1,635
////////////////////////////////////////////////////////////////////// |
//// //// |
//// ORPSoC Testbench - Ethernet MAC Stimulus //// |
//// //// |
//// Description //// |
//// Ethernet MAC stimulus tasks. Taken from the project //// |
//// testbench in the ethmac core. //// |
//// //// |
//// To Do: //// |
//// //// |
//// //// |
//// Author(s): //// |
//// - Tadej Markovic, tadej@opencores.org //// |
//// - Igor Mohor, igorM@opencores.org //// |
//// - jb, jb@orsoc.se //// |
//// //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
//// //// |
//// Copyright (C) 2009 Authors and OPENCORES.ORG //// |
//// //// |
//// This source file may be used and distributed without //// |
//// restriction provided that this copyright statement is not //// |
//// removed from the file and that any derivative work contains //// |
//// the original copyright notice and the associated disclaimer. //// |
//// //// |
//// This source file is free software; you can redistribute it //// |
//// and/or modify it under the terms of the GNU Lesser General //// |
//// Public License as published by the Free Software Foundation; //// |
//// either version 2.1 of the License, or (at your option) any //// |
//// later version. //// |
//// //// |
//// This source is distributed in the hope that it will be //// |
//// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
//// PURPOSE. See the GNU Lesser General Public License for more //// |
//// details. //// |
//// //// |
//// You should have received a copy of the GNU Lesser General //// |
//// Public License along with this source; if not, download it //// |
//// from http://www.opencores.org/lgpl.shtml //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
|
|
reg [15:0] rx_packet_length; |
reg [7:0] st_data; |
parameter Tp = 1; |
initial |
begin |
|
repeat(170000) @(posedge eth_clk); |
|
rx_packet_length = 16'd96; // Bytes |
|
st_data = 8'h0F; |
set_rx_packet(0, rx_packet_length, 1'b0, 48'h0012_3456_789a, 48'h0708_090A_0B0C, 16'h0D0E, st_data); // length without CRC |
set_rx_addr_type(0, 48'h0102_0304_0506, 48'h0708_090A_0B0C, 16'h0D0E); |
append_rx_crc(0, rx_packet_length, 1'b0, 1'b0); |
|
/* |
// write to phy's control register for 10Mbps |
#Tp eth_phy0.control_bit14_10 = 5'b00000; // bit 13 reset - speed 10 |
#Tp eth_phy0.control_bit8_0 = 9'h1_00; // bit 6 reset - (10/100), bit 8 set - FD |
*/ |
|
/* |
// write to phy's control register for 100Mbps |
#Tp eth_phy0.control_bit14_10 = 5'b01000; // bit 13 reset - speed 100 |
#Tp eth_phy0.control_bit8_0 = 9'h1_00; // bit 6 reset - (10/100), bit 8 set - FD |
*/ |
|
//#Tp eth_phy0.carrier_sense_tx_fd_detect(1); // Full duplex CRS detect normally off |
|
/* |
from eth_phy.v: |
task send_rx_packet; |
input [(8*8)-1:0] preamble_data; // preamble data to be sent - correct is 64'h0055_5555_5555_5555 |
input [3:0] preamble_len; // length of preamble in bytes - max is 4'h8, correct is 4'h7 |
input [7:0] sfd_data; // SFD data to be sent - correct is 8'hD5 |
input [31:0] start_addr; // start address |
input [31:0] len; // length of frame in Bytes (without preamble and SFD) |
input plus_drible_nibble; // if length is longer for one nibble |
|
*/ |
// while (1) |
// begin |
#300000 eth_phy0.send_rx_packet(64'h0055_5555_5555_5555, 4'h7, 8'hD5, 0, rx_packet_length, 1'b0); |
//end |
/* TODO: Some checking here that the packet's contents actually ended up in RAM correctly */ |
|
end |
/* |
TASKS for set and check RX packets: |
----------------------------------- |
set_rx_packet |
(rxpnt[31:0], len[15:0], plus_nibble, d_addr[47:0], s_addr[47:0], type_len[15:0], start_data[7:0]); |
check_rx_packet |
(rxpnt_phy[31:0], rxpnt_wb[31:0], len[15:0], plus_nibble, successful_nibble, failure[31:0]); |
*/ |
task set_rx_packet; |
input [31:0] rxpnt; // pointer to place in in the phy rx buffer we'll start at |
input [15:0] len; |
input plus_dribble_nibble; // if length is longer for one nibble |
input [47:0] eth_dest_addr; |
input [47:0] eth_source_addr; |
input [15:0] eth_type_len; |
input [7:0] eth_start_data; |
integer i, sd; |
reg [47:0] dest_addr; |
reg [47:0] source_addr; |
reg [15:0] type_len; |
reg [21:0] buffer; |
reg delta_t; |
begin |
buffer = rxpnt[21:0]; |
dest_addr = eth_dest_addr; |
source_addr = eth_source_addr; |
type_len = eth_type_len; |
sd = eth_start_data; |
delta_t = 0; |
for(i = 0; i < len; i = i + 1) |
begin |
if (i < 6) |
begin |
eth_phy0.rx_mem[buffer] = dest_addr[47:40]; |
dest_addr = dest_addr << 8; |
end |
else if (i < 12) |
begin |
eth_phy0.rx_mem[buffer] = source_addr[47:40]; |
source_addr = source_addr << 8; |
end |
else if (i < 14) |
begin |
eth_phy0.rx_mem[buffer] = type_len[15:8]; |
type_len = type_len << 8; |
end |
else |
begin |
eth_phy0.rx_mem[buffer] = sd[7:0]; |
sd = sd + 1; |
end |
buffer = buffer + 1; |
end |
delta_t = !delta_t; |
if (plus_dribble_nibble) |
eth_phy0.rx_mem[buffer] = {4'h0, 4'hD /*sd[3:0]*/}; |
delta_t = !delta_t; |
end |
endtask // set_rx_packet |
|
|
|
|
task set_rx_addr_type; |
input [31:0] rxpnt; |
input [47:0] eth_dest_addr; |
input [47:0] eth_source_addr; |
input [15:0] eth_type_len; |
integer i; |
reg [47:0] dest_addr; |
reg [47:0] source_addr; |
reg [15:0] type_len; |
reg [21:0] buffer; |
reg delta_t; |
begin |
buffer = rxpnt[21:0]; |
dest_addr = eth_dest_addr; |
source_addr = eth_source_addr; |
type_len = eth_type_len; |
delta_t = 0; |
for(i = 0; i < 14; i = i + 1) |
begin |
if (i < 6) |
begin |
eth_phy0.rx_mem[buffer] = dest_addr[47:40]; |
dest_addr = dest_addr << 8; |
end |
else if (i < 12) |
begin |
eth_phy0.rx_mem[buffer] = source_addr[47:40]; |
source_addr = source_addr << 8; |
end |
else // if (i < 14) |
begin |
eth_phy0.rx_mem[buffer] = type_len[15:8]; |
type_len = type_len << 8; |
end |
buffer = buffer + 1; |
end |
delta_t = !delta_t; |
end |
endtask // set_rx_addr_type |
|
/* |
task check_rx_packet; |
input [31:0] rxpnt_phy; // source |
input [31:0] rxpnt_wb; // destination |
input [15:0] len; |
input plus_dribble_nibble; // if length is longer for one nibble |
input successful_dribble_nibble; // if additional nibble is stored into memory |
output [31:0] failure; |
integer i, data_wb, data_phy; |
reg [31:0] addr_wb, addr_phy; |
reg [31:0] failure; |
reg [21:0] buffer; |
reg delta_t; |
begin |
addr_phy = rxpnt_phy; |
addr_wb = rxpnt_wb; |
delta_t = 0; |
failure = 0; |
|
// First write might not be word allign. |
if(addr_wb[1:0] == 1) |
begin |
wb_slave.rd_mem(addr_wb[21:0] - 1, data_wb, 4'h7); |
data_phy[31:24] = 0; |
data_phy[23:16] = eth_phy0.rx_mem[addr_phy[21:0]]; |
data_phy[15: 8] = eth_phy0.rx_mem[addr_phy[21:0] + 1]; |
data_phy[ 7: 0] = eth_phy0.rx_mem[addr_phy[21:0] + 2]; |
i = 3; |
if (data_phy[23:0] !== data_wb[23:0]) |
begin |
//`TIME; |
//$display(" addr_phy = %h, addr_wb = %h", rxpnt_phy, rxpnt_wb); |
//$display("*E Wrong 1. word (3 bytes) of RX packet! phy = %h, wb = %h", data_phy[23:0], data_wb[23:0]); |
failure = 1; |
end |
end |
else if (addr_wb[1:0] == 2) |
begin |
wb_slave.rd_mem(addr_wb[21:0] - 2, data_wb, 4'h3); |
data_phy[31:16] = 0; |
data_phy[15: 8] = eth_phy0.rx_mem[addr_phy[21:0]]; |
data_phy[ 7: 0] = eth_phy0.rx_mem[addr_phy[21:0] + 1]; |
i = 2; |
if (data_phy[15:0] !== data_wb[15:0]) |
begin |
//`TIME; |
//$display(" addr_phy = %h, addr_wb = %h", rxpnt_phy, rxpnt_wb); |
//$display("*E Wrong 1. word (2 bytes) of RX packet! phy = %h, wb = %h", data_phy[15:0], data_wb[15:0]); |
failure = 1; |
end |
end |
else if (addr_wb[1:0] == 3) |
begin |
wb_slave.rd_mem(addr_wb[21:0] - 3, data_wb, 4'h1); |
data_phy[31: 8] = 0; |
data_phy[ 7: 0] = eth_phy0.rx_mem[addr_phy[21:0]]; |
i = 1; |
if (data_phy[7:0] !== data_wb[7:0]) |
begin |
//`TIME; |
//$display(" addr_phy = %h, addr_wb = %h", rxpnt_phy, rxpnt_wb); |
//$display("*E Wrong 1. word (1 byte) of RX packet! phy = %h, wb = %h", data_phy[7:0], data_wb[7:0]); |
failure = 1; |
end |
end |
else |
i = 0; |
delta_t = !delta_t; |
|
for(i = i; i < (len - 4); i = i + 4) // Last 0-3 bytes are not checked |
begin |
wb_slave.rd_mem(addr_wb[21:0] + i, data_wb, 4'hF); |
data_phy[31:24] = eth_phy0.rx_mem[addr_phy[21:0] + i]; |
data_phy[23:16] = eth_phy0.rx_mem[addr_phy[21:0] + i + 1]; |
data_phy[15: 8] = eth_phy0.rx_mem[addr_phy[21:0] + i + 2]; |
data_phy[ 7: 0] = eth_phy0.rx_mem[addr_phy[21:0] + i + 3]; |
if (data_phy[31:0] !== data_wb[31:0]) |
begin |
//`TIME; |
//if (i == 0) |
// $display(" addr_phy = %h, addr_wb = %h", rxpnt_phy, rxpnt_wb); |
//$display("*E Wrong %0d. word (4 bytes) of RX packet! phy = %h, wb = %h", ((i/4)+1), data_phy[31:0], data_wb[31:0]); |
failure = failure + 1; |
end |
end |
delta_t = !delta_t; |
|
// Last word |
if((len - i) == 3) |
begin |
wb_slave.rd_mem(addr_wb[21:0] + i, data_wb, 4'hF); |
data_phy[31:24] = eth_phy0.rx_mem[addr_phy[21:0] + i]; |
data_phy[23:16] = eth_phy0.rx_mem[addr_phy[21:0] + i + 1]; |
data_phy[15: 8] = eth_phy0.rx_mem[addr_phy[21:0] + i + 2]; |
if (plus_dribble_nibble) |
data_phy[ 7: 0] = eth_phy0.rx_mem[addr_phy[21:0] + i + 3]; |
else |
data_phy[ 7: 0] = 0; |
if (data_phy[31:8] !== data_wb[31:8]) |
begin |
//`TIME; |
//$display("*E Wrong %0d. word (3 bytes) of RX packet! phy = %h, wb = %h", ((i/4)+1), data_phy[31:8], data_wb[31:8]); |
failure = failure + 1; |
end |
if (plus_dribble_nibble && successful_dribble_nibble) |
begin |
if (data_phy[3:0] !== data_wb[3:0]) |
begin |
//`TIME; |
//$display("*E Wrong dribble nibble in %0d. word (3 bytes) of RX packet!", ((i/4)+1)); |
failure = failure + 1; |
end |
end |
else if (plus_dribble_nibble && !successful_dribble_nibble) |
begin |
if (data_phy[3:0] === data_wb[3:0]) |
begin |
//`TIME; |
//$display("*E Wrong dribble nibble in %0d. word (3 bytes) of RX packet!", ((i/4)+1)); |
failure = failure + 1; |
end |
end |
end |
else if((len - i) == 2) |
begin |
wb_slave.rd_mem(addr_wb[21:0] + i, data_wb, 4'hE); |
data_phy[31:24] = eth_phy0.rx_mem[addr_phy[21:0] + i]; |
data_phy[23:16] = eth_phy0.rx_mem[addr_phy[21:0] + i + 1]; |
if (plus_dribble_nibble) |
data_phy[15: 8] = eth_phy0.rx_mem[addr_phy[21:0] + i + 2]; |
else |
data_phy[15: 8] = 0; |
data_phy[ 7: 0] = 0; |
if (data_phy[31:16] !== data_wb[31:16]) |
begin |
//`TIME; |
//$display("*E Wrong %0d. word (2 bytes) of RX packet! phy = %h, wb = %h", ((i/4)+1), data_phy[31:16], data_wb[31:16]); |
failure = failure + 1; |
end |
if (plus_dribble_nibble && successful_dribble_nibble) |
begin |
if (data_phy[11:8] !== data_wb[11:8]) |
begin |
//`TIME; |
//$display("*E Wrong dribble nibble in %0d. word (2 bytes) of RX packet!", ((i/4)+1)); |
failure = failure + 1; |
end |
end |
else if (plus_dribble_nibble && !successful_dribble_nibble) |
begin |
if (data_phy[11:8] === data_wb[11:8]) |
begin |
//`TIME; |
//$display("*E Wrong dribble nibble in %0d. word (2 bytes) of RX packet!", ((i/4)+1)); |
failure = failure + 1; |
end |
end |
end |
else if((len - i) == 1) |
begin |
wb_slave.rd_mem(addr_wb[21:0] + i, data_wb, 4'hC); |
data_phy[31:24] = eth_phy0.rx_mem[addr_phy[21:0] + i]; |
if (plus_dribble_nibble) |
data_phy[23:16] = eth_phy0.rx_mem[addr_phy[21:0] + i + 1]; |
else |
data_phy[23:16] = 0; |
data_phy[15: 8] = 0; |
data_phy[ 7: 0] = 0; |
if (data_phy[31:24] !== data_wb[31:24]) |
begin |
//`TIME; |
//$display("*E Wrong %0d. word (1 byte) of RX packet! phy = %h, wb = %h", ((i/4)+1), data_phy[31:24], data_wb[31:24]); |
failure = failure + 1; |
end |
if (plus_dribble_nibble && successful_dribble_nibble) |
begin |
if (data_phy[19:16] !== data_wb[19:16]) |
begin |
//`TIME; |
//$display("*E Wrong dribble nibble in %0d. word (1 byte) of RX packet!", ((i/4)+1)); |
failure = failure + 1; |
