URL
https://opencores.org/ocsvn/or1k/or1k/trunk
Subversion Repositories or1k
Compare Revisions
- This comparison shows the changes necessary to convert path
/or1k/trunk/newlib-1.10.0/newlib/libm/math
- from Rev 1010 to Rev 1765
- ↔ Reverse comparison
Rev 1010 → Rev 1765
/w_cabs.c
0,0 → 1,20
/* |
* cabs() wrapper for hypot(). |
* |
* Written by J.T. Conklin, <jtc@wimsey.com> |
* Placed into the Public Domain, 1994. |
*/ |
|
#include "fdlibm.h" |
|
struct complex { |
double x; |
double y; |
}; |
|
double |
cabs(z) |
struct complex z; |
{ |
return hypot(z.x, z.y); |
} |
/wf_hypot.c
0,0 → 1,79
/* wf_hypot.c -- float version of w_hypot.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper hypotf(x,y) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float hypotf(float x, float y) /* wrapper hypotf */ |
#else |
float hypotf(x,y) /* wrapper hypotf */ |
float x,y; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_hypotf(x,y); |
#else |
float z; |
struct exception exc; |
z = __ieee754_hypotf(x,y); |
if(_LIB_VERSION == _IEEE_) return z; |
if((!finitef(z))&&finitef(x)&&finitef(y)) { |
/* hypotf(finite,finite) overflow */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = OVERFLOW; |
exc.name = "hypotf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double hypot(double x, double y) |
#else |
double hypot(x,y) |
double x,y; |
#endif |
{ |
return (double) hypotf((float) x, (float) y); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/sf_isinf.c
0,0 → 1,33
/* |
* isinff(x) returns 1 if x is +-infinity, else 0; |
* Added by Cygnus Support. |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
int isinff(float x) |
#else |
int isinff(x) |
float x; |
#endif |
{ |
__int32_t ix; |
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; |
return FLT_UWORD_IS_INFINITE(ix); |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
int isinf(double x) |
#else |
int isinf(x) |
double x; |
#endif |
{ |
return isinff((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_exp.c
0,0 → 1,167
|
/* @(#)e_exp.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_exp(x) |
* Returns the exponential of x. |
* |
* Method |
* 1. Argument reduction: |
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
* Given x, find r and integer k such that |
* |
* x = k*ln2 + r, |r| <= 0.5*ln2. |
* |
* Here r will be represented as r = hi-lo for better |
* accuracy. |
* |
* 2. Approximation of exp(r) by a special rational function on |
* the interval [0,0.34658]: |
* Write |
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
* We use a special Reme algorithm on [0,0.34658] to generate |
* a polynomial of degree 5 to approximate R. The maximum error |
* of this polynomial approximation is bounded by 2**-59. In |
* other words, |
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
* (where z=r*r, and the values of P1 to P5 are listed below) |
* and |
* | 5 | -59 |
* | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
* | | |
* The computation of exp(r) thus becomes |
* 2*r |
* exp(r) = 1 + ------- |
* R - r |
* r*R1(r) |
* = 1 + r + ----------- (for better accuracy) |
* 2 - R1(r) |
* where |
* 2 4 10 |
* R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
* |
* 3. Scale back to obtain exp(x): |
* From step 1, we have |
* exp(x) = 2^k * exp(r) |
* |
* Special cases: |
* exp(INF) is INF, exp(NaN) is NaN; |
* exp(-INF) is 0, and |
* for finite argument, only exp(0)=1 is exact. |
* |
* Accuracy: |
* according to an error analysis, the error is always less than |
* 1 ulp (unit in the last place). |
* |
* Misc. info. |
* For IEEE double |
* if x > 7.09782712893383973096e+02 then exp(x) overflow |
* if x < -7.45133219101941108420e+02 then exp(x) underflow |
* |
* Constants: |
* The hexadecimal values are the intended ones for the following |
* constants. The decimal values may be used, provided that the |
* compiler will convert from decimal to binary accurately enough |
* to produce the hexadecimal values shown. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
one = 1.0, |
halF[2] = {0.5,-0.5,}, |
huge = 1.0e+300, |
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ |
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ |
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ |
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ |
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
|
|
#ifdef __STDC__ |
double __ieee754_exp(double x) /* default IEEE double exp */ |
#else |
double __ieee754_exp(x) /* default IEEE double exp */ |
double x; |
#endif |
{ |
double y,hi,lo,c,t; |
__int32_t k,xsb; |
__uint32_t hx; |
|
GET_HIGH_WORD(hx,x); |
xsb = (hx>>31)&1; /* sign bit of x */ |
hx &= 0x7fffffff; /* high word of |x| */ |
|
/* filter out non-finite argument */ |
if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
if(hx>=0x7ff00000) { |
__uint32_t lx; |
GET_LOW_WORD(lx,x); |
if(((hx&0xfffff)|lx)!=0) |
return x+x; /* NaN */ |
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ |
} |
if(x > o_threshold) return huge*huge; /* overflow */ |
if(x < u_threshold) return twom1000*twom1000; /* underflow */ |
} |
|
/* argument reduction */ |
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; |
} else { |
k = invln2*x+halF[xsb]; |
t = k; |
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ |
lo = t*ln2LO[0]; |
} |
x = hi - lo; |
} |
else if(hx < 0x3e300000) { /* when |x|<2**-28 */ |
if(huge+x>one) return one+x;/* trigger inexact */ |
} |
else k = 0; |
|
/* x is now in primary range */ |
t = x*x; |
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
if(k==0) return one-((x*c)/(c-2.0)-x); |
else y = one-((lo-(x*c)/(2.0-c))-hi); |
if(k >= -1021) { |
__uint32_t hy; |
GET_HIGH_WORD(hy,y); |
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ |
return y; |
} else { |
__uint32_t hy; |
GET_HIGH_WORD(hy,y); |
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ |
return y*twom1000; |
} |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_floor.c
0,0 → 1,134
|
/* @(#)s_floor.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<floor>>, <<floorf>>, <<ceil>>, <<ceilf>>---floor and ceiling |
INDEX |
floor |
INDEX |
floorf |
INDEX |
ceil |
INDEX |
ceilf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double floor(double <[x]>); |
float floorf(float <[x]>); |
double ceil(double <[x]>); |
float ceilf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double floor(<[x]>) |
double <[x]>; |
float floorf(<[x]>) |
float <[x]>; |
double ceil(<[x]>) |
double <[x]>; |
float ceilf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<floor>> and <<floorf>> find |
@tex |
$\lfloor x \rfloor$, |
@end tex |
the nearest integer less than or equal to <[x]>. |
<<ceil>> and <<ceilf>> find |
@tex |
$\lceil x\rceil$, |
@end tex |
the nearest integer greater than or equal to <[x]>. |
|
RETURNS |
<<floor>> and <<ceil>> return the integer result as a double. |
<<floorf>> and <<ceilf>> return the integer result as a float. |
|
PORTABILITY |
<<floor>> and <<ceil>> are ANSI. |
<<floorf>> and <<ceilf>> are extensions. |
|
|
*/ |
|
/* |
* floor(x) |
* Return x rounded toward -inf to integral value |
* Method: |
* Bit twiddling. |
* Exception: |
* Inexact flag raised if x not equal to floor(x). |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double huge = 1.0e300; |
#else |
static double huge = 1.0e300; |
#endif |
|
#ifdef __STDC__ |
double floor(double x) |
#else |
double floor(x) |
double x; |
#endif |
{ |
__int32_t i0,i1,j0; |
__uint32_t i,j; |
EXTRACT_WORDS(i0,i1,x); |
j0 = ((i0>>20)&0x7ff)-0x3ff; |
if(j0<20) { |
if(j0<0) { /* raise inexact if x != 0 */ |
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ |
if(i0>=0) {i0=i1=0;} |
else if(((i0&0x7fffffff)|i1)!=0) |
{ i0=0xbff00000;i1=0;} |
} |
} else { |
i = (0x000fffff)>>j0; |
if(((i0&i)|i1)==0) return x; /* x is integral */ |
if(huge+x>0.0) { /* raise inexact flag */ |
if(i0<0) i0 += (0x00100000)>>j0; |
i0 &= (~i); i1=0; |
} |
} |
} else if (j0>51) { |
if(j0==0x400) return x+x; /* inf or NaN */ |
else return x; /* x is integral */ |
} else { |
i = ((__uint32_t)(0xffffffff))>>(j0-20); |
if((i1&i)==0) return x; /* x is integral */ |
if(huge+x>0.0) { /* raise inexact flag */ |
if(i0<0) { |
if(j0==20) i0+=1; |
else { |
j = i1+(1<<(52-j0)); |
if(j<i1) i0 +=1 ; /* got a carry */ |
i1=j; |
} |
} |
i1 &= (~i); |
} |
} |
INSERT_WORDS(x,i0,i1); |
return x; |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/sf_erf.c
0,0 → 1,246
/* sf_erf.c -- float version of s_erf.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __v810__ |
#define const |
#endif |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
tiny = 1e-30, |
half= 5.0000000000e-01, /* 0x3F000000 */ |
one = 1.0000000000e+00, /* 0x3F800000 */ |
two = 2.0000000000e+00, /* 0x40000000 */ |
/* c = (subfloat)0.84506291151 */ |
erx = 8.4506291151e-01, /* 0x3f58560b */ |
/* |
* Coefficients for approximation to erf on [0,0.84375] |
*/ |
efx = 1.2837916613e-01, /* 0x3e0375d4 */ |
efx8= 1.0270333290e+00, /* 0x3f8375d4 */ |
pp0 = 1.2837916613e-01, /* 0x3e0375d4 */ |
pp1 = -3.2504209876e-01, /* 0xbea66beb */ |
pp2 = -2.8481749818e-02, /* 0xbce9528f */ |
pp3 = -5.7702702470e-03, /* 0xbbbd1489 */ |
pp4 = -2.3763017452e-05, /* 0xb7c756b1 */ |
qq1 = 3.9791721106e-01, /* 0x3ecbbbce */ |
qq2 = 6.5022252500e-02, /* 0x3d852a63 */ |
qq3 = 5.0813062117e-03, /* 0x3ba68116 */ |
qq4 = 1.3249473704e-04, /* 0x390aee49 */ |
qq5 = -3.9602282413e-06, /* 0xb684e21a */ |
/* |
* Coefficients for approximation to erf in [0.84375,1.25] |
*/ |
pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */ |
pa1 = 4.1485610604e-01, /* 0x3ed46805 */ |
pa2 = -3.7220788002e-01, /* 0xbebe9208 */ |
pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */ |
pa4 = -1.1089469492e-01, /* 0xbde31cc2 */ |
pa5 = 3.5478305072e-02, /* 0x3d1151b3 */ |
pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */ |
qa1 = 1.0642088205e-01, /* 0x3dd9f331 */ |
qa2 = 5.4039794207e-01, /* 0x3f0a5785 */ |
qa3 = 7.1828655899e-02, /* 0x3d931ae7 */ |
qa4 = 1.2617121637e-01, /* 0x3e013307 */ |
qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */ |
qa6 = 1.1984500103e-02, /* 0x3c445aa3 */ |
/* |
* Coefficients for approximation to erfc in [1.25,1/0.35] |
*/ |
ra0 = -9.8649440333e-03, /* 0xbc21a093 */ |
ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */ |
ra2 = -1.0558626175e+01, /* 0xc128f022 */ |
ra3 = -6.2375331879e+01, /* 0xc2798057 */ |
ra4 = -1.6239666748e+02, /* 0xc322658c */ |
ra5 = -1.8460508728e+02, /* 0xc3389ae7 */ |
ra6 = -8.1287437439e+01, /* 0xc2a2932b */ |
ra7 = -9.8143291473e+00, /* 0xc11d077e */ |
sa1 = 1.9651271820e+01, /* 0x419d35ce */ |
sa2 = 1.3765776062e+02, /* 0x4309a863 */ |
sa3 = 4.3456588745e+02, /* 0x43d9486f */ |
sa4 = 6.4538726807e+02, /* 0x442158c9 */ |
sa5 = 4.2900814819e+02, /* 0x43d6810b */ |
sa6 = 1.0863500214e+02, /* 0x42d9451f */ |
sa7 = 6.5702495575e+00, /* 0x40d23f7c */ |
sa8 = -6.0424413532e-02, /* 0xbd777f97 */ |
/* |
* Coefficients for approximation to erfc in [1/.35,28] |
*/ |
rb0 = -9.8649431020e-03, /* 0xbc21a092 */ |
rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */ |
rb2 = -1.7757955551e+01, /* 0xc18e104b */ |
rb3 = -1.6063638306e+02, /* 0xc320a2ea */ |
rb4 = -6.3756646729e+02, /* 0xc41f6441 */ |
rb5 = -1.0250950928e+03, /* 0xc480230b */ |
rb6 = -4.8351919556e+02, /* 0xc3f1c275 */ |
sb1 = 3.0338060379e+01, /* 0x41f2b459 */ |
sb2 = 3.2579251099e+02, /* 0x43a2e571 */ |
sb3 = 1.5367296143e+03, /* 0x44c01759 */ |
sb4 = 3.1998581543e+03, /* 0x4547fdbb */ |
sb5 = 2.5530502930e+03, /* 0x451f90ce */ |
sb6 = 4.7452853394e+02, /* 0x43ed43a7 */ |
sb7 = -2.2440952301e+01; /* 0xc1b38712 */ |
|
#ifdef __STDC__ |
float erff(float x) |
#else |
float erff(x) |
float x; |
#endif |
{ |
__int32_t hx,ix,i; |
float R,S,P,Q,s,y,z,r; |
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(!FLT_UWORD_IS_FINITE(ix)) { /* erf(nan)=nan */ |
i = ((__uint32_t)hx>>31)<<1; |
return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */ |
} |
|
if(ix < 0x3f580000) { /* |x|<0.84375 */ |
if(ix < 0x31800000) { /* |x|<2**-28 */ |
if (ix < 0x04000000) |
/*avoid underflow */ |
return (float)0.125*((float)8.0*x+efx8*x); |
return x + efx*x; |
} |
z = x*x; |
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
y = r/s; |
return x + x*y; |
} |
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ |
s = fabsf(x)-one; |
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
if(hx>=0) return erx + P/Q; else return -erx - P/Q; |
} |
if (ix >= 0x40c00000) { /* inf>|x|>=6 */ |
if(hx>=0) return one-tiny; else return tiny-one; |
} |
x = fabsf(x); |
s = one/(x*x); |
if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */ |
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
ra5+s*(ra6+s*ra7)))))); |
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
sa5+s*(sa6+s*(sa7+s*sa8))))))); |
} else { /* |x| >= 1/0.35 */ |
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
rb5+s*rb6))))); |
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
sb5+s*(sb6+s*sb7)))))); |
} |
GET_FLOAT_WORD(ix,x); |
SET_FLOAT_WORD(z,ix&0xfffff000); |
r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S); |
if(hx>=0) return one-r/x; else return r/x-one; |
} |
|
#ifdef __STDC__ |
float erfcf(float x) |
#else |
float erfcf(x) |
float x; |
#endif |
{ |
__int32_t hx,ix; |
float R,S,P,Q,s,y,z,r; |
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(!FLT_UWORD_IS_FINITE(ix)) { /* erfc(nan)=nan */ |
/* erfc(+-inf)=0,2 */ |
return (float)(((__uint32_t)hx>>31)<<1)+one/x; |
} |
|
if(ix < 0x3f580000) { /* |x|<0.84375 */ |
if(ix < 0x23800000) /* |x|<2**-56 */ |
return one-x; |
z = x*x; |
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
y = r/s; |
if(hx < 0x3e800000) { /* x<1/4 */ |
return one-(x+x*y); |
} else { |
r = x*y; |
r += (x-half); |
return half - r ; |
} |
} |
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ |
s = fabsf(x)-one; |
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
if(hx>=0) { |
z = one-erx; return z - P/Q; |
} else { |
z = erx+P/Q; return one+z; |
} |
} |
if (ix < 0x41e00000) { /* |x|<28 */ |
x = fabsf(x); |
s = one/(x*x); |
if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/ |
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
ra5+s*(ra6+s*ra7)))))); |
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
sa5+s*(sa6+s*(sa7+s*sa8))))))); |
} else { /* |x| >= 1/.35 ~ 2.857143 */ |
if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */ |
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
rb5+s*rb6))))); |
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
sb5+s*(sb6+s*sb7)))))); |
} |
GET_FLOAT_WORD(ix,x); |
SET_FLOAT_WORD(z,ix&0xfffff000); |
r = __ieee754_expf(-z*z-(float)0.5625)* |
__ieee754_expf((z-x)*(z+x)+R/S); |
if(hx>0) return r/x; else return two-r/x; |
} else { |
if(hx>0) return tiny*tiny; else return two-tiny; |
} |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double erf(double x) |
#else |
double erf(x) |
double x; |
#endif |
{ |
return (double) erff((float) x); |
} |
|
#ifdef __STDC__ |
double erfc(double x) |
#else |
double erfc(x) |
double x; |
#endif |
{ |
return (double) erfcf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_sinh.c
0,0 → 1,86
|
/* @(#)e_sinh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_sinh(x) |
* Method : |
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 |
* 1. Replace x by |x| (sinh(-x) = -sinh(x)). |
* 2. |
* E + E/(E+1) |
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) |
* 2 |
* |
* 22 <= x <= lnovft : sinh(x) := exp(x)/2 |
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) |
* ln2ovft < x : sinh(x) := x*shuge (overflow) |
* |
* Special cases: |
* sinh(x) is |x| if x is +INF, -INF, or NaN. |
* only sinh(0)=0 is exact for finite x. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double one = 1.0, shuge = 1.0e307; |
#else |
static double one = 1.0, shuge = 1.0e307; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_sinh(double x) |
#else |
double __ieee754_sinh(x) |
double x; |
#endif |
{ |
double t,w,h; |
__int32_t ix,jx; |
__uint32_t lx; |
|
/* High word of |x|. */ |
GET_HIGH_WORD(jx,x); |
ix = jx&0x7fffffff; |
|
/* x is INF or NaN */ |
if(ix>=0x7ff00000) return x+x; |
|
h = 0.5; |
if (jx<0) h = -h; |
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ |
if (ix < 0x40360000) { /* |x|<22 */ |
if (ix<0x3e300000) /* |x|<2**-28 */ |
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ |
t = expm1(fabs(x)); |
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one)); |
return h*(t+t/(t+one)); |
} |
|
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ |
if (ix < 0x40862E42) return h*__ieee754_exp(fabs(x)); |
|
/* |x| in [log(maxdouble), overflowthresold] */ |
GET_LOW_WORD(lx,x); |
if (ix<0x408633CE || (ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) { |
w = __ieee754_exp(0.5*fabs(x)); |
t = h*w; |
return t*w; |
} |
|
/* |x| > overflowthresold, sinh(x) overflow */ |
return x*shuge; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wr_lgamma.c
0,0 → 1,77
|
/* @(#)wr_lgamma.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper double lgamma_r(double x, int *signgamp) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double lgamma_r(double x, int *signgamp) /* wrapper lgamma_r */ |
#else |
double lgamma_r(x,signgamp) /* wrapper lgamma_r */ |
double x; int *signgamp; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_lgamma_r(x,signgamp); |
#else |
double y; |
struct exception exc; |
y = __ieee754_lgamma_r(x,signgamp); |
if(_LIB_VERSION == _IEEE_) return y; |
if(!finite(y)&&finite(x)) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "lgamma"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if(floor(x)==x&&x<=0.0) { |
/* lgamma(-integer) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
|
} else { |
/* lgamma(finite) overflow */ |
exc.type = OVERFLOW; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return y; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_fmod.c
0,0 → 1,107
|
/* @(#)w_fmod.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<fmod>>, <<fmodf>>---floating-point remainder (modulo) |
|
INDEX |
fmod |
INDEX |
fmodf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double fmod(double <[x]>, double <[y]>) |
float fmodf(float <[x]>, float <[y]>) |
|
TRAD_SYNOPSIS |
#include <math.h> |
double fmod(<[x]>, <[y]>) |
double (<[x]>, <[y]>); |
|
float fmodf(<[x]>, <[y]>) |
float (<[x]>, <[y]>); |
|
DESCRIPTION |
The <<fmod>> and <<fmodf>> functions compute the floating-point |
remainder of <[x]>/<[y]> (<[x]> modulo <[y]>). |
|
RETURNS |
The <<fmod>> function returns the value |
@ifinfo |
<[x]>-<[i]>*<[y]>, |
@end ifinfo |
@tex |
$x-i\times y$, |
@end tex |
for the largest integer <[i]> such that, if <[y]> is nonzero, the |
result has the same sign as <[x]> and magnitude less than the |
magnitude of <[y]>. |
|
<<fmod(<[x]>,0)>> returns NaN, and sets <<errno>> to <<EDOM>>. |
|
You can modify error treatment for these functions using <<matherr>>. |
|
PORTABILITY |
<<fmod>> is ANSI C. <<fmodf>> is an extension. |
*/ |
|
/* |
* wrapper fmod(x,y) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double fmod(double x, double y) /* wrapper fmod */ |
#else |
double fmod(x,y) /* wrapper fmod */ |
double x,y; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_fmod(x,y); |
#else |
double z; |
struct exception exc; |
z = __ieee754_fmod(x,y); |
if(_LIB_VERSION == _IEEE_ ||isnan(y)||isnan(x)) return z; |
if(y==0.0) { |
/* fmod(x,0) */ |
exc.type = DOMAIN; |
exc.name = "fmod"; |
exc.arg1 = x; |
exc.arg2 = y; |
exc.err = 0; |
if (_LIB_VERSION == _SVID_) |
exc.retval = x; |
else |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_j0.c
0,0 → 1,487
|
/* @(#)e_j0.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_j0(x), __ieee754_y0(x) |
* Bessel function of the first and second kinds of order zero. |
* Method -- j0(x): |
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... |
* 2. Reduce x to |x| since j0(x)=j0(-x), and |
* for x in (0,2) |
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; |
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) |
* for x in (2,inf) |
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) |
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) |
* as follow: |
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
* = 1/sqrt(2) * (cos(x) + sin(x)) |
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) |
* = 1/sqrt(2) * (sin(x) - cos(x)) |
* (To avoid cancellation, use |
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
* to compute the worse one.) |
* |
* 3 Special cases |
* j0(nan)= nan |
* j0(0) = 1 |
* j0(inf) = 0 |
* |
* Method -- y0(x): |
* 1. For x<2. |
* Since |
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) |
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. |
* We use the following function to approximate y0, |
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 |
* where |
* U(z) = u00 + u01*z + ... + u06*z^6 |
* V(z) = 1 + v01*z + ... + v04*z^4 |
* with absolute approximation error bounded by 2**-72. |
* Note: For tiny x, U/V = u0 and j0(x)~1, hence |
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) |
* 2. For x>=2. |
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) |
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) |
* by the method mentioned above. |
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static double pzero(double), qzero(double); |
#else |
static double pzero(), qzero(); |
#endif |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
huge = 1e300, |
one = 1.0, |
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
/* R0/S0 on [0, 2.00] */ |
R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ |
R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ |
R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ |
R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ |
S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ |
S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ |
S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ |
S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ |
|
#ifdef __STDC__ |
static const double zero = 0.0; |
#else |
static double zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_j0(double x) |
#else |
double __ieee754_j0(x) |
double x; |
#endif |
{ |
double z, s,c,ss,cc,r,u,v; |
__int32_t hx,ix; |
|
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>=0x7ff00000) return one/(x*x); |
x = fabs(x); |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
s = sin(x); |
c = cos(x); |
ss = s-c; |
cc = s+c; |
if(ix<0x7fe00000) { /* make sure x+x not overflow */ |
z = -cos(x+x); |
if ((s*c)<zero) cc = z/ss; |
else ss = z/cc; |
} |
/* |
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
*/ |
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(x); |
else { |
u = pzero(x); v = qzero(x); |
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(x); |
} |
return z; |
} |
if(ix<0x3f200000) { /* |x| < 2**-13 */ |
if(huge+x>one) { /* raise inexact if x != 0 */ |
if(ix<0x3e400000) return one; /* |x|<2**-27 */ |
else return one - 0.25*x*x; |
} |
} |
z = x*x; |
r = z*(R02+z*(R03+z*(R04+z*R05))); |
s = one+z*(S01+z*(S02+z*(S03+z*S04))); |
if(ix < 0x3FF00000) { /* |x| < 1.00 */ |
return one + z*(-0.25+(r/s)); |
} else { |
u = 0.5*x; |
return((one+u)*(one-u)+z*(r/s)); |
} |
} |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ |
u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ |
u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ |
u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ |
u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ |
u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ |
u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ |
v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ |
v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ |
v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ |
v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ |
|
#ifdef __STDC__ |
double __ieee754_y0(double x) |
#else |
double __ieee754_y0(x) |
double x; |
#endif |
{ |
double z, s,c,ss,cc,u,v; |
__int32_t hx,ix,lx; |
|
EXTRACT_WORDS(hx,lx,x); |
ix = 0x7fffffff&hx; |
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ |
if(ix>=0x7ff00000) return one/(x+x*x); |
if((ix|lx)==0) return -one/zero; |
if(hx<0) return zero/zero; |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) |
* where x0 = x-pi/4 |
* Better formula: |
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
* = 1/sqrt(2) * (sin(x) + cos(x)) |
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
* = 1/sqrt(2) * (sin(x) - cos(x)) |
* To avoid cancellation, use |
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
* to compute the worse one. |
*/ |
s = sin(x); |
c = cos(x); |
ss = s-c; |
cc = s+c; |
/* |
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
*/ |
if(ix<0x7fe00000) { /* make sure x+x not overflow */ |
z = -cos(x+x); |
if ((s*c)<zero) cc = z/ss; |
else ss = z/cc; |
} |
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x); |
else { |
u = pzero(x); v = qzero(x); |
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x); |
} |
return z; |
} |
if(ix<=0x3e400000) { /* x < 2**-27 */ |
return(u00 + tpi*__ieee754_log(x)); |
} |
z = x*x; |
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); |
v = one+z*(v01+z*(v02+z*(v03+z*v04))); |
return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x))); |
} |
|
/* The asymptotic expansions of pzero is |
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. |
* For x >= 2, We approximate pzero by |
* pzero(x) = 1 + (R/S) |
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 |
* S = 1 + pS0*s^2 + ... + pS4*s^10 |
* and |
* | pzero(x)-1-R/S | <= 2 ** ( -60.26) |
*/ |
#ifdef __STDC__ |
static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#else |
static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#endif |
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ |
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ |
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ |
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ |
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ |
}; |
#ifdef __STDC__ |
static const double pS8[5] = { |
#else |
static double pS8[5] = { |
#endif |
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ |
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ |
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ |
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ |
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ |
}; |
|
#ifdef __STDC__ |
static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#else |
static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#endif |
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ |
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ |
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ |
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ |
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ |
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ |
}; |
#ifdef __STDC__ |
static const double pS5[5] = { |
#else |
static double pS5[5] = { |
#endif |
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ |
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ |
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ |
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ |
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ |
}; |
|
#ifdef __STDC__ |
static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#else |
static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#endif |
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ |
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ |
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ |
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ |
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ |
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ |
}; |
#ifdef __STDC__ |
static const double pS3[5] = { |
#else |
static double pS3[5] = { |
#endif |
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ |
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ |
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ |
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ |
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ |
}; |
|
#ifdef __STDC__ |
static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#else |
static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#endif |
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ |
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ |
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ |
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ |
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ |
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ |
}; |
#ifdef __STDC__ |
static const double pS2[5] = { |
#else |
static double pS2[5] = { |
#endif |
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ |
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ |
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ |
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ |
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ |
}; |
|
#ifdef __STDC__ |
static double pzero(double x) |
#else |
static double pzero(x) |
double x; |
#endif |
{ |
#ifdef __STDC__ |
const double *p,*q; |
#else |
double *p,*q; |
#endif |
double z,r,s; |
__int32_t ix; |
GET_HIGH_WORD(ix,x); |
ix &= 0x7fffffff; |
if(ix>=0x40200000) {p = pR8; q= pS8;} |
else if(ix>=0x40122E8B){p = pR5; q= pS5;} |
else if(ix>=0x4006DB6D){p = pR3; q= pS3;} |
else {p = pR2; q= pS2;} |
z = one/(x*x); |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
return one+ r/s; |
} |
|
|
/* For x >= 8, the asymptotic expansions of qzero is |
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x. |
* We approximate qzero by |
* qzero(x) = s*(-1.25 + (R/S)) |
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 |
* S = 1 + qS0*s^2 + ... + qS5*s^12 |
* and |
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) |
*/ |
#ifdef __STDC__ |
static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#else |
static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#endif |
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ |
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ |
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ |
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ |
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ |
}; |
#ifdef __STDC__ |
static const double qS8[6] = { |
#else |
static double qS8[6] = { |
#endif |
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ |
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ |
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ |
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ |
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ |
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ |
}; |
|
#ifdef __STDC__ |
static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#else |
static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#endif |
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ |
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ |
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ |
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ |
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ |
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ |
}; |
#ifdef __STDC__ |
static const double qS5[6] = { |
#else |
static double qS5[6] = { |
#endif |
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ |
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ |
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ |
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ |
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ |
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ |
}; |
|
#ifdef __STDC__ |
static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#else |
static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#endif |
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ |
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ |
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ |
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ |
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ |
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ |
}; |
#ifdef __STDC__ |
static const double qS3[6] = { |
#else |
static double qS3[6] = { |
#endif |
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ |
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ |
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ |
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ |
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ |
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ |
}; |
|
#ifdef __STDC__ |
static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#else |
static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#endif |
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ |
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ |
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ |
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ |
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ |
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ |
}; |
#ifdef __STDC__ |
static const double qS2[6] = { |
#else |
static double qS2[6] = { |
#endif |
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ |
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ |
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ |
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ |
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ |
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ |
}; |
|
#ifdef __STDC__ |
static double qzero(double x) |
#else |
static double qzero(x) |
double x; |
#endif |
{ |
#ifdef __STDC__ |
const double *p,*q; |
#else |
double *p,*q; |
#endif |
double s,r,z; |
__int32_t ix; |
GET_HIGH_WORD(ix,x); |
ix &= 0x7fffffff; |
if(ix>=0x40200000) {p = qR8; q= qS8;} |
else if(ix>=0x40122E8B){p = qR5; q= qS5;} |
else if(ix>=0x4006DB6D){p = qR3; q= qS3;} |
else {p = qR2; q= qS2;} |
z = one/(x*x); |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
return (-.125 + r/s)/x; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_gamma.c
0,0 → 1,93
/* wf_gamma.c -- float version of w_gamma.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
#include "fdlibm.h" |
#include <reent.h> |
#include <errno.h> |
|
#ifdef __STDC__ |
float gammaf(float x) |
#else |
float gammaf(x) |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_gammaf_r(x,&(_REENT->_new._reent._gamma_signgam)); |
#else |
float y; |
struct exception exc; |
y = __ieee754_gammaf_r(x,&(_REENT->_new._reent._gamma_signgam)); |
if(_LIB_VERSION == _IEEE_) return y; |
if(!finitef(y)&&finitef(x)) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
if(floorf(x)==x&&x<=(float)0.0) { |
/* gammaf(-integer) or gammaf(0) */ |
exc.type = SING; |
exc.name = "gammaf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* gammaf(finite) overflow */ |
exc.type = OVERFLOW; |
exc.name = "gammaf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return y; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double gamma(double x) |
#else |
double gamma(x) |
double x; |
#endif |
{ |
return (double) gammaf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/erf_gamma.c
0,0 → 1,34
/* erf_gamma.c -- float version of er_gamma.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* __ieee754_gammaf_r(x, signgamp) |
* Reentrant version of the logarithm of the Gamma function |
* with user provide pointer for the sign of Gamma(x). |
* |
* Method: See __ieee754_lgammaf_r |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
float __ieee754_gammaf_r(float x, int *signgamp) |
#else |
float __ieee754_gammaf_r(x,signgamp) |
float x; int *signgamp; |
#endif |
{ |
return __ieee754_lgammaf_r(x,signgamp); |
} |
/ef_j1.c
0,0 → 1,439
/* ef_j1.c -- float version of e_j1.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static float ponef(float), qonef(float); |
#else |
static float ponef(), qonef(); |
#endif |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
huge = 1e30, |
one = 1.0, |
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
tpi = 6.3661974669e-01, /* 0x3f22f983 */ |
/* R0/S0 on [0,2] */ |
r00 = -6.2500000000e-02, /* 0xbd800000 */ |
r01 = 1.4070566976e-03, /* 0x3ab86cfd */ |
r02 = -1.5995563444e-05, /* 0xb7862e36 */ |
r03 = 4.9672799207e-08, /* 0x335557d2 */ |
s01 = 1.9153760746e-02, /* 0x3c9ce859 */ |
s02 = 1.8594678841e-04, /* 0x3942fab6 */ |
s03 = 1.1771846857e-06, /* 0x359dffc2 */ |
s04 = 5.0463624390e-09, /* 0x31ad6446 */ |
s05 = 1.2354227016e-11; /* 0x2d59567e */ |
|
#ifdef __STDC__ |
static const float zero = 0.0; |
#else |
static float zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_j1f(float x) |
#else |
float __ieee754_j1f(x) |
float x; |
#endif |
{ |
float z, s,c,ss,cc,r,u,v,y; |
__int32_t hx,ix; |
|
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(!FLT_UWORD_IS_FINITE(ix)) return one/x; |
y = fabsf(x); |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
s = sinf(y); |
c = cosf(y); |
ss = -s-c; |
cc = s-c; |
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure y+y not overflow */ |
z = cosf(y+y); |
if ((s*c)>zero) cc = z/ss; |
else ss = z/cc; |
} |
/* |
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) |
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) |
*/ |
if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(y); |
else { |
u = ponef(y); v = qonef(y); |
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(y); |
} |
if(hx<0) return -z; |
else return z; |
} |
if(ix<0x32000000) { /* |x|<2**-27 */ |
if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */ |
} |
z = x*x; |
r = z*(r00+z*(r01+z*(r02+z*r03))); |
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); |
r *= x; |
return(x*(float)0.5+r/s); |
} |
|
#ifdef __STDC__ |
static const float U0[5] = { |
#else |
static float U0[5] = { |
#endif |
-1.9605709612e-01, /* 0xbe48c331 */ |
5.0443872809e-02, /* 0x3d4e9e3c */ |
-1.9125689287e-03, /* 0xbafaaf2a */ |
2.3525259166e-05, /* 0x37c5581c */ |
-9.1909917899e-08, /* 0xb3c56003 */ |
}; |
#ifdef __STDC__ |
static const float V0[5] = { |
#else |
static float V0[5] = { |
#endif |
1.9916731864e-02, /* 0x3ca3286a */ |
2.0255257550e-04, /* 0x3954644b */ |
1.3560879779e-06, /* 0x35b602d4 */ |
6.2274145840e-09, /* 0x31d5f8eb */ |
1.6655924903e-11, /* 0x2d9281cf */ |
}; |
|
#ifdef __STDC__ |
float __ieee754_y1f(float x) |
#else |
float __ieee754_y1f(x) |
float x; |
#endif |
{ |
float z, s,c,ss,cc,u,v; |
__int32_t hx,ix; |
|
GET_FLOAT_WORD(hx,x); |
ix = 0x7fffffff&hx; |
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ |
if(!FLT_UWORD_IS_FINITE(ix)) return one/(x+x*x); |
if(FLT_UWORD_IS_ZERO(ix)) return -one/zero; |
if(hx<0) return zero/zero; |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
s = sinf(x); |
c = cosf(x); |
ss = -s-c; |
cc = s-c; |
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */ |
z = cosf(x+x); |
if ((s*c)>zero) cc = z/ss; |
else ss = z/cc; |
} |
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) |
* where x0 = x-3pi/4 |
* Better formula: |
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
* = 1/sqrt(2) * (sin(x) - cos(x)) |
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
* = -1/sqrt(2) * (cos(x) + sin(x)) |
* To avoid cancellation, use |
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
* to compute the worse one. |
*/ |
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x); |
else { |
u = ponef(x); v = qonef(x); |
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x); |
} |
return z; |
} |
if(ix<=0x24800000) { /* x < 2**-54 */ |
return(-tpi/x); |
} |
z = x*x; |
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); |
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); |
return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x)); |
} |
|
/* For x >= 8, the asymptotic expansions of pone is |
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
* We approximate pone by |
* pone(x) = 1 + (R/S) |
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 |
* S = 1 + ps0*s^2 + ... + ps4*s^10 |
* and |
* | pone(x)-1-R/S | <= 2 ** ( -60.06) |
*/ |
|
#ifdef __STDC__ |
static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#else |
static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#endif |
0.0000000000e+00, /* 0x00000000 */ |
1.1718750000e-01, /* 0x3df00000 */ |
1.3239480972e+01, /* 0x4153d4ea */ |
4.1205184937e+02, /* 0x43ce06a3 */ |
3.8747453613e+03, /* 0x45722bed */ |
7.9144794922e+03, /* 0x45f753d6 */ |
}; |
#ifdef __STDC__ |
static const float ps8[5] = { |
#else |
static float ps8[5] = { |
#endif |
1.1420736694e+02, /* 0x42e46a2c */ |
3.6509309082e+03, /* 0x45642ee5 */ |
3.6956207031e+04, /* 0x47105c35 */ |
9.7602796875e+04, /* 0x47bea166 */ |
3.0804271484e+04, /* 0x46f0a88b */ |
}; |
|
#ifdef __STDC__ |
static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#else |
static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#endif |
1.3199052094e-11, /* 0x2d68333f */ |
1.1718749255e-01, /* 0x3defffff */ |
6.8027510643e+00, /* 0x40d9b023 */ |
1.0830818176e+02, /* 0x42d89dca */ |
5.1763616943e+02, /* 0x440168b7 */ |
5.2871520996e+02, /* 0x44042dc6 */ |
}; |
#ifdef __STDC__ |
static const float ps5[5] = { |
#else |
static float ps5[5] = { |
#endif |
5.9280597687e+01, /* 0x426d1f55 */ |
9.9140142822e+02, /* 0x4477d9b1 */ |
5.3532670898e+03, /* 0x45a74a23 */ |
7.8446904297e+03, /* 0x45f52586 */ |
1.5040468750e+03, /* 0x44bc0180 */ |
}; |
|
#ifdef __STDC__ |
static const float pr3[6] = { |
#else |
static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#endif |
3.0250391081e-09, /* 0x314fe10d */ |
1.1718686670e-01, /* 0x3defffab */ |
3.9329774380e+00, /* 0x407bb5e7 */ |
3.5119403839e+01, /* 0x420c7a45 */ |
9.1055007935e+01, /* 0x42b61c2a */ |
4.8559066772e+01, /* 0x42423c7c */ |
}; |
#ifdef __STDC__ |
static const float ps3[5] = { |
#else |
static float ps3[5] = { |
#endif |
3.4791309357e+01, /* 0x420b2a4d */ |
3.3676245117e+02, /* 0x43a86198 */ |
1.0468714600e+03, /* 0x4482dbe3 */ |
8.9081134033e+02, /* 0x445eb3ed */ |
1.0378793335e+02, /* 0x42cf936c */ |
}; |
|
#ifdef __STDC__ |
static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#else |
static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#endif |
1.0771083225e-07, /* 0x33e74ea8 */ |
1.1717621982e-01, /* 0x3deffa16 */ |
2.3685150146e+00, /* 0x401795c0 */ |
1.2242610931e+01, /* 0x4143e1bc */ |
1.7693971634e+01, /* 0x418d8d41 */ |
5.0735230446e+00, /* 0x40a25a4d */ |
}; |
#ifdef __STDC__ |
static const float ps2[5] = { |
#else |
static float ps2[5] = { |
#endif |
2.1436485291e+01, /* 0x41ab7dec */ |
1.2529022980e+02, /* 0x42fa9499 */ |
2.3227647400e+02, /* 0x436846c7 */ |
1.1767937469e+02, /* 0x42eb5bd7 */ |
8.3646392822e+00, /* 0x4105d590 */ |
}; |
|
#ifdef __STDC__ |
static float ponef(float x) |
#else |
static float ponef(x) |
float x; |
#endif |
{ |
#ifdef __STDC__ |
const float *p,*q; |
#else |
float *p,*q; |
#endif |
float z,r,s; |
__int32_t ix; |
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; |
if(ix>=0x41000000) {p = pr8; q= ps8;} |
else if(ix>=0x40f71c58){p = pr5; q= ps5;} |
else if(ix>=0x4036db68){p = pr3; q= ps3;} |
else {p = pr2; q= ps2;} |
z = one/(x*x); |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
return one+ r/s; |
} |
|
|
/* For x >= 8, the asymptotic expansions of qone is |
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
* We approximate qone by |
* qone(x) = s*(0.375 + (R/S)) |
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 |
* S = 1 + qs1*s^2 + ... + qs6*s^12 |
* and |
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) |
*/ |
|
#ifdef __STDC__ |
static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#else |
static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#endif |
0.0000000000e+00, /* 0x00000000 */ |
-1.0253906250e-01, /* 0xbdd20000 */ |
-1.6271753311e+01, /* 0xc1822c8d */ |
-7.5960174561e+02, /* 0xc43de683 */ |
-1.1849806641e+04, /* 0xc639273a */ |
-4.8438511719e+04, /* 0xc73d3683 */ |
}; |
#ifdef __STDC__ |
static const float qs8[6] = { |
#else |
static float qs8[6] = { |
#endif |
1.6139537048e+02, /* 0x43216537 */ |
7.8253862305e+03, /* 0x45f48b17 */ |
1.3387534375e+05, /* 0x4802bcd6 */ |
7.1965775000e+05, /* 0x492fb29c */ |
6.6660125000e+05, /* 0x4922be94 */ |
-2.9449025000e+05, /* 0xc88fcb48 */ |
}; |
|
#ifdef __STDC__ |
static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#else |
static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#endif |
-2.0897993405e-11, /* 0xadb7d219 */ |
-1.0253904760e-01, /* 0xbdd1fffe */ |
-8.0564479828e+00, /* 0xc100e736 */ |
-1.8366960144e+02, /* 0xc337ab6b */ |
-1.3731937256e+03, /* 0xc4aba633 */ |
-2.6124443359e+03, /* 0xc523471c */ |
}; |
#ifdef __STDC__ |
static const float qs5[6] = { |
#else |
static float qs5[6] = { |
#endif |
8.1276550293e+01, /* 0x42a28d98 */ |
1.9917987061e+03, /* 0x44f8f98f */ |
1.7468484375e+04, /* 0x468878f8 */ |
4.9851425781e+04, /* 0x4742bb6d */ |
2.7948074219e+04, /* 0x46da5826 */ |
-4.7191835938e+03, /* 0xc5937978 */ |
}; |
|
#ifdef __STDC__ |
static const float qr3[6] = { |
#else |
static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#endif |
-5.0783124372e-09, /* 0xb1ae7d4f */ |
-1.0253783315e-01, /* 0xbdd1ff5b */ |
-4.6101160049e+00, /* 0xc0938612 */ |
-5.7847221375e+01, /* 0xc267638e */ |
-2.2824453735e+02, /* 0xc3643e9a */ |
-2.1921012878e+02, /* 0xc35b35cb */ |
}; |
#ifdef __STDC__ |
static const float qs3[6] = { |
#else |
static float qs3[6] = { |
#endif |
4.7665153503e+01, /* 0x423ea91e */ |
6.7386511230e+02, /* 0x4428775e */ |
3.3801528320e+03, /* 0x45534272 */ |
5.5477290039e+03, /* 0x45ad5dd5 */ |
1.9031191406e+03, /* 0x44ede3d0 */ |
-1.3520118713e+02, /* 0xc3073381 */ |
}; |
|
#ifdef __STDC__ |
static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#else |
static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#endif |
-1.7838172539e-07, /* 0xb43f8932 */ |
-1.0251704603e-01, /* 0xbdd1f475 */ |
-2.7522056103e+00, /* 0xc0302423 */ |
-1.9663616180e+01, /* 0xc19d4f16 */ |
-4.2325313568e+01, /* 0xc2294d1f */ |
-2.1371921539e+01, /* 0xc1aaf9b2 */ |
}; |
#ifdef __STDC__ |
static const float qs2[6] = { |
#else |
static float qs2[6] = { |
#endif |
2.9533363342e+01, /* 0x41ec4454 */ |
2.5298155212e+02, /* 0x437cfb47 */ |
7.5750280762e+02, /* 0x443d602e */ |
7.3939318848e+02, /* 0x4438d92a */ |
1.5594900513e+02, /* 0x431bf2f2 */ |
-4.9594988823e+00, /* 0xc09eb437 */ |
}; |
|
#ifdef __STDC__ |
static float qonef(float x) |
#else |
static float qonef(x) |
float x; |
#endif |
{ |
#ifdef __STDC__ |
const float *p,*q; |
#else |
float *p,*q; |
#endif |
float s,r,z; |
__int32_t ix; |
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; |
if(ix>=0x40200000) {p = qr8; q= qs8;} |
else if(ix>=0x40f71c58){p = qr5; q= qs5;} |
else if(ix>=0x4036db68){p = qr3; q= qs3;} |
else {p = qr2; q= qs2;} |
z = one/(x*x); |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
return ((float).375 + r/s)/x; |
} |
/e_log10.c
0,0 → 1,98
|
/* @(#)e_log10.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_log10(x) |
* Return the base 10 logarithm of x |
* |
* Method : |
* Let log10_2hi = leading 40 bits of log10(2) and |
* log10_2lo = log10(2) - log10_2hi, |
* ivln10 = 1/log(10) rounded. |
* Then |
* n = ilogb(x), |
* if(n<0) n = n+1; |
* x = scalbn(x,-n); |
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) |
* |
* Note 1: |
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding |
* mode must set to Round-to-Nearest. |
* Note 2: |
* [1/log(10)] rounded to 53 bits has error .198 ulps; |
* log10 is monotonic at all binary break points. |
* |
* Special cases: |
* log10(x) is NaN with signal if x < 0; |
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal; |
* log10(NaN) is that NaN with no signal; |
* log10(10**N) = N for N=0,1,...,22. |
* |
* Constants: |
* The hexadecimal values are the intended ones for the following constants. |
* The decimal values may be used, provided that the compiler will convert |
* from decimal to binary accurately enough to produce the hexadecimal values |
* shown. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */ |
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ |
log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ |
|
#ifdef __STDC__ |
static const double zero = 0.0; |
#else |
static double zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_log10(double x) |
#else |
double __ieee754_log10(x) |
double x; |
#endif |
{ |
double y,z; |
__int32_t i,k,hx; |
__uint32_t lx; |
|
EXTRACT_WORDS(hx,lx,x); |
|
k=0; |
if (hx < 0x00100000) { /* x < 2**-1022 */ |
if (((hx&0x7fffffff)|lx)==0) |
return -two54/zero; /* log(+-0)=-inf */ |
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
k -= 54; x *= two54; /* subnormal number, scale up x */ |
GET_HIGH_WORD(hx,x); |
} |
if (hx >= 0x7ff00000) return x+x; |
k += (hx>>20)-1023; |
i = ((__uint32_t)k&0x80000000)>>31; |
hx = (hx&0x000fffff)|((0x3ff-i)<<20); |
y = (double)(k+i); |
SET_HIGH_WORD(x,hx); |
z = y*log10_2lo + ivln10*__ieee754_log(x); |
return z+y*log10_2hi; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wr_gamma.c
0,0 → 1,76
|
/* @(#)wr_gamma.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper double gamma_r(double x, int *signgamp) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double gamma_r(double x, int *signgamp) /* wrapper lgamma_r */ |
#else |
double gamma_r(x,signgamp) /* wrapper lgamma_r */ |
double x; int *signgamp; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_gamma_r(x,signgamp); |
#else |
double y; |
struct exception exc; |
y = __ieee754_gamma_r(x,signgamp); |
if(_LIB_VERSION == _IEEE_) return y; |
if(!finite(y)&&finite(x)) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "gamma"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if(floor(x)==x&&x<=0.0) { |
/* gamma(-integer) or gamma(0) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* gamma(finite) overflow */ |
exc.type = OVERFLOW; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return y; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_log10.c
0,0 → 1,62
/* ef_log10.c -- float version of e_log10.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
two25 = 3.3554432000e+07, /* 0x4c000000 */ |
ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */ |
log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */ |
log10_2lo = 7.9034151668e-07; /* 0x355427db */ |
|
#ifdef __STDC__ |
static const float zero = 0.0; |
#else |
static float zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_log10f(float x) |
#else |
float __ieee754_log10f(x) |
float x; |
#endif |
{ |
float y,z; |
__int32_t i,k,hx; |
|
GET_FLOAT_WORD(hx,x); |
|
k=0; |
if (FLT_UWORD_IS_ZERO(hx&0x7fffffff)) |
return -two25/zero; /* log(+-0)=-inf */ |
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
if (!FLT_UWORD_IS_FINITE(hx)) return x+x; |
if (FLT_UWORD_IS_SUBNORMAL(hx)) { |
k -= 25; x *= two25; /* subnormal number, scale up x */ |
GET_FLOAT_WORD(hx,x); |
} |
k += (hx>>23)-127; |
i = ((__uint32_t)k&0x80000000)>>31; |
hx = (hx&0x007fffff)|((0x7f-i)<<23); |
y = (float)(k+i); |
SET_FLOAT_WORD(x,hx); |
z = y*log10_2lo + ivln10*__ieee754_logf(x); |
return z+y*log10_2hi; |
} |
/w_jn.c
0,0 → 1,141
|
/* @(#)w_jn.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper jn(int n, double x), yn(int n, double x) |
* floating point Bessel's function of the 1st and 2nd kind |
* of order n |
* |
* Special cases: |
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
* Note 2. About jn(n,x), yn(n,x) |
* For n=0, j0(x) is called, |
* for n=1, j1(x) is called, |
* for n<x, forward recursion us used starting |
* from values of j0(x) and j1(x). |
* for n>x, a continued fraction approximation to |
* j(n,x)/j(n-1,x) is evaluated and then backward |
* recursion is used starting from a supposed value |
* for j(n,x). The resulting value of j(0,x) is |
* compared with the actual value to correct the |
* supposed value of j(n,x). |
* |
* yn(n,x) is similar in all respects, except |
* that forward recursion is used for all |
* values of n>1. |
* |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double jn(int n, double x) /* wrapper jn */ |
#else |
double jn(n,x) /* wrapper jn */ |
double x; int n; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_jn(n,x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_jn(n,x); |
if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; |
if(fabs(x)>X_TLOSS) { |
/* jn(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "jn"; |
exc.err = 0; |
exc.arg1 = n; |
exc.arg2 = x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef __STDC__ |
double yn(int n, double x) /* wrapper yn */ |
#else |
double yn(n,x) /* wrapper yn */ |
double x; int n; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_yn(n,x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_yn(n,x); |
if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; |
if(x <= 0.0){ |
/* yn(n,0) = -inf or yn(x<0) = NaN */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = DOMAIN; /* should be SING for IEEE */ |
exc.name = "yn"; |
exc.err = 0; |
exc.arg1 = n; |
exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
if(x>X_TLOSS) { |
/* yn(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "yn"; |
exc.err = 0; |
exc.arg1 = n; |
exc.arg2 = x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_acos.c
