OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /or1k/tags/before_ORP/uclinux/uClinux-2.0.x/Documentation/cdrom
    from Rev 901 to Rev 1765
    Reverse comparison

Rev 901 → Rev 1765

/cdu31a
0,0 → 1,196
 
CDU31A/CDU33A Driver Info
-------------------------
 
Information on the Sony CDU31A/CDU33A CDROM driver for the Linux
kernel.
 
Corey Minyard (minyard@metronet.com)
Colossians 3:17
 
Crude Table of Contents
-----------------------
 
Setting Up the Hardware
Configuring the Kernel
Configuring as a Module
Driver Special Features
 
This device driver handles Sony CDU31A/CDU33A CDROM drives and
provides a complete block-level interface as well as an ioctl()
interface as specified in include/linux/cdrom.h). With this
interface, CDROMs can be accessed, standard audio CDs can be played
back normally, and CD audio information can be read off the drive.
 
Note that this will only work for CDU31A/CDU33A drives. Some vendors
market their drives as CDU31A compatible. They lie. Their drives are
really CDU31A hardware interface compatible (they can plug into the
same card). They are not software compatible.
 
Setting Up the Hardware
-----------------------
 
The CDU31A driver in unable to safely tell if an interface card is
present that it can use because the interface card does not announce
its presence in any way besides placing 4 I/O locations in memory. It
used to just probe memory and attempt commands, but Linus wisely asked
me to remove that because it could really screw up other hardware in
the system.
 
Because of this, you must tell the kernel where the drive interface
is, what interrupts are used, and possibly if you are on a PAS-16
soundcard.
 
If you have the Sony CDU31A/CDU33A drive interface card, the following
diagram will help you set it up. If You have another card, you are on
your own. You need to make sure that the I/O address and interrupt is
not used by another card in the system. You will need to know the I/O
address and interrupt you have set. Note that use of interrupts is
highly recommended, if possible, it really cuts down on CPU used.
Unfortunately, most soundcards do not support interrupts for their
CDROM interfaces. By default, the Sony interface card comes with
interrupts disabled.
+----------+-----------------+----------------------+
| JP1 | 34 Pin Conn | |
| JP2 +-----------------+ |
| JP3 |
| JP4 |
| +--+
| | +-+
| | | | External
| | | | Connector
| | | |
| | +-+
| +--+
| |
| +--------+
| |
+------------------------------------------+
JP1 sets the Base Address, using the following settings:
Address Pin 1 Pin 2
------- ----- -----
0x320 Short Short
0x330 Short Open
0x340 Open Short
0x360 Open Open
JP2 and JP3 configure the DMA channel; they must be set the same.
DMA Pin 1 Pin 2 Pin 3
--- ----- ----- -----
1 On Off On
2 Off On Off
3 Off Off On
JP4 Configures the IRQ:
IRQ Pin 1 Pin 2 Pin 3 Pin 4
--- ----- ----- ----- -----
3 Off Off On Off
4 Off Off* Off On
5 On Off Off Off
6 Off On Off Off
The documentation states to set this for interrupt
4, but I think that is a mistake.
 
Note that if you have another interface card, you will need to look at
the documentation to find the I/O base address. This is specified to
the SLCD.SYS driver for DOS with the /B: parameter, so you can look at
you DOS driver setup to find the address, if necessary.
 
Configuring the Kernel
----------------------
 
You must tell the kernel where the drive is at boot time. This can be
done at the Linux boot prompt, by using LILO, or by using Bootlin.
Note that this is no substitute for HOWTOs and LILO documentation, if
you are confused please read those for info on bootline configuration
and LILO.
 
At the linux boot prompt, press the ALT key and add the following line
after the boot name (you can let the kernel boot, it will tell you the
default boot name while booting):
 
cdu31a=<base address>,<interrupt>[,PAS]
 
The base address needs to have "0x" in front of it, since it is in
hex. For instance, to configure a drive at address 320 on interrupt 5,
use the following:
 
cdu31a=0x320,5
 
I use the following boot line:
 
cdu31a=0x1f88,0,PAS
 
because I have a PAS-16 which does not support interrupt for the
CDU31A interface.
 
Adding this as an append line at the beginning of the /etc/lilo.conf
file will set it for lilo configurations. I have the following as the
first line in my lilo.conf file:
 
append="cdu31a=0x1f88,0"
 
I'm not sure how to set up Bootlin (I have never used it), if someone
would like to fill in this section please do.
 
 
Configuring as a Module
-----------------------
 
The driver supports loading as a module. However, you must specify
the boot address and interrupt on the boot line to insmod. You can't
use modprobe to load it, since modprobe doesn't support setting
variables.
 
Anyway, I use the following line to load my driver as a module
 
/sbin/insmod /lib/modules/`uname -r`/misc/cdu31a.o cdu31a_port=0x1f88
 
You can set the following variables in the driver:
 
cdu31a_port=<I/O address> - sets the base I/O. If hex, put 0x in
front of it. This must be specified.
 
cdu31a_irq=<interrupt> - Sets the interrupt number. Leaving this
off will turn interrupts off.
 
 
Driver Special Features
-----------------------
 
This section describes features beyond the normal audio and CD-ROM
functions of the drive.
 
2048 byte buffer mode
 
If a disk is mounted with -o block=2048, data is copied straight from
the drive data port to the buffer. Otherwise, the readahead buffer
must be involved to hold the other 1K of data when a 1K block
operation is done. Note that with 2048 byte blocks you cannot execute
files from the CD.
 
XA compatibility
 
The driver should support XA disks for both the CDU31A and CDU33A. It
does this transparently, the using program doesn't need to set it.
 
Multi-Session
 
A multi-session disk looks just like a normal disk to the user. Just
mount one normally, and all the data should be there. A special
thanks to Koen for help with this!
 
Raw sector I/O
 
Using the CDROMREADAUDIO it is possible to read raw audio and data
tracks. Both operations return 2352 bytes per sector. On the data
tracks, the first 12 bytes is not returned by the drive and the value
of that data is indeterminate.
/gscd
0,0 → 1,60
Goldstar R420 CD-Rom device driver README
 
For all kind of other information about the GoldStar R420 CDROM
and this Linux device driver is a WWW-URL Page installed:
 
http://linux.rz.fh-hannover.de/~raupach
 
 
If you are the editor of a Linux CD, you should
enable gscd.c within your boot floppy kernel. Please,
send me one of your CDs for free.
 
 
This current driver version 0.4a only supports reading data from the disk.
Currently we have no audio and no multisession or XA support.
The polling interface is used, no DMA.
 
 
Sometimes the GoldStar R420 is sold in a 'Reveal Multimedia Kit'. This kit's
drive interface is compatible, too.
 
 
Installation
------------
 
Change to '/usr/src/linux/include/linux' and edit the file 'gscd.h'. Insert
the i/o address of your interface card.
 
The default base address is 0x340. This will work for most applications.
Address selection is accomplished by jumpers PN801-1 to PN801-4 on the
GoldStar Interface Card.
Appropriate settings are: 0x300, 0x310, 0x320, 0x330, 0x340, 0x350, 0x360
0x370, 0x380, 0x390, 0x3A0, 0x3B0, 0x3C0, 0x3D0, 0x3E0, 0x3F0
 
Then go back to '/usr/src/linux/' and 'make config' to build the new
configuration for your kernel. If you want to use the GoldStar driver
like a module, don't select 'GoldStar CDROM support'. By the way, you
have to include the iso9660 filesystem.
 
Now start compiling the kernel with 'make dep ; make zImage'.
If you want to use the driver as a module, you have to do 'make modules'
and 'make modules_install', additionally.
Install your new kernel as usual - maybe you do it with 'make zlilo'.
 
Before you can use the driver, you have to
mknod /dev/gscd0 b 16 0
to create the appropriate device file (once for all times).
 
If you use modules, you can try to insert the driver.
Say: 'insmod /usr/src/linux/modules/gscd.o'
or: 'insmod /usr/src/linux/modules/gscd.o gscd=<address>'
The driver should report his results now.
 
That's it! Mount a disk, i.e. 'mount -rt iso9660 /dev/gscd0 /cdrom'
 
Feel free to report errors and suggestions to the following address.
Be sure, I'm very happy to receive your comments!
Oliver Raupach Hannover, Juni 1995
(raupach@nwfs1.rz.fh-hannover.de)
/cdrom-standard.tex
0,0 → 1,898
\documentclass{article}
\def\version{$Id: cdrom-standard.tex,v 1.1.1.1 2001-09-10 07:44:09 simons Exp $}
 
\evensidemargin=0pt
\oddsidemargin=0pt
\topmargin=-\headheight \advance\topmargin by -\headsep
\textwidth=15.99cm \textheight=24.62cm % normal A4, 1'' margin
 
\def\linux{{\sc Linux}}
\def\cdrom{{\sc CDrom}}
\def\cdromc{{\tt cdrom.c}}
\def\cdromh{{\tt cdrom.h}}
\def\ucdrom{{\tt ucdrom.h}}
\def\fo{\sl}
 
\everymath{\it} \everydisplay{\it}
\catcode `\_=\active \def_{\_\penalty100 }
\catcode`\<=\active \def<#1>{{\langle\hbox{\rm#1}\rangle}}
 
\begin{document}
\title{A \linux\ \cdrom\ standard}
\author{David van Leeuwen\\{\normalsize\tt david@tm.tno.nl}}
 
\maketitle
 
\section{Introduction}
 
\linux\ is probably the Unix-like operating system that supports the widest
variety of hardware devices. The reasons for this are presumably
\begin{itemize}
\item The large list of different hardware devices available for the popular
IBM PC-architecture,
\item The open design of the operating system, such that everybody can
write a driver for Linux (source code examples).
\end{itemize}
The vast choice and openness has lead not only to a wide support of
hardware devices, but also to a certain divergence in behavior.
Especially for \cdrom\ devices, the way a particular drive reacts to a
`standard' $ioctl()$ call varies a lot from one brand to another;
however, the \linux\ \cdrom\ driver writers kept away from wilderness
by the practice of evolving a new driver by copying, understanding and
changing an existing one.
 
Since the beginning of the \cdrom, many different interfaces
developed. Some of them had their own proprietary design (Sony,
Mitsumi, Panasonic, Philips), other manufacturers adopted an existing
electrical interface and changed the functionality
(CreativeLabs/SoundBlaster, Teac, Funai) or simply adapted their
drives to one or more of the already existing electrical interfaces
(Aztech, Sanyo, Funai, Vertos, Longshine, Optics Storage and most of
the `NoName' manufacturers). In cases where a new drive really
brought his own interface or used his own command set and flow control
scheme, either a separate driver had to be written, or an existing
driver had to get enhanced.
 
Nowadays, almost all new \cdrom\ types are either ATAPI/IDE or SCSI;
it is very unlikely that any manufacturer still will create a new
interface, and new drives for the existing proprietary interfaces are
getting rare. But history has delivered us \cdrom\ support for many
different interfaces.
 
When (in the 1.3.70's) I looked at the existing interface which is
expressed through \cdromh\ it appeared to be a rather wild set of
commands and data formats.\footnote{I cannot recollect what kernel
version I looked at, then, presumably 1.2.13 and 1.3.34---the latest
kernel that I was indirectly involved in.} It seemed that many
features of the interface have been added to include certain specific
capabilities of certain drives, in an {\fo ad hoc\/} manner. More
importantly, it appeared that actual execution of the commands is
different for most of the different drivers: e.g., some drivers close
the tray if an $open()$ call occurs while the tray is unloaded, while
others do not. Some drivers lock the door upon opening the device, to
prevent an incoherent file system, but others don't, to allow software
ejection. Undoubtedly, the capabilities of the different drives vary,
but even when two drives have the same capability the driver behavior
may be different.
 
I decided to start a discussion on how to improve uniformity,
addressing all \cdrom-driver developers found in the various driver
files. The reactions encouraged me to write a uniform (compatible)
software level \cdromc\ to which this document is the documentation.
In the mean time, the data structure definitions in \cdromh\ had been
cleaned up a lot---which was very helpful for the new code.
\begin{quote}
\small
[Apparently, not all \cdrom\ developers support this initiative.
They---mainly those who used the already existing drivers not only as
a coding example, but also as a `user interface' reference during
their own development---have taken care that \cdromh\ reflects a
software interface to `user programs' which is unique between all
drivers as much as possible; these driver writers will continue to
refine the existing \cdromh\ where it seems necessary, and they tend
to look if any newly requested functionality isn't already there
before they are ready to define new structures. The {\tt sbpcd} driver
gives an example that it is possible to let a robot arm play juke
box---either with audio or with data CDs---and that it is possible to
let the juke box work on even if a disk has fallen upon the floor and
the drive door has closed without having a disk inside; without any
new software layer or any structures which are not already present in
\cdromh. This `other' group of \linux\ \cdrom\ driver writers
explicitly does {\em not\/} support the idea to define an additional
software layer between driver and user program.]\parfillskip=0pt
\end{quote}
 
The effort (\cdromc) of which this is the documentation is {\em not\/}
meant to drive a wedge between two groups of driver developers, but
rather to enable sharing of `strategic code' among drivers. The code
should {\em not\/} be viewed as a new interface to user-level
programs, but rather as a new interface between driver code and
kernel.
 
Care is taken that 100\,\% compatibility exists with the data
structures and programmer's interface defined in \cdromh, and in order
not to interfere with ongoing development in \cdromh, any `new' data
structures have been put in a separate header file called \ucdrom.
Because the data structures of \cdromh\ are fully supported, this
documentation may also be of help to the programmers using the
interface defined in \cdromh, but this guide is primarily written to
help \cdrom\ driver developers adapt their code to use the `common
\cdrom' code in \cdromc.
 
Personally, I think that the most important hardware interfaces will
be the IDE/ATAPI drives and of course the SCSI drives, but as prices
of hardware drop continuously, it is not unlikely that people will
have more than one \cdrom\ drive, possibly of mixed types. It is
important that these drives behave in the same way. (In December 1994,
one of the cheapest \cdrom\ drives was a Philips cm206, a double-speed
proprietary drive. In the months that I was busy writing a \linux\
driver for it, proprietary drives became old-fashioned and IDE/ATAPI
drives became standard. At the time of writing (April 1996) the
cheapest double speed drive is IDE and at one fifth of the price of
its predecessor. Eight speed drives are available now.)
 
This document defines (in pre-release versions: proposes) the various
$ioctl$s, and the way the drivers should implement this.
 
\section{Standardizing through another software level}
\label{cdrom.c}
 
At the time this document is written, all drivers directly implement
the $ioctl()$ calls through their own routines, with the danger of
forgetting calls to $verify_area()$ and the risk of divergence in
implementation.
 
For this reason, we\footnote{The writing style is such that `we' is
used when (at least part of) the \cdrom-device driver authors support
the idea, an `I' is used for personal opinions} propose to define
another software-level, that separates the $ioctl()$ and $open()$
implementation from the actual hardware implementation. Note that we
do not wish to alter the existing application interface defined in
\cdromh, but rather want to re-root the hardware-implementation through
some common code.
 
We believe that \cdrom\ drives are specific enough (i.e., different
from other block-devices such as floppy or hard disc drives), to
define a set of {\em \cdrom\ device operations},
$<cdrom-device>_dops$. These are of a different nature than the
classical block-device file operations $<block-device>_fops$.
 
The extra interfacing level routines are implemented in a file
\cdromc, and a low-level \cdrom\ driver hands over the interfacing to
the kernel by registering the following general $struct\ file_operations$:
$$
\halign{$#$\ \hfil&$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
struct& file_operations\ cdrom_fops = \{\hidewidth\cr
&NULL, & lseek \cr
&block_read, & read---general\ block-dev\ read \cr
&block_write, & write---general block-dev write \cr
&NULL, & readdir \cr
&NULL, & select \cr
&cdrom_ioctl, & ioctl \cr
&NULL, & mmap \cr
&cdrom_open, & open \cr
&cdrom_release, & release \cr
&NULL, & fsync \cr
&NULL, & fasync \cr
&cdrom_media_changed, & media_change \cr
&NULL & revalidate \cr
\};\cr
}
$$
Every active \cdrom\ device shares this $struct$. The routines declared
above are all implemented in \cdromc, and this is the place where the
{\em behavior\/} of all \cdrom-devices is defined, and hence
standardized. The implementation of the interfacing to the various
types of hardware still is done by the various \cdrom-device drivers,
but these routines only implement certain {\em capabilities\/} that
are typical to \cdrom\ (removable-media) devices.
 
Registration of the \cdrom\ device driver should now be to the general
routines in \cdromc, not to the VFS any more. This is done though the
call
$$register_cdrom(int\ major, char * name,
struct\ cdrom_device_ops\ device_options)
$$
 
The device operations structure lists the implemented routines for
interfacing to the hardware, and some specifications of capabilities
of the device, such as the maximum head-transfer rate. [It is
impossible to come up with a complete list of all capabilities of
(future) \cdrom\ drives, as the developments in technology follow-up
at an incredible rate. Maybe write-operation (WORM devices) will
become very popular in the future.] The list now is:
$$
\halign{$#$\ \hfil&$#$\ \hfil&\hbox to 10em{$#$\hss}&
$/*$ \rm# $*/$\hfil\cr
struct& cdrom_device_ops\ \{ \hidewidth\cr
&int& (* open)(kdev_t, int)\cr
&void& (* release)(kdev_t);\cr
&int& (* open_files)(kdev_t); \cr
&int& (* drive_status)(kdev_t);\cr
&int& (* disc_status)(kdev_t);\cr
&int& (* media_changed)(kdev_t);\cr
&int& (* tray_move)(kdev_t, int);\cr
&int& (* lock_door)(kdev_t, int);\cr
&int& (* select_speed)(kdev_t, int);\cr
&int& (* select_disc)(kdev_t, int);\cr
&int& (* get_last_session) (kdev_t, struct\ cdrom_multisession *{});\cr
&int& (* get_mcn)(kdev_t, struct\ cdrom_mcn *{});\cr
&int& (* reset)(kdev_t);\cr
&int& (* audio_ioctl)(kdev_t, unsigned\ int, void *{});\cr
&int& (* dev_ioctl)(kdev_t, unsigned\ int, unsigned\ long);\cr
\noalign{\medskip}
&\llap{const\ }int& capability;& capability flags \cr
&int& mask;& mask of capability: disables them \cr
&\llap{$const\ $}int& speed;& maximum speed for reading data \cr
&\llap{$const\ $}int& minors;& number of supported minor devices \cr
&\llap{$const\ $}int& capacity;& number of discs in jukebox \cr
\noalign{\medskip}
&int& options;& options flags \cr
&long& mc_flags;& media-change buffer flags ($2\times16$) \cr
\}\cr
}
$$ The \cdrom-driver should simply implement (some of) these
functions, and register the functions to the global \cdrom\ driver,
which performs interfacing with the Virtual File System and system
$ioctl$s. The flags $capability$ specify the hardware-capabilities on
registration of the device, the flags $mask$ can be used to mask some
of those capabilities (for one reason or another). The value $minors$
should be a positive value indicating the number of minor devices that
are supported by the driver, normally~1. (They are supposed to be
numbered from 0 upwards). The value $capacity$ should be the number of
discs the drive can hold simultaneously, if it is designed as a
juke-box, or otherwise~1.
 
Two registers contain variables local to the \cdrom\ device. The flags
$options$ are used to specify how the general \cdrom\ routines
should behave. These various flags registers should provide enough
flexibility to adapt to the different user's wishes (and {\em not\/}
the `arbitrary' wishes of the author of the low-level device driver,
as is the case in the old scheme). The register $mc_flags$ is used to
buffer the information from $media_changed()$ to two separate queues.
 
Note that most functions have fewer parameters than their
$blkdev_fops$ counterparts. This is because very little of the
information in the structures $inode$ and $file$ are used, the main
parameter is the device $dev$, from which the minor-number can be
extracted. (Most low-level \cdrom\ drivers don't even look at that value
as only one device is supported.)
 
The intermediate software layer that \cdromc\ forms will performs some
additional bookkeeping. The minor number of the device is checked
against the maximum registered in $<device>_dops$. The function
$cdrom_ioctl()$ will verify the appropriate user-memory regions for
read and write, and in case a location on the CD is transferred, it
will `sanitize' the format by making requests to the low-level drivers
in a standard format, and translating all formats between the
user-software and low level drivers. This relieves much of the drivers
memory checking and format checking and translation. Also, the
necessary structures will be declared on the program stack.
 
