OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /or1k/trunk/linux/linux-2.4/net/appletalk
    from Rev 1275 to Rev 1765
    Reverse comparison

Rev 1275 → Rev 1765

/aarp.c
0,0 → 1,986
/*
* AARP: An implementation of the AppleTalk AARP protocol for
* Ethernet 'ELAP'.
*
* Alan Cox <Alan.Cox@linux.org>
*
* This doesn't fit cleanly with the IP arp. Potentially we can use
* the generic neighbour discovery code to clean this up.
*
* FIXME:
* We ought to handle the retransmits with a single list and a
* separate fast timer for when it is needed.
* Use neighbour discovery code.
* Token Ring Support.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*
* References:
* Inside AppleTalk (2nd Ed).
* Fixes:
* Jaume Grau - flush caches on AARP_PROBE
* Rob Newberry - Added proxy AARP and AARP proc fs,
* moved probing from DDP module.
* Arnaldo C. Melo - don't mangle rx packets
*
*/
 
#include <linux/config.h>
#if defined(CONFIG_ATALK) || defined(CONFIG_ATALK_MODULE)
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/inet.h>
#include <linux/notifier.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <net/sock.h>
#include <net/datalink.h>
#include <net/psnap.h>
#include <linux/atalk.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/module.h>
 
int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME;
int sysctl_aarp_tick_time = AARP_TICK_TIME;
int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT;
int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME;
 
/* Lists of aarp entries */
struct aarp_entry {
/* These first two are only used for unresolved entries */
unsigned long last_sent; /* Last time we xmitted the aarp request */
struct sk_buff_head packet_queue; /* Queue of frames wait for resolution */
int status; /* Used for proxy AARP */
unsigned long expires_at; /* Entry expiry time */
struct at_addr target_addr; /* DDP Address */
struct net_device *dev; /* Device to use */
char hwaddr[6]; /* Physical i/f address of target/router */
unsigned short xmit_count; /* When this hits 10 we give up */
struct aarp_entry *next; /* Next entry in chain */
};
 
/* Hashed list of resolved, unresolved and proxy entries */
static struct aarp_entry *resolved[AARP_HASH_SIZE];
static struct aarp_entry *unresolved[AARP_HASH_SIZE];
static struct aarp_entry *proxies[AARP_HASH_SIZE];
static int unresolved_count;
 
/* One lock protects it all. */
static spinlock_t aarp_lock = SPIN_LOCK_UNLOCKED;
 
/* Used to walk the list and purge/kick entries. */
static struct timer_list aarp_timer;
 
/*
* Delete an aarp queue
*
* Must run under aarp_lock.
*/
static void __aarp_expire(struct aarp_entry *a)
{
skb_queue_purge(&a->packet_queue);
kfree(a);
}
 
/*
* Send an aarp queue entry request
*
* Must run under aarp_lock.
*/
static void __aarp_send_query(struct aarp_entry *a)
{
static char aarp_eth_multicast[ETH_ALEN] =
{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
struct net_device *dev = a->dev;
int len = dev->hard_header_len + sizeof(struct elapaarp) +
aarp_dl->header_length;
struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
struct at_addr *sat = atalk_find_dev_addr(dev);
struct elapaarp *eah;
if (!skb)
return;
 
if (!sat) {
kfree_skb(skb);
return;
}
/* Set up the buffer */
skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
eah = (struct elapaarp *)skb_put(skb,
sizeof(struct elapaarp));
skb->protocol = htons(ETH_P_ATALK);
skb->nh.raw = skb->h.raw = (void *) eah;
skb->dev = dev;
/* Set up the ARP */
eah->hw_type = htons(AARP_HW_TYPE_ETHERNET);
eah->pa_type = htons(ETH_P_ATALK);
eah->hw_len = ETH_ALEN;
eah->pa_len = AARP_PA_ALEN;
eah->function = htons(AARP_REQUEST);
memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
eah->pa_src_zero= 0;
eah->pa_src_net = sat->s_net;
eah->pa_src_node= sat->s_node;
memset(eah->hw_dst, '\0', ETH_ALEN);
eah->pa_dst_zero= 0;
eah->pa_dst_net = a->target_addr.s_net;
eah->pa_dst_node= a->target_addr.s_node;
/* Add ELAP headers and set target to the AARP multicast */
aarp_dl->datalink_header(aarp_dl, skb, aarp_eth_multicast);
 
/* Send it */
dev_queue_xmit(skb);
/* Update the sending count */
a->xmit_count++;
}
 
/* This runs under aarp_lock and in softint context, so only atomic memory
* allocations can be used. */
static void aarp_send_reply(struct net_device *dev, struct at_addr *us,
struct at_addr *them, unsigned char *sha)
{
int len = dev->hard_header_len + sizeof(struct elapaarp) +
aarp_dl->header_length;
struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
struct elapaarp *eah;
if (!skb)
return;
/* Set up the buffer */
skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
eah = (struct elapaarp *)skb_put(skb,
sizeof(struct elapaarp));
skb->protocol = htons(ETH_P_ATALK);
skb->nh.raw = skb->h.raw = (void *) eah;
skb->dev = dev;
/* Set up the ARP */
eah->hw_type = htons(AARP_HW_TYPE_ETHERNET);
eah->pa_type = htons(ETH_P_ATALK);
eah->hw_len = ETH_ALEN;
eah->pa_len = AARP_PA_ALEN;
eah->function = htons(AARP_REPLY);
memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
eah->pa_src_zero= 0;
eah->pa_src_net = us->s_net;
eah->pa_src_node= us->s_node;
if (!sha)
memset(eah->hw_dst, '\0', ETH_ALEN);
else
memcpy(eah->hw_dst, sha, ETH_ALEN);
eah->pa_dst_zero= 0;
eah->pa_dst_net = them->s_net;
eah->pa_dst_node= them->s_node;
/* Add ELAP headers and set target to the AARP multicast */
aarp_dl->datalink_header(aarp_dl, skb, sha);
/* Send it */
dev_queue_xmit(skb);
}
 
/*
* Send probe frames. Called from aarp_probe_network and
* aarp_proxy_probe_network.
*/
 
void aarp_send_probe(struct net_device *dev, struct at_addr *us)
{
int len = dev->hard_header_len + sizeof(struct elapaarp) +
aarp_dl->header_length;
struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
static char aarp_eth_multicast[ETH_ALEN] =
{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
struct elapaarp *eah;
 
if (!skb)
return;
 
/* Set up the buffer */
skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
eah = (struct elapaarp *)skb_put(skb,
sizeof(struct elapaarp));
skb->protocol = htons(ETH_P_ATALK);
skb->nh.raw = skb->h.raw = (void *) eah;
skb->dev = dev;
 
/* Set up the ARP */
eah->hw_type = htons(AARP_HW_TYPE_ETHERNET);
eah->pa_type = htons(ETH_P_ATALK);
eah->hw_len = ETH_ALEN;
eah->pa_len = AARP_PA_ALEN;
eah->function = htons(AARP_PROBE);
 
memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
 
eah->pa_src_zero= 0;
eah->pa_src_net = us->s_net;
eah->pa_src_node= us->s_node;
 
memset(eah->hw_dst, '\0', ETH_ALEN);
 
eah->pa_dst_zero= 0;
eah->pa_dst_net = us->s_net;
eah->pa_dst_node= us->s_node;
 
/* Add ELAP headers and set target to the AARP multicast */
aarp_dl->datalink_header(aarp_dl, skb, aarp_eth_multicast);
/* Send it */
dev_queue_xmit(skb);
}
/*
* Handle an aarp timer expire
*
* Must run under the aarp_lock.
*/
 
static void __aarp_expire_timer(struct aarp_entry **n)
{
struct aarp_entry *t;
 
while (*n)
/* Expired ? */
if (time_after(jiffies, (*n)->expires_at)) {
t = *n;
*n = (*n)->next;
__aarp_expire(t);
} else
n = &((*n)->next);
}
 
/*
* Kick all pending requests 5 times a second.
*
* Must run under the aarp_lock.
*/
static void __aarp_kick(struct aarp_entry **n)
{
struct aarp_entry *t;
 
while (*n)
/* Expired: if this will be the 11th tx, we delete instead. */
if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) {
t = *n;
*n = (*n)->next;
__aarp_expire(t);
} else {
__aarp_send_query(*n);
n = &((*n)->next);
}
}
 
/*
* A device has gone down. Take all entries referring to the device
* and remove them.
*
* Must run under the aarp_lock.
*/
static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev)
{
struct aarp_entry *t;
 
while (*n)
if ((*n)->dev == dev) {
t = *n;
*n = (*n)->next;
__aarp_expire(t);
} else
n = &((*n)->next);
}
/* Handle the timer event */
static void aarp_expire_timeout(unsigned long unused)
{
int ct;
 
spin_lock_bh(&aarp_lock);
 
for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
__aarp_expire_timer(&resolved[ct]);
__aarp_kick(&unresolved[ct]);
__aarp_expire_timer(&unresolved[ct]);
__aarp_expire_timer(&proxies[ct]);
}
 
spin_unlock_bh(&aarp_lock);
mod_timer(&aarp_timer, jiffies +
(unresolved_count ? sysctl_aarp_tick_time :
sysctl_aarp_expiry_time));
}
 
/* Network device notifier chain handler. */
static int aarp_device_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
int ct;
 
if (event == NETDEV_DOWN) {
spin_lock_bh(&aarp_lock);
 
for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
__aarp_expire_device(&resolved[ct], ptr);
__aarp_expire_device(&unresolved[ct], ptr);
__aarp_expire_device(&proxies[ct], ptr);
}
 
spin_unlock_bh(&aarp_lock);
}
return NOTIFY_DONE;
}
 
/*
* Create a new aarp entry. This must use GFP_ATOMIC because it
* runs while holding spinlocks.
*/
static struct aarp_entry *aarp_alloc(void)
{
struct aarp_entry *a = kmalloc(sizeof(struct aarp_entry), GFP_ATOMIC);
 
if (a)
skb_queue_head_init(&a->packet_queue);
return a;
}
 
/*
* Find an entry. We might return an expired but not yet purged entry. We
* don't care as it will do no harm.
*
* This must run under the aarp_lock.
*/
static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list,
struct net_device *dev,
struct at_addr *sat)
{
while (list) {
if (list->target_addr.s_net == sat->s_net &&
list->target_addr.s_node == sat->s_node &&
list->dev == dev)
break;
list = list->next;
}
 
return list;
}
 
/* Called from the DDP code, and thus must be exported. */
void aarp_proxy_remove(struct net_device *dev, struct at_addr *sa)
{
int hash = sa->s_node % (AARP_HASH_SIZE - 1);
struct aarp_entry *a;
 
spin_lock_bh(&aarp_lock);
 
a = __aarp_find_entry(proxies[hash], dev, sa);
if (a)
a->expires_at = jiffies - 1;
 
spin_unlock_bh(&aarp_lock);
}
 
/* This must run under aarp_lock. */
static struct at_addr *__aarp_proxy_find(struct net_device *dev,
struct at_addr *sa)
{
int hash = sa->s_node % (AARP_HASH_SIZE - 1);
struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa);
 
return a ? sa : NULL;
}
 
/*
* Probe a Phase 1 device or a device that requires its Net:Node to
* be set via an ioctl.
*/
void aarp_send_probe_phase1(struct atalk_iface *iface)
{
struct ifreq atreq;
struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr;
 
sa->sat_addr.s_node = iface->address.s_node;
sa->sat_addr.s_net = ntohs(iface->address.s_net);
 