end |
end |
else if (plus_dribble_nibble && !successful_dribble_nibble) |
begin |
if (data_phy[19:16] === data_wb[19:16]) |
begin |
//`TIME; |
//$display("*E Wrong dribble nibble in %0d. word (1 byte) of RX packet!", ((i/4)+1)); |
failure = failure + 1; |
end |
end |
end |
else if((len - i) == 4) |
begin |
wb_slave.rd_mem(addr_wb[21:0] + i, data_wb, 4'hF); |
data_phy[31:24] = eth_phy0.rx_mem[addr_phy[21:0] + i]; |
data_phy[23:16] = eth_phy0.rx_mem[addr_phy[21:0] + i + 1]; |
data_phy[15: 8] = eth_phy0.rx_mem[addr_phy[21:0] + i + 2]; |
data_phy[ 7: 0] = eth_phy0.rx_mem[addr_phy[21:0] + i + 3]; |
if (data_phy[31:0] !== data_wb[31:0]) |
begin |
//`TIME; |
//$display("*E Wrong %0d. word (4 bytes) of RX packet! phy = %h, wb = %h", ((i/4)+1), data_phy[31:0], data_wb[31:0]); |
failure = failure + 1; |
end |
if (plus_dribble_nibble) |
begin |
wb_slave.rd_mem(addr_wb[21:0] + i + 4, data_wb, 4'h8); |
data_phy[31:24] = eth_phy0.rx_mem[addr_phy[21:0] + i + 4]; |
if (successful_dribble_nibble) |
begin |
if (data_phy[27:24] !== data_wb[27:24]) |
begin |
//`TIME; |
//$display("*E Wrong dribble nibble in %0d. word (0 bytes) of RX packet!", ((i/4)+2)); |
failure = failure + 1; |
end |
end |
else |
begin |
if (data_phy[27:24] === data_wb[27:24]) |
begin |
//`TIME; |
//$display("*E Wrong dribble nibble in %0d. word (0 bytes) of RX packet!", ((i/4)+2)); |
failure = failure + 1; |
end |
end |
end |
end |
else |
$display("(%0t)(%m) ERROR", $time); |
delta_t = !delta_t; |
end |
endtask // check_rx_packet |
*/ |
|
////////////////////////////////////////////////////////////// |
// Ethernet CRC Basic tasks |
////////////////////////////////////////////////////////////// |
|
task append_rx_crc; |
input [31:0] rxpnt_phy; // source |
input [15:0] len; // length in bytes without CRC |
input plus_dribble_nibble; // if length is longer for one nibble |
input negated_crc; // if appended CRC is correct or not |
reg [31:0] crc; |
reg [7:0] tmp; |
reg [31:0] addr_phy; |
reg delta_t; |
begin |
addr_phy = rxpnt_phy + len; |
delta_t = 0; |
// calculate CRC from prepared packet |
paralel_crc_phy_rx(rxpnt_phy, {16'h0, len}, plus_dribble_nibble, crc); |
if (negated_crc) |
crc = ~crc; |
delta_t = !delta_t; |
|
if (plus_dribble_nibble) |
begin |
tmp = eth_phy0.rx_mem[addr_phy]; |
eth_phy0.rx_mem[addr_phy] = {crc[27:24], tmp[3:0]}; |
eth_phy0.rx_mem[addr_phy + 1] = {crc[19:16], crc[31:28]}; |
eth_phy0.rx_mem[addr_phy + 2] = {crc[11:8], crc[23:20]}; |
eth_phy0.rx_mem[addr_phy + 3] = {crc[3:0], crc[15:12]}; |
eth_phy0.rx_mem[addr_phy + 4] = {4'h0, crc[7:4]}; |
end |
else |
begin |
eth_phy0.rx_mem[addr_phy] = crc[31:24]; |
eth_phy0.rx_mem[addr_phy + 1] = crc[23:16]; |
eth_phy0.rx_mem[addr_phy + 2] = crc[15:8]; |
eth_phy0.rx_mem[addr_phy + 3] = crc[7:0]; |
end |
end |
endtask // append_rx_crc |
|
task append_rx_crc_delayed; |
input [31:0] rxpnt_phy; // source |
input [15:0] len; // length in bytes without CRC |
input plus_dribble_nibble; // if length is longer for one nibble |
input negated_crc; // if appended CRC is correct or not |
reg [31:0] crc; |
reg [7:0] tmp; |
reg [31:0] addr_phy; |
reg delta_t; |
begin |
addr_phy = rxpnt_phy + len; |
delta_t = 0; |
// calculate CRC from prepared packet |
paralel_crc_phy_rx(rxpnt_phy+4, {16'h0, len}-4, plus_dribble_nibble, crc); |
if (negated_crc) |
crc = ~crc; |
delta_t = !delta_t; |
|
if (plus_dribble_nibble) |
begin |
tmp = eth_phy0.rx_mem[addr_phy]; |
eth_phy0.rx_mem[addr_phy] = {crc[27:24], tmp[3:0]}; |
eth_phy0.rx_mem[addr_phy + 1] = {crc[19:16], crc[31:28]}; |
eth_phy0.rx_mem[addr_phy + 2] = {crc[11:8], crc[23:20]}; |
eth_phy0.rx_mem[addr_phy + 3] = {crc[3:0], crc[15:12]}; |
eth_phy0.rx_mem[addr_phy + 4] = {4'h0, crc[7:4]}; |
end |
else |
begin |
eth_phy0.rx_mem[addr_phy] = crc[31:24]; |
eth_phy0.rx_mem[addr_phy + 1] = crc[23:16]; |
eth_phy0.rx_mem[addr_phy + 2] = crc[15:8]; |
eth_phy0.rx_mem[addr_phy + 3] = crc[7:0]; |
end |
end |
endtask // append_rx_crc_delayed |
|
|
// paralel CRC calculating for PHY RX |
task paralel_crc_phy_rx; |
input [31:0] start_addr; // start address |
input [31:0] len; // length of frame in Bytes without CRC length |
input plus_dribble_nibble; // if length is longer for one nibble |
output [31:0] crc_out; |
reg [21:0] addr_cnt; // only 22 address lines |
integer word_cnt; |
integer nibble_cnt; |
reg [31:0] load_reg; |
reg delta_t; |
reg [31:0] crc_next; |
reg [31:0] crc; |
reg crc_error; |
reg [3:0] data_in; |
integer i; |
begin |
#1 addr_cnt = start_addr[21:0]; |
word_cnt = 24; // 27; // start of the frame - nibble granularity (MSbit first) |
crc = 32'hFFFF_FFFF; // INITIAL value |
delta_t = 0; |
// length must include 4 bytes of ZEROs, to generate CRC |
// get number of nibbles from Byte length (2^1 = 2) |
if (plus_dribble_nibble) |
nibble_cnt = ((len + 4) << 1) + 1'b1; // one nibble longer |
else |
nibble_cnt = ((len + 4) << 1); |
// because of MAGIC NUMBER nibbles are swapped [3:0] -> [0:3] |
load_reg[31:24] = eth_phy0.rx_mem[addr_cnt]; |
addr_cnt = addr_cnt + 1; |
load_reg[23:16] = eth_phy0.rx_mem[addr_cnt]; |
addr_cnt = addr_cnt + 1; |
load_reg[15: 8] = eth_phy0.rx_mem[addr_cnt]; |
addr_cnt = addr_cnt + 1; |
load_reg[ 7: 0] = eth_phy0.rx_mem[addr_cnt]; |
addr_cnt = addr_cnt + 1; |
while (nibble_cnt > 0) |
begin |
// wait for delta time |
delta_t = !delta_t; |
// shift data in |
|
if(nibble_cnt <= 8) // for additional 8 nibbles shift ZEROs in! |
data_in[3:0] = 4'h0; |
else |
|
data_in[3:0] = {load_reg[word_cnt], load_reg[word_cnt+1], load_reg[word_cnt+2], load_reg[word_cnt+3]}; |
crc_next[0] = (data_in[0] ^ crc[28]); |
crc_next[1] = (data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29]); |
crc_next[2] = (data_in[2] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[30]); |
crc_next[3] = (data_in[3] ^ data_in[2] ^ data_in[1] ^ crc[29] ^ crc[30] ^ crc[31]); |
crc_next[4] = (data_in[3] ^ data_in[2] ^ data_in[0] ^ crc[28] ^ crc[30] ^ crc[31]) ^ crc[0]; |
crc_next[5] = (data_in[3] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[31]) ^ crc[1]; |
crc_next[6] = (data_in[2] ^ data_in[1] ^ crc[29] ^ crc[30]) ^ crc[ 2]; |
crc_next[7] = (data_in[3] ^ data_in[2] ^ data_in[0] ^ crc[28] ^ crc[30] ^ crc[31]) ^ crc[3]; |
crc_next[8] = (data_in[3] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[31]) ^ crc[4]; |
crc_next[9] = (data_in[2] ^ data_in[1] ^ crc[29] ^ crc[30]) ^ crc[5]; |
crc_next[10] = (data_in[3] ^ data_in[2] ^ data_in[0] ^ crc[28] ^ crc[30] ^ crc[31]) ^ crc[6]; |
crc_next[11] = (data_in[3] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[31]) ^ crc[7]; |
crc_next[12] = (data_in[2] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[30]) ^ crc[8]; |
crc_next[13] = (data_in[3] ^ data_in[2] ^ data_in[1] ^ crc[29] ^ crc[30] ^ crc[31]) ^ crc[9]; |
crc_next[14] = (data_in[3] ^ data_in[2] ^ crc[30] ^ crc[31]) ^ crc[10]; |
crc_next[15] = (data_in[3] ^ crc[31]) ^ crc[11]; |
crc_next[16] = (data_in[0] ^ crc[28]) ^ crc[12]; |
crc_next[17] = (data_in[1] ^ crc[29]) ^ crc[13]; |
crc_next[18] = (data_in[2] ^ crc[30]) ^ crc[14]; |
crc_next[19] = (data_in[3] ^ crc[31]) ^ crc[15]; |
crc_next[20] = crc[16]; |
crc_next[21] = crc[17]; |
crc_next[22] = (data_in[0] ^ crc[28]) ^ crc[18]; |
crc_next[23] = (data_in[1] ^ data_in[0] ^ crc[29] ^ crc[28]) ^ crc[19]; |
crc_next[24] = (data_in[2] ^ data_in[1] ^ crc[30] ^ crc[29]) ^ crc[20]; |
crc_next[25] = (data_in[3] ^ data_in[2] ^ crc[31] ^ crc[30]) ^ crc[21]; |
crc_next[26] = (data_in[3] ^ data_in[0] ^ crc[31] ^ crc[28]) ^ crc[22]; |
crc_next[27] = (data_in[1] ^ crc[29]) ^ crc[23]; |
crc_next[28] = (data_in[2] ^ crc[30]) ^ crc[24]; |
crc_next[29] = (data_in[3] ^ crc[31]) ^ crc[25]; |
crc_next[30] = crc[26]; |
crc_next[31] = crc[27]; |
|
crc = crc_next; |
crc_error = crc[31:0] != 32'hc704dd7b; // CRC not equal to magic number |
case (nibble_cnt) |
9: crc_out = {!crc[24], !crc[25], !crc[26], !crc[27], !crc[28], !crc[29], !crc[30], !crc[31], |
!crc[16], !crc[17], !crc[18], !crc[19], !crc[20], !crc[21], !crc[22], !crc[23], |
!crc[ 8], !crc[ 9], !crc[10], !crc[11], !crc[12], !crc[13], !crc[14], !crc[15], |
!crc[ 0], !crc[ 1], !crc[ 2], !crc[ 3], !crc[ 4], !crc[ 5], !crc[ 6], !crc[ 7]}; |
default: crc_out = crc_out; |
endcase |
// wait for delta time |
delta_t = !delta_t; |
// increment address and load new data |
if ((word_cnt+3) == 7)//4) |
begin |
// because of MAGIC NUMBER nibbles are swapped [3:0] -> [0:3] |
load_reg[31:24] = eth_phy0.rx_mem[addr_cnt]; |
addr_cnt = addr_cnt + 1; |
load_reg[23:16] = eth_phy0.rx_mem[addr_cnt]; |
addr_cnt = addr_cnt + 1; |
load_reg[15: 8] = eth_phy0.rx_mem[addr_cnt]; |
addr_cnt = addr_cnt + 1; |
load_reg[ 7: 0] = eth_phy0.rx_mem[addr_cnt]; |
addr_cnt = addr_cnt + 1; |
end |
// set new load bit position |
if((word_cnt+3) == 31) |
word_cnt = 16; |
else if ((word_cnt+3) == 23) |
word_cnt = 8; |
else if ((word_cnt+3) == 15) |
word_cnt = 0; |
else if ((word_cnt+3) == 7) |
word_cnt = 24; |
else |
word_cnt = word_cnt + 4;// - 4; |
// decrement nibble counter |
nibble_cnt = nibble_cnt - 1; |
// wait for delta time |
delta_t = !delta_t; |
end // while |
#1; |
end |
endtask // paralel_crc_phy_rx |
|
/xilinx/ml501/bench/verilog/eth_phy_defines.v
0,0 → 1,91
////////////////////////////////////////////////////////////////////// |
//// //// |
//// File name: eth_phy_defines.v //// |
//// //// |
//// This file is part of the Ethernet IP core project //// |
//// http://www.opencores.org/projects/ethmac/ //// |
//// //// |
//// Author(s): //// |
//// - Tadej Markovic, tadej@opencores.org //// |
//// //// |
//// All additional information is available in the README.txt //// |
//// file. //// |
//// //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
//// //// |
//// Copyright (C) 2002, Authors //// |
//// //// |
//// This source file may be used and distributed without //// |
//// restriction provided that this copyright statement is not //// |
//// removed from the file and that any derivative work contains //// |
//// the original copyright notice and the associated disclaimer. //// |
//// //// |
//// This source file is free software; you can redistribute it //// |
//// and/or modify it under the terms of the GNU Lesser General //// |
//// Public License as published by the Free Software Foundation; //// |
//// either version 2.1 of the License, or (at your option) any //// |
//// later version. //// |
//// //// |
//// This source is distributed in the hope that it will be //// |
//// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
//// PURPOSE. See the GNU Lesser General Public License for more //// |
//// details. //// |
//// //// |
//// You should have received a copy of the GNU Lesser General //// |
//// Public License along with this source; if not, download it //// |
//// from http://www.opencores.org/lgpl.shtml //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
// |
// CVS Revision History |
// |
// $Log: not supported by cvs2svn $ |
// Revision 1.1 2002/09/13 11:57:20 mohor |
// New testbench. Thanks to Tadej M - "The Spammer". |
// |
// |
// |
|
// Address of PHY device (LXT971A) |
`define ETH_PHY_ADDR 5'h07 |
|
// LED/Configuration pins on PHY device - see the specification, page 26, table 8 |
// Initial set of bits 13, 12 and 8 of Control Register |
`define LED_CFG1 1'b0 |
`define LED_CFG2 1'b1 |
`define LED_CFG3 1'b1 |
|
|
// Supported speeds and physical ports - see the specification, page 67, table 41 |
// Set bits 15 to 9 of Status Register |
`define SUPPORTED_SPEED_AND_PORT 7'h3F |
|
// Extended status register (address 15) |
// Set bit 8 of Status Register |