The implementation of the functions should be as defined in the
following sections. Three functions {\em must\/} be implemented,
namely $open()$, $release()$ and $open_files()$. Other functions may
be omitted, their corresponding capability flags will be cleared upon
registration. Generally, a function returns zero on success and
negative on error. A function call should return only after the
command has completed, but of course waiting for the device should not
use processor time.
 
\subsection{$Open(kdev_t\ dev, int\ purpose)$}
 
$Open()$ should try to open the device for a specific $purpose$, which
can be either:
\begin{itemize}
\item[0] Open for data read, as is used by {\tt mount()} (2), or the
user commands {\tt dd} or {\tt cat}.
\item[1] Open for $ioctl$ commanding, as is used for audio-CD playing
programs mostly.
\end{itemize}
In this routine, a static counter should be updated, reflecting the
number of times the specific device is successfully opened (and in
case the driver supports modules, the call $MOD_INC_USE_COUNT$
should be performed exactly once, if successful). The return value is
negative on error, and zero on success. The open-for-ioctl call can
only fail if there is no hardware.
 
Notice that any strategic code (closing tray upon $open()$, etc.)\ is
done by the calling routine in \cdromc, so the low-level routine
should only be concerned with proper initialization and device-use
count.
 
\subsection{$Release(kdev_t\ dev)$}
 
The use-count of the device $dev$ should be decreased by 1, and a
single call $MOD_DEC_USE_COUNT$ should be coded here. Possibly other
device-specific actions should be taken such as spinning down the
device. However, strategic actions such as ejection of the tray, or
unlocking the door, should be left over to the general routine
$cdrom_release()$. Also, the invalidation of the allocated buffers in
the VFS is taken care of by the routine in \cdromc.
 
\subsection{$Open_files(kdev_t\ dev)$}
 
This function should return the internal variable use-count of the
device $dev$. The use-count is not implemented in the routines in
\cdromc\ itself, because there may be many minor devices connected to
a single low-level driver.
 
\subsection{$Drive_status(kdev_t\ dev)$}
\label{drive status}
 
The function $drive_status$, if implemented, should provide
information of the status of the drive (not the status of the disc,
which may or may not be in the drive). In \ucdrom\ the possibilities
are listed:
$$
\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
CDS_NO_INFO& no information available\cr
CDS_NO_DISC& no disc is inserted, tray is closed\cr
CDS_TRAY_OPEN& tray is opened\cr
CDS_DRIVE_NOT_READY& something is wrong, tray is moving?\cr
CDS_DISC_OK& a disc is loaded and everything is fine\cr
}
$$
 
\subsection{$Disc_status(kdev_t\ dev)$}
\label{disc status}
 
As a complement to $drive_status()$, this function can provide the
general \cdrom-routines with information about the current disc that is
inserted in the drive represented by $dev$. The history of development
of the CD's use as a carrier medium for various digital information
has lead to many different disc types, hence this function can return:
$$
\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
CDS_NO_INFO& no information available\cr
CDS_NO_DISC& no disc is inserted, or tray is opened\cr
CDS_AUDIO& Audio disc (2352 audio bytes/frame)\cr
CDS_DATA_1& data disc, mode 1 (2048 user bytes/frame)\cr
CDS_DATA_2& data disc, mode 2 (2336 user bytes/frame)\cr
CDS_XA_2_1& mixed data (XA), mode 2, form 1 (2048 user bytes)\cr
CDS_XA_2_2& mixed data (XA), mode 2, form 1 (2324 user bytes)\cr
}
$$
As far as I know, \cdrom s are always of type $CDS_DATA_1$. For
some information concerning frame layout of the various disc types, see
a recent version of {\tt cdrom.h}.
 
\subsection{$Media_changed(dev\_t\ dev)$}
 
This function is very similar to the original function in $struct\
file_operations$. It returns 1 if the medium of the device $dev$ has
changed since the last call, and 0 otherwise. Note that by `re-routing'
this function through $cdrom_media_changed()$, we can implement
separate queues for the VFS and a new $ioctl()$ function that can
report device changes to software (e.g., an auto-mounting daemon).
 
\subsection{$Tray_move(kdev_t\ dev, int\ position)$}
 
This function, if implemented, should control the tray movement. (No
other function should control this.) The parameter $position$ controls
the desired direction of movement:
\begin{itemize}
\item[0] Close tray
\item[1] Open tray
\end{itemize}
This function returns 0 upon success, and a non-zero value upon
error. Note that if the tray is already in the desired position, no
action need be taken, and the return value should be 0.
 
\subsection{$Lock_door(kdev_t\ dev, int\ lock)$}
 
This function (and no other code) controls locking of the door, if the
drive allows this. The value of $lock$ controls the desired locking
state:
\begin{itemize}
\item[0] Unlock door, manual opening is allowed
\item[1] Lock door, tray cannot be ejected manually
\end{itemize}
Return values are as for $tray_move()$.
 
\subsection{$Select_speed(kdev_t\ dev, int\ speed)$}
 
Although none of the drivers has implemented this function so far,
some drives are capable of head-speed selection, and hence this is a
capability that should be standardized through a function in the
device-operations structure. This function should select the speed at
which data is read or audio is played back. The special value `0'
means `auto-selection', i.e., maximum data-rate or real-time audio
rate. If the drive doesn't have this `auto-selection' capability, the
decision should be made on the current disc loaded and the return
value should be positive. A negative return value indicates an
error. (Although the audio-low-pass filters probably aren't designed
for it, more than real-time playback of audio might be used for
high-speed copying of audio tracks). Badly pressed \cdrom s may
benefit from less-than-maximum head rate.
 
\subsection{$Select_disc(kdev_t\ dev, int\ number)$}
 
If the drive can store multiple discs (a juke-box), it is likely that
a disc selection can be made by software. This function should perform
disc selection. It should return the number of the selected disc on
success, a negative value on error. Currently, none of the \linux\
\cdrom\ drivers appears to support such functionality, but it is defined
here for future purposes.
 
\subsection{$Get_last_session(kdev_t\ dev, struct\ cdrom_multisession *
ms_info)$}
 
This function should implement the old corresponding $ioctl()$. For
device $dev$, the start of the last session of the current disc should
be returned in the pointer argument $ms_info$. Note that routines in \cdromc\ have sanitized this argument: its
requested format will {\em always\/} be of the type $CDROM_LBA$
(linear block addressing mode), whatever the calling software
requested. But sanitization goes even further: the low-level
implementation may return the requested information in $CDROM_MSF$
format if it wishes so (setting the $ms_info\rightarrow addr_format$
field appropriately, of course) and the routines in \cdromc\ will make
the transform if necessary. The return value is 0 upon success.
 
\subsection{$Get_mcn(kdev_t\ dev, struct\ cdrom_mcn * mcn)$}
 
Some discs carry a `Media Catalog Number' (MCN), also called
`Universal Product Code' (UPC). This number should reflect the number that
is generally found in the bar-code on the product. Unfortunately, the
few discs that carry such a number on the disc don't even use the same
format. The return argument to this function is a pointer to a
pre-declared memory region of type $struct\ cdrom_mcn$. The MCN is
expected as a 13-character string, terminated by a null-character.
 
\subsection{$Reset(kdev_t dev)$}
 
This call should implement hard-resetting the drive (although in
circumstances that a hard-reset is necessary, a drive may very well
not listen to commands anymore). Preferably, control is returned to the
caller only after the drive has finished resetting.
 
\subsection{$Audio_ioctl(kdev_t\ dev, unsigned\ int\ cmd, void *
arg)$}
 
Some of the \cdrom-$ioctl$s defined in {\tt cdrom.h} can be
implemented by the routines described above, and hence the function
$cdrom_ioctl$ will use those. However, most $ioctl$s deal with
audio-control. We have decided to leave these accessed through a
single function, repeating the arguments $cmd$ and $arg$. Note that
the latter is of type $void*{}$, rather than $unsigned\ long\
int$. The routine $cdrom_ioctl()$ does do some useful things,
though. It sanitizes the address format type to $CDROM_MSF$ (Minutes,
Seconds, Frames) for all audio calls. It also verifies the memory
location of $arg$, and reserves stack-memory for the argument. This
makes implementation of the $audio_ioctl()$ much simpler than in the
old driver scheme. For an example you may look up the function
$cm206_audio_ioctl()$ in {\tt cm206.c} that should be updated with
this documentation.
 
An unimplemented ioctl should return $-EINVAL$, but a harmless request
(e.g., $CDROMSTART$) may be ignored by returning 0 (success). Other
errors should be according to the standards, whatever they are. (We
may decide to sanitize the return value in $cdrom_ioctl()$, in order
to guarantee a uniform interface to the audio-player software.)
 
\subsection{$Dev_ioctl(kdev_t\ dev, unsigned\ int\ cmd, unsigned\ long\
arg)$}
 
Some $ioctl$s seem to be specific to certain \cdrom\ drives. That is,
they are introduced to service some capabilities of certain drives. In
fact, there are 6 different $ioctl$s for reading data, either in some
particular kind of format, or audio data. Not many drives support
reading audio tracks as data, I believe this is because of protection
of copyrights of artists. Moreover, I think that if audio-tracks are
supported, it should be done through the VFS and not via $ioctl$s. A
problem here could be the fact that audio-frames are 2352 bytes long,
so either the audio-file-system should ask for 75264 bytes at once
(the least common multiple of 512 and 2352), or the drivers should
bend their backs to cope with this incoherence (to which I would be
opposed). Once this question is resolved, this code should be standardized in
\cdromc.
 
Because there are so many $ioctl$s that seem to be introduced to
satisfy certain drivers,\footnote{Is there software around that actually uses
these? I'd be interested!} any `non-standard' $ioctl$s are routed through
the call $dev_ioctl()$. In principle, `private' $ioctl$s should be
numbered after the device's major number, and not the general \cdrom\
$ioctl$ number, {\tt 0x53}. Currently the non-supported $ioctl$s are:
{\it CDROMREADMODE1, CDROMREADMODE2, CDROMREADAUDIO, CDROMREADRAW,
CDROMREADCOOKED, CDROMSEEK, CDROMPLAY\-BLK and CDROMREADALL}.
 
\subsection{\cdrom\ capabilities}
 
Instead of just implementing some $ioctl$ calls, the interface in
\cdromc\ supplies the possibility to indicate the {\em capabilities\/}
of a \cdrom\ drive. This can be done by ORing any number of
capability-constants that are defined in \ucdrom\ at the registration
phase. Currently, the capabilities are any of:
$$
\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
CDC_CLOSE_TRAY& can close tray by software control\cr
CDC_OPEN_TRAY& can open tray\cr
CDC_LOCK& can lock and unlock the door\cr
CDC_SELECT_SPEED& can select speed, in units of $\sim$150\,kB/s\cr
CDC_SELECT_DISC& drive is juke-box\cr
CDC_MULTI_SESSION& can read sessions $>\rm1$\cr
CDC_MCN& can read Medium Catalog Number\cr
CDC_MEDIA_CHANGED& can report if disc has changed\cr
CDC_PLAY_AUDIO& can perform audio-functions (play, pause, etc)\cr
}
$$
The capability flag is declared $const$, to prevent drivers from
accidentally tampering with the contents. However, upon registration,
some (claimed) capability flags may be cleared if the supporting
function has not been implemented (see $register_cdrom()$ in
\cdromc).
 
If you want to disable any of the capabilities, there is a special
flag register $<device>_dops.mask$ that may (temporarily) disable
certain capabilities. In the file \cdromc\ you will encounter many
constructions of the type
$$\it
if\ (cdo\rightarrow capability \mathrel\& \mathord{\sim} cdo\rightarrow mask
\mathrel{\&} CDC_<capability>) \ldots
$$
The $mask$ could be set in the low-level driver code to disable
certain capabilities for special brands of the device that can't
perform the actions. However, there is not (yet) an $ioctl$ to set
the mask\dots The reason is that I think it is better to control the
{\em behavior\/} rather than the {\em capabilities}.
 
\subsection{Options}
 
A final flag register controls the {\em behavior\/} of the \cdrom\
drives, in order to satisfy different users' wishes, hopefully
independently of the ideas of the respective author who happened to
have made the drive's support available to the \linux\ community. The
current behavior options are:
$$
\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
CDO_AUTO_CLOSE& try to close tray upon device $open()$\cr
CDO_AUTO_EJECT& try to open tray on last device $close()$\cr
CDO_USE_FFLAGS& use $file_pointer\rightarrow f_flags$ to indicate
purpose for $open()$\cr
CDO_LOCK& try to lock door if device is opened\cr
CDO_CHECK_TYPE& ensure disc type is data if opened for data\cr
}
$$
 
The initial value of this register is $CDO_AUTO_CLOSE \mathrel|
CDO_USE_FFLAGS \mathrel| CDO_LOCK$, reflecting my own view on user
interface and software standards. Before you protest, there are two
new $ioctl$s implemented in \cdromc, that allow you to control the
behavior by software. These are:
$$
\halign{$#$\ \hfil&$/*$ \rm# $*/$\hfil\cr
CDROM_SET_OPTIONS& set options specified in $(int)\ arg$\cr
CDROM_CLEAR_OPTIONS& clear options specified in $(int)\ arg$\cr
}
$$
One option needs some more explanation: $CDO_USE_FFLAGS$. In the next
section we explain what the need for this option is.
 
\section{The need to know the purpose of opening}
 
Traditionally, Unix devices can be used in two different `modes',
either by reading/writing to the device file, or by issuing
controlling commands to the device, by the device's $ioctl()$
call. The problem with \cdrom\ drives, is that they can be used for
two entirely different purposes. One is to mount removable
file systems, \cdrom s, the other is to play audio CD's. Audio commands
are implemented entirely through $ioctl$s, presumably because the
first implementation (SUN?) has been such. In principle there is
nothing wrong with this, but a good control of the `CD player' demands
that the device can {\em always\/} be opened in order to give the
$ioctl$ commands, regardless of the state the drive is in.
 
On the other hand, when used as a removable-media disc drive (what the
original purpose of \cdrom s is) we would like to make sure that the
disc drive is ready for operation upon opening the device. In the old
scheme, some \cdrom\ drivers don't do any integrity checking, resulting
in a number of i/o errors reported by the VFS to the kernel when an
attempt for mounting a \cdrom\ on an empty drive occurs. This is not a
particularly elegant way to find out that there is no \cdrom\ inserted;
it more-or-less looks like the old IBM-PC trying to read an empty floppy
drive for a couple of seconds, after which the system complains it
can't read from it. Nowadays we can {\em sense\/} the existence of a
removable medium in a drive, and we believe we should exploit that
fact. An integrity check on opening of the device, that verifies the
availability of a \cdrom\ and its correct type (data), would be
desirable.
 
These two ways of using a \cdrom\ drive, principally for data and
secondarily for playing audio discs, have different demands for the
behavior of the $open()$ call. Audio use simply wants to open the
device in order to get a file handle which is needed for issuing
$ioctl$ commands, while data use wants to open for correct and
reliable data transfer. The only way user programs can indicate what
their {\em purpose\/} of opening the device is, is through the $flags$
parameter (see {\tt open(2)}). For \cdrom\ devices, these flags aren't
implemented (some drivers implement checking for write-related flags,
but this is not strictly necessary if the device file has correct
permission flags). Most option flags simply don't make sense to
\cdrom\ devices: $O_CREAT$, $O_NOCTTY$, $O_TRUNC$, $O_APPEND$, and
$O_SYNC$ have no meaning to a \cdrom.
 
We therefore propose to use the flag $O_NONBLOCK$ to indicate
that the device is opened just for issuing $ioctl$
commands. Strictly, the meaning of $O_NONBLOCK$ is that opening and
subsequent calls to the device don't cause the calling process to
wait. We could interpret this as ``don't wait until someone has
inserted some valid data-\cdrom.'' Thus, our proposal of the
implementation for the $open()$ call for \cdrom s is:
\begin{itemize}
\item If no other flags are set than $O_RDONLY$, the device is opened
for data transfer, and the return value will be 0 only upon successful
initialization of the transfer. The call may even induce some actions
on the \cdrom, such as closing the tray.
\item If the option flag $O_NONBLOCK$ is set, opening will always be
successful, unless the whole device doesn't exist. The drive will take
no actions whatsoever.
\end{itemize}
 
\subsection{And what about standards?}
 
You might hesitate to accept this proposal as it comes from the
\linux\ community, and not from some standardizing institute. What
about SUN, SGI, HP and all those other Unix and hardware vendors?
Well, these companies are in the lucky position that they generally
control both the hardware and software of their supported products,
and are large enough to set their own standard. They do not have to
deal with a dozen or more different, competing hardware
configurations.\footnote{Personally, I think that SUN's approach to
mounting \cdrom s is very good in origin: under Solaris a
volume-daemon automatically mounts a newly inserted \cdrom\ under {\tt
/cdrom/$<volume-name>$/}. In my opinion they should have pushed this
further and have {\em every\/} \cdrom\ on the local area network be
mounted at the similar location, i.e., no matter in which particular
machine you insert a \cdrom, it will always appear at the same
position in the directory tree, on every system. When I wanted to
implement such a user-program for \linux, I came across the
differences in behavior of the various drivers, and the need for an
$ioctl$ informing about media changes.}
 
We believe that using $O_NONBLOCK$ to indicate that a device is being opened
for $ioctl$ commands only can be easily introduced in the \linux\
community. All the CD-player authors will have to be informed, we can
even send in our own patches to the programs. The use of $O_NONBLOCK$
has most likely no influence on the behavior of the CD-players on
other operating systems than \linux. Finally, a user can always revert
to old behavior by a call to $ioctl(file_descriptor, CDROM_CLEAR_OPTIONS,
CDO_USE_FFLAGS)$.
 
\subsection{The preferred strategy of $open()$}
 
The routines in \cdromc\ are designed in such a way that a run-time
configuration of the behavior of \cdrom\ devices (of {\em any\/} type)
can be carried out, by the $CDROM_SET/CLEAR_OPTIONS$ $ioctls$. Thus, various
modes of operation can be set:
\begin{description}
\item[$CDO_AUTO_CLOSE \mathrel| CDO_USE_FFLAGS \mathrel| CDO_LOCK$]
This is the default setting. (With $CDO_CHECK_TYPE$ it will be better,
in the future.) If the device is not yet opened by any other process,
and it is opened for data ($O_NONBLOCK$ is not set) and the tray is
found open, an attempt to close the tray is made. Then, it is verified
that a disc is in the drive and, if $CDO_CHECK_TYPE$ is set, that its
type is `data mode 1.' Only if all tests are passed, the return value
is zero. The door is locked to prevent file system corruption. If
opened for audio ($O_NONBLOCK$ is set), no actions are taken and a
value of 0 will be returned.
\item[0] $Open()$ will always be successful, the option flags are
ignored. Neither actions are undertaken, nor any integrity checks are
made.
\item[$CDO_AUTO_CLOSE \mathrel| CDO_AUTO_EJECT \mathrel| CDO_LOCK$]
This mimics the behavior of the current sbpcd-driver. The option flags
are ignored, the tray is closed on the first open, if
necessary. Similarly, the tray is opened on the last release, i.e., if
a \cdrom\ is unmounted, it is automatically ejected, such that the
user can replace it.
\end{description}
We hope that these option can convince everybody (both driver
maintainers and user program developers) to adapt to the new \cdrom\
driver scheme and option flag interpretation.
 
\section{Description of routines in \cdromc}
 
Only a few routines in \cdromc\ are exported to the drivers. In this
section we will treat these, as well as the functioning of the routines
that `take over' the interface to the kernel. The header file
belonging to \cdromc\ is called \ucdrom, but may be included in {\tt
cdrom.h} in the future.
 
\subsection{$struct\ file_operations\ cdrom_fops$}
 
The contents of this structure has been described in
section~\ref{cdrom.c}, and this structure should be used in
registering the block device to the kernel:
$$
register_blkdev(major, <name>, \&cdrom_fops);
$$
 
\subsection{$Int\ register_cdrom(int\ major, char * name, struct\
cdrom_device_ops\ * cdo)$}
 
Similar to registering $cdrom_fops$ to the kernel, the device
operations structure, as described in section~\ref{cdrom.c}, should be
registered to the general \cdrom\ interface:
$$
register_cdrom(major, <name>, \&<device>_dops);
$$
This function returns zero upon success, and non-zero upon failure.
 
\subsection{$Int\ unregister_cdrom(int\ major, char * name)$}
 
Unregistering device $name$ with major number $major$ disconnects the
registered device-operation routines from the \cdrom\ interface.
This function returns zero upon success, and non-zero upon failure.
 