0,0 → 1,84
/* ef_acos.c -- float version of e_acos.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
one = 1.0000000000e+00, /* 0x3F800000 */ |
pi = 3.1415925026e+00, /* 0x40490fda */ |
pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */ |
pio2_lo = 7.5497894159e-08, /* 0x33a22168 */ |
pS0 = 1.6666667163e-01, /* 0x3e2aaaab */ |
pS1 = -3.2556581497e-01, /* 0xbea6b090 */ |
pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */ |
pS3 = -4.0055535734e-02, /* 0xbd241146 */ |
pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */ |
pS5 = 3.4793309169e-05, /* 0x3811ef08 */ |
qS1 = -2.4033949375e+00, /* 0xc019d139 */ |
qS2 = 2.0209457874e+00, /* 0x4001572d */ |
qS3 = -6.8828397989e-01, /* 0xbf303361 */ |
qS4 = 7.7038154006e-02; /* 0x3d9dc62e */ |
|
#ifdef __STDC__ |
float __ieee754_acosf(float x) |
#else |
float __ieee754_acosf(x) |
float x; |
#endif |
{ |
float z,p,q,r,w,s,c,df; |
__int32_t hx,ix; |
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix==0x3f800000) { /* |x|==1 */ |
if(hx>0) return 0.0; /* acos(1) = 0 */ |
else return pi+(float)2.0*pio2_lo; /* acos(-1)= pi */ |
} else if(ix>0x3f800000) { /* |x| >= 1 */ |
return (x-x)/(x-x); /* acos(|x|>1) is NaN */ |
} |
if(ix<0x3f000000) { /* |x| < 0.5 */ |
if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ |
z = x*x; |
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
r = p/q; |
return pio2_hi - (x - (pio2_lo-x*r)); |
} else if (hx<0) { /* x < -0.5 */ |
z = (one+x)*(float)0.5; |
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
s = __ieee754_sqrtf(z); |
r = p/q; |
w = r*s-pio2_lo; |
return pi - (float)2.0*(s+w); |
} else { /* x > 0.5 */ |
__int32_t idf; |
z = (one-x)*(float)0.5; |
s = __ieee754_sqrtf(z); |
df = s; |
GET_FLOAT_WORD(idf,df); |
SET_FLOAT_WORD(df,idf&0xfffff000); |
c = (z-df*df)/(s+df); |
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
r = p/q; |
w = r*s+c; |
return (float)2.0*(df+w); |
} |
} |
/kf_tan.c
0,0 → 1,96
/* kf_tan.c -- float version of k_tan.c |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
one = 1.0000000000e+00, /* 0x3f800000 */ |
pio4 = 7.8539812565e-01, /* 0x3f490fda */ |
pio4lo= 3.7748947079e-08, /* 0x33222168 */ |
T[] = { |
3.3333334327e-01, /* 0x3eaaaaab */ |
1.3333334029e-01, /* 0x3e088889 */ |
5.3968254477e-02, /* 0x3d5d0dd1 */ |
2.1869488060e-02, /* 0x3cb327a4 */ |
8.8632395491e-03, /* 0x3c11371f */ |
3.5920790397e-03, /* 0x3b6b6916 */ |
1.4562094584e-03, /* 0x3abede48 */ |
5.8804126456e-04, /* 0x3a1a26c8 */ |
2.4646313977e-04, /* 0x398137b9 */ |
7.8179444245e-05, /* 0x38a3f445 */ |
7.1407252108e-05, /* 0x3895c07a */ |
-1.8558637748e-05, /* 0xb79bae5f */ |
2.5907305826e-05, /* 0x37d95384 */ |
}; |
|
#ifdef __STDC__ |
float __kernel_tanf(float x, float y, int iy) |
#else |
float __kernel_tanf(x, y, iy) |
float x,y; int iy; |
#endif |
{ |
float z,r,v,w,s; |
__int32_t ix,hx; |
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; /* high word of |x| */ |
if(ix<0x31800000) /* x < 2**-28 */ |
{if((int)x==0) { /* generate inexact */ |
if((ix|(iy+1))==0) return one/fabsf(x); |
else return (iy==1)? x: -one/x; |
} |
} |
if(ix>=0x3f2ca140) { /* |x|>=0.6744 */ |
if(hx<0) {x = -x; y = -y;} |
z = pio4-x; |
w = pio4lo-y; |
x = z+w; y = 0.0; |
} |
z = x*x; |
w = z*z; |
/* Break x^5*(T[1]+x^2*T[2]+...) into |
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
*/ |
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
s = z*x; |
r = y + z*(s*(r+v)+y); |
r += T[0]*s; |
w = x+r; |
if(ix>=0x3f2ca140) { |
v = (float)iy; |
return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r))); |
} |
if(iy==1) return w; |
else { /* if allow error up to 2 ulp, |
simply return -1.0/(x+r) here */ |
/* compute -1.0/(x+r) accurately */ |
float a,t; |
__int32_t i; |
z = w; |
GET_FLOAT_WORD(i,z); |
SET_FLOAT_WORD(z,i&0xfffff000); |
v = r-(z - x); /* z+v = r+x */ |
t = a = -(float)1.0/w; /* a = -1.0/w */ |
GET_FLOAT_WORD(i,t); |
SET_FLOAT_WORD(t,i&0xfffff000); |
s = (float)1.0+t*z; |
return t+a*(s+t*v); |
} |
} |
/wf_remainder.c
0,0 → 1,74
/* wf_remainder.c -- float version of w_remainder.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper remainderf(x,p) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float remainderf(float x, float y) /* wrapper remainder */ |
#else |
float remainderf(x,y) /* wrapper remainder */ |
float x,y; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_remainderf(x,y); |
#else |
float z; |
struct exception exc; |
z = __ieee754_remainderf(x,y); |
if(_LIB_VERSION == _IEEE_ || isnanf(y)) return z; |
if(y==(float)0.0) { |
/* remainderf(x,0) */ |
exc.type = DOMAIN; |
exc.name = "remainderf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double remainder(double x, double y) |
#else |
double remainder(x,y) |
double x,y; |
#endif |
{ |
return (double) remainderf((float) x, (float) y); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
|
|
|
|
/wf_jn.c
0,0 → 1,138
/* wf_jn.c -- float version of w_jn.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
|
#ifdef __STDC__ |
float jnf(int n, float x) /* wrapper jnf */ |
#else |
float jnf(n,x) /* wrapper jnf */ |
float x; int n; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_jnf(n,x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_jnf(n,x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; |
if(fabsf(x)>(float)X_TLOSS) { |
/* jnf(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "jnf"; |
exc.err = 0; |
exc.arg1 = (double)n; |
exc.arg2 = (double)x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef __STDC__ |
float ynf(int n, float x) /* wrapper ynf */ |
#else |
float ynf(n,x) /* wrapper ynf */ |
float x; int n; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_ynf(n,x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_ynf(n,x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; |
if(x <= (float)0.0){ |
/* ynf(n,0) = -inf or ynf(x<0) = NaN */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = DOMAIN; /* should be SING for IEEE */ |
exc.name = "ynf"; |
exc.err = 0; |
exc.arg1 = (double)n; |
exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} |
if(x>(float)X_TLOSS) { |
/* ynf(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "ynf"; |
exc.err = 0; |
exc.arg1 = (double)n; |
exc.arg2 = (double)x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double jn(int n, double x) |
#else |
double jn(n,x) |
double x; int n; |
#endif |
{ |
return (double) jnf(n, (float) x); |
} |
|
#ifdef __STDC__ |
double yn(int n, double x) |
#else |
double yn(n,x) |
double x; int n; |
#endif |
{ |
return (double) ynf(n, (float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/sf_ldexp.c
0,0 → 1,44
/* sf_ldexp.c -- float version of s_ldexp.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float ldexpf(float value, int exp) |
#else |
float ldexpf(value, exp) |
float value; int exp; |
#endif |
{ |
if(!finitef(value)||value==(float)0.0) return value; |
value = scalbnf(value,exp); |
if(!finitef(value)||value==(float)0.0) errno = ERANGE; |
return value; |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double ldexp(double value, int exp) |
#else |
double ldexp(value, exp) |
double value; int exp; |
#endif |
{ |
return (double) ldexpf((float) value, exp); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/kf_cos.c
0,0 → 1,59
/* kf_cos.c -- float version of k_cos.c |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
one = 1.0000000000e+00, /* 0x3f800000 */ |
C1 = 4.1666667908e-02, /* 0x3d2aaaab */ |
C2 = -1.3888889225e-03, /* 0xbab60b61 */ |
C3 = 2.4801587642e-05, /* 0x37d00d01 */ |
C4 = -2.7557314297e-07, /* 0xb493f27c */ |
C5 = 2.0875723372e-09, /* 0x310f74f6 */ |
C6 = -1.1359647598e-11; /* 0xad47d74e */ |
|
#ifdef __STDC__ |
float __kernel_cosf(float x, float y) |
#else |
float __kernel_cosf(x, y) |
float x,y; |
#endif |
{ |
float a,hz,z,r,qx; |
__int32_t ix; |
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; /* ix = |x|'s high word*/ |
if(ix<0x32000000) { /* if x < 2**27 */ |
if(((int)x)==0) return one; /* generate inexact */ |
} |
z = x*x; |
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); |
if(ix < 0x3e99999a) /* if |x| < 0.3 */ |
return one - ((float)0.5*z - (z*r - x*y)); |
else { |
if(ix > 0x3f480000) { /* x > 0.78125 */ |
qx = (float)0.28125; |
} else { |
SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */ |
} |
hz = (float)0.5*z-qx; |
a = one-qx; |
return a - (hz - (z*r-x*y)); |
} |
} |
/s_atan.c
0,0 → 1,181
|
/* @(#)s_atan.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* |
FUNCTION |
<<atan>>, <<atanf>>---arc tangent |
|
INDEX |
atan |
INDEX |
atanf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double atan(double <[x]>); |
float atanf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double atan(<[x]>); |
double <[x]>; |
|
float atanf(<[x]>); |
float <[x]>; |
|
DESCRIPTION |
|
<<atan>> computes the inverse tangent (arc tangent) of the input value. |
|
<<atanf>> is identical to <<atan>>, save that it operates on <<floats>>. |
|
RETURNS |
@ifinfo |
<<atan>> returns a value in radians, in the range of -pi/2 to pi/2. |
@end ifinfo |
@tex |
<<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$. |
@end tex |
|
PORTABILITY |
<<atan>> is ANSI C. <<atanf>> is an extension. |
|
*/ |
|
/* atan(x) |
* Method |
* 1. Reduce x to positive by atan(x) = -atan(-x). |
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
* is further reduced to one of the following intervals and the |
* arctangent of t is evaluated by the corresponding formula: |
* |
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
* |
* Constants: |
* The hexadecimal values are the intended ones for the following |
* constants. The decimal values may be used, provided that the |
* compiler will convert from decimal to binary accurately enough |
* to produce the hexadecimal values shown. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double atanhi[] = { |
#else |
static double atanhi[] = { |
#endif |
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
}; |
|
#ifdef __STDC__ |
static const double atanlo[] = { |
#else |
static double atanlo[] = { |
#endif |
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
}; |
|
#ifdef __STDC__ |
static const double aT[] = { |
#else |
static double aT[] = { |
#endif |
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
}; |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
one = 1.0, |
huge = 1.0e300; |
|
#ifdef __STDC__ |
double atan(double x) |
#else |
double atan(x) |
double x; |
#endif |
{ |
double w,s1,s2,z; |
__int32_t ix,hx,id; |
|
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>=0x44100000) { /* if |x| >= 2^66 */ |
__uint32_t low; |
GET_LOW_WORD(low,x); |
if(ix>0x7ff00000|| |
(ix==0x7ff00000&&(low!=0))) |
return x+x; /* NaN */ |
if(hx>0) return atanhi[3]+atanlo[3]; |
else return -atanhi[3]-atanlo[3]; |
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ |
if (ix < 0x3e200000) { /* |x| < 2^-29 */ |
if(huge+x>one) return x; /* raise inexact */ |
} |
id = -1; |
} else { |
x = fabs(x); |
if (ix < 0x3ff30000) { /* |x| < 1.1875 */ |
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ |
id = 0; x = (2.0*x-one)/(2.0+x); |
} else { /* 11/16<=|x|< 19/16 */ |
id = 1; x = (x-one)/(x+one); |
} |
} else { |
if (ix < 0x40038000) { /* |x| < 2.4375 */ |
id = 2; x = (x-1.5)/(one+1.5*x); |
} else { /* 2.4375 <= |x| < 2^66 */ |
id = 3; x = -1.0/x; |
} |
}} |
/* end of argument reduction */ |
z = x*x; |
w = z*z; |
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); |
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); |
if (id<0) return x - x*(s1+s2); |
else { |
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); |
return (hx<0)? -z:z; |
} |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/ef_cosh.c
0,0 → 1,71
/* ef_cosh.c -- float version of e_cosh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __v810__ |
#define const |
#endif |
|
#ifdef __STDC__ |
static const float one = 1.0, half=0.5, huge = 1.0e30; |
#else |
static float one = 1.0, half=0.5, huge = 1.0e30; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_coshf(float x) |
#else |
float __ieee754_coshf(x) |
float x; |
#endif |
{ |
float t,w; |
__int32_t ix; |
|
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; |
|
/* x is INF or NaN */ |
if(!FLT_UWORD_IS_FINITE(ix)) return x*x; |
|
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ |
if(ix<0x3eb17218) { |
t = expm1f(fabsf(x)); |
w = one+t; |
if (ix<0x24000000) return w; /* cosh(tiny) = 1 */ |
return one+(t*t)/(w+w); |
} |
|
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ |
if (ix < 0x41b00000) { |
t = __ieee754_expf(fabsf(x)); |
return half*t+half/t; |
} |
|
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */ |
if (ix <= FLT_UWORD_LOG_MAX) |
return half*__ieee754_expf(fabsf(x)); |
|
/* |x| in [log(maxdouble), overflowthresold] */ |
if (ix <= FLT_UWORD_LOG_2MAX) { |
w = __ieee754_expf(half*fabsf(x)); |
t = half*w; |
return t*w; |
} |
|
/* |x| > overflowthresold, cosh(x) overflow */ |
return huge*huge; |
} |
/sf_signif.c
0,0 → 1,40
/* sf_signif.c -- float version of s_signif.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
float significandf(float x) |
#else |
float significandf(x) |
float x; |
#endif |
{ |
return __ieee754_scalbf(x,(float) -ilogbf(x)); |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double significand(double x) |
#else |
double significand(x) |
double x; |
#endif |
{ |
return (double) significandf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_log10.c
0,0 → 1,115
|
/* @(#)w_log10.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<log10>>, <<log10f>>---base 10 logarithms |
|
INDEX |
log10 |
INDEX |
log10f |
|
ANSI_SYNOPSIS |
#include <math.h> |
double log10(double <[x]>); |
float log10f(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double log10(<[x]>) |
double <[x]>; |
|
float log10f(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<log10>> returns the base 10 logarithm of <[x]>. |
It is implemented as <<log(<[x]>) / log(10)>>. |
|
<<log10f>> is identical, save that it takes and returns <<float>> values. |
|
RETURNS |
<<log10>> and <<log10f>> return the calculated value. |
|
See the description of <<log>> for information on errors. |
|
PORTABILITY |
<<log10>> is ANSI C. <<log10f>> is an extension. |
|
*/ |
|
/* |
* wrapper log10(X) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double log10(double x) /* wrapper log10 */ |
#else |
double log10(x) /* wrapper log10 */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_log10(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_log10(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; |
if(x<=0.0) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "log10"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if(x==0.0) { |
/* log10(0) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* log10(x<0) */ |
exc.type = DOMAIN; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/sf_tan.c
0,0 → 1,57
/* sf_tan.c -- float version of s_tan.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
float tanf(float x) |
#else |
float tanf(x) |
float x; |
#endif |
{ |
float y[2],z=0.0; |
__int32_t n,ix; |
|
GET_FLOAT_WORD(ix,x); |
|
/* |x| ~< pi/4 */ |
ix &= 0x7fffffff; |
if(ix <= 0x3f490fda) return __kernel_tanf(x,z,1); |
|
/* tan(Inf or NaN) is NaN */ |
else if (!FLT_UWORD_IS_FINITE(ix)) return x-x; /* NaN */ |
|
/* argument reduction needed */ |
else { |
n = __ieee754_rem_pio2f(x,y); |
return __kernel_tanf(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even |
-1 -- n odd */ |
} |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double tan(double x) |
#else |
double tan(x) |
double x; |
#endif |
{ |
return (double) tanf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/sf_atan.c
0,0 → 1,129
/* sf_atan.c -- float version of s_atan.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float atanhi[] = { |
#else |
static float atanhi[] = { |
#endif |
4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */ |
7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */ |
9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */ |
1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */ |
}; |
|
#ifdef __STDC__ |
static const float atanlo[] = { |
#else |
static float atanlo[] = { |
#endif |
5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */ |
3.7748947079e-08, /* atan(1.0)lo 0x33222168 */ |
3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */ |
7.5497894159e-08, /* atan(inf)lo 0x33a22168 */ |
}; |
|
#ifdef __STDC__ |
static const float aT[] = { |
#else |
static float aT[] = { |
#endif |
3.3333334327e-01, /* 0x3eaaaaaa */ |
-2.0000000298e-01, /* 0xbe4ccccd */ |
1.4285714924e-01, /* 0x3e124925 */ |
-1.1111110449e-01, /* 0xbde38e38 */ |
9.0908870101e-02, /* 0x3dba2e6e */ |
-7.6918758452e-02, /* 0xbd9d8795 */ |
6.6610731184e-02, /* 0x3d886b35 */ |
-5.8335702866e-02, /* 0xbd6ef16b */ |
4.9768779427e-02, /* 0x3d4bda59 */ |
-3.6531571299e-02, /* 0xbd15a221 */ |
1.6285819933e-02, /* 0x3c8569d7 */ |
}; |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
one = 1.0, |
huge = 1.0e30; |
|
#ifdef __STDC__ |
float atanf(float x) |
#else |
float atanf(x) |
float x; |
#endif |
{ |
float w,s1,s2,z; |
__int32_t ix,hx,id; |
|
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>=0x50800000) { /* if |x| >= 2^34 */ |
if(FLT_UWORD_IS_NAN(ix)) |
return x+x; /* NaN */ |
if(hx>0) return atanhi[3]+atanlo[3]; |
else return -atanhi[3]-atanlo[3]; |
} if (ix < 0x3ee00000) { /* |x| < 0.4375 */ |
if (ix < 0x31000000) { /* |x| < 2^-29 */ |
if(huge+x>one) return x; /* raise inexact */ |
} |
id = -1; |
} else { |
x = fabsf(x); |
if (ix < 0x3f980000) { /* |x| < 1.1875 */ |
if (ix < 0x3f300000) { /* 7/16 <=|x|<11/16 */ |
id = 0; x = ((float)2.0*x-one)/((float)2.0+x); |
} else { /* 11/16<=|x|< 19/16 */ |
id = 1; x = (x-one)/(x+one); |
} |
} else { |
if (ix < 0x401c0000) { /* |x| < 2.4375 */ |
id = 2; x = (x-(float)1.5)/(one+(float)1.5*x); |
} else { /* 2.4375 <= |x| < 2^66 */ |
id = 3; x = -(float)1.0/x; |
} |
}} |
/* end of argument reduction */ |
z = x*x; |
w = z*z; |
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); |
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); |
if (id<0) return x - x*(s1+s2); |
else { |
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); |
return (hx<0)? -z:z; |
} |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double atan(double x) |
#else |
double atan(x) |
double x; |
#endif |
{ |
return (double) atanf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/sf_cos.c
0,0 → 1,68
/* sf_cos.c -- float version of s_cos.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float one=1.0; |
#else |
static float one=1.0; |
#endif |
|
#ifdef __STDC__ |
float cosf(float x) |
#else |
float cosf(x) |
float x; |
#endif |
{ |
float y[2],z=0.0; |
__int32_t n,ix; |
|
GET_FLOAT_WORD(ix,x); |
|
/* |x| ~< pi/4 */ |
ix &= 0x7fffffff; |
if(ix <= 0x3f490fd8) return __kernel_cosf(x,z); |
|
/* cos(Inf or NaN) is NaN */ |
else if (!FLT_UWORD_IS_FINITE(ix)) return x-x; |
|
/* argument reduction needed */ |
else { |
n = __ieee754_rem_pio2f(x,y); |
switch(n&3) { |
case 0: return __kernel_cosf(y[0],y[1]); |
case 1: return -__kernel_sinf(y[0],y[1],1); |
case 2: return -__kernel_cosf(y[0],y[1]); |
default: |
return __kernel_sinf(y[0],y[1],1); |
} |
} |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double cos(double x) |
#else |
double cos(x) |
double x; |
#endif |
{ |
return (double) cosf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_log.c
0,0 → 1,85
/* wf_log.c -- float version of w_log.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper logf(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float logf(float x) /* wrapper logf */ |
#else |
float logf(x) /* wrapper logf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_logf(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_logf(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x) || x > (float)0.0) return z; |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "logf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if(x==(float)0.0) { |
/* logf(0) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* logf(x<0) */ |
exc.type = DOMAIN; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double log(double x) |
#else |
double log(x) |
double x; |
#endif |
{ |
return (double) logf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_asin.c
0,0 → 1,121
|
/* @(#)w_asin.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* |
FUNCTION |
<<asin>>, <<asinf>>---arc sine |
|
INDEX |
asin |
INDEX |
asinf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double asin(double <[x]>); |
float asinf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double asin(<[x]>) |
double <[x]>; |
|
float asinf(<[x]>) |
float <[x]>; |
|
|
DESCRIPTION |
|
<<asin>> computes the inverse sine (arc sine) of the argument <[x]>. |
Arguments to <<asin>> must be in the range @minus{}1 to 1. |
|
<<asinf>> is identical to <<asin>>, other than taking and |
returning floats. |
|
You can modify error handling for these routines using <<matherr>>. |
|
RETURNS |
@ifinfo |
<<asin>> returns values in radians, in the range of -pi/2 to pi/2. |
@end ifinfo |
@tex |
<<asin>> returns values in radians, in the range of $-\pi/2$ to $\pi/2$. |
@end tex |
|
If <[x]> is not in the range @minus{}1 to 1, <<asin>> and <<asinf>> |
return NaN (not a number), set the global variable <<errno>> to |
<<EDOM>>, and issue a <<DOMAIN error>> message. |
|
You can change this error treatment using <<matherr>>. |
|
QUICKREF ANSI SVID POSIX RENTRANT |
asin y,y,y,m |
asinf n,n,n,m |
|
MATHREF |
asin, -1<=arg<=1, asin(arg),,, |
asin, NAN, arg,EDOM, DOMAIN |
|
MATHREF |
asinf, -1<=arg<=1, asin(arg),,, |
asinf, NAN, arg,EDOM, DOMAIN |
|
|
*/ |
|
/* |
* wrapper asin(x) |
*/ |
|
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double asin(double x) /* wrapper asin */ |
#else |
double asin(x) /* wrapper asin */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_asin(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_asin(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; |
if(fabs(x)>1.0) { |
/* asin(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = "asin"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0; |
if(_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_scalb.c
0,0 → 1,118
/* wf_scalb.c -- float version of w_scalb.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper scalbf(float x, float fn) is provide for |
* passing various standard test suite. One |
* should use scalbn() instead. |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
#ifdef _SCALB_INT |
float scalbf(float x, int fn) /* wrapper scalbf */ |
#else |
float scalbf(float x, float fn) /* wrapper scalbf */ |
#endif |
#else |
float scalbf(x,fn) /* wrapper scalbf */ |
#ifdef _SCALB_INT |
float x; int fn; |
#else |
float x,fn; |
#endif |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_scalbf(x,fn); |
#else |
float z; |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
struct exception exc; |
z = __ieee754_scalbf(x,fn); |
if(_LIB_VERSION == _IEEE_) return z; |
if(!(finitef(z)||isnanf(z))&&finitef(x)) { |
/* scalbf overflow; SVID also returns +-HUGE_VAL */ |
exc.type = OVERFLOW; |
exc.name = "scalbf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)fn; |
exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
if(z==(float)0.0&&z!=x) { |
/* scalbf underflow */ |
exc.type = UNDERFLOW; |
exc.name = "scalbf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)fn; |
exc.retval = copysign(0.0,x); |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
#ifndef _SCALB_INT |
if(!finitef(fn)) errno = ERANGE; |
#endif |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
#ifdef _SCALB_INT |
double scalb(double x, int fn) |
#else |
double scalb(double x, double fn) |
#endif |
#else |
double scalb(x, fn) |
#ifdef _SCALB_INT |
double x; int fn; |
#else |
double x,fn; |
#endif |
#endif |
{ |
#ifdef _SCALB_INT |
return (double) scalbf((float) x, fn); |
#else |
return (double) scalbf((float) x, (float) fn); |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_acos.c
0,0 → 1,69
/* wf_acos.c -- float version of w_acos.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrap_acosf(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef _HAVE_STDC |
float acosf(float x) /* wrapper acosf */ |
#else |
float acosf(x) /* wrapper acosf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_acosf(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_acosf(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; |
if(fabsf(x)>(float)1.0) { |
/* acosf(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = "acosf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double acos(double x) |
#else |
double acos(x) |
double x; |
#endif |
{ |
return (double) acosf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_cosh.c
0,0 → 1,78
/* wf_cosh.c -- float version of w_cosh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper coshf(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float coshf(float x) /* wrapper coshf */ |
#else |
float coshf(x) /* wrapper coshf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_coshf(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_coshf(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; |
if(fabsf(x)>(float)8.9415985107e+01) { |
/* coshf(finite) overflow */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = OVERFLOW; |
exc.name = "coshf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double cosh(double x) |
#else |
double cosh(x) |
double x; |
#endif |
{ |
return (double) coshf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_fmod.c
0,0 → 1,140
|
/* @(#)e_fmod.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* __ieee754_fmod(x,y) |
* Return x mod y in exact arithmetic |
* Method: shift and subtract |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double one = 1.0, Zero[] = {0.0, -0.0,}; |
#else |
static double one = 1.0, Zero[] = {0.0, -0.0,}; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_fmod(double x, double y) |
#else |
double __ieee754_fmod(x,y) |
double x,y ; |
#endif |
{ |
__int32_t n,hx,hy,hz,ix,iy,sx,i; |
__uint32_t lx,ly,lz; |
|
EXTRACT_WORDS(hx,lx,x); |
EXTRACT_WORDS(hy,ly,y); |
sx = hx&0x80000000; /* sign of x */ |
hx ^=sx; /* |x| */ |
hy &= 0x7fffffff; /* |y| */ |
|
/* purge off exception values */ |
if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ |
((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ |
return (x*y)/(x*y); |
if(hx<=hy) { |
if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ |
if(lx==ly) |
return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/ |
} |
|
/* determine ix = ilogb(x) */ |
if(hx<0x00100000) { /* subnormal x */ |