/* We pass the Net:Node to the drivers/cards by a Device ioctl. */
if (!(iface->dev->do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) {
(void)iface->dev->do_ioctl(iface->dev, &atreq, SIOCGIFADDR);
if (iface->address.s_net != htons(sa->sat_addr.s_net) ||
iface->address.s_node != sa->sat_addr.s_node)
iface->status |= ATIF_PROBE_FAIL;
 
iface->address.s_net = htons(sa->sat_addr.s_net);
iface->address.s_node = sa->sat_addr.s_node;
}
}
 
 
void aarp_probe_network(struct atalk_iface *atif)
{
if (atif->dev->type == ARPHRD_LOCALTLK ||
atif->dev->type == ARPHRD_PPP)
aarp_send_probe_phase1(atif);
else {
unsigned int count;
 
for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
aarp_send_probe(atif->dev, &atif->address);
 
/* Defer 1/10th */
current->state = TASK_INTERRUPTIBLE;
schedule_timeout(HZ/10);
if (atif->status & ATIF_PROBE_FAIL)
break;
}
}
}
 
int aarp_proxy_probe_network(struct atalk_iface *atif, struct at_addr *sa)
{
int hash, retval = 1;
struct aarp_entry *entry;
unsigned int count;
/*
* we don't currently support LocalTalk or PPP for proxy AARP;
* if someone wants to try and add it, have fun
*/
if (atif->dev->type == ARPHRD_LOCALTLK)
return -EPROTONOSUPPORT;
if (atif->dev->type == ARPHRD_PPP)
return -EPROTONOSUPPORT;
/*
* create a new AARP entry with the flags set to be published --
* we need this one to hang around even if it's in use
*/
entry = aarp_alloc();
if (!entry)
return -ENOMEM;
entry->expires_at = -1;
entry->status = ATIF_PROBE;
entry->target_addr.s_node = sa->s_node;
entry->target_addr.s_net = sa->s_net;
entry->dev = atif->dev;
 
spin_lock_bh(&aarp_lock);
 
hash = sa->s_node % (AARP_HASH_SIZE - 1);
entry->next = proxies[hash];
proxies[hash] = entry;
for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
aarp_send_probe(atif->dev, sa);
 
/* Defer 1/10th */
current->state = TASK_INTERRUPTIBLE;
spin_unlock_bh(&aarp_lock);
schedule_timeout(HZ/10);
spin_lock_bh(&aarp_lock);
 
if (entry->status & ATIF_PROBE_FAIL)
break;
}
if (entry->status & ATIF_PROBE_FAIL) {
entry->expires_at = jiffies - 1; /* free the entry */
retval = -EADDRINUSE; /* return network full */
} else /* clear the probing flag */
entry->status &= ~ATIF_PROBE;
 
spin_unlock_bh(&aarp_lock);
return retval;
}
 
/* Send a DDP frame */
int aarp_send_ddp(struct net_device *dev,struct sk_buff *skb,
struct at_addr *sa, void *hwaddr)
{
static char ddp_eth_multicast[ETH_ALEN] =
{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
int hash;
struct aarp_entry *a;
skb->nh.raw = skb->data;
/* Check for LocalTalk first */
if (dev->type == ARPHRD_LOCALTLK) {
struct at_addr *at = atalk_find_dev_addr(dev);
struct ddpehdr *ddp = (struct ddpehdr *)skb->data;
int ft = 2;
/*
* Compressible ?
*
* IFF: src_net==dest_net==device_net
* (zero matches anything)
*/
if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) &&
(!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) {
skb_pull(skb, sizeof(struct ddpehdr) - 4);
 
/*
* The upper two remaining bytes are the port
* numbers we just happen to need. Now put the
* length in the lower two.
*/
*((__u16 *)skb->data) = htons(skb->len);
ft = 1;
}
/*
* Nice and easy. No AARP type protocols occur here
* so we can just shovel it out with a 3 byte LLAP header
*/
skb_push(skb, 3);
skb->data[0] = sa->s_node;
skb->data[1] = at->s_node;
skb->data[2] = ft;
skb->dev = dev;
goto sendit;
}
 
/* On a PPP link we neither compress nor aarp. */
if (dev->type == ARPHRD_PPP) {
skb->protocol = htons(ETH_P_PPPTALK);
skb->dev = dev;
goto sendit;
}
/* Non ELAP we cannot do. */
if (dev->type != ARPHRD_ETHER)
return -1;
 
skb->dev = dev;
skb->protocol = htons(ETH_P_ATALK);
hash = sa->s_node % (AARP_HASH_SIZE - 1);
/* Do we have a resolved entry? */
if (sa->s_node == ATADDR_BCAST) {
ddp_dl->datalink_header(ddp_dl, skb, ddp_eth_multicast);
goto sendit;
}
 
spin_lock_bh(&aarp_lock);
a = __aarp_find_entry(resolved[hash], dev, sa);
 
if (a) { /* Return 1 and fill in the address */
a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10);
ddp_dl->datalink_header(ddp_dl, skb, a->hwaddr);
spin_unlock_bh(&aarp_lock);
goto sendit;
}
 
/* Do we have an unresolved entry: This is the less common path */
a = __aarp_find_entry(unresolved[hash], dev, sa);
if (a) { /* Queue onto the unresolved queue */
skb_queue_tail(&a->packet_queue, skb);
spin_unlock_bh(&aarp_lock);
return 0;
}
 
/* Allocate a new entry */
a = aarp_alloc();
if (!a) {
/* Whoops slipped... good job it's an unreliable protocol 8) */
spin_unlock_bh(&aarp_lock);
return -1;
}
 
/* Set up the queue */
skb_queue_tail(&a->packet_queue, skb);
a->expires_at = jiffies + sysctl_aarp_resolve_time;
a->dev = dev;
a->next = unresolved[hash];
a->target_addr = *sa;
a->xmit_count = 0;
unresolved[hash] = a;
unresolved_count++;
 
/* Send an initial request for the address */
__aarp_send_query(a);
 
/*
* Switch to fast timer if needed (That is if this is the
* first unresolved entry to get added)
*/
 
if (unresolved_count == 1)
mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time);
 
/* Now finally, it is safe to drop the lock. */
spin_unlock_bh(&aarp_lock);
 
/* Tell the ddp layer we have taken over for this frame. */
return 0;
 
sendit: if (skb->sk)
skb->priority = skb->sk->priority;
dev_queue_xmit(skb);
return 1;
}
 
/*
* An entry in the aarp unresolved queue has become resolved. Send
* all the frames queued under it.
*
* Must run under aarp_lock.
*/
static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a,
int hash)
{
struct sk_buff *skb;
 
while (*list)
if (*list == a) {
unresolved_count--;
*list = a->next;
 
/* Move into the resolved list */
a->next = resolved[hash];
resolved[hash] = a;
 
/* Kick frames off */
while ((skb = skb_dequeue(&a->packet_queue)) != NULL) {
a->expires_at = jiffies +
sysctl_aarp_expiry_time * 10;
ddp_dl->datalink_header(ddp_dl, skb, a->hwaddr);
if (skb->sk)
skb->priority = skb->sk->priority;
dev_queue_xmit(skb);
}
} else
list = &((*list)->next);
}
 
/*
* This is called by the SNAP driver whenever we see an AARP SNAP
* frame. We currently only support Ethernet.
*/
static int aarp_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt)
{
struct elapaarp *ea = (struct elapaarp *)skb->h.raw;
int hash, ret = 0;
__u16 function;
struct aarp_entry *a;
struct at_addr sa, *ma, da;
struct atalk_iface *ifa;
 
/* We only do Ethernet SNAP AARP. */
if (dev->type != ARPHRD_ETHER)
goto out0;
 
/* Frame size ok? */
if (!skb_pull(skb, sizeof(*ea)))
goto out0;
 
function = ntohs(ea->function);
 
/* Sanity check fields. */
if (function < AARP_REQUEST || function > AARP_PROBE ||
ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN ||
ea->pa_src_zero || ea->pa_dst_zero)
goto out0;
 
/* Looks good. */
hash = ea->pa_src_node % (AARP_HASH_SIZE - 1);
 
/* Build an address. */
sa.s_node = ea->pa_src_node;
sa.s_net = ea->pa_src_net;
 
/* Process the packet. Check for replies of me. */
ifa = atalk_find_dev(dev);
if (!ifa)
goto out1;
 
if (ifa->status & ATIF_PROBE &&
ifa->address.s_node == ea->pa_dst_node &&
ifa->address.s_net == ea->pa_dst_net) {
ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */
goto out1;
}
 
/* Check for replies of proxy AARP entries */
da.s_node = ea->pa_dst_node;
da.s_net = ea->pa_dst_net;
 
spin_lock_bh(&aarp_lock);
a = __aarp_find_entry(proxies[hash], dev, &da);
 
if (a && a->status & ATIF_PROBE) {
a->status |= ATIF_PROBE_FAIL;
/*
* we do not respond to probe or request packets for
* this address while we are probing this address
*/
goto unlock;
}
 
switch (function) {
case AARP_REPLY:
if (!unresolved_count) /* Speed up */
break;
 
/* Find the entry. */
a = __aarp_find_entry(unresolved[hash],dev,&sa);
if (!a || dev != a->dev)
break;
 
/* We can fill one in - this is good. */
memcpy(a->hwaddr,ea->hw_src,ETH_ALEN);
__aarp_resolved(&unresolved[hash],a,hash);
if (!unresolved_count)
mod_timer(&aarp_timer,
jiffies + sysctl_aarp_expiry_time);
break;
case AARP_REQUEST:
case AARP_PROBE:
/*
* If it is my address set ma to my address and
* reply. We can treat probe and request the
* same. Probe simply means we shouldn't cache
* the querying host, as in a probe they are
* proposing an address not using one.
*
* Support for proxy-AARP added. We check if the
* address is one of our proxies before we toss
* the packet out.
*/
sa.s_node = ea->pa_dst_node;
sa.s_net = ea->pa_dst_net;
 
/* See if we have a matching proxy. */
ma = __aarp_proxy_find(dev, &sa);
if (!ma)
ma = &ifa->address;
else { /* We need to make a copy of the entry. */
da.s_node = sa.s_node;
da.s_net = da.s_net;
ma = &da;
}
 
if (function == AARP_PROBE) {
/* A probe implies someone trying to get an
* address. So as a precaution flush any
* entries we have for this address. */
struct aarp_entry *a = __aarp_find_entry(
resolved[sa.s_node%(AARP_HASH_SIZE-1)],
skb->dev, &sa);
/* Make it expire next tick - that avoids us
* getting into a probe/flush/learn/probe/
* flush/learn cycle during probing of a slow
* to respond host addr. */
if (a) {
a->expires_at = jiffies - 1;
mod_timer(&aarp_timer, jiffies +
sysctl_aarp_tick_time);
}
}
 
if (sa.s_node != ma->s_node)
break;
 
if (sa.s_net && ma->s_net && sa.s_net != ma->s_net)
break;
 
sa.s_node = ea->pa_src_node;
sa.s_net = ea->pa_src_net;
/* aarp_my_address has found the address to use for us.
*/
aarp_send_reply(dev, ma, &sa, ea->hw_src);
break;
}
 
unlock: spin_unlock_bh(&aarp_lock);
out1: ret = 1;
out0: kfree_skb(skb);
return ret;
}
 
static struct notifier_block aarp_notifier = {
notifier_call: aarp_device_event,
};
 
static char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 };
 
void __init aarp_proto_init(void)
{
aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv);
if (!aarp_dl)
printk(KERN_CRIT "Unable to register AARP with SNAP.\n");
init_timer(&aarp_timer);
aarp_timer.function = aarp_expire_timeout;
aarp_timer.data = 0;
aarp_timer.expires = jiffies + sysctl_aarp_expiry_time;
add_timer(&aarp_timer);
register_netdevice_notifier(&aarp_notifier);
}
 