\subsection{$Int\ cdrom_open(struct\ inode * ip, struct\ file * fp)$}
 
This function is not called directly by the low-level drivers, it is
listed in the standard $cdrom_fops$. If the VFS opens a file, this
function becomes active. A strategy logic is implemented in this
routine, taking care of all capabilities and options that are set in
the $cdrom_device_ops$ connected to the device. Then, the program flow is
transferred to the device_dependent $open()$ call.
 
\subsection{$Void\ cdrom_release(struct\ inode *ip, struct\ file
*fp)$}
 
This function implements the reverse-logic of $cdrom_open()$, and then
calls the device-dependent $release()$ routine. When the use-count
has reached 0, the allocated buffers in the are flushed by calls to
$sync_dev(dev)$ and $invalidate_buffers(dev)$.
 
 
\subsection{$Int\ cdrom_ioctl(struct\ inode *ip, struct\ file *fp,
unsigned\ int\ cmd, unsigned\ long\ arg)$}
\label{cdrom-ioctl}
 
This function handles all $ioctl$ requests for \cdrom\ devices in a
uniform way. The different calls fall into three categories: $ioctl$s
that can be directly implemented by device operations, ones that are
routed through the call $audio_ioctl()$, and the remaining ones, that
are presumable device-dependent. Generally, a negative return value
indicates an error.
 
\subsubsection{Directly implemented $ioctl$s}
\label{ioctl-direct}
 
The following `old' \cdrom-$ioctl$s are implemented by directly
calling device-operations in $cdrom_device_ops$, if implemented and
not masked:
\begin{description}
\item[CDROMMULTISESSION] Requests the last session on a \cdrom.
\item[CDROMEJECT] Open tray.
\item[CDROMCLOSETRAY] Close tray.
\item[CDROMEJECT_SW] If $arg\not=0$, set behavior to auto-close (close
tray on first open) and auto-eject (eject on last release), otherwise
set behavior to non-moving on $open()$ and $release()$ calls.
\item[CDROM_GET_MCN or CDROM_GET_UPC] Get the Medium Catalog Number from a CD.
\end{description}
 
\subsubsection{$Ioctl$s rooted through $audio_ioctl()$}
\label{ioctl-audio}
 
The following set of $ioctl$s are all implemented through a call to
the $cdrom_fops$ function $audio_ioctl()$. Memory checks and
allocation are performed in $cdrom_ioctl()$, and also sanitization of
address format ($CDROM_LBA$/$CDROM_MSF$) is done.
\begin{description}
\item[CDROMSUBCHNL] Get sub-channel data in argument $arg$ of type $struct\
cdrom_subchnl *{}$.
\item[CDROMREADTOCHDR] Read Table of Contents header, in $arg$ of type
$struct\ cdrom_tochdr *{}$.
\item[CDROMREADTOCENTRY] Read a Table of Contents entry in $arg$ and
specified by $arg$ of type $struct\ cdrom_tocentry *{}$.
\item[CDROMPLAYMSF] Play audio fragment specified in Minute, Second,
Frame format, delimited by $arg$ of type $struct\ cdrom_msf *{}$.
\item[CDROMPLAYTRKIND] Play audio fragment in track-index format
delimited by $arg$ of type $struct cdrom_ti *{}$.
\item[CDROMVOLCTRL] Set volume specified by $arg$ of type $struct\
cdrom_volctrl *{}$.
\item[CDROMVOLREAD] Read volume into by $arg$ of type $struct\
cdrom_volctrl *{}$.
\item[CDROMSTART] Spin up disc.
\item[CDROMSTOP] Stop playback of audio fragment.
\item[CDROMPAUSE] Pause playback of audio fragment.
\item[CDROMRESUME] Resume playing.
\end{description}
 
\subsubsection{New $ioctl$s in \cdromc}
 
The following $ioctl$s have been introduced to allow user programs to
control the behavior of individual \cdrom\ devices. New $ioctl$
commands can be identified by the underscores in their names.
\begin{description}
\item[CDROM_SET_OPTIONS] Set options specified by $arg$. Returns the
option flag register after modification. Use $arg = \rm0$ for reading
the current flags.
\item[CDROM_CLEAR_OPTIONS] Clear options specified by $arg$. Returns
the option flag register after modification.
\item[CDROM_SELECT_SPEED] Select head-rate speed of disc specified as
by $arg$. The value 0 means `auto-select', i.e., play audio discs at
real time and data disc at maximum speed. The value $arg$ is
checked against the maximum head rate of the drive found in
the $cdrom_dops$.
\item[CDROM_SELECT_DISC] Select disc numbered $arg$ from a juke-box.
First disc is numbered 0. The number $arg$ is checked against the
maximum number of discs in the juke-box found in the $cdrom_dops$.
\item[CDROM_MEDIA_CHANGED] Returns 1 if a disc has been changed since
the last call. Note that calls to $cdrom_media_changed$ by the VFS
are treated by an independent queue, so both mechanisms will detect
a media change once. Currently, \cdromc\ implements maximum 16 minors
per major device.
\item[CDROM_DRIVE_STATUS] Returns the status of the drive by a call to
$drive_status()$. Return values are as defined in section~\ref{drive
status}. Note that this call doesn't return information on the
current playing activity of the drive; this can be polled through an
$ioctl$ call to $CDROMSUBCHNL$.
\item[CDROM_DISC_STATUS] Returns the type of the disc currently in the
drive by a call to $disc_status()$. Return values are as defined in
section~\ref{disc status}.
\end{description}
 
\subsubsection{Device dependent $ioct$s}
 
Finally, all other $ioctl$s are passed to the function $dev_ioctl()$,
if implemented. No memory allocation or verification is carried out.
 
\subsection{How to update your driver}
 
\begin{enumerate}
\item Make a backup of your current driver.
\item Get hold of the files \cdromc\ and \ucdrom, they should be in
the directory tree that came with this documentation.
\item Include {\tt \char`\<linux/ucdrom.h>} just after {\tt cdrom.h}.
\item Change the 3rd argument of $register_blkdev$ from
$\&<your-drive>_fops$ to $\&cdrom_fops$.
\item Just after that line, add a line to register to the \cdrom\
routines:
$$register_cdrom(major, <name>, <your-drive>_dops);$$
Similarly, add a call to $unregister_cdrom()$.
\item Copy an example of the device-operations $struct$ to your source,
e.g., from {\tt cm206.c} $cm206_dops$, and change all entries to names
corresponding to your driver, or names you just happen to like. If
your driver doesn't support a certain function, make the entry
$NULL$. At the entry $capability$ you should list all capabilities
your drive could support, in principle. If your drive has a capability
that is not listed, please send me a message.
\item Implement all functions in your $<device>_dops$ structure,
according to prototypes listed in \ucdrom, and specifications given in
section~\ref{cdrom.c}. Most likely you have already implemented
the code in a large part, and you may just have to adapt the prototype
and return values.
\item Rename your $<device>_ioctl()$ function to $audio_ioctl$ and
change the prototype a little. Remove entries listed in the first part
in section~\ref{cdrom-ioctl}, if your code was OK, these are just calls
to the routines you adapted in the previous step.
\item You may remove all remaining memory checking code in the
$audio_ioctl()$ function that deals with audio commands (these are
listed in the second part of section~\ref{cdrom-ioctl}). There is no
need for memory allocation either, so most $case$s in the $switch$
statement look similar to:
$$
case\ CDROMREADTOCENTRY\colon
get_toc_entry\bigl((struct\ cdrom_tocentry *{})\ arg\bigr);
$$
\item All remaining $ioctl$ cases must be moved to a separate
function, $<device>_ioctl$, the device-dependent $ioctl$s. Note that
memory checking and allocation must be kept in this code!
\item Change the prototypes of $<device>_open()$ and
$<device>_release()$, and remove any strategic code (i.e., tray
movement, door locking, etc.).
\item Try to recompile the drivers. We advice you to use modules, both
for {\tt cdrom.o} and your driver, as debugging is much easier this
way.
\end{enumerate}
 
\section{Thanks}
 
Thanks to all the people involved. Thanks to Thomas Quinot, Jon Tombs,
Ken Pizzini, Eberhard M\"onkeberg and Andrew Kroll, the \linux\
\cdrom\ device driver developers who were kind enough to give
suggestions and criticisms during the writing. Finally of course, I
want to thank Linus Torvalds for making this possible in the first
place.
 
\end{document}
 
/isp16
0,0 → 1,100
-- Documentation/cdrom/isp16
 
Docs by Eric van der Maarel <H.T.M.v.d.Maarel@marin.nl>
 
This is the README for version 0.6 of the cdrom interface on an
ISP16, MAD16 or Mozart sound card.
 
The detection and configuration of this interface used to be included
in both the sjcd and optcd cdrom driver. Drives supported by these
drivers came packed with Media Magic's multi media kit, which also
included the ISP16 card. The idea (thanks Leo Spiekman)
to move it from these drivers into a separate module and moreover, not to
rely on the MAD16 sound driver, are as follows:
-duplication of code in the kernel is a waste of resources and should
be avoided;
-however, kernels and notably those included with Linux distributions
(cf Slackware 3.0 included version 0.5 of the isp16 configuration
code included in the drivers) don't always come with sound support
included. Especially when they already include a bunch of cdrom drivers.
Hence, the cdrom interface should be configurable _independently_ of
sound support.
 
The ISP16, MAD16 and Mozart sound cards have an OPTi 82C928 or an
OPTi 82C929 chip. The interface on these cards should work with
any cdrom attached to the card, which is 'electrically' compatible
with Sanyo/Panasonic, Sony or Mitsumi non-ide drives. However, the
command sets for any proprietary drives may differ
(and hence may not be supported in the kernel) from these four types.
For a fact I know the interface works and the way of configuration
as described in this documentation works in combination with the
sjcd (in Sanyo/Panasonic compatibility mode) cdrom drivers
(probably with the optcd (in Sony compatibility mode) as well).
If you have such an OPTi based sound card and you want to use the
cdrom interface with a cdrom drive supported by any of the other cdrom
drivers, it will probably work. Please let me know any experience you
might have).
I understand that cards based on the OPTi 82C929 chips may be configured
(hardware jumpers that is) as an IDE interface. Initialisation of such a
card in this mode is not supported (yet?).
 
The suggestion to configure the ISP16 etc. sound card by booting DOS and
do a warm reboot to boot Linux somehow doesn't work, at least not
on my machine (IPC P90), with the OPTi 82C928 based card.
 
Booting the kernel through the boot manager LILO allows the use
of some command line options on the 'LILO boot:' prompt. At boot time
press Alt or Shift while the LILO prompt is written on the screen and enter
any kernel options. Alternatively these options may be used in
the appropriate section in /etc/lilo.conf. Adding 'append="<cmd_line_options>"'
will do the trick as well.
The syntax of 'cmd_line_options' is
 
isp16=[<port>[,<irq>[,<dma>]]][[,]<drive_type>]
 
If there is no ISP16 or compatibles detected, there's probably no harm done.
These options indicate the values that your cdrom drive has been (or will be)
configured to use.
Valid values for the base i/o address are:
port=0x340,0x320,0x330,0x360
for the interrupt request number
irq=0,3,5,7,9,10,11
for the direct memory access line
dma=0,3,5,6,7
and for the type of drive
drive_type=noisp16,Sanyo,Panasonic,Sony,Mitsumi.
Note that these options are case sensitive.
The values 0 for irq and dma indicate that they are not used, and
the drive will be used in 'polling' mode. The values 5 and 7 for irq
should be avoided in order to avoid any conflicts with optional
sound card configuration.
The syntax of the command line does not allow the specification of
irq when there's nothing specified for the base address and no
specification of dma when there is no specification of irq.
The value 'nosip16' for drive_type, which may be used as the first
non-integer option value (e.g. 'isp16=noisp16'), makes sure that probing
for and subsequent configuration of an ISP16-compatible card is skipped
all together. This can be useful to overcome possible conflicts which
may arise while the kernel is probing your hardware.
The default values are
port=0x340
irq=0
dma=0
drive_type=Sanyo
reflecting my own configuration. The defaults can be changed in
the file ~/include/linux/ips16.h.
 
The cdrom interface can be configured at run time by loading the
initialisation driver as a module. In that case, the interface
parameters can be set by giving appropriate values on the command
line. Configuring the driver can then be done by the following
command (assuming you have iso16.o installed in a proper place):
 
insmod isp16.o isp16_cdrom_base=<port> isp16_cdrom_irq=<irq> \
isp16_cdrom_dma=<dma> isp16_cdrom_type=<drive_type>
 
where port, irq, dma and drive_type can have any of the values mentioned
above.
 
 
Have fun!
/mcd
0,0 → 1,4
This driver does not support XA or MultiSession CDs (PhotoCDs). Use the
experimental driver mcdx.c for that.
 
You can use mcd for one interface, and mcdx for another.
/sjcd
0,0 → 1,60
-- Documentation/cdrom/sjcd
80% of the work takes 20% of the time,
20% of the work takes 80% of the time...
(Murphy law)
 
Once started, training can not be stopped...
(StarWars)
 
This is the README for the sjcd cdrom driver, version 1.6.
 
This file is meant as a tips & tricks edge for the usage of the SANYO CDR-H94A
cdrom drive. It will grow as the questions arise. ;-)
For info on configuring the ISP16 sound card look at Documentation/cdrom/isp16.
 
The driver should work with any of the Panasonic, Sony or Mitsumi style
CDROM interface.
The cdrom interface on Media Magic's soft configurable sound card ISP16,
which used to be included in the driver, is now supported in a separate module.
This initialisation module will probably also work with other interfaces
based on an OPTi 82C928 or 82C929 chip (like MAD16 and Mozart): see the
documentation Documentation/cdrom/isp16.
 
The device major for sjcd is 18, and minor is 0. Create a block special
file in your /dev directory (e.g., /dev/sjcd) with these numbers.
(For those who don't know, being root and doing the following should do
the trick:
mknod -m 644 /dev/sjcd b 18 0
and mount the cdrom by /dev/sjcd).
 
The default configuration parameters are:
base address 0x340
no irq
no dma
(Actually the CDR-H94A doesn't know how to use irq and dma.)
As of version 1.2, setting base address at boot time is supported
through the use of command line options: type at the "boot:" prompt:
linux sjcd=<base_address>
(where you would use the kernel labeled "linux" in lilo's configuration
file /etc/lilo.conf). You could also use 'append="sjcd=<configuration_info>"'
in the appropriate section of /etc/lilo.conf
If you're building a kernel yourself you can set your default base
i/o address with SJCD_BASE_ADDR in include/linux/sjcd.h.
 
The sjcd driver supports being loaded as a module. The following
command will set the base i/o address on the fly (assuming you
have installed the module in an appropriate place).
insmod sjcd.o sjcd_base=<base_address>
 
 
Have fun!
 
If something is wrong, please email to vadim@rbrf.ru
or vadim@ipsun.ras.ru
or model@cecmow.enet.dec.com
or H.T.M.v.d.Maarel@marin.nl
 
It happens sometimes that Vadim is not reachable by mail. For these
instances, Eric van der Maarel will help too.
 
Vadim V. Model, Eric van der Maarel, Eberhard Moenkeberg
/00-INDEX
0,0 → 1,29
00-INDEX
- this file (info on CD-ROMs and Linux)
aztcd
- info on Aztech/Orchid/Okano/Wearnes/Conrad/CyCDROM driver.
cdrom-standard.tex
- LaTeX document on standardizing the CD-ROM programming interface.
cdu31a
- info on the Sony CDU31A/CDU33A CD-ROM driver.
cm206
- info on the Philips/LMS cm206/cm260 CD-ROM driver.
gscd
- info on the Goldstar R420 CD-ROM driver.
ide-cd
- info on setting up and using ATAPI (aka IDE) CD-ROMs.
isp16
- info on the CD-ROM interface on ISP16, MAD16 or Mozart sound card.
mcd
- info on limitations of standard Mitsumi CD-ROM driver.
mcdx
- info on improved Mitsumi CD-ROM driver.
optcd
- info on the Optics Storage 8000 AT CD-ROM driver
sbpcd
- info on the SoundBlaster/Panasonic CD-ROM interface driver.
sjcd
- info on the SANYO CDR-H94A CD-ROM interface driver.
sonycd535
- info on the Sony CDU-535 (and 531) CD-ROM driver.
 
/aztcd
0,0 → 1,810
$Id: aztcd,v 1.1.1.1 2001-09-10 07:44:09 simons Exp $
Readme-File /usr/src/Documentation/cdrom/aztcd
for
AZTECH CD-ROM CDA268-01A, ORCHID CD-3110,
OKANO/WEARNES CDD110, CONRAD TXC, CyCDROM CR520, CR540
CD-ROM Drives
Version 2.5 and newer
(for other drives see 6.-8.)
 
NOTE: THIS DRIVER WILL WORK WITH THE CD-ROM DRIVES LISTED, WHICH HAVE
A PROPRIETARY INTERFACE (implemented on a sound card or on an
ISA-AT-bus card).
IT WILL DEFINITELY NOT WORK WITH CD-ROM DRIVES WITH *IDE*-INTERFACE,
such as the Aztech CDA269-031SE !!! (The only known exceptions are
'faked' IDE drives like the CyCDROM CR520ie which work with aztcd
under certain conditions, see 7.). IF YOU'RE USING A CD-ROM DRIVE
WITH IDE-INTERFACE, SOMETIMES ALSO CALLED ATAPI-COMPATIBLE, PLEASE
USE THE ide-cd.c DRIVER, WRITTEN BY MARK LORD AND SCOTT SNYDER !
THE STANDARD-KERNEL 1.2.x NOW ALSO SUPPORTS IDE-CDROM-DRIVES, SEE THE
HARDDISK (!) SECTION OF make config, WHEN COMPILING A NEW KERNEL!!!
----------------------------------------------------------------------------
 
Contents of this file:
1. NOTE
2. INSTALLATION
3. CONFIGURING YOUR KERNEL
4. RECOMPILING YOUR KERNEL
4.1 AZTCD AS A RUN-TIME LOADABLE MODULE
4.2 CDROM CONNECTED TO A SOUNDCARD
5. KNOWN PROBLEMS, FUTURE DEVELOPMENTS
5.1 MULTISESSION SUPPORT
5.2 STATUS RECOGNITION
5.3 DOSEMU's CDROM SUPPORT
6. BUG REPORTS
7. OTHER DRIVES
8. IF YOU DON'T SUCCEED ... DEBUGGING
9. TECHNICAL HISTORY OF THE DRIVER
10. ACKNOWLEDGMENTS
11. PROGRAMMING ADD ONS: CDPLAY.C
APPENDIX: Source code of cdplay.c
----------------------------------------------------------------------------
 
1. NOTE
This software has been successfully in alpha and beta test and is part of
the standard kernel since kernel 1.1.8x since December 1994. It works with
AZTECH CDA268-01A, ORCHID CDS-3110, ORCHID/WEARNES CDD110 and CONRAD TXC
(Nr.99 31 23 -series 04) and has proven to be stable with kernel versions 1.0.9
to 1.3.72. But with any software there still may be bugs in it. So if you
encounter problems, you are invited to help us improve this software. Please
send me a detailed bug report (see chapter BUG REPORTS). You are also invited
in helping us to increase the number of drives, which are supported.
 
Please read the README-files carefully and always keep a backup copy of your
old kernel, in order to reboot if something goes wrong!
 
2. INSTALLATION
The driver consists of a header file 'aztcd.h', which normally should reside
in /usr/include/linux and the source code 'aztcd.c', which normally resides in
/usr/src/linux/drivers/cdrom. It uses /dev/aztcd (/dev/aztcd0 in some distri-
butions), which must be a valid block device with major number 29 and reside
in directory /dev. To mount a CD-ROM, your kernel needs to have the ISO9660-
filesystem support included.
 
PLEASE NOTE: aztcd.c has been developed in parallel to the linux kernel,
which had and is having many major and minor changes which are not backward
compatible. Quite definitely aztcd.c version 1.80 and newer will NOT work
in kernels older than 1.3.33. So please always use the most recent version
of aztcd.c with the appropriate linux-kernel.
 