if(hx==0) { |
for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; |
} else { |
for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; |
} |
} else ix = (hx>>20)-1023; |
|
/* determine iy = ilogb(y) */ |
if(hy<0x00100000) { /* subnormal y */ |
if(hy==0) { |
for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; |
} else { |
for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; |
} |
} else iy = (hy>>20)-1023; |
|
/* set up {hx,lx}, {hy,ly} and align y to x */ |
if(ix >= -1022) |
hx = 0x00100000|(0x000fffff&hx); |
else { /* subnormal x, shift x to normal */ |
n = -1022-ix; |
if(n<=31) { |
hx = (hx<<n)|(lx>>(32-n)); |
lx <<= n; |
} else { |
hx = lx<<(n-32); |
lx = 0; |
} |
} |
if(iy >= -1022) |
hy = 0x00100000|(0x000fffff&hy); |
else { /* subnormal y, shift y to normal */ |
n = -1022-iy; |
if(n<=31) { |
hy = (hy<<n)|(ly>>(32-n)); |
ly <<= n; |
} else { |
hy = ly<<(n-32); |
ly = 0; |
} |
} |
|
/* fix point fmod */ |
n = ix - iy; |
while(n--) { |
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} |
else { |
if((hz|lz)==0) /* return sign(x)*0 */ |
return Zero[(__uint32_t)sx>>31]; |
hx = hz+hz+(lz>>31); lx = lz+lz; |
} |
} |
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; |
if(hz>=0) {hx=hz;lx=lz;} |
|
/* convert back to floating value and restore the sign */ |
if((hx|lx)==0) /* return sign(x)*0 */ |
return Zero[(__uint32_t)sx>>31]; |
while(hx<0x00100000) { /* normalize x */ |
hx = hx+hx+(lx>>31); lx = lx+lx; |
iy -= 1; |
} |
if(iy>= -1022) { /* normalize output */ |
hx = ((hx-0x00100000)|((iy+1023)<<20)); |
INSERT_WORDS(x,hx|sx,lx); |
} else { /* subnormal output */ |
n = -1022 - iy; |
if(n<=20) { |
lx = (lx>>n)|((__uint32_t)hx<<(32-n)); |
hx >>= n; |
} else if (n<=31) { |
lx = (hx<<(32-n))|(lx>>n); hx = sx; |
} else { |
lx = hx>>(n-32); hx = sx; |
} |
INSERT_WORDS(x,hx|sx,lx); |
x *= one; /* create necessary signal */ |
} |
return x; /* exact output */ |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_isinf.c
0,0 → 1,26
/* |
* isinf(x) returns 1 if x is infinity, else 0; |
* no branching! |
* Added by Cygnus Support. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
int isinf(double x) |
#else |
int isinf(x) |
double x; |
#endif |
{ |
__int32_t hx,lx; |
EXTRACT_WORDS(hx,lx,x); |
hx &= 0x7fffffff; |
hx |= (__uint32_t)(lx|(-lx))>>31; |
hx = 0x7ff00000 - hx; |
return 1 - (int)((__uint32_t)(hx|(-hx))>>31); |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/e_atanh.c
0,0 → 1,75
|
/* @(#)e_atanh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* __ieee754_atanh(x) |
* Method : |
* 1.Reduced x to positive by atanh(-x) = -atanh(x) |
* 2.For x>=0.5 |
* 1 2x x |
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) |
* 2 1 - x 1 - x |
* |
* For x<0.5 |
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) |
* |
* Special cases: |
* atanh(x) is NaN if |x| > 1 with signal; |
* atanh(NaN) is that NaN with no signal; |
* atanh(+-1) is +-INF with signal. |
* |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double one = 1.0, huge = 1e300; |
#else |
static double one = 1.0, huge = 1e300; |
#endif |
|
#ifdef __STDC__ |
static const double zero = 0.0; |
#else |
static double zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_atanh(double x) |
#else |
double __ieee754_atanh(x) |
double x; |
#endif |
{ |
double t; |
__int32_t hx,ix; |
__uint32_t lx; |
EXTRACT_WORDS(hx,lx,x); |
ix = hx&0x7fffffff; |
if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */ |
return (x-x)/(x-x); |
if(ix==0x3ff00000) |
return x/zero; |
if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */ |
SET_HIGH_WORD(x,ix); |
if(ix<0x3fe00000) { /* x < 0.5 */ |
t = x+x; |
t = 0.5*log1p(t+t*x/(one-x)); |
} else |
t = 0.5*log1p((x+x)/(one-x)); |
if(hx>=0) return t; else return -t; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_pow.c
0,0 → 1,179
/* wf_pow.c -- float version of w_pow.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper powf(x,y) return x**y |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float powf(float x, float y) /* wrapper powf */ |
#else |
float powf(x,y) /* wrapper powf */ |
float x,y; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_powf(x,y); |
#else |
float z; |
struct exception exc; |
z=__ieee754_powf(x,y); |
if(_LIB_VERSION == _IEEE_|| isnanf(y)) return z; |
if(isnanf(x)) { |
if(y==(float)0.0) { |
/* powf(NaN,0.0) */ |
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */ |
exc.type = DOMAIN; |
exc.name = "powf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
exc.retval = x; |
if (_LIB_VERSION == _IEEE_ || |
_LIB_VERSION == _POSIX_) exc.retval = 1.0; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
} |
if(x==(float)0.0){ |
if(y==(float)0.0) { |
/* powf(0.0,0.0) */ |
/* error only if _LIB_VERSION == _SVID_ */ |
exc.type = DOMAIN; |
exc.name = "powf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
exc.retval = 0.0; |
if (_LIB_VERSION != _SVID_) exc.retval = 1.0; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} |
if(finitef(y)&&y<(float)0.0) { |
/* 0**neg */ |
exc.type = DOMAIN; |
exc.name = "powf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
if (_LIB_VERSION == _SVID_) |
exc.retval = 0.0; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} |
return z; |
} |
if(!finitef(z)) { |
if(finitef(x)&&finitef(y)) { |
if(isnanf(z)) { |
/* neg**non-integral */ |
exc.type = DOMAIN; |
exc.name = "powf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
if (_LIB_VERSION == _SVID_) |
exc.retval = 0.0; |
else |
exc.retval = 0.0/0.0; /* X/Open allow NaN */ |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else { |
/* powf(x,y) overflow */ |
exc.type = OVERFLOW; |
exc.name = "powf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
if (_LIB_VERSION == _SVID_) { |
exc.retval = HUGE; |
y *= 0.5; |
if(x<0.0&&rint(y)!=y) exc.retval = -HUGE; |
} else { |
exc.retval = HUGE_VAL; |
y *= 0.5; |
if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL; |
} |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} |
} |
} |
if(z==(float)0.0&&finitef(x)&&finitef(y)) { |
/* powf(x,y) underflow */ |
exc.type = UNDERFLOW; |
exc.name = "powf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double pow(double x, double y) |
#else |
double pow(x,y) |
double x,y; |
#endif |
{ |
return (double) powf((float) x, (float) y); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_atanh.c
0,0 → 1,54
/* ef_atanh.c -- float version of e_atanh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float one = 1.0, huge = 1e30; |
#else |
static float one = 1.0, huge = 1e30; |
#endif |
|
#ifdef __STDC__ |
static const float zero = 0.0; |
#else |
static float zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_atanhf(float x) |
#else |
float __ieee754_atanhf(x) |
float x; |
#endif |
{ |
float t; |
__int32_t hx,ix; |
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if (ix>0x3f800000) /* |x|>1 */ |
return (x-x)/(x-x); |
if(ix==0x3f800000) |
return x/zero; |
if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */ |
SET_FLOAT_WORD(x,ix); |
if(ix<0x3f000000) { /* x < 0.5 */ |
t = x+x; |
t = (float)0.5*log1pf(t+t*x/(one-x)); |
} else |
t = (float)0.5*log1pf((x+x)/(one-x)); |
if(hx>=0) return t; else return -t; |
} |
/ef_sinh.c
0,0 → 1,63
/* ef_sinh.c -- float version of e_sinh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float one = 1.0, shuge = 1.0e37; |
#else |
static float one = 1.0, shuge = 1.0e37; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_sinhf(float x) |
#else |
float __ieee754_sinhf(x) |
float x; |
#endif |
{ |
float t,w,h; |
__int32_t ix,jx; |
|
GET_FLOAT_WORD(jx,x); |
ix = jx&0x7fffffff; |
|
/* x is INF or NaN */ |
if(!FLT_UWORD_IS_FINITE(ix)) return x+x; |
|
h = 0.5; |
if (jx<0) h = -h; |
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ |
if (ix < 0x41b00000) { /* |x|<22 */ |
if (ix<0x31800000) /* |x|<2**-28 */ |
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ |
t = expm1f(fabsf(x)); |
if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one)); |
return h*(t+t/(t+one)); |
} |
|
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ |
if (ix<=FLT_UWORD_LOG_MAX) return h*__ieee754_expf(fabsf(x)); |
|
/* |x| in [log(maxdouble), overflowthresold] */ |
if (ix<=FLT_UWORD_LOG_2MAX) { |
w = __ieee754_expf((float)0.5*fabsf(x)); |
t = h*w; |
return t*w; |
} |
|
/* |x| > overflowthresold, sinh(x) overflow */ |
return x*shuge; |
} |
/wrf_lgamma.c
0,0 → 1,75
/* wrf_lgamma.c -- float version of wr_lgamma.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper float lgammaf_r(float x, int *signgamp) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float lgammaf_r(float x, int *signgamp) /* wrapper lgammaf_r */ |
#else |
float lgammaf_r(x,signgamp) /* wrapper lgammaf_r */ |
float x; int *signgamp; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_lgammaf_r(x,signgamp); |
#else |
float y; |
struct exception exc; |
y = __ieee754_lgammaf_r(x,signgamp); |
if(_LIB_VERSION == _IEEE_) return y; |
if(!finitef(y)&&finitef(x)) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "lgammaf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if(floorf(x)==x&&x<=(float)0.0) { |
/* lgammaf(-integer) or lgamma(0) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
|
} else { |
/* lgammaf(finite) overflow */ |
exc.type = OVERFLOW; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return y; |
#endif |
} |
/e_j1.c
0,0 → 1,486
|
/* @(#)e_j1.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_j1(x), __ieee754_y1(x) |
* Bessel function of the first and second kinds of order zero. |
* Method -- j1(x): |
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... |
* 2. Reduce x to |x| since j1(x)=-j1(-x), and |
* for x in (0,2) |
* j1(x) = x/2 + x*z*R0/S0, where z = x*x; |
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) |
* for x in (2,inf) |
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) |
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) |
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) |
* as follow: |
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
* = 1/sqrt(2) * (sin(x) - cos(x)) |
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
* = -1/sqrt(2) * (sin(x) + cos(x)) |
* (To avoid cancellation, use |
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
* to compute the worse one.) |
* |
* 3 Special cases |
* j1(nan)= nan |
* j1(0) = 0 |
* j1(inf) = 0 |
* |
* Method -- y1(x): |
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN |
* 2. For x<2. |
* Since |
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) |
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. |
* We use the following function to approximate y1, |
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 |
* where for x in [0,2] (abs err less than 2**-65.89) |
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4 |
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5 |
* Note: For tiny x, 1/x dominate y1 and hence |
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) |
* 3. For x>=2. |
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) |
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) |
* by method mentioned above. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static double pone(double), qone(double); |
#else |
static double pone(), qone(); |
#endif |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
huge = 1e300, |
one = 1.0, |
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
/* R0/S0 on [0,2] */ |
r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */ |
r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */ |
r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */ |
r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */ |
s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */ |
s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */ |
s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */ |
s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */ |
s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */ |
|
#ifdef __STDC__ |
static const double zero = 0.0; |
#else |
static double zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_j1(double x) |
#else |
double __ieee754_j1(x) |
double x; |
#endif |
{ |
double z, s,c,ss,cc,r,u,v,y; |
__int32_t hx,ix; |
|
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>=0x7ff00000) return one/x; |
y = fabs(x); |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
s = sin(y); |
c = cos(y); |
ss = -s-c; |
cc = s-c; |
if(ix<0x7fe00000) { /* make sure y+y not overflow */ |
z = cos(y+y); |
if ((s*c)>zero) cc = z/ss; |
else ss = z/cc; |
} |
/* |
* j1(x) = 1/__ieee754_sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / __ieee754_sqrt(x) |
* y1(x) = 1/__ieee754_sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / __ieee754_sqrt(x) |
*/ |
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(y); |
else { |
u = pone(y); v = qone(y); |
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y); |
} |
if(hx<0) return -z; |
else return z; |
} |
if(ix<0x3e400000) { /* |x|<2**-27 */ |
if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */ |
} |
z = x*x; |
r = z*(r00+z*(r01+z*(r02+z*r03))); |
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); |
r *= x; |
return(x*0.5+r/s); |
} |
|
#ifdef __STDC__ |
static const double U0[5] = { |
#else |
static double U0[5] = { |
#endif |
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ |
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ |
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ |
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ |
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ |
}; |
#ifdef __STDC__ |
static const double V0[5] = { |
#else |
static double V0[5] = { |
#endif |
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ |
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ |
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ |
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */ |
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ |
}; |
|
#ifdef __STDC__ |
double __ieee754_y1(double x) |
#else |
double __ieee754_y1(x) |
double x; |
#endif |
{ |
double z, s,c,ss,cc,u,v; |
__int32_t hx,ix,lx; |
|
EXTRACT_WORDS(hx,lx,x); |
ix = 0x7fffffff&hx; |
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ |
if(ix>=0x7ff00000) return one/(x+x*x); |
if((ix|lx)==0) return -one/zero; |
if(hx<0) return zero/zero; |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
s = sin(x); |
c = cos(x); |
ss = -s-c; |
cc = s-c; |
if(ix<0x7fe00000) { /* make sure x+x not overflow */ |
z = cos(x+x); |
if ((s*c)>zero) cc = z/ss; |
else ss = z/cc; |
} |
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) |
* where x0 = x-3pi/4 |
* Better formula: |
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
* = 1/sqrt(2) * (sin(x) - cos(x)) |
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
* = -1/sqrt(2) * (cos(x) + sin(x)) |
* To avoid cancellation, use |
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
* to compute the worse one. |
*/ |
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x); |
else { |
u = pone(x); v = qone(x); |
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x); |
} |
return z; |
} |
if(ix<=0x3c900000) { /* x < 2**-54 */ |
return(-tpi/x); |
} |
z = x*x; |
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); |
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); |
return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x)); |
} |
|
/* For x >= 8, the asymptotic expansions of pone is |
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
* We approximate pone by |
* pone(x) = 1 + (R/S) |
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 |
* S = 1 + ps0*s^2 + ... + ps4*s^10 |
* and |
* | pone(x)-1-R/S | <= 2 ** ( -60.06) |
*/ |
|
#ifdef __STDC__ |
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#else |
static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#endif |
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ |
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ |
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */ |
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ |
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ |
}; |
#ifdef __STDC__ |
static const double ps8[5] = { |
#else |
static double ps8[5] = { |
#endif |
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ |
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ |
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ |
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */ |
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ |
}; |
|
#ifdef __STDC__ |
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#else |
static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#endif |
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ |
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ |
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ |
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */ |
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ |
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ |
}; |
#ifdef __STDC__ |
static const double ps5[5] = { |
#else |
static double ps5[5] = { |
#endif |
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ |
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ |
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ |
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */ |
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ |
}; |
|
#ifdef __STDC__ |
static const double pr3[6] = { |
#else |
static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#endif |
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ |
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ |
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ |
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */ |
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ |
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ |
}; |
#ifdef __STDC__ |
static const double ps3[5] = { |
#else |
static double ps3[5] = { |
#endif |
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ |
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ |
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ |
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */ |
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ |
}; |
|
#ifdef __STDC__ |
static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#else |
static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#endif |
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ |
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ |
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ |
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */ |
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ |
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ |
}; |
#ifdef __STDC__ |
static const double ps2[5] = { |
#else |
static double ps2[5] = { |
#endif |
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ |
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ |
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ |
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */ |
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ |
}; |
|
#ifdef __STDC__ |
static double pone(double x) |
#else |
static double pone(x) |
double x; |
#endif |
{ |
#ifdef __STDC__ |
const double *p,*q; |
#else |
double *p,*q; |
#endif |
double z,r,s; |
__int32_t ix; |
GET_HIGH_WORD(ix,x); |
ix &= 0x7fffffff; |
if(ix>=0x40200000) {p = pr8; q= ps8;} |
else if(ix>=0x40122E8B){p = pr5; q= ps5;} |
else if(ix>=0x4006DB6D){p = pr3; q= ps3;} |
else {p = pr2; q= ps2;} |
z = one/(x*x); |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
return one+ r/s; |
} |
|
|
/* For x >= 8, the asymptotic expansions of qone is |
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
* We approximate qone by |
* qone(x) = s*(0.375 + (R/S)) |
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 |
* S = 1 + qs1*s^2 + ... + qs6*s^12 |
* and |
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) |
*/ |
|
#ifdef __STDC__ |
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#else |
static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#endif |
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ |
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ |
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ |
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ |
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ |
}; |
#ifdef __STDC__ |
static const double qs8[6] = { |
#else |
static double qs8[6] = { |
#endif |
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ |
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ |
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ |
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */ |
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ |
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ |
}; |
|
#ifdef __STDC__ |
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#else |
static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#endif |
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ |
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ |
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ |
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ |
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ |
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ |
}; |
#ifdef __STDC__ |
static const double qs5[6] = { |
#else |
static double qs5[6] = { |
#endif |
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ |
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ |
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ |
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */ |
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ |
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ |
}; |
|
#ifdef __STDC__ |
static const double qr3[6] = { |
#else |
static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#endif |
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ |
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ |
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ |
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ |
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ |
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ |
}; |
#ifdef __STDC__ |
static const double qs3[6] = { |
#else |
static double qs3[6] = { |
#endif |
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ |
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ |
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ |
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */ |
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ |
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ |
}; |
|
#ifdef __STDC__ |
static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#else |
static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#endif |
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ |
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ |
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ |
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ |
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ |
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ |
}; |
#ifdef __STDC__ |
static const double qs2[6] = { |
#else |
static double qs2[6] = { |
#endif |
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ |
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ |
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ |
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */ |
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ |
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ |
}; |
|
#ifdef __STDC__ |
static double qone(double x) |
#else |
static double qone(x) |
double x; |
#endif |
{ |
#ifdef __STDC__ |
const double *p,*q; |
#else |
double *p,*q; |
#endif |
double s,r,z; |
__int32_t ix; |
GET_HIGH_WORD(ix,x); |
ix &= 0x7fffffff; |
if(ix>=0x40200000) {p = qr8; q= qs8;} |
else if(ix>=0x40122E8B){p = qr5; q= qs5;} |
else if(ix>=0x4006DB6D){p = qr3; q= qs3;} |
else {p = qr2; q= qs2;} |
z = one/(x*x); |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
return (.375 + r/s)/x; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_rem_pio2.c
0,0 → 1,185
|
/* @(#)e_rem_pio2.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* __ieee754_rem_pio2(x,y) |
* |
* return the remainder of x rem pi/2 in y[0]+y[1] |
* use __kernel_rem_pio2() |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
/* |
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi |
*/ |
#ifdef __STDC__ |
static const __int32_t two_over_pi[] = { |
#else |
static __int32_t two_over_pi[] = { |
#endif |
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, |
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, |
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, |
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, |
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, |
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, |
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, |
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, |
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, |
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, |
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, |
}; |
|
#ifdef __STDC__ |
static const __int32_t npio2_hw[] = { |
#else |
static __int32_t npio2_hw[] = { |
#endif |
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, |
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, |
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, |
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, |
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, |
0x404858EB, 0x404921FB, |
}; |
|
/* |
* invpio2: 53 bits of 2/pi |
* pio2_1: first 33 bit of pi/2 |
* pio2_1t: pi/2 - pio2_1 |
* pio2_2: second 33 bit of pi/2 |
* pio2_2t: pi/2 - (pio2_1+pio2_2) |
* pio2_3: third 33 bit of pi/2 |
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) |
*/ |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ |
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ |
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ |
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ |
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ |
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ |
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ |
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ |
|
#ifdef __STDC__ |
__int32_t __ieee754_rem_pio2(double x, double *y) |
#else |
__int32_t __ieee754_rem_pio2(x,y) |
double x,y[]; |
#endif |
{ |
double z,w,t,r,fn; |
double tx[3]; |
__int32_t i,j,n,ix,hx; |
int e0,nx; |
__uint32_t low; |
|