/* Remove the AARP entries associated with a device. */
void aarp_device_down(struct net_device *dev)
{
int ct;
 
spin_lock_bh(&aarp_lock);
 
for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
__aarp_expire_device(&resolved[ct], dev);
__aarp_expire_device(&unresolved[ct], dev);
__aarp_expire_device(&proxies[ct], dev);
}
 
spin_unlock_bh(&aarp_lock);
}
 
/* Called from proc fs */
static int aarp_get_info(char *buffer, char **start, off_t offset, int length)
{
/* we should dump all our AARP entries */
struct aarp_entry *entry;
int len, ct;
 
len = sprintf(buffer,
"%-10.10s %-10.10s%-18.18s%12.12s%12.12s xmit_count status\n",
"address", "device", "hw addr", "last_sent", "expires");
 
spin_lock_bh(&aarp_lock);
 
for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
for (entry = resolved[ct]; entry; entry = entry->next) {
len+= sprintf(buffer+len,"%6u:%-3u ",
(unsigned int)ntohs(entry->target_addr.s_net),
(unsigned int)(entry->target_addr.s_node));
len+= sprintf(buffer+len,"%-10.10s",
entry->dev->name);
len+= sprintf(buffer+len,"%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X",
(int)(entry->hwaddr[0] & 0x000000FF),
(int)(entry->hwaddr[1] & 0x000000FF),
(int)(entry->hwaddr[2] & 0x000000FF),
(int)(entry->hwaddr[3] & 0x000000FF),
(int)(entry->hwaddr[4] & 0x000000FF),
(int)(entry->hwaddr[5] & 0x000000FF));
len+= sprintf(buffer+len,"%12lu ""%12lu ",
(unsigned long)entry->last_sent,
(unsigned long)entry->expires_at);
len+=sprintf(buffer+len,"%10u",
(unsigned int)entry->xmit_count);
 
len+=sprintf(buffer+len," resolved\n");
}
}
 
for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
for (entry = unresolved[ct]; entry; entry = entry->next) {
len+= sprintf(buffer+len,"%6u:%-3u ",
(unsigned int)ntohs(entry->target_addr.s_net),
(unsigned int)(entry->target_addr.s_node));
len+= sprintf(buffer+len,"%-10.10s",
entry->dev->name);
len+= sprintf(buffer+len,"%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X",
(int)(entry->hwaddr[0] & 0x000000FF),
(int)(entry->hwaddr[1] & 0x000000FF),
(int)(entry->hwaddr[2] & 0x000000FF),
(int)(entry->hwaddr[3] & 0x000000FF),
(int)(entry->hwaddr[4] & 0x000000FF),
(int)(entry->hwaddr[5] & 0x000000FF));
len+= sprintf(buffer+len,"%12lu ""%12lu ",
(unsigned long)entry->last_sent,
(unsigned long)entry->expires_at);
len+=sprintf(buffer+len,"%10u",
(unsigned int)entry->xmit_count);
len+=sprintf(buffer+len," unresolved\n");
}
}
 
for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
for (entry = proxies[ct]; entry; entry = entry->next) {
len+= sprintf(buffer+len,"%6u:%-3u ",
(unsigned int)ntohs(entry->target_addr.s_net),
(unsigned int)(entry->target_addr.s_node));
len+= sprintf(buffer+len,"%-10.10s",
entry->dev->name);
len+= sprintf(buffer+len,"%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X",
(int)(entry->hwaddr[0] & 0x000000FF),
(int)(entry->hwaddr[1] & 0x000000FF),
(int)(entry->hwaddr[2] & 0x000000FF),
(int)(entry->hwaddr[3] & 0x000000FF),
(int)(entry->hwaddr[4] & 0x000000FF),
(int)(entry->hwaddr[5] & 0x000000FF));
len+= sprintf(buffer+len,"%12lu ""%12lu ",
(unsigned long)entry->last_sent,
(unsigned long)entry->expires_at);
len+=sprintf(buffer+len,"%10u",
(unsigned int)entry->xmit_count);
len+=sprintf(buffer+len," proxy\n");
}
}
 
spin_unlock_bh(&aarp_lock);
return len;
}
 
#ifdef MODULE
/* General module cleanup. Called from cleanup_module() in ddp.c. */
void aarp_cleanup_module(void)
{
del_timer(&aarp_timer);
unregister_netdevice_notifier(&aarp_notifier);
unregister_snap_client(aarp_snap_id);
}
#endif /* MODULE */
#ifdef CONFIG_PROC_FS
void aarp_register_proc_fs(void)
{
proc_net_create("aarp", 0, aarp_get_info);
}
 
void aarp_unregister_proc_fs(void)
{
proc_net_remove("aarp");
}
#endif
#endif /* CONFIG_ATALK || CONFIG_ATALK_MODULE */
MODULE_LICENSE("GPL");
/sysctl_net_atalk.c
0,0 → 1,61
/* -*- linux-c -*-
* sysctl_net_atalk.c: sysctl interface to net AppleTalk subsystem.
*
* Begun April 1, 1996, Mike Shaver.
* Added /proc/sys/net/atalk directory entry (empty =) ). [MS]
* Dynamic registration, added aarp entries. (5/30/97 Chris Horn)
*/
 
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
 
extern int sysctl_aarp_expiry_time;
extern int sysctl_aarp_tick_time;
extern int sysctl_aarp_retransmit_limit;
extern int sysctl_aarp_resolve_time;
 
#ifdef CONFIG_SYSCTL
static ctl_table atalk_table[] = {
{NET_ATALK_AARP_EXPIRY_TIME, "aarp-expiry-time",
&sysctl_aarp_expiry_time, sizeof(int), 0644, NULL, &proc_dointvec_jiffies},
{NET_ATALK_AARP_TICK_TIME, "aarp-tick-time",
&sysctl_aarp_tick_time, sizeof(int), 0644, NULL, &proc_dointvec_jiffies},
{NET_ATALK_AARP_RETRANSMIT_LIMIT, "aarp-retransmit-limit",
&sysctl_aarp_retransmit_limit, sizeof(int), 0644, NULL, &proc_dointvec},
{NET_ATALK_AARP_RESOLVE_TIME, "aarp-resolve-time",
&sysctl_aarp_resolve_time, sizeof(int), 0644, NULL, &proc_dointvec_jiffies},
{0}
};
 
static ctl_table atalk_dir_table[] = {
{NET_ATALK, "appletalk", NULL, 0, 0555, atalk_table},
{0}
};
 
static ctl_table atalk_root_table[] = {
{CTL_NET, "net", NULL, 0, 0555, atalk_dir_table},
{0}
};
 
static struct ctl_table_header *atalk_table_header;
 
void atalk_register_sysctl(void)
{
atalk_table_header = register_sysctl_table(atalk_root_table, 1);
}
 
void atalk_unregister_sysctl(void)
{
unregister_sysctl_table(atalk_table_header);
}
 
#else
void atalk_register_sysctl(void)
{
}
 
void atalk_unregister_sysctl(void)
{
}
#endif
/ddp.c
0,0 → 1,2024
/*
* DDP: An implementation of the AppleTalk DDP protocol for
* Ethernet 'ELAP'.
*
* Alan Cox <Alan.Cox@linux.org>
*
* With more than a little assistance from
*
* Wesley Craig <netatalk@umich.edu>
*
* Fixes:
* Michael Callahan : Made routing work
* Wesley Craig : Fix probing to listen to a
* passed node id.
* Alan Cox : Added send/recvmsg support
* Alan Cox : Moved at. to protinfo in
* socket.
* Alan Cox : Added firewall hooks.
* Alan Cox : Supports new ARPHRD_LOOPBACK
* Christer Weinigel : Routing and /proc fixes.
* Bradford Johnson : LocalTalk.
* Tom Dyas : Module support.
* Alan Cox : Hooks for PPP (based on the
* LocalTalk hook).
* Alan Cox : Posix bits
* Alan Cox/Mike Freeman : Possible fix to NBP problems
* Bradford Johnson : IP-over-DDP (experimental)
* Jay Schulist : Moved IP-over-DDP to its own
* driver file. (ipddp.c & ipddp.h)
* Jay Schulist : Made work as module with
* AppleTalk drivers, cleaned it.
* Rob Newberry : Added proxy AARP and AARP
* procfs, moved probing to AARP
* module.
* Adrian Sun/
* Michael Zuelsdorff : fix for net.0 packets. don't
* allow illegal ether/tokentalk
* port assignment. we lose a
* valid localtalk port as a
* result.
* Arnaldo C. de Melo : Cleanup, in preparation for
* shared skb support 8)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
 
#include <linux/config.h>
#if defined(CONFIG_ATALK) || defined(CONFIG_ATALK_MODULE)
#include <linux/module.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/notifier.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/route.h>
#include <linux/inet.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/termios.h> /* For TIOCOUTQ/INQ */
#include <net/datalink.h>
#include <net/p8022.h>
#include <net/psnap.h>
#include <net/sock.h>
#include <linux/ip.h>
#include <net/route.h>
#include <linux/atalk.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
 
#ifdef CONFIG_PROC_FS
extern void aarp_register_proc_fs(void);
extern void aarp_unregister_proc_fs(void);
#endif
 
extern void aarp_cleanup_module(void);
 
extern void aarp_probe_network(struct atalk_iface *atif);
extern int aarp_proxy_probe_network(struct atalk_iface *atif,
struct at_addr *sa);
extern void aarp_proxy_remove(struct net_device *dev, struct at_addr *sa);
 
#undef APPLETALK_DEBUG
#ifdef APPLETALK_DEBUG
#define DPRINT(x) print(x)
#else
#define DPRINT(x)
#endif /* APPLETALK_DEBUG */
 
#ifdef CONFIG_SYSCTL
extern inline void atalk_register_sysctl(void);
extern inline void atalk_unregister_sysctl(void);
#endif /* CONFIG_SYSCTL */
 
struct datalink_proto *ddp_dl, *aarp_dl;
static struct proto_ops atalk_dgram_ops;
 
