URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
Compare Revisions
- This comparison shows the changes necessary to convert path
/or1k/trunk/linux/linux-2.4/arch/ppc64/mm
- from Rev 1275 to Rev 1765
- ↔ Reverse comparison
Rev 1275 → Rev 1765
/imalloc.c
0,0 → 1,71
/* |
* c 2001 PPC 64 Team, IBM Corp |
* |
* This program is free software; you can redistribute it and/or |
* modify it under the terms of the GNU General Public License |
* as published by the Free Software Foundation; either version |
* 2 of the License, or (at your option) any later version. |
*/ |
|
#include <linux/slab.h> |
#include <linux/vmalloc.h> |
#include <linux/spinlock.h> |
|
#include <asm/uaccess.h> |
#include <asm/pgalloc.h> |
|
rwlock_t imlist_lock = RW_LOCK_UNLOCKED; |
struct vm_struct * imlist = NULL; |
|
struct vm_struct *get_im_area(unsigned long size) |
{ |
unsigned long addr; |
struct vm_struct **p, *tmp, *area; |
|
area = (struct vm_struct *) kmalloc(sizeof(*area), GFP_KERNEL); |
if (!area) |
return NULL; |
addr = IMALLOC_START; |
write_lock(&imlist_lock); |
for (p = &imlist; (tmp = *p) ; p = &tmp->next) { |
if (size + addr < (unsigned long) tmp->addr) |
break; |
addr = tmp->size + (unsigned long) tmp->addr; |
if (addr > IMALLOC_END-size) { |
write_unlock(&imlist_lock); |
kfree(area); |
return NULL; |
} |
} |
area->flags = 0; |
area->addr = (void *)addr; |
area->size = size; |
area->next = *p; |
*p = area; |
write_unlock(&imlist_lock); |
return area; |
} |
|
void ifree(void * addr) |
{ |
struct vm_struct **p, *tmp; |
|
if (!addr) |
return; |
if ((PAGE_SIZE-1) & (unsigned long) addr) { |
printk(KERN_ERR "Trying to ifree() bad address (%p)\n", addr); |
return; |
} |
write_lock(&imlist_lock); |
for (p = &imlist ; (tmp = *p) ; p = &tmp->next) { |
if (tmp->addr == addr) { |
*p = tmp->next; |
kfree(tmp); |
write_unlock(&imlist_lock); |
return; |
} |
} |
write_unlock(&imlist_lock); |
printk(KERN_ERR "Trying to ifree() nonexistent area (%p)\n", addr); |
} |
|
/init.c
0,0 → 1,778
/* |
* PowerPC version |
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
* |
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
* and Cort Dougan (PReP) (cort@cs.nmt.edu) |
* Copyright (C) 1996 Paul Mackerras |
* Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). |
* |
* Derived from "arch/i386/mm/init.c" |
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
* |
* Dave Engebretsen <engebret@us.ibm.com> |
* Rework for PPC64 port. |
* |
* This program is free software; you can redistribute it and/or |
* modify it under the terms of the GNU General Public License |
* as published by the Free Software Foundation; either version |
* 2 of the License, or (at your option) any later version. |
* |
*/ |
|
#include <linux/config.h> |
#include <linux/signal.h> |
#include <linux/sched.h> |
#include <linux/kernel.h> |
#include <linux/errno.h> |
#include <linux/string.h> |
#include <linux/types.h> |
#include <linux/ptrace.h> |
#include <linux/mman.h> |
#include <linux/mm.h> |
#include <linux/slab.h> |
#include <linux/swap.h> |
#include <linux/stddef.h> |
#include <linux/vmalloc.h> |
#include <linux/init.h> |
#include <linux/delay.h> |
#include <linux/bootmem.h> |
#include <linux/highmem.h> |
#ifdef CONFIG_BLK_DEV_INITRD |
#include <linux/blk.h> /* for initrd_* */ |
#endif |
|
#include <asm/pgalloc.h> |
#include <asm/page.h> |
#include <asm/abs_addr.h> |
#include <asm/prom.h> |
#include <asm/lmb.h> |
#include <asm/rtas.h> |
#include <asm/io.h> |
#include <asm/mmu_context.h> |
#include <asm/pgtable.h> |
#include <asm/mmu.h> |
#include <asm/uaccess.h> |
#include <asm/smp.h> |
#include <asm/machdep.h> |
#include <asm/tlb.h> |
#include <asm/naca.h> |
#include <asm/eeh.h> |
|
#include <asm/ppcdebug.h> |
|
#define PGTOKB(pages) (((pages) * PAGE_SIZE) >> 10) |
|
#ifdef CONFIG_PPC_ISERIES |
#include <asm/iSeries/iSeries_dma.h> |
#endif |
|
struct mmu_context_queue_t mmu_context_queue; |
int mem_init_done; |
unsigned long ioremap_bot = IMALLOC_BASE; |
|
static int boot_mapsize; |
static unsigned long totalram_pages; |
|
extern pgd_t swapper_pg_dir[]; |
extern char __init_begin, __init_end; |
extern char __chrp_begin, __chrp_end; |
extern char __openfirmware_begin, __openfirmware_end; |