`define EXTENDED_STATUS 1'b0 |
|
// Default status bits - see the specification, page 67, table 41 |
// Set bits 6 to 0 of Status Register |
`define DEFAULT_STATUS 7'h09 |
|
// PHY ID 1 number - see the specification, page 68, table 42 |
// Set bits of Phy Id Register 1 |
`define PHY_ID1 16'h0013 |
|
// PHY ID 2 number - see the specification, page 68, table 43 |
// Set bits 15 to 10 of Phy Id Register 2 |
`define PHY_ID2 6'h1E |
|
// Manufacturer MODEL number - see the specification, page 68, table 43 |
// Set bits 9 to 4 of Phy Id Register 2 |
`define MAN_MODEL_NUM 6'h0E |
|
// Manufacturer REVISION number - see the specification, page 68, table 43 |
// Set bits 3 to 0 of Phy Id Register 2 |
`define MAN_REVISION_NUM 4'h2 |
|
|
|
|
/xilinx/ml501/bench/verilog/ml501_testbench.v
0,0 → 1,535
////////////////////////////////////////////////////////////////////// |
//// //// |
//// ORPSoC on ml501 testbench //// |
//// //// |
//// Description //// |
//// ORPSoC Testbench file //// |
//// //// |
//// To Do: //// |
//// Update ethernet and SPI models appropriately //// |
//// //// |
//// Author(s): //// |
//// - Julius Baxter, julius.baxter@orsoc.se //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
//// //// |
//// Copyright (C) 2010 Authors and OPENCORES.ORG //// |
//// //// |
//// This source file may be used and distributed without //// |
//// restriction provided that this copyright statement is not //// |
//// removed from the file and that any derivative work contains //// |
//// the original copyright notice and the associated disclaimer. //// |
//// //// |
//// This source file is free software; you can redistribute it //// |
//// and/or modify it under the terms of the GNU Lesser General //// |
//// Public License as published by the Free Software Foundation; //// |
//// either version 2.1 of the License, or (at your option) any //// |
//// later version. //// |
//// //// |
//// This source is distributed in the hope that it will be //// |
//// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
//// PURPOSE. See the GNU Lesser General Public License for more //// |
//// details. //// |
//// //// |
//// You should have received a copy of the GNU Lesser General //// |
//// Public License along with this source; if not, download it //// |
//// from http://www.opencores.org/lgpl.shtml //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
|
`timescale 1ns/1ps |
`include "glbl.v" |
`include "ml501_defines.v" |
`include "ml501_testbench_defines.v" |
|
module ml501_testbench(); |
|
reg clk, clk_200; |
reg rst_n; |
wire clk_200_p, clk_200_n; |
|
// Setup global clock. Period defined in orpsoc_testbench_defines.v |
initial |
begin |
clk <= 0; |
clk_200 <= 0; |
rst_n <= 1; |
end |
|
always |
#2500 clk_200 <= ~clk_200; |
|
always |
#((`CLOCK_PERIOD)/2) clk <= ~clk; |
|
|
assign clk_200_p = clk_200; |
assign clk_200_n = ~clk_200; |
|
// Assert rst_n and then bring it low again |
initial |
begin |
repeat (4) @(negedge clk); |
rst_n <= 0; |
repeat (16) @(negedge clk); |
rst_n <= 1; |
end |
|
|
wire usr_rst_in, usr_rst_out; |
assign usr_rst_in = usr_rst_out; |
|
|
// Wires for the dut |
wire spi_sd_sclk_o; |
wire spi_sd_ss_o; |
wire spi_sd_miso_i; |
wire spi_sd_mosi_o; |
|
|
`ifdef ML501_MEMORY_SSRAM |
wire `tsramtrace sram_clk; |
wire sram_clk_fb; |
wire `tsramtrace sram_adv_ld_n; |
wire [3:0] `tsramtrace sram_bw; |
wire `tsramtrace sram_cen; |
wire [21:1] `tsramtrace sram_flash_addr; |
wire [31:0] `tsramtrace sram_flash_data; |
wire `tsramtrace sram_flash_oe_n; |
wire `tsramtrace sram_flash_we_n; |
wire `tsramtrace sram_mode; |
`endif // `ifdef ML501_MEMORY_SSRAM |
|
|
`ifdef ML501_MEMORY_DDR2 |
|
`include "ml501_ddr2_params.vh" |
|
localparam DEVICE_WIDTH = 16; // Memory device data width |
localparam real CLK_PERIOD_NS = CLK_PERIOD / 1000.0; |
localparam real TCYC_200 = 5.0; |
localparam real TPROP_DQS = 0.00; // Delay for DQS signal during Write Operation |
localparam real TPROP_DQS_RD = 0.00; // Delay for DQS signal during Read Operation |
localparam real TPROP_PCB_CTRL = 0.00; // Delay for Address and Ctrl signals |
localparam real TPROP_PCB_DATA = 0.00; // Delay for data signal during Write operation |
localparam real TPROP_PCB_DATA_RD = 0.00; // Delay for data signal during Read operation |
|
wire [DQ_WIDTH-1:0] ddr2_dq_sdram; |
wire [DQS_WIDTH-1:0] ddr2_dqs_sdram; |
wire [DQS_WIDTH-1:0] ddr2_dqs_n_sdram; |
wire [DM_WIDTH-1:0] ddr2_dm_sdram; |
reg [DM_WIDTH-1:0] ddr2_dm_sdram_tmp; |
reg [CLK_WIDTH-1:0] ddr2_ck_sdram; |
reg [CLK_WIDTH-1:0] ddr2_ck_n_sdram; |
reg [ROW_WIDTH-1:0] ddr2_a_sdram; |
reg [BANK_WIDTH-1:0] ddr2_ba_sdram; |
reg ddr2_ras_n_sdram; |
reg ddr2_cas_n_sdram; |
reg ddr2_we_n_sdram; |
reg [CS_WIDTH-1:0] ddr2_cs_n_sdram; |
reg [CKE_WIDTH-1:0] ddr2_cke_sdram; |
reg [ODT_WIDTH-1:0] ddr2_odt_sdram; |
|
|
wire [DQ_WIDTH-1:0] ddr2_dq_fpga; |
wire [DQS_WIDTH-1:0] ddr2_dqs_fpga; |
wire [DQS_WIDTH-1:0] ddr2_dqs_n_fpga; |
wire [DM_WIDTH-1:0] ddr2_dm_fpga; |
wire [CLK_WIDTH-1:0] ddr2_ck_fpga; |
wire [CLK_WIDTH-1:0] ddr2_ck_n_fpga; |
wire [ROW_WIDTH-1:0] ddr2_a_fpga; |
wire [BANK_WIDTH-1:0] ddr2_ba_fpga; |
wire ddr2_ras_n_fpga; |
wire ddr2_cas_n_fpga; |
wire ddr2_we_n_fpga; |
wire [CS_WIDTH-1:0] ddr2_cs_n_fpga; |
wire [CKE_WIDTH-1:0] ddr2_cke_fpga; |
wire [ODT_WIDTH-1:0] ddr2_odt_fpga; |
|
`endif |
|
|
`ifdef USE_SPI_FLASH |
wire spi_flash_sclk_o; |
wire spi_flash_ss_o; |
wire spi_flash_miso_i; |
wire spi_flash_mosi_o; |
wire spi_flash_w_n_o; |
wire spi_flash_hold_n_o; |
`endif |
|
`ifdef USE_ETHERNET |
wire phy_tx_clk; |
wire [3:0] phy_tx_data; |
wire phy_tx_en; |
wire phy_tx_er; |
wire phy_rx_clk; |
wire [3:0] phy_rx_data; |
wire phy_dv; |
wire phy_rx_er; |
wire phy_col; |
wire phy_crs; |
wire phy_smi_clk; |
wire phy_smi_data; |
wire phy_rst_n; |
`endif |
|
|
|
wire spi1_mosi_o; |
wire spi1_miso_i; |
wire spi1_ss_o; |
wire spi1_sclk_o; |
wire [25:0] gpio; |
wire uart0_srx_i; |
wire uart0_stx_o; |
wire dbg_tdi_i; |
wire dbg_tck_i; |
wire dbg_tms_i; |
wire dbg_tdo_o; |
wire rst_i; |
wire rst_o; |
wire clk_i; |
|
assign clk_i = clk; |
assign rst_i = rst_n; |
|
// Tie off some inputs |
assign spi1_miso_i = 0; |
assign uart0_srx_i = 1; |
|
ml501 dut |
( |
.sys_rst_in (rst_i), |
.sys_clk_in (clk_i), |
.sys_clk_in_p (clk_200_p), |
.sys_clk_in_n (clk_200_n), |
.usr_rst_in (usr_rst_in), |
.usr_rst_out (usr_rst_out), |
|
|
// UART |
.uart0_RX(uart0_srx_i), |
.uart0_TX(uart0_stx_o), |
// Duplicates of the UART signals, this time to the USB debug cable |
.uart0_RX_expheader(uart0_srx_i), |
.uart0_TX_expheader(uart0_stx_o), |
|
// JTAG |
.dbg_tdo_pad_o (dbg_tdo_o), |
.dbg_tdi_pad_i (dbg_tdi_i), |
.dbg_tck_pad_i (dbg_tck_i), |
.dbg_tms_pad_i (dbg_tms_i), |
|
`ifdef USE_ETHERNET |
.phy_tx_clk(phy_tx_clk), |
.phy_tx_data(phy_tx_data), |
.phy_tx_en(phy_tx_en), |
.phy_tx_er(phy_tx_er), |
.phy_rx_clk(phy_rx_clk), |
.phy_rx_data(phy_rx_data), |
.phy_dv(phy_dv), |
.phy_rx_er(phy_rx_er), |
.phy_col(phy_col), |
.phy_crs(phy_crs), |
.phy_smi_clk(phy_smi_clk), |
.phy_smi_data(phy_smi_data), |
.phy_rst_n(phy_rst_n), |
`endif |
|
`ifdef ML501_MEMORY_SSRAM |
// ZBT SSRAM |
.sram_clk (sram_clk), |
.sram_flash_addr (sram_flash_addr), |
.sram_cen (sram_cen), |
.sram_flash_oe_n (sram_flash_oe_n), |
.sram_flash_we_n (sram_flash_we_n), |
.sram_bw (sram_bw), |
.sram_adv_ld_n (sram_adv_ld_n), |
.sram_mode (sram_mode), |
.sram_clk_fb (sram_clk_fb), |
.sram_flash_data (sram_flash_data), |
`endif // `ifdef ML501_MEMORY_SSRAM |
|
`ifdef ML501_MEMORY_DDR2 |
.ddr2_a (ddr2_a_fpga), |
.ddr2_ba (ddr2_ba_fpga), |
.ddr2_ras_n (ddr2_ras_n_fpga), |
.ddr2_cas_n (ddr2_cas_n_fpga), |
.ddr2_we_n (ddr2_we_n_fpga), |
.ddr2_cs_n (ddr2_cs_n_fpga), |
.ddr2_odt (ddr2_odt_fpga), |
.ddr2_cke (ddr2_cke_fpga), |
.ddr2_dm (ddr2_dm_fpga), |
.ddr2_ck (ddr2_ck_fpga), |
.ddr2_ck_n (ddr2_ck_n_fpga), |
.ddr2_dq (ddr2_dq_fpga), |
.ddr2_dqs (ddr2_dqs_fpga), |
.ddr2_dqs_n (ddr2_dqs_n_fpga), |
`endif // `ifdef ML501_MEMORY_DDR2 |
|
|
`ifdef USE_SPI_FLASH |
.spi_flash_sclk_pad_o (spi_flash_sclk_o), |
.spi_flash_ss_pad_o (spi_flash_ss_o), |
.spi_flash_mosi_pad_o (spi_flash_mosi_o), |
.spi_flash_w_n_pad_o (spi_flash_w_n_o), |
.spi_flash_hold_n_pad_o (spi_flash_hold_n_o), |
.spi_flash_miso_pad_i (spi_flash_miso_i), |
`endif |
// GPIO |
.gpio (gpio) |
); |
|
`ifndef POST_SYNTHESIS_SIM |
// Make the RF be quiet |
defparam dut.i_or1k.i_or1200_top.or1200_cpu.or1200_rf.rf_a.ramb16_s36_s36.SIM_COLLISION_CHECK = "NONE"; |
defparam dut.i_or1k.i_or1200_top.or1200_cpu.or1200_rf.rf_b.ramb16_s36_s36.SIM_COLLISION_CHECK = "NONE"; |
`endif |
|
`ifdef VPI_DEBUG_ENABLE |
// Debugging interface |
vpi_debug_module vpi_dbg( |
.tms(dbg_tms_i), |
.tck(dbg_tck_i), |
.tdi(dbg_tdi_i), |
.tdo(dbg_tdo_o)); |
`else |
// If no VPI debugging, tie off JTAG inputs |
assign dbg_tdi_i = 1; |
assign dbg_tck_i = 0; |
assign dbg_tms_i = 1; |
`endif |
|
`ifdef USE_ETHERNET |
|
eth_phy eth_phy0 |
( |
// Outputs |
.mtx_clk_o (phy_tx_clk), |
.mrx_clk_o (phy_rx_clk), |
.mrxd_o (phy_rx_data), |
.mrxdv_o (phy_dv), |
.mrxerr_o (phy_rx_er), |
.mcoll_o (phy_col), |
.mcrs_o (phy_crs), |
// Inouts |
.md_io (phy_smi_data), |
// Inputs |
.m_rst_n_i (phy_rst_n), |
.mtxd_i (phy_tx_data), |
.mtxen_i (phy_tx_en), |
.mtxerr_i (phy_tx_er), |
.mdc_i (phy_smi_clk)); |
|
`endif |
|
|
// External memories, if enabled |
|
`ifdef ML501_MEMORY_SSRAM |
wire [18:0] sram_a; |
wire [3:0] dqp; |
|
assign sram_a[18:0] = sram_flash_addr[19:1]; |
wire sram_ce1b, sram_ce2, sram_ce3b; |
assign sram_ce1b = 1'b0; |
assign sram_ce2 = 1'b1; |
assign sram_ce3b = 1'b0; |
assign sram_clk_fb = sram_clk; |
|
cy7c1354 ssram0 |
( |
// Inouts |
// This model puts each parity bit after each byte, but the ML501's part |
// doesn't, so we wire up the data bus like so. |
.d ({dqp[3],sram_flash_data[31:24],dqp[2],sram_flash_data[23:16],dqp[1],sram_flash_data[15:8],dqp[0],sram_flash_data[7:0]}), |
// Inputs |
.clk (sram_clk), |
.we_b (sram_flash_we_n), |
.adv_lb (sram_adv_ld_n), |
.ce1b (sram_ce1b), |
.ce2 (sram_ce2), |
.ce3b (sram_ce3b), |
.oeb (sram_flash_oe_n), |
.cenb (sram_cen), |
.mode (sram_mode), |
.bws (sram_bw), |
.a (sram_a)); |
|
`endif // `ifdef ML501_MEMORY_SSRAM |
|
|
|
`ifdef ML501_MEMORY_DDR2 |
|
`ifndef POST_SYNTHESIS_SIM |
defparam dut.ml501_mc0.ml501_ddr2_wb_if0.ddr2_mig0.SIM_ONLY = 1; |
`endif |
|
always @( * ) begin |
ddr2_ck_sdram <= #(TPROP_PCB_CTRL) ddr2_ck_fpga; |
ddr2_ck_n_sdram <= #(TPROP_PCB_CTRL) ddr2_ck_n_fpga; |
ddr2_a_sdram <= #(TPROP_PCB_CTRL) ddr2_a_fpga; |
ddr2_ba_sdram <= #(TPROP_PCB_CTRL) ddr2_ba_fpga; |
ddr2_ras_n_sdram <= #(TPROP_PCB_CTRL) ddr2_ras_n_fpga; |
ddr2_cas_n_sdram <= #(TPROP_PCB_CTRL) ddr2_cas_n_fpga; |
ddr2_we_n_sdram <= #(TPROP_PCB_CTRL) ddr2_we_n_fpga; |
ddr2_cs_n_sdram <= #(TPROP_PCB_CTRL) ddr2_cs_n_fpga; |
ddr2_cke_sdram <= #(TPROP_PCB_CTRL) ddr2_cke_fpga; |
ddr2_odt_sdram <= #(TPROP_PCB_CTRL) ddr2_odt_fpga; |
ddr2_dm_sdram_tmp <= #(TPROP_PCB_DATA) ddr2_dm_fpga;//DM signal generation |
end // always @ ( * ) |
|
|
// Model delays on bi-directional BUS |
genvar dqwd; |
generate |
for (dqwd = 0;dqwd < DQ_WIDTH;dqwd = dqwd+1) begin : dq_delay |
WireDelay # |
( |
.Delay_g (TPROP_PCB_DATA), |
.Delay_rd (TPROP_PCB_DATA_RD) |
) |
u_delay_dq |
( |
.A (ddr2_dq_fpga[dqwd]), |
.B (ddr2_dq_sdram[dqwd]), |
.reset (rst_n) |
); |
end |
endgenerate |
|
genvar dqswd; |
generate |
for (dqswd = 0;dqswd < DQS_WIDTH;dqswd = dqswd+1) begin : dqs_delay |
WireDelay # |
( |
.Delay_g (TPROP_DQS), |
.Delay_rd (TPROP_DQS_RD) |
) |
u_delay_dqs |
( |
.A (ddr2_dqs_fpga[dqswd]), |
.B (ddr2_dqs_sdram[dqswd]), |