GET_HIGH_WORD(hx,x); /* high word of x */ |
ix = hx&0x7fffffff; |
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ |
{y[0] = x; y[1] = 0; return 0;} |
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ |
if(hx>0) { |
z = x - pio2_1; |
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ |
y[0] = z - pio2_1t; |
y[1] = (z-y[0])-pio2_1t; |
} else { /* near pi/2, use 33+33+53 bit pi */ |
z -= pio2_2; |
y[0] = z - pio2_2t; |
y[1] = (z-y[0])-pio2_2t; |
} |
return 1; |
} else { /* negative x */ |
z = x + pio2_1; |
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ |
y[0] = z + pio2_1t; |
y[1] = (z-y[0])+pio2_1t; |
} else { /* near pi/2, use 33+33+53 bit pi */ |
z += pio2_2; |
y[0] = z + pio2_2t; |
y[1] = (z-y[0])+pio2_2t; |
} |
return -1; |
} |
} |
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ |
t = fabs(x); |
n = (__int32_t) (t*invpio2+half); |
fn = (double)n; |
r = t-fn*pio2_1; |
w = fn*pio2_1t; /* 1st round good to 85 bit */ |
if(n<32&&ix!=npio2_hw[n-1]) { |
y[0] = r-w; /* quick check no cancellation */ |
} else { |
__uint32_t high; |
j = ix>>20; |
y[0] = r-w; |
GET_HIGH_WORD(high,y[0]); |
i = j-((high>>20)&0x7ff); |
if(i>16) { /* 2nd iteration needed, good to 118 */ |
t = r; |
w = fn*pio2_2; |
r = t-w; |
w = fn*pio2_2t-((t-r)-w); |
y[0] = r-w; |
GET_HIGH_WORD(high,y[0]); |
i = j-((high>>20)&0x7ff); |
if(i>49) { /* 3rd iteration need, 151 bits acc */ |
t = r; /* will cover all possible cases */ |
w = fn*pio2_3; |
r = t-w; |
w = fn*pio2_3t-((t-r)-w); |
y[0] = r-w; |
} |
} |
} |
y[1] = (r-y[0])-w; |
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} |
else return n; |
} |
/* |
* all other (large) arguments |
*/ |
if(ix>=0x7ff00000) { /* x is inf or NaN */ |
y[0]=y[1]=x-x; return 0; |
} |
/* set z = scalbn(|x|,ilogb(x)-23) */ |
GET_LOW_WORD(low,x); |
SET_LOW_WORD(z,low); |
e0 = (int)((ix>>20)-1046); /* e0 = ilogb(z)-23; */ |
SET_HIGH_WORD(z, ix - ((__int32_t)e0<<20)); |
for(i=0;i<2;i++) { |
tx[i] = (double)((__int32_t)(z)); |
z = (z-tx[i])*two24; |
} |
tx[2] = z; |
nx = 3; |
while(tx[nx-1]==zero) nx--; /* skip zero term */ |
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); |
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} |
return n; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_atanh.c
0,0 → 1,140
|
/* @(#)w_atanh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<atanh>>, <<atanhf>>---inverse hyperbolic tangent |
|
INDEX |
atanh |
INDEX |
atanhf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double atanh(double <[x]>); |
float atanhf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double atanh(<[x]>) |
double <[x]>; |
|
float atanhf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<atanh>> calculates the inverse hyperbolic tangent of <[x]>. |
|
<<atanhf>> is identical, other than taking and returning |
<<float>> values. |
|
RETURNS |
<<atanh>> and <<atanhf>> return the calculated value. |
|
If |
@ifinfo |
|<[x]>| |
@end ifinfo |
@tex |
$|x|$ |
@end tex |
is greater than 1, the global <<errno>> is set to <<EDOM>> and |
the result is a NaN. A <<DOMAIN error>> is reported. |
|
If |
@ifinfo |
|<[x]>| |
@end ifinfo |
@tex |
$|x|$ |
@end tex |
is 1, the global <<errno>> is set to <<EDOM>>; and the result is |
infinity with the same sign as <<x>>. A <<SING error>> is reported. |
|
You can modify the error handling for these routines using |
<<matherr>>. |
|
PORTABILITY |
Neither <<atanh>> nor <<atanhf>> are ANSI C. |
|
QUICKREF |
atanh - pure |
atanhf - pure |
|
|
*/ |
|
/* |
* wrapper atanh(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double atanh(double x) /* wrapper atanh */ |
#else |
double atanh(x) /* wrapper atanh */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_atanh(x); |
#else |
double z,y; |
struct exception exc; |
z = __ieee754_atanh(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; |
y = fabs(x); |
if(y>=1.0) { |
if(y>1.0) { |
/* atanh(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = "atanh"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* atanh(|x|=1) */ |
exc.type = SING; |
exc.name = "atanh"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = x/0.0; /* sign(x)*inf */ |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
|
|
|
|
/wf_drem.c
0,0 → 1,19
/* |
* dremf() wrapper for remainderf(). |
* |
* Written by J.T. Conklin, <jtc@wimsey.com> |
* Placed into the Public Domain, 1994. |
*/ |
|
#include "fdlibm.h" |
|
float |
#ifdef __STDC__ |
dremf(float x, float y) |
#else |
dremf(x, y) |
float x, y; |
#endif |
{ |
return remainderf(x, y); |
} |
/wf_exp.c
0,0 → 1,103
/* wf_exp.c -- float version of w_exp.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper expf(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
o_threshold= 8.8721679688e+01, /* 0x42b17180 */ |
u_threshold= -1.0397208405e+02; /* 0xc2cff1b5 */ |
|
#ifdef __STDC__ |
float expf(float x) /* wrapper expf */ |
#else |
float expf(x) /* wrapper expf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_expf(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_expf(x); |
if(_LIB_VERSION == _IEEE_) return z; |
if(finitef(x)) { |
if(x>o_threshold) { |
/* expf(finite) overflow */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = OVERFLOW; |
exc.name = "expf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else if(x<u_threshold) { |
/* expf(finite) underflow */ |
exc.type = UNDERFLOW; |
exc.name = "expf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
} |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double exp(double x) |
#else |
double exp(x) |
double x; |
#endif |
{ |
return (double) expf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_log.c
0,0 → 1,92
/* ef_log.c -- float version of e_log.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
ln2_hi = 6.9313812256e-01, /* 0x3f317180 */ |
ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */ |
two25 = 3.355443200e+07, /* 0x4c000000 */ |
Lg1 = 6.6666668653e-01, /* 3F2AAAAB */ |
Lg2 = 4.0000000596e-01, /* 3ECCCCCD */ |
Lg3 = 2.8571429849e-01, /* 3E924925 */ |
Lg4 = 2.2222198546e-01, /* 3E638E29 */ |
Lg5 = 1.8183572590e-01, /* 3E3A3325 */ |
Lg6 = 1.5313838422e-01, /* 3E1CD04F */ |
Lg7 = 1.4798198640e-01; /* 3E178897 */ |
|
#ifdef __STDC__ |
static const float zero = 0.0; |
#else |
static float zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_logf(float x) |
#else |
float __ieee754_logf(x) |
float x; |
#endif |
{ |
float hfsq,f,s,z,R,w,t1,t2,dk; |
__int32_t k,ix,i,j; |
|
GET_FLOAT_WORD(ix,x); |
|
k=0; |
if (FLT_UWORD_IS_ZERO(ix&0x7fffffff)) |
return -two25/zero; /* log(+-0)=-inf */ |
if (ix<0) return (x-x)/zero; /* log(-#) = NaN */ |
if (!FLT_UWORD_IS_FINITE(ix)) return x+x; |
if (FLT_UWORD_IS_SUBNORMAL(ix)) { |
k -= 25; x *= two25; /* subnormal number, scale up x */ |
GET_FLOAT_WORD(ix,x); |
} |
k += (ix>>23)-127; |
ix &= 0x007fffff; |
i = (ix+(0x95f64<<3))&0x800000; |
SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */ |
k += (i>>23); |
f = x-(float)1.0; |
if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */ |
if(f==zero) { if(k==0) return zero; else {dk=(float)k; |
return dk*ln2_hi+dk*ln2_lo;}} |
R = f*f*((float)0.5-(float)0.33333333333333333*f); |
if(k==0) return f-R; else {dk=(float)k; |
return dk*ln2_hi-((R-dk*ln2_lo)-f);} |
} |
s = f/((float)2.0+f); |
dk = (float)k; |
z = s*s; |
i = ix-(0x6147a<<3); |
w = z*z; |
j = (0x6b851<<3)-ix; |
t1= w*(Lg2+w*(Lg4+w*Lg6)); |
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
i |= j; |
R = t2+t1; |
if(i>0) { |
hfsq=(float)0.5*f*f; |
if(k==0) return f-(hfsq-s*(hfsq+R)); else |
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); |
} else { |
if(k==0) return f-s*(f-R); else |
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); |
} |
} |
/s_fabs.c
0,0 → 1,73
|
/* @(#)s_fabs.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<fabs>>, <<fabsf>>---absolute value (magnitude) |
INDEX |
fabs |
INDEX |
fabsf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double fabs(double <[x]>); |
float fabsf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double fabs(<[x]>) |
double <[x]>; |
|
float fabsf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<fabs>> and <<fabsf>> calculate |
@tex |
$|x|$, |
@end tex |
the absolute value (magnitude) of the argument <[x]>, by direct |
manipulation of the bit representation of <[x]>. |
|
RETURNS |
The calculated value is returned. No errors are detected. |
|
PORTABILITY |
<<fabs>> is ANSI. |
<<fabsf>> is an extension. |
|
*/ |
|
/* |
* fabs(x) returns the absolute value of x. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double fabs(double x) |
#else |
double fabs(x) |
double x; |
#endif |
{ |
__uint32_t high; |
GET_HIGH_WORD(high,x); |
SET_HIGH_WORD(x,high&0x7fffffff); |
return x; |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/wf_sinh.c
0,0 → 1,78
/* wf_sinh.c -- float version of w_sinh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper sinhf(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float sinhf(float x) /* wrapper sinhf */ |
#else |
float sinhf(x) /* wrapper sinhf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_sinhf(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_sinhf(x); |
if(_LIB_VERSION == _IEEE_) return z; |
if(!finitef(z)&&finitef(x)) { |
/* sinhf(finite) overflow */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = OVERFLOW; |
exc.name = "sinhf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = ( (x>0.0) ? HUGE : -HUGE); |
else |
exc.retval = ( (x>0.0) ? HUGE_VAL : -HUGE_VAL); |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double sinh(double x) |
#else |
double sinh(x) |
double x; |
#endif |
{ |
return (double) sinhf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_ldexp.c
0,0 → 1,81
|
/* @(#)s_ldexp.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<ldexp>>, <<ldexpf>>---load exponent |
|
INDEX |
ldexp |
INDEX |
ldexpf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double ldexp(double <[val]>, int <[exp]>); |
float ldexpf(float <[val]>, int <[exp]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
|
double ldexp(<[val]>, <[exp]>) |
double <[val]>; |
int <[exp]>; |
|
float ldexpf(<[val]>, <[exp]>) |
float <[val]>; |
int <[exp]>; |
|
|
DESCRIPTION |
<<ldexp>> calculates the value |
@ifinfo |
<[val]> times 2 to the power <[exp]>. |
@end ifinfo |
@tex |
$val\times 2^{exp}$. |
@end tex |
<<ldexpf>> is identical, save that it takes and returns <<float>> |
rather than <<double>> values. |
|
RETURNS |
<<ldexp>> returns the calculated value. |
|
Underflow and overflow both set <<errno>> to <<ERANGE>>. |
On underflow, <<ldexp>> and <<ldexpf>> return 0.0. |
On overflow, <<ldexp>> returns plus or minus <<HUGE_VAL>>. |
|
PORTABILITY |
<<ldexp>> is ANSI, <<ldexpf>> is an extension. |
|
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double ldexp(double value, int exp) |
#else |
double ldexp(value, exp) |
double value; int exp; |
#endif |
{ |
if(!finite(value)||value==0.0) return value; |
value = scalbn(value,exp); |
if(!finite(value)||value==0.0) errno = ERANGE; |
return value; |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/e_asin.c
0,0 → 1,121
|
/* @(#)e_asin.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_asin(x) |
* Method : |
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
* we approximate asin(x) on [0,0.5] by |
* asin(x) = x + x*x^2*R(x^2) |
* where |
* R(x^2) is a rational approximation of (asin(x)-x)/x^3 |
* and its remez error is bounded by |
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) |
* |
* For x in [0.5,1] |
* asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
* then for x>0.98 |
* asin(x) = pi/2 - 2*(s+s*z*R(z)) |
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
* For x<=0.98, let pio4_hi = pio2_hi/2, then |
* f = hi part of s; |
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
* and |
* asin(x) = pi/2 - 2*(s+s*z*R(z)) |
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
* |
* Special cases: |
* if x is NaN, return x itself; |
* if |x|>1, return NaN with invalid signal. |
* |
*/ |
|
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
huge = 1.000e+300, |
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
/* coefficient for R(x^2) */ |
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
|
#ifdef __STDC__ |
double __ieee754_asin(double x) |
#else |
double __ieee754_asin(x) |
double x; |
#endif |
{ |
double t,w,p,q,c,r,s; |
__int32_t hx,ix; |
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>= 0x3ff00000) { /* |x|>= 1 */ |
__uint32_t lx; |
GET_LOW_WORD(lx,x); |
if(((ix-0x3ff00000)|lx)==0) |
/* asin(1)=+-pi/2 with inexact */ |
return x*pio2_hi+x*pio2_lo; |
return (x-x)/(x-x); /* asin(|x|>1) is NaN */ |
} else if (ix<0x3fe00000) { /* |x|<0.5 */ |
if(ix<0x3e400000) { /* if |x| < 2**-27 */ |
if(huge+x>one) return x;/* return x with inexact if x!=0*/ |
} else { |
t = x*x; |
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
w = p/q; |
return x+x*w; |
} |
} |
/* 1> |x|>= 0.5 */ |
w = one-fabs(x); |
t = w*0.5; |
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
s = __ieee754_sqrt(t); |
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ |
w = p/q; |
t = pio2_hi-(2.0*(s+s*w)-pio2_lo); |
} else { |
w = s; |
SET_LOW_WORD(w,0); |
c = (t-w*w)/(s+w); |
r = p/q; |
p = 2.0*s*r-(pio2_lo-2.0*c); |
q = pio4_hi-2.0*w; |
t = pio4_hi-(p-q); |
} |
if(hx>0) return t; else return -t; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_ceil.c
0,0 → 1,80
|
/* @(#)s_ceil.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* ceil(x) |
* Return x rounded toward -inf to integral value |
* Method: |
* Bit twiddling. |
* Exception: |
* Inexact flag raised if x not equal to ceil(x). |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double huge = 1.0e300; |
#else |
static double huge = 1.0e300; |
#endif |
|
#ifdef __STDC__ |
double ceil(double x) |
#else |
double ceil(x) |
double x; |
#endif |
{ |
__int32_t i0,i1,j0; |
__uint32_t i,j; |
EXTRACT_WORDS(i0,i1,x); |
j0 = ((i0>>20)&0x7ff)-0x3ff; |
if(j0<20) { |
if(j0<0) { /* raise inexact if x != 0 */ |
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ |
if(i0<0) {i0=0x80000000;i1=0;} |
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;} |
} |
} else { |
i = (0x000fffff)>>j0; |
if(((i0&i)|i1)==0) return x; /* x is integral */ |
if(huge+x>0.0) { /* raise inexact flag */ |
if(i0>0) i0 += (0x00100000)>>j0; |
i0 &= (~i); i1=0; |
} |
} |
} else if (j0>51) { |
if(j0==0x400) return x+x; /* inf or NaN */ |
else return x; /* x is integral */ |
} else { |
i = ((__uint32_t)(0xffffffff))>>(j0-20); |
if((i1&i)==0) return x; /* x is integral */ |
if(huge+x>0.0) { /* raise inexact flag */ |
if(i0>0) { |
if(j0==20) i0+=1; |
else { |
j = i1 + (1<<(52-j0)); |
if(j<i1) i0+=1; /* got a carry */ |
i1 = j; |
} |
} |
i1 &= (~i); |
} |
} |
INSERT_WORDS(x,i0,i1); |
return x; |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/w_j0.c
0,0 → 1,229
|
/* @(#)w_j0.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<jN>>,<<jNf>>,<<yN>>,<<yNf>>---Bessel functions |
|
INDEX |
j0 |
INDEX |
j0f |
INDEX |
j1 |
INDEX |
j1f |
INDEX |
jn |
INDEX |
jnf |
INDEX |
y0 |
INDEX |
y0f |
INDEX |
y1 |
INDEX |
y1f |
INDEX |
yn |
INDEX |
ynf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double j0(double <[x]>); |
float j0f(float <[x]>); |
double j1(double <[x]>); |
float j1f(float <[x]>); |
double jn(int <[n]>, double <[x]>); |
float jnf(int <[n]>, float <[x]>); |
double y0(double <[x]>); |
float y0f(float <[x]>); |
double y1(double <[x]>); |
float y1f(float <[x]>); |
double yn(int <[n]>, double <[x]>); |
float ynf(int <[n]>, float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
|
double j0(<[x]>) |
double <[x]>; |
float j0f(<[x]>) |
float <[x]>; |
double j1(<[x]>) |
double <[x]>; |
float j1f(<[x]>) |
float <[x]>; |
double jn(<[n]>, <[x]>) |
int <[n]>; |
double <[x]>; |
float jnf(<[n]>, <[x]>) |
int <[n]>; |
float <[x]>; |
|
double y0(<[x]>) |
double <[x]>; |
float y0f(<[x]>) |
float <[x]>; |
double y1(<[x]>) |
double <[x]>; |
float y1f(<[x]>) |
float <[x]>; |
double yn(<[n]>, <[x]>) |
int <[n]>; |
double <[x]>; |
float ynf(<[n]>, <[x]>) |
int <[n]>; |
float <[x]>; |
|
DESCRIPTION |
The Bessel functions are a family of functions that solve the |
differential equation |
@ifinfo |
. 2 2 2 |
. x y'' + xy' + (x - p )y = 0 |
@end ifinfo |
@tex |
$$x^2{d^2y\over dx^2} + x{dy\over dx} + (x^2-p^2)y = 0$$ |
@end tex |
These functions have many applications in engineering and physics. |
|
<<jn>> calculates the Bessel function of the first kind of order |
<[n]>. <<j0>> and <<j1>> are special cases for order 0 and order |
1 respectively. |
|
Similarly, <<yn>> calculates the Bessel function of the second kind of |
order <[n]>, and <<y0>> and <<y1>> are special cases for order 0 and |
1. |
|
<<jnf>>, <<j0f>>, <<j1f>>, <<ynf>>, <<y0f>>, and <<y1f>> perform the |
same calculations, but on <<float>> rather than <<double>> values. |
|
RETURNS |
The value of each Bessel function at <[x]> is returned. |
|
PORTABILITY |
None of the Bessel functions are in ANSI C. |
*/ |
|
/* |
* wrapper j0(double x), y0(double x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double j0(double x) /* wrapper j0 */ |
#else |
double j0(x) /* wrapper j0 */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_j0(x); |
#else |
struct exception exc; |
double z = __ieee754_j0(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; |
if(fabs(x)>X_TLOSS) { |
/* j0(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "j0"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef __STDC__ |
double y0(double x) /* wrapper y0 */ |
#else |
double y0(x) /* wrapper y0 */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_y0(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_y0(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; |
if(x <= 0.0){ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
/* y0(0) = -inf or y0(x<0) = NaN */ |
exc.type = DOMAIN; /* should be SING for IEEE y0(0) */ |
exc.name = "y0"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
if(x>X_TLOSS) { |
/* y0(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "y0"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
|
|
|
|
|
|
|
/sf_fabs.c
0,0 → 1,47
/* sf_fabs.c -- float version of s_fabs.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* fabsf(x) returns the absolute value of x. |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
float fabsf(float x) |
#else |
float fabsf(x) |
float x; |
#endif |
{ |
__uint32_t ix; |
GET_FLOAT_WORD(ix,x); |
SET_FLOAT_WORD(x,ix&0x7fffffff); |
return x; |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double fabs(double x) |
#else |
double fabs(x) |
double x; |
#endif |
{ |
return (double) fabsf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/k_sin.c
0,0 → 1,79
|
/* @(#)k_sin.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __kernel_sin( x, y, iy) |
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
* Input x is assumed to be bounded by ~pi/4 in magnitude. |
* Input y is the tail of x. |
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0). |
* |
* Algorithm |
* 1. Since sin(-x) = -sin(x), we need only to consider positive x. |
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. |
* 3. sin(x) is approximated by a polynomial of degree 13 on |
* [0,pi/4] |
* 3 13 |
* sin(x) ~ x + S1*x + ... + S6*x |
* where |
* |
* |sin(x) 2 4 6 8 10 12 | -58 |
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
* | x | |
* |
* 4. sin(x+y) = sin(x) + sin'(x')*y |
* ~ sin(x) + (1-x*x/2)*y |
* For better accuracy, let |
* 3 2 2 2 2 |
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) |
* then 3 2 |
* sin(x) = x + (S1*x + (x *(r-y/2)+y)) |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ |
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ |
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ |
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ |
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ |
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ |
|
#ifdef __STDC__ |
double __kernel_sin(double x, double y, int iy) |
#else |
double __kernel_sin(x, y, iy) |
double x,y; int iy; /* iy=0 if y is zero */ |
#endif |
{ |
double z,r,v; |
__int32_t ix; |
GET_HIGH_WORD(ix,x); |
ix &= 0x7fffffff; /* high word of x */ |
if(ix<0x3e400000) /* |x| < 2**-27 */ |
{if((int)x==0) return x;} /* generate inexact */ |
z = x*x; |
v = z*x; |
r = S2+z*(S3+z*(S4+z*(S5+z*S6))); |
if(iy==0) return x+v*(S1+z*r); |
else return x-((z*(half*y-v*r)-y)-v*S1); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/sf_ceil.c
0,0 → 1,70
/* sf_ceil.c -- float version of s_ceil.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float huge = 1.0e30; |
#else |
static float huge = 1.0e30; |
#endif |
|
#ifdef __STDC__ |
float ceilf(float x) |
#else |
float ceilf(x) |
float x; |
#endif |
{ |
__int32_t i0,j0; |
__uint32_t i,ix; |
GET_FLOAT_WORD(i0,x); |
ix = (i0&0x7fffffff); |
j0 = (ix>>23)-0x7f; |
if(j0<23) { |
if(j0<0) { /* raise inexact if x != 0 */ |
if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */ |
if(i0<0) {i0=0x80000000;} |
else if(!FLT_UWORD_IS_ZERO(ix)) { i0=0x3f800000;} |
} |
} else { |
i = (0x007fffff)>>j0; |
if((i0&i)==0) return x; /* x is integral */ |
if(huge+x>(float)0.0) { /* raise inexact flag */ |
if(i0>0) i0 += (0x00800000)>>j0; |
i0 &= (~i); |
} |
} |
} else { |
if(!FLT_UWORD_IS_FINITE(ix)) return x+x; /* inf or NaN */ |
else return x; /* x is integral */ |
} |
SET_FLOAT_WORD(x,i0); |
return x; |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double ceil(double x) |
#else |
double ceil(x) |
double x; |
#endif |
{ |
return (double) ceilf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_j0.c
0,0 → 1,137
/* wf_j0.c -- float version of w_j0.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper j0f(float x), y0f(float x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float j0f(float x) /* wrapper j0f */ |
#else |
float j0f(x) /* wrapper j0f */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_j0f(x); |
#else |
struct exception exc; |
float z = __ieee754_j0f(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; |
if(fabsf(x)>(float)X_TLOSS) { |
/* j0f(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "j0f"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef __STDC__ |
float y0f(float x) /* wrapper y0f */ |
#else |
float y0f(x) /* wrapper y0f */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_y0f(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_y0f(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; |
if(x <= (float)0.0){ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
/* y0f(0) = -inf or y0f(x<0) = NaN */ |
exc.type = DOMAIN; /* should be SING for IEEE y0f(0) */ |
exc.name = "y0f"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} |
if(x>(float)X_TLOSS) { |
/* y0f(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "y0f"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double j0(double x) |
#else |
double j0(x) |
double x; |
#endif |
{ |
return (double) j0f((float) x); |
} |
|
#ifdef __STDC__ |
double y0(double x) |
#else |
double y0(x) |
double x; |
#endif |
{ |
return (double) y0f((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_log.c
0,0 → 1,115
|
/* @(#)w_log.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<log>>, <<logf>>---natural logarithms |
|
INDEX |
log |
INDEX |
logf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double log(double <[x]>); |
float logf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double log(<[x]>); |
double <[x]>; |
|
float logf(<[x]>); |
float <[x]>; |
|
DESCRIPTION |
Return the natural logarithm of <[x]>, that is, its logarithm base e |
(where e is the base of the natural system of logarithms, 2.71828@dots{}). |
<<log>> and <<logf>> are identical save for the return and argument types. |
|
You can use the (non-ANSI) function <<matherr>> to specify error |
handling for these functions. |
|
RETURNS |
Normally, returns the calculated value. When <[x]> is zero, the |
returned value is <<-HUGE_VAL>> and <<errno>> is set to <<ERANGE>>. |
When <[x]> is negative, the returned value is <<-HUGE_VAL>> and |
<<errno>> is set to <<EDOM>>. You can control the error behavior via |
<<matherr>>. |
|
PORTABILITY |
<<log>> is ANSI, <<logf>> is an extension. |
*/ |
|
/* |
* wrapper log(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double log(double x) /* wrapper log */ |
#else |
double log(x) /* wrapper log */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_log(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_log(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) return z; |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "log"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if(x==0.0) { |
/* log(0) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* log(x<0) */ |
exc.type = DOMAIN; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_sin.c
0,0 → 1,132
|
/* @(#)s_sin.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<sin>>, <<sinf>>, <<cos>>, <<cosf>>---sine or cosine |
INDEX |
sin |
INDEX |
sinf |
INDEX |
cos |
INDEX |
cosf |
ANSI_SYNOPSIS |
#include <math.h> |
double sin(double <[x]>); |
float sinf(float <[x]>); |
double cos(double <[x]>); |
float cosf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double sin(<[x]>) |
double <[x]>; |
float sinf(<[x]>) |
float <[x]>; |
|
double cos(<[x]>) |
double <[x]>; |
float cosf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<sin>> and <<cos>> compute (respectively) the sine and cosine |
of the argument <[x]>. Angles are specified in radians. |
|
<<sinf>> and <<cosf>> are identical, save that they take and |
return <<float>> values. |
|
|
RETURNS |
The sine or cosine of <[x]> is returned. |
|
PORTABILITY |
<<sin>> and <<cos>> are ANSI C. |
<<sinf>> and <<cosf>> are extensions. |
|
QUICKREF |
sin ansi pure |
sinf - pure |
*/ |
|
/* sin(x) |
* Return sine function of x. |
* |
* kernel function: |
* __kernel_sin ... sine function on [-pi/4,pi/4] |
* __kernel_cos ... cose function on [-pi/4,pi/4] |
* __ieee754_rem_pio2 ... argument reduction routine |
* |
* Method. |
* Let S,C and T denote the sin, cos and tan respectively on |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
* in [-pi/4 , +pi/4], and let n = k mod 4. |
* We have |
* |
* n sin(x) cos(x) tan(x) |
* ---------------------------------------------------------- |
* 0 S C T |
* 1 C -S -1/T |
* 2 -S -C T |
* 3 -C S -1/T |
* ---------------------------------------------------------- |
* |
* Special cases: |
* Let trig be any of sin, cos, or tan. |
* trig(+-INF) is NaN, with signals; |
* trig(NaN) is that NaN; |
* |
* Accuracy: |
* TRIG(x) returns trig(x) nearly rounded |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double sin(double x) |