extern struct _of_tce_table of_tce_table[]; |
extern char _start[], _end[]; |
extern char _stext[], etext[]; |
extern struct task_struct *current_set[NR_CPUS]; |
|
extern pgd_t ioremap_dir[]; |
pgd_t * ioremap_pgd = (pgd_t *)&ioremap_dir; |
|
static void map_io_page(unsigned long va, unsigned long pa, int flags); |
extern void die_if_kernel(char *,struct pt_regs *,long); |
|
unsigned long klimit = (unsigned long)_end; |
|
HPTE *Hash=0; |
unsigned long Hash_size=0; |
unsigned long _SDR1=0; |
unsigned long _ASR=0; |
|
/* max amount of RAM to use */ |
unsigned long __max_memory; |
|
/* This is declared as we are using the more or less generic |
* include/asm-ppc64/tlb.h file -- tgall |
*/ |
mmu_gather_t mmu_gathers[NR_CPUS]; |
|
int do_check_pgt_cache(int low, int high) |
{ |
int freed = 0; |
|
if (pgtable_cache_size > high) { |
do { |
if (pgd_quicklist) |
free_page((unsigned long)pgd_alloc_one_fast(0)), ++freed; |
if (pmd_quicklist) |
free_page((unsigned long)pmd_alloc_one_fast(0, 0)), ++freed; |
if (pte_quicklist) |
free_page((unsigned long)pte_alloc_one_fast(0, 0)), ++freed; |
} while (pgtable_cache_size > low); |
} |
return freed; |
} |
|
void show_mem(void) |
{ |
int i,free = 0,total = 0,reserved = 0; |
int shared = 0, cached = 0; |
|
printk("Mem-info:\n"); |
show_free_areas(); |
printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10)); |
i = max_mapnr; |
while (i-- > 0) { |
total++; |
if (PageReserved(mem_map+i)) |
reserved++; |
else if (PageSwapCache(mem_map+i)) |
cached++; |
else if (!atomic_read(&mem_map[i].count)) |
free++; |
else |
shared += atomic_read(&mem_map[i].count) - 1; |
} |
printk("%d pages of RAM\n",total); |
printk("%d free pages\n",free); |
printk("%d reserved pages\n",reserved); |
printk("%d pages shared\n",shared); |
printk("%d pages swap cached\n",cached); |
printk("%d pages in page table cache\n",(int)pgtable_cache_size); |
show_buffers(); |
} |
|
void si_meminfo(struct sysinfo *val) |
{ |
val->totalram = totalram_pages; |
val->sharedram = 0; |
val->freeram = nr_free_pages(); |
val->bufferram = atomic_read(&buffermem_pages); |
val->totalhigh = 0; |
val->freehigh = 0; |
val->mem_unit = PAGE_SIZE; |
} |
|
void * |
ioremap(unsigned long addr, unsigned long size) |
{ |
#ifdef CONFIG_PPC_ISERIES |
return (void*)addr; |
#else |
void *ret = __ioremap(addr, size, _PAGE_NO_CACHE); |
if(mem_init_done) |
return eeh_ioremap(addr, ret); /* may remap the addr */ |
return ret; |
#endif |
} |
|
extern struct vm_struct * get_im_area( unsigned long size ); |
|
void * |
__ioremap(unsigned long addr, unsigned long size, unsigned long flags) |
{ |
unsigned long pa, ea, i; |
|
/* |
* Choose an address to map it to. |
* Once the imalloc system is running, we use it. |
* Before that, we map using addresses going |
* up from ioremap_bot. imalloc will use |
* the addresses from ioremap_bot through |
* IMALLOC_END (0xE000001fffffffff) |
* |
*/ |
pa = addr & PAGE_MASK; |
size = PAGE_ALIGN(addr + size) - pa; |
|
if (size == 0) |
return NULL; |
|
if (mem_init_done) { |
struct vm_struct *area; |
area = get_im_area(size); |
if (area == 0) |
return NULL; |
ea = (unsigned long)(area->addr); |
} |
else { |
ea = ioremap_bot; |
ioremap_bot += size; |
} |
|
if ((flags & _PAGE_PRESENT) == 0) |
flags |= pgprot_val(PAGE_KERNEL); |
if (flags & (_PAGE_NO_CACHE | _PAGE_WRITETHRU)) |
flags |= _PAGE_GUARDED; |
|
for (i = 0; i < size; i += PAGE_SIZE) { |
map_io_page(ea+i, pa+i, flags); |
} |
|
return (void *) (ea + (addr & ~PAGE_MASK)); |
} |
|
void iounmap(void *addr) |
{ |
#ifdef CONFIG_PPC_ISERIES |
/* iSeries I/O Remap is a noop */ |
return; |
#else |
/* DRENG / PPPBBB todo */ |
return; |
#endif |
} |
|
/* |
* map_io_page currently only called by __ioremap |
* map_io_page adds an entry to the ioremap page table |
* and adds an entry to the HPT, possibly bolting it |
*/ |
static void map_io_page(unsigned long ea, unsigned long pa, int flags) |
{ |
pgd_t *pgdp; |
pmd_t *pmdp; |
pte_t *ptep; |
unsigned long vsid; |
|
if (mem_init_done) { |
spin_lock(&ioremap_mm.page_table_lock); |
pgdp = pgd_offset_i(ea); |
pmdp = pmd_alloc(&ioremap_mm, pgdp, ea); |
ptep = pte_alloc(&ioremap_mm, pmdp, ea); |
|