.reset (rst_n) |
); |
|
WireDelay # |
( |
.Delay_g (TPROP_DQS), |
.Delay_rd (TPROP_DQS_RD) |
) |
u_delay_dqs_n |
( |
.A (ddr2_dqs_n_fpga[dqswd]), |
.B (ddr2_dqs_n_sdram[dqswd]), |
.reset (rst_n) |
); |
end |
endgenerate |
|
assign ddr2_dm_sdram = ddr2_dm_sdram_tmp; |
|
|
genvar i, j; |
generate |
// if the data width is multiple of 16 |
for(j = 0; j < CS_NUM; j = j+1) begin : gen_cs |
for(i = 0; i < DQS_WIDTH/2; i = i+1) begin : gen |
ddr2_model u_mem0 |
( |
.ck (ddr2_ck_sdram[CLK_WIDTH*i/DQS_WIDTH]), |
.ck_n (ddr2_ck_n_sdram[CLK_WIDTH*i/DQS_WIDTH]), |
.cke (ddr2_cke_sdram[j]), |
.cs_n (ddr2_cs_n_sdram[CS_WIDTH*i/DQS_WIDTH]), |
.ras_n (ddr2_ras_n_sdram), |
.cas_n (ddr2_cas_n_sdram), |
.we_n (ddr2_we_n_sdram), |
.dm_rdqs (ddr2_dm_sdram[(2*(i+1))-1 : i*2]), |
.ba (ddr2_ba_sdram), |
.addr (ddr2_a_sdram), |
.dq (ddr2_dq_sdram[(16*(i+1))-1 : i*16]), |
.dqs (ddr2_dqs_sdram[(2*(i+1))-1 : i*2]), |
.dqs_n (ddr2_dqs_n_sdram[(2*(i+1))-1 : i*2]), |
.rdqs_n (), |
.odt (ddr2_odt_sdram[ODT_WIDTH*i/DQS_WIDTH]) |
); |
end |
end |
endgenerate |
|
`endif // `ifdef ML501_MEMORY_DDR2 |
|
|
`ifdef USE_SPI_FLASH |
// SPI Flash |
AT26DFxxx spi_flash |
( |
// Outputs |
.SO (spi_flash_miso_i), |
// Inputs |
.CSB (spi_flash_ss_o), |
.SCK (spi_flash_sclk_o), |
.SI (spi_flash_mosi_o), |
.WPB (spi_flash_w_n_o) |
//.HOLDB (spi_flash_hold_n_o) |
); |
`endif // `ifdef USE_SPI_FLASH |
|
initial |
begin |
$display("\nStarting RTL simulation of ml501 board %s test\n", `TEST_NAME_STRING); |
`ifdef USE_SDRAM |
$display("Using SDRAM - loading application from SPI flash memory\n"); |
`endif |
|
`ifdef VCD |
|
`ifdef ML501_MEMORY_DDR2 |
//#87_572_000; // DDR2 calibration completed |
`endif |
`ifdef USE_ETHERNET |
#206_847_000 // TX Frame start in simple eth TX test |
`endif |
|
//#157_173_500 // Or1200 IC enabled, program begins |
|
|
$display("VCD in %s\n", {`TEST_RESULTS_DIR,`TEST_NAME_STRING,".vcd"}); |
$dumpfile({`TEST_RESULTS_DIR,`TEST_NAME_STRING,".vcd"}); |
|
`ifdef VCD_DEPTH |
$dumpvars(`VCD_DEPTH); |
`else |
$dumpvars(0); |
`endif |
|
`endif |
end |
|
`ifndef POST_SYNTHESIS_SIM |
// Instantiate the monitor |
or1200_monitor monitor(); |
`endif |
|
// If we're using UART for printf output, include the |
// UART decoder |
`ifdef UART_PRINTF |
// Define the UART's txt line for it to listen to |
`define UART_TX_LINE uart0_stx_o |
`define UART_BAUDRATE 115200 |
`include "uart_decoder.v" |
`endif |
|
|
wire ic_en = dut.i_or1k.i_or1200_top.or1200_ic_top.ic_en; |
always @(posedge ic_en) |
$display("Or1200 IC enabled at %t", $time); |
|
endmodule // orpsoc_testbench |
|
// Local Variables: |
// verilog-library-directories:("." "../rtl" "../../../../bench/verilog") |
// End: |
/xilinx/ml501/bench/verilog/eth_phy.v
0,0 → 1,1481
////////////////////////////////////////////////////////////////////// |
//// //// |
//// File name: eth_phy.v //// |
//// //// |
//// This file is part of the Ethernet IP core project //// |
//// http://www.opencores.org/projects/ethmac/ //// |
//// //// |
//// Author(s): //// |
//// - Tadej Markovic, tadej@opencores.org //// |
//// //// |
//// All additional information is available in the README.txt //// |
//// file. //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
//// //// |
//// Copyright (C) 2002 Authors //// |
//// //// |
//// This source file may be used and distributed without //// |
//// restriction provided that this copyright statement is not //// |
//// removed from the file and that any derivative work contains //// |
//// the original copyright notice and the associated disclaimer. //// |
//// //// |
//// This source file is free software; you can redistribute it //// |
//// and/or modify it under the terms of the GNU Lesser General //// |
//// Public License as published by the Free Software Foundation; //// |
//// either version 2.1 of the License, or (at your option) any //// |
//// later version. //// |
//// //// |
//// This source is distributed in the hope that it will be //// |
//// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
//// PURPOSE. See the GNU Lesser General Public License for more //// |
//// details. //// |
//// //// |
//// You should have received a copy of the GNU Lesser General //// |
//// Public License along with this source; if not, download it //// |
//// from http://www.opencores.org/lgpl.shtml //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
// |
// CVS Revision History |
// |
// $Log: not supported by cvs2svn $ |
// Revision 1.7 2002/10/18 13:58:22 tadejm |
// Some code changed due to bug fixes. |
// |
// Revision 1.6 2002/10/09 13:16:51 tadejm |
// Just back-up; not completed testbench and some testcases are not |
// wotking properly yet. |
// |
// Revision 1.5 2002/09/18 17:55:08 tadej |
// Bug repaired in eth_phy device |
// |
// Revision 1.3 2002/09/13 14:50:15 mohor |
// Bug in MIIM fixed. |
// |
// Revision 1.2 2002/09/13 12:29:14 mohor |
// Headers changed. |
// |
// Revision 1.1 2002/09/13 11:57:20 mohor |
// New testbench. Thanks to Tadej M - "The Spammer". |
// |
// |
// |
|
`include "timescale.v" |
`include "eth_phy_defines.v" |
|
// ORPSoCv2 testbench include |
// Will enable verbose if eth test |
`ifdef TEST_DEFINE_FILE |
`include "test_define.v" |
`endif |
|
|
`define MULTICAST_XFR 0 |
`define UNICAST_XFR 1 |
`define BROADCAST_XFR 2 |
`define UNICAST_WRONG_XFR 3 |
|
|
`define ETH_PHY_VERBOSE 1 |
|
module eth_phy // This PHY model simulate simplified Intel LXT971A PHY |
( |
// COMMON |
m_rst_n_i, |
|
// MAC TX |
mtx_clk_o, |
mtxd_i, |
mtxen_i, |
mtxerr_i, |
|
// MAC RX |
mrx_clk_o, |
mrxd_o, |
mrxdv_o, |
mrxerr_o, |
|
mcoll_o, |
mcrs_o, |
|
// MIIM |
mdc_i, |
md_io, |
speed_o, |
link_o, |
duplex_o |
); |
|
////////////////////////////////////////////////////////////////////// |
// |
// Input/output signals |
// |
////////////////////////////////////////////////////////////////////// |
|
// MAC miscellaneous signals |
input m_rst_n_i; |
// MAC TX signals |
output mtx_clk_o; |
input [3:0] mtxd_i; |
input mtxen_i; |
input mtxerr_i; |
// MAC RX signals |
output mrx_clk_o; |
output [3:0] mrxd_o; |
output mrxdv_o; |
output mrxerr_o; |
// MAC common signals |
output mcoll_o; |
output mcrs_o; |
// MAC management signals |
input mdc_i; |
inout md_io; |
// Sideband signals for SMII -- jb |
output link_o; |
output speed_o; |
output duplex_o; |
|
|
////////////////////////////////////////////////////////////////////// |
// |
// PHY management (MIIM) REGISTER definitions |
// |
////////////////////////////////////////////////////////////////////// |
// |
// Supported registers: |
// |
// Addr | Register Name |
//-------------------------------------------------------------------- |
// 0 | Control reg. | |
// 1 | Status reg. #1 |--> normal operation |
// 2 | PHY ID reg. 1 | |
// 3 | PHY ID reg. 2 | |
//---------------------- |
// Addr | Data MEMORY |--> for testing |
// |
//-------------------------------------------------------------------- |
// |
// Control register |
reg control_bit15; // self clearing bit |
reg [14:10] control_bit14_10; |
reg control_bit9; // self clearing bit |
reg [8:0] control_bit8_0; |
// Status register |
wire [15:9] status_bit15_9 = `SUPPORTED_SPEED_AND_PORT; |
wire status_bit8 = `EXTENDED_STATUS; |
wire status_bit7 = 1'b0; // reserved |
reg [6:0] status_bit6_0; |
// PHY ID register 1 |
wire [15:0] phy_id1 = `PHY_ID1; |
// PHY ID register 2 |
wire [15:0] phy_id2 = {`PHY_ID2, `MAN_MODEL_NUM, `MAN_REVISION_NUM}; |
//-------------------------------------------------------------------- |
// |
// Data MEMORY |
reg [15:0] data_mem [0:31]; // 32 locations of 16-bit data width |
// |
////////////////////////////////////////////////////////////////////// |
|
|
////////////////////////////////////////////////////////////////////// |
// |
// PHY clocks - RX & TX |
// |
////////////////////////////////////////////////////////////////////// |
|
reg mtx_clk_o; |
reg mrx_clk_o; |
|
// random generator for a RX period when link is down |
real rx_link_down_halfperiod; |
|
always@(status_bit6_0[2]) |
begin |
if (!status_bit6_0[2]) // Link is down |
begin |
#1 rx_link_down_halfperiod = ({$random} % 243) + 13; |
`ifdef ETH_PHY_VERBOSE |
#1 $display( " (%0t)(%m)MAC RX clock is %f MHz while ethernet link is down!", |
$time, (1000/(rx_link_down_halfperiod*2)) ); |
`endif |
end |
end |
|
`ifdef ETH_PHY_VERBOSE |
always@(status_bit6_0[2]) |
begin |
if (!status_bit6_0[2]) // Link is down |
#1 $display( " (%0t)(%m)Ethernet link is down!", $time); |
else |
#1 $display( " (%0t)(%m)Ethernet link is up!", $time); |
end |
`endif |
|
// speed selection signal eth_speed: 1'b1 - 100 Mbps, 1'b0 - 10 Mbps |
wire eth_speed; |
|
assign eth_speed = ( (control_bit14_10[13]) && !((`LED_CFG1) && (`LED_CFG2)) ); |
|
`ifdef ETH_PHY_VERBOSE |
always@(eth_speed) |
begin |
if (eth_speed) |
#1 $display( " (%0t)(%m)PHY configured to 100 Mbps!", $time); |
else |
#1 $display( " (%0t)(%m)PHY configured tp 10 Mbps!", $time); |
end |
`endif |
|
// different clock calculation between RX and TX, so that there is alsways a litle difference |
/*initial |
begin |
set_mrx_equal_mtx = 1; // default |
end*/ |
|
always |
begin |
mtx_clk_o = 0; |
#7; |
forever |
begin |
if (eth_speed) // 100 Mbps - 25 MHz, 40 ns |
begin |
#20 mtx_clk_o = ~mtx_clk_o; |
end |
else // 10 Mbps - 2.5 MHz, 400 ns |
begin |
#200 mtx_clk_o = ~mtx_clk_o; |
end |
end |
end |
|
always |
begin |
// EQUAL mrx_clk to mtx_clk |
mrx_clk_o = 0; |
#7; |
forever |
begin |
if (eth_speed) // 100 Mbps - 25 MHz, 40 ns |
begin |
#20 mrx_clk_o = ~mrx_clk_o; |
end |
else // 10 Mbps - 2.5 MHz, 400 ns |
begin |
#200 mrx_clk_o = ~mrx_clk_o; |
end |
end |
// DIFFERENT mrx_clk than mtx_clk |
/* mrx_clk_diff_than_mtx = 1; |
#3; |
forever |
begin |
if (status_bit6_0[2]) // Link is UP |
begin |
if (eth_speed) // 100 Mbps - 25 MHz, 40 ns |
begin |
//#(((1/0.025001)/2)) |
#19.99 mrx_clk_diff_than_mtx = ~mrx_clk_diff_than_mtx; // period is calculated from frequency in GHz |
end |
else // 10 Mbps - 2.5 MHz, 400 ns |
begin |
//#(((1/0.0024999)/2)) |
#200.01 mrx_clk_diff_than_mtx = ~mrx_clk_diff_than_mtx; // period is calculated from frequency in GHz |
end |
end |
else // Link is down |
begin |
#(rx_link_down_halfperiod) mrx_clk_diff_than_mtx = ~mrx_clk_diff_than_mtx; // random frequency between 2 MHz and 40 MHz |
end |
end*/ |
// // set output mrx_clk |
// if (set_mrx_equal_mtx) |
// mrx_clk_o = mrx_clk_equal_to_mtx; |
// else |
// mrx_clk_o = mrx_clk_diff_than_mtx; |
end |
|
// set output mrx_clk |
//assign mrx_clk_o = set_mrx_equal_mtx ? mrx_clk_equal_to_mtx : mrx_clk_diff_than_mtx ; |
|
////////////////////////////////////////////////////////////////////// |
// |
// PHY management (MIIM) interface |
// |
////////////////////////////////////////////////////////////////////// |
reg respond_to_all_phy_addr; // PHY will respond to all phy addresses |
reg no_preamble; // PHY responds to frames without preamble |
|
integer md_transfer_cnt; // counter countes the value of whole data transfer |
reg md_transfer_cnt_reset; // for reseting the counter |
reg md_io_reg; // registered input |
reg md_io_output; // registered output |
reg md_io_rd_wr; // op-code latched (read or write) |
reg md_io_enable; // output enable |
reg [4:0] phy_address; // address of PHY device |
reg [4:0] reg_address; // address of a register |
reg md_get_phy_address; // for shifting PHY address in |
reg md_get_reg_address; // for shifting register address in |
reg [15:0] reg_data_in; // data to be written in a register |
reg md_get_reg_data_in; // for shifting data in |