/**************************************************************************\
* *
* Handlers for the socket list. *
* *
\**************************************************************************/
 
static struct sock *atalk_sockets;
static spinlock_t atalk_sockets_lock = SPIN_LOCK_UNLOCKED;
 
extern inline void atalk_insert_socket(struct sock *sk)
{
spin_lock_bh(&atalk_sockets_lock);
sk->next = atalk_sockets;
if (sk->next)
atalk_sockets->pprev = &sk->next;
atalk_sockets = sk;
sk->pprev = &atalk_sockets;
spin_unlock_bh(&atalk_sockets_lock);
}
 
extern inline void atalk_remove_socket(struct sock *sk)
{
spin_lock_bh(&atalk_sockets_lock);
if (sk->pprev) {
if (sk->next)
sk->next->pprev = sk->pprev;
*sk->pprev = sk->next;
sk->pprev = NULL;
}
spin_unlock_bh(&atalk_sockets_lock);
}
 
static struct sock *atalk_search_socket(struct sockaddr_at *to,
struct atalk_iface *atif)
{
struct sock *s;
 
spin_lock_bh(&atalk_sockets_lock);
for (s = atalk_sockets; s; s = s->next) {
if (to->sat_port != s->protinfo.af_at.src_port)
continue;
 
if (to->sat_addr.s_net == ATADDR_ANYNET &&
to->sat_addr.s_node == ATADDR_BCAST &&
s->protinfo.af_at.src_net == atif->address.s_net)
break;
 
if (to->sat_addr.s_net == s->protinfo.af_at.src_net &&
(to->sat_addr.s_node == s->protinfo.af_at.src_node ||
to->sat_addr.s_node == ATADDR_BCAST ||
to->sat_addr.s_node == ATADDR_ANYNODE))
break;
 
/* XXXX.0 -- we got a request for this router. make sure
* that the node is appropriately set. */
if (to->sat_addr.s_node == ATADDR_ANYNODE &&
to->sat_addr.s_net != ATADDR_ANYNET &&
atif->address.s_node == s->protinfo.af_at.src_node) {
to->sat_addr.s_node = atif->address.s_node;
break;
}
}
spin_unlock_bh(&atalk_sockets_lock);
return s;
}
 
/*
* Try to find a socket matching ADDR in the socket list,
* if found then return it. If not, insert SK into the
* socket list.
*
* This entire operation must execute atomically.
*/
static struct sock *atalk_find_or_insert_socket(struct sock *sk,
struct sockaddr_at *sat)
{
struct sock *s;
 
spin_lock_bh(&atalk_sockets_lock);
for (s = atalk_sockets; s; s = s->next)
if (s->protinfo.af_at.src_net == sat->sat_addr.s_net &&
s->protinfo.af_at.src_node == sat->sat_addr.s_node &&
s->protinfo.af_at.src_port == sat->sat_port)
break;
 
if (!s) {
/* Wheee, it's free, assign and insert. */
sk->next = atalk_sockets;
if (sk->next)
atalk_sockets->pprev = &sk->next;
atalk_sockets = sk;
sk->pprev = &atalk_sockets;
}
 
spin_unlock_bh(&atalk_sockets_lock);
return s;
}
 
static void atalk_destroy_timer(unsigned long data)
{
struct sock *sk = (struct sock *) data;
 
if (!atomic_read(&sk->wmem_alloc) &&
!atomic_read(&sk->rmem_alloc) && sk->dead) {
sock_put(sk);
MOD_DEC_USE_COUNT;
} else {
sk->timer.expires = jiffies + SOCK_DESTROY_TIME;
add_timer(&sk->timer);
}
}
 
extern inline void atalk_destroy_socket(struct sock *sk)
{
atalk_remove_socket(sk);
skb_queue_purge(&sk->receive_queue);
 
if (!atomic_read(&sk->wmem_alloc) &&
!atomic_read(&sk->rmem_alloc) && sk->dead) {
sock_put(sk);
MOD_DEC_USE_COUNT;
} else {
init_timer(&sk->timer);
sk->timer.expires = jiffies + SOCK_DESTROY_TIME;
sk->timer.function = atalk_destroy_timer;
sk->timer.data = (unsigned long) sk;
add_timer(&sk->timer);
}
}
 
/* Called from proc fs */
static int atalk_get_info(char *buffer, char **start, off_t offset, int length)
{
off_t pos = 0;
off_t begin = 0;
int len = sprintf(buffer, "Type local_addr remote_addr tx_queue "
"rx_queue st uid\n");
struct sock *s;
/* Output the AppleTalk data for the /proc filesystem */
 
spin_lock_bh(&atalk_sockets_lock);
for (s = atalk_sockets; s; s = s->next) {
len += sprintf(buffer + len,"%02X ", s->type);
len += sprintf(buffer + len,"%04X:%02X:%02X ",
ntohs(s->protinfo.af_at.src_net),
s->protinfo.af_at.src_node,
s->protinfo.af_at.src_port);
len += sprintf(buffer + len,"%04X:%02X:%02X ",
ntohs(s->protinfo.af_at.dest_net),
s->protinfo.af_at.dest_node,
s->protinfo.af_at.dest_port);
len += sprintf(buffer + len,"%08X:%08X ",
atomic_read(&s->wmem_alloc),
atomic_read(&s->rmem_alloc));
len += sprintf(buffer + len,"%02X %d\n", s->state,
SOCK_INODE(s->socket)->i_uid);
 
/* Are we still dumping unwanted data then discard the record */
pos = begin + len;
 
if (pos < offset) {
len = 0; /* Keep dumping into the buffer start */
begin = pos;
}
if (pos > offset + length) /* We have dumped enough */
break;
}
spin_unlock_bh(&atalk_sockets_lock);
 
/* The data in question runs from begin to begin+len */
*start = buffer + offset - begin; /* Start of wanted data */
len -= offset - begin; /* Remove unwanted header data from length */
if (len > length)
len = length; /* Remove unwanted tail data from length */
 
return len;
}
 
/**************************************************************************\
* *
* Routing tables for the AppleTalk socket layer. *
* *
\**************************************************************************/
 
/* Anti-deadlock ordering is router_lock --> iface_lock -DaveM */
static struct atalk_route *atalk_router_list;
static rwlock_t atalk_router_lock = RW_LOCK_UNLOCKED;
 
static struct atalk_iface *atalk_iface_list;
static spinlock_t atalk_iface_lock = SPIN_LOCK_UNLOCKED;
 
/* For probing devices or in a routerless network */
static struct atalk_route atrtr_default;
 
/* AppleTalk interface control */
/*
* Drop a device. Doesn't drop any of its routes - that is the caller's
* problem. Called when we down the interface or delete the address.
*/
static void atif_drop_device(struct net_device *dev)
{
struct atalk_iface **iface = &atalk_iface_list;
struct atalk_iface *tmp;
 
spin_lock_bh(&atalk_iface_lock);
while ((tmp = *iface) != NULL) {
if (tmp->dev == dev) {
*iface = tmp->next;
kfree(tmp);
dev->atalk_ptr = NULL;
MOD_DEC_USE_COUNT;
} else
iface = &tmp->next;
}
spin_unlock_bh(&atalk_iface_lock);
}
 
static struct atalk_iface *atif_add_device(struct net_device *dev,
struct at_addr *sa)
{
struct atalk_iface *iface = kmalloc(sizeof(*iface), GFP_KERNEL);
 
if (!iface)
return NULL;
 
iface->dev = dev;
dev->atalk_ptr = iface;
iface->address = *sa;
iface->status = 0;
 
spin_lock_bh(&atalk_iface_lock);
iface->next = atalk_iface_list;
atalk_iface_list = iface;
spin_unlock_bh(&atalk_iface_lock);
 
MOD_INC_USE_COUNT;
return iface;
}
 
/* Perform phase 2 AARP probing on our tentative address */
static int atif_probe_device(struct atalk_iface *atif)
{
int netrange = ntohs(atif->nets.nr_lastnet) -
ntohs(atif->nets.nr_firstnet) + 1;
int probe_net = ntohs(atif->address.s_net);
int probe_node = atif->address.s_node;
int netct, nodect;
 
/* Offset the network we start probing with */
if (probe_net == ATADDR_ANYNET) {
probe_net = ntohs(atif->nets.nr_firstnet);
if (netrange)
probe_net += jiffies % netrange;
}
if (probe_node == ATADDR_ANYNODE)
probe_node = jiffies & 0xFF;
 
/* Scan the networks */
atif->status |= ATIF_PROBE;
for (netct = 0; netct <= netrange; netct++) {
/* Sweep the available nodes from a given start */
atif->address.s_net = htons(probe_net);
for (nodect = 0; nodect < 256; nodect++) {
atif->address.s_node = ((nodect+probe_node) & 0xFF);
if (atif->address.s_node > 0 &&
atif->address.s_node < 254) {
/* Probe a proposed address */
aarp_probe_network(atif);
 
if (!(atif->status & ATIF_PROBE_FAIL)) {
atif->status &= ~ATIF_PROBE;
return 0;
}
}
atif->status &= ~ATIF_PROBE_FAIL;
}
probe_net++;
if (probe_net > ntohs(atif->nets.nr_lastnet))
probe_net = ntohs(atif->nets.nr_firstnet);
}
atif->status &= ~ATIF_PROBE;
 
return -EADDRINUSE; /* Network is full... */
}
 
 
/* Perform AARP probing for a proxy address */
static int atif_proxy_probe_device(struct atalk_iface *atif,
struct at_addr* proxy_addr)
{
int netrange = ntohs(atif->nets.nr_lastnet) -
ntohs(atif->nets.nr_firstnet) + 1;
/* we probe the interface's network */
int probe_net = ntohs(atif->address.s_net);
int probe_node = ATADDR_ANYNODE; /* we'll take anything */
int netct, nodect;
 
/* Offset the network we start probing with */
if (probe_net == ATADDR_ANYNET) {
probe_net = ntohs(atif->nets.nr_firstnet);
if (netrange)
probe_net += jiffies % netrange;
}
 
if (probe_node == ATADDR_ANYNODE)
probe_node = jiffies & 0xFF;
/* Scan the networks */
for (netct = 0; netct <= netrange; netct++) {
/* Sweep the available nodes from a given start */
proxy_addr->s_net = htons(probe_net);
for (nodect = 0; nodect < 256; nodect++) {
proxy_addr->s_node = ((nodect + probe_node) & 0xFF);
if (proxy_addr->s_node > 0 &&
proxy_addr->s_node < 254) {
/* Tell AARP to probe a proposed address */
int ret = aarp_proxy_probe_network(atif,
proxy_addr);
 
if (ret != -EADDRINUSE)
return ret;
}
}
probe_net++;
if (probe_net > ntohs(atif->nets.nr_lastnet))
probe_net = ntohs(atif->nets.nr_firstnet);
}
 
return -EADDRINUSE; /* Network is full... */
}
 
 
struct at_addr *atalk_find_dev_addr(struct net_device *dev)
{
struct atalk_iface *iface = dev->atalk_ptr;
return iface ? &iface->address : NULL;
}
 
static struct at_addr *atalk_find_primary(void)
{
struct atalk_iface *fiface = NULL;
struct at_addr *retval;
struct atalk_iface *iface;
 
/*
* Return a point-to-point interface only if
* there is no non-ptp interface available.
*/
spin_lock_bh(&atalk_iface_lock);
for (iface = atalk_iface_list; iface; iface = iface->next) {
if (!fiface && !(iface->dev->flags & IFF_LOOPBACK))
fiface = iface;
if (!(iface->dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))) {
retval = &iface->address;
goto out;
}
}
 
if (fiface)
retval = &fiface->address;
else if (atalk_iface_list)
retval = &atalk_iface_list->address;
else
retval = NULL;
out: spin_unlock_bh(&atalk_iface_lock);
return retval;
}
 