pa = absolute_to_phys(pa); |
set_pte(ptep, mk_pte_phys(pa & PAGE_MASK, __pgprot(flags))); |
spin_unlock(&ioremap_mm.page_table_lock); |
} else { |
/* If the mm subsystem is not fully up, we cannot create a |
* linux page table entry for this mapping. Simply bolt an |
* entry in the hardware page table. |
*/ |
vsid = get_kernel_vsid(ea); |
make_pte(htab_data.htab, |
(vsid << 28) | (ea & 0xFFFFFFF), // va (NOT the ea) |
pa, |
_PAGE_NO_CACHE | _PAGE_GUARDED | PP_RWXX, |
htab_data.htab_hash_mask, 0); |
} |
} |
|
#ifndef CONFIG_PPC_ISERIES |
int |
io_remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot) |
{ |
return remap_page_range(from, eeh_token_to_phys(to), size, prot); |
} |
#endif |
|
void |
local_flush_tlb_all(void) |
{ |
/* Implemented to just flush the vmalloc area. |
* vmalloc is the only user of flush_tlb_all. |
*/ |
#ifdef CONFIG_SHARED_MEMORY_ADDRESSING |
local_flush_tlb_range( NULL, VMALLOC_START, SMALLOC_END ); |
#else |
local_flush_tlb_range( NULL, VMALLOC_START, VMALLOC_END ); |
#endif |
} |
|
void |
local_flush_tlb_mm(struct mm_struct *mm) |
{ |
spin_lock(&mm->page_table_lock); |
|
if ( mm->map_count ) { |
struct vm_area_struct *mp; |
for ( mp = mm->mmap; mp != NULL; mp = mp->vm_next ) |
local_flush_tlb_range( mm, mp->vm_start, mp->vm_end ); |
} |
|
spin_unlock(&mm->page_table_lock); |
} |
|
/* |
* Callers should hold the mm->page_table_lock |
*/ |
void |
local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) |
{ |
unsigned long context = 0; |
pgd_t *pgd; |
pmd_t *pmd; |
pte_t *ptep; |
|
switch( REGION_ID(vmaddr) ) { |
case VMALLOC_REGION_ID: |
pgd = pgd_offset_k( vmaddr ); |
break; |
case IO_REGION_ID: |
pgd = pgd_offset_i( vmaddr ); |
break; |
case USER_REGION_ID: |
pgd = pgd_offset( vma->vm_mm, vmaddr ); |
context = vma->vm_mm->context; |
break; |
default: |
panic("local_flush_tlb_page: invalid region 0x%016lx", vmaddr); |
|
} |
|
if (!pgd_none(*pgd)) { |
pmd = pmd_offset(pgd, vmaddr); |
if (!pmd_none(*pmd)) { |
ptep = pte_offset(pmd, vmaddr); |
/* Check if HPTE might exist and flush it if so */ |
if (pte_val(*ptep) & _PAGE_HASHPTE) |
flush_hash_page(context, vmaddr, ptep); |
} |
} |
} |
|
void |
local_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) |
{ |
pgd_t *pgd; |
pmd_t *pmd; |
pte_t *ptep; |
unsigned long pgd_end, pmd_end; |
unsigned long context; |
|
if ( start >= end ) |
panic("flush_tlb_range: start (%016lx) greater than end (%016lx)\n", start, end ); |
|
if ( REGION_ID(start) != REGION_ID(end) ) |
panic("flush_tlb_range: start (%016lx) and end (%016lx) not in same region\n", start, end ); |
|
context = 0; |
|
switch( REGION_ID(start) ) { |
case VMALLOC_REGION_ID: |
pgd = pgd_offset_k( start ); |
break; |
case IO_REGION_ID: |
pgd = pgd_offset_i( start ); |
break; |
case USER_REGION_ID: |
pgd = pgd_offset( mm, start ); |
context = mm->context; |
break; |
default: |
panic("flush_tlb_range: invalid region for start (%016lx) and end (%016lx)\n", start, end); |
|
} |
|
do { |
pgd_end = (start + PGDIR_SIZE) & PGDIR_MASK; |
if ( pgd_end > end ) |
pgd_end = end; |
if ( !pgd_none( *pgd ) ) { |
pmd = pmd_offset( pgd, start ); |
do { |
pmd_end = ( start + PMD_SIZE ) & PMD_MASK; |
if ( pmd_end > end ) |
pmd_end = end; |
if ( !pmd_none( *pmd ) ) { |
ptep = pte_offset( pmd, start ); |
do { |
if ( pte_val(*ptep) & _PAGE_HASHPTE ) |
flush_hash_page( context, start, ptep ); |
start += PAGE_SIZE; |
++ptep; |
} while ( start < pmd_end ); |
} |
else |
start = pmd_end; |
++pmd; |
} while ( start < pgd_end ); |
} |
else |
start = pgd_end; |
++pgd; |
} while ( start < end ); |
} |
|
|
void __init free_initmem(void) |
{ |
unsigned long a; |
unsigned long num_freed_pages = 0; |
#define FREESEC(START,END,CNT) do { \ |
a = (unsigned long)(&START); \ |
for (; a < (unsigned long)(&END); a += PAGE_SIZE) { \ |
clear_bit(PG_reserved, &mem_map[MAP_NR(a)].flags); \ |
set_page_count(mem_map+MAP_NR(a), 1); \ |
free_page(a); \ |
CNT++; \ |
} \ |
} while (0) |
|
FREESEC(__init_begin,__init_end,num_freed_pages); |
|
printk ("Freeing unused kernel memory: %ldk init\n", |
PGTOKB(num_freed_pages)); |
} |
|
#ifdef CONFIG_BLK_DEV_INITRD |
void free_initrd_mem(unsigned long start, unsigned long end) |
{ |
unsigned long xstart = start; |