reg md_put_reg_data_in; // for storing data into a selected register |
reg [15:0] reg_data_out; // data to be read from a register |
reg md_put_reg_data_out; // for registering data from a selected register |
|
wire [15:0] register_bus_in; // data bus to a selected register |
reg [15:0] register_bus_out; // data bus from a selected register |
|
initial |
begin |
md_io_enable = 1'b0; |
respond_to_all_phy_addr = 1'b0; |
no_preamble = 1'b0; |
end |
|
// tristate output |
assign #1 md_io = (m_rst_n_i && md_io_enable) ? md_io_output : 1'bz ; |
|
// registering input |
always@(posedge mdc_i or negedge m_rst_n_i) |
begin |
if (!m_rst_n_i) |
md_io_reg <= #1 0; |
else |
md_io_reg <= #1 md_io; |
end |
|
// getting (shifting) PHY address, Register address and Data in |
// putting Data out and shifting |
always@(posedge mdc_i or negedge m_rst_n_i) |
begin |
if (!m_rst_n_i) |
begin |
phy_address <= 0; |
reg_address <= 0; |
reg_data_in <= 0; |
reg_data_out <= 0; |
md_io_output <= 0; |
end |
else |
begin |
if (md_get_phy_address) |
begin |
phy_address[4:1] <= phy_address[3:0]; // correct address is `ETH_PHY_ADDR |
phy_address[0] <= md_io; |
end |
if (md_get_reg_address) |
begin |
reg_address[4:1] <= reg_address[3:0]; |
reg_address[0] <= md_io; |
end |
if (md_get_reg_data_in) |
begin |
reg_data_in[15:1] <= reg_data_in[14:0]; |
reg_data_in[0] <= md_io; |
end |
if (md_put_reg_data_out) |
begin |
reg_data_out <= register_bus_out; |
end |
if (md_io_enable) |
begin |
md_io_output <= reg_data_out[15]; |
reg_data_out[15:1] <= reg_data_out[14:0]; |
reg_data_out[0] <= 1'b0; |
end |
end |
end |
|
assign #1 register_bus_in = reg_data_in; // md_put_reg_data_in - allows writing to a selected register |
|
// counter for transfer to and from MIIM |
always@(posedge mdc_i or negedge m_rst_n_i) |
begin |
if (!m_rst_n_i) |
begin |
if (no_preamble) |
md_transfer_cnt <= 33; |
else |
md_transfer_cnt <= 1; |
end |
else |
begin |
if (md_transfer_cnt_reset) |
begin |
if (no_preamble) |
md_transfer_cnt <= 33; |
else |
md_transfer_cnt <= 1; |
end |
else if (md_transfer_cnt < 64) |
begin |
md_transfer_cnt <= md_transfer_cnt + 1'b1; |
end |
else |
begin |
if (no_preamble) |
md_transfer_cnt <= 33; |
else |
md_transfer_cnt <= 1; |
end |
end |
end |
|
// MIIM transfer control |
always@(m_rst_n_i or md_transfer_cnt or md_io_reg or md_io_rd_wr or |
phy_address or respond_to_all_phy_addr or no_preamble) |
begin |
#1; |
while ((m_rst_n_i) && (md_transfer_cnt <= 64)) |
begin |
// reset the signal - put registered data in the register (when write) |
// check preamble |
if (md_transfer_cnt < 33) |
begin |
#4 md_put_reg_data_in = 1'b0; |
if (md_io_reg !== 1'b1) |
begin |
#1 md_transfer_cnt_reset = 1'b1; |
end |
else |
begin |
#1 md_transfer_cnt_reset = 1'b0; |
end |
end |
|
// check start bits |
else if (md_transfer_cnt == 33) |
begin |
if (no_preamble) |
begin |
#4 md_put_reg_data_in = 1'b0; |
if (md_io_reg === 1'b0) |
begin |
#1 md_transfer_cnt_reset = 1'b0; |
end |
else |
begin |
#1 md_transfer_cnt_reset = 1'b1; |
//if ((md_io_reg !== 1'bz) && (md_io_reg !== 1'b1)) |
if (md_io_reg !== 1'bz) |
begin |
// ERROR - start ! |
`ifdef ETH_PHY_VERBOSE |
$display( "*E (%0t)(%m)MIIM - wrong first start bit (without preamble)", $time); |
`endif |
#10 $stop; |
end |
end |
end |
else // with preamble |
begin |
#4 ; |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m)MIIM - 32-bit preamble received", $time); |
`endif |
// check start bit only if md_transfer_cnt_reset is inactive, because if |
// preamble suppression was changed start bit should not be checked |
if ((md_io_reg !== 1'b0) && (md_transfer_cnt_reset == 1'b0)) |
begin |
// ERROR - start ! |
`ifdef ETH_PHY_VERBOSE |
$display( "*E (%0t)(%m)MIIM - wrong first start bit", $time); |
`endif |
#10 $stop; |
end |
end |
end |
|
else if (md_transfer_cnt == 34) |
begin |
#4; |
if (md_io_reg !== 1'b1) |
begin |
// ERROR - start ! |
#1; |
`ifdef ETH_PHY_VERBOSE |
if (no_preamble) |
$display( "*E (%0t)(%m)MIIM - wrong second start bit (without preamble)", $time); |
else |
$display( "*E (%0t)(%m)MIIM - wrong second start bit", $time); |
`endif |
#10 $stop; |
end |
else |
begin |
`ifdef ETH_PHY_VERBOSE |
if (no_preamble) |
#1 $display( " (%0t)(%m)MIIM - 2 start bits received (without preamble)", $time); |
else |
#1 $display( " (%0t)(%m)MIIM - 2 start bits received", $time); |
`endif |
end |
end |
|
// register the op-code (rd / wr) |
else if (md_transfer_cnt == 35) |
begin |
#4; |
if (md_io_reg === 1'b1) |
begin |
#1 md_io_rd_wr = 1'b1; |
end |
else |
begin |
#1 md_io_rd_wr = 1'b0; |
end |
end |
|
else if (md_transfer_cnt == 36) |
begin |
#4; |
if ((md_io_reg === 1'b0) && (md_io_rd_wr == 1'b1)) |
begin |
#1 md_io_rd_wr = 1'b1; // reading from PHY registers |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m)MIIM - op-code for READING from registers", $time); |
`endif |
end |
else if ((md_io_reg === 1'b1) && (md_io_rd_wr == 1'b0)) |
begin |
#1 md_io_rd_wr = 1'b0; // writing to PHY registers |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m)MIIM - op-code for WRITING to registers", $time); |
`endif |
end |
else |
begin |
// ERROR - wrong opcode ! |
`ifdef ETH_PHY_VERBOSE |
#1 $display( "*E (%0t)(%m)MIIM - wrong OP-CODE", $time); |
`endif |
#10 $stop; |
end |
// set the signal - get PHY address |
begin |
#1 md_get_phy_address = 1'b1; |
end |
end |
|
// reset the signal - get PHY address |
else if (md_transfer_cnt == 41) |
begin |
#4 md_get_phy_address = 1'b0; |
// set the signal - get register address |
#1 md_get_reg_address = 1'b1; |
end |
|
// reset the signal - get register address |
// set the signal - put register data to output register |
else if (md_transfer_cnt == 46) |
begin |
#4 md_get_reg_address = 1'b0; |
#1 md_put_reg_data_out = 1'b1; |
end |
|
// reset the signal - put register data to output register |
// set the signal - enable md_io as output when read |
else if (md_transfer_cnt == 47) |
begin |
#4 md_put_reg_data_out = 1'b0; |
if (md_io_rd_wr) //read |
begin |
if (md_io_reg !== 1'bz) |
begin |
// ERROR - turn around ! |
`ifdef ETH_PHY_VERBOSE |
#1 $display( "*E (%0t)(%m)MIIM - wrong turn-around cycle before reading data out", $time); |
`endif |
#10 $stop; |
end |
if ((phy_address === `ETH_PHY_ADDR) || respond_to_all_phy_addr) // check the PHY address |
begin |
#1 md_io_enable = 1'b1; |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m)MIIM - received correct PHY ADDRESS: %x", $time, phy_address); |
`endif |
end |
else |
begin |
`ifdef ETH_PHY_VERBOSE |
#1 $display( "*W (%0t)(%m)MIIM - received different PHY ADDRESS: %x", $time, phy_address); |
`endif |
end |
end |
else // write |
begin |
#1 md_io_enable = 1'b0; |
// check turn around cycle when write on clock 47 |
if (md_io_reg !== 1'b1) |
begin |
// ERROR - turn around ! |
`ifdef ETH_PHY_VERBOSE |
#1 $display( "*E (%0t)(%m)MIIM - wrong 1. turn-around cycle before writing data in", |
$time); |
`endif |
#10 $stop; |
end |
end |
end |
|
// set the signal - get register data in when write |
else if (md_transfer_cnt == 48) |
begin |
#4; |
if (!md_io_rd_wr) // write |
begin |
#1 md_get_reg_data_in = 1'b1; |
// check turn around cycle when write on clock 48 |
if (md_io_reg !== 1'b0) |
begin |
// ERROR - turn around ! |
`ifdef ETH_PHY_VERBOSE |
#1 $display( "*E (%0t)(%m)MIIM - wrong 2. turn-around cycle before writing data in", |
$time); |
`endif |
#10 $stop; |
end |
end |
else // read |
begin |
#1 md_get_reg_data_in = 1'b0; |
end |
end |
|
// reset the signal - enable md_io as output when read |
// reset the signal - get register data in when write |
// set the signal - put registered data in the register when write |
else if (md_transfer_cnt == 64) |
begin |
#1 md_io_enable = 1'b0; |
#4 md_get_reg_data_in = 1'b0; |
if (!md_io_rd_wr) // write |
begin |
if ((phy_address === `ETH_PHY_ADDR) || respond_to_all_phy_addr) // check the PHY address |
begin |
#1 md_put_reg_data_in = 1'b1; |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m)MIIM - received correct PHY ADDRESS: %x", $time, phy_address); |
$display( " (%0t)(%m)MIIM - WRITING to register %x COMPLETED!", $time, reg_address); |
`endif |
end |
else |
begin |
`ifdef ETH_PHY_VERBOSE |
#1 $display( "*W (%0t)(%m)MIIM - received different PHY ADDRESS: %x", $time, phy_address); |
$display( "*W (%0t)(%m)MIIM - NO WRITING to register %x !", $time, reg_address); |
`endif |
end |
end |
else // read |
begin |
`ifdef ETH_PHY_VERBOSE |
if ((phy_address === `ETH_PHY_ADDR) || respond_to_all_phy_addr) // check the PHY address |
#1 $display( " (%0t)(%m)MIIM - READING from register %x COMPLETED!", |
$time, reg_address); |
else |
#1 $display( "*W (%0t)(%m)MIIM - NO READING from register %x !", $time, reg_address); |
`endif |
end |
end |
|
// wait for one clock period |
@(posedge mdc_i) |
#1; |
end |
end |
|
//==================================================================== |
// |
// PHY management (MIIM) REGISTERS |
// |
//==================================================================== |
// |
// Supported registers (normal operation): |
// |
// Addr | Register Name |
//-------------------------------------------------------------------- |
// 0 | Control reg. |
// 1 | Status reg. #1 |
// 2 | PHY ID reg. 1 |
// 3 | PHY ID reg. 2 |
//---------------------- |
// Addr | Data MEMORY |--> for testing |
// |
//-------------------------------------------------------------------- |
// |
// Control register |
// reg control_bit15; // self clearing bit |
// reg [14:10] control_bit14_10; |
// reg control_bit9; // self clearing bit |
// reg [8:0] control_bit8_0; |
// Status register |
// wire [15:9] status_bit15_9 = `SUPPORTED_SPEED_AND_PORT; |
// wire status_bit8 = `EXTENDED_STATUS; |
// wire status_bit7 = 1'b0; // reserved |
// reg [6:0] status_bit6_0 = `DEFAULT_STATUS; |
// PHY ID register 1 |
// wire [15:0] phy_id1 = `PHY_ID1; |
// PHY ID register 2 |
// wire [15:0] phy_id2 = {`PHY_ID2, `MAN_MODEL_NUM, `MAN_REVISION_NUM}; |
//-------------------------------------------------------------------- |
// |
// Data MEMORY |
// reg [15:0] data_mem [0:31]; // 32 locations of 16-bit data width |
// |
//==================================================================== |
|
////////////////////////////////////////////////////////////////////// |
// |
// PHY management (MIIM) REGISTER control |
// |
////////////////////////////////////////////////////////////////////// |
|
// wholy writable registers for walking ONE's on data, phy and reg. addresses |
reg registers_addr_data_test_operation; |
|
// Non writable status registers |
initial // always |
begin |
#1 status_bit6_0[6] = no_preamble; |
status_bit6_0[5] = 1'b0; |
status_bit6_0[3] = 1'b1; |
status_bit6_0[0] = 1'b1; |
end |
always@(posedge mrx_clk_o) |
begin |
status_bit6_0[4] <= #1 1'b0; |
status_bit6_0[1] <= #1 1'b0; |
end |
initial |
begin |
status_bit6_0[2] = 1'b1; |
registers_addr_data_test_operation = 0; |
end |
|
// Reading from a selected registers |
always@(reg_address or registers_addr_data_test_operation or md_put_reg_data_out or |
control_bit15 or control_bit14_10 or control_bit9 or control_bit8_0 or |
status_bit15_9 or status_bit8 or status_bit7 or status_bit6_0 or |
phy_id1 or phy_id2) |
begin |
if (registers_addr_data_test_operation) // test operation |
begin |
if (md_put_reg_data_out) // read enable |
begin |
register_bus_out = #1 data_mem[reg_address]; |
end |
end |
else // normal operation |
begin |
if (md_put_reg_data_out) // read enable |
begin |
case (reg_address) |
5'h0: register_bus_out = #1 {control_bit15, control_bit14_10, control_bit9, control_bit8_0}; |