/*
* Find a match for 'any network' - ie any of our interfaces with that
* node number will do just nicely.
*/
static struct atalk_iface *atalk_find_anynet(int node, struct net_device *dev)
{
struct atalk_iface *iface = dev->atalk_ptr;
 
if (!iface || iface->status & ATIF_PROBE)
return NULL;
 
if (node == ATADDR_BCAST ||
iface->address.s_node == node ||
node == ATADDR_ANYNODE)
return iface;
 
return NULL;
}
 
/* Find a match for a specific network:node pair */
static struct atalk_iface *atalk_find_interface(int net, int node)
{
struct atalk_iface *iface;
 
spin_lock_bh(&atalk_iface_lock);
for (iface = atalk_iface_list; iface; iface = iface->next) {
if ((node == ATADDR_BCAST ||
node == ATADDR_ANYNODE ||
iface->address.s_node == node) &&
iface->address.s_net == net &&
!(iface->status & ATIF_PROBE))
break;
 
/* XXXX.0 -- net.0 returns the iface associated with net */
if (node == ATADDR_ANYNODE && net != ATADDR_ANYNET &&
ntohs(iface->nets.nr_firstnet) <= ntohs(net) &&
ntohs(net) <= ntohs(iface->nets.nr_lastnet))
break;
}
spin_unlock_bh(&atalk_iface_lock);
return iface;
}
 
 
/*
* Find a route for an AppleTalk packet. This ought to get cached in
* the socket (later on...). We know about host routes and the fact
* that a route must be direct to broadcast.
*/
static struct atalk_route *atrtr_find(struct at_addr *target)
{
/*
* we must search through all routes unless we find a
* host route, because some host routes might overlap
* network routes
*/
struct atalk_route *net_route = NULL;
struct atalk_route *r;
read_lock_bh(&atalk_router_lock);
for (r = atalk_router_list; r; r = r->next) {
if (!(r->flags & RTF_UP))
continue;
 
if (r->target.s_net == target->s_net) {
if (r->flags & RTF_HOST) {
/*
* if this host route is for the target,
* the we're done
*/
if (r->target.s_node == target->s_node)
goto out;
} else
/*
* this route will work if there isn't a
* direct host route, so cache it
*/
net_route = r;
}
}
/*
* if we found a network route but not a direct host
* route, then return it
*/
if (net_route)
r = net_route;
else if (atrtr_default.dev)
r = &atrtr_default;
else /* No route can be found */
r = NULL;
out: read_unlock_bh(&atalk_router_lock);
return r;
}
 
 
/*
* Given an AppleTalk network, find the device to use. This can be
* a simple lookup.
*/
struct net_device *atrtr_get_dev(struct at_addr *sa)
{
struct atalk_route *atr = atrtr_find(sa);
return atr ? atr->dev : NULL;
}
 
/* Set up a default router */
static void atrtr_set_default(struct net_device *dev)
{
atrtr_default.dev = dev;
atrtr_default.flags = RTF_UP;
atrtr_default.gateway.s_net = htons(0);
atrtr_default.gateway.s_node = 0;
}
 
/*
* Add a router. Basically make sure it looks valid and stuff the
* entry in the list. While it uses netranges we always set them to one
* entry to work like netatalk.
*/
static int atrtr_create(struct rtentry *r, struct net_device *devhint)
{
struct sockaddr_at *ta = (struct sockaddr_at *)&r->rt_dst;
struct sockaddr_at *ga = (struct sockaddr_at *)&r->rt_gateway;
struct atalk_route *rt;
struct atalk_iface *iface, *riface;
int retval;
 
/*
* Fixme: Raise/Lower a routing change semaphore for these
* operations.
*/
 
/* Validate the request */
if (ta->sat_family != AF_APPLETALK)
return -EINVAL;
 
if (!devhint && ga->sat_family != AF_APPLETALK)
return -EINVAL;
 
/* Now walk the routing table and make our decisions */
write_lock_bh(&atalk_router_lock);
for (rt = atalk_router_list; rt; rt = rt->next) {
if (r->rt_flags != rt->flags)
continue;
 
if (ta->sat_addr.s_net == rt->target.s_net) {
if (!(rt->flags & RTF_HOST))
break;
if (ta->sat_addr.s_node == rt->target.s_node)
break;
}
}
 
if (!devhint) {
riface = NULL;
 
spin_lock_bh(&atalk_iface_lock);
for (iface = atalk_iface_list; iface; iface = iface->next) {
if (!riface &&
ntohs(ga->sat_addr.s_net) >=
ntohs(iface->nets.nr_firstnet) &&
ntohs(ga->sat_addr.s_net) <=
ntohs(iface->nets.nr_lastnet))
riface = iface;
 
if (ga->sat_addr.s_net == iface->address.s_net &&
ga->sat_addr.s_node == iface->address.s_node)
riface = iface;
}
spin_unlock_bh(&atalk_iface_lock);
 
retval = -ENETUNREACH;
if (!riface)
goto out;
 
devhint = riface->dev;
}
 
if (!rt) {
rt = kmalloc(sizeof(struct atalk_route), GFP_ATOMIC);
 
retval = -ENOBUFS;
if (!rt)
goto out;
 
rt->next = atalk_router_list;
atalk_router_list = rt;
}
 
/* Fill in the routing entry */
rt->target = ta->sat_addr;
rt->dev = devhint;
rt->flags = r->rt_flags;
rt->gateway = ga->sat_addr;
 
retval = 0;
out: write_unlock_bh(&atalk_router_lock);
return retval;
}
 
/* Delete a route. Find it and discard it */
static int atrtr_delete(struct at_addr * addr)
{
struct atalk_route **r = &atalk_router_list;
int retval = 0;
struct atalk_route *tmp;
 
write_lock_bh(&atalk_router_lock);
while ((tmp = *r) != NULL) {
if (tmp->target.s_net == addr->s_net &&
(!(tmp->flags&RTF_GATEWAY) ||
tmp->target.s_node == addr->s_node)) {
*r = tmp->next;
kfree(tmp);
goto out;
}
r = &tmp->next;
}
retval = -ENOENT;
out: write_unlock_bh(&atalk_router_lock);
return retval;
}
 
/*
* Called when a device is downed. Just throw away any routes
* via it.
*/
void atrtr_device_down(struct net_device *dev)
{
struct atalk_route **r = &atalk_router_list;
struct atalk_route *tmp;
 
write_lock_bh(&atalk_router_lock);
while ((tmp = *r) != NULL) {
if (tmp->dev == dev) {
*r = tmp->next;
kfree(tmp);
} else
r = &tmp->next;
}
write_unlock_bh(&atalk_router_lock);
 
if (atrtr_default.dev == dev)
atrtr_set_default(NULL);
}
 
/* Actually down the interface */
static inline void atalk_dev_down(struct net_device *dev)
{
atrtr_device_down(dev); /* Remove all routes for the device */
aarp_device_down(dev); /* Remove AARP entries for the device */
atif_drop_device(dev); /* Remove the device */
}
 
/*
* A device event has occurred. Watch for devices going down and
* delete our use of them (iface and route).
*/
static int ddp_device_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
if (event == NETDEV_DOWN)
/* Discard any use of this */
atalk_dev_down((struct net_device *) ptr);
 
return NOTIFY_DONE;
}
 
/* ioctl calls. Shouldn't even need touching */
/* Device configuration ioctl calls */
static int atif_ioctl(int cmd, void *arg)
{
static char aarp_mcast[6] = {0x09, 0x00, 0x00, 0xFF, 0xFF, 0xFF};
struct ifreq atreq;
struct netrange *nr;
struct sockaddr_at *sa;
struct net_device *dev;
struct atalk_iface *atif;
int ct;
int limit;
struct rtentry rtdef;
int add_route;
 
if (copy_from_user(&atreq, arg, sizeof(atreq)))
return -EFAULT;
 
dev = __dev_get_by_name(atreq.ifr_name);
if (!dev)
return -ENODEV;
 
sa = (struct sockaddr_at*) &atreq.ifr_addr;
atif = atalk_find_dev(dev);
 
switch (cmd) {
case SIOCSIFADDR:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (sa->sat_family != AF_APPLETALK)
return -EINVAL;
if (dev->type != ARPHRD_ETHER &&
dev->type != ARPHRD_LOOPBACK &&
dev->type != ARPHRD_LOCALTLK &&
dev->type != ARPHRD_PPP)
return -EPROTONOSUPPORT;
 
nr = (struct netrange *) &sa->sat_zero[0];
add_route = 1;
 
/*
* if this is a point-to-point iface, and we already
* have an iface for this AppleTalk address, then we
* should not add a route
*/
if ((dev->flags & IFF_POINTOPOINT) &&
atalk_find_interface(sa->sat_addr.s_net,
sa->sat_addr.s_node)) {
printk(KERN_DEBUG "AppleTalk: point-to-point "
"interface added with "
"existing address\n");
add_route = 0;
}
/*
* Phase 1 is fine on LocalTalk but we don't do
* EtherTalk phase 1. Anyone wanting to add it go ahead.
*/
if (dev->type == ARPHRD_ETHER && nr->nr_phase != 2)
return -EPROTONOSUPPORT;
if (sa->sat_addr.s_node == ATADDR_BCAST ||
sa->sat_addr.s_node == 254)
return -EINVAL;
if (atif) {
/* Already setting address */
if (atif->status & ATIF_PROBE)
return -EBUSY;
 
atif->address.s_net = sa->sat_addr.s_net;
atif->address.s_node = sa->sat_addr.s_node;
atrtr_device_down(dev); /* Flush old routes */
} else {
atif = atif_add_device(dev, &sa->sat_addr);
if (!atif)
return -ENOMEM;
}
atif->nets = *nr;
 
/*
* Check if the chosen address is used. If so we
* error and atalkd will try another.
*/
 
if (!(dev->flags & IFF_LOOPBACK) &&
!(dev->flags & IFF_POINTOPOINT) &&
atif_probe_device(atif) < 0) {
atif_drop_device(dev);
return -EADDRINUSE;
}
 
/* Hey it worked - add the direct routes */
sa = (struct sockaddr_at *) &rtdef.rt_gateway;
sa->sat_family = AF_APPLETALK;
sa->sat_addr.s_net = atif->address.s_net;
sa->sat_addr.s_node = atif->address.s_node;
sa = (struct sockaddr_at *) &rtdef.rt_dst;
rtdef.rt_flags = RTF_UP;
sa->sat_family = AF_APPLETALK;
sa->sat_addr.s_node = ATADDR_ANYNODE;
if (dev->flags & IFF_LOOPBACK ||
dev->flags & IFF_POINTOPOINT)
rtdef.rt_flags |= RTF_HOST;
 
/* Routerless initial state */
if (nr->nr_firstnet == htons(0) &&
nr->nr_lastnet == htons(0xFFFE)) {
sa->sat_addr.s_net = atif->address.s_net;
atrtr_create(&rtdef, dev);
atrtr_set_default(dev);
} else {
limit = ntohs(nr->nr_lastnet);
if (limit - ntohs(nr->nr_firstnet) > 4096) {
printk(KERN_WARNING "Too many routes/"
"iface.\n");
return -EINVAL;
}
if (add_route)
for (ct = ntohs(nr->nr_firstnet);
ct <= limit; ct++) {
sa->sat_addr.s_net = htons(ct);
atrtr_create(&rtdef, dev);
}
}
dev_mc_add(dev, aarp_mcast, 6, 1);
return 0;
 
case SIOCGIFADDR:
if (!atif)
return -EADDRNOTAVAIL;
 
sa->sat_family = AF_APPLETALK;
sa->sat_addr = atif->address;
break;
 
case SIOCGIFBRDADDR:
if (!atif)
return -EADDRNOTAVAIL;
 
sa->sat_family = AF_APPLETALK;
sa->sat_addr.s_net = atif->address.s_net;
sa->sat_addr.s_node = ATADDR_BCAST;
break;
 
case SIOCATALKDIFADDR:
case SIOCDIFADDR:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (sa->sat_family != AF_APPLETALK)
return -EINVAL;
atalk_dev_down(dev);
break;
 
case SIOCSARP:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (sa->sat_family != AF_APPLETALK)
return -EINVAL;
if (!atif)
return -EADDRNOTAVAIL;
 