3. CONFIGURING YOUR KERNEL
If your kernel is already configured for using the AZTECH driver you will
see the following message while Linux boots:
Aztech CD-ROM Init: DriverVersion=<version number> BaseAddress=<baseaddress>
Aztech CD-ROM Init: FirmwareVersion=<firmware version id of your I/O-card>>>
Aztech CD-ROM Init: <drive type> detected
Aztech CD-ROM Init: End
If the message looks different and you are sure to have a supported drive,
it may have a different base address. The Aztech driver does look for the
CD-ROM drive at the base address specified in aztcd.h at compile time. This
address can be overwritten by boot parameter aztcd=....You should reboot and
start Linux with boot parameter aztcd=<base address>, e.g. aztcd=0x320. If
you do not know the base address, start your PC with DOS and look at the boot
message of your CD-ROM's DOS driver. If that still does not help, use boot
parameter aztcd=<base address>,0x79 , this tells aztcd to try a little harder.
 
If the message looks correct, as user 'root' you should be able to mount the
drive by
mount -t iso9660 -r /dev/aztcd0 /mnt
and use it as any other filesystem. (If this does not work, check if
/dev/aztcd0 and /mnt do exist and create them, if necessary by doing
mknod /dev/aztcd0 b 29 0
mkdir /mnt
 
If you still get a different message while Linux boots or when you get the
message, that the ISO9660-filesystem is not supported by your kernel, when
you try to mount the CD-ROM drive, you have to recompile your kernel.
 
If you do *not* have an Aztech/Orchid/Okano/Wearnes/TXC drive and want to
bypass drive detection during Linux boot up, start with boot parameter aztcd=0.
 
Most distributions nowadays do contain a boot disk image containing aztcd.
Please note, that this driver will not work with IDE/ATAPI drives! With these
you must use ide-cd.c instead.
 
4. RECOMPILING YOUR KERNEL
If your kernel is not yet configured for the AZTECH driver and the ISO9660-
filesystem, you have to recompile your kernel:
 
- Edit aztcd.h to set the I/O-address to your I/O-Base address (AZT_BASE_ADDR),
the driver does not use interrupts or DMA, so if you are using an AZTECH
CD268, an ORCHID CD-3110 or ORCHID/WEARNES CDD110 that's the only item you
have to set up. If you have a soundcard, read chapter 4.2.
Users of other drives should read chapter OTHER DRIVES of this file.
You also can configure that address by kernel boot parameter aztcd=...
- There are some other points, which may be configured, e.g. auto-eject the
CD when unmounting a drive, tray locking etc., see aztcd.h for details.
- Build a new kernel, configure it for 'Aztech/Orchid/Okano/Wearnes support'
(if you want aztcd to be part of the kernel). Do not configure it for
'Aztech... support', if you want to use aztcd as a run time loadable module.
But in any case you must have the ISO9660-filesystem included in your
kernel.
- Activate the new kernel, normally this is done by running LILO (don't for-
get to configure it before and to keep a copy of your old kernel in case
something goes wrong!).
- Reboot
- If you've included aztcd in your kernel, you now should see during boot
some messages like
Aztech CD-ROM Init: DriverVersion=<version number> BaseAddress=<baseaddress>
Aztech CD-ROM Init: FirmwareVersion=<firmware version id of your I/O-card>
Aztech CD-ROM Init: <drive type> detected
Aztech CD-ROM Init: End
- If you have not included aztcd in your kernel, but want to load aztcd as a
run time loadable module see 4.1.
- If the message looks correct, as user 'root' you should be able to mount
the drive by
mount -t iso9660 -r /dev/aztcd0 /mnt
and use it as any other filesystem. (If this does not work, check if
/dev/aztcd0 and /mnt do exist and create them, if necessary by doing
mknod /dev/aztcd0 b 29 0
mkdir /mnt
- If this still does not help, see chapters OTHER DRIVES and DEBUGGING.
 
4.1 AZTCD AS A RUN-TIME LOADABLE MODULE
If you do not need aztcd permanently, you can also load and remove the driver
during runtime via insmod and rmmod. To build aztcd as a loadable module you
must configure your kernel for AZTECH module support (answer 'm' when con-
figuring the kernel). Anyhow, you may run into problems, if the version of
your boot kernel is not the same than the source kernel version, from which
you create the modules. So rebuild your kernel, if necessary.
 
Now edit the base address of your AZTECH interface card in
/usr/src/linux/include/linux/aztcd.h to the appropriate value. There are
also some special features which may be configured, e.g. auto-eject a CD
when unmounting the drive etc; see aztcd.h for details. Then change
to /usr/src/linux and do a
make modules
make modules_install
After that you can run-time load the driver via
insmod /lib/modules/X.X.X/misc/aztcd.o
and remove it via rmmod aztcd.
If you did not set the correct base address in aztcd.h, you can also supply the
base address when loading the driver via
insmod /lib/modules/X.X.X/misc/aztcd.o aztcd=<base address>
If you do not have the iso9660-filesystem in your boot kernel, you also have
to load it before you can mount the CDROM:
insmod /lib/modules/X.X.X/fs/isofs.o
The mount procedure works as described in 4. above.
(In all commands 'X.X.X' is the current linux kernel version number. For details
see file modules.txt in /usr/src/linux/Documentation)
 
4.2 CDROM CONNECTED TO A SOUNDCARD
Most soundcards do have a bus interface to the CDROM-drive. In many cases
this soundcard needs to be configured, before the CDROM can be used. This
configuration procedure consists of writing some kind of initialization
data to the soundcard registers. The AZTECH-CDROM driver in the moment does
only support one type of soundcard (SoundWave32). Users of other soundcards
should try to boot DOS first and let their DOS drivers initialize the
soundcard and CDROM, then warm boot (or use loadlin) their PC to start
Linux.
Support for the CDROM-interface of SoundWave32-soundcards is directly
implemented in the AZTECH driver. Please edit /usr/src/linux/include/aztdc.h,
uncomment line '#define AZT_SW32' and set the appropriate value for
AZT_BASE_ADDR and AZT_SW32_BASE_ADDR. This support was tested with an Orchid
CDS-3110 connected to a SoundWave32.
If you want your soundcard to be supported, find out, how it needs to be
configured and mail me (see 6.) the appropriate information.
 
5. KNOWN PROBLEMS, FUTURE DEVELOPMENTS
5.1 MULTISESSION SUPPORT
Multisession support for CD's still is a myth. I implemented and tested a basic
support for multisession and XA CDs, but I still have not enough CDs and appli-
cations to test it rigourously. So if you'd like to help me, please contact me
(Email address see below). As of version 1.4 and newer you can enable the
multisession support in aztcd.h by setting AZT_MULTISESSION to 1. Doing so
will cause the ISO9660-filesystem to deal with multisession CDs, ie. redirect
requests to the Table of Contents (TOC) information from the last session,
which contains the info of all previous sessions etc.. If you do set
AZT_MULTISESSION to 0, you can use multisession CDs anyway. In that case the
drive's firmware will do automatic redirection. For the ISO9660-filesystem any
multisession CD will then look like a 'normal' single session CD. But never-
theless the data of all sessions are viewable and accessible. So with practical-
ly all real world applications you won't notice the difference. But as future
applications may make use of advanced multisession features, I've started to
implement the interface for the ISO9660 multisession interface via ioctl
CDROMMULTISESSION.
 
5.2 STATUS RECOGNITION
The drive status recognition does not work correctly in all cases. Changing
a disk or having the door open, when a drive is already mounted, is detected
by the Aztech driver itself, but nevertheless causes multiple read attempts
by the different layers of the ISO9660-filesystem driver, which finally timeout,
so you have to wait quite a little... But isn't it bad style to change a disk
in a mounted drive, anyhow ?!
 
The driver uses busy wait in most cases for the drive handshake (macros
STEN_LOW and DTEN_LOW). I tested with a 486/DX2 at 66MHz and a Pentium at
60MHz and 90MHz. Whenever you use a much faster machine you are likely to get
timeout messages. In that case edit aztcd.h and increase the timeout value
AZT_TIMEOUT.
 
For some 'slow' drive commands I implemented waiting with a timer waitqueue
(macro STEN_LOW_WAIT). If you get this timeout message, you may also edit
aztcd.h and increase the timeout value AZT_STATUS_DELAY. The waitqueue has
shown to be a little critical. If you get kernel panic messages, edit aztcd.c
and substitute STEN_LOW_WAIT by STEN_LOW. Busy waiting with STEN_LOW is more
stable, but also causes CPU overhead.
 
5.3 DOSEMU's CD-ROM SUPPORT
With release 1.20 aztcd was modified to allow access to CD-ROMS when running
under dosemu-0.60.0 aztcd-versions before 1.20 are most likely to crash
Linux, when a CD-ROM is accessed under dosemu. This problem has partly been
fixed, but still when accessing a directory for the first time the system
might hang for some 30sec. So be patient, when using dosemu's CD-ROM support
in combination with aztcd :-) !
This problem has now (July 1995) been fixed by a modification to dosemu's
CD-ROM driver. The new version came with dosemu-0.60.2, see dosemu's
README.CDROM.
 
6. BUG REPORTS
Please send detailed bug reports and bug fixes via EMail to
 
zimmerma@rz.fht-esslingen.de
 
Please include a description of your CD-ROM drive type and interface card,
the exact firmware message during Linux bootup, the version number of the
AZTECH-CDROM-driver and the Linux kernel version. Also a description of your
system's other hardware could be of interest, especially microprocessor type,
clock frequency, other interface cards such as soundcards, ethernet adapter,
game cards etc..
 
I will try to collect the reports and make the necessary modifications from
time to time. I may also come back to you directly with some bug fixes and
ask you to do further testing and debugging.
 
Editors of CD-ROMs are invited to send a 'cooperation' copy of their
CD-ROMs to the volunteers, who provided the CD-ROM support for Linux. My
snail mail address for such 'stuff' is
Prof. Dr. W. Zimmermann
Fachhochschule fuer Technik Esslingen
Fachbereich IT
Flandernstrasse 101
D-73732 Esslingen
Germany
 
 
7. OTHER DRIVES
The following drives ORCHID CDS3110, OKANO CDD110, WEARNES CDD110 and Conrad
TXC Nr. 993123-series 04 nearly look the same as AZTECH CDA268-01A, especially
they seem to use the same command codes. So it was quite simple to make the
AZTECH driver work with these drives.
 
Unfortunately I do not have any of these drives available, so I couldn't test
it myself. In some installations, it seems necessary to initialize the drive
with the DOS driver before (especially if combined with a sound card) and then
do a warm boot (CTRL-ALT-RESET) or start Linux from DOS, e.g. with 'loadlin'.
 
If you do not succeed, read chapter DEBUGGING. Thanks in advance!
 
Sorry for the inconvenience, but it is difficult to develop for hardware,
which you don't have available for testing. So if you like, please help us.
 
If you do have a CyCDROM CR520ie thanks to Hilmar Berger's help your chances
are good, that it will work with aztcd. The CR520ie is sold as an IDE-drive
and really is connected to the IDE interface (primary at 0x1F0 or secondary
at 0x170, configured as slave, not as master). Nevertheless it is not ATAPI
compatible but still uses Aztech's command codes.
 
 
8. DEBUGGING : IF YOU DON'T SUCCEED, TRY THE FOLLOWING
-reread the complete README file
-make sure, that your drive is hardware configured for
transfer mode: polled
IRQ: not used
DMA: not used
Base Address: something like 300, 320 ...
You can check this, when you start the DOS driver, which came with your
drive. By appropriately configuring the drive and the DOS driver you can
check, whether your drive does operate in this mode correctly under DOS. If
it does not operate under DOS, it won't under Linux.
If your drive's base address is something like 0x170 or 0x1F0 (and it is
not a CyCDROM CR520ie or CR 940ie) you most likely are having an IDE/ATAPI-
compatible drive, which is not supported by aztcd.c, use ide-cd.c instead.
Make sure the Base Address is configured correctly in aztcd.h, also make
sure, that /dev/aztcd0 exists with the correct major number (compare it with
the entry in file /usr/include/linux/major.h for the Aztech drive).
-insert a CD-ROM and close the tray
-cold boot your PC (i.e. via the power on switch or the reset button)
-if you start Linux via DOS, e.g. using loadlin, make sure, that the DOS
driver for the CD-ROM drive is not loaded (comment out the calling lines
in DOS' config.sys!)
-look for the aztcd: init message during Linux init and note them exactly
-log in as root and do a mount -t iso9660 /dev/aztcd0 /mnt
-if you don't succeed in the first time, try several times. Try also to open
and close the tray, then mount again. Please note carefully all commands
you typed in and the aztcd-messages, which you get.
-if you get an 'Aztech CD-ROM init: aborted' message, read the remarks about
the version string below.
 
If this does not help, do the same with the following differences
-start DOS before; make now sure, that the DOS driver for the CD-ROM is
loaded under DOS (i.e. uncomment it again in config.sys)
-warm boot your PC (i.e. via CTRL-ALT-DEL)
if you have it, you can also start via loadlin (try both).
...
Again note all commands and the aztcd-messages.
 
If you see STEN_LOW or STEN_LOW_WAIT error messages, increase the timeout
values.
 
If this still does not help,
-look in aztcd.c for the lines #if 0
#define AZT_TEST1
...
#endif
and substitute '#if 0' by '#if 1'.
-recompile your kernel and repeat the above two procedures. You will now get
a bundle of debugging messages from the driver. Again note your commands
and the appropriate messages. If you have syslogd running, these messages
may also be found in syslogd's kernel log file. Nevertheless in some
installations syslogd does not yet run, when init() is called, thus look for
the aztcd-messages during init, before the login-prompt appears.
Then look in aztcd.c, to find out, what happened. The normal calling sequence
is: aztcd_init() during Linux bootup procedure init()
after doing a 'mount -t iso9660 /dev/aztcd0 /mnt' the normal calling sequence is
aztcd_open() -> Status 2c after cold reboot with CDROM or audio CD inserted
-> Status 8 after warm reboot with CDROM inserted
-> Status 2e after cold reboot with no disk, closed tray
-> Status 6e after cold reboot, mount with door open
aztUpdateToc()
aztGetDiskInfo()
aztGetQChannelInfo() repeated several times
aztGetToc()
aztGetQChannelInfo() repeated several times
a list of track information
do_aztcd_request() }
azt_transfer() } repeated several times
azt_poll }
Check, if there is a difference in the calling sequence or the status flags!
There are a lot of other messages, eg. the ACMD-command code (defined in
aztcd.h), status info from the getAztStatus-command and the state sequence of
the finite state machine in azt_poll(). The most important are the status
messages, look how they are defined and try to understand, if they make
sense in the context where they appear. With a CD-ROM inserted the status
should always be 8, except in aztcd_open(). Try to open the tray, insert a
audio disk, insert no disk or reinsert the CD-ROM and check, if the status
bits change accordingly. The status bits are the most likely point, where
the drive manufacturers may implement changes.
If you still don't succeed, a good point to start is to look in aztcd.c in
function aztcd_init, where the drive should be detected during init. Do the
following:
-reboot the system with boot parameter 'aztcd=<your base address>,0x79'. With
parameter 0x79 most of the drive version detection is bypassed. After that
you should see the complete version string including leading and trailing
blanks during init.
Now adapt the statement
if ((result[1]=='A')&&(result[2]=='Z' ...)
in aztcd_init() to exactly match the first 3 or 4 letters you have seen.
-Another point is the 'smart' card detection feature in aztcd_init(). Normally
the CD-ROM drive is ready, when aztcd_init is trying to read the version
string and a time consuming ACMD_SOFT_RESET command can be avoided. This is
detected by looking, if AFL_OP_OK can be read correctly. If the CD-ROM drive
hangs in some unknown state, e.g. because of an error before a warm start or
because you first operated under DOS, even the version string may be correct,
but the following commands will not. Then change the code in such a way,
that the ACMD_SOFT_RESET is issued in any case, by substituting the
if-statement 'if ( ...=AFL_OP_OK)' by 'if (1)'.
 
If you succeed, please mail may the exact version string of your drive and
the code modifications, you have made together with a short explanation.
If you don't succeed, you may mail me the output of the debugging messages.
But remember, they are only useful, if they are exact and complete and you
describe in detail your hardware setup and what you did (cold/warm reboot,
with/without DOS, DOS-driver started/not started, which Linux-commands etc.)
 
 
9. TECHNICAL HISTORY OF THE DRIVER
The AZTECH-Driver is a rework of the Mitsumi-Driver. Four major items had to
be reworked:
 
a) The Mitsumi drive does issue complete status information acknowledging
each command, the Aztech drive does only signal that the command was
processed. So whenever the complete status information is needed, an extra
ACMD_GET_STATUS command is issued. The handshake procedure for the drive
can be found in the functions aztSendCmd(), sendAztCmd() and getAztStatus().
 
b) The Aztech Drive does not have a ACMD_GET_DISK_INFO command, so the
necessary info about the number of tracks (firstTrack, lastTrack), disk
length etc. has to be read from the TOC in the lead in track (see function
aztGetDiskInfo()).
 
c) Whenever data is read from the drive, the Mitsumi drive is started with a
command to read an indefinite (0xffffff) number of sectors. When the appropriate
number of sectors is read, the drive is stopped by a ACDM_STOP command. This
does not work with the Aztech drive. I did not find a way to stop it. The
stop and pause commands do only work in AUDIO mode but not in DATA mode.
Therefore I had to modify the 'finite state machine' in function azt_poll to
only read a certain number of sectors and then start a new read on demand. As I
have not completely understood, how the buffer/caching scheme of the Mitsumi
driver was implemented, I am not sure, if I have covered all cases correctly,
whenever you get timeout messages, the bug is most likely to be in that
function azt_poll() around switch(cmd) .... case ACD_S_DATA.
 
d) I did not get information about changing drive mode. So I doubt, that the
code around function azt_poll() case AZT_S_MODE does work. In my test I have
not been able to switch to reading in raw mode. For reading raw mode, Aztech
uses a different command than for cooked mode, which I only have implemen-
ted in the ioctl-section but not in the section which is used by the ISO9660-
 
The driver was developed on an AST PC with Intel 486/DX2, 8MB RAM, 340MB IDE
hard disk and on an AST PC with Intel Pentium 60MHz, 16MB RAM, 520MB IDE
running Linux kernel version 1.0.9 from the LST 1.8 Distribution. The kernel
was compiled with gcc.2.5.8. My CD-ROM drive is an Aztech CDA268-01A. My
drive says, that it has Firmware Version AZT26801A1.3. It came with a ISA-bus
interface card and works with polled I/O without DMA and without interrupts.
The code for all other drives was 'remote' tested and debugged by a number of
volunteers on the Internet.
 
Points, where I feel that possible problems might be and all points where I
did not completely understand the drive's behaviour or trust my own code are
marked with /*???*/ in the source code. There are also some parts in the
Mitsumi driver, where I did not completely understand their code.
 
 
10. ACKNOWLEDGMENTS
Without the help of P.Bush, Aztech, who delivered technical information
about the Aztech Drive and without the help of E.Moenkeberg, GWDG, who did a
great job in analyzing the command structure of various CD-ROM drives, this
work would not have been possible. E.Moenkeberg was also a great help in
making the software 'kernel ready' and in answering many of the CDROM-related
questions in the newsgroups. He really is *the* Linux CD-ROM guru. Thanks
also to all the guys on the Internet, who collected valuable technical
information about CDROMs.
 
Joe Nardone (joe@access.digex.net) was a patient tester even for my first
trial, which was more than slow, and made suggestions for code improvement.
Especially the 'finite state machine' azt_poll() was rewritten by Joe to get
clean C code and avoid the ugly 'gotos', which I copied from mcd.c.
 
Robby Schirmer (schirmer@fmi.uni-passau.de) tested the audio stuff (ioctls)
and suggested a lot of patches for them.
 
Joseph Piskor and Peter Nugent were the first users with the ORCHID CD3110
and also were very patient with the problems which occurred.
 
Reinhard Max delivered the information for the CDROM-interface of the
SoundWave32 soundcards.
 
Jochen Kunz and Olaf Kaluza delivered the information for supporting Conrad's
TXC drive.
 
Hilmar Berger delivered the patches for supporting CyCDROM CR520ie.
 
Anybody, who is interested in these items should have a look at 'ftp.gwdg.de',
directory 'pub/linux/cdrom' and at 'ftp.cdrom.com', directory 'pub/cdrom'.
 