5'h1: register_bus_out = #1 {status_bit15_9, status_bit8, status_bit7, status_bit6_0}; |
5'h2: register_bus_out = #1 phy_id1; |
5'h3: register_bus_out = #1 phy_id2; |
default: register_bus_out = #1 16'hDEAD; |
endcase |
end |
end |
end |
|
// Self clear control signals |
reg self_clear_d0; |
reg self_clear_d1; |
reg self_clear_d2; |
reg self_clear_d3; |
// Self clearing control |
always@(posedge mdc_i or negedge m_rst_n_i) |
begin |
if (!m_rst_n_i) |
begin |
self_clear_d0 <= #1 0; |
self_clear_d1 <= #1 0; |
self_clear_d2 <= #1 0; |
self_clear_d3 <= #1 0; |
end |
else |
begin |
self_clear_d0 <= #1 md_put_reg_data_in; |
self_clear_d1 <= #1 self_clear_d0; |
self_clear_d2 <= #1 self_clear_d1; |
self_clear_d3 <= #1 self_clear_d2; |
end |
end |
|
// Writing to a selected register |
always@(posedge mdc_i or negedge m_rst_n_i) |
begin |
if ((!m_rst_n_i) || (control_bit15)) |
begin |
if (!registers_addr_data_test_operation) // normal operation |
begin |
control_bit15 <= #1 0; |
control_bit14_10 <= #1 {1'b0, (`LED_CFG1 || `LED_CFG2), `LED_CFG1, 2'b0}; |
control_bit9 <= #1 0; |
control_bit8_0 <= #1 {`LED_CFG3, 8'b0}; |
end |
end |
else |
begin |
if (registers_addr_data_test_operation) // test operation |
begin |
if (md_put_reg_data_in) |
begin |
data_mem[reg_address] <= #1 register_bus_in[15:0]; |
end |
end |
else // normal operation |
begin |
// bits that are normaly written |
if (md_put_reg_data_in) |
begin |
case (reg_address) |
5'h0: |
begin |
control_bit14_10 <= #1 register_bus_in[14:10]; |
control_bit8_0 <= #1 register_bus_in[8:0]; |
end |
default: |
begin |
end |
endcase |
end |
// self cleared bits written |
if ((md_put_reg_data_in) && (reg_address == 5'h0)) |
begin |
control_bit15 <= #1 register_bus_in[15]; |
control_bit9 <= #1 register_bus_in[9]; |
end |
else if (self_clear_d3) // self cleared bits cleared |
begin |
control_bit15 <= #1 1'b0; |
control_bit9 <= #1 1'b0; |
end |
end |
end |
end |
|
////////////////////////////////////////////////////////////////////// |
// |
// PHY <-> MAC control (RX and TX clocks are at the begining) |
// |
////////////////////////////////////////////////////////////////////// |
|
// CARRIER SENSE & COLLISION |
|
// MAC common signals |
reg mcoll_o; |
reg mcrs_o; |
// Internal signals controling Carrier sense & Collision |
// MAC common signals generated when appropriate transfer |
reg mcrs_rx; |
reg mcrs_tx; |
// delayed mtxen_i signal for generating delayed tx carrier sense |
reg mtxen_d1; |
reg mtxen_d2; |
reg mtxen_d3; |
reg mtxen_d4; |
reg mtxen_d5; |
reg mtxen_d6; |
// collision signal set or rest within task for controling collision |
reg task_mcoll; |
// carrier sense signal set or rest within task for controling carrier sense |
reg task_mcrs; |
reg task_mcrs_lost; |
// do not generate collision in half duplex - not normal operation |
reg no_collision_in_half_duplex; |
// generate collision in full-duplex mode also - not normal operation |
reg collision_in_full_duplex; |
// do not generate carrier sense in half duplex mode - not normal operation |
reg no_carrier_sense_in_tx_half_duplex; |
reg no_carrier_sense_in_rx_half_duplex; |
// generate carrier sense during TX in full-duplex mode also - not normal operation |
reg carrier_sense_in_tx_full_duplex; |
// do not generate carrier sense during RX in full-duplex mode - not normal operation |
reg no_carrier_sense_in_rx_full_duplex; |
// on RX: delay after carrier sense signal; on TX: carrier sense delayed (delay is one clock period) |
reg real_carrier_sense; |
|
initial |
begin |
mcrs_rx = 0; |
mcrs_tx = 0; |
task_mcoll = 0; |
task_mcrs = 0; |
task_mcrs_lost = 0; |
no_collision_in_half_duplex = 0; |
collision_in_full_duplex = 0; |
no_carrier_sense_in_tx_half_duplex = 0; |
no_carrier_sense_in_rx_half_duplex = 0; |
carrier_sense_in_tx_full_duplex = 0; |
no_carrier_sense_in_rx_full_duplex = 0; |
real_carrier_sense = 0; |
end |
|
// Collision |
always@(m_rst_n_i or control_bit8_0 or collision_in_full_duplex or |
mcrs_rx or mcrs_tx or task_mcoll or no_collision_in_half_duplex |
) |
begin |
if (!m_rst_n_i) |
mcoll_o = 0; |
else |
begin |
if (control_bit8_0[8]) // full duplex |
begin |
if (collision_in_full_duplex) // collision is usually not asserted in full duplex |
begin |
mcoll_o = ((mcrs_rx && mcrs_tx) || task_mcoll); |
`ifdef ETH_PHY_VERBOSE |
if (mcrs_rx && mcrs_tx) |
$display( " (%0t)(%m) Collision set in FullDuplex!", $time); |
if (task_mcoll) |
$display( " (%0t)(%m) Collision set in FullDuplex from TASK!", $time); |
`endif |
end |
else |
begin |
mcoll_o = task_mcoll; |
`ifdef ETH_PHY_VERBOSE |
if (task_mcoll) |
$display( " (%0t)(%m) Collision set in FullDuplex from TASK!", $time); |
`endif |
end |
end |
else // half duplex |
begin |
mcoll_o = ((mcrs_rx && mcrs_tx && !no_collision_in_half_duplex) || |
task_mcoll); |
`ifdef ETH_PHY_VERBOSE |
if (mcrs_rx && mcrs_tx) |
$display( " (%0t)(%m) Collision set in HalfDuplex!", $time); |
if (task_mcoll) |
$display( " (%0t)(%m) Collision set in HalfDuplex from TASK!", $time); |
`endif |
end |
end |
end |
|
// Carrier sense |
always@(m_rst_n_i or control_bit8_0 or carrier_sense_in_tx_full_duplex or |
no_carrier_sense_in_rx_full_duplex or |
no_carrier_sense_in_tx_half_duplex or |
no_carrier_sense_in_rx_half_duplex or |
mcrs_rx or mcrs_tx or task_mcrs or task_mcrs_lost |
) |
begin |
if (!m_rst_n_i) |
mcrs_o = 0; |
else |
begin |
if (control_bit8_0[8]) // full duplex |
begin |
if (carrier_sense_in_tx_full_duplex) // carrier sense is usually not asserted during TX in full duplex |
mcrs_o = ((mcrs_rx && !no_carrier_sense_in_rx_full_duplex) || |
mcrs_tx || task_mcrs) && !task_mcrs_lost; |
else |
mcrs_o = ((mcrs_rx && !no_carrier_sense_in_rx_full_duplex) || |
task_mcrs) && !task_mcrs_lost; |
end |
else // half duplex |
begin |
mcrs_o = ((mcrs_rx && !no_carrier_sense_in_rx_half_duplex) || |
(mcrs_tx && !no_carrier_sense_in_tx_half_duplex) || |
task_mcrs) && !task_mcrs_lost; |
end |
end |
end |
|
// MAC TX CONTROL (RECEIVING AT PHY) |
|
// storage memory for TX data received from MAC |
reg [7:0] tx_mem [0:4194303]; // 4194304 locations (22 address lines) of 8-bit data width |
reg [31:0] tx_mem_addr_in; // address for storing to TX memory |
reg [7:0] tx_mem_data_in; // data for storing to TX memory |
reg [31:0] tx_cnt; // counts nibbles |
|
// control data of a TX packet for upper layer of testbench |
reg tx_preamble_ok; |
reg tx_sfd_ok; |
// if there is a drible nibble, then tx packet is not byte aligned! |
reg tx_byte_aligned_ok; |
// complete length of TX packet (Bytes) received (without preamble and SFD) |
reg [31:0] tx_len; |
// complete length of TX packet (Bytes) received (without preamble and SFD) untill MTxErr signal was set first |
reg [31:0] tx_len_err; |
|
// TX control |
always@(posedge mtx_clk_o) |
begin |
// storing data and basic checking of frame |
if (!m_rst_n_i) |
begin |
tx_cnt <= 0; |
tx_preamble_ok <= 0; |
tx_sfd_ok <= 0; |
tx_len <= 0; |
tx_len_err <= 0; |
end |
else |
begin |
if (!mtxen_i) |
begin |
tx_cnt <= 0; |
end |
else |
begin |
// tx nibble counter |
tx_cnt <= tx_cnt + 1; |
// set initial values and check first preamble nibble |
if (tx_cnt == 0) |
begin |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m) TX frame started with tx_en set!", $time); |
`endif |
if (mtxd_i == 4'h5) |
tx_preamble_ok <= 1; |
else |
tx_preamble_ok <= 0; |
tx_sfd_ok <= 0; |
tx_byte_aligned_ok <= 0; |
tx_len <= 0; |
tx_len_err <= 0; |
// tx_mem_addr_in <= 0; |
end |
|
// check preamble |
if ((tx_cnt > 0) && (tx_cnt <= 13)) |
begin |
if ((tx_preamble_ok != 1) || (mtxd_i != 4'h5)) |
tx_preamble_ok <= 0; |
end |
// check SFD |
if (tx_cnt == 14) |
begin |
`ifdef ETH_PHY_VERBOSE |
if (tx_preamble_ok == 1) |
$display( " (%0t)(%m) TX frame preamble OK!", $time); |
else |
$display( "*E (%0t)(%m) TX frame preamble NOT OK!", $time); |
`endif |
if (mtxd_i == 4'h5) |
tx_sfd_ok <= 1; |
else |
tx_sfd_ok <= 0; |
end |
if (tx_cnt == 15) |
begin |
if ((tx_sfd_ok != 1) || (mtxd_i != 4'hD)) |
tx_sfd_ok <= 0; |
end |
|
// control for storing addresses, type/length, data and FCS to TX memory |
if (tx_cnt > 15) |
begin |
if (tx_cnt == 16) |
begin |
`ifdef ETH_PHY_VERBOSE |
if (tx_sfd_ok == 1) |
$display( " (%0t)(%m) TX frame SFD OK!", $time); |
else |
$display( "*E (%0t)(%m) TX frame SFD NOT OK!", $time); |
`endif |
end |
|
if (tx_cnt[0] == 0) |
begin |
tx_mem_data_in[3:0] <= mtxd_i; // storing LSB nibble |
tx_byte_aligned_ok <= 0; // if transfer will stop after this, then there was drible nibble |
end |
else |
begin |
tx_mem[tx_mem_addr_in[21:0]] <= {mtxd_i, tx_mem_data_in[3:0]}; // storing data into tx memory |
tx_len <= tx_len + 1; // enlarge byte length counter |
tx_byte_aligned_ok <= 1; // if transfer will stop after this, then transfer is byte alligned |
tx_mem_addr_in <= tx_mem_addr_in + 1'b1; |
end |
|
if (mtxerr_i) |
tx_len_err <= tx_len; |
end |
end |
end |
|
// generating CARRIER SENSE for TX with or without delay |
if (!m_rst_n_i) |
begin |
mcrs_tx <= 0; |
mtxen_d1 <= 0; |
mtxen_d2 <= 0; |
mtxen_d3 <= 0; |
mtxen_d4 <= 0; |
mtxen_d5 <= 0; |
mtxen_d6 <= 0; |
end |
else |
begin |
mtxen_d1 <= mtxen_i; |
mtxen_d2 <= mtxen_d1; |
mtxen_d3 <= mtxen_d2; |
mtxen_d4 <= mtxen_d3; |
mtxen_d5 <= mtxen_d4; |
mtxen_d6 <= mtxen_d5; |
if (real_carrier_sense) |
mcrs_tx <= mtxen_d6; |
else |
mcrs_tx <= mtxen_i; |
end |
end |
|
`ifdef ETH_PHY_VERBOSE |
reg frame_started; |
|
initial |
begin |
frame_started = 0; |
end |
always@(posedge mtxen_i) |
begin |
frame_started <= 1; |
end |
always@(negedge mtxen_i) |
begin |
if (frame_started) |
begin |
$display( " (%0t)(%m) TX frame ended with tx_en reset!", $time); |
frame_started <= 0; |
end |
end |
|
always@(posedge mrxerr_o) |
begin |
$display( " (%0t)(%m) RX frame ERROR signal was set!", $time); |
end |
`endif |
|
////////////////////////////////////////////////////////////////////// |
// |
// Tasks for PHY <-> MAC transactions |
// |
////////////////////////////////////////////////////////////////////// |
|
initial |
begin |
tx_mem_addr_in = 0; |
end |
|
// setting the address of tx_mem, to set the starting point of tx packet |
task set_tx_mem_addr; |
input [31:0] tx_mem_address; |
begin |
#1 tx_mem_addr_in = tx_mem_address; |
end |
endtask // set_tx_mem_addr |
|
// storage memory for RX data to be transmited to MAC |
reg [7:0] rx_mem [0:4194303]; // 4194304 locations (22 address lines) of 8-bit data width |
|
// MAC RX signals |
reg [3:0] mrxd_o; |
reg mrxdv_o; |
reg mrxerr_o; |
|
initial |
begin |
mrxd_o = 0; |
mrxdv_o = 0; |
mrxerr_o = 0; |
mcrs_rx = 0; |
end |
|
task send_rx_packet; |
input [(8*8)-1:0] preamble_data; // preamble data to be sent - correct is 64'h0055_5555_5555_5555 |
input [3:0] preamble_len; // length of preamble in bytes - max is 4'h8, correct is 4'h7 |
input [7:0] sfd_data; // SFD data to be sent - correct is 8'hD5 |
input [31:0] start_addr; // start address |
input [31:0] len; // length of frame in Bytes (without preamble and SFD) |
input plus_drible_nibble; // if length is longer for one nibble |
integer rx_cnt; |
reg [31:0] rx_mem_addr_in; // address for reading from RX memory |
reg [7:0] rx_mem_data_out; // data for reading from RX memory |
begin |
@(posedge mrx_clk_o); |
// generating CARRIER SENSE for TX with or without delay |
if (real_carrier_sense) |
#1 mcrs_rx = 1; |
else |
#1 mcrs_rx = 0; |
@(posedge mrx_clk_o); |
#1 mcrs_rx = 1; |
#1 mrxdv_o = 1; |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m) RX frame started with rx_dv set!", $time); |
`endif |
// set initial rx memory address |