/*
* for now, we only support proxy AARP on ELAP;
* we should be able to do it for LocalTalk, too.
*/
if (dev->type != ARPHRD_ETHER)
return -EPROTONOSUPPORT;
 
/*
* atif points to the current interface on this network;
* we aren't concerned about its current status (at
* least for now), but it has all the settings about
* the network we're going to probe. Consequently, it
* must exist.
*/
if (!atif)
return -EADDRNOTAVAIL;
 
nr = (struct netrange *) &(atif->nets);
/*
* Phase 1 is fine on Localtalk but we don't do
* Ethertalk phase 1. Anyone wanting to add it go ahead.
*/
if (dev->type == ARPHRD_ETHER && nr->nr_phase != 2)
return -EPROTONOSUPPORT;
 
if (sa->sat_addr.s_node == ATADDR_BCAST ||
sa->sat_addr.s_node == 254)
return -EINVAL;
 
/*
* Check if the chosen address is used. If so we
* error and ATCP will try another.
*/
if (atif_proxy_probe_device(atif, &(sa->sat_addr)) < 0)
return -EADDRINUSE;
/*
* We now have an address on the local network, and
* the AARP code will defend it for us until we take it
* down. We don't set up any routes right now, because
* ATCP will install them manually via SIOCADDRT.
*/
break;
 
case SIOCDARP:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (sa->sat_family != AF_APPLETALK)
return -EINVAL;
if (!atif)
return -EADDRNOTAVAIL;
 
/* give to aarp module to remove proxy entry */
aarp_proxy_remove(atif->dev, &(sa->sat_addr));
return 0;
}
 
return copy_to_user(arg, &atreq, sizeof(atreq)) ? -EFAULT : 0;
}
 
/* Routing ioctl() calls */
static int atrtr_ioctl(unsigned int cmd, void *arg)
{
struct net_device *dev = NULL;
struct rtentry rt;
 
if (copy_from_user(&rt, arg, sizeof(rt)))
return -EFAULT;
 
switch (cmd) {
case SIOCDELRT:
if (rt.rt_dst.sa_family != AF_APPLETALK)
return -EINVAL;
return atrtr_delete(&((struct sockaddr_at *)
&rt.rt_dst)->sat_addr);
 
case SIOCADDRT:
/* FIXME: the name of the device is still in user
* space, isn't it? */
if (rt.rt_dev) {
dev = __dev_get_by_name(rt.rt_dev);
if (!dev)
return -ENODEV;
}
return atrtr_create(&rt, dev);
}
return -EINVAL;
}
 
/* Called from proc fs - just make it print the ifaces neatly */
static int atalk_if_get_info(char *buffer, char **start, off_t offset,
int length)
{
off_t pos = 0;
off_t begin = 0;
struct atalk_iface *iface;
int len = sprintf(buffer, "Interface Address "
"Networks Status\n");
 
spin_lock_bh(&atalk_iface_lock);
for (iface = atalk_iface_list; iface; iface = iface->next) {
len += sprintf(buffer+len,"%-16s %04X:%02X %04X-%04X %d\n",
iface->dev->name, ntohs(iface->address.s_net),
iface->address.s_node,
ntohs(iface->nets.nr_firstnet),
ntohs(iface->nets.nr_lastnet), iface->status);
pos = begin + len;
if (pos < offset) {
len = 0;
begin = pos;
}
if (pos > offset + length)
break;
}
spin_unlock_bh(&atalk_iface_lock);
 
*start = buffer + (offset - begin);
len -= (offset - begin);
if (len > length)
len = length;
return len;
}
 
/* Called from proc fs - just make it print the routes neatly */
static int atalk_rt_get_info(char *buffer, char **start, off_t offset,
int length)
{
off_t pos = 0;
off_t begin = 0;
int len = sprintf(buffer, "Target Router Flags Dev\n");
struct atalk_route *rt;
 
if (atrtr_default.dev) {
rt = &atrtr_default;
len += sprintf(buffer + len,"Default %04X:%02X %-4d %s\n",
ntohs(rt->gateway.s_net), rt->gateway.s_node,
rt->flags, rt->dev->name);
}
 
read_lock_bh(&atalk_router_lock);
for (rt = atalk_router_list; rt; rt = rt->next) {
len += sprintf(buffer + len,
"%04X:%02X %04X:%02X %-4d %s\n",
ntohs(rt->target.s_net), rt->target.s_node,
ntohs(rt->gateway.s_net), rt->gateway.s_node,
rt->flags, rt->dev->name);
pos = begin + len;
if (pos < offset) {
len = 0;
begin = pos;
}
if (pos > offset + length)
break;
}
read_unlock_bh(&atalk_router_lock);
 
*start = buffer + (offset - begin);
len -= (offset - begin);
if (len > length)
len = length;
return len;
}
 
/**************************************************************************\
* *
* Handling for system calls applied via the various interfaces to an *
* AppleTalk socket object. *
* *
\**************************************************************************/
 
/*
* Checksum: This is 'optional'. It's quite likely also a good
* candidate for assembler hackery 8)
*/
unsigned short atalk_checksum(struct ddpehdr *ddp, int len)
{
unsigned long sum = 0; /* Assume unsigned long is >16 bits */
unsigned char *data = (unsigned char *) ddp;
 
len -= 4; /* skip header 4 bytes */
data += 4;
 
/* This ought to be unwrapped neatly. I'll trust gcc for now */
while (len--) {
sum += *data;
sum <<= 1;
if (sum & 0x10000) {
sum++;
sum &= 0xFFFF;
}
data++;
}
/* Use 0xFFFF for 0. 0 itself means none */
return sum ? htons((unsigned short) sum) : 0xFFFF;
}
 
/*
* Create a socket. Initialise the socket, blank the addresses
* set the state.
*/
static int atalk_create(struct socket *sock, int protocol)
{
struct sock *sk = sk_alloc(PF_APPLETALK, GFP_KERNEL, 1);
 
if (!sk)
return -ENOMEM;
 
switch (sock->type) {
/*
* We permit SOCK_DGRAM and RAW is an extension. It is
* trivial to do and gives you the full ELAP frame.
* Should be handy for CAP 8)
*/
case SOCK_RAW:
case SOCK_DGRAM:
sock->ops = &atalk_dgram_ops;
break;
case SOCK_STREAM:
/*
* TODO: if you want to implement ADSP, here's the
* place to start
*/
/*
sock->ops = &atalk_stream_ops;
break;
*/
default:
sk_free(sk);
return -ESOCKTNOSUPPORT;
}
 
MOD_INC_USE_COUNT;
sock_init_data(sock, sk);
sk->destruct = NULL;
/* Checksums on by default */
sk->zapped = 1;
return 0;
}
 
/* Free a socket. No work needed */
static int atalk_release(struct socket *sock)
{
struct sock *sk = sock->sk;
 
if (!sk)
return 0;
 
if (!sk->dead)
sk->state_change(sk);
 
sk->dead = 1;
sock->sk = NULL;
atalk_destroy_socket(sk);
return 0;
}
 
/*
* Pick a source port when one is not given. If we can
* find a suitable free one, we insert the socket into
* the tables using it.
*
* This whole operation must be atomic.
*/
static int atalk_pick_and_bind_port(struct sock *sk, struct sockaddr_at *sat)
{
struct sock *s;
int retval;
 
spin_lock_bh(&atalk_sockets_lock);
 
for (sat->sat_port = ATPORT_RESERVED;
sat->sat_port < ATPORT_LAST;
sat->sat_port++) {
for (s = atalk_sockets; s; s = s->next) {
if (s->protinfo.af_at.src_net == sat->sat_addr.s_net &&
s->protinfo.af_at.src_node ==
sat->sat_addr.s_node &&
s->protinfo.af_at.src_port == sat->sat_port)
goto try_next_port;
}
 
/* Wheee, it's free, assign and insert. */
sk->next = atalk_sockets;
if (sk->next)
atalk_sockets->pprev = &sk->next;
atalk_sockets = sk;
sk->pprev = &atalk_sockets;
sk->protinfo.af_at.src_port = sat->sat_port;
retval = 0;
goto out;
 
try_next_port:
;
}
 
retval = -EBUSY;
out: spin_unlock_bh(&atalk_sockets_lock);
return retval;
}
 
static int atalk_autobind(struct sock *sk)
{
struct sockaddr_at sat;
int n;
struct at_addr *ap = atalk_find_primary();
 
if (!ap || ap->s_net == htons(ATADDR_ANYNET))
return -EADDRNOTAVAIL;
 
sk->protinfo.af_at.src_net = sat.sat_addr.s_net = ap->s_net;
sk->protinfo.af_at.src_node = sat.sat_addr.s_node = ap->s_node;
 
n = atalk_pick_and_bind_port(sk, &sat);
if (n < 0)
return n;
 
sk->zapped = 0;
return 0;
}
 
/* Set the address 'our end' of the connection */
static int atalk_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct sockaddr_at *addr = (struct sockaddr_at *)uaddr;
struct sock *sk = sock->sk;
 
if (!sk->zapped || addr_len != sizeof(struct sockaddr_at))
return -EINVAL;
 
if (addr->sat_family != AF_APPLETALK)
return -EAFNOSUPPORT;
 
if (addr->sat_addr.s_net == htons(ATADDR_ANYNET)) {
struct at_addr *ap = atalk_find_primary();
 
if (!ap)
return -EADDRNOTAVAIL;
 
sk->protinfo.af_at.src_net = addr->sat_addr.s_net = ap->s_net;
sk->protinfo.af_at.src_node = addr->sat_addr.s_node= ap->s_node;
} else {
if (!atalk_find_interface(addr->sat_addr.s_net,
addr->sat_addr.s_node))
return -EADDRNOTAVAIL;
 
sk->protinfo.af_at.src_net = addr->sat_addr.s_net;
sk->protinfo.af_at.src_node = addr->sat_addr.s_node;
}
 
if (addr->sat_port == ATADDR_ANYPORT) {
int n = atalk_pick_and_bind_port(sk, addr);
 
if (n < 0)
return n;
} else {
sk->protinfo.af_at.src_port = addr->sat_port;
 
if (atalk_find_or_insert_socket(sk, addr))
return -EADDRINUSE;
}
 
sk->zapped = 0;
return 0;
}
 
/* Set the address we talk to */
static int atalk_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
struct sock *sk = sock->sk;
struct sockaddr_at *addr;
 
sk->state = TCP_CLOSE;
sock->state = SS_UNCONNECTED;
 
if (addr_len != sizeof(*addr))
return -EINVAL;
 
addr = (struct sockaddr_at *)uaddr;
 
if (addr->sat_family != AF_APPLETALK)
return -EAFNOSUPPORT;
 
if (addr->sat_addr.s_node == ATADDR_BCAST && !sk->broadcast) {
#if 1
printk(KERN_WARNING "%s is broken and did not set "
"SO_BROADCAST. It will break when 2.2 is "
"released.\n",
current->comm);
#else
return -EACCES;
#endif
}
 
if (sk->zapped)
if (atalk_autobind(sk) < 0)
return -EBUSY;
 
if (!atrtr_get_dev(&addr->sat_addr))
return -ENETUNREACH;
 
sk->protinfo.af_at.dest_port = addr->sat_port;
sk->protinfo.af_at.dest_net = addr->sat_addr.s_net;
sk->protinfo.af_at.dest_node = addr->sat_addr.s_node;
 
sock->state = SS_CONNECTED;
sk->state = TCP_ESTABLISHED;
return 0;
}
 
 
/*
* Find the name of an AppleTalk socket. Just copy the right
* fields into the sockaddr.
*/
static int atalk_getname(struct socket *sock, struct sockaddr *uaddr,
int *uaddr_len, int peer)
{
struct sockaddr_at sat;
struct sock *sk = sock->sk;
 
if (sk->zapped)
if (atalk_autobind(sk) < 0)
return -ENOBUFS;
 