11. PROGRAMMING ADD ONs: cdplay.c
You can use the ioctl-functions included in aztcd.c in your own programs. As
an example on how to do this, you will find a tiny CD Player for audio CDs
named 'cdplay.c'. It allows you to play audio CDs. You can play a specified
track, pause and resume or skip tracks forward and backwards. If you quit the
program without stopping the drive, playing is continued. You can also
(mis)use cdplay to read and hexdump data disks. You can find the code in the
APPENDIX of this file, which you should cut out with an editor and store in a
separate file 'cdplay.c'. To compile it and make it executable, do
gcc -s -Wall -O2 -L/usr/lib cdplay.c -o /usr/local/bin/cdplay # compiles it
chmod +755 /usr/local/bin/cdplay # makes it executable
ln -s /dev/aztcd0 /dev/cdrom # creates a link
(for /usr/lib substitute the top level directory, where your include files
reside, and for /usr/local/bin the directory, where you want the executable
binary to reside )
 
You have to set the correct permissions for cdplay *and* for /dev/mcd0 or
/dev/aztcd0 in order to use it. Remember, that you should not have /dev/cdrom
mounted, when you're playing audio CDs.
 
This program is just a hack for testing the ioctl-functions in aztcd.c, I will
not maintain it, so if you run into problems, discard it or have a look into
the source code 'cdplay.c'. The program does only contain a minimum of user
protection and input error detection. If you use the commands in the wrong
order or if you try to read a CD at wrong addresses, you may get error messages
or even hang your machine. If you get STEN_LOW, STEN_LOW_WAIT or segment violation
error messages when using cdplay, after that, the system might not be stable
any more, so you'd better reboot. As the ioctl-functions run in kernel mode,
most normal Linux-multitasking protection features do not work. By using
uninitialized 'wild' pointers etc., it is easy to write to other users data and
program areas, destroy kernel tables etc.. So if you experiment with ioctls
as always when you are doing systems programming and kernel hacking, you
should have a backup copy of your system in a safe place (and you also
should try before, how to restore from a backup copy)!
 
A reworked and improved version called 'cdtester.c', which has yet more
features for testing CDROM-drives can be found in
/usr/src/linux/Documentation/cdrom/sbpcd, written by E.Moenkeberg.
 
Werner Zimmermann
Fachhochschule fuer Technik Esslingen
(EMail: zimmerma@rz.fht-esslingen.de)
Maerz 16, 1995
 
---------------------------------------------------------------------------
APPENDIX: Source code of cdplay.c
 
/* Tiny Audio CD Player
 
Copyright 1994, 1995, 1996 Werner Zimmermann (zimmerma@rz.fht-esslingen.de)
 
This program originally was written to test the audio functions of the
AZTECH.CDROM-driver, but it should work with every CD-ROM drive. Before
using it, you should set a symlink from /dev/cdrom to your real CDROM
device.
 
The GNU General Public License applies to this program.
 
History: V0.1 W.Zimmermann: First release. Nov. 8, 1994
V0.2 W.Zimmermann: Enhanced functionality. Nov. 9, 1994
V0.3 W.Zimmermann: Additional functions. Nov. 28, 1994
V0.4 W.Zimmermann: fixed some bugs. Dec. 17, 1994
V0.5 W.Zimmermann: clean 'scanf' commands without compiler warnings
Jan. 6, 1995
V0.6 W.Zimmermann: volume control (still experimental). Jan. 24, 1995
V0.7 W.Zimmermann: read raw modified. July 26, 95
*/
 
#include <stdio.h>
#include <ctype.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/cdrom.h>
#include <linux/aztcd.h>
 
void help(void)
{ printf("Available Commands: STOP s EJECT/CLOSE e QUIT q\n");
printf(" PLAY TRACK t PAUSE p RESUME r\n");
printf(" NEXT TRACK n REPEAT LAST l HELP h\n");
printf(" SUB CHANNEL c TRACK INFO i PLAY AT a\n");
printf(" READ d READ RAW w VOLUME v\n");
}
 
int main(void)
{ int handle;
unsigned char command=' ', ini=0, first=1, last=1;
unsigned int cmd, i,j,k, arg1,arg2,arg3;
struct cdrom_ti ti;
struct cdrom_tochdr tocHdr;
struct cdrom_subchnl subchnl;
struct cdrom_tocentry entry;
struct cdrom_msf msf;
union { struct cdrom_msf msf;
unsigned char buf[CD_FRAMESIZE_RAW];
} azt;
struct cdrom_volctrl volctrl;
 
printf("\nMini-Audio CD-Player V0.72 (C) 1994,1995,1996 W.Zimmermann\n");
handle=open("/dev/cdrom",O_RDWR);
ioctl(handle,CDROMRESUME);
if (handle<=0)
{ printf("Drive Error: already playing, no audio disk, door open\n");
printf(" or no permission (you must be ROOT in order to use this program)\n");
}
else
{ help();
while (1)
{ printf("Type command (h = help): ");
scanf("%s",&command);
switch (command)
{ case 'e': cmd=CDROMEJECT;
ioctl(handle,cmd);
break;
case 'p': if (!ini)
{ printf("Command not allowed - play track first\n");
}
else
{ cmd=CDROMPAUSE;
if (ioctl(handle,cmd)) printf("Drive Error\n");
}
break;
case 'r': if (!ini)
{ printf("Command not allowed - play track first\n");
}
else
{ cmd=CDROMRESUME;
if (ioctl(handle,cmd)) printf("Drive Error\n");
}
break;
case 's': cmd=CDROMPAUSE;
if (ioctl(handle,cmd)) printf("Drive error or already stopped\n");
cmd=CDROMSTOP;
if (ioctl(handle,cmd)) printf("Drive error\n");
break;
case 't': cmd=CDROMREADTOCHDR;
if (ioctl(handle,cmd,&tocHdr)) printf("Drive Error\n");
first=tocHdr.cdth_trk0;
last= tocHdr.cdth_trk1;
if ((first==0)||(first>last))
{ printf ("--could not read TOC\n");
}
else
{ printf("--first track: %d --last track: %d --enter track number: ",first,last);
cmd=CDROMPLAYTRKIND;
scanf("%i",&arg1);
ti.cdti_trk0=arg1;
if (ti.cdti_trk0<first) ti.cdti_trk0=first;
if (ti.cdti_trk0>last) ti.cdti_trk0=last;
ti.cdti_ind0=0;
ti.cdti_trk1=last;
ti.cdti_ind1=0;
if (ioctl(handle,cmd,&ti)) printf("Drive Error\n");
ini=1;
}
break;
case 'n': if (!ini++)
{ if (ioctl(handle,CDROMREADTOCHDR,&tocHdr)) printf("Drive Error\n");
first=tocHdr.cdth_trk0;
last= tocHdr.cdth_trk1;
ti.cdti_trk0=first-1;
}
if ((first==0)||(first>last))
{ printf ("--could not read TOC\n");
}
else
{ cmd=CDROMPLAYTRKIND;
if (++ti.cdti_trk0 > last) ti.cdti_trk0=last;
ti.cdti_ind0=0;
ti.cdti_trk1=last;
ti.cdti_ind1=0;
if (ioctl(handle,cmd,&ti)) printf("Drive Error\n");
ini=1;
}
break;
case 'l': if (!ini++)
{ if (ioctl(handle,CDROMREADTOCHDR,&tocHdr)) printf("Drive Error\n");
first=tocHdr.cdth_trk0;
last= tocHdr.cdth_trk1;
ti.cdti_trk0=first+1;
}
if ((first==0)||(first>last))
{ printf ("--could not read TOC\n");
}
else
{ cmd=CDROMPLAYTRKIND;
if (--ti.cdti_trk0 < first) ti.cdti_trk0=first;
ti.cdti_ind0=0;
ti.cdti_trk1=last;
ti.cdti_ind1=0;
if (ioctl(handle,cmd,&ti)) printf("Drive Error\n");
ini=1;
}
break;
case 'c': subchnl.cdsc_format=CDROM_MSF;
if (ioctl(handle,CDROMSUBCHNL,&subchnl))
printf("Drive Error\n");
else
{ printf("AudioStatus:%s Track:%d Mode:%d MSF=%d:%d:%d\n", \
subchnl.cdsc_audiostatus==CDROM_AUDIO_PLAY ? "PLAYING":"NOT PLAYING",\
subchnl.cdsc_trk,subchnl.cdsc_adr, \
subchnl.cdsc_absaddr.msf.minute, subchnl.cdsc_absaddr.msf.second, \
subchnl.cdsc_absaddr.msf.frame);
}
break;
case 'i': if (!ini)
{ printf("Command not allowed - play track first\n");
}
else
{ cmd=CDROMREADTOCENTRY;
printf("Track No.: ");
scanf("%d",&arg1);
entry.cdte_track=arg1;
if (entry.cdte_track<first) entry.cdte_track=first;
if (entry.cdte_track>last) entry.cdte_track=last;
entry.cdte_format=CDROM_MSF;
if (ioctl(handle,cmd,&entry))
{ printf("Drive error or invalid track no.\n");
}
else
{ printf("Mode %d Track, starts at %d:%d:%d\n", \
entry.cdte_adr,entry.cdte_addr.msf.minute, \
entry.cdte_addr.msf.second,entry.cdte_addr.msf.frame);
}
}
break;
case 'a': cmd=CDROMPLAYMSF;
printf("Address (min:sec:frame) ");
scanf("%d:%d:%d",&arg1,&arg2,&arg3);
msf.cdmsf_min0 =arg1;
msf.cdmsf_sec0 =arg2;
msf.cdmsf_frame0=arg3;
if (msf.cdmsf_sec0 > 59) msf.cdmsf_sec0 =59;
if (msf.cdmsf_frame0> 74) msf.cdmsf_frame0=74;
msf.cdmsf_min1=60;
msf.cdmsf_sec1=00;
msf.cdmsf_frame1=00;
if (ioctl(handle,cmd,&msf))
{ printf("Drive error or invalid address\n");
}
break;
#ifdef AZT_PRIVATE_IOCTLS /*not supported by every CDROM driver*/
case 'd': cmd=CDROMREADCOOKED;
printf("Address (min:sec:frame) ");
scanf("%d:%d:%d",&arg1,&arg2,&arg3);
azt.msf.cdmsf_min0 =arg1;
azt.msf.cdmsf_sec0 =arg2;
azt.msf.cdmsf_frame0=arg3;
if (azt.msf.cdmsf_sec0 > 59) azt.msf.cdmsf_sec0 =59;
if (azt.msf.cdmsf_frame0> 74) azt.msf.cdmsf_frame0=74;
if (ioctl(handle,cmd,&azt.msf))
{ printf("Drive error, invalid address or unsupported command\n");
}
k=0;
getchar();
for (i=0;i<128;i++)
{ printf("%4d:",i*16);
for (j=0;j<16;j++)
{ printf("%2x ",azt.buf[i*16+j]);
}
for (j=0;j<16;j++)
{ if (isalnum(azt.buf[i*16+j]))
printf("%c",azt.buf[i*16+j]);
else
printf(".");
}
printf("\n");
k++;
if (k>=20)
{ printf("press ENTER to continue\n");
getchar();
k=0;
}
}
break;
case 'w': cmd=CDROMREADRAW;
printf("Address (min:sec:frame) ");
scanf("%d:%d:%d",&arg1,&arg2,&arg3);
azt.msf.cdmsf_min0 =arg1;
azt.msf.cdmsf_sec0 =arg2;
azt.msf.cdmsf_frame0=arg3;
if (azt.msf.cdmsf_sec0 > 59) azt.msf.cdmsf_sec0 =59;
if (azt.msf.cdmsf_frame0> 74) azt.msf.cdmsf_frame0=74;
if (ioctl(handle,cmd,&azt))
{ printf("Drive error, invalid address or unsupported command\n");
}
k=0;
for (i=0;i<147;i++)
{ printf("%4d:",i*16);
for (j=0;j<16;j++)
{ printf("%2x ",azt.buf[i*16+j]);
}
for (j=0;j<16;j++)
{ if (isalnum(azt.buf[i*16+j]))
printf("%c",azt.buf[i*16+j]);
else
printf(".");
}
printf("\n");
k++;
if (k>=20)
{ getchar();
k=0;
}
}
break;
#endif
case 'v': cmd=CDROMVOLCTRL;
printf("--Channel 0 Left (0-255): ");
scanf("%d",&arg1);
printf("--Channel 1 Right (0-255): ");
scanf("%d",&arg2);
volctrl.channel0=arg1;
volctrl.channel1=arg2;
volctrl.channel2=0;
volctrl.channel3=0;
if (ioctl(handle,cmd,&volctrl))
{ printf("Drive error or unsupported command\n");
}
break;
case 'q': if (close(handle)) printf("Drive Error: CLOSE\n");
exit(0);
case 'h': help();
break;
default: printf("unknown command\n");
break;
}
}
}
return 0;
}
/ide-cd
0,0 → 1,438
IDE-CD driver documentation
19 May 1996
scott snyder <snyder@fnald0.fnal.gov>
 
1. Introduction
---------------
 
The ide-cd driver should work with all ATAPI 1.2 compliant cdrom
drives which attach to an IDE interface. Note that some cdrom vendors
(including Mitsumi, Sony, Creative, Aztech, and Goldstar) have made
both ATAPI-compliant drives and drives which use a proprietary
interface. If your drive uses one of those proprietary interfaces,
this driver will not work with it (but one of the other cdrom drivers
probably will). This driver will not work with `ATAPI' drives which
attach to the parallel port. In addition, there is at least one drive
(CyCDROM CR520ie) which attaches to the IDE port but is not ATAPI;
this driver will not work with drives like that either (but see the
aztcd driver).
 
This driver provides the following features:
 
- Reading from data tracks, and mounting iso9660 filesystems.
 
- Playing audio tracks. Most of the cdrom player programs floating
around should work; i usually use Workman.
 
- Multisession support.
 
- On drives which support it, reading digital audio data directly
from audio tracks. The program cdda2wav can be used for this.
Note, however, that only a few drives actually support this
function; the only ones which i've heard of successes with are Sony
and Toshiba drives.
 
- There is now rudimentary support for cdrom changers which comply
with the ATAPI 2.6 draft standard (such as the NEC CDR-251). This
merely adds a function to switch between the slots of the changer
under control of an external program. A sample such program is
appended to the end of this file. The Sanyo 3-disc changer
(which does not conform to the standard) is also now supported.
Please note the driver refers to the first CD as slot # 0.
 
 
2. Installation
---------------
 
0. The ide-cd relies on the ide disk driver. See
Documentation/ide.txt for up-to-date information on the ide
driver.
 
1. Make sure that the ide and ide-cd drivers are compiled into the
kernel you're using. When configuring the kernel, say `yes' to the
options
 
Enhanced IDE/MFM/RLL disk/cdrom/tape support
Include IDE/ATAPI CDROM support
 
and `no' to
 
Use old disk-only driver on primary interface
 
Depending on what type of IDE interface you have, you may need to
specify additional configuration options. See
Documentation/ide.txt.
 
2. You should also ensure that the iso9660 filesystem is either
compiled into the kernel or available as a loadable module. You
can see if a filesystem is known to the kernel by cat'ing the file
/proc/filesystems.
 
3. The cdrom drive should be connected to the host on an IDE
interface. Each interface on a system is defined by an I/O port
address and an IRQ number, the standard assignments being
0x170 and 14 for the primary interface and 0x1f0 and 15 for the
secondary interface. Each interface can control up to two devices,
where each device can be either a hard drive, a cdrom drive, or a
tape drive. The two devices on an interface are called `master'
and `slave'; this is usually selectable via a jumper on the drive.
 
Linux names these devices as follows. The master and slave devices
on the primary IDE interface are called `hda' and `hdb',
respectively. The drives on the secondary interface are called
`hdc' and `hdd'. (Interfaces at other locations get other letters
in the third position; see Documentation/ide.txt.)
 
If you want your cdrom drive to be found automatically by the
driver, you should make sure your IDE interface uses either the
primary or secondary addresses mentioned above. In addition, if
the cdrom drive is the only device on the IDE interface, it should
be jumpered as `master'. (If for some reason you cannot configure
your system in this manner, you can probably still use the driver.
You may have to pass extra configuration information to the kernel
when you boot, however. See Documentation/ide.txt for more
information.)
 
4. Boot the system. If the drive is recognized, you should see a
message which looks like
 
hdb: NEC CD-ROM DRIVE:260, ATAPI CDROM drive
 
If you do not see this, see section 5 below.
 
5. You may want to create a symbolic link /dev/cdrom pointing to the
actual device. You can do this with the command
 
ln -s /dev/hdX /dev/cdrom
 
where X should be replaced by the letter indicating where your
drive is installed.
 
6. You should be able to see any error messages from the driver with
the `dmesg' command.
 
 
3. Basic usage
--------------
 
An iso9660 format cdrom can be mounted by putting the disc in the
drive and typing (as root)
 
mount -t iso9660 /dev/cdrom /mnt/cdrom
 
where it is assumed that /dev/cdrom is a link pointing to the actual
device (as described in step 5 of the last section) and /mnt/cdrom is
an empty directory. You should now be able to see the contents of the
cdrom under the /mnt/cdrom directory. If you want to eject the cdrom,
you must first dismount it with a command like
 
umount /mnt/cdrom
 
Note that audio cds cannot be mounted.
 
Some distributions set up /etc/fstab to always try to mount a cdrom
filesystem on bootup. It is not required to mount the cdrom in this
manner, though, and it may be a nuisance if you change cdroms often.
You should feel free to remove the cdrom line from /etc/fstab and
mount cdroms manually if that suits you better.
 
Multisession and photocd discs should work with no special handling.
The hpcdtoppm package (ftp.gwdg.de:/pub/linux/hpcdtoppm/) may be
useful for reading photocds.
 
To play an audio cd, you should first unmount and remove any data
cdrom. Any of the cdrom player programs should then work (workman,
workbone, cdplayer, etc.). Lacking anything else, you could use the
cdtester program in Documentation/cdrom/sbpcd.
 
On a few drives, you can read digital audio directly using a program
such as cdda2wav. The only types of drive which i've heard support
this are Sony and Toshiba drives. You will get errors if you try to
use this function on a drive which does not support it.
 
For supported changers, you can use the `cdload' program (appended to
the end of this file) to switch between changer slots. Note that the
drive should be unmounted before attempting this. The program takes
two arguments: the cdrom device, and the slot number to which to change.
If the slot number is -1, the drive is unloaded.
 
 
4. Compilation options
----------------------
 
There are a few additional options which can be set when compiling the
driver. Most people should not need to mess with any of these; they
are listed here simply for completeness. A compilation option can be
enabled by adding a line of the form `#define <option> 1' to the top
of ide-cd.c. All these options are disabled by default.
 
VERBOSE_IDE_CD_ERRORS
If this is set, ATAPI error codes will be translated into textual
descriptions. In addition, a dump is made of the command which
provoked the error. This is off by default to save the memory used
by the (somewhat long) table of error descriptions.
 
STANDARD_ATAPI
If this is set, the code needed to deal with certain drives which do
not properly implement the ATAPI spec will be disabled. If you know
your drive implements ATAPI properly, you can turn this on to get a
slightly smaller kernel.
 
NO_DOOR_LOCKING
If this is set, the driver will never attempt to lock the door of
the drive.
 
CDROM_NBLOCKS_BUFFER
This sets the size of the buffer to be used for a CDROMREADAUDIO
ioctl. The default is 8.
 
TEST
This presently enables an additional ioctl which enables a user-mode
program to execute an arbitrary packet command. See the source for
details. This should be left off unless you know what you're doing.
 
 
5. Common problems
------------------
 
This section discusses some common problems encountered when trying to
use the driver, and some possible solutions. Note that if you are
experiencing problems, you should probably also review
Documentation/ide.txt for current information about the underlying
IDE support code. Some of these items apply only to earlier versions
of the driver, but are mentioned here for completeness.
 
In most cases, you should probably check with `dmesg' for any errors
from the driver.
 
a. Drive is not detected during booting.
 
- Review the configuration instructions above and in
Documentation/ide.txt, and check how your hardware is
configured.
 
- If your drive is the only device on an IDE interface, it should
be jumpered as master, if at all possible.
 
- If your IDE interface is not at the standard addresses of 0x170
or 0x1f0, you'll need to explicitly inform the driver using a
lilo option. See Documentation/ide.txt. (This feature was
added around kernel version 1.3.30.)
 
- If the autoprobing is not finding your drive, you can tell the
driver to assume that one exists by using a lilo option of the
form `hdX=cdrom', where X is the drive letter corresponding to
where your drive is installed (see section 2). Note that if you
do this and you see a boot message like
 
hdX: ATAPI cdrom (?)
 
this does _not_ mean that the driver has successfully detected
the drive; rather, it means that the driver has not detected a
drive, but is assuming there's one there anyway because you told
it so. If you actually try to do I/O to a drive defined at a
nonexistent or nonresponding I/O address, you'll probably get
errors with a status value of 0xff.
 