rx_mem_addr_in = start_addr; |
|
// send preamble |
for (rx_cnt = 0; (rx_cnt < (preamble_len << 1)) && (rx_cnt < 16); rx_cnt = rx_cnt + 1) |
begin |
#1 mrxd_o = preamble_data[3:0]; |
#1 preamble_data = preamble_data >> 4; |
@(posedge mrx_clk_o); |
end |
|
// send SFD |
for (rx_cnt = 0; rx_cnt < 2; rx_cnt = rx_cnt + 1) |
begin |
#1 mrxd_o = sfd_data[3:0]; |
#1 sfd_data = sfd_data >> 4; |
@(posedge mrx_clk_o); |
end |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m) RX frame preamble and SFD sent!", $time); |
`endif |
// send packet's addresses, type/length, data and FCS |
for (rx_cnt = 0; rx_cnt < len; rx_cnt = rx_cnt + 1) |
begin |
#1; |
rx_mem_data_out = rx_mem[rx_mem_addr_in[21:0]]; |
mrxd_o = rx_mem_data_out[3:0]; |
@(posedge mrx_clk_o); |
#1; |
mrxd_o = rx_mem_data_out[7:4]; |
rx_mem_addr_in = rx_mem_addr_in + 1; |
@(posedge mrx_clk_o); |
#1; |
end |
if (plus_drible_nibble) |
begin |
rx_mem_data_out = rx_mem[rx_mem_addr_in[21:0]]; |
mrxd_o = rx_mem_data_out[3:0]; |
@(posedge mrx_clk_o); |
end |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m) RX frame addresses, type/length, data and FCS sent!", $time); |
`endif |
#1 mcrs_rx = 0; |
#1 mrxdv_o = 0; |
@(posedge mrx_clk_o); |
`ifdef ETH_PHY_VERBOSE |
$display( " (%0t)(%m) RX frame ended with rx_dv reset!", $time); |
`endif |
end |
endtask // send_rx_packet |
|
|
|
task GetDataOnMRxD; |
input [15:0] Len; |
input [31:0] TransferType; |
integer tt; |
|
begin |
@ (posedge mrx_clk_o); |
#1 mrxdv_o=1'b1; |
|
for(tt=0; tt<15; tt=tt+1) |
begin |
mrxd_o=4'h5; // preamble |
@ (posedge mrx_clk_o); |
#1; |
end |
|
mrxd_o=4'hd; // SFD |
|
for(tt=1; tt<(Len+1); tt=tt+1) |
begin |
@ (posedge mrx_clk_o); |
#1; |
if(TransferType == `UNICAST_XFR && tt == 1) |
mrxd_o = 4'h0; // Unicast transfer |
else if(TransferType == `BROADCAST_XFR && tt < 7) |
mrxd_o = 4'hf; |
else |
mrxd_o = tt[3:0]; // Multicast transfer |
|
@ (posedge mrx_clk_o); |
#1; |
|
if(TransferType == `BROADCAST_XFR && tt == 6) |
mrxd_o = 4'he; |
else |
|
if(TransferType == `BROADCAST_XFR && tt < 7) |
mrxd_o = 4'hf; |
else |
mrxd_o = tt[7:4]; |
end |
|
@ (posedge mrx_clk_o); |
#1; |
mrxdv_o = 1'b0; |
end |
endtask // GetDataOnMRxD |
|
|
////////////////////////////////////////////////////////////////////// |
// |
// Tastks for controling PHY statuses and rx error |
// |
////////////////////////////////////////////////////////////////////// |
|
// Link control tasks |
task link_up_down; |
input test_op; |
begin |
#1 status_bit6_0[2] = test_op; // 1 - link up; 0 - link down |
end |
endtask |
|
// RX error |
task rx_err; |
input test_op; |
begin |
#1 mrxerr_o = test_op; // 1 - RX error set; 0 - RX error reset |
end |
endtask |
|
////////////////////////////////////////////////////////////////////// |
// |
// Tastks for controling PHY carrier sense and collision |
// |
////////////////////////////////////////////////////////////////////// |
|
// Collision |
task collision; |
input test_op; |
begin |
#1 task_mcoll = test_op; |
end |
endtask |
|
// Carrier sense |
task carrier_sense; |
input test_op; |
begin |
#1 task_mcrs = test_op; |
end |
endtask |
|
// Carrier sense lost - higher priority than Carrier sense task |
task carrier_sense_lost; |
input test_op; |
begin |
#1 task_mcrs_lost = test_op; |
end |
endtask |
|
// No collision detection in half duplex |
task no_collision_hd_detect; |
input test_op; |
begin |
#1 no_collision_in_half_duplex = test_op; |
end |
endtask |
|
// Collision detection in full duplex also |
task collision_fd_detect; |
input test_op; |
begin |
#1 collision_in_full_duplex = test_op; |
end |
endtask |
|
// No carrier sense detection at TX in half duplex |
task no_carrier_sense_tx_hd_detect; |
input test_op; |
begin |
#1 no_carrier_sense_in_tx_half_duplex = test_op; |
end |
endtask |
|
// No carrier sense detection at RX in half duplex |
task no_carrier_sense_rx_hd_detect; |
input test_op; |
begin |
#1 no_carrier_sense_in_rx_half_duplex = test_op; |
end |
endtask |
|
// Carrier sense detection at TX in full duplex also |
task carrier_sense_tx_fd_detect; |
input test_op; |
begin |
#1 carrier_sense_in_tx_full_duplex = test_op; |
end |
endtask |
|
// No carrier sense detection at RX in full duplex |
task no_carrier_sense_rx_fd_detect; |
input test_op; |
begin |
#1 no_carrier_sense_in_rx_full_duplex = test_op; |
end |
endtask |
|
// Set real delay on carrier sense signal (and therefor collision signal) |
task carrier_sense_real_delay; |
input test_op; |
begin |
#1 real_carrier_sense = test_op; |
end |
endtask |
|
////////////////////////////////////////////////////////////////////// |
// |
// Tastks for controling PHY management test operation |
// |
////////////////////////////////////////////////////////////////////// |
|
// Set registers to test operation and respond to all phy addresses |
task test_regs; |
input test_op; |
begin |
#1 registers_addr_data_test_operation = test_op; |
respond_to_all_phy_addr = test_op; |
end |
endtask |
|
// Clears data memory for testing the MII |
task clear_test_regs; |
integer i; |
begin |
for (i = 0; i < 32; i = i + 1) |
begin |
#1 data_mem[i] = 16'h0; |
end |
end |
endtask |
|
// Accept frames with preamble suppresed |
task preamble_suppresed; |
input test_op; |
begin |
#1 no_preamble = test_op; |
md_transfer_cnt_reset = 1'b1; |
@(posedge mdc_i); |
#1 md_transfer_cnt_reset = 1'b0; |
end |
endtask |
|
|
|
// Sideband signals for external SMII converter --jb |
assign link_o = status_bit6_0[2]; |
|
assign speed_o = eth_speed; |
|
assign duplex_o = control_bit8_0[8]; |
|
|
|
|
endmodule |
|
/xilinx/ml501/bench/verilog/cy7c1354.v
0,0 → 1,482
//************************************************************************ |
//************************************************************************ |
//** This model is the property of Cypress Semiconductor Corp and is ** |
//** protected by the US copyright laws, any unauthorized copying and ** |
//** distribution is prohibited. Cypress reserves the right to change ** |
//** any of the functional specifications without any prior notice. ** |
//** Cypress is not liable for any damages which may result from the ** |
//** use of this functional model. ** |
//** ** |
//** File Name : CY7C1354B ** |
//** ** |
//** Revision : 1.1 - 01/30/2004 ** |
//** ** |
//** The timings are to be selected by the user depending upon the ** |
//** frequency of operation from the datasheet. ** |
//** ** |
//** Model : CY7C1354B - 256K x 36 NoBL Pipelined SRAM ** |
//** Queries : MPD Applications ** |
//** e-mail: mpd_apps@cypress.com ** |
//************************************************************************ |
//************************************************************************ |
|
`timescale 1ns / 10ps |
|
// NOTE : Any setup/hold errors will force input signal to x state |
// or if results indeterminant (write addr) core is reset x |
|
// define fixed values |
|
`define wordsize (36 -1) // |
`define no_words (262144 -1) // 256K x 36 RAM |
|
module cy7c1354 ( d, clk, a, bws, we_b, adv_lb, ce1b, ce2, ce3b, oeb, cenb, mode); |
|
inout [`wordsize:0] d; |
input clk, // clock input (R) |
we_b, // byte write enable(L) |
adv_lb, // burst(H)/load(L) address |
ce1b, // chip enable(L) |
ce2, // chip enable(H) |
ce3b, // chip enable(L) |
oeb, // async output enable(L)(read) |
cenb, // clock enable(L) |
mode; // interleave(H)/linear(L) burst |
input [3:0] bws; // byte write select(L) |
input [18:0] a; // address bus |
|
// *** NOTE DEVICE OPERATES #0.01 AFTER CLOCK *** |
// *** THEREFORE DELAYS HAVE TO TAKE THIS INTO ACCOUNT *** |
|
//********************************************************************** |
// This model is configured for 166 MHz Operation (CY7C1354-166). |
//********************************************************************** |
`define teohz #3.5 |
`define teolz #0 |
`define tchz #3.5 |
`define tclz #1.5 |
|
`define tco #3.5 |
`define tdoh #1.5 |
|
`define tas 1.5 |
`define tah 0.5 |
|
/********************************************************************** |
// Timings for 225MHz |
//********************************************************************** |
`define teohz #2.8 |
`define teolz #0 |
`define tchz #2.8 |
`define tclz #1.5 |
|
`define tco #2.8 |
`define tdoh #1.5 |
|
`define tas 1.5 |
`define tah 0.5 |
|
//*********************************************************************** |
// Timings for 200MHz |
//********************************************************************** |
`define teohz #3.2 |
`define teolz #0 |
`define tchz #3.2 |
`define tclz #1.5 |
|
`define tco #3.2 |
`define tdoh #1.5 |
|
`define tas 1.5 |
`define tah 0.5 |
***********************************************************************/ |
|
reg notifier; // error support reg's |
reg noti1_0; |
reg noti1_1; |
reg noti1_2; |
reg noti1_3; |
reg noti1_4; |
reg noti1_5; |
reg noti1_6; |
reg noti2; |
|
|
wire chipen; // combined chip enable (high for an active chip) |
|
reg chipen_d; // _d = delayed |
reg chipen_o; // _o = operational = delayed sig or _d sig |
|
wire writestate; // holds 1 if any of writebus is low |
reg writestate_d; |
reg writestate_o; |
|
wire loadcyc; // holds 1 for load cycles (setup and hold checks) |
wire writecyc; // holds 1 for write cycles (setup and hold checks) |
wire [3:0] bws; // holds the bws values |
|
wire [3:0] writebusb; // holds the "internal" bws bus based on we_b |
reg [3:0] writebusb_d; |
reg [3:0] writebusb_o; |
|
wire [2:0] operation; // holds chipen, adv_ld and writestate |
reg [2:0] operation_d; |
reg [2:0] operation_o; |
|
wire [17:0] a; // address input bus |
reg [17:0] a_d; |
reg [17:0] a_o; |
|
reg [`wordsize:0] do; // data output reg |
reg [`wordsize:0] di; // data input bus |
reg [`wordsize:0] dd; // data delayed bus |
|
wire tristate; // tristate output (on a bytewise basis) when asserted |
reg cetri; // register set by chip disable which sets the tristate |
reg oetri; // register set by oe which sets the tristate |
reg enable; // register to make the ram enabled when equal to 1 |
reg [17:0] addreg; // register to hold the input address |
reg [`wordsize:0] pipereg; // register for the output data |
|
reg [`wordsize:0] mem [0:`no_words]; // RAM array |
|
reg [`wordsize:0] writeword; // temporary holding register for the write data |
reg burstinit; // register to hold a[0] for burst type |
reg [18:0] i; // temporary register used to write to all mem locs. |
reg writetri; // tristate |
reg lw, bw; // pipelined write functions |
reg we_bl; |
|
|
wire [`wordsize:0] d = !tristate ? do[`wordsize:0] : 36'bz ; // data bus |
|
assign chipen = (adv_lb == 1 ) ? chipen_d : |
~ce1b & ce2 & ~ce3b ; |
|
assign writestate = ~& writebusb; |
|
assign operation = {chipen, adv_lb, writestate}; |
|
assign writebusb[3:0] = ( we_b ==0 & adv_lb ==0) ? bws[3:0]: |
( we_b ==1 & adv_lb ==0) ? 4'b1111 : |
( we_bl ==0 & adv_lb ==1) ? bws[3:0]: |
( we_bl ==1 & adv_lb ==1) ? 4'b1111 : |
4'bxxxx ; |
|
assign loadcyc = chipen & !cenb; |
|
assign writecyc = writestate_d & enable & ~cenb & chipen; // check |
|
assign tristate = cetri | writetri | oetri; |
|
pullup (mode); |
|
// formers for notices/errors etc |
// |
//$display("NOTICE : xxx :"); |
//$display("WARNING : xxx :"); |
//$display("ERROR *** : xxx :"); |
|
|
// initialize the output to be tri-state, ram to be disabled |
|
initial |
begin |
// signals |
|
writetri = 0; |
cetri = 1; |
enable = 0; |
lw = 0; |
bw = 0; |
|
// error signals |
|
notifier = 0; |
noti1_0 = 0; |
noti1_1 = 0; |
noti1_2 = 0; |
noti1_3 = 0; |
noti1_4 = 0; |