for (; start < end; start += PAGE_SIZE) { |
ClearPageReserved(mem_map + MAP_NR(start)); |
set_page_count(mem_map+MAP_NR(start), 1); |
free_page(start); |
totalram_pages++; |
} |
printk ("Freeing initrd memory: %ldk freed\n", (end - xstart) >> 10); |
} |
#endif |
|
/* |
* Do very early mm setup. |
*/ |
void __init mm_init_ppc64(void) |
{ |
struct paca_struct *lpaca; |
unsigned long guard_page, index; |
|
ppc_md.progress("MM:init", 0); |
|
/* Reserve all contexts < FIRST_USER_CONTEXT for kernel use. |
* The range of contexts [FIRST_USER_CONTEXT, NUM_USER_CONTEXT) |
* are stored on a stack/queue for easy allocation and deallocation. |
*/ |
mmu_context_queue.lock = SPIN_LOCK_UNLOCKED; |
mmu_context_queue.head = 0; |
mmu_context_queue.tail = NUM_USER_CONTEXT-1; |
mmu_context_queue.size = NUM_USER_CONTEXT; |
for(index=0; index < NUM_USER_CONTEXT ;index++) { |
mmu_context_queue.elements[index] = index+FIRST_USER_CONTEXT; |
} |
|
/* Setup guard pages for the Paca's */ |
for (index = 0; index < NR_CPUS; index++) { |
lpaca = &paca[index]; |
guard_page = ((unsigned long)lpaca) + 0x1000; |
ppc_md.hpte_updateboltedpp(PP_RXRX, guard_page); |
} |
|
ppc_md.progress("MM:exit", 0x211); |
} |
|
/* |
* Initialize the bootmem system and give it all the memory we |
* have available. |
*/ |
void __init do_init_bootmem(void) |
{ |
unsigned long i; |
unsigned long start, bootmap_pages; |
unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; |
|
PPCDBG(PPCDBG_MMINIT, "do_init_bootmem: start\n"); |
/* |
* Find an area to use for the bootmem bitmap. Calculate the size of |
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. |
* Add 1 additional page in case the address isn't page-aligned. |
*/ |
bootmap_pages = bootmem_bootmap_pages(total_pages); |
|
start = (unsigned long)__a2p(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE)); |
if (start == 0) { |
udbg_printf("do_init_bootmem: failed to allocate a bitmap.\n"); |
udbg_printf("\tbootmap_pages = 0x%lx.\n", bootmap_pages); |
PPCDBG_ENTER_DEBUGGER(); |
} |
|
PPCDBG(PPCDBG_MMINIT, "\tstart = 0x%lx\n", start); |
PPCDBG(PPCDBG_MMINIT, "\tbootmap_pages = 0x%lx\n", bootmap_pages); |
PPCDBG(PPCDBG_MMINIT, "\tphysicalMemorySize = 0x%lx\n", systemcfg->physicalMemorySize); |
|
boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); |
PPCDBG(PPCDBG_MMINIT, "\tboot_mapsize = 0x%lx\n", boot_mapsize); |
|
/* add all physical memory to the bootmem map */ |
for (i=0; i < lmb.memory.cnt; i++) { |
unsigned long physbase, size; |
unsigned long type = lmb.memory.region[i].type; |
|
if ( type != LMB_MEMORY_AREA ) |
continue; |
|
physbase = lmb.memory.region[i].physbase; |
size = lmb.memory.region[i].size; |
free_bootmem(physbase, size); |
} |
/* reserve the sections we're already using */ |
for (i=0; i < lmb.reserved.cnt; i++) { |
unsigned long physbase = lmb.reserved.region[i].physbase; |
unsigned long size = lmb.reserved.region[i].size; |
#if 0 /* PPPBBB */ |
if ( (physbase == 0) && (size < (16<<20)) ) { |
size = 16 << 20; |
} |
#endif |
reserve_bootmem(physbase, size); |
} |
|
PPCDBG(PPCDBG_MMINIT, "do_init_bootmem: end\n"); |
} |
|
/* |
* paging_init() sets up the page tables - in fact we've already done this. |
*/ |
void __init paging_init(void) |
{ |
unsigned long zones_size[MAX_NR_ZONES], i; |
|
/* |
* All pages are DMA-able so we put them all in the DMA zone. |
*/ |
zones_size[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT; |
for (i = 1; i < MAX_NR_ZONES; i++) |
zones_size[i] = 0; |
free_area_init(zones_size); |
} |
|
void initialize_paca_hardware_interrupt_stack(void); |
|
void __init mem_init(void) |
{ |
extern char *sysmap; |
extern unsigned long sysmap_size; |
unsigned long addr; |
int codepages = 0; |
int datapages = 0; |
int initpages = 0; |
unsigned long va_rtas_base = (unsigned long)__va(rtas.base); |
|
max_mapnr = max_low_pfn; |
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); |
num_physpages = max_mapnr; /* RAM is assumed contiguous */ |
|
totalram_pages += free_all_bootmem(); |
|
ifppcdebug(PPCDBG_MMINIT) { |
udbg_printf("mem_init: totalram_pages = 0x%lx\n", totalram_pages); |
udbg_printf("mem_init: va_rtas_base = 0x%lx\n", va_rtas_base); |