#else |
double sin(x) |
double x; |
#endif |
{ |
double y[2],z=0.0; |
__int32_t n,ix; |
|
/* High word of x. */ |
GET_HIGH_WORD(ix,x); |
|
/* |x| ~< pi/4 */ |
ix &= 0x7fffffff; |
if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); |
|
/* sin(Inf or NaN) is NaN */ |
else if (ix>=0x7ff00000) return x-x; |
|
/* argument reduction needed */ |
else { |
n = __ieee754_rem_pio2(x,y); |
switch(n&3) { |
case 0: return __kernel_sin(y[0],y[1],1); |
case 1: return __kernel_cos(y[0],y[1]); |
case 2: return -__kernel_sin(y[0],y[1],1); |
default: |
return -__kernel_cos(y[0],y[1]); |
} |
} |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/sf_frexp.c
0,0 → 1,61
/* sf_frexp.c -- float version of s_frexp.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
two25 = 3.3554432000e+07; /* 0x4c000000 */ |
|
#ifdef __STDC__ |
float frexpf(float x, int *eptr) |
#else |
float frexpf(x, eptr) |
float x; int *eptr; |
#endif |
{ |
__int32_t hx, ix; |
GET_FLOAT_WORD(hx,x); |
ix = 0x7fffffff&hx; |
*eptr = 0; |
if(!FLT_UWORD_IS_FINITE(ix)||FLT_UWORD_IS_ZERO(ix)) return x; /* 0,inf,nan */ |
if (FLT_UWORD_IS_SUBNORMAL(ix)) { /* subnormal */ |
x *= two25; |
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
*eptr = -25; |
} |
*eptr += (ix>>23)-126; |
hx = (hx&0x807fffff)|0x3f000000; |
SET_FLOAT_WORD(x,hx); |
return x; |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double frexp(double x, int *eptr) |
#else |
double frexp(x, eptr) |
double x; int *eptr; |
#endif |
{ |
return (double) frexpf((float) x, eptr); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_log10.c
0,0 → 1,88
/* wf_log10.c -- float version of w_log10.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper log10f(X) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float log10f(float x) /* wrapper log10f */ |
#else |
float log10f(x) /* wrapper log10f */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_log10f(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_log10f(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; |
if(x<=(float)0.0) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "log10f"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if(x==(float)0.0) { |
/* log10f(0) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* log10f(x<0) */ |
exc.type = DOMAIN; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double log10(double x) |
#else |
double log10(x) |
double x; |
#endif |
{ |
return (double) log10f((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_sqrt.c
0,0 → 1,93
|
/* @(#)w_sqrt.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<sqrt>>, <<sqrtf>>---positive square root |
|
INDEX |
sqrt |
INDEX |
sqrtf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double sqrt(double <[x]>); |
float sqrtf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double sqrt(<[x]>); |
float sqrtf(<[x]>); |
|
DESCRIPTION |
<<sqrt>> computes the positive square root of the argument. |
You can modify error handling for this function with |
<<matherr>>. |
|
RETURNS |
On success, the square root is returned. If <[x]> is real and |
positive, then the result is positive. If <[x]> is real and |
negative, the global value <<errno>> is set to <<EDOM>> (domain error). |
|
|
PORTABILITY |
<<sqrt>> is ANSI C. <<sqrtf>> is an extension. |
*/ |
|
/* |
* wrapper sqrt(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double sqrt(double x) /* wrapper sqrt */ |
#else |
double sqrt(x) /* wrapper sqrt */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_sqrt(x); |
#else |
struct exception exc; |
double z; |
z = __ieee754_sqrt(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; |
if(x<0.0) { |
exc.type = DOMAIN; |
exc.name = "sqrt"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = 0.0; |
else |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_pow.c
0,0 → 1,253
/* ef_pow.c -- float version of e_pow.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __v810__ |
#define const |
#endif |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
bp[] = {1.0, 1.5,}, |
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */ |
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */ |
zero = 0.0, |
one = 1.0, |
two = 2.0, |
two24 = 16777216.0, /* 0x4b800000 */ |
huge = 1.0e30, |
tiny = 1.0e-30, |
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
L1 = 6.0000002384e-01, /* 0x3f19999a */ |
L2 = 4.2857143283e-01, /* 0x3edb6db7 */ |
L3 = 3.3333334327e-01, /* 0x3eaaaaab */ |
L4 = 2.7272811532e-01, /* 0x3e8ba305 */ |
L5 = 2.3066075146e-01, /* 0x3e6c3255 */ |
L6 = 2.0697501302e-01, /* 0x3e53f142 */ |
P1 = 1.6666667163e-01, /* 0x3e2aaaab */ |
P2 = -2.7777778450e-03, /* 0xbb360b61 */ |
P3 = 6.6137559770e-05, /* 0x388ab355 */ |
P4 = -1.6533901999e-06, /* 0xb5ddea0e */ |
P5 = 4.1381369442e-08, /* 0x3331bb4c */ |
lg2 = 6.9314718246e-01, /* 0x3f317218 */ |
lg2_h = 6.93145752e-01, /* 0x3f317200 */ |
lg2_l = 1.42860654e-06, /* 0x35bfbe8c */ |
ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */ |
cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */ |
cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */ |
cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */ |
ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */ |
ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/ |
ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/ |
|
#ifdef __STDC__ |
float __ieee754_powf(float x, float y) |
#else |
float __ieee754_powf(x,y) |
float x, y; |
#endif |
{ |
float z,ax,z_h,z_l,p_h,p_l; |
float y1,t1,t2,r,s,t,u,v,w; |
__int32_t i,j,k,yisint,n; |
__int32_t hx,hy,ix,iy,is; |
|
GET_FLOAT_WORD(hx,x); |
GET_FLOAT_WORD(hy,y); |
ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
|
/* y==zero: x**0 = 1 */ |
if(FLT_UWORD_IS_ZERO(iy)) return one; |
|
/* +-NaN return x+y */ |
if(FLT_UWORD_IS_NAN(ix) || |
FLT_UWORD_IS_NAN(iy)) |
return x+y; |
|
/* determine if y is an odd int when x < 0 |
* yisint = 0 ... y is not an integer |
* yisint = 1 ... y is an odd int |
* yisint = 2 ... y is an even int |
*/ |
yisint = 0; |
if(hx<0) { |
if(iy>=0x4b800000) yisint = 2; /* even integer y */ |
else if(iy>=0x3f800000) { |
k = (iy>>23)-0x7f; /* exponent */ |
j = iy>>(23-k); |
if((j<<(23-k))==iy) yisint = 2-(j&1); |
} |
} |
|
/* special value of y */ |
if (FLT_UWORD_IS_INFINITE(iy)) { /* y is +-inf */ |
if (ix==0x3f800000) |
return y - y; /* inf**+-1 is NaN */ |
else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */ |
return (hy>=0)? y: zero; |
else /* (|x|<1)**-,+inf = inf,0 */ |
return (hy<0)?-y: zero; |
} |
if(iy==0x3f800000) { /* y is +-1 */ |
if(hy<0) return one/x; else return x; |
} |
if(hy==0x40000000) return x*x; /* y is 2 */ |
if(hy==0x3f000000) { /* y is 0.5 */ |
if(hx>=0) /* x >= +0 */ |
return __ieee754_sqrtf(x); |
} |
|
ax = fabsf(x); |
/* special value of x */ |
if(FLT_UWORD_IS_INFINITE(ix)||FLT_UWORD_IS_ZERO(ix)||ix==0x3f800000){ |
z = ax; /*x is +-0,+-inf,+-1*/ |
if(hy<0) z = one/z; /* z = (1/|x|) */ |
if(hx<0) { |
if(((ix-0x3f800000)|yisint)==0) { |
z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
} else if(yisint==1) |
z = -z; /* (x<0)**odd = -(|x|**odd) */ |
} |
return z; |
} |
|
/* (x<0)**(non-int) is NaN */ |
if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); |
|
/* |y| is huge */ |
if(iy>0x4d000000) { /* if |y| > 2**27 */ |
/* over/underflow if x is not close to one */ |
if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny; |
if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny; |
/* now |1-x| is tiny <= 2**-20, suffice to compute |
log(x) by x-x^2/2+x^3/3-x^4/4 */ |
t = x-1; /* t has 20 trailing zeros */ |
w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25)); |
u = ivln2_h*t; /* ivln2_h has 16 sig. bits */ |
v = t*ivln2_l-w*ivln2; |
t1 = u+v; |
GET_FLOAT_WORD(is,t1); |
SET_FLOAT_WORD(t1,is&0xfffff000); |
t2 = v-(t1-u); |
} else { |
float s2,s_h,s_l,t_h,t_l; |
n = 0; |
/* take care subnormal number */ |
if(FLT_UWORD_IS_SUBNORMAL(ix)) |
{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); } |
n += ((ix)>>23)-0x7f; |
j = ix&0x007fffff; |
/* determine interval */ |
ix = j|0x3f800000; /* normalize ix */ |
if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */ |
else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */ |
else {k=0;n+=1;ix -= 0x00800000;} |
SET_FLOAT_WORD(ax,ix); |
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
v = one/(ax+bp[k]); |
s = u*v; |
s_h = s; |
GET_FLOAT_WORD(is,s_h); |
SET_FLOAT_WORD(s_h,is&0xfffff000); |
/* t_h=ax+bp[k] High */ |
SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21)); |
t_l = ax - (t_h-bp[k]); |
s_l = v*((u-s_h*t_h)-s_h*t_l); |
/* compute log(ax) */ |
s2 = s*s; |
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
r += s_l*(s_h+s); |
s2 = s_h*s_h; |
t_h = (float)3.0+s2+r; |
GET_FLOAT_WORD(is,t_h); |
SET_FLOAT_WORD(t_h,is&0xfffff000); |
t_l = r-((t_h-(float)3.0)-s2); |
/* u+v = s*(1+...) */ |
u = s_h*t_h; |
v = s_l*t_h+t_l*s; |
/* 2/(3log2)*(s+...) */ |
p_h = u+v; |
GET_FLOAT_WORD(is,p_h); |
SET_FLOAT_WORD(p_h,is&0xfffff000); |
p_l = v-(p_h-u); |
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
t = (float)n; |
t1 = (((z_h+z_l)+dp_h[k])+t); |
GET_FLOAT_WORD(is,t1); |
SET_FLOAT_WORD(t1,is&0xfffff000); |
t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
} |
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0) |
s = -one; /* (-ve)**(odd int) */ |
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
GET_FLOAT_WORD(is,y); |
SET_FLOAT_WORD(y1,is&0xfffff000); |
p_l = (y-y1)*t1+y*t2; |
p_h = y1*t1; |
z = p_l+p_h; |
GET_FLOAT_WORD(j,z); |
i = j&0x7fffffff; |
if (j>0) { |
if (i>FLT_UWORD_EXP_MAX) |
return s*huge*huge; /* overflow */ |
else if (i==FLT_UWORD_EXP_MAX) |
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
} else { |
if (i>FLT_UWORD_EXP_MIN) |
return s*tiny*tiny; /* underflow */ |
else if (i==FLT_UWORD_EXP_MIN) |
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
} |
/* |
* compute 2**(p_h+p_l) |
*/ |
k = (i>>23)-0x7f; |
n = 0; |
if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */ |
n = j+(0x00800000>>(k+1)); |
k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */ |
SET_FLOAT_WORD(t,n&~(0x007fffff>>k)); |
n = ((n&0x007fffff)|0x00800000)>>(23-k); |
if(j<0) n = -n; |
p_h -= t; |
} |
t = p_l+p_h; |
GET_FLOAT_WORD(is,t); |
SET_FLOAT_WORD(t,is&0xfffff000); |
u = t*lg2_h; |
v = (p_l-(t-p_h))*lg2+t*lg2_l; |
z = u+v; |
w = v-(z-u); |
t = z*z; |
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
r = (z*t1)/(t1-two)-(w+z*w); |
z = one-(r-z); |
GET_FLOAT_WORD(j,z); |
j += (n<<23); |
if((j>>23)<=0) z = scalbnf(z,(int)n); /* subnormal output */ |
else SET_FLOAT_WORD(z,j); |
return s*z; |
} |
/w_lgamma.c
0,0 → 1,89
|
/* @(#)w_lgamma.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* double lgamma(double x) |
* Return the logarithm of the Gamma function of x. |
* |
* Method: call __ieee754_lgamma_r |
*/ |
|
#include "fdlibm.h" |
#include <reent.h> |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double lgamma(double x) |
#else |
double lgamma(x) |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_lgamma_r(x,&(_REENT->_new._reent._gamma_signgam)); |
#else |
double y; |
struct exception exc; |
y = __ieee754_lgamma_r(x,&(_REENT->_new._reent._gamma_signgam)); |
if(_LIB_VERSION == _IEEE_) return y; |
if(!finite(y)&&finite(x)) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "lgamma"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if(floor(x)==x&&x<=0.0) { |
/* lgamma(-integer) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
|
} else { |
/* lgamma(finite) overflow */ |
exc.type = OVERFLOW; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return y; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
|
|
|
|
|
|
|
/er_lgamma.c
0,0 → 1,309
|
/* @(#)er_lgamma.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* __ieee754_lgamma_r(x, signgamp) |
* Reentrant version of the logarithm of the Gamma function |
* with user provide pointer for the sign of Gamma(x). |
* |
* Method: |
* 1. Argument Reduction for 0 < x <= 8 |
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may |
* reduce x to a number in [1.5,2.5] by |
* lgamma(1+s) = log(s) + lgamma(s) |
* for example, |
* lgamma(7.3) = log(6.3) + lgamma(6.3) |
* = log(6.3*5.3) + lgamma(5.3) |
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) |
* 2. Polynomial approximation of lgamma around its |
* minimun ymin=1.461632144968362245 to maintain monotonicity. |
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use |
* Let z = x-ymin; |
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z) |
* where |
* poly(z) is a 14 degree polynomial. |
* 2. Rational approximation in the primary interval [2,3] |
* We use the following approximation: |
* s = x-2.0; |
* lgamma(x) = 0.5*s + s*P(s)/Q(s) |
* with accuracy |
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 |
* Our algorithms are based on the following observation |
* |
* zeta(2)-1 2 zeta(3)-1 3 |
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... |
* 2 3 |
* |
* where Euler = 0.5771... is the Euler constant, which is very |
* close to 0.5. |
* |
* 3. For x>=8, we have |
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... |
* (better formula: |
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) |
* Let z = 1/x, then we approximation |
* f(z) = lgamma(x) - (x-0.5)(log(x)-1) |
* by |
* 3 5 11 |
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z |
* where |
* |w - f(z)| < 2**-58.74 |
* |
* 4. For negative x, since (G is gamma function) |
* -x*G(-x)*G(x) = pi/sin(pi*x), |
* we have |
* G(x) = pi/(sin(pi*x)*(-x)*G(-x)) |
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 |
* Hence, for x<0, signgam = sign(sin(pi*x)) and |
* lgamma(x) = log(|Gamma(x)|) |
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); |
* Note: one should avoid compute pi*(-x) directly in the |
* computation of sin(pi*(-x)). |
* |
* 5. Special Cases |
* lgamma(2+s) ~ s*(1-Euler) for tiny s |
* lgamma(1)=lgamma(2)=0 |
* lgamma(x) ~ -log(x) for tiny x |
* lgamma(0) = lgamma(inf) = inf |
* lgamma(-integer) = +-inf |
* |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ |
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ |
a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ |
a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ |
a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ |
a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ |
a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ |
a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ |
a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ |
a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ |
a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ |
a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ |
a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ |
tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ |
tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ |
/* tt = -(tail of tf) */ |
tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ |
t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ |
t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ |
t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ |
t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ |
t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ |
t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ |
t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ |
t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ |
t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ |
t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ |
t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ |
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ |
t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ |
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ |
t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ |
u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ |
u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ |
u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ |
u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ |
u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ |
v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ |
v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ |
v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ |
v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ |
v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ |
s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ |
s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ |
s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ |
s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ |
s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ |
s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ |
r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ |
r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ |
r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ |
r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ |
r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ |
r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ |
w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ |
w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ |
w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ |
w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ |
w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ |
w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ |
w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ |
|
#ifdef __STDC__ |
static const double zero= 0.00000000000000000000e+00; |
#else |
static double zero= 0.00000000000000000000e+00; |
#endif |
|
#ifdef __STDC__ |
static double sin_pi(double x) |
#else |
static double sin_pi(x) |
double x; |
#endif |
{ |
double y,z; |
__int32_t n,ix; |
|
GET_HIGH_WORD(ix,x); |
ix &= 0x7fffffff; |
|
if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0); |
y = -x; /* x is assume negative */ |
|
/* |
* argument reduction, make sure inexact flag not raised if input |
* is an integer |
*/ |
z = floor(y); |
if(z!=y) { /* inexact anyway */ |
y *= 0.5; |
y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */ |
n = (__int32_t) (y*4.0); |
} else { |
if(ix>=0x43400000) { |
y = zero; n = 0; /* y must be even */ |
} else { |
if(ix<0x43300000) z = y+two52; /* exact */ |
GET_LOW_WORD(n,z); |
n &= 1; |
y = n; |
n<<= 2; |
} |
} |
switch (n) { |
case 0: y = __kernel_sin(pi*y,zero,0); break; |
case 1: |
case 2: y = __kernel_cos(pi*(0.5-y),zero); break; |
case 3: |
case 4: y = __kernel_sin(pi*(one-y),zero,0); break; |
case 5: |
case 6: y = -__kernel_cos(pi*(y-1.5),zero); break; |
default: y = __kernel_sin(pi*(y-2.0),zero,0); break; |
} |
return -y; |
} |
|
|
#ifdef __STDC__ |
double __ieee754_lgamma_r(double x, int *signgamp) |
#else |
double __ieee754_lgamma_r(x,signgamp) |
double x; int *signgamp; |
#endif |
{ |
double t,y,z,nadj,p,p1,p2,p3,q,r,w; |
__int32_t i,hx,lx,ix; |
|
EXTRACT_WORDS(hx,lx,x); |
|
/* purge off +-inf, NaN, +-0, and negative arguments */ |
*signgamp = 1; |
ix = hx&0x7fffffff; |
if(ix>=0x7ff00000) return x*x; |
if((ix|lx)==0) return one/zero; |
if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */ |
if(hx<0) { |
*signgamp = -1; |
return -__ieee754_log(-x); |
} else return -__ieee754_log(x); |
} |
if(hx<0) { |
if(ix>=0x43300000) /* |x|>=2**52, must be -integer */ |
return one/zero; |
t = sin_pi(x); |
if(t==zero) return one/zero; /* -integer */ |
nadj = __ieee754_log(pi/fabs(t*x)); |
if(t<zero) *signgamp = -1; |
x = -x; |
} |
|
/* purge off 1 and 2 */ |
if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0; |
/* for x < 2.0 */ |
else if(ix<0x40000000) { |
if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
r = -__ieee754_log(x); |
if(ix>=0x3FE76944) {y = one-x; i= 0;} |
else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;} |
else {y = x; i=2;} |
} else { |
r = zero; |
if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */ |
else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */ |
else {y=x-one;i=2;} |
} |
switch(i) { |
case 0: |
z = y*y; |
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
p = y*p1+p2; |
r += (p-0.5*y); break; |
case 1: |
z = y*y; |
w = z*y; |
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
p = z*p1-(tt-w*(p2+y*p3)); |
r += (tf + p); break; |
case 2: |
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
r += (-0.5*y + p1/p2); |
} |
} |
else if(ix<0x40200000) { /* x < 8.0 */ |
i = (__int32_t)x; |
t = zero; |
y = x-(double)i; |
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
r = half*y+p/q; |
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ |
switch(i) { |
case 7: z *= (y+6.0); /* FALLTHRU */ |
case 6: z *= (y+5.0); /* FALLTHRU */ |
case 5: z *= (y+4.0); /* FALLTHRU */ |
case 4: z *= (y+3.0); /* FALLTHRU */ |
case 3: z *= (y+2.0); /* FALLTHRU */ |
r += __ieee754_log(z); break; |
} |
/* 8.0 <= x < 2**58 */ |
} else if (ix < 0x43900000) { |
t = __ieee754_log(x); |
z = one/x; |
y = z*z; |
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
r = (x-half)*(t-one)+w; |
} else |
/* 2**58 <= x <= inf */ |
r = x*(__ieee754_log(x)-one); |
if(hx<0) r = nadj - r; |
return r; |
} |
/Makefile.am
0,0 → 1,183
## Process this file with automake to generate Makefile.in |
|
AUTOMAKE_OPTIONS = cygnus |
|
INCLUDES = -I$(srcdir)/../common $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS) |
|
src = k_standard.c k_rem_pio2.c \ |
k_cos.c k_sin.c k_tan.c \ |
e_acos.c e_acosh.c e_asin.c e_atan2.c \ |
e_atanh.c e_cosh.c e_exp.c e_fmod.c \ |
er_gamma.c e_hypot.c e_j0.c \ |
e_j1.c e_jn.c er_lgamma.c \ |
e_log.c e_log10.c e_pow.c e_rem_pio2.c e_remainder.c \ |
e_scalb.c e_sinh.c e_sqrt.c \ |
w_acos.c w_acosh.c w_asin.c w_atan2.c \ |
w_atanh.c w_cosh.c w_exp.c w_fmod.c \ |
w_gamma.c wr_gamma.c w_hypot.c w_j0.c \ |
w_j1.c w_jn.c w_lgamma.c wr_lgamma.c \ |
w_log.c w_log10.c w_pow.c w_remainder.c \ |
w_scalb.c w_sinh.c w_sqrt.c \ |
w_cabs.c w_drem.c \ |
s_asinh.c s_atan.c s_ceil.c \ |
s_cos.c s_erf.c s_fabs.c s_floor.c \ |
s_frexp.c s_isnan.c s_ldexp.c \ |
s_signif.c s_sin.c \ |
s_tan.c s_tanh.c \ |
s_isinf.c s_infconst.c |
|
fsrc = kf_rem_pio2.c \ |
kf_cos.c kf_sin.c kf_tan.c \ |
ef_acos.c ef_acosh.c ef_asin.c ef_atan2.c \ |
ef_atanh.c ef_cosh.c ef_exp.c ef_fmod.c \ |
erf_gamma.c ef_hypot.c ef_j0.c \ |
ef_j1.c ef_jn.c erf_lgamma.c \ |
ef_log.c ef_log10.c ef_pow.c ef_rem_pio2.c ef_remainder.c \ |
ef_scalb.c ef_sinh.c ef_sqrt.c \ |
wf_acos.c wf_acosh.c wf_asin.c wf_atan2.c \ |
wf_atanh.c wf_cosh.c wf_exp.c wf_fmod.c \ |
wf_gamma.c wrf_gamma.c wf_hypot.c wf_j0.c \ |
wf_j1.c wf_jn.c wf_lgamma.c wrf_lgamma.c \ |
wf_log.c wf_log10.c wf_pow.c wf_remainder.c \ |
wf_scalb.c wf_sinh.c wf_sqrt.c \ |
wf_cabs.c wf_drem.c \ |
sf_asinh.c sf_atan.c sf_ceil.c \ |
sf_cos.c sf_erf.c sf_fabs.c sf_floor.c \ |
sf_frexp.c sf_isnan.c sf_ldexp.c \ |
sf_signif.c sf_sin.c \ |
sf_tan.c sf_tanh.c \ |
sf_isinf.c |
|
libmath_la_LDFLAGS = -Xcompiler -nostdlib |
|
if USE_LIBTOOL |
noinst_LTLIBRARIES = libmath.la |
libmath_la_SOURCES = $(src) $(fsrc) |
noinst_DATA = objectlist.awk.in |
else |
noinst_LIBRARIES = lib.a |
lib_a_SOURCES = $(src) $(fsrc) |
noinst_DATA = |
endif # USE_LIBTOOL |
|
include $(srcdir)/../../Makefile.shared |
|
chobj = wacos.def wacosh.def wasin.def sasinh.def \ |
satan.def watan2.def watanh.def wj0.def \ |
wcosh.def serf.def wexp.def \ |
sfabs.def sfloor.def wfmod.def sfrexp.def \ |
wgamma.def whypot.def sldexp.def wlog.def \ |
wlog10.def \ |
wpow.def wremainder.def ssin.def wsinh.def \ |
wsqrt.def stan.def stanh.def \ |
sisnan.def |
|
SUFFIXES = .def |
|
CHEW = ../../doc/makedoc -f $(srcdir)/../../doc/doc.str |
|
.c.def: |
$(CHEW) < $< > $*.def 2> $*.ref |
touch stmp-def |
|
TARGETDOC = ../tmp.texi |
|
doc: $(chobj) |
cat $(srcdir)/math.tex >> $(TARGETDOC) |
|
CLEANFILES = $(chobj) *.ref |
|
# Texinfo does not appear to support underscores in file names, so we |
# name the .def files without underscores. |
|
wacos.def: w_acos.c |
$(CHEW) < $(srcdir)/w_acos.c >$@ 2>/dev/null |
touch stmp-def |
wacosh.def: w_acosh.c |
$(CHEW) < $(srcdir)/w_acosh.c >$@ 2>/dev/null |
touch stmp-def |
wasin.def: w_asin.c |
$(CHEW) < $(srcdir)/w_asin.c >$@ 2>/dev/null |
touch stmp-def |
sasinh.def: s_asinh.c |
$(CHEW) < $(srcdir)/s_asinh.c >$@ 2>/dev/null |
touch stmp-def |
satan.def: s_atan.c |
$(CHEW) < $(srcdir)/s_atan.c >$@ 2>/dev/null |
touch stmp-def |
watan2.def: w_atan2.c |
$(CHEW) < $(srcdir)/w_atan2.c >$@ 2>/dev/null |
touch stmp-def |
watanh.def: w_atanh.c |
$(CHEW) < $(srcdir)/w_atanh.c >$@ 2>/dev/null |
touch stmp-def |
wj0.def: w_j0.c |
$(CHEW) < $(srcdir)/w_j0.c >$@ 2>/dev/null |
touch stmp-def |
scopysign.def: s_copysign.c |
$(CHEW) < $(srcdir)/../common/s_copysign.c >$@ 2>/dev/null |
touch stmp-def |
wcosh.def: w_cosh.c |
$(CHEW) < $(srcdir)/w_cosh.c >$@ 2>/dev/null |
touch stmp-def |
serf.def: s_erf.c |
$(CHEW) < $(srcdir)/s_erf.c >$@ 2>/dev/null |
touch stmp-def |
wexp.def: w_exp.c |
$(CHEW) < $(srcdir)/w_exp.c >$@ 2>/dev/null |
touch stmp-def |
sfabs.def: s_fabs.c |
$(CHEW) < $(srcdir)/s_fabs.c >$@ 2>/dev/null |
touch stmp-def |
sfloor.def: s_floor.c |
$(CHEW) < $(srcdir)/s_floor.c >$@ 2>/dev/null |
touch stmp-def |
wfmod.def: w_fmod.c |
$(CHEW) < $(srcdir)/w_fmod.c >$@ 2>/dev/null |
touch stmp-def |
sfrexp.def: s_frexp.c |
$(CHEW) < $(srcdir)/s_frexp.c >$@ 2>/dev/null |
touch stmp-def |
wgamma.def: w_gamma.c |
$(CHEW) < $(srcdir)/w_gamma.c >$@ 2>/dev/null |
touch stmp-def |
whypot.def: w_hypot.c |
$(CHEW) < $(srcdir)/w_hypot.c >$@ 2>/dev/null |
touch stmp-def |
sldexp.def: s_ldexp.c |
$(CHEW) < $(srcdir)/s_ldexp.c >$@ 2>/dev/null |
touch stmp-def |
wlog.def: w_log.c |
$(CHEW) < $(srcdir)/w_log.c >$@ 2>/dev/null |
touch stmp-def |
wlog10.def: w_log10.c |
$(CHEW) < $(srcdir)/w_log10.c >$@ 2>/dev/null |
touch stmp-def |
wpow.def: w_pow.c |
$(CHEW) < $(srcdir)/w_pow.c >$@ 2>/dev/null |
touch stmp-def |
wremainder.def: w_remainder.c |
$(CHEW) < $(srcdir)/w_remainder.c >$@ 2>/dev/null |
touch stmp-def |
ssin.def: s_sin.c |
$(CHEW) < $(srcdir)/s_sin.c >$@ 2>/dev/null |
touch stmp-def |
wsinh.def: w_sinh.c |
$(CHEW) < $(srcdir)/w_sinh.c >$@ 2>/dev/null |
touch stmp-def |
wsqrt.def: w_sqrt.c |
$(CHEW) < $(srcdir)/w_sqrt.c >$@ 2>/dev/null |
touch stmp-def |
stan.def: s_tan.c |
$(CHEW) < $(srcdir)/s_tan.c >$@ 2>/dev/null |
touch stmp-def |
stanh.def: s_tanh.c |
$(CHEW) < $(srcdir)/s_tanh.c >$@ 2>/dev/null |
touch stmp-def |
sisnan.def: s_isnan.c |
$(CHEW) < $(srcdir)/s_isnan.c >$@ 2>/dev/null |
touch stmp-def |
|
# A partial dependency list. |
|
$(lib_a_OBJECTS): $(srcdir)/../../libc/include/math.h $(srcdir)/../common/fdlibm.h |
/wf_lgamma.c
0,0 → 1,87
/* wf_lgamma.c -- float version of w_lgamma.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