noti1_5 = 0; |
noti1_6 = 0; |
noti2 = 0; |
|
end |
|
|
|
// asynchronous OE |
|
always @(oeb) |
begin |
if (oeb == 1) |
oetri <= `teohz 1; |
else |
oetri <= `teolz 0; |
end |
|
// *** SETUP / HOLD VIOLATIONS *** |
|
always @(noti2) |
begin |
$display("NOTICE : 020 : Data bus corruption"); |
force d =36'bx; |
#1; |
release d; |
end |
|
always @(noti1_0) |
begin |
$display("NOTICE : 010 : Byte write corruption"); |
force bws = 4'bx; |
#1; |
release bws; |
end |
|
always @(noti1_1) |
begin |
$display("NOTICE : 011 : Byte enable corruption"); |
force we_b = 1'bx; |
#1; |
release we_b; |
end |
|
always @(noti1_2) |
begin |
$display("NOTICE : 012 : CE1B corruption"); |
force ce1b =1'bx; |
#1; |
release ce1b; |
end |
|
always @(noti1_3) |
begin |
$display("NOTICE : 013 : CE2 corruption"); |
force ce2 =1'bx; |
#1; |
release ce2; |
end |
|
always @(noti1_4) |
begin |
$display("NOTICE : 014 : CE3B corruption"); |
force ce3b =1'bx; |
#1; |
release ce3b; |
end |
|
always @(noti1_5) |
begin |
$display("NOTICE : 015 : CENB corruption"); |
force cenb =1'bx; |
#1; |
release cenb; |
end |
|
always @(noti1_6) |
begin |
$display("NOTICE : 016 : ADV_LB corruption"); |
force adv_lb = 1'bx; |
#1; |
release adv_lb; |
end |
|
// synchronous functions from clk edge |
|
always @(posedge clk) |
if (!cenb) |
begin |
#0.01; |
// latch conditions on adv_lb |
|
if (adv_lb) |
we_bl <= we_bl; |
else |
we_bl <= we_b; |
|
chipen_d <= chipen; |
|
|
chipen_o <= chipen; |
writestate_o <= writestate; |
writestate_d <= writestate_o; |
writebusb_o <= writebusb; |
writebusb_d <= writebusb_o; |
operation_o <= operation; |
a_o <= a; |
a_d <= a_o; |
di = d; |
|
// execute previously pipelined fns |
|
if (lw) begin |
loadwrite; |
lw =0; |
end |
|
if (bw) begin |
burstwrite; |
bw =0; |
end |
|
// decode input/piplined state |
|
casex (operation_o) |
3'b0?? : turnoff; |
3'b101 : setlw; |
3'b111 : setbw; |
3'b100 : loadread; |
3'b110 : burstread; |
default : unknown; // output unknown values and display an error message |
endcase |
|
do <= `tco pipereg; |
|
end |
|
// *** task section *** |
|
task read; |
begin |
if (enable) cetri <= `tclz 0; |
do <= `tdoh 36'hx; |
writetri <= `tchz 0; |
pipereg = mem[addreg]; |
end |
endtask |
|
task write; |
begin |
if (enable) cetri <= `tclz 0; |
writeword = mem[addreg]; // set up a word to hold the data for the current location |
/* overwrite the current word for the bytes being written to */ |
if (!writebusb_d[3]) writeword[35:27] = di[35:27]; |
if (!writebusb_d[2]) writeword[26:18] = di[26:18]; |
if (!writebusb_d[1]) writeword[17:9] = di[17:9]; |
if (!writebusb_d[0]) writeword[8:0] = di[8:0]; |
writeword = writeword & writeword; //convert z to x states |
mem[addreg] = writeword; // store the new word into the memory location |
//writetri <= `tchz 1; // tristate the outputs |
end |
endtask |
|
task setlw; |
begin |
lw =1; |
writetri <= `tchz 1; // tristate the outputs |
end |
endtask |
|
task setbw; |
begin |
bw =1; |
writetri <= `tchz 1; // tristate the outputs |
end |
endtask |
|
task loadread; |
begin |
burstinit = a_o[0]; |
addreg = a_o; |
enable = 1; |
read; |
end |
endtask |
|
task loadwrite; |
begin |
burstinit = a_d[0]; |
addreg = a_d; |
enable = 1; |
write; |
end |
endtask |
|
task burstread; |
begin |
burst; |
read; |
end |
endtask |
|
task burstwrite; |
begin |
burst; |
write; |
end |
endtask |
|
task unknown; |
begin |
do = 36'bx; |
// $display ("Unknown function: Operation = %b\n", operation); |
end |
endtask |
|
task turnoff; |
begin |
enable = 0; |
cetri <= `tchz 1; |
pipereg = 36'h0; |
end |
endtask |
|
task burst; |
begin |
if (burstinit == 0 || mode == 0) |
begin |
case (addreg[1:0]) |
2'b00: addreg[1:0] = 2'b01; |
2'b01: addreg[1:0] = 2'b10; |
2'b10: addreg[1:0] = 2'b11; |
2'b11: addreg[1:0] = 2'b00; |
default: addreg[1:0] = 2'bxx; |
endcase |
end |
else |
begin |
case (addreg[1:0]) |
2'b00: addreg[1:0] = 2'b11; |
2'b01: addreg[1:0] = 2'b00; |
2'b10: addreg[1:0] = 2'b01; |
2'b11: addreg[1:0] = 2'b10; |
default: addreg[1:0] = 2'bxx; |
endcase |
end |
end |
endtask |
|
// IO checks |
|
specify |
// specify the setup and hold checks |
|
// notifier will wipe memory as result is indeterminent |
|
$setuphold(posedge clk &&& loadcyc, a, `tas, `tah, notifier); |
|
// noti1 should make ip = 'bx; |
|
$setuphold(posedge clk, bws, `tas, `tah, noti1_0); |
|
$setuphold(posedge clk, we_b, `tas, `tah, noti1_1); |
$setuphold(posedge clk, ce1b, `tas, `tah, noti1_2); |
$setuphold(posedge clk, ce2, `tas, `tah, noti1_3); |
$setuphold(posedge clk, ce3b, `tas, `tah, noti1_4); |
|
// noti2 should make d = 36'hxxxxxxxxx; |
|
$setuphold(posedge clk &&& writecyc, d, `tas, `tah, noti2); |
//$setuphold(posedge clk &&& WriteTimingCheck , d, `tas, `tah, noti2); |
|
// add extra tests here. |
|
$setuphold(posedge clk, cenb, `tas, `tah, noti1_5); |
$setuphold(posedge clk, adv_lb, `tas, `tah, noti1_6); |
|
endspecify |
|
endmodule |
|
|
/xilinx/ml501/bench/verilog/WireDelay.v
0,0 → 1,123
//***************************************************************************** |
// DISCLAIMER OF LIABILITY |
// |
// This file contains proprietary and confidential information of |
// Xilinx, Inc. ("Xilinx"), that is distributed under a license |
// from Xilinx, and may be used, copied and/or disclosed only |
// pursuant to the terms of a valid license agreement with Xilinx. |
// |
// XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION |
// ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER |
// EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT |
// LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT, |
// MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx |
// does not warrant that functions included in the Materials will |
// meet the requirements of Licensee, or that the operation of the |
// Materials will be uninterrupted or error-free, or that defects |
// in the Materials will be corrected. Furthermore, Xilinx does |
// not warrant or make any representations regarding use, or the |
// results of the use, of the Materials in terms of correctness, |
// accuracy, reliability or otherwise. |
// |
// Xilinx products are not designed or intended to be fail-safe, |
// or for use in any application requiring fail-safe performance, |
// such as life-support or safety devices or systems, Class III |
// medical devices, nuclear facilities, applications related to |
// the deployment of airbags, or any other applications that could |
// lead to death, personal injury or severe property or |
// environmental damage (individually and collectively, "critical |
// applications"). Customer assumes the sole risk and liability |
// of any use of Xilinx products in critical applications, |
// subject only to applicable laws and regulations governing |
// limitations on product liability. |
// |
// Copyright 2007, 2008 Xilinx, Inc. |
// All rights reserved. |
// |
// This disclaimer and copyright notice must be retained as part |
// of this file at all times. |
//***************************************************************************** |
// ____ ____ |
// / /\/ / |
// /___/ \ / Vendor : Xilinx |
// \ \ \/ Version : 3.0 |
// \ \ Application : MIG |
// / / Filename : wiredly.v |
// /___/ /\ Date Last Modified : $Date: 2008/12/23 14:26:00 $ |
// \ \ / \ Date Created : Thu Feb 21 2008 |
// \___\/\___\ |
// |
// Device : Virtex-5 |
// Design Name : DDR2 |
// Description: This module provide |
// the definition of a zero ohm component (A, B). |
// |
// The applications of this component include: |
// . Normal operation of a jumper wire (data flowing in both directions) |
// |
// The component consists of 2 ports: |
// . Port A: One side of the pass-through switch |
// . Port B: The other side of the pass-through switch |
|
// The model is sensitive to transactions on all ports. Once a |
// transaction is detected, all other transactions are ignored |
// for that simulation time (i.e. further transactions in that |
// delta time are ignored). |
// |
// Model Limitations and Restrictions: |
// Signals asserted on the ports of the error injector should not have |
// transactions occuring in multiple delta times because the model |
// is sensitive to transactions on port A, B ONLY ONCE during |
// a simulation time. Thus, once fired, a process will |
// not refire if there are multiple transactions occuring in delta times. |
// This condition may occur in gate level simulations with |
// ZERO delays because transactions may occur in multiple delta times. |
//***************************************************************************** |
|
`timescale 1ns / 1ps |
|
module WireDelay # ( |
parameter Delay_g = 0, |
parameter Delay_rd = 0 |
) |
( |
inout A, |
inout B, |
input reset |
); |
|
reg A_r; |
reg B_r; |
reg line_en; |
|
assign A = A_r; |
assign B = B_r; |
|
always @(*) begin |
if (!reset) begin |
A_r <= 1'bz; |
B_r <= 1'bz; |
line_en <= 1'b0; |
end else begin |
if (line_en) begin |
A_r <= #Delay_rd B; |
B_r <= 1'bz; |
end else begin |
B_r <= #Delay_g A; |
A_r <= 1'bz; |
end |
end |
end |
|
always @(A or B) begin |
if (!reset) begin |
line_en <= 1'b0; |
end else if (A !== A_r) begin |
line_en <= 1'b0; |
end else if (B_r !== B) begin |
line_en <= 1'b1; |
end else begin |
line_en <= line_en; |
end |
end |
endmodule |
/xilinx/ml501/bench/verilog/ml501_testbench_defines.v
0,0 → 1,60
////////////////////////////////////////////////////////////////////// |
//// //// |
//// ORPSoC on Xilinx ml501 Testbench Defines //// |
//// //// |
//// Description //// |
//// ORPSoC testbench defines file //// |
//// //// |
//// To Do: //// |
//// - //// |
//// //// |
//// Author(s): //// |
//// - jb, jb@orsoc.se //// |
//// //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
//// //// |
//// Copyright (C) 2009 Authors and OPENCORES.ORG //// |
//// //// |
//// This source file may be used and distributed without //// |
//// restriction provided that this copyright statement is not //// |
//// removed from the file and that any derivative work contains //// |
//// the original copyright notice and the associated disclaimer. //// |
//// //// |
//// This source file is free software; you can redistribute it //// |
//// and/or modify it under the terms of the GNU Lesser General //// |
//// Public License as published by the Free Software Foundation; //// |
//// either version 2.1 of the License, or (at your option) any //// |
//// later version. //// |
//// //// |
//// This source is distributed in the hope that it will be //// |
//// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
//// PURPOSE. See the GNU Lesser General Public License for more //// |
//// details. //// |
//// //// |
//// You should have received a copy of the GNU Lesser General //// |
//// Public License along with this source; if not, download it //// |
//// from http://www.opencores.org/lgpl.shtml //// |
//// //// |
////////////////////////////////////////////////////////////////////// |
|
// 100MHz board clock |
// Is an FPGA-targetted sim for Xilinx stuff, meaning we'll be including |
// glbl.v, meaning timescale will be 1ps/1ps, so clock period must be in ps |
`define CLOCK_PERIOD 10_000 |
`define CLOCK_RATE 100_000_000 |
|
// Period for 125MHz clock is 8ns |
`define ETH_CLK_PERIOD 8 |
|
// The ORPSoC tests makefile should generate the test_define.v file in |
// the sim/run directory. |
`ifdef TEST_DEFINE_FILE |
`include "test_define.v" |
`else |
`define TEST_NAME_STRING "unspecified-test" |
`define TEST_RESULTS_DIR "./" |
`endif |
|
`undef UART_LOG_TX |