udbg_printf("mem_init: va_rtas_end = 0x%lx\n", PAGE_ALIGN(va_rtas_base+rtas.size)); |
udbg_printf("mem_init: pinned start = 0x%lx\n", __va(0)); |
udbg_printf("mem_init: pinned end = 0x%lx\n", PAGE_ALIGN(klimit)); |
} |
|
if ( sysmap_size ) |
for (addr = (unsigned long)sysmap; |
addr < PAGE_ALIGN((unsigned long)sysmap+sysmap_size) ; |
addr += PAGE_SIZE) |
SetPageReserved(mem_map + MAP_NR(addr)); |
|
for (addr = KERNELBASE; addr <= (unsigned long)__va(lmb_end_of_DRAM()); |
addr += PAGE_SIZE) { |
if (!PageReserved(mem_map + MAP_NR(addr))) |
continue; |
if (addr < (ulong) etext) |
codepages++; |
|
else if (addr >= (unsigned long)&__init_begin |
&& addr < (unsigned long)&__init_end) |
initpages++; |
else if (addr < klimit) |
datapages++; |
} |
|
printk("Memory: %luk available (%dk kernel code, %dk data, %dk init) [%08lx,%08lx]\n", |
(unsigned long)nr_free_pages()<< (PAGE_SHIFT-10), |
codepages<< (PAGE_SHIFT-10), datapages<< (PAGE_SHIFT-10), |
initpages<< (PAGE_SHIFT-10), |
PAGE_OFFSET, (unsigned long)__va(lmb_end_of_DRAM())); |
mem_init_done = 1; |
|
/* set the last page of each hardware interrupt stack to be protected */ |
initialize_paca_hardware_interrupt_stack(); |
|
#ifdef CONFIG_PPC_ISERIES |
create_virtual_bus_tce_table(); |
#endif |
} |
|
/* |
* This is called when a page has been modified by the kernel. |
* It just marks the page as not i-cache clean. We do the i-cache |
* flush later when the page is given to a user process, if necessary. |
*/ |
void flush_dcache_page(struct page *page) |
{ |
clear_bit(PG_arch_1, &page->flags); |
} |
|
void flush_icache_page(struct vm_area_struct *vma, struct page *page) |
{ |
if (page->mapping && !PageReserved(page) |
&& !test_bit(PG_arch_1, &page->flags)) { |
__flush_dcache_icache(page_address(page)); |
set_bit(PG_arch_1, &page->flags); |
} |
} |
|
void clear_user_page(void *page, unsigned long vaddr) |
{ |
clear_page(page); |
__flush_dcache_icache(page); |
} |
|
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr) |
{ |
copy_page(vto, vfrom); |
__flush_dcache_icache(vto); |
} |
|
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, |
unsigned long addr, int len) |
{ |
unsigned long maddr; |
|
maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK); |
flush_icache_range(maddr, maddr + len); |
} |
|
#ifdef CONFIG_SHARED_MEMORY_ADDRESSING |
static spinlock_t shared_malloc_lock = SPIN_LOCK_UNLOCKED; |
struct vm_struct *shared_list = NULL; |
static struct vm_struct *get_shared_area(unsigned long size, |
unsigned long flags); |
|
void *shared_malloc(unsigned long size) |
{ |
pgprot_t prot; |
struct vm_struct *area; |
unsigned long ea; |
|
spin_lock(&shared_malloc_lock); |
|
printk("shared_malloc1 (no _PAGE_USER): addr = 0x%lx, size = 0x%lx\n", |
SMALLOC_START, size); |
|
area = get_shared_area(size, 0); |
if (!area) { |
spin_unlock(&shared_malloc_lock); |
return NULL; |
} |
|
ea = (unsigned long) area->addr; |
|
prot = __pgprot(pgprot_val(PAGE_KERNEL)); |
if (vmalloc_area_pages(VMALLOC_VMADDR(ea), size, GFP_KERNEL, prot)) { |
spin_unlock(&shared_malloc_lock); |
return NULL; |
} |
|
printk("shared_malloc: addr = 0x%lx, size = 0x%lx\n", ea, size); |
|
spin_unlock(&shared_malloc_lock); |
return(ea); |
} |
|
void shared_free(void *addr) |
{ |
struct vm_struct **p, *tmp; |
|
if (!addr) |
return; |
if ((PAGE_SIZE-1) & (unsigned long) addr) { |
printk(KERN_ERR "Trying to shared_free() bad address (%p)\n", |
addr); |
return; |
} |
spin_lock(&shared_malloc_lock); |
|
printk("shared_free: addr = 0x%p\n", addr); |
|
/* Scan the memory list for an entry matching |
* the address to be freed, get the size (in bytes) |
* and free the entry. The list lock is not dropped |
* until the page table entries are removed. |
*/ |
for(p = &shared_list; (tmp = *p); p = &tmp->next ) { |
if (tmp->addr == addr) { |
*p = tmp->next; |
vmfree_area_pages(VMALLOC_VMADDR(tmp->addr),tmp->size); |
spin_unlock(&shared_malloc_lock); |
kfree(tmp); |
return; |
} |
} |
|
spin_unlock(&shared_malloc_lock); |
printk("shared_free: error\n"); |
} |
|
static struct vm_struct *get_shared_area(unsigned long size, |
unsigned long flags) |
{ |
unsigned long addr; |
struct vm_struct **p, *tmp, *area; |
|