- Some IDE adapters require a nonstandard initialization sequence
before they'll function properly. (If this is the case, there
will often be a separate MS-DOS driver just for the controller.)
IDE interfaces on sound cards often fall into this category.
 
Support for some interfaces needing extra initialization is
provided in later 1.3.x kernels. You may need to turn on
additional kernel configuration options to get them to work;
see Documentation/ide.txt.
 
Even if support is not available for your interface, you may be
able to get it to work with the following procedure. First boot
MS-DOS and load the appropriate drivers. Then warm-boot linux
(i.e., without powering off). If this works, it can be automated
by running loadlin from the MS-DOS autoexec.
 
 
b. Timeout/IRQ errors.
 
- If you always get timeout errors, interrupts from the drive are
probably not making it to the host.
 
- IRQ problems may also be indicated by the message
`IRQ probe failed (<n>)' while booting. If <n> is zero, that
means that the system did not see an interrupt from the drive when
it was expecting one (on any feasible IRQ). If <n> is negative,
that means the system saw interrupts on multiple IRQ lines, when
it was expecting to receive just one from the cdrom drive.
 
- Double-check your hardware configuration to make sure that the IRQ
number of your IDE interface matches what the driver expects.
(The usual assignments are 14 for the primary (0x170) interface
and 15 for the secondary (0x1f0) interface.) Also be sure that
you don't have some other hardware which might be conflicting with
the IRQ you're using. Also check the BIOS setup for your system;
some have the ability to disable individual IRQ levels, and i've
had one report of a system which was shipped with IRQ 15 disabled
by default.
 
- Note that many MS-DOS cdrom drivers will still function even if
there are hardware problems with the interrupt setup; they
apparently don't use interrupts.
 
- If you own a Pioneer DR-A24X, you _will_ get nasty error messages
on boot such as "irq timeout: status=0x50 { DriveReady SeekComplete }"
The Pioneer DR-A24X cdrom drives are fairly popular these days.
Unfortunatly, these drives seem to become very confused when we perform
the standard Linux ATA disk drive probe. If you own one of these drives,
you can bypass the ATA probing which confuses these cdrom drives, by
adding `append="hdX=noprobe hdX=cdrom"' to your lilo.conf file and runing
lilo (again where X is the drive letter corresponding to where your drive
is installed (see section 2))
c. System hangups.
 
- If the system locks up when you try to access the cdrom, the most
likely cause is that you have a buggy IDE adapter which doesn't
properly handle simultaneous transactions on multiple interfaces.
The most notorious of these is the CMD640B chip. This problem can
be worked around by specifying the `serialize' option when
booting. Recent kernels should be able to detect the need for
this automatically in most cases, but the detection is not
foolproof. See Documentation/ide.txt for more information
about the `serialize' option and the CMD640B.
 
- Note that many MS-DOS cdrom drivers will work with such buggy
hardware, apparently because they never attempt to overlap cdrom
operations with other disk activity.
 
 
d. Can't mount a cdrom.
 
- If you get errors from mount, it may help to check `dmesg' to see
if there are any more specific errors from the driver or from the
filesystem.
 
- Make sure there's a cdrom loaded in the drive, and that's it's an
iso9660 format disc. You can't mount an audio cd.
 
- With the cdrom in the drive and unmounted, try something like
 
cat /dev/cdrom | od | more
 
If you see a dump, then the drive and driver are probably working
ok, and the problem is at the filesystem level (i.e., the cdrom is
not iso9660 format or has errors in the filesystem structure).
 
- If you see `not a block device' errors, check that the definitions
of the device special files are correct. They should be as
follows:
 
brw-rw---- 1 root disk 3, 0 Nov 11 18:48 /dev/hda
brw-rw---- 1 root disk 3, 64 Nov 11 18:48 /dev/hdb
brw-rw---- 1 root disk 22, 0 Nov 11 18:48 /dev/hdc
brw-rw---- 1 root disk 22, 64 Nov 11 18:48 /dev/hdd
 
Some early Slackware releases had these defined incorrectly. If
these are wrong, you can remake them by running the script
scripts/MAKEDEV.ide. (You may have to make it executable
with chmod first.)
 
If you have a /dev/cdrom symbolic link, check that it is pointing
to the correct device file.
 
If you hear people talking of the devices `hd1a' and `hd1b', these
were old names for what are now called hdc and hdd. Those names
should be considered obsolete.
 
- If mount is complaining that the iso9660 filesystem is not
available, but you know it is (check /proc/filesystems), you
probably need a newer version of mount. Early versions would not
always give meaningful error messages.
 
 
e. Directory listings are unpredictably truncated, and `dmesg' shows
`buffer botch' error messages from the driver.
 
- There was a bug in the version of the driver in 1.2.x kernels
which could cause this. It was fixed in 1.3.0. If you can't
upgrade, you can probably work around the problem by specifying a
blocksize of 2048 when mounting. (Note that you won't be able to
directly execute binaries off the cdrom in that case.)
 
If you see this in kernels later than 1.3.0, please report it as a
bug.
 
 
f. Data corruption.
 
- Random data corruption was occasionally observed with the Hitachi
CDR-7730 cdrom. If you experience data corruption, using "hdx=slow"
as a command line parameter may work around the problem, at the
expense of low system performance.
 
 
6. cdload.c
-----------
 
/*
* cdload.c <device> <slot>
*
* Load a cdrom from a specified slot in a changer. The drive should be
* unmounted before executing this.
*
* Based on code originally from Gerhard Zuber <zuber@berlin.snafu.de>.
*/
 
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <linux/cdrom.h>
#include <linux/ucdrom.h>
 
 
int
main (int argc, char **argv)
{
char *program;
char *device;
int x_slot;
int fd; /* file descriptor for CD-ROM device */
int status; /* return status for system calls */
 
program = argv[0];
 
if (argc != 3) {
fprintf (stderr, "usage: %s <device> <slot>\n", program);
exit (1);
}
 
device = argv[1];
x_slot = atoi (argv[2]);
 
/* open device */
fd = open (device, 0);
if (fd < 0) {
fprintf (stderr, "%s: open failed for `%s': %s\n",
program, device, strerror (errno));
exit (1);
}
 
/* load */
status = ioctl (fd, CDROM_SELECT_DISC, x_slot);
if (status != 0) {
fprintf (stderr,
"%s: CDROM_SELECT_DISC ioctl failed for `%s': %s\n",
program, device, strerror (errno));
exit (1);
}
/* close device */
status = close (fd);
if (status != 0) {
fprintf (stderr, "%s: close failed for `%s': %s\n",
program, device, strerror (errno));
exit (1);
}
exit (0);
}
/cm206
0,0 → 1,185
This is the readme file for the driver for the Philips/LMS cdrom drive
cm206 in combination with the cm260 host adapter card.
 
(c) 1995 David A. van Leeuwen
Changes since version 0.99
--------------------------
- Interfacing to the kernel is routed though an extra interface layer,
cdrom.c. This allows runtime-configurable `behavior' of the cdrom-drive,
independent of the driver.
 
Features since version 0.33
---------------------------
- Full audio support, that is, both workman, workbone and cdp work
now reasonably. Reading TOC still takes some time. xmcd has been
reported to run successfully.
- Made auto-probe code a little better, i hope
 
Features since version 0.28
---------------------------
- Full speed transfer rate (300 kB/s).
- Minimum kernel memory usage for buffering (less than 3 kB).
- Multisession support.
- Tray locking.
- Statistics of driver accessible to the user.
- Module support.
- Auto-probing of adapter card's base port and irq line,
also configurable at boot time or module load time.
 
 
Decide how you are going to use the driver. There are two
options:
 
(a) installing the driver as a resident part of the kernel
(b) compiling the driver as a loadable module
 
Further, you must decide if you are going to specify the base port
address and the interrupt request line of the adapter card cm260 as
boot options for (a), module parameters for (b), use automatic
probing of these values, or hard-wire your adaptor cards settings
into the source code. If you don't care, you can choose for
autoprobing, which is the default. In that case you can move on to
the next step.
 
Compiling the kernel
--------------------
1) move to /usr/src/linux and do a
 
make config
 
If you have chosen for option (a), answer yes to CONFIG_CM206 and
CONFIG_ISO9660_FS.
 
If you have chosen for option (b), answer yes to CONFIG_MODVERSIONS
and no (!) to CONFIG_CM206 and CONFIG_ISO9660_FS.
 
2) then do a
make dep; make clean; make zImage; make modules
 
3) do the usual things to install a new image (backup the old one, run
`rdev -R zImage 1', copy the new image in place, run lilo). Might
be `make zlilo'.
 
Using the driver as a module
----------------------------
If you will only seldomly use the cd-rom driver, you can choose for
option (b), install as a loadable module. You may have to re-compile
the module when you upgrade the kernel to a new version.
 
Since version 0.96, much of the functionality has been transferred to
a generic cdrom interface in the file cdrom.c. The module cm206.o
depends on cdrom.o. If the latter is not compiled into the kernel,
you must explicitly load it before cm206.o:
 
insmod /usr/src/linux/modules/cdrom.o
 
To install the module, you use the command, as root
 
insmod /usr/src/linux/modules/cm206.o
 
You can specify the base address on the command line as well as the irq
line to be used, e.g.
 
insmod /usr/src/linux/modules/cm206.o cm206=0x300,11
 
The order of base port and irq line doesn't matter; you may specify only
one, the other will have the value of the compiled-in default. You
may also have to install the file-system module `iso9660.o', if you
didn't compile that into the kernel.
 
 
Using the driver as part of the kernel
--------------------------------------
If you have chosen for option a, you can specify the base-port
address and irq on the lilo boot command line, e.g.:
 
LILO: linux cm206=0x340,11
 
This assumes that your linux kernel image keyword is `linux'.
If you may specify either IRQ (3--11) or base port (0x300--0x370),
auto probing is turned off for both settings, thus setting the
other value to the compiled-in default.
 
Note that you can put these parameters also in the lilo configuration file:
 
# linux config
image = /vmlinuz
root = /dev/hda1
label = Linux
append = "cm206=0x340,11"
read-only
 
 
If module parameters and LILO config options don't work
-------------------------------------------------------
If autoprobing does not work, you can hard-wire the default values
of the base port address (CM206_BASE) and interrupt request line
(CM206_IRQ) into the file ./include/linux/cm206.h. Change
the defines of CM206_IRQ and CM206_BASE.
 
 
Mounting the cdrom
------------------
1) Make sure that there is the right device installed in /dev.
 
mknod /dev/cm206cd b 32 0
 
2) Make sure there is a mount point, e.g., /cdrom
 
mkdir /cdrom
 
3) mount using a command like this (run as root):
 
mount -rt iso9660 /dev/cm206cd /cdrom
 
4) For user-mounts, add a line in /etc/fstab
 
/dev/cm206cd /cdrom iso9660 ro,noauto,user
 
This will allow users to give the commands
 
mount /cdrom
umount /cdrom
 
If things don't work
--------------------
 
- Try to do a `dmesg' to find out if the driver said anything about
what is going wrong during the initialization.
 
- Try to do a `dd if=/dev/cm206cd | od -tc | less' to read from the
CD.
 
- Look in the /proc directory to see if `cm206' shows up under one of
`interrupts', `ioports', `devices' or `modules' (if applicable).
 
 
DISCLAIMER
----------
I cannot guarantee that this driver works, or that the hardware will
not be harmed, although i consider it most unlikely.
 
I hope that you'll find this driver in some way useful.
 
David van Leeuwen
david@tm.tno.nl
 
Note for Linux CDROM vendors
-----------------------------
You are encouraged to include this driver on your Linux CDROM. If
you do, you might consider sending me a free copy of that cd-rom.
You can contact me through my e-mail address, david@tm.tno.nl.
If this driver is compiled into a kernel to boot off a cdrom,
you should actually send me a free copy of that cd-rom.
 
Copyright
---------
The copyright of the cm206 driver for Linux is
 
(c) 1995 David A. van Leeuwen
 
The driver is released under the conditions of the GNU general public
license, which can be found in the file COPYING in the root of this
source tree.
/optcd
0,0 → 1,57
This is the README file for the Optics Storage 8000 AT CDROM device driver.
 
This is the driver for the so-called 'DOLPHIN' drive, with the 34-pin
Sony-compatible interface. For the IDE-compatible Optics Storage 8001
drive, you will want the ATAPI CDROM driver. The driver also seems to
work with the Lasermate CR328A. If you have a drive that works with
this driver, and that doesn't report itself as DOLPHIN, please drop me
a mail.
 
The support for multisession CDs is in ALPHA stage. If you use it,
please mail me your experiences. Multisession support can be disabled
at compile time.
 
You can find some older versions of the driver at
dutette.et.tudelft.nl:/pub/linux/
and at Eberhard's mirror
ftp.gwdg.de:/pub/linux/cdrom/drivers/optics/
 
Before you can use the driver, you have to create the device file once:
# mknod /dev/optcd0 b 17 0
 
To specify the base address if the driver is "compiled-in" to your kernel,
you can use the kernel command line item (LILO option)
optcd=0x340
with the right address.
 
If you have compiled optcd as a module, you can load it with
# insmod /usr/src/linux/modules/optcd.o
or
# insmod /usr/src/linux/modules/optcd.o optcd=0x340
with the matching address value of your interface card.
 
The driver employs a number of buffers to do read-ahead and block size
conversion. The number of buffers is configurable in optcd.h, and has
influence on the driver performance. For my machine (a P75), 6 buffers
seems optimal, as can be seen from this table:
 
#bufs kb/s %cpu
1 97 0.1
2 191 0.3
3 188 0.2
4 246 0.3
5 189 19
6 280 0.4
7 281 7.0
8 246 2.8
16 281 3.4
 
If you get a throughput significantly below 300 kb/s, try tweaking
N_BUFS, and don't forget to mail me your results!
 
I'd appreciate success/failure reports. If you find a bug, try
recompiling the driver with some strategically chosen debug options
(these can be found in optcd.h) and include the messages generated in
your bug report. Good luck.
 
Leo Spiekman (spiekman@dutette.et.tudelft.nl)
/mcdx
0,0 → 1,44
This is a first attempt to create an `improved' driver for the Mitsumi drives.
It is able to "live together" with mcd.c, if you have at least two Mitsumi
drives: each driver can use his own drive.
 
To allow this "coexistence" as long as mcdx.c is not a superset of mcd.c,
this driver has to use its own device files. We use MAJOR 20 for it. So,
you have to do
 
# mknod /dev/mcdx0 b 20 0
# mknod /dev/mcdx1 b 20 1
 
and so on, one entry for each drive to support, once.
 
If you are using the driver as a module, you can specify your ports and IRQs
like
 
# insmod mcdx.o mcdx=0x300,11,0x304,5
 
and so on ("address,IRQ" pairs).
This will override the configuration in mcdx.h.
 
This driver:
 
o handles XA (and hopefully) multi session CDs as well as
ordinary CDs;
o supports up to 5 drives (of course, you'll need free
IRQs, i/o ports and slots);
o uses much less kernel memory than the standard mcd driver
(no extra driver internal buffers!).
o plays audio (like the `old' driver, I hope)
 
This version doesn't support yet:
 
o shared IRQs (but it seems to be possible - I've successfully
connected two drives to the same irq. So it's `only' a
problem of the driver.)
 
This driver never will:
 
o Read digital audio (i.e. copy directly), due to missing
hardware features.
 
 
heiko@lotte.sax.de
/sbpcd
0,0 → 1,1064
This README belongs to release 4.2 or newer of the SoundBlaster Pro
(Matsushita, Kotobuki, Panasonic, CreativeLabs, Longshine and Teac)
CD-ROM driver for Linux.
 
sbpcd really, really is NOT for ANY IDE/ATAPI drive!
Not even if you have an "original" SoundBlaster card with an IDE interface!
So, you better have a look into README.ide if your port address is 0x1F0,
0x170, 0x1E8, 0x168 or similar.
I get tons of mails from IDE/ATAPI drive users - I really can't continue
any more to answer them all. So, if your drive/interface information sheets
mention "IDE" (primary, secondary, tertiary, quaternary) and the DOS driver
invoking line within your CONFIG.SYS is using an address below 0x230:
DON'T ROB MY LAST NERVE - jumper your interface to address 0x170 and IRQ 15
(that is the "secondary IDE" configuration), set your drive to "master" and
use ide-cd as your driver. If you do not have a second IDE hard disk, use the
LILO commands
hdb=noprobe hdc=cdrom
and get lucky.
To make it fully clear to you: if you mail me about IDE/ATAPI drive problems,
my answer is above, and I simply will discard your mail, hoping to stop the
flood and to find time to lead my 12-years old son towards happy computing.
 
The driver is able to drive the whole family of "traditional" AT-style (that
is NOT the new "Enhanced IDE" or "ATAPI" drive standard) Matsushita,
Kotobuki, Panasonic drives, sometimes labelled as "CreativeLabs". The
well-known drives are CR-521, CR-522, CR-523, CR-562, CR-563.
CR-574 is an IDE/ATAPI drive.
 
The Longshine LCS-7260 is a double-speed drive which uses the "old"
Matsushita command set. It is supported - with help by Serge Robyns.
Vertos ("Elitegroup Computer Systems", ECS) has a similar drive - support
has started; come in contact if you have such a "Vertos 100" or "ECS-AT"
drive.
 
There exists an "IBM External ISA CD-ROM Drive" which in fact is a CR-563
with a special controller board. This drive is supported (the interface is
of the "LaserMate" type), and it is possibly the best buy today (cheaper than
an internal drive, and you can use it as an internal, too - f.e. plug it into
a soundcard).
 
CreativeLabs has a new drive "CD200" and a similar drive "CD200F". The latter
is made by Funai and sometimes named "E2550UA", newer models may be named
"MK4015". The CD200F drives should fully work.
CD200 drives without "F" are still giving problems: drive detection and
playing audio should work, data access will result in errors. I need qualified
feedback about the bugs within the data functions or a drive (I never saw a
CD200).
 
The quad-speed Teac CD-55A drive is supported, but still does not reach "full
speed". The data rate already reaches 500 kB/sec if you set SBP_BUFFER_FRAMES
to 64 (it is not recommended to do that for normal "file access" usage, but it
can speed up things a lot if you use something like "dd" to read from the
drive; I use it for verifying self-written CDs this way).
The drive itself is able to deliver 600 kB/sec, so this has to get a point of
work; with the normal setup, the performance currently is not even as good as
double-speed.
 
This driver is NOT for Mitsumi or Sony or Aztech or Philips or XXX drives,
and again: this driver is in no way usable for any IDE/ATAPI drive. If you
think your drive should work and it doesn't: send me the DOS driver for your
beast (gzipped + uuencoded) and your CONFIG.SYS if you want to ask me for help,
and include an original log message excerpt, and try to give all information
a complete idiot needs to understand your hassle already with your first
mail. And if you want to say "as I have mailed you before", be sure that I
don't remember your "case" by such remarks; at the moment, I have some
hundreds open correspondences about Linux CDROM questions (hope to reduce if
the IDE/ATAPI user questions disappear).
 
 
This driver will work with the soundcard interfaces (SB Pro, SB 16, Galaxy,
SoundFX, Mozart, MAD16 ...) and with the "no-sound" cards (Panasonic CI-101P,
LaserMate, WDH-7001C, Longshine LCS-6853, Teac ...).
 
It works with the "configurable" interface "Sequoia S-1000", too, which is
used on the Spea Media FX and Ensonic Soundscape sound cards. You have to
specify the type "SBPRO 2" and the true CDROM port address with it, not the
"configuration port" address.
 
If you have a sound card which needs a "configuration driver" instead of
jumpers for interface types and addresses (like Mozart cards) - those
drivers get invoked before the DOS CDROM driver in your CONFIG.SYS, typical
names are "cdsetup.sys" and "mztinit.sys" -, let the sound driver do the
CDROM port configuration (the leading comments in linux/drivers/sound/mad16.c
are just for you!). Hannu Savolainen's mad16.c code is able to set up my
Mozart card - I simply had to add
#define MAD16_CONF 0x06
#define MAD16_CDSEL 0x03
to configure the CDROM interface for type "Panasonic" (LaserMate) and address
0x340.
 
The interface type has to get configured in /usr/include/linux/sbpcd.h,
because the register layout is different between the "SoundBlaster" and the
"LaserMate" type.
 