*uaddr_len = sizeof(struct sockaddr_at);
 
if (peer) {
if (sk->state != TCP_ESTABLISHED)
return -ENOTCONN;
 
sat.sat_addr.s_net = sk->protinfo.af_at.dest_net;
sat.sat_addr.s_node = sk->protinfo.af_at.dest_node;
sat.sat_port = sk->protinfo.af_at.dest_port;
} else {
sat.sat_addr.s_net = sk->protinfo.af_at.src_net;
sat.sat_addr.s_node = sk->protinfo.af_at.src_node;
sat.sat_port = sk->protinfo.af_at.src_port;
}
 
sat.sat_family = AF_APPLETALK;
memcpy(uaddr, &sat, sizeof(sat));
return 0;
}
 
/*
* Receive a packet (in skb) from device dev. This has come from the SNAP
* decoder, and on entry skb->h.raw is the DDP header, skb->len is the DDP
* header, skb->len is the DDP length. The physical headers have been
* extracted. PPP should probably pass frames marked as for this layer.
* [ie ARPHRD_ETHERTALK]
*/
static int atalk_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt)
{
struct ddpehdr *ddp = (void *) skb->h.raw;
struct sock *sock;
struct atalk_iface *atif;
struct sockaddr_at tosat;
int origlen;
struct ddpebits ddphv;
 
/* Size check */
if (skb->len < sizeof(*ddp))
goto freeit;
 
/*
* Fix up the length field [Ok this is horrible but otherwise
* I end up with unions of bit fields and messy bit field order
* compiler/endian dependencies..]
*
* FIXME: This is a write to a shared object. Granted it
* happens to be safe BUT.. (Its safe as user space will not
* run until we put it back)
*/
*((__u16 *)&ddphv) = ntohs(*((__u16 *)ddp));
 
/* Trim buffer in case of stray trailing data */
origlen = skb->len;
skb_trim(skb, min_t(unsigned int, skb->len, ddphv.deh_len));
 
/*
* Size check to see if ddp->deh_len was crap
* (Otherwise we'll detonate most spectacularly
* in the middle of recvmsg()).
*/
if (skb->len < sizeof(*ddp))
goto freeit;
 
/*
* Any checksums. Note we don't do htons() on this == is assumed to be
* valid for net byte orders all over the networking code...
*/
if (ddp->deh_sum &&
atalk_checksum(ddp, ddphv.deh_len) != ddp->deh_sum)
/* Not a valid AppleTalk frame - dustbin time */
goto freeit;
 
/* Check the packet is aimed at us */
if (!ddp->deh_dnet) /* Net 0 is 'this network' */
atif = atalk_find_anynet(ddp->deh_dnode, dev);
else
atif = atalk_find_interface(ddp->deh_dnet, ddp->deh_dnode);
 
/* Not ours, so we route the packet via the correct AppleTalk iface */
if (!atif) {
struct atalk_route *rt;
struct at_addr ta;
 
/*
* Don't route multicast, etc., packets, or packets
* sent to "this network"
*/
if (skb->pkt_type != PACKET_HOST || !ddp->deh_dnet) {
/* FIXME:
* Can it ever happen that a packet is from a PPP
* iface and needs to be broadcast onto the default
* network? */
if (dev->type == ARPHRD_PPP)
printk(KERN_DEBUG "AppleTalk: didn't forward "
"broadcast packet received "
"from PPP iface\n");
goto freeit;
}
 
ta.s_net = ddp->deh_dnet;
ta.s_node = ddp->deh_dnode;
 
/* Route the packet */
rt = atrtr_find(&ta);
if (!rt || ddphv.deh_hops == DDP_MAXHOPS)
goto freeit;
ddphv.deh_hops++;
 
/*
* Route goes through another gateway, so
* set the target to the gateway instead.
*/
if (rt->flags & RTF_GATEWAY) {
ta.s_net = rt->gateway.s_net;
ta.s_node = rt->gateway.s_node;
}
 
/* Fix up skb->len field */
skb_trim(skb, min_t(unsigned int, origlen, rt->dev->hard_header_len +
ddp_dl->header_length + ddphv.deh_len));
 
/* Mend the byte order */
*((__u16 *)ddp) = ntohs(*((__u16 *)&ddphv));
 
/*
* Send the buffer onwards
*
* Now we must always be careful. If it's come from
* LocalTalk to EtherTalk it might not fit
*
* Order matters here: If a packet has to be copied
* to make a new headroom (rare hopefully) then it
* won't need unsharing.
*
* Note. ddp-> becomes invalid at the realloc.
*/
if (skb_headroom(skb) < 22) {
/* 22 bytes - 12 ether, 2 len, 3 802.2 5 snap */
struct sk_buff *nskb = skb_realloc_headroom(skb, 32);
kfree_skb(skb);
if (!nskb)
goto out;
skb = nskb;
} else
skb = skb_unshare(skb, GFP_ATOMIC);
/*
* If the buffer didn't vanish into the lack of
* space bitbucket we can send it.
*/
if (skb && aarp_send_ddp(rt->dev, skb, &ta, NULL) == -1)
goto freeit;
goto out;
}
 
#if defined(CONFIG_IPDDP) || defined(CONFIG_IPDDP_MODULE)
/* Check if IP-over-DDP */
if (skb->data[12] == 22) {
struct net_device *dev = __dev_get_by_name("ipddp0");
struct net_device_stats *stats;
 
/* This needs to be able to handle ipddp"N" devices */
if (!dev)
return -ENODEV;
 
skb->protocol = htons(ETH_P_IP);
skb_pull(skb, 13);
skb->dev = dev;
skb->h.raw = skb->data;
 
stats = dev->priv;
stats->rx_packets++;
stats->rx_bytes += skb->len + 13;
netif_rx(skb); /* Send the SKB up to a higher place. */
goto out;
}
#endif
/*
* Which socket - atalk_search_socket() looks for a *full match*
* of the <net,node,port> tuple.
*/
tosat.sat_addr.s_net = ddp->deh_dnet;
tosat.sat_addr.s_node = ddp->deh_dnode;
tosat.sat_port = ddp->deh_dport;
 
sock = atalk_search_socket(&tosat, atif);
if (!sock) /* But not one of our sockets */
goto freeit;
 
/* Queue packet (standard) */
skb->sk = sock;
 
if (sock_queue_rcv_skb(sock, skb) < 0)
goto freeit;
goto out;
freeit: kfree_skb(skb);
out: return 0;
}
 
/*
* Receive a LocalTalk frame. We make some demands on the caller here.
* Caller must provide enough headroom on the packet to pull the short
* header and append a long one.
*/
static int ltalk_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt)
{
struct ddpehdr *ddp;
struct at_addr *ap;
 
/* Expand any short form frames */
if (skb->mac.raw[2] == 1) {
/* Find our address */
 
ap = atalk_find_dev_addr(dev);
if (!ap || skb->len < sizeof(struct ddpshdr)) {
kfree_skb(skb);
return 0;
}
 
/*
* The push leaves us with a ddephdr not an shdr, and
* handily the port bytes in the right place preset.
*/
 
skb_push(skb, sizeof(*ddp) - 4);
ddp = (struct ddpehdr *)skb->data;
 
/* Now fill in the long header */
 
/*
* These two first. The mac overlays the new source/dest
* network information so we MUST copy these before
* we write the network numbers !
*/
 
ddp->deh_dnode = skb->mac.raw[0]; /* From physical header */
ddp->deh_snode = skb->mac.raw[1]; /* From physical header */
 
ddp->deh_dnet = ap->s_net; /* Network number */
ddp->deh_snet = ap->s_net;
ddp->deh_sum = 0; /* No checksum */
/*
* Not sure about this bit...
*/
ddp->deh_len = skb->len;
ddp->deh_hops = DDP_MAXHOPS; /* Non routable, so force a drop
if we slip up later */
/* Mend the byte order */
*((__u16 *)ddp) = htons(*((__u16 *)ddp));
}
skb->h.raw = skb->data;
 
return atalk_rcv(skb, dev, pt);
}
 
static int atalk_sendmsg(struct socket *sock, struct msghdr *msg, int len,
struct scm_cookie *scm)
{
struct sock *sk = sock->sk;
struct sockaddr_at *usat = (struct sockaddr_at *)msg->msg_name;
int flags = msg->msg_flags;
int loopback = 0;
struct sockaddr_at local_satalk, gsat;
struct sk_buff *skb;
struct net_device *dev;
struct ddpehdr *ddp;
int size;
struct atalk_route *rt;
int err;
 
if (flags & ~MSG_DONTWAIT)
return -EINVAL;
 
if (len > DDP_MAXSZ)
return -EMSGSIZE;
 
if (usat) {
if (sk->zapped)
if (atalk_autobind(sk) < 0)
return -EBUSY;
 
if (msg->msg_namelen < sizeof(*usat) ||
usat->sat_family != AF_APPLETALK)
return -EINVAL;
 
/* netatalk doesn't implement this check */
if (usat->sat_addr.s_node == ATADDR_BCAST && !sk->broadcast) {
printk(KERN_INFO "SO_BROADCAST: Fix your netatalk as "
"it will break before 2.2\n");
#if 0
return -EPERM;
#endif
}
} else {
if (sk->state != TCP_ESTABLISHED)
return -ENOTCONN;
usat = &local_satalk;
usat->sat_family = AF_APPLETALK;
usat->sat_port = sk->protinfo.af_at.dest_port;
usat->sat_addr.s_node = sk->protinfo.af_at.dest_node;
usat->sat_addr.s_net = sk->protinfo.af_at.dest_net;
}
 
/* Build a packet */
SOCK_DEBUG(sk, "SK %p: Got address.\n", sk);
 
/* For headers */
size = sizeof(struct ddpehdr) + len + ddp_dl->header_length;
 
if (usat->sat_addr.s_net || usat->sat_addr.s_node == ATADDR_ANYNODE) {
rt = atrtr_find(&usat->sat_addr);
if (!rt)
return -ENETUNREACH;
 
dev = rt->dev;
} else {
struct at_addr at_hint;
 
at_hint.s_node = 0;
at_hint.s_net = sk->protinfo.af_at.src_net;
 
rt = atrtr_find(&at_hint);
if (!rt)
return -ENETUNREACH;
 
dev = rt->dev;
}
 
SOCK_DEBUG(sk, "SK %p: Size needed %d, device %s\n",
sk, size, dev->name);
 
size += dev->hard_header_len;
skb = sock_alloc_send_skb(sk, size, (flags & MSG_DONTWAIT), &err);
if (!skb)
return err;
skb->sk = sk;
skb_reserve(skb, ddp_dl->header_length);
skb_reserve(skb, dev->hard_header_len);
skb->dev = dev;
 