area = (struct vm_struct *) kmalloc(sizeof(*area), GFP_KERNEL); |
if (!area) return NULL; |
|
size += PAGE_SIZE; |
if (!size) { |
kfree (area); |
return NULL; |
} |
|
addr = SMALLOC_START; |
for (p = &shared_list; (tmp = *p) ; p = &tmp->next) { |
if ((size + addr) < addr) { |
kfree(area); |
return NULL; |
} |
if (size + addr <= (unsigned long) tmp->addr) |
break; |
addr = tmp->size + (unsigned long) tmp->addr; |
if (addr > SMALLOC_END-size) { |
kfree(area); |
return NULL; |
} |
} |
|
if (addr + size > SMALLOC_END) { |
kfree(area); |
return NULL; |
} |
area->flags = flags; |
area->addr = (void *)addr; |
area->size = size; |
area->next = *p; |
*p = area; |
return area; |
} |
|
int shared_task_mark(void) |
{ |
current->thread.flags |= PPC_FLAG_SHARED; |
printk("current->thread.flags = 0x%lx\n", current->thread.flags); |
|
return 0; |
} |
|
int shared_task_unmark() |
{ |
if(current->thread.flags & PPC_FLAG_SHARED) { |
current->thread.flags &= (~PPC_FLAG_SHARED); |
return 0; |
} else { |
return -1; |
} |
} |
#endif |
/extable.c
0,0 → 1,103
/* |
* linux/arch/ppc64/mm/extable.c |
* |
* from linux/arch/i386/mm/extable.c |
* |
* This program is free software; you can redistribute it and/or |
* modify it under the terms of the GNU General Public License |
* as published by the Free Software Foundation; either version |
* 2 of the License, or (at your option) any later version. |
*/ |
|
#include <linux/config.h> |
#include <linux/module.h> |
#include <linux/spinlock.h> |
#include <asm/uaccess.h> |
|
extern struct exception_table_entry __start___ex_table[]; |
extern struct exception_table_entry __stop___ex_table[]; |
|
/* |
* The exception table needs to be sorted because we use the macros |
* which put things into the exception table in a variety of segments |
* as well as the init segment and the main kernel text segment. |
*/ |
static inline void |
sort_ex_table(struct exception_table_entry *start, |
struct exception_table_entry *finish) |
{ |
struct exception_table_entry el, *p, *q; |
|
/* insertion sort */ |
for (p = start + 1; p < finish; ++p) { |
/* start .. p-1 is sorted */ |
if (p[0].insn < p[-1].insn) { |
/* move element p down to its right place */ |
el = *p; |
q = p; |
do { |
/* el comes before q[-1], move q[-1] up one */ |
q[0] = q[-1]; |
--q; |
} while (q > start && el.insn < q[-1].insn); |
*q = el; |
} |
} |
} |
|
void |
sort_exception_table(void) |
{ |
sort_ex_table(__start___ex_table, __stop___ex_table); |
} |
|
static inline unsigned long |
search_one_table(const struct exception_table_entry *first, |
const struct exception_table_entry *last, |
unsigned long value) |
{ |
while (first <= last) { |
const struct exception_table_entry *mid; |
long diff; |
|
mid = (last - first) / 2 + first; |
diff = mid->insn - value; |
if (diff == 0) |
return mid->fixup; |
else if (diff < 0) |
first = mid+1; |
else |
last = mid-1; |
} |
return 0; |
} |
|
extern spinlock_t modlist_lock; |
|
unsigned long |
search_exception_table(unsigned long addr) |
{ |
unsigned long ret = 0; |
|
#ifndef CONFIG_MODULES |
/* There is only the kernel to search. */ |
ret = search_one_table(__start___ex_table, __stop___ex_table-1, addr); |
return ret; |
#else |
unsigned long flags; |
/* The kernel is the last "module" -- no need to treat it special. */ |
struct module *mp; |
|
spin_lock_irqsave(&modlist_lock, flags); |
for (mp = module_list; mp != NULL; mp = mp->next) { |
if (mp->ex_table_start == NULL || !(mp->flags&(MOD_RUNNING|MOD_INITIALIZING))) |
continue; |
ret = search_one_table(mp->ex_table_start, |
mp->ex_table_end - 1, addr); |
if (ret) |
break; |
} |
spin_unlock_irqrestore(&modlist_lock, flags); |
return ret; |
#endif |
} |
/fault.c
0,0 → 1,311
/* |
* arch/ppc/mm/fault.c |
* |
* PowerPC version |
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
* |
* Derived from "arch/i386/mm/fault.c" |
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
* |
* Modified by Cort Dougan and Paul Mackerras. |
* |
* Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) |
* |
* This program is free software; you can redistribute it and/or |
* modify it under the terms of the GNU General Public License |
* as published by the Free Software Foundation; either version |