#include "fdlibm.h" |
#include <reent.h> |
#include <errno.h> |
|
#ifdef __STDC__ |
float lgammaf(float x) |
#else |
float lgammaf(x) |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_lgammaf_r(x,&(_REENT->_new._reent._gamma_signgam)); |
#else |
float y; |
struct exception exc; |
y = __ieee754_lgammaf_r(x,&(_REENT->_new._reent._gamma_signgam)); |
if(_LIB_VERSION == _IEEE_) return y; |
if(!finitef(y)&&finitef(x)) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "lgammaf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if(floorf(x)==x&&x<=(float)0.0) { |
/* lgammaf(-integer) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
|
} else { |
/* lgammaf(finite) overflow */ |
exc.type = OVERFLOW; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return y; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double lgamma(double x) |
#else |
double lgamma(x) |
double x; |
#endif |
{ |
return (double) lgammaf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/sf_asinh.c
0,0 → 1,66
/* sf_asinh.c -- float version of s_asinh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
one = 1.0000000000e+00, /* 0x3F800000 */ |
ln2 = 6.9314718246e-01, /* 0x3f317218 */ |
huge= 1.0000000000e+30; |
|
#ifdef __STDC__ |
float asinhf(float x) |
#else |
float asinhf(x) |
float x; |
#endif |
{ |
float t,w; |
__int32_t hx,ix; |
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(!FLT_UWORD_IS_FINITE(ix)) return x+x; /* x is inf or NaN */ |
if(ix< 0x31800000) { /* |x|<2**-28 */ |
if(huge+x>one) return x; /* return x inexact except 0 */ |
} |
if(ix>0x4d800000) { /* |x| > 2**28 */ |
w = __ieee754_logf(fabsf(x))+ln2; |
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */ |
t = fabsf(x); |
w = __ieee754_logf((float)2.0*t+one/(__ieee754_sqrtf(x*x+one)+t)); |
} else { /* 2.0 > |x| > 2**-28 */ |
t = x*x; |
w =log1pf(fabsf(x)+t/(one+__ieee754_sqrtf(one+t))); |
} |
if(hx>0) return w; else return -w; |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double asinh(double x) |
#else |
double asinh(x) |
double x; |
#endif |
{ |
return (double) asinhf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/erf_lgamma.c
0,0 → 1,244
/* erf_lgamma.c -- float version of er_lgamma.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
two23= 8.3886080000e+06, /* 0x4b000000 */ |
half= 5.0000000000e-01, /* 0x3f000000 */ |
one = 1.0000000000e+00, /* 0x3f800000 */ |
pi = 3.1415927410e+00, /* 0x40490fdb */ |
a0 = 7.7215664089e-02, /* 0x3d9e233f */ |
a1 = 3.2246702909e-01, /* 0x3ea51a66 */ |
a2 = 6.7352302372e-02, /* 0x3d89f001 */ |
a3 = 2.0580807701e-02, /* 0x3ca89915 */ |
a4 = 7.3855509982e-03, /* 0x3bf2027e */ |
a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ |
a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ |
a7 = 5.1006977446e-04, /* 0x3a05b634 */ |
a8 = 2.2086278477e-04, /* 0x39679767 */ |
a9 = 1.0801156895e-04, /* 0x38e28445 */ |
a10 = 2.5214456400e-05, /* 0x37d383a2 */ |
a11 = 4.4864096708e-05, /* 0x383c2c75 */ |
tc = 1.4616321325e+00, /* 0x3fbb16c3 */ |
tf = -1.2148628384e-01, /* 0xbdf8cdcd */ |
/* tt = -(tail of tf) */ |
tt = 6.6971006518e-09, /* 0x31e61c52 */ |
t0 = 4.8383611441e-01, /* 0x3ef7b95e */ |
t1 = -1.4758771658e-01, /* 0xbe17213c */ |
t2 = 6.4624942839e-02, /* 0x3d845a15 */ |
t3 = -3.2788541168e-02, /* 0xbd064d47 */ |
t4 = 1.7970675603e-02, /* 0x3c93373d */ |
t5 = -1.0314224288e-02, /* 0xbc28fcfe */ |
t6 = 6.1005386524e-03, /* 0x3bc7e707 */ |
t7 = -3.6845202558e-03, /* 0xbb7177fe */ |
t8 = 2.2596477065e-03, /* 0x3b141699 */ |
t9 = -1.4034647029e-03, /* 0xbab7f476 */ |
t10 = 8.8108185446e-04, /* 0x3a66f867 */ |
t11 = -5.3859531181e-04, /* 0xba0d3085 */ |
t12 = 3.1563205994e-04, /* 0x39a57b6b */ |
t13 = -3.1275415677e-04, /* 0xb9a3f927 */ |
t14 = 3.3552918467e-04, /* 0x39afe9f7 */ |
u0 = -7.7215664089e-02, /* 0xbd9e233f */ |
u1 = 6.3282704353e-01, /* 0x3f2200f4 */ |
u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ |
u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ |
u4 = 2.2896373272e-01, /* 0x3e6a7578 */ |
u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ |
v1 = 2.4559779167e+00, /* 0x401d2ebe */ |
v2 = 2.1284897327e+00, /* 0x4008392d */ |
v3 = 7.6928514242e-01, /* 0x3f44efdf */ |
v4 = 1.0422264785e-01, /* 0x3dd572af */ |
v5 = 3.2170924824e-03, /* 0x3b52d5db */ |
s0 = -7.7215664089e-02, /* 0xbd9e233f */ |
s1 = 2.1498242021e-01, /* 0x3e5c245a */ |
s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ |
s3 = 1.4635047317e-01, /* 0x3e15dce6 */ |
s4 = 2.6642270386e-02, /* 0x3cda40e4 */ |
s5 = 1.8402845599e-03, /* 0x3af135b4 */ |
s6 = 3.1947532989e-05, /* 0x3805ff67 */ |
r1 = 1.3920053244e+00, /* 0x3fb22d3b */ |
r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ |
r3 = 1.7193385959e-01, /* 0x3e300f6e */ |
r4 = 1.8645919859e-02, /* 0x3c98bf54 */ |
r5 = 7.7794247773e-04, /* 0x3a4beed6 */ |
r6 = 7.3266842264e-06, /* 0x36f5d7bd */ |
w0 = 4.1893854737e-01, /* 0x3ed67f1d */ |
w1 = 8.3333335817e-02, /* 0x3daaaaab */ |
w2 = -2.7777778450e-03, /* 0xbb360b61 */ |
w3 = 7.9365057172e-04, /* 0x3a500cfd */ |
w4 = -5.9518753551e-04, /* 0xba1c065c */ |
w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ |
w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ |
|
#ifdef __STDC__ |
static const float zero= 0.0000000000e+00; |
#else |
static float zero= 0.0000000000e+00; |
#endif |
|
#ifdef __STDC__ |
static float sin_pif(float x) |
#else |
static float sin_pif(x) |
float x; |
#endif |
{ |
float y,z; |
__int32_t n,ix; |
|
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; |
|
if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); |
y = -x; /* x is assume negative */ |
|
/* |
* argument reduction, make sure inexact flag not raised if input |
* is an integer |
*/ |
z = floorf(y); |
if(z!=y) { /* inexact anyway */ |
y *= (float)0.5; |
y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */ |
n = (__int32_t) (y*(float)4.0); |
} else { |
if(ix>=0x4b800000) { |
y = zero; n = 0; /* y must be even */ |
} else { |
if(ix<0x4b000000) z = y+two23; /* exact */ |
GET_FLOAT_WORD(n,z); |
n &= 1; |
y = n; |
n<<= 2; |
} |
} |
switch (n) { |
case 0: y = __kernel_sinf(pi*y,zero,0); break; |
case 1: |
case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break; |
case 3: |
case 4: y = __kernel_sinf(pi*(one-y),zero,0); break; |
case 5: |
case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; |
default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break; |
} |
return -y; |
} |
|
|
#ifdef __STDC__ |
float __ieee754_lgammaf_r(float x, int *signgamp) |
#else |
float __ieee754_lgammaf_r(x,signgamp) |
float x; int *signgamp; |
#endif |
{ |
float t,y,z,nadj,p,p1,p2,p3,q,r,w; |
__int32_t i,hx,ix; |
|
GET_FLOAT_WORD(hx,x); |
|
/* purge off +-inf, NaN, +-0, and negative arguments */ |
*signgamp = 1; |
ix = hx&0x7fffffff; |
if(ix>=0x7f800000) return x*x; |
if(ix==0) return one/zero; |
if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */ |
if(hx<0) { |
*signgamp = -1; |
return -__ieee754_logf(-x); |
} else return -__ieee754_logf(x); |
} |
if(hx<0) { |
if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ |
return one/zero; |
t = sin_pif(x); |
if(t==zero) return one/zero; /* -integer */ |
nadj = __ieee754_logf(pi/fabsf(t*x)); |
if(t<zero) *signgamp = -1; |
x = -x; |
} |
|
/* purge off 1 and 2 */ |
if (ix==0x3f800000||ix==0x40000000) r = 0; |
/* for x < 2.0 */ |
else if(ix<0x40000000) { |
if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
r = -__ieee754_logf(x); |
if(ix>=0x3f3b4a20) {y = one-x; i= 0;} |
else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} |
else {y = x; i=2;} |
} else { |
r = zero; |
if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ |
else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ |
else {y=x-one;i=2;} |
} |
switch(i) { |
case 0: |
z = y*y; |
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
p = y*p1+p2; |
r += (p-(float)0.5*y); break; |
case 1: |
z = y*y; |
w = z*y; |
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
p = z*p1-(tt-w*(p2+y*p3)); |
r += (tf + p); break; |
case 2: |
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
r += (-(float)0.5*y + p1/p2); |
} |
} |
else if(ix<0x41000000) { /* x < 8.0 */ |
i = (__int32_t)x; |
t = zero; |
y = x-(float)i; |
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
r = half*y+p/q; |
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ |
switch(i) { |
case 7: z *= (y+(float)6.0); /* FALLTHRU */ |
case 6: z *= (y+(float)5.0); /* FALLTHRU */ |
case 5: z *= (y+(float)4.0); /* FALLTHRU */ |
case 4: z *= (y+(float)3.0); /* FALLTHRU */ |
case 3: z *= (y+(float)2.0); /* FALLTHRU */ |
r += __ieee754_logf(z); break; |
} |
/* 8.0 <= x < 2**58 */ |
} else if (ix < 0x5c800000) { |
t = __ieee754_logf(x); |
z = one/x; |
y = z*z; |
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
r = (x-half)*(t-one)+w; |
} else |
/* 2**58 <= x <= inf */ |
r = x*(__ieee754_logf(x)-one); |
if(hx<0) r = nadj - r; |
return r; |
} |
/w_pow.c
0,0 → 1,231
|
|
/* @(#)w_pow.c 5.2 93/10/01 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<pow>>, <<powf>>---x to the power y |
INDEX |
pow |
INDEX |
powf |
|
|
ANSI_SYNOPSIS |
#include <math.h> |
double pow(double <[x]>, double <[y]>); |
float pow(float <[x]>, float <[y]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double pow(<[x]>, <[y]>); |
double <[x]>, <[y]>; |
|
float pow(<[x]>, <[y]>); |
float <[x]>, <[y]>; |
|
DESCRIPTION |
<<pow>> and <<powf>> calculate <[x]> raised to the exp1.0nt <[y]>. |
@tex |
(That is, $x^y$.) |
@end tex |
|
RETURNS |
On success, <<pow>> and <<powf>> return the value calculated. |
|
When the argument values would produce overflow, <<pow>> |
returns <<HUGE_VAL>> and set <<errno>> to <<ERANGE>>. If the |
argument <[x]> passed to <<pow>> or <<powf>> is a negative |
noninteger, and <[y]> is also not an integer, then <<errno>> |
is set to <<EDOM>>. If <[x]> and <[y]> are both 0, then |
<<pow>> and <<powf>> return <<1>>. |
|
You can modify error handling for these functions using <<matherr>>. |
|
PORTABILITY |
<<pow>> is ANSI C. <<powf>> is an extension. */ |
|
/* |
* wrapper pow(x,y) return x**y |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double pow(double x, double y) /* wrapper pow */ |
#else |
double pow(x,y) /* wrapper pow */ |
double x,y; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_pow(x,y); |
#else |
double z; |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
struct exception exc; |
z=__ieee754_pow(x,y); |
if(_LIB_VERSION == _IEEE_|| isnan(y)) return z; |
if(isnan(x)) { |
if(y==0.0) { |
/* pow(NaN,0.0) */ |
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */ |
exc.type = DOMAIN; |
exc.name = "pow"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = y; |
exc.retval = x; |
if (_LIB_VERSION == _IEEE_ || |
_LIB_VERSION == _POSIX_) exc.retval = 1.0; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
} |
if(x==0.0){ |
if(y==0.0) { |
/* pow(0.0,0.0) */ |
/* error only if _LIB_VERSION == _SVID_ */ |
exc.type = DOMAIN; |
exc.name = "pow"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = y; |
exc.retval = 0.0; |
if (_LIB_VERSION != _SVID_) exc.retval = 1.0; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
if(finite(y)&&y<0.0) { |
/* 0**neg */ |
exc.type = DOMAIN; |
exc.name = "pow"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = y; |
if (_LIB_VERSION == _SVID_) |
exc.retval = 0.0; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
return z; |
} |
if(!finite(z)) { |
if(finite(x)&&finite(y)) { |
if(isnan(z)) { |
/* neg**non-integral */ |
exc.type = DOMAIN; |
exc.name = "pow"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = y; |
if (_LIB_VERSION == _SVID_) |
exc.retval = 0.0; |
else |
exc.retval = 0.0/0.0; /* X/Open allow NaN */ |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else { |
/* pow(x,y) overflow */ |
exc.type = OVERFLOW; |
exc.name = "pow"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = y; |
if (_LIB_VERSION == _SVID_) { |
exc.retval = HUGE; |
y *= 0.5; |
if(x<0.0&&rint(y)!=y) exc.retval = -HUGE; |
} else { |
exc.retval = HUGE_VAL; |
y *= 0.5; |
if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL; |
} |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
} |
} |
if(z==0.0&&finite(x)&&finite(y)) { |
/* pow(x,y) underflow */ |
exc.type = UNDERFLOW; |
exc.name = "pow"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = y; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/ef_fmod.c
0,0 → 1,113
/* ef_fmod.c -- float version of e_fmod.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* __ieee754_fmodf(x,y) |
* Return x mod y in exact arithmetic |
* Method: shift and subtract |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float one = 1.0, Zero[] = {0.0, -0.0,}; |
#else |
static float one = 1.0, Zero[] = {0.0, -0.0,}; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_fmodf(float x, float y) |
#else |
float __ieee754_fmodf(x,y) |
float x,y ; |
#endif |
{ |
__int32_t n,hx,hy,hz,ix,iy,sx,i; |
|
GET_FLOAT_WORD(hx,x); |
GET_FLOAT_WORD(hy,y); |
sx = hx&0x80000000; /* sign of x */ |
hx ^=sx; /* |x| */ |
hy &= 0x7fffffff; /* |y| */ |
|
/* purge off exception values */ |
if(FLT_UWORD_IS_ZERO(hy)|| |
!FLT_UWORD_IS_FINITE(hx)|| |
FLT_UWORD_IS_NAN(hy)) |
return (x*y)/(x*y); |
if(hx<hy) return x; /* |x|<|y| return x */ |
if(hx==hy) |
return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/ |
|
/* Note: y cannot be zero if we reach here. */ |
|
/* determine ix = ilogb(x) */ |
if(FLT_UWORD_IS_SUBNORMAL(hx)) { /* subnormal x */ |
for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; |
} else ix = (hx>>23)-127; |
|
/* determine iy = ilogb(y) */ |
if(FLT_UWORD_IS_SUBNORMAL(hy)) { /* subnormal y */ |
for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1; |
} else iy = (hy>>23)-127; |
|
/* set up {hx,lx}, {hy,ly} and align y to x */ |
if(ix >= -126) |
hx = 0x00800000|(0x007fffff&hx); |
else { /* subnormal x, shift x to normal */ |
n = -126-ix; |
hx = hx<<n; |
} |
if(iy >= -126) |
hy = 0x00800000|(0x007fffff&hy); |
else { /* subnormal y, shift y to normal */ |
n = -126-iy; |
hy = hy<<n; |
} |
|
/* fix point fmod */ |
n = ix - iy; |
while(n--) { |
hz=hx-hy; |
if(hz<0){hx = hx+hx;} |
else { |
if(hz==0) /* return sign(x)*0 */ |
return Zero[(__uint32_t)sx>>31]; |
hx = hz+hz; |
} |
} |
hz=hx-hy; |
if(hz>=0) {hx=hz;} |
|
/* convert back to floating value and restore the sign */ |
if(hx==0) /* return sign(x)*0 */ |
return Zero[(__uint32_t)sx>>31]; |
while(hx<0x00800000) { /* normalize x */ |
hx = hx+hx; |
iy -= 1; |
} |
if(iy>= -126) { /* normalize output */ |
hx = ((hx-0x00800000)|((iy+127)<<23)); |
SET_FLOAT_WORD(x,hx|sx); |
} else { /* subnormal output */ |
/* If denormals are not supported, this code will generate a |
zero representation. */ |
n = -126 - iy; |
hx >>= n; |
SET_FLOAT_WORD(x,hx|sx); |
x *= one; /* create necessary signal */ |
} |
return x; /* exact output */ |
} |
/e_acosh.c
0,0 → 1,70
|
/* @(#)e_acosh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* __ieee754_acosh(x) |
* Method : |
* Based on |
* acosh(x) = log [ x + sqrt(x*x-1) ] |
* we have |
* acosh(x) := log(x)+ln2, if x is large; else |
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else |
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. |
* |
* Special cases: |
* acosh(x) is NaN with signal if x<1. |
* acosh(NaN) is NaN without signal. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
one = 1.0, |
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ |
|
#ifdef __STDC__ |
double __ieee754_acosh(double x) |
#else |
double __ieee754_acosh(x) |
double x; |
#endif |
{ |
double t; |
__int32_t hx; |
__uint32_t lx; |
EXTRACT_WORDS(hx,lx,x); |
if(hx<0x3ff00000) { /* x < 1 */ |
return (x-x)/(x-x); |
} else if(hx >=0x41b00000) { /* x > 2**28 */ |
if(hx >=0x7ff00000) { /* x is inf of NaN */ |
return x+x; |
} else |
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */ |
} else if(((hx-0x3ff00000)|lx)==0) { |
return 0.0; /* acosh(1) = 0 */ |
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */ |
t=x*x; |
return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one))); |
} else { /* 1<x<2 */ |
t = x-one; |
return log1p(t+__ieee754_sqrt(2.0*t+t*t)); |
} |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/Makefile.in
0,0 → 1,564
# Makefile.in generated automatically by automake 1.4 from Makefile.am |
|
# Copyright (C) 1994, 1995-8, 1999 Free Software Foundation, Inc. |
# This Makefile.in is free software; the Free Software Foundation |
# gives unlimited permission to copy and/or distribute it, |
# with or without modifications, as long as this notice is preserved. |
|
# This program is distributed in the hope that it will be useful, |
# but WITHOUT ANY WARRANTY, to the extent permitted by law; without |
# even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
# PARTICULAR PURPOSE. |
|
|
|
SHELL = @SHELL@ |
|
srcdir = @srcdir@ |
top_srcdir = @top_srcdir@ |
VPATH = @srcdir@ |
prefix = @prefix@ |
exec_prefix = @exec_prefix@ |
|
bindir = @bindir@ |
sbindir = @sbindir@ |
libexecdir = @libexecdir@ |
datadir = @datadir@ |
sysconfdir = @sysconfdir@ |
sharedstatedir = @sharedstatedir@ |
localstatedir = @localstatedir@ |
libdir = @libdir@ |
infodir = @infodir@ |
mandir = @mandir@ |
includedir = @includedir@ |
oldincludedir = /usr/include |
|
DESTDIR = |
|
pkgdatadir = $(datadir)/@PACKAGE@ |
pkglibdir = $(libdir)/@PACKAGE@ |
pkgincludedir = $(includedir)/@PACKAGE@ |
|
top_builddir = .. |
|
ACLOCAL = @ACLOCAL@ |
AUTOCONF = @AUTOCONF@ |
AUTOMAKE = @AUTOMAKE@ |
AUTOHEADER = @AUTOHEADER@ |
|
INSTALL = @INSTALL@ |
INSTALL_PROGRAM = @INSTALL_PROGRAM@ $(AM_INSTALL_PROGRAM_FLAGS) |
INSTALL_DATA = @INSTALL_DATA@ |
INSTALL_SCRIPT = @INSTALL_SCRIPT@ |
transform = @program_transform_name@ |
|
NORMAL_INSTALL = : |
PRE_INSTALL = : |
POST_INSTALL = : |
NORMAL_UNINSTALL = : |
PRE_UNINSTALL = : |
POST_UNINSTALL = : |
host_alias = @host_alias@ |
host_triplet = @host@ |
AR = @AR@ |
AS = @AS@ |
CC = @CC@ |
CPP = @CPP@ |
DLLTOOL = @DLLTOOL@ |
EXEEXT = @EXEEXT@ |
LDFLAGS = @LDFLAGS@ |
LIBM_MACHINE_LIB = @LIBM_MACHINE_LIB@ |
LIBTOOL = @LIBTOOL@ |
LN_S = @LN_S@ |
MAINT = @MAINT@ |
MAKEINFO = @MAKEINFO@ |
NEWLIB_CFLAGS = @NEWLIB_CFLAGS@ |
OBJDUMP = @OBJDUMP@ |
PACKAGE = @PACKAGE@ |
RANLIB = @RANLIB@ |
VERSION = @VERSION@ |
aext = @aext@ |
libm_machine_dir = @libm_machine_dir@ |
machine_dir = @machine_dir@ |
newlib_basedir = @newlib_basedir@ |
oext = @oext@ |
sys_dir = @sys_dir@ |
|
AUTOMAKE_OPTIONS = cygnus |
|
INCLUDES = -I$(srcdir)/../common $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS) |
|
src = k_standard.c k_rem_pio2.c \ |
k_cos.c k_sin.c k_tan.c \ |
e_acos.c e_acosh.c e_asin.c e_atan2.c \ |
e_atanh.c e_cosh.c e_exp.c e_fmod.c \ |
er_gamma.c e_hypot.c e_j0.c \ |
e_j1.c e_jn.c er_lgamma.c \ |
e_log.c e_log10.c e_pow.c e_rem_pio2.c e_remainder.c \ |
e_scalb.c e_sinh.c e_sqrt.c \ |
w_acos.c w_acosh.c w_asin.c w_atan2.c \ |
w_atanh.c w_cosh.c w_exp.c w_fmod.c \ |
w_gamma.c wr_gamma.c w_hypot.c w_j0.c \ |
w_j1.c w_jn.c w_lgamma.c wr_lgamma.c \ |
w_log.c w_log10.c w_pow.c w_remainder.c \ |
w_scalb.c w_sinh.c w_sqrt.c \ |
w_cabs.c w_drem.c \ |
s_asinh.c s_atan.c s_ceil.c \ |
s_cos.c s_erf.c s_fabs.c s_floor.c \ |
s_frexp.c s_isnan.c s_ldexp.c \ |
s_signif.c s_sin.c \ |
s_tan.c s_tanh.c \ |
s_isinf.c s_infconst.c |
|
|
fsrc = kf_rem_pio2.c \ |
kf_cos.c kf_sin.c kf_tan.c \ |
ef_acos.c ef_acosh.c ef_asin.c ef_atan2.c \ |
ef_atanh.c ef_cosh.c ef_exp.c ef_fmod.c \ |
erf_gamma.c ef_hypot.c ef_j0.c \ |
ef_j1.c ef_jn.c erf_lgamma.c \ |
ef_log.c ef_log10.c ef_pow.c ef_rem_pio2.c ef_remainder.c \ |
ef_scalb.c ef_sinh.c ef_sqrt.c \ |
wf_acos.c wf_acosh.c wf_asin.c wf_atan2.c \ |
wf_atanh.c wf_cosh.c wf_exp.c wf_fmod.c \ |
wf_gamma.c wrf_gamma.c wf_hypot.c wf_j0.c \ |
wf_j1.c wf_jn.c wf_lgamma.c wrf_lgamma.c \ |
wf_log.c wf_log10.c wf_pow.c wf_remainder.c \ |
wf_scalb.c wf_sinh.c wf_sqrt.c \ |
wf_cabs.c wf_drem.c \ |
sf_asinh.c sf_atan.c sf_ceil.c \ |
sf_cos.c sf_erf.c sf_fabs.c sf_floor.c \ |
sf_frexp.c sf_isnan.c sf_ldexp.c \ |
sf_signif.c sf_sin.c \ |
sf_tan.c sf_tanh.c \ |
sf_isinf.c |
|
|
libmath_la_LDFLAGS = -Xcompiler -nostdlib |
|
@USE_LIBTOOL_TRUE@noinst_LTLIBRARIES = @USE_LIBTOOL_TRUE@libmath.la |
@USE_LIBTOOL_TRUE@libmath_la_SOURCES = @USE_LIBTOOL_TRUE@$(src) $(fsrc) |
@USE_LIBTOOL_TRUE@noinst_DATA = @USE_LIBTOOL_TRUE@objectlist.awk.in |
@USE_LIBTOOL_FALSE@noinst_DATA = |
@USE_LIBTOOL_FALSE@noinst_LIBRARIES = @USE_LIBTOOL_FALSE@lib.a |
@USE_LIBTOOL_FALSE@lib_a_SOURCES = @USE_LIBTOOL_FALSE@$(src) $(fsrc) |
|
chobj = wacos.def wacosh.def wasin.def sasinh.def \ |
satan.def watan2.def watanh.def wj0.def \ |
wcosh.def serf.def wexp.def \ |
sfabs.def sfloor.def wfmod.def sfrexp.def \ |
wgamma.def whypot.def sldexp.def wlog.def \ |
wlog10.def \ |
wpow.def wremainder.def ssin.def wsinh.def \ |
wsqrt.def stan.def stanh.def \ |
sisnan.def |
|
|
SUFFIXES = .def |
|
CHEW = ../../doc/makedoc -f $(srcdir)/../../doc/doc.str |
|
TARGETDOC = ../tmp.texi |
|
CLEANFILES = $(chobj) *.ref |
mkinstalldirs = $(SHELL) $(top_srcdir)/../../mkinstalldirs |
CONFIG_CLEAN_FILES = |
LIBRARIES = $(noinst_LIBRARIES) |
|
|
DEFS = @DEFS@ -I. -I$(srcdir) |
CPPFLAGS = @CPPFLAGS@ |
LIBS = @LIBS@ |
lib_a_LIBADD = |
@USE_LIBTOOL_FALSE@lib_a_OBJECTS = k_standard.o k_rem_pio2.o k_cos.o \ |
@USE_LIBTOOL_FALSE@k_sin.o k_tan.o e_acos.o e_acosh.o e_asin.o \ |
@USE_LIBTOOL_FALSE@e_atan2.o e_atanh.o e_cosh.o e_exp.o e_fmod.o \ |
@USE_LIBTOOL_FALSE@er_gamma.o e_hypot.o e_j0.o e_j1.o e_jn.o \ |
@USE_LIBTOOL_FALSE@er_lgamma.o e_log.o e_log10.o e_pow.o e_rem_pio2.o \ |
@USE_LIBTOOL_FALSE@e_remainder.o e_scalb.o e_sinh.o e_sqrt.o w_acos.o \ |
@USE_LIBTOOL_FALSE@w_acosh.o w_asin.o w_atan2.o w_atanh.o w_cosh.o \ |
@USE_LIBTOOL_FALSE@w_exp.o w_fmod.o w_gamma.o wr_gamma.o w_hypot.o \ |
@USE_LIBTOOL_FALSE@w_j0.o w_j1.o w_jn.o w_lgamma.o wr_lgamma.o w_log.o \ |
@USE_LIBTOOL_FALSE@w_log10.o w_pow.o w_remainder.o w_scalb.o w_sinh.o \ |
@USE_LIBTOOL_FALSE@w_sqrt.o w_cabs.o w_drem.o s_asinh.o s_atan.o \ |
@USE_LIBTOOL_FALSE@s_ceil.o s_cos.o s_erf.o s_fabs.o s_floor.o \ |
@USE_LIBTOOL_FALSE@s_frexp.o s_isnan.o s_ldexp.o s_signif.o s_sin.o \ |
@USE_LIBTOOL_FALSE@s_tan.o s_tanh.o s_isinf.o s_infconst.o \ |
@USE_LIBTOOL_FALSE@kf_rem_pio2.o kf_cos.o kf_sin.o kf_tan.o ef_acos.o \ |
@USE_LIBTOOL_FALSE@ef_acosh.o ef_asin.o ef_atan2.o ef_atanh.o ef_cosh.o \ |
@USE_LIBTOOL_FALSE@ef_exp.o ef_fmod.o erf_gamma.o ef_hypot.o ef_j0.o \ |
@USE_LIBTOOL_FALSE@ef_j1.o ef_jn.o erf_lgamma.o ef_log.o ef_log10.o \ |
@USE_LIBTOOL_FALSE@ef_pow.o ef_rem_pio2.o ef_remainder.o ef_scalb.o \ |
@USE_LIBTOOL_FALSE@ef_sinh.o ef_sqrt.o wf_acos.o wf_acosh.o wf_asin.o \ |
@USE_LIBTOOL_FALSE@wf_atan2.o wf_atanh.o wf_cosh.o wf_exp.o wf_fmod.o \ |
@USE_LIBTOOL_FALSE@wf_gamma.o wrf_gamma.o wf_hypot.o wf_j0.o wf_j1.o \ |
@USE_LIBTOOL_FALSE@wf_jn.o wf_lgamma.o wrf_lgamma.o wf_log.o wf_log10.o \ |
@USE_LIBTOOL_FALSE@wf_pow.o wf_remainder.o wf_scalb.o wf_sinh.o \ |
@USE_LIBTOOL_FALSE@wf_sqrt.o wf_cabs.o wf_drem.o sf_asinh.o sf_atan.o \ |
@USE_LIBTOOL_FALSE@sf_ceil.o sf_cos.o sf_erf.o sf_fabs.o sf_floor.o \ |
@USE_LIBTOOL_FALSE@sf_frexp.o sf_isnan.o sf_ldexp.o sf_signif.o \ |
@USE_LIBTOOL_FALSE@sf_sin.o sf_tan.o sf_tanh.o sf_isinf.o |
LTLIBRARIES = $(noinst_LTLIBRARIES) |
|
libmath_la_LIBADD = |
@USE_LIBTOOL_TRUE@libmath_la_OBJECTS = k_standard.lo k_rem_pio2.lo \ |
@USE_LIBTOOL_TRUE@k_cos.lo k_sin.lo k_tan.lo e_acos.lo e_acosh.lo \ |
@USE_LIBTOOL_TRUE@e_asin.lo e_atan2.lo e_atanh.lo e_cosh.lo e_exp.lo \ |
@USE_LIBTOOL_TRUE@e_fmod.lo er_gamma.lo e_hypot.lo e_j0.lo e_j1.lo \ |
@USE_LIBTOOL_TRUE@e_jn.lo er_lgamma.lo e_log.lo e_log10.lo e_pow.lo \ |
@USE_LIBTOOL_TRUE@e_rem_pio2.lo e_remainder.lo e_scalb.lo e_sinh.lo \ |
@USE_LIBTOOL_TRUE@e_sqrt.lo w_acos.lo w_acosh.lo w_asin.lo w_atan2.lo \ |
@USE_LIBTOOL_TRUE@w_atanh.lo w_cosh.lo w_exp.lo w_fmod.lo w_gamma.lo \ |
@USE_LIBTOOL_TRUE@wr_gamma.lo w_hypot.lo w_j0.lo w_j1.lo w_jn.lo \ |
@USE_LIBTOOL_TRUE@w_lgamma.lo wr_lgamma.lo w_log.lo w_log10.lo w_pow.lo \ |
@USE_LIBTOOL_TRUE@w_remainder.lo w_scalb.lo w_sinh.lo w_sqrt.lo \ |
@USE_LIBTOOL_TRUE@w_cabs.lo w_drem.lo s_asinh.lo s_atan.lo s_ceil.lo \ |
@USE_LIBTOOL_TRUE@s_cos.lo s_erf.lo s_fabs.lo s_floor.lo s_frexp.lo \ |
@USE_LIBTOOL_TRUE@s_isnan.lo s_ldexp.lo s_signif.lo s_sin.lo s_tan.lo \ |
@USE_LIBTOOL_TRUE@s_tanh.lo s_isinf.lo s_infconst.lo kf_rem_pio2.lo \ |
@USE_LIBTOOL_TRUE@kf_cos.lo kf_sin.lo kf_tan.lo ef_acos.lo ef_acosh.lo \ |
@USE_LIBTOOL_TRUE@ef_asin.lo ef_atan2.lo ef_atanh.lo ef_cosh.lo \ |
@USE_LIBTOOL_TRUE@ef_exp.lo ef_fmod.lo erf_gamma.lo ef_hypot.lo \ |
@USE_LIBTOOL_TRUE@ef_j0.lo ef_j1.lo ef_jn.lo erf_lgamma.lo ef_log.lo \ |
@USE_LIBTOOL_TRUE@ef_log10.lo ef_pow.lo ef_rem_pio2.lo ef_remainder.lo \ |
@USE_LIBTOOL_TRUE@ef_scalb.lo ef_sinh.lo ef_sqrt.lo wf_acos.lo \ |
@USE_LIBTOOL_TRUE@wf_acosh.lo wf_asin.lo wf_atan2.lo wf_atanh.lo \ |
@USE_LIBTOOL_TRUE@wf_cosh.lo wf_exp.lo wf_fmod.lo wf_gamma.lo \ |
@USE_LIBTOOL_TRUE@wrf_gamma.lo wf_hypot.lo wf_j0.lo wf_j1.lo wf_jn.lo \ |
@USE_LIBTOOL_TRUE@wf_lgamma.lo wrf_lgamma.lo wf_log.lo wf_log10.lo \ |
@USE_LIBTOOL_TRUE@wf_pow.lo wf_remainder.lo wf_scalb.lo wf_sinh.lo \ |
@USE_LIBTOOL_TRUE@wf_sqrt.lo wf_cabs.lo wf_drem.lo sf_asinh.lo \ |
@USE_LIBTOOL_TRUE@sf_atan.lo sf_ceil.lo sf_cos.lo sf_erf.lo sf_fabs.lo \ |
@USE_LIBTOOL_TRUE@sf_floor.lo sf_frexp.lo sf_isnan.lo sf_ldexp.lo \ |
@USE_LIBTOOL_TRUE@sf_signif.lo sf_sin.lo sf_tan.lo sf_tanh.lo \ |
@USE_LIBTOOL_TRUE@sf_isinf.lo |
CFLAGS = @CFLAGS@ |
COMPILE = $(CC) $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) |
LTCOMPILE = $(LIBTOOL) --mode=compile $(CC) $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) |
CCLD = $(CC) |
LINK = $(LIBTOOL) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ |
DATA = $(noinst_DATA) |
|
DIST_COMMON = Makefile.am Makefile.in |
|
|
DISTFILES = $(DIST_COMMON) $(SOURCES) $(HEADERS) $(TEXINFOS) $(EXTRA_DIST) |
|
TAR = gtar |
GZIP_ENV = --best |
SOURCES = $(lib_a_SOURCES) $(libmath_la_SOURCES) |
OBJECTS = $(lib_a_OBJECTS) $(libmath_la_OBJECTS) |
|
all: all-redirect |
.SUFFIXES: |
.SUFFIXES: .S .c .def .lo .o .s |
$(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ Makefile.am $(top_srcdir)/configure.in $(ACLOCAL_M4) $(srcdir)/../../Makefile.shared |
cd $(top_srcdir) && $(AUTOMAKE) --cygnus math/Makefile |
|
Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status |
cd $(top_builddir) \ |
&& CONFIG_FILES=$(subdir)/$@ CONFIG_HEADERS= $(SHELL) ./config.status |
|
|
mostlyclean-noinstLIBRARIES: |
|
clean-noinstLIBRARIES: |
-test -z "$(noinst_LIBRARIES)" || rm -f $(noinst_LIBRARIES) |
|
distclean-noinstLIBRARIES: |
|
maintainer-clean-noinstLIBRARIES: |
|
.c.o: |
$(COMPILE) -c $< |
|
.s.o: |
$(COMPILE) -c $< |
|
.S.o: |
$(COMPILE) -c $< |
|
mostlyclean-compile: |
-rm -f *.o core *.core |
|