SOCK_DEBUG(sk, "SK %p: Begin build.\n", sk);
 
ddp = (struct ddpehdr *)skb_put(skb, sizeof(struct ddpehdr));
ddp->deh_pad = 0;
ddp->deh_hops = 0;
ddp->deh_len = len + sizeof(*ddp);
/*
* Fix up the length field [Ok this is horrible but otherwise
* I end up with unions of bit fields and messy bit field order
* compiler/endian dependencies..
*/
*((__u16 *)ddp) = ntohs(*((__u16 *)ddp));
 
ddp->deh_dnet = usat->sat_addr.s_net;
ddp->deh_snet = sk->protinfo.af_at.src_net;
ddp->deh_dnode = usat->sat_addr.s_node;
ddp->deh_snode = sk->protinfo.af_at.src_node;
ddp->deh_dport = usat->sat_port;
ddp->deh_sport = sk->protinfo.af_at.src_port;
 
SOCK_DEBUG(sk, "SK %p: Copy user data (%d bytes).\n", sk, len);
 
err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
if (err) {
kfree_skb(skb);
return -EFAULT;
}
 
if (sk->no_check == 1)
ddp->deh_sum = 0;
else
ddp->deh_sum = atalk_checksum(ddp, len + sizeof(*ddp));
 
/*
* Loopback broadcast packets to non gateway targets (ie routes
* to group we are in)
*/
if (ddp->deh_dnode == ATADDR_BCAST &&
!(rt->flags & RTF_GATEWAY) && !(dev->flags & IFF_LOOPBACK)) {
struct sk_buff *skb2 = skb_copy(skb, GFP_KERNEL);
 
if (skb2) {
loopback = 1;
SOCK_DEBUG(sk, "SK %p: send out(copy).\n", sk);
if (aarp_send_ddp(dev, skb2,
&usat->sat_addr, NULL) == -1)
kfree_skb(skb2);
/* else queued/sent above in the aarp queue */
}
}
 
if (dev->flags & IFF_LOOPBACK || loopback) {
SOCK_DEBUG(sk, "SK %p: Loop back.\n", sk);
/* loop back */
skb_orphan(skb);
ddp_dl->datalink_header(ddp_dl, skb, dev->dev_addr);
skb->mac.raw = skb->data;
skb->h.raw = skb->data + ddp_dl->header_length +
dev->hard_header_len;
skb_pull(skb, dev->hard_header_len);
skb_pull(skb, ddp_dl->header_length);
atalk_rcv(skb, dev, NULL);
} else {
SOCK_DEBUG(sk, "SK %p: send out.\n", sk);
if (rt->flags & RTF_GATEWAY) {
gsat.sat_addr = rt->gateway;
usat = &gsat;
}
 
if (aarp_send_ddp(dev, skb, &usat->sat_addr, NULL) == -1)
kfree_skb(skb);
/* else queued/sent above in the aarp queue */
}
SOCK_DEBUG(sk, "SK %p: Done write (%d).\n", sk, len);
 
return len;
}
 
static int atalk_recvmsg(struct socket *sock, struct msghdr *msg, int size,
int flags, struct scm_cookie *scm)
{
struct sock *sk = sock->sk;
struct sockaddr_at *sat = (struct sockaddr_at *)msg->msg_name;
struct ddpehdr *ddp = NULL;
int copied = 0;
int err = 0;
struct ddpebits ddphv;
struct sk_buff *skb;
 
skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
flags & MSG_DONTWAIT, &err);
if (!skb)
return err;
 
ddp = (struct ddpehdr *)(skb->h.raw);
*((__u16 *)&ddphv) = ntohs(*((__u16 *)ddp));
 
if (sk->type == SOCK_RAW) {
copied = ddphv.deh_len;
if (copied > size) {
copied = size;
msg->msg_flags |= MSG_TRUNC;
}
 
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
} else {
copied = ddphv.deh_len - sizeof(*ddp);
if (copied > size) {
copied = size;
msg->msg_flags |= MSG_TRUNC;
}
err = skb_copy_datagram_iovec(skb, sizeof(*ddp),
msg->msg_iov, copied);
}
 
if (!err) {
if (sat) {
sat->sat_family = AF_APPLETALK;
sat->sat_port = ddp->deh_sport;
sat->sat_addr.s_node = ddp->deh_snode;
sat->sat_addr.s_net = ddp->deh_snet;
}
msg->msg_namelen = sizeof(*sat);
}
 
skb_free_datagram(sk, skb); /* Free the datagram. */
return err ? err : copied;
}
 
 
/*
* AppleTalk ioctl calls.
*/
static int atalk_ioctl(struct socket *sock,unsigned int cmd, unsigned long arg)
{
long amount = 0;
struct sock *sk = sock->sk;
 
switch (cmd) {
/* Protocol layer */
case TIOCOUTQ:
amount = sk->sndbuf - atomic_read(&sk->wmem_alloc);
if (amount < 0)
amount = 0;
break;
case TIOCINQ:
{
/* These two are safe on a single CPU system as only
* user tasks fiddle here */
struct sk_buff *skb = skb_peek(&sk->receive_queue);
 
if (skb)
amount = skb->len-sizeof(struct ddpehdr);
break;
}
case SIOCGSTAMP:
if (!sk)
return -EINVAL;
if (!sk->stamp.tv_sec)
return -ENOENT;
return copy_to_user((void *)arg, &sk->stamp,
sizeof(struct timeval)) ? -EFAULT : 0;
/* Routing */
case SIOCADDRT:
case SIOCDELRT:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
return atrtr_ioctl(cmd, (void *)arg);
/* Interface */
case SIOCGIFADDR:
case SIOCSIFADDR:
case SIOCGIFBRDADDR:
case SIOCATALKDIFADDR:
case SIOCDIFADDR:
case SIOCSARP: /* proxy AARP */
case SIOCDARP: /* proxy AARP */
{
int ret;
 
rtnl_lock();
ret = atif_ioctl(cmd, (void *)arg);
rtnl_unlock();
 
return ret;
}
/* Physical layer ioctl calls */
case SIOCSIFLINK:
case SIOCGIFHWADDR:
case SIOCSIFHWADDR:
case SIOCGIFFLAGS:
case SIOCSIFFLAGS:
case SIOCGIFMTU:
case SIOCGIFCONF:
case SIOCADDMULTI:
case SIOCDELMULTI:
case SIOCGIFCOUNT:
case SIOCGIFINDEX:
case SIOCGIFNAME:
return dev_ioctl(cmd,(void *) arg);
case SIOCSIFMETRIC:
case SIOCSIFBRDADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
case SIOCGIFMEM:
case SIOCSIFMEM:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
return -EINVAL;
default:
return -EINVAL;
}
 
return put_user(amount, (int *)arg);
}
 
static struct net_proto_family atalk_family_ops =
{
PF_APPLETALK,
atalk_create
};
 
static struct proto_ops SOCKOPS_WRAPPED(atalk_dgram_ops)=
{
family: PF_APPLETALK,
 
release: atalk_release,
bind: atalk_bind,
connect: atalk_connect,
socketpair: sock_no_socketpair,
accept: sock_no_accept,
getname: atalk_getname,
poll: datagram_poll,
ioctl: atalk_ioctl,
listen: sock_no_listen,
shutdown: sock_no_shutdown,
setsockopt: sock_no_setsockopt,
getsockopt: sock_no_getsockopt,
sendmsg: atalk_sendmsg,
recvmsg: atalk_recvmsg,
mmap: sock_no_mmap,
sendpage: sock_no_sendpage,
};
 
#include <linux/smp_lock.h>
SOCKOPS_WRAP(atalk_dgram, PF_APPLETALK);
 
static struct notifier_block ddp_notifier=
{
ddp_device_event,
NULL,
0
};
 
struct packet_type ltalk_packet_type=
{
0,
NULL,
ltalk_rcv,
NULL,
NULL
};
 
struct packet_type ppptalk_packet_type=
{
0,
NULL,
atalk_rcv,
NULL,
NULL
};
 
static char ddp_snap_id[] = {0x08, 0x00, 0x07, 0x80, 0x9B};
 
/* Export symbols for use by drivers when AppleTalk is a module */
EXPORT_SYMBOL(aarp_send_ddp);
EXPORT_SYMBOL(atrtr_get_dev);
EXPORT_SYMBOL(atalk_find_dev_addr);
 
/* Called by proto.c on kernel start up */
static int __init atalk_init(void)
{
(void) sock_register(&atalk_family_ops);
ddp_dl = register_snap_client(ddp_snap_id, atalk_rcv);
if (!ddp_dl)
printk(KERN_CRIT "Unable to register DDP with SNAP.\n");
 
ltalk_packet_type.type = htons(ETH_P_LOCALTALK);
dev_add_pack(&ltalk_packet_type);
 
ppptalk_packet_type.type = htons(ETH_P_PPPTALK);
dev_add_pack(&ppptalk_packet_type);
 
register_netdevice_notifier(&ddp_notifier);
aarp_proto_init();
 
proc_net_create("appletalk", 0, atalk_get_info);
proc_net_create("atalk_route", 0, atalk_rt_get_info);
proc_net_create("atalk_iface", 0, atalk_if_get_info);
#ifdef CONFIG_PROC_FS
aarp_register_proc_fs();
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_SYSCTL
atalk_register_sysctl();
#endif /* CONFIG_SYSCTL */
printk(KERN_INFO "NET4: AppleTalk 0.18a for Linux NET4.0\n");
return 0;
}
module_init(atalk_init);
 
#ifdef MODULE
/*
* Note on MOD_{INC,DEC}_USE_COUNT:
*
* Use counts are incremented/decremented when
* sockets are created/deleted.
*
* AppleTalk interfaces are not incremented until atalkd is run
* and are only decremented when they are downed.
*
* Ergo, before the AppleTalk module can be removed, all AppleTalk
* sockets be closed from user space.
*/
static void __exit atalk_exit(void)
{
#ifdef CONFIG_SYSCTL
atalk_unregister_sysctl();
#endif /* CONFIG_SYSCTL */
proc_net_remove("appletalk");
proc_net_remove("atalk_route");
proc_net_remove("atalk_iface");
#ifdef CONFIG_PROC_FS
aarp_unregister_proc_fs();
#endif /* CONFIG_PROC_FS */
aarp_cleanup_module(); /* General aarp clean-up. */
unregister_netdevice_notifier(&ddp_notifier);
dev_remove_pack(&ltalk_packet_type);
dev_remove_pack(&ppptalk_packet_type);
unregister_snap_client(ddp_snap_id);
sock_unregister(PF_APPLETALK);
}
module_exit(atalk_exit);
#endif /* MODULE */
#endif /* CONFIG_ATALK || CONFIG_ATALK_MODULE */
/Makefile
0,0 → 1,20
#
# Makefile for the Linux AppleTalk layer.
#
# Note! Dependencies are done automagically by 'make dep', which also
# removes any old dependencies. DON'T put your own dependencies here
# unless it's something special (ie not a .c file).
#
# Note 2! The CFLAGS definition is now in the main makefile...
 
O_TARGET := appletalk.o
 
export-objs = ddp.o
 
obj-y := aarp.o ddp.o
obj-m := $(O_TARGET)
 
obj-$(CONFIG_SYSCTL) += sysctl_net_atalk.o
 
include $(TOPDIR)/Rules.make
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.