* 2 of the License, or (at your option) any later version. |
*/ |
|
#include <linux/config.h> |
#include <linux/signal.h> |
#include <linux/sched.h> |
#include <linux/kernel.h> |
#include <linux/errno.h> |
#include <linux/string.h> |
#include <linux/types.h> |
#include <linux/ptrace.h> |
#include <linux/mman.h> |
#include <linux/mm.h> |
#include <linux/interrupt.h> |
|
#include <asm/page.h> |
#include <asm/pgtable.h> |
#include <asm/mmu.h> |
#include <asm/mmu_context.h> |
#include <asm/system.h> |
#include <asm/uaccess.h> |
|
#include <asm/ppcdebug.h> |
|
#if defined(CONFIG_KDB) |
#include <linux/kdb.h> |
#endif |
|
#if defined(CONFIG_XMON) || defined(CONFIG_KGDB) || defined(CONFIG_KDB) |
extern void (*debugger)(struct pt_regs *); |
extern void (*debugger_fault_handler)(struct pt_regs *); |
extern int (*debugger_dabr_match)(struct pt_regs *); |
int debugger_kernel_faults = 1; |
#endif |
|
extern void die_if_kernel(char *, struct pt_regs *, long); |
void bad_page_fault(struct pt_regs *, unsigned long); |
void do_page_fault(struct pt_regs *, unsigned long, unsigned long); |
|
#ifdef CONFIG_PPCDBG |
extern unsigned long get_srr0(void); |
extern unsigned long get_srr1(void); |
#endif |
|
/* |
* Check whether the instruction at regs->nip is a store using |
* an update addressing form which will update r1. |
*/ |
static int store_updates_sp(struct pt_regs *regs) |
{ |
unsigned int inst; |
|
if (get_user(inst, (unsigned int *)regs->nip)) |
return 0; |
/* check for 1 in the rA field */ |
if (((inst >> 16) & 0x1f) != 1) |
return 0; |
/* check major opcode */ |
switch (inst >> 26) { |
case 37: /* stwu */ |
case 39: /* stbu */ |
case 45: /* sthu */ |
case 53: /* stfsu */ |
case 55: /* stfdu */ |
return 1; |
case 62: /* std or stdu */ |
return (inst & 3) == 1; |
case 31: |
/* check minor opcode */ |
switch ((inst >> 1) & 0x3ff) { |
case 181: /* stdux */ |
case 183: /* stwux */ |
case 247: /* stbux */ |
case 439: /* sthux */ |
case 695: /* stfsux */ |
case 759: /* stfdux */ |
return 1; |
} |
} |
return 0; |
} |
|
/* |
* The error_code parameter is |
* - DSISR for a non-SLB data access fault, |
* - SRR1 & 0x08000000 for a non-SLB instruction access fault |
* - 0 any SLB fault. |
*/ |
void do_page_fault(struct pt_regs *regs, unsigned long address, |
unsigned long error_code) |
{ |
struct vm_area_struct * vma, * prev_vma; |
struct mm_struct *mm = current->mm; |
siginfo_t info; |
unsigned long code = SEGV_MAPERR; |
unsigned long is_write = error_code & 0x02000000; |
unsigned long mm_fault_return; |
|
#if defined(CONFIG_XMON) || defined(CONFIG_KGDB) |
if (debugger_fault_handler && (regs->trap == 0x300 || |
regs->trap == 0x380)) { |
debugger_fault_handler(regs); |
return; |
} |
#endif /* CONFIG_XMON || CONFIG_KGDB */ |
|
/* On a kernel SLB miss we can only check for a valid exception entry */ |
if (!user_mode(regs) && (regs->trap == 0x380)) { |
bad_page_fault(regs, address); |
return; |
} |
|
#if defined(CONFIG_XMON) || defined(CONFIG_KGDB) || defined(CONFIG_KDB) |
if (error_code & 0x00400000) { |
/* DABR match */ |
if (debugger_dabr_match(regs)) |
return; |
} |
#endif /* CONFIG_XMON || CONFIG_KGDB || CONFIG_KDB */ |
|
if (in_interrupt() || mm == NULL) { |
bad_page_fault(regs, address); |
return; |
} |
down_read(&mm->mmap_sem); |
vma = find_vma(mm, address); |
PPCDBG(PPCDBG_MM, "\tdo_page_fault: vma = 0x%16.16lx\n", vma); |
if (!vma) { |
PPCDBG(PPCDBG_MM, "\tdo_page_fault: !vma\n"); |
goto bad_area; |
} |
PPCDBG(PPCDBG_MM, "\tdo_page_fault: vma->vm_start = 0x%16.16lx, vma->vm_flags = 0x%16.16lx\n", vma->vm_start, vma->vm_flags); |
if (vma->vm_start <= address) { |
goto good_area; |
} |
if (!(vma->vm_flags & VM_GROWSDOWN)) { |
PPCDBG(PPCDBG_MM, "\tdo_page_fault: vma->vm_flags = %lx, %lx\n", vma->vm_flags, VM_GROWSDOWN); |
goto bad_area; |
} |
|
/* |
* N.B. The POWER/Open ABI allows programs to access up to |
* 288 bytes below the stack pointer. |
* The kernel signal delivery code writes up to about 1.5kB |
* below the stack pointer (r1) before decrementing it. |
* The exec code can write slightly over 640kB to the stack |
* before setting the user r1. Thus we allow the stack to |
* expand to 1MB without further checks. |
*/ |