I got a report that the Teac interface card "I/F E117098" is of type
"SoundBlaster" (i.e. you have to set SBPRO to 1) even with the addresses
0x300 and above. This is unusual, and it can't get covered by the auto
probing scheme.
The Teac 16-bit interface cards (like P/N E950228-00A, default address 0x2C0)
need the SBPRO 3 setup.
 
If auto-probing found the drive, the address is correct. The reported type
may be wrong. A "mount" will give success only if the interface type is set
right. Playing audio should work with a wrong set interface type, too.
 
With some Teac and some CD200 drives I have seen interface cards which seem
to lack the "drive select" lines; always drive 0 gets addressed. To avoid
"mirror drives" (four drives detected where you only have one) with such
interface cards, set MAX_DRIVES to 1 and jumper your drive to ID 0 (if
possible).
 
 
Up to 4 drives per interface card, and up to 4 interface cards are supported.
All supported drive families can be mixed, but the CR-521 drives are
hard-wired to drive ID 0. The drives have to use different drive IDs, and each
drive has to get a unique minor number (0...3), corresponding indirectly to
its drive ID.
The drive IDs may be selected freely from 0 to 3 - they do not have to be in
consecutive order.
 
As Don Carroll, don@ds9.us.dell.com or FIDO 1:382/14, told me, it is possible
to change old drives to any ID, too. He writes in this sense:
"In order to be able to use more than one single speed drive
(they do not have the ID jumpers) you must add a DIP switch
and two resistors. The pads are already on the board next to
the power connector. You will see the silkscreen for the
switch if you remove the top cover.
1 2 3 4
ID 0 = x F F x O = "on"
ID 1 = x O F x F = "off"
ID 2 = x F O x x = "don't care"
ID 3 = x O O x
Next to the switch are the positions for R76 (7k) and R78
(12k). I had to play around with the resistor values - ID 3
did not work with other values. If the values are not good,
ID 3 behaves like ID 0."
 
To use more than 4 drives, you simply need a second controller card at a
different address and a second cable.
 
The driver supports reading of data from the CD and playing of audio tracks.
The audio part should run with WorkMan, xcdplayer, with the "non-X11" products
CDplayer and WorkBone - tell me if it is not compatible with other software.
The only accepted measure for correctness with the audio functions is the
"cdtester" utility (appended) - most audio player programmers seem to be
better musicians than programmers. ;-)
 
With the CR-56x and the CD200 drives, the reading of audio frames is possible.
This is implemented by an IOCTL function which reads READ_AUDIO frames of
2352 bytes at once (configurable with the "READ_AUDIO" define, default is 0).
Reading the same frame a second time gives different data; the frame data
start at a different position, but all read bytes are valid, and we always
read 98 consecutive chunks (of 24 Bytes) as a frame. Reading more than 1 frame
at once possibly misses some chunks at each frame boundary. This lack has to
get corrected by external, "higher level" software which reads the same frame
again and tries to find and eliminate overlapping chunks (24-byte-pieces).
 
The transfer rate with reading audio (1-frame-pieces) currently is very slow.
This can be better reading bigger chunks, but the "missing" chunks possibly
occur at the beginning of each single frame.
The software interface possibly may change a bit the day the SCSI driver
supports it too.
 
With all but the CR-52x drives, MultiSession is supported.
Photo CDs work (the "old" drives like CR-521 can access only the first
session of a photoCD).
At ftp.gwdg.de:/pub/linux/hpcdtoppm/ you will find Hadmut Danisch's package to
convert photo CD image files and Gerd Knorr's viewing utility.
 
The transfer rate will reach 150 kB/sec with CR-52x drives, 300 kB/sec with
CR-56x drives, and currently not more than 500 kB/sec (usually less than
250 kB/sec) with the Teac quad speed drives.
XA (PhotoCD) disks with "old" drives give only 50 kB/sec.
 
This release consists of
- this README file
- the driver file linux/drivers/cdrom/sbpcd.c
- the stub files linux/drivers/cdrom/sbpcd[234].c
- the header file linux/include/linux/sbpcd.h.
 
 
To install:
-----------
 
1. Setup your hardware parameters. Though the driver does "auto-probing" at a
lot of (not all possible!) addresses, this step is recommended for
every-day use. You should let sbpcd auto-probe once and use the reported
address if a drive got found. The reported type may be incorrect; it is
correct if you can mount a data CD. There is no choice for you with the
type; only one is the right, the others are deadly wrong.
 
a. Go into /usr/src/linux/include/linux/sbpcd.h and configure it for your
hardware (near the beginning):
a1. Set it up for the appropriate type of interface board.
"Original" CreativeLabs sound cards need "SBPRO 1".
Most "compatible" sound cards (almost all "non-CreativeLabs" cards)
need "SBPRO 0".
The "no-sound" board from OmniCd needs the "SBPRO 1" setup.
The Teac 8-bit "no-sound" boards need the "SBPRO 1" setup.
The Teac 16-bit "no-sound" boards need the "SBPRO 3" setup.
All other "no-sound" boards need the "SBPRO 0" setup.
The Spea Media FX and Ensoniq SoundScape cards need "SBPRO 2".
sbpcd.c holds some examples in its auto-probe list.
If you configure "SBPRO" wrong, the playing of audio CDs will work,
but you will not be able to mount a data CD.
a2. Tell the address of your CDROM_PORT (not of the sound port).
a3. If 4 drives get found, but you have only one, set MAX_DRIVES to 1.
a4. Set DISTRIBUTION to 0.
b. Additionally for 2.a1 and 2.a2, the setup may be done during
boot time (via the "kernel command line" or "LILO option"):
sbpcd=0x320,LaserMate
or
sbpcd=0x230,SoundBlaster
or
sbpcd=0x338,SoundScape
or
sbpcd=0x2C0,Teac16bit
This is especially useful if you install a fresh distribution.
If the second parameter is a number, it gets taken as the type
setting; 0 is "LaserMate", 1 is "SoundBlaster", 2 is "SoundScape",
3 is "Teac16bit".
So, for example
sbpcd=0x230,1
is equivalent to
sbpcd=0x230,SoundBlaster
 
2. "cd /usr/src/linux" and do a "make config" and select "y" for Matsushita
CD-ROM support and for ISO9660 FileSystem support. If you do not have a
second, third, or fourth controller installed, do not say "y" to the
secondary Matsushita CD-ROM questions.
 
3. Then do a "make dep", then make the kernel image ("make zlilo" or else).
 
4. Make the device file(s). This step usually already has been done by the
MAKEDEV script.
The driver uses MAJOR 25, so, if necessary, do
mknod /dev/sbpcd b 25 0 (if you have only one drive)
and/or
mknod /dev/sbpcd0 b 25 0
mknod /dev/sbpcd1 b 25 1
mknod /dev/sbpcd2 b 25 2
mknod /dev/sbpcd3 b 25 3
to make the node(s).
 
The "first found" drive gets MINOR 0 (regardless to its jumpered ID), the
"next found" (at the same cable) gets MINOR 1, ...
For a second interface board, you have to make nodes like
mknod /dev/sbpcd4 b 26 0
mknod /dev/sbpcd5 b 26 1
and so on. Use the MAJORs 26, 27, 28.
 
If you further make a link like
ln -s sbpcd /dev/cdrom
you can use the name /dev/cdrom, too.
 
5. Reboot with the new kernel.
 
You should now be able to do
mkdir /CD
and
mount -rt iso9660 /dev/sbpcd /CD
or
mount -rt iso9660 -o block=2048 /dev/sbpcd /CD
and see the contents of your CD in the /CD directory.
To use audio CDs, a mounting is not recommended (and it would fail if the
first track is not a data track).
 
 
Using sbpcd as a "loadable module":
-----------------------------------
 
If you do NOT select "Matsushita/Panasonic CDROM driver support" during the
"make config" of your kernel, you can build the "loadable module" sbpcd.o.
Read /usr/src/linux/Documentation/modules.txt on this.
 
If sbpcd gets used as a module, the support of more than one interface
card (i.e. drives 4...15) is disabled.
 
You can specify interface address and type with the "insmod" command like:
# insmod /usr/src/linux/modules/sbpcd.o sbpcd=0x340,0
or
# insmod /usr/src/linux/modules/sbpcd.o sbpcd=0x230,1
or
# insmod /usr/src/linux/modules/sbpcd.o sbpcd=0x338,2
where the last number represents the SBPRO setting (no strings allowed here).
 
 
Things of interest:
-------------------
 
The driver is configured to try the LaserMate type of interface at I/O port
0x0340 first. If this is not appropriate, sbpcd.h should get changed
(you will find the right place - just at the beginning).
 
No DMA and no IRQ is used.
 
To reduce or increase the amount of kernel messages, edit sbpcd.c and play
with the "DBG_xxx" switches (initialization of the variable "sbpcd_debug").
Don't forget to reflect what you do; enabling all DBG_xxx switches at once
may crash your system, and each message line is accompanied by a delay.
 
The driver uses the "variable BLOCK_SIZE" feature. To use it, you have to
specify "block=2048" as a mount option. Doing this will disable the direct
execution of a binary from the CD; you have to copy it to a device with the
standard BLOCK_SIZE (1024) before. So, do not use this if your system is
directly "running from the CDROM" (like some of YGGDRASIL's installation
variants). There are CDs on the market (like the german "unifix" Linux
distribution) which MUST get handled with a block_size of 1024. Generally,
one can say all the CDs which hold files of the name YMTRANS.TBL are defective;
do not use block=2048 with those.
 
Within sbpcd.h, you will find some "#define"s (f.e. EJECT and JUKEBOX). With
that, you can configure the driver for some special things.
You can use the appended program "cdtester" to set the auto-eject feature
during runtime. Jeff Tranter's "eject" utility can do this, too (and more)
for you.
 
There is an ioctl CDROMMULTISESSION to obtain with a user program if
the CD is an XA disk and - if it is - where the last session starts. The
"cdtester" program illustrates how to call it.
 
 
Auto-probing at boot time:
--------------------------
 
The driver does auto-probing at many well-known interface card addresses,
but not all:
Some probings can cause a hang if an NE2000 ethernet card gets touched, because
SBPCD's auto-probing happens before the initialization of the net drivers.
Those "hazardous" addresses are excluded from auto-probing; the "kernel
command line" feature has to be used during installation if you have your
drive at those addresses. The "module" version is allowed to probe at those
addresses, too.
 
The auto-probing looks first at the configured address resp. the address
submitted by the kernel command line. With this, it is possible to use this
driver within installation boot floppies, and for any non-standard address,
too.
 
Auto-probing will make an assumption about the interface type ("SBPRO" or not),
based upon the address. That assumption may be wrong (initialization will be
o.k., but you will get I/O errors during mount). In that case, use the "kernel
command line" feature and specify address & type at boot time to find out the
right setup.
 
For every-day use, address and type should get configured within sbpcd.h. That
will stop the auto-probing due to success with the first try.
 
The kernel command "sbpcd=0" suppresses each auto-probing and causes
the driver not to find any drive; it is meant for people who love sbpcd
so much that they do not want to miss it, even if they miss the drives. ;-)
 
If you configure "#define CDROM_PORT 0" in sbpcd.h, the auto-probing is
initially disabled and needs an explicit kernel command to get activated.
Once activated, it does not stop before success or end-of-list. This may be
useful within "universal" CDROM installation boot floppies (but using the
loadable module would be better because it allows an "extended" auto-probing
without fearing NE2000 cards).
 
To shorten the auto-probing list to a single entry, set DISTRIBUTION 0 within
sbpcd.h.
 
 
Setting up address and interface type:
--------------------------------------
 
If your I/O port address is not 0x340, you have to look for the #defines near
the beginning of sbpcd.h and configure them: set SBPRO to 0 or 1 or 2, and
change CDROM_PORT to the address of your CDROM I/O port.
 
Almost all of the "SoundBlaster compatible" cards behave like the no-sound
interfaces, i.e. need SBPRO 0!
 
With "original" SB Pro cards, an initial setting of CD_volume through the
sound cards MIXER register gets done.
If you are using a "compatible" sound card of types "LaserMate" or "SPEA",
you can set SOUND_BASE (in sbpcd.h) to get it done with your card, too...
 
 
Using audio CDs:
----------------
 
Workman, WorkBone, xcdplayer, cdplayer and the nice little tool "cdplay" (see
README.aztcd from the Aztech driver package) should work.
 
The program CDplayer likes to talk to "/dev/mcd" only, xcdplayer wants
"/dev/rsr0", workman loves "/dev/sr0" or "/dev/cdrom" - so, do the appropriate
links for using them without the need of supplying parameters.
 
 
Copying audio tracks:
---------------------
 
The following program will copy track 1 (or a piece of it) from an audio CD
into the file "track01":
 
/*=================== begin program ========================================*/
/*
* read an audio track from a CD
*
* (c) 1994 Eberhard Moenkeberg <emoenke@gwdg.de>
* may be used & enhanced freely
*
* Due to non-existent sync bytes at the beginning of each audio frame (or due
* to a firmware bug within all known drives?), it is currently a kind of
* fortune if two consecutive frames fit together.
* Usually, they overlap, or a little piece is missing. This happens in units
* of 24-byte chunks. It has to get fixed by higher-level software (reading
* until an overlap occurs, and then eliminate the overlapping chunks).
* ftp.gwdg.de:/pub/linux/misc/cdda2wav-sbpcd.*.tar.gz holds an example of
* such an algorithm.
* This example program further is missing to obtain the SubChannel data
* which belong to each frame.
*
* This is only an example of the low-level access routine. The read data are
* pure 16-bit CDDA values; they have to get converted to make sound out of
* them.
* It is no fun to listen to it without prior overlap/underlap correction!
*/
#include <stdio.h>
#include <sys/ioctl.h>
#include <linux/cdrom.h>
 
static struct cdrom_tochdr hdr;
static struct cdrom_tocentry entry[101];
static struct cdrom_read_audio arg;
static u_char buffer[CD_FRAMESIZE_RAW];
static int datafile, drive;
static int i, j, limit, track, err;
static char filename[32];
 
main(int argc, char *argv[])
{
/*
* open /dev/cdrom
*/
drive=open("/dev/cdrom", 0);
if (drive<0)
{
fprintf(stderr, "can't open drive.\n");
exit (-1);
}
/*
* get TocHeader
*/
fprintf(stdout, "getting TocHeader...\n");
err=ioctl(drive, CDROMREADTOCHDR, &hdr);
if (err!=0)
{
fprintf(stderr, "can't get TocHeader (error %d).\n", err);
exit (-1);
}
else
fprintf(stdout, "TocHeader: %d %d\n", hdr.cdth_trk0, hdr.cdth_trk1);
/*
* get and display all TocEntries
*/
fprintf(stdout, "getting TocEntries...\n");
for (i=1;i<=hdr.cdth_trk1+1;i++)
{
if (i!=hdr.cdth_trk1+1) entry[i].cdte_track = i;
else entry[i].cdte_track = CDROM_LEADOUT;
entry[i].cdte_format = CDROM_LBA;
err=ioctl(drive, CDROMREADTOCENTRY, &entry[i]);
if (err!=0)
{
fprintf(stderr, "can't get TocEntry #%d (error %d).\n", i, err);
exit (-1);
}
else
{
fprintf(stdout, "TocEntry #%d: %1X %1X %06X %02X\n",
entry[i].cdte_track,
entry[i].cdte_adr,
entry[i].cdte_ctrl,
entry[i].cdte_addr.lba,
entry[i].cdte_datamode);
}
}
fprintf(stdout, "got all TocEntries.\n");
/*
* ask for track number (not implemented here)
*/
track=1;
#if 0 /* just read a little piece (4 seconds) */
entry[track+1].cdte_addr.lba=entry[track].cdte_addr.lba+300;
#endif
/*
* read track into file
*/
sprintf(filename, "track%02d\0", track);
datafile=creat(filename, 0755);
if (datafile<0)
{
fprintf(stderr, "can't open datafile %s.\n", filename);
exit (-1);
}
arg.addr.lba=entry[track].cdte_addr.lba;
arg.addr_format=CDROM_LBA; /* CDROM_MSF would be possible here, too. */
arg.nframes=1;
arg.buf=&buffer[0];
limit=entry[track+1].cdte_addr.lba;
for (;arg.addr.lba<limit;arg.addr.lba++)
{
err=ioctl(drive, CDROMREADAUDIO, &arg);
if (err!=0)
{
fprintf(stderr, "can't read abs. frame #%d (error %d).\n",
arg.addr.lba, err);
}
j=write(datafile, &buffer[0], CD_FRAMESIZE_RAW);
if (j!=CD_FRAMESIZE_RAW)
{
fprintf(stderr,"I/O error (datafile) at rel. frame %d\n",
arg.addr.lba-entry[track].cdte_addr.lba);
}
arg.addr.lba++;
}
}
/*===================== end program ========================================*/
 
At ftp.gwdg.de:/pub/linux/misc/cdda2wav-sbpcd.*.tar.gz is an adapted version of
Heiko Eissfeldt's digital-audio to .WAV converter (the original is there, too).
This is preliminary, as Heiko himself will care about it.
 
 
Known problems:
---------------
 
Currently, the detection of disk change or removal is actively disabled.
 
Most attempts to read the UPC/EAN code result in a stream of zeroes. All my
drives are mostly telling there is no UPC/EAN code on disk or there is, but it
is an all-zero number. I guess now almost no CD holds such a number.
 
Bug reports, comments, wishes, donations (technical information is a donation,
too :-) etc. to emoenke@gwdg.de.
 
SnailMail address, preferable for CD editors if they want to submit a free
"cooperation" copy:
Eberhard Moenkeberg
Reinholdstr. 14
D-37083 Goettingen
Germany
---
 
 
Appendix -- the "cdtester" utility:
 
/*
* cdtester.c -- test the audio functions of a CD driver
*
* (c) 1995 Eberhard Moenkeberg <emoenke@gwdg.de>
* published under the GPL
*
* made under heavy use of the "Tiny Audio CD Player"
* from Werner Zimmermann <zimmerma@rz.fht-esslingen.de>
* (see linux/drivers/block/README.aztcd)
*/
#undef AZT_PRIVATE_IOCTLS /* not supported by every CDROM driver */
#define SBP_PRIVATE_IOCTLS /* not supported by every CDROM driver */
 
#include <stdio.h>
#include <stdio.h>
#include <malloc.h>
#include <sys/ioctl.h>
#include <linux/cdrom.h>
 
#ifdef AZT_PRIVATE_IOCTLS
#include <linux/aztcd.h>
#endif AZT_PRIVATE_IOCTLS
#ifdef SBP_PRIVATE_IOCTLS
#include <linux/sbpcd.h>
#include <linux/fs.h>
#endif SBP_PRIVATE_IOCTLS
 
struct cdrom_tochdr hdr;
struct cdrom_tochdr tocHdr;
struct cdrom_tocentry TocEntry[101];
struct cdrom_tocentry entry;
struct cdrom_multisession ms_info;
struct cdrom_read_audio read_audio;
struct cdrom_ti ti;
struct cdrom_subchnl subchnl;
struct cdrom_msf msf;
struct cdrom_volctrl volctrl;
#ifdef AZT_PRIVATE_IOCTLS
union
{
struct cdrom_msf msf;
unsigned char buf[CD_FRAMESIZE_RAW];
} azt;
#endif AZT_PRIVATE_IOCTLS
int i, i1, i2, i3, j, k;
unsigned char sequence=0;
unsigned char command[80];
unsigned char first=1, last=1;
char *default_device="/dev/cdrom";
char dev[20];
char filename[20];
int drive;
int datafile;
int rc;
 
void help(void)
{
printf("Available Commands:\n");
printf("STOP s EJECT e QUIT q\n");
printf("PLAY TRACK t PAUSE p RESUME r\n");
printf("NEXT TRACK n REPEAT LAST l HELP h\n");
printf("SUBCHANNEL_Q c TRACK INFO i PLAY AT a\n");
printf("READ d READ RAW w READ AUDIO A\n");
printf("MS-INFO M TOC T START S\n");
printf("SET EJECTSW X DEVICE D DEBUG Y\n");
printf("AUDIO_BUFSIZ Z RESET R BLKRASET B\n");
printf("SET VOLUME v GET VOLUME V\n");
}
 