if (address + 0x100000 < vma->vm_end) { |
/* get user regs even if this fault is in kernel mode */ |
struct pt_regs *uregs = current->thread.regs; |
if (uregs == NULL) |
goto bad_area; |
|
/* |
* A user-mode access to an address a long way below |
* the stack pointer is only valid if the instruction |
* is one which would update the stack pointer to the |
* address accessed if the instruction completed, |
* i.e. either stwu rs,n(r1) or stwux rs,r1,rb |
* (or the byte, halfword, float or double forms). |
* |
* If we don't check this then any write to the area |
* between the last mapped region and the stack will |
* expand the stack rather than segfaulting. |
*/ |
if (address + 2048 < uregs->gpr[1] |
&& (!user_mode(regs) || !store_updates_sp(regs))) |
goto bad_area; |
} |
|
if (expand_stack(vma, address)) { |
PPCDBG(PPCDBG_MM, "\tdo_page_fault: expand_stack\n"); |
goto bad_area; |
} |
|
good_area: |
code = SEGV_ACCERR; |
|
/* a write */ |
if (is_write) { |
if (!(vma->vm_flags & VM_WRITE)) |
goto bad_area; |
/* a read */ |
} else { |
/* protection fault */ |
if (error_code & 0x08000000) |
goto bad_area; |
if (!(vma->vm_flags & (VM_READ | VM_EXEC))) |
goto bad_area; |
} |
|
survive: |
/* |
* If for any reason at all we couldn't handle the fault, |
* make sure we exit gracefully rather than endlessly redo |
* the fault. |
*/ |
PPCDBG(PPCDBG_MM, "\tdo_page_fault: calling handle_mm_fault\n"); |
mm_fault_return = handle_mm_fault(mm, vma, address, is_write); |
PPCDBG(PPCDBG_MM, "\tdo_page_fault: handle_mm_fault = 0x%lx\n", |
mm_fault_return); |
switch(mm_fault_return) { |
case 1: |
current->min_flt++; |
break; |
case 2: |
current->maj_flt++; |
break; |
case 0: |
goto do_sigbus; |
default: |
goto out_of_memory; |
} |
|
up_read(&mm->mmap_sem); |
return; |
|
bad_area: |
up_read(&mm->mmap_sem); |
|
/* User mode accesses cause a SIGSEGV */ |
if (user_mode(regs)) { |
info.si_signo = SIGSEGV; |
info.si_errno = 0; |
info.si_code = code; |
info.si_addr = (void *) address; |
PPCDBG(PPCDBG_SIGNAL, "Bad addr in user: 0x%lx\n", address); |
#ifdef CONFIG_XMON |
ifppcdebug(PPCDBG_SIGNALXMON) |
PPCDBG_ENTER_DEBUGGER_REGS(regs); |
#endif |
|
force_sig_info(SIGSEGV, &info, current); |
return; |
} |
|
bad_page_fault(regs, address); |
return; |
|
/* |
* We ran out of memory, or some other thing happened to us that made |
* us unable to handle the page fault gracefully. |
*/ |
out_of_memory: |
up_read(&mm->mmap_sem); |
if (current->pid == 1) { |
yield(); |
down_read(&mm->mmap_sem); |
goto survive; |
} |
printk("VM: killing process %s\n", current->comm); |
if (user_mode(regs)) |
do_exit(SIGKILL); |
bad_page_fault(regs, address); |
return; |
|
do_sigbus: |
up_read(&mm->mmap_sem); |
info.si_signo = SIGBUS; |
info.si_errno = 0; |
info.si_code = BUS_ADRERR; |
info.si_addr = (void *)address; |
force_sig_info (SIGBUS, &info, current); |
if (!user_mode(regs)) |
bad_page_fault(regs, address); |
} |
|
/* |
* bad_page_fault is called when we have a bad access from the kernel. |
* It is called from do_page_fault above and from some of the procedures |
* in traps.c. |
*/ |
void |
bad_page_fault(struct pt_regs *regs, unsigned long address) |
{ |
unsigned long fixup; |
|
/* Are we prepared to handle this fault? */ |
if ((fixup = search_exception_table(regs->nip)) != 0) { |
regs->nip = fixup; |
return; |
} |
|
/* kernel has accessed a bad area */ |
show_regs(regs); |
#if defined(CONFIG_XMON) || defined(CONFIG_KGDB) || defined(CONFIG_KDB) |
if (debugger_kernel_faults) |
debugger(regs); |
#endif |
print_backtrace( (unsigned long *)regs->gpr[1] ); |
panic("kernel access of bad area pc %lx lr %lx address %lX tsk %s/%d", |
regs->nip,regs->link,address,current->comm,current->pid); |
} |
/Makefile
0,0 → 1,16
# |
# Makefile for the linux ppc-specific parts of the memory manager. |
# |
# Note! Dependencies are done automagically by 'make dep', which also |
# removes any old dependencies. DON'T put your own dependencies here |
# unless it's something special (ie not a .c file). |
# |
# Note 2! The CFLAGS definition is now in the main makefile... |
|
EXTRA_CFLAGS = -mno-minimal-toc |
|
O_TARGET := mm.o |
|
obj-y := fault.o init.o extable.o imalloc.o |
|
include $(TOPDIR)/Rules.make |