/*
* convert MSF number (3 bytes only) to Logical_Block_Address
*/
int msf2lba(u_char *msf)
{
int i;
i=(msf[0] * CD_SECS + msf[1]) * CD_FRAMES + msf[2] - CD_BLOCK_OFFSET;
if (i<0) return (0);
return (i);
}
/*
* convert logical_block_address to m-s-f_number (3 bytes only)
*/
void lba2msf(int lba, unsigned char *msf)
{
lba += CD_BLOCK_OFFSET;
msf[0] = lba / (CD_SECS*CD_FRAMES);
lba %= CD_SECS*CD_FRAMES;
msf[1] = lba / CD_FRAMES;
msf[2] = lba % CD_FRAMES;
}
 
int init_drive(char *dev)
{
unsigned char msf_ent[3];
 
/*
* open the device
*/
drive=open(dev,0);
if (drive<0) return (-1);
/*
* get TocHeader
*/
printf("getting TocHeader...\n");
rc=ioctl(drive,CDROMREADTOCHDR,&hdr);
if (rc!=0)
{
printf("can't get TocHeader (error %d).\n",rc);
return (-2);
}
else
first=hdr.cdth_trk0;
last=hdr.cdth_trk1;
printf("TocHeader: %d %d\n",hdr.cdth_trk0,hdr.cdth_trk1);
/*
* get and display all TocEntries
*/
printf("getting TocEntries...\n");
for (i=1;i<=hdr.cdth_trk1+1;i++)
{
if (i!=hdr.cdth_trk1+1) TocEntry[i].cdte_track = i;
else TocEntry[i].cdte_track = CDROM_LEADOUT;
TocEntry[i].cdte_format = CDROM_LBA;
rc=ioctl(drive,CDROMREADTOCENTRY,&TocEntry[i]);
if (rc!=0)
{
printf("can't get TocEntry #%d (error %d).\n",i,rc);
}
else
{
lba2msf(TocEntry[i].cdte_addr.lba,&msf_ent[0]);
if (TocEntry[i].cdte_track==CDROM_LEADOUT)
{
printf("TocEntry #%02X: %1X %1X %02d:%02d:%02d (lba: 0x%06X) %02X\n",
TocEntry[i].cdte_track,
TocEntry[i].cdte_adr,
TocEntry[i].cdte_ctrl,
msf_ent[0],
msf_ent[1],
msf_ent[2],
TocEntry[i].cdte_addr.lba,
TocEntry[i].cdte_datamode);
}
else
{
printf("TocEntry #%02d: %1X %1X %02d:%02d:%02d (lba: 0x%06X) %02X\n",
TocEntry[i].cdte_track,
TocEntry[i].cdte_adr,
TocEntry[i].cdte_ctrl,
msf_ent[0],
msf_ent[1],
msf_ent[2],
TocEntry[i].cdte_addr.lba,
TocEntry[i].cdte_datamode);
}
}
}
return (hdr.cdth_trk1); /* number of tracks */
}
 
void display(int size,unsigned char *buffer)
{
k=0;
getchar();
for (i=0;i<(size+1)/16;i++)
{
printf("%4d:",i*16);
for (j=0;j<16;j++)
{
printf(" %02X",buffer[i*16+j]);
}
printf(" ");
for (j=0;j<16;j++)
{
if (isalnum(buffer[i*16+j]))
printf("%c",buffer[i*16+j]);
else
printf(".");
}
printf("\n");
k++;
if (k>=20)
{
printf("press ENTER to continue\n");
getchar();
k=0;
}
}
}
 
main(int argc, char *argv[])
{
printf("\nTesting tool for a CDROM driver's audio functions V0.1\n");
printf("(C) 1995 Eberhard Moenkeberg <emoenke@gwdg.de>\n");
printf("initializing...\n");
rc=init_drive(default_device);
if (rc<0) printf("could not open %s (rc=%d).\n",default_device,rc);
help();
while (1)
{
printf("Give a one-letter command (h = help): ");
scanf("%s",command);
command[1]=0;
switch (command[0])
{
case 'D':
printf("device name (f.e. /dev/sbpcd3): ? ");
scanf("%s",&dev);
close(drive);
rc=init_drive(dev);
if (rc<0) printf("could not open %s (rc %d).\n",dev,rc);
break;
case 'e':
rc=ioctl(drive,CDROMEJECT);
if (rc<0) printf("CDROMEJECT: rc=%d.\n",rc);
break;
case 'p':
rc=ioctl(drive,CDROMPAUSE);
if (rc<0) printf("CDROMPAUSE: rc=%d.\n",rc);
break;
case 'r':
rc=ioctl(drive,CDROMRESUME);
if (rc<0) printf("CDROMRESUME: rc=%d.\n",rc);
break;
case 's':
rc=ioctl(drive,CDROMSTOP);
if (rc<0) printf("CDROMSTOP: rc=%d.\n",rc);
break;
case 'S':
rc=ioctl(drive,CDROMSTART);
if (rc<0) printf("CDROMSTART: rc=%d.\n",rc);
break;
case 't':
rc=ioctl(drive,CDROMREADTOCHDR,&tocHdr);
if (rc<0)
{
printf("CDROMREADTOCHDR: rc=%d.\n",rc);
break;
}
first=tocHdr.cdth_trk0;
last= tocHdr.cdth_trk1;
if ((first==0)||(first>last))
{
printf ("--got invalid TOC data.\n");
}
else
{
printf("--enter track number(first=%d, last=%d): ",first,last);
scanf("%d",&i1);
ti.cdti_trk0=i1;
if (ti.cdti_trk0<first) ti.cdti_trk0=first;
if (ti.cdti_trk0>last) ti.cdti_trk0=last;
ti.cdti_ind0=0;
ti.cdti_trk1=last;
ti.cdti_ind1=0;
rc=ioctl(drive,CDROMSTOP);
rc=ioctl(drive,CDROMPLAYTRKIND,&ti);
if (rc<0) printf("CDROMPLAYTRKIND: rc=%d.\n",rc);
}
break;
case 'n':
rc=ioctl(drive,CDROMSTOP);
if (++ti.cdti_trk0>last) ti.cdti_trk0=last;
ti.cdti_ind0=0;
ti.cdti_trk1=last;
ti.cdti_ind1=0;
rc=ioctl(drive,CDROMPLAYTRKIND,&ti);
if (rc<0) printf("CDROMPLAYTRKIND: rc=%d.\n",rc);
break;
case 'l':
rc=ioctl(drive,CDROMSTOP);
if (--ti.cdti_trk0<first) ti.cdti_trk0=first;
ti.cdti_ind0=0;
ti.cdti_trk1=last;
ti.cdti_ind1=0;
rc=ioctl(drive,CDROMPLAYTRKIND,&ti);
if (rc<0) printf("CDROMPLAYTRKIND: rc=%d.\n",rc);
break;
case 'c':
subchnl.cdsc_format=CDROM_MSF;
rc=ioctl(drive,CDROMSUBCHNL,&subchnl);
if (rc<0) printf("CDROMSUBCHNL: rc=%d.\n",rc);
else
{
printf("AudioStatus:%s Track:%d Mode:%d MSF=%02d:%02d:%02d\n",
subchnl.cdsc_audiostatus==CDROM_AUDIO_PLAY ? "PLAYING":"NOT PLAYING",
subchnl.cdsc_trk,subchnl.cdsc_adr,
subchnl.cdsc_absaddr.msf.minute,
subchnl.cdsc_absaddr.msf.second,
subchnl.cdsc_absaddr.msf.frame);
}
break;
case 'i':
printf("Track No.: ");
scanf("%d",&i1);
entry.cdte_track=i1;
if (entry.cdte_track<first) entry.cdte_track=first;
if (entry.cdte_track>last) entry.cdte_track=last;
entry.cdte_format=CDROM_MSF;
rc=ioctl(drive,CDROMREADTOCENTRY,&entry);
if (rc<0) printf("CDROMREADTOCENTRY: rc=%d.\n",rc);
else
{
printf("Mode %d Track, starts at %02d:%02d:%02d\n",
entry.cdte_adr,
entry.cdte_addr.msf.minute,
entry.cdte_addr.msf.second,
entry.cdte_addr.msf.frame);
}
break;
case 'a':
printf("Address (min:sec:frm) ");
scanf("%d:%d:%d",&i1,&i2,&i3);
msf.cdmsf_min0=i1;
msf.cdmsf_sec0=i2;
msf.cdmsf_frame0=i3;
if (msf.cdmsf_sec0>59) msf.cdmsf_sec0=59;
if (msf.cdmsf_frame0>74) msf.cdmsf_frame0=74;
lba2msf(TocEntry[last+1].cdte_addr.lba-1,&msf.cdmsf_min1);
rc=ioctl(drive,CDROMSTOP);
rc=ioctl(drive,CDROMPLAYMSF,&msf);
if (rc<0) printf("CDROMPLAYMSF: rc=%d.\n",rc);
break;
case 'V':
rc=ioctl(drive,CDROMVOLREAD,&volctrl);
if (rc<0) printf("CDROMVOLCTRL: rc=%d.\n",rc);
printf("Volume: channel 0 (left) %d, channel 1 (right) %d\n",volctrl.channel0,volctrl.channel1);
break;
case 'R':
rc=ioctl(drive,CDROMRESET);
if (rc<0) printf("CDROMRESET: rc=%d.\n",rc);
break;
case 'B': /* set the driver's (?) read ahead value */
printf("enter read-ahead size: ? ");
scanf("%d",&i);
rc=ioctl(drive,BLKRASET,i);
if (rc<0) printf("BLKRASET: rc=%d.\n",rc);
break;
#ifdef AZT_PRIVATE_IOCTLS /*not supported by every CDROM driver*/
case 'd':
printf("Address (min:sec:frm) ");
scanf("%d:%d:%d",&i1,&i2,&i3);
azt.msf.cdmsf_min0=i1;
azt.msf.cdmsf_sec0=i2;
azt.msf.cdmsf_frame0=i3;
if (azt.msf.cdmsf_sec0>59) azt.msf.cdmsf_sec0=59;
if (azt.msf.cdmsf_frame0>74) azt.msf.cdmsf_frame0=74;
rc=ioctl(drive,CDROMREADMODE1,&azt.msf);
if (rc<0) printf("CDROMREADMODE1: rc=%d.\n",rc);
else display(CD_FRAMESIZE,azt.buf);
break;
case 'w':
printf("Address (min:sec:frame) ");
scanf("%d:%d:%d",&i1,&i2,&i3);
azt.msf.cdmsf_min0=i1;
azt.msf.cdmsf_sec0=i2;
azt.msf.cdmsf_frame0=i3;
if (azt.msf.cdmsf_sec0>59) azt.msf.cdmsf_sec0=59;
if (azt.msf.cdmsf_frame0>74) azt.msf.cdmsf_frame0=74;
rc=ioctl(drive,CDROMREADMODE2,&azt.msf);
if (rc<0) printf("CDROMREADMODE2: rc=%d.\n",rc);
else display(CD_FRAMESIZE_RAW,azt.buf); /* currently only 2336 */
break;
#endif
case 'v':
printf("--Channel 0 (Left) (0-255): ");
scanf("%d",&i1);
volctrl.channel0=i1;
printf("--Channel 1 (Right) (0-255): ");
scanf("%d",&i1);
volctrl.channel1=i1;
volctrl.channel2=0;
volctrl.channel3=0;
rc=ioctl(drive,CDROMVOLCTRL,&volctrl);
if (rc<0) printf("CDROMVOLCTRL: rc=%d.\n",rc);
break;
case 'q':
close(drive);
exit(0);
case 'h':
help();
break;
case 'T': /* display TOC entry - without involving the driver */
scanf("%d",&i);
if ((i<hdr.cdth_trk0)||(i>hdr.cdth_trk1))
printf("invalid track number.\n");
else
printf("TocEntry %02d: adr=%01X ctrl=%01X msf=%02d:%02d:%02d mode=%02X\n",
TocEntry[i].cdte_track,
TocEntry[i].cdte_adr,
TocEntry[i].cdte_ctrl,
TocEntry[i].cdte_addr.msf.minute,
TocEntry[i].cdte_addr.msf.second,
TocEntry[i].cdte_addr.msf.frame,
TocEntry[i].cdte_datamode);
break;
case 'A': /* read audio data into file */
printf("Address (min:sec:frm) ? ");
scanf("%d:%d:%d",&i1,&i2,&i3);
read_audio.addr.msf.minute=i1;
read_audio.addr.msf.second=i2;
read_audio.addr.msf.frame=i3;
read_audio.addr_format=CDROM_MSF;
printf("# of frames ? ");
scanf("%d",&i1);
read_audio.nframes=i1;
k=read_audio.nframes*CD_FRAMESIZE_RAW;
read_audio.buf=malloc(k);
if (read_audio.buf==NULL)
{
printf("can't malloc %d bytes.\n",k);
break;
}
sprintf(filename,"audio_%02d%02d%02d_%02d.%02d\0",
read_audio.addr.msf.minute,
read_audio.addr.msf.second,
read_audio.addr.msf.frame,
read_audio.nframes,
++sequence);
datafile=creat(filename, 0755);
if (datafile<0)
{
printf("can't open datafile %s.\n",filename);
break;
}
rc=ioctl(drive,CDROMREADAUDIO,&read_audio);
if (rc!=0)
{
printf("CDROMREADAUDIO: rc=%d.\n",rc);
}
else
{
rc=write(datafile,&read_audio.buf,k);
if (rc!=k) printf("datafile I/O error (%d).\n",rc);
}
close(datafile);
break;
case 'X': /* set EJECT_SW (0: disable, 1: enable auto-ejecting) */
scanf("%d",&i);
rc=ioctl(drive,CDROMEJECT_SW,i);
if (rc!=0)
printf("CDROMEJECT_SW: rc=%d.\n",rc);
else
printf("EJECT_SW set to %d\n",i);
break;
case 'M': /* get the multisession redirection info */
ms_info.addr_format=CDROM_LBA;
rc=ioctl(drive,CDROMMULTISESSION,&ms_info);
if (rc!=0)
{
printf("CDROMMULTISESSION(lba): rc=%d.\n",rc);
}
else
{
if (ms_info.xa_flag) printf("MultiSession offset (lba): %d (0x%06X)\n",ms_info.addr.lba,ms_info.addr.lba);
else
{
printf("this CD is not an XA disk.\n");
break;
}
}
ms_info.addr_format=CDROM_MSF;
rc=ioctl(drive,CDROMMULTISESSION,&ms_info);
if (rc!=0)
{
printf("CDROMMULTISESSION(msf): rc=%d.\n",rc);
}
else
{
if (ms_info.xa_flag)
printf("MultiSession offset (msf): %02d:%02d:%02d (0x%02X%02X%02X)\n",
ms_info.addr.msf.minute,
ms_info.addr.msf.second,
ms_info.addr.msf.frame,
ms_info.addr.msf.minute,
ms_info.addr.msf.second,
ms_info.addr.msf.frame);
else printf("this CD is not an XA disk.\n");
}
break;
#ifdef SBP_PRIVATE_IOCTLS
case 'Y': /* set the driver's message level */
#if 0 /* not implemented yet */
printf("enter switch name (f.e. DBG_CMD): ");
scanf("%s",&dbg_switch);
j=get_dbg_num(dbg_switch);
#else
printf("enter DDIOCSDBG switch number: ");
scanf("%d",&j);
#endif
printf("enter 0 for \"off\", 1 for \"on\": ");
scanf("%d",&i);
if (i==0) j|=0x80;
printf("calling \"ioctl(drive,DDIOCSDBG,%d)\"\n",j);
rc=ioctl(drive,DDIOCSDBG,j);
printf("DDIOCSDBG: rc=%d.\n",rc);
break;
case 'Z': /* set the audio buffer size */
printf("# frames wanted: ? ");
scanf("%d",&j);
rc=ioctl(drive,CDROMAUDIOBUFSIZ,j);
printf("%d frames granted.\n",rc);
break;
#endif SBP_PRIVATE_IOCTLS
default:
printf("unknown command: \"%s\".\n",command);
break;
}
}
}
/*==========================================================================*/
 
/sonycd535
0,0 → 1,121
README FOR LINUX SONY CDU-535/531 DRIVER
========================================
 
This is the Sony CDU-535 (and 531) driver version 0.7 for Linux.
I do not think I have the documentation to add features like DMA support
so if anyone else wants to pursue it or help me with it, please do.
(I need to see what was done for the CDU-31A driver -- perhaps I can
steal some of that code.)
 
This is a Linux device driver for the Sony CDU-535 CDROM drive. This is
one of the older Sony drives with its own interface card (Sony bus).
The DOS driver for this drive is named SONY_CDU.SYS - when you boot DOS
your drive should be identified as a SONY CDU-535. The driver works
with a CDU-531 also. One user reported that the driver worked on drives
OEM'ed by Procomm, drive and interface board were labelled Procomm.
 
The Linux driver is based on Corey Minyard's sonycd 0.3 driver for
the CDU-31A. Ron Jeppesen just changed the commands that were sent
to the drive to correspond to the CDU-535 commands and registers.
There were enough changes to let bugs creep in but it seems to be stable.
Ron was able to tar an entire CDROM (should read all blocks) and built
ghostview and xfig off Walnut Creek's X11R5/GNU CDROM. xcdplayer and
workman work with the driver. Others have used the driver without
problems except those dealing with wait loops (fixed in third release).
Like Minyard's original driver this one uses a polled interface (this
is also the default setup for the DOS driver). It has not been tried
with interrupts or DMA enabled on the board.
 
REQUIREMENTS
============
 
- Sony CDU-535 drive, preferably without interrupts and DMA
enabled on the card.
 
- Drive must be set up as unit 1. Only the first unit will be
recognized
 
- you must enter your interface address into
/usr/src/linux/include/linux/sonycd535.h and build the
appropriate kernel or use the "kernel command line" parameter
sonycd535=0x320
with the correct interface address.
 
NOTES:
======
 
1) The drive MUST be turned on when booting or it will not be recognized!
(but see comments on modularized version below)
 
2) when the cdrom device is opened the eject button is disabled to keep the
user from ejecting a mounted disk and replacing it with another.
Unfortunately xcdplayer and workman also open the cdrom device so you
have to use the eject button in the software. Keep this in mind if your
cdrom player refuses to give up its disk -- exit workman or xcdplayer, or
umount the drive if it has been mounted.
 
THANKS
======
 
Many thanks to Ron Jeppesen (ronj.an@site007.saic.com) for getting
this project off the ground. He wrote the initial release
and the first two patches to this driver (0.1, 0.2, and 0.3).
Thanks also to Eberhard Moenkeberg (emoenke@gwdg.de) for prodding
me to place this code into the mainstream Linux source tree
(as of Linux version 1.1.91), as well as some patches to make
it a better device citizen. Further thanks to "S. Joel Katz"
<stimpson@panix.com> for his MODULE patches (see details below),
Porfiri Claudio <C.Porfiri@nisms.tei.ericsson.se> for patches
to make the driver work with the older CDU-510/515 series, and
Heiko Eissfeldt <heiko@colossus.escape.de> for pointing out that
the verify_area() checks were ignoring the results of said checks.
 
(Acknowledgments from Ron Jeppesen in the 0.3 release:)
Thanks to Corey Minyard who wrote the original CDU-31A driver on which
this driver is based. Thanks to Ken Pizzini and Bob Blair who provided
patches and feedback on the first release of this driver.
 
Ken Pizzini
ken@halcyon.com
 
------------------------------------------------------------------------------
(The following is from Joel Katz <Stimpson@Panix.COM>.)
 
To build a version of sony535.o that can be installed as a module,
use the following command:
 
gcc -c -D__KERNEL__ -DMODULE -O2 sonycd535.c -o sonycd535.o
 
To install the module, simply type:
 
insmod sony535.o
or
insmod sony535.o sonycd535=<address>
 
And to remove it:
 
rmmod sony535
 
The code checks to see if MODULE is defined and behaves as it used
to if MODULE is not defined. That means your patched file should behave
exactly as it used to if compiled into the kernel.
 
I have an external drive, and I usually leave it powered off. I used
to have to reboot if I needed to use the CDROM drive. Now I don't.
 
Even if you have an internal drive, why waste the 268K of memory
(unswappable) that the driver uses if you use your CD-ROM drive infrequently?
 
This driver will not install (whether compiled in or loaded as a
module) if the CDROM drive is not available during its initialization. This
means that you can have the driver compiled into the kernel and still load
the module later (assuming the driver doesn't install itself during
power-on). This only wastes 12K when you boot with the CDROM drive off.
 
This is what I usually do; I leave the driver compiled into the
kernel, but load it as a module if I powered the system up with the drive
off and then later decided to use the CDROM drive.
 
Since the driver only uses a single page to point to the chunks,
attempting to set the buffer cache to more than 2 Megabytes would be very
bad; don't do that.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.