clean-compile: |
|
distclean-compile: |
-rm -f *.tab.c |
|
maintainer-clean-compile: |
|
.c.lo: |
$(LIBTOOL) --mode=compile $(COMPILE) -c $< |
|
.s.lo: |
$(LIBTOOL) --mode=compile $(COMPILE) -c $< |
|
.S.lo: |
$(LIBTOOL) --mode=compile $(COMPILE) -c $< |
|
mostlyclean-libtool: |
-rm -f *.lo |
|
clean-libtool: |
-rm -rf .libs _libs |
|
distclean-libtool: |
|
maintainer-clean-libtool: |
|
lib.a: $(lib_a_OBJECTS) $(lib_a_DEPENDENCIES) |
-rm -f lib.a |
$(AR) cru lib.a $(lib_a_OBJECTS) $(lib_a_LIBADD) |
$(RANLIB) lib.a |
|
mostlyclean-noinstLTLIBRARIES: |
|
clean-noinstLTLIBRARIES: |
-test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) |
|
distclean-noinstLTLIBRARIES: |
|
maintainer-clean-noinstLTLIBRARIES: |
|
libmath.la: $(libmath_la_OBJECTS) $(libmath_la_DEPENDENCIES) |
$(LINK) $(libmath_la_LDFLAGS) $(libmath_la_OBJECTS) $(libmath_la_LIBADD) $(LIBS) |
|
tags: TAGS |
|
ID: $(HEADERS) $(SOURCES) $(LISP) |
list='$(SOURCES) $(HEADERS)'; \ |
unique=`for i in $$list; do echo $$i; done | \ |
awk ' { files[$$0] = 1; } \ |
END { for (i in files) print i; }'`; \ |
here=`pwd` && cd $(srcdir) \ |
&& mkid -f$$here/ID $$unique $(LISP) |
|
TAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) $(LISP) |
tags=; \ |
here=`pwd`; \ |
list='$(SOURCES) $(HEADERS)'; \ |
unique=`for i in $$list; do echo $$i; done | \ |
awk ' { files[$$0] = 1; } \ |
END { for (i in files) print i; }'`; \ |
test -z "$(ETAGS_ARGS)$$unique$(LISP)$$tags" \ |
|| (cd $(srcdir) && etags $(ETAGS_ARGS) $$tags $$unique $(LISP) -o $$here/TAGS) |
|
mostlyclean-tags: |
|
clean-tags: |
|
distclean-tags: |
-rm -f TAGS ID |
|
maintainer-clean-tags: |
|
distdir = $(top_builddir)/$(PACKAGE)-$(VERSION)/$(subdir) |
|
subdir = math |
|
distdir: $(DISTFILES) |
@for file in $(DISTFILES); do \ |
if test -f $$file; then d=.; else d=$(srcdir); fi; \ |
if test -d $$d/$$file; then \ |
cp -pr $$d/$$file $(distdir)/$$file; \ |
else \ |
test -f $(distdir)/$$file \ |
|| ln $$d/$$file $(distdir)/$$file 2> /dev/null \ |
|| cp -p $$d/$$file $(distdir)/$$file || :; \ |
fi; \ |
done |
info-am: |
info: info-am |
dvi-am: |
dvi: dvi-am |
check-am: |
check: check-am |
installcheck-am: |
installcheck: installcheck-am |
install-info-am: |
install-info: install-info-am |
install-exec-am: |
install-exec: install-exec-am |
|
install-data-am: |
install-data: install-data-am |
|
install-am: all-am |
@$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am |
install: install-am |
uninstall-am: |
uninstall: uninstall-am |
all-am: Makefile $(LIBRARIES) $(LTLIBRARIES) $(DATA) |
all-redirect: all-am |
install-strip: |
$(MAKE) $(AM_MAKEFLAGS) AM_INSTALL_PROGRAM_FLAGS=-s install |
installdirs: |
|
|
mostlyclean-generic: |
|
clean-generic: |
-test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) |
|
distclean-generic: |
-rm -f Makefile $(CONFIG_CLEAN_FILES) |
-rm -f config.cache config.log stamp-h stamp-h[0-9]* |
|
maintainer-clean-generic: |
mostlyclean-am: mostlyclean-noinstLIBRARIES mostlyclean-compile \ |
mostlyclean-libtool mostlyclean-noinstLTLIBRARIES \ |
mostlyclean-tags mostlyclean-generic |
|
mostlyclean: mostlyclean-am |
|
clean-am: clean-noinstLIBRARIES clean-compile clean-libtool \ |
clean-noinstLTLIBRARIES clean-tags clean-generic \ |
mostlyclean-am |
|
clean: clean-am |
|
distclean-am: distclean-noinstLIBRARIES distclean-compile \ |
distclean-libtool distclean-noinstLTLIBRARIES \ |
distclean-tags distclean-generic clean-am |
-rm -f libtool |
|
distclean: distclean-am |
|
maintainer-clean-am: maintainer-clean-noinstLIBRARIES \ |
maintainer-clean-compile maintainer-clean-libtool \ |
maintainer-clean-noinstLTLIBRARIES \ |
maintainer-clean-tags maintainer-clean-generic \ |
distclean-am |
@echo "This command is intended for maintainers to use;" |
@echo "it deletes files that may require special tools to rebuild." |
|
maintainer-clean: maintainer-clean-am |
|
.PHONY: mostlyclean-noinstLIBRARIES distclean-noinstLIBRARIES \ |
clean-noinstLIBRARIES maintainer-clean-noinstLIBRARIES \ |
mostlyclean-compile distclean-compile clean-compile \ |
maintainer-clean-compile mostlyclean-libtool distclean-libtool \ |
clean-libtool maintainer-clean-libtool mostlyclean-noinstLTLIBRARIES \ |
distclean-noinstLTLIBRARIES clean-noinstLTLIBRARIES \ |
maintainer-clean-noinstLTLIBRARIES tags mostlyclean-tags distclean-tags \ |
clean-tags maintainer-clean-tags distdir info-am info dvi-am dvi check \ |
check-am installcheck-am installcheck install-info-am install-info \ |
install-exec-am install-exec install-data-am install-data install-am \ |
install uninstall-am uninstall all-redirect all-am all installdirs \ |
mostlyclean-generic distclean-generic clean-generic \ |
maintainer-clean-generic clean mostlyclean distclean maintainer-clean |
|
|
objectlist.awk.in: $(noinst_LTLIBRARIES) |
-rm -f objectlist.awk.in |
for i in `ls *.lo` ; \ |
do \ |
echo $$i `pwd`/$$i >> objectlist.awk.in ; \ |
done |
|
.c.def: |
$(CHEW) < $< > $*.def 2> $*.ref |
touch stmp-def |
|
doc: $(chobj) |
cat $(srcdir)/math.tex >> $(TARGETDOC) |
|
# Texinfo does not appear to support underscores in file names, so we |
# name the .def files without underscores. |
|
wacos.def: w_acos.c |
$(CHEW) < $(srcdir)/w_acos.c >$@ 2>/dev/null |
touch stmp-def |
wacosh.def: w_acosh.c |
$(CHEW) < $(srcdir)/w_acosh.c >$@ 2>/dev/null |
touch stmp-def |
wasin.def: w_asin.c |
$(CHEW) < $(srcdir)/w_asin.c >$@ 2>/dev/null |
touch stmp-def |
sasinh.def: s_asinh.c |
$(CHEW) < $(srcdir)/s_asinh.c >$@ 2>/dev/null |
touch stmp-def |
satan.def: s_atan.c |
$(CHEW) < $(srcdir)/s_atan.c >$@ 2>/dev/null |
touch stmp-def |
watan2.def: w_atan2.c |
$(CHEW) < $(srcdir)/w_atan2.c >$@ 2>/dev/null |
touch stmp-def |
watanh.def: w_atanh.c |
$(CHEW) < $(srcdir)/w_atanh.c >$@ 2>/dev/null |
touch stmp-def |
wj0.def: w_j0.c |
$(CHEW) < $(srcdir)/w_j0.c >$@ 2>/dev/null |
touch stmp-def |
scopysign.def: s_copysign.c |
$(CHEW) < $(srcdir)/../common/s_copysign.c >$@ 2>/dev/null |
touch stmp-def |
wcosh.def: w_cosh.c |
$(CHEW) < $(srcdir)/w_cosh.c >$@ 2>/dev/null |
touch stmp-def |
serf.def: s_erf.c |
$(CHEW) < $(srcdir)/s_erf.c >$@ 2>/dev/null |
touch stmp-def |
wexp.def: w_exp.c |
$(CHEW) < $(srcdir)/w_exp.c >$@ 2>/dev/null |
touch stmp-def |
sfabs.def: s_fabs.c |
$(CHEW) < $(srcdir)/s_fabs.c >$@ 2>/dev/null |
touch stmp-def |
sfloor.def: s_floor.c |
$(CHEW) < $(srcdir)/s_floor.c >$@ 2>/dev/null |
touch stmp-def |
wfmod.def: w_fmod.c |
$(CHEW) < $(srcdir)/w_fmod.c >$@ 2>/dev/null |
touch stmp-def |
sfrexp.def: s_frexp.c |
$(CHEW) < $(srcdir)/s_frexp.c >$@ 2>/dev/null |
touch stmp-def |
wgamma.def: w_gamma.c |
$(CHEW) < $(srcdir)/w_gamma.c >$@ 2>/dev/null |
touch stmp-def |
whypot.def: w_hypot.c |
$(CHEW) < $(srcdir)/w_hypot.c >$@ 2>/dev/null |
touch stmp-def |
sldexp.def: s_ldexp.c |
$(CHEW) < $(srcdir)/s_ldexp.c >$@ 2>/dev/null |
touch stmp-def |
wlog.def: w_log.c |
$(CHEW) < $(srcdir)/w_log.c >$@ 2>/dev/null |
touch stmp-def |
wlog10.def: w_log10.c |
$(CHEW) < $(srcdir)/w_log10.c >$@ 2>/dev/null |
touch stmp-def |
wpow.def: w_pow.c |
$(CHEW) < $(srcdir)/w_pow.c >$@ 2>/dev/null |
touch stmp-def |
wremainder.def: w_remainder.c |
$(CHEW) < $(srcdir)/w_remainder.c >$@ 2>/dev/null |
touch stmp-def |
ssin.def: s_sin.c |
$(CHEW) < $(srcdir)/s_sin.c >$@ 2>/dev/null |
touch stmp-def |
wsinh.def: w_sinh.c |
$(CHEW) < $(srcdir)/w_sinh.c >$@ 2>/dev/null |
touch stmp-def |
wsqrt.def: w_sqrt.c |
$(CHEW) < $(srcdir)/w_sqrt.c >$@ 2>/dev/null |
touch stmp-def |
stan.def: s_tan.c |
$(CHEW) < $(srcdir)/s_tan.c >$@ 2>/dev/null |
touch stmp-def |
stanh.def: s_tanh.c |
$(CHEW) < $(srcdir)/s_tanh.c >$@ 2>/dev/null |
touch stmp-def |
sisnan.def: s_isnan.c |
$(CHEW) < $(srcdir)/s_isnan.c >$@ 2>/dev/null |
touch stmp-def |
|
# A partial dependency list. |
|
$(lib_a_OBJECTS): $(srcdir)/../../libc/include/math.h $(srcdir)/../common/fdlibm.h |
|
# Tell versions [3.59,3.63) of GNU make to not export all variables. |
# Otherwise a system limit (for SysV at least) may be exceeded. |
.NOEXPORT: |
/wf_cabs.c
0,0 → 1,20
/* |
* cabsf() wrapper for hypotf(). |
* |
* Written by J.T. Conklin, <jtc@wimsey.com> |
* Placed into the Public Domain, 1994. |
*/ |
|
#include "fdlibm.h" |
|
struct complex { |
float x; |
float y; |
}; |
|
float |
cabsf(z) |
struct complex z; |
{ |
return hypotf(z.x, z.y); |
} |
/s_infconst.c
0,0 → 1,15
/* Infinity as a constant value. This is used for HUGE_VAL. |
* Added by Cygnus Support. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
#ifdef __IEEE_BIG_ENDIAN |
const union __dmath __infinity[1] = {{{ 0x7ff00000, 0 }}}; |
#else |
const union __dmath __infinity[1] = {{{ 0, 0x7ff00000 }}}; |
#endif |
#else /* defined (_DOUBLE_IS_32BITS) */ |
const union __dmath __infinity[1] = {{{ 0x7f800000, 0 }}}; |
#endif /* defined (_DOUBLE_IS_32BITS) */ |
/ef_exp.c
0,0 → 1,100
/* ef_exp.c -- float version of e_exp.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __v810__ |
#define const |
#endif |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
one = 1.0, |
halF[2] = {0.5,-0.5,}, |
huge = 1.0e+30, |
twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */ |
ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */ |
-6.9313812256e-01,}, /* 0xbf317180 */ |
ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */ |
-9.0580006145e-06,}, /* 0xb717f7d1 */ |
invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */ |
P1 = 1.6666667163e-01, /* 0x3e2aaaab */ |
P2 = -2.7777778450e-03, /* 0xbb360b61 */ |
P3 = 6.6137559770e-05, /* 0x388ab355 */ |
P4 = -1.6533901999e-06, /* 0xb5ddea0e */ |
P5 = 4.1381369442e-08; /* 0x3331bb4c */ |
|
#ifdef __STDC__ |
float __ieee754_expf(float x) /* default IEEE double exp */ |
#else |
float __ieee754_expf(x) /* default IEEE double exp */ |
float x; |
#endif |
{ |
float y,hi,lo,c,t; |
__int32_t k,xsb,sx; |
__uint32_t hx; |
|
GET_FLOAT_WORD(sx,x); |
xsb = (sx>>31)&1; /* sign bit of x */ |
hx = sx & 0x7fffffff; /* high word of |x| */ |
|
/* filter out non-finite argument */ |
if(FLT_UWORD_IS_NAN(hx)) |
return x+x; /* NaN */ |
if(FLT_UWORD_IS_INFINITE(hx)) |
return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ |
if(sx > FLT_UWORD_LOG_MAX) |
return huge*huge; /* overflow */ |
if(sx < 0 && hx > FLT_UWORD_LOG_MIN) |
return twom100*twom100; /* underflow */ |
|
/* argument reduction */ |
if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */ |
if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */ |
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; |
} else { |
k = invln2*x+halF[xsb]; |
t = k; |
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ |
lo = t*ln2LO[0]; |
} |
x = hi - lo; |
} |
else if(hx < 0x31800000) { /* when |x|<2**-28 */ |
if(huge+x>one) return one+x;/* trigger inexact */ |
} |
else k = 0; |
|
/* x is now in primary range */ |
t = x*x; |
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
if(k==0) return one-((x*c)/(c-(float)2.0)-x); |
else y = one-((lo-(x*c)/((float)2.0-c))-hi); |
if(k >= -125) { |
__uint32_t hy; |
GET_FLOAT_WORD(hy,y); |
SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */ |
return y; |
} else { |
__uint32_t hy; |
GET_FLOAT_WORD(hy,y); |
SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */ |
return y*twom100; |
} |
} |
/ef_acosh.c
0,0 → 1,53
/* ef_acosh.c -- float version of e_acosh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
one = 1.0, |
ln2 = 6.9314718246e-01; /* 0x3f317218 */ |
|
#ifdef __STDC__ |
float __ieee754_acoshf(float x) |
#else |
float __ieee754_acoshf(x) |
float x; |
#endif |
{ |
float t; |
__int32_t hx; |
GET_FLOAT_WORD(hx,x); |
if(hx<0x3f800000) { /* x < 1 */ |
return (x-x)/(x-x); |
} else if(hx >=0x4d800000) { /* x > 2**28 */ |
if(!FLT_UWORD_IS_FINITE(hx)) { /* x is inf of NaN */ |
return x+x; |
} else |
return __ieee754_logf(x)+ln2; /* acosh(huge)=log(2x) */ |
} else if (hx==0x3f800000) { |
return 0.0; /* acosh(1) = 0 */ |
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */ |
t=x*x; |
return __ieee754_logf((float)2.0*x-one/(x+__ieee754_sqrtf(t-one))); |
} else { /* 1<x<2 */ |
t = x-one; |
return log1pf(t+__ieee754_sqrtf((float)2.0*t+t*t)); |
} |
} |
/e_atan2.c
0,0 → 1,131
|
/* @(#)e_atan2.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* __ieee754_atan2(y,x) |
* Method : |
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). |
* 2. Reduce x to positive by (if x and y are unexceptional): |
* ARG (x+iy) = arctan(y/x) ... if x > 0, |
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, |
* |
* Special cases: |
* |
* ATAN2((anything), NaN ) is NaN; |
* ATAN2(NAN , (anything) ) is NaN; |
* ATAN2(+-0, +(anything but NaN)) is +-0 ; |
* ATAN2(+-0, -(anything but NaN)) is +-pi ; |
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; |
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; |
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi; |
* ATAN2(+-INF,+INF ) is +-pi/4 ; |
* ATAN2(+-INF,-INF ) is +-3pi/4; |
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; |
* |
* Constants: |
* The hexadecimal values are the intended ones for the following |
* constants. The decimal values may be used, provided that the |
* compiler will convert from decimal to binary accurately enough |
* to produce the hexadecimal values shown. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
tiny = 1.0e-300, |
zero = 0.0, |
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ |
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ |
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ |
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ |
|
#ifdef __STDC__ |
double __ieee754_atan2(double y, double x) |
#else |
double __ieee754_atan2(y,x) |
double y,x; |
#endif |
{ |
double z; |
__int32_t k,m,hx,hy,ix,iy; |
__uint32_t lx,ly; |
|
EXTRACT_WORDS(hx,lx,x); |
ix = hx&0x7fffffff; |
EXTRACT_WORDS(hy,ly,y); |
iy = hy&0x7fffffff; |
if(((ix|((lx|-lx)>>31))>0x7ff00000)|| |
((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */ |
return x+y; |
if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */ |
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ |
|
/* when y = 0 */ |
if((iy|ly)==0) { |
switch(m) { |
case 0: |
case 1: return y; /* atan(+-0,+anything)=+-0 */ |
case 2: return pi+tiny;/* atan(+0,-anything) = pi */ |
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ |
} |
} |
/* when x = 0 */ |
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; |
|
/* when x is INF */ |
if(ix==0x7ff00000) { |
if(iy==0x7ff00000) { |
switch(m) { |
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ |
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ |
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ |
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ |
} |
} else { |
switch(m) { |
case 0: return zero ; /* atan(+...,+INF) */ |
case 1: return -zero ; /* atan(-...,+INF) */ |
case 2: return pi+tiny ; /* atan(+...,-INF) */ |
case 3: return -pi-tiny ; /* atan(-...,-INF) */ |
} |
} |
} |
/* when y is INF */ |
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; |
|
/* compute y/x */ |
k = (iy-ix)>>20; |
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ |
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ |
else z=atan(fabs(y/x)); /* safe to do y/x */ |
switch (m) { |
case 0: return z ; /* atan(+,+) */ |
case 1: { |
__uint32_t zh; |
GET_HIGH_WORD(zh,z); |
SET_HIGH_WORD(z,zh ^ 0x80000000); |
} |
return z ; /* atan(-,+) */ |
case 2: return pi-(z-pi_lo);/* atan(+,-) */ |
default: /* case 3 */ |
return (z-pi_lo)-pi;/* atan(-,-) */ |
} |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_atan2.c
0,0 → 1,101
/* ef_atan2.c -- float version of e_atan2.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
tiny = 1.0e-30, |
zero = 0.0, |
pi_o_4 = 7.8539818525e-01, /* 0x3f490fdb */ |
pi_o_2 = 1.5707963705e+00, /* 0x3fc90fdb */ |
pi = 3.1415925026e+00, /* 0x40490fda */ |
pi_lo = 1.5099578832e-07; /* 0x34222168 */ |
|
#ifdef __STDC__ |
float __ieee754_atan2f(float y, float x) |
#else |
float __ieee754_atan2f(y,x) |
float y,x; |
#endif |
{ |
float z; |
__int32_t k,m,hx,hy,ix,iy; |
|
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
GET_FLOAT_WORD(hy,y); |
iy = hy&0x7fffffff; |
if(FLT_UWORD_IS_NAN(ix)|| |
FLT_UWORD_IS_NAN(iy)) /* x or y is NaN */ |
return x+y; |
if(hx==0x3f800000) return atanf(y); /* x=1.0 */ |
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ |
|
/* when y = 0 */ |
if(FLT_UWORD_IS_ZERO(iy)) { |
switch(m) { |
case 0: |
case 1: return y; /* atan(+-0,+anything)=+-0 */ |
case 2: return pi+tiny;/* atan(+0,-anything) = pi */ |
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ |
} |
} |
/* when x = 0 */ |
if(FLT_UWORD_IS_ZERO(ix)) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; |
|
/* when x is INF */ |
if(FLT_UWORD_IS_INFINITE(ix)) { |
if(FLT_UWORD_IS_INFINITE(iy)) { |
switch(m) { |
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ |
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ |
case 2: return (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ |
case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ |
} |
} else { |
switch(m) { |
case 0: return zero ; /* atan(+...,+INF) */ |
case 1: return -zero ; /* atan(-...,+INF) */ |
case 2: return pi+tiny ; /* atan(+...,-INF) */ |
case 3: return -pi-tiny ; /* atan(-...,-INF) */ |
} |
} |
} |
/* when y is INF */ |
if(FLT_UWORD_IS_INFINITE(iy)) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; |
|
/* compute y/x */ |
k = (iy-ix)>>23; |
if(k > 60) z=pi_o_2+(float)0.5*pi_lo; /* |y/x| > 2**60 */ |
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ |
else z=atanf(fabsf(y/x)); /* safe to do y/x */ |
switch (m) { |
case 0: return z ; /* atan(+,+) */ |
case 1: { |
__uint32_t zh; |
GET_FLOAT_WORD(zh,z); |
SET_FLOAT_WORD(z,zh ^ 0x80000000); |
} |
return z ; /* atan(-,+) */ |
case 2: return pi-(z-pi_lo);/* atan(+,-) */ |
default: /* case 3 */ |
return (z-pi_lo)-pi;/* atan(-,-) */ |
} |
} |
/wf_fmod.c
0,0 → 1,73
/* wf_fmod.c -- float version of w_fmod.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper fmodf(x,y) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float fmodf(float x, float y) /* wrapper fmodf */ |
#else |
float fmodf(x,y) /* wrapper fmodf */ |
float x,y; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_fmodf(x,y); |
#else |
float z; |
struct exception exc; |
z = __ieee754_fmodf(x,y); |
if(_LIB_VERSION == _IEEE_ ||isnanf(y)||isnanf(x)) return z; |
if(y==(float)0.0) { |
/* fmodf(x,0) */ |
exc.type = DOMAIN; |
exc.name = "fmodf"; |
exc.err = 0; |
exc.arg1 = (double)x; |
exc.arg2 = (double)y; |
if (_LIB_VERSION == _SVID_) |
exc.retval = x; |
else |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double fmod(double x, double y) |
#else |
double fmod(x,y) |
double x,y; |
#endif |
{ |
return (double) fmodf((float) x, (float) y); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_jn.c
0,0 → 1,207
/* ef_jn.c -- float version of e_jn.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
two = 2.0000000000e+00, /* 0x40000000 */ |
one = 1.0000000000e+00; /* 0x3F800000 */ |
|
#ifdef __STDC__ |
static const float zero = 0.0000000000e+00; |
#else |
static float zero = 0.0000000000e+00; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_jnf(int n, float x) |
#else |
float __ieee754_jnf(n,x) |
int n; float x; |
#endif |
{ |
__int32_t i,hx,ix, sgn; |
float a, b, temp, di; |
float z, w; |
|
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
* Thus, J(-n,x) = J(n,-x) |
*/ |
GET_FLOAT_WORD(hx,x); |
ix = 0x7fffffff&hx; |
/* if J(n,NaN) is NaN */ |
if(FLT_UWORD_IS_NAN(ix)) return x+x; |
if(n<0){ |
n = -n; |
x = -x; |
hx ^= 0x80000000; |
} |
if(n==0) return(__ieee754_j0f(x)); |
if(n==1) return(__ieee754_j1f(x)); |
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
x = fabsf(x); |
if(FLT_UWORD_IS_ZERO(ix)||FLT_UWORD_IS_INFINITE(ix)) |
b = zero; |
else if((float)n<=x) { |
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
a = __ieee754_j0f(x); |
b = __ieee754_j1f(x); |
for(i=1;i<n;i++){ |
temp = b; |
b = b*((float)(i+i)/x) - a; /* avoid underflow */ |
a = temp; |
} |
} else { |
if(ix<0x30800000) { /* x < 2**-29 */ |
/* x is tiny, return the first Taylor expansion of J(n,x) |
* J(n,x) = 1/n!*(x/2)^n - ... |
*/ |
if(n>33) /* underflow */ |
b = zero; |
else { |
temp = x*(float)0.5; b = temp; |
for (a=one,i=2;i<=n;i++) { |
a *= (float)i; /* a = n! */ |
b *= temp; /* b = (x/2)^n */ |
} |
b = b/a; |
} |
} else { |
/* use backward recurrence */ |
/* x x^2 x^2 |
* J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
* 2n - 2(n+1) - 2(n+2) |
* |
* 1 1 1 |
* (for large x) = ---- ------ ------ ..... |
* 2n 2(n+1) 2(n+2) |
* -- - ------ - ------ - |
* x x x |
* |
* Let w = 2n/x and h=2/x, then the above quotient |
* is equal to the continued fraction: |
* 1 |
* = ----------------------- |
* 1 |
* w - ----------------- |
* 1 |
* w+h - --------- |
* w+2h - ... |
* |
* To determine how many terms needed, let |
* Q(0) = w, Q(1) = w(w+h) - 1, |
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
* When Q(k) > 1e4 good for single |
* When Q(k) > 1e9 good for double |
* When Q(k) > 1e17 good for quadruple |
*/ |
/* determine k */ |
float t,v; |
float q0,q1,h,tmp; __int32_t k,m; |
w = (n+n)/(float)x; h = (float)2.0/(float)x; |
q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1; |
while(q1<(float)1.0e9) { |
k += 1; z += h; |
tmp = z*q1 - q0; |
q0 = q1; |
q1 = tmp; |
} |
m = n+n; |
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
a = t; |
b = one; |
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
* Hence, if n*(log(2n/x)) > ... |
* single 8.8722839355e+01 |
* double 7.09782712893383973096e+02 |
* long double 1.1356523406294143949491931077970765006170e+04 |
* then recurrent value may overflow and the result is |
* likely underflow to zero |
*/ |
tmp = n; |
v = two/x; |
tmp = tmp*__ieee754_logf(fabsf(v*tmp)); |
if(tmp<(float)8.8721679688e+01) { |
for(i=n-1,di=(float)(i+i);i>0;i--){ |
temp = b; |
b *= di; |
b = b/x - a; |
a = temp; |
di -= two; |
} |
} else { |
for(i=n-1,di=(float)(i+i);i>0;i--){ |
temp = b; |
b *= di; |
b = b/x - a; |
a = temp; |
di -= two; |
/* scale b to avoid spurious overflow */ |
if(b>(float)1e10) { |
a /= b; |
t /= b; |
b = one; |
} |
} |
} |
b = (t*__ieee754_j0f(x)/b); |
} |
} |
if(sgn==1) return -b; else return b; |
} |
|
#ifdef __STDC__ |
float __ieee754_ynf(int n, float x) |
#else |
float __ieee754_ynf(n,x) |
int n; float x; |
#endif |
{ |
__int32_t i,hx,ix,ib; |
__int32_t sign; |
float a, b, temp; |
|
GET_FLOAT_WORD(hx,x); |
ix = 0x7fffffff&hx; |
/* if Y(n,NaN) is NaN */ |
if(FLT_UWORD_IS_NAN(ix)) return x+x; |
if(FLT_UWORD_IS_ZERO(ix)) return -one/zero; |
if(hx<0) return zero/zero; |
sign = 1; |
if(n<0){ |
n = -n; |
sign = 1 - ((n&1)<<1); |
} |
if(n==0) return(__ieee754_y0f(x)); |
if(n==1) return(sign*__ieee754_y1f(x)); |
if(FLT_UWORD_IS_INFINITE(ix)) return zero; |
|
a = __ieee754_y0f(x); |
b = __ieee754_y1f(x); |
/* quit if b is -inf */ |
GET_FLOAT_WORD(ib,b); |
for(i=1;i<n&&ib!=0xff800000;i++){ |
temp = b; |
b = ((float)(i+i)/x)*b - a; |
GET_FLOAT_WORD(ib,b); |
a = temp; |
} |
if(sign>0) return b; else return -b; |
} |
/w_exp.c
0,0 → 1,136
|
/* @(#)w_exp.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<exp>>, <<expf>>---exponential |
INDEX |
exp |
INDEX |
expf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double exp(double <[x]>); |
float expf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double exp(<[x]>); |
double <[x]>; |
|
float expf(<[x]>); |
float <[x]>; |
|
DESCRIPTION |
<<exp>> and <<expf>> calculate the exponential of <[x]>, that is, |
@ifinfo |
e raised to the power <[x]> (where e |
@end ifinfo |
@tex |
$e^x$ (where $e$ |
@end tex |
is the base of the natural system of logarithms, approximately 2.71828). |
|
You can use the (non-ANSI) function <<matherr>> to specify |
error handling for these functions. |
|
RETURNS |
On success, <<exp>> and <<expf>> return the calculated value. |
If the result underflows, the returned value is <<0>>. If the |
result overflows, the returned value is <<HUGE_VAL>>. In |
either case, <<errno>> is set to <<ERANGE>>. |
|
PORTABILITY |
<<exp>> is ANSI C. <<expf>> is an extension. |
|
*/ |
|
/* |
* wrapper exp(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ |
|
#ifdef __STDC__ |
double exp(double x) /* wrapper exp */ |
#else |
double exp(x) /* wrapper exp */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_exp(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_exp(x); |
if(_LIB_VERSION == _IEEE_) return z; |
if(finite(x)) { |
if(x>o_threshold) { |
/* exp(finite) overflow */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = OVERFLOW; |
exc.name = "exp"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else if(x<u_threshold) { |
/* exp(finite) underflow */ |
exc.type = UNDERFLOW; |
exc.name = "exp"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
} |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_acosh.c
0,0 → 1,122
|
/* @(#)w_acosh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* |
FUNCTION |
<<acosh>>, <<acoshf>>---inverse hyperbolic cosine |
|
INDEX |
acosh |
INDEX |
acoshf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double acosh(double <[x]>); |
float acoshf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double acosh(<[x]>) |
double <[x]>; |
|
float acoshf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<acosh>> calculates the inverse hyperbolic cosine of <[x]>. |
<<acosh>> is defined as |
@ifinfo |
. log(<[x]> + sqrt(<[x]>*<[x]>-1)) |
@end ifinfo |
@tex |
$$ln\Bigl(x + \sqrt{x^2-1}\Bigr)$$ |
@end tex |
|
<[x]> must be a number greater than or equal to 1. |
|
<<acoshf>> is identical, other than taking and returning floats. |
|
RETURNS |
<<acosh>> and <<acoshf>> return the calculated value. If <[x]> |
less than 1, the return value is NaN and <<errno>> is set to <<EDOM>>. |
|
You can change the error-handling behavior with the non-ANSI |
<<matherr>> function. |
|
PORTABILITY |
Neither <<acosh>> nor <<acoshf>> are ANSI C. They are not recommended |
for portable programs. |
|
|
QUICKREF ANSI SVID POSIX RENTRANT |
acos n,n,n,m |
acosf n,n,n,m |
|
MATHREF |
acosh, NAN, arg,DOMAIN,EDOM |
acosh, < 1.0, NAN,DOMAIN,EDOM |
acosh, >=1.0, acosh(arg),,, |
|
MATHREF |
acoshf, NAN, arg,DOMAIN,EDOM |
acoshf, < 1.0, NAN,DOMAIN,EDOM |
acoshf, >=1.0, acosh(arg),,, |
|
*/ |
|
/* |
* wrapper acosh(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double acosh(double x) /* wrapper acosh */ |
#else |
double acosh(x) /* wrapper acosh */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_acosh(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_acosh(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; |
if(x<1.0) { |
/* acosh(x<1) */ |
exc.type = DOMAIN; |
exc.name = "acosh"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_rem_pio2.c
0,0 → 1,193
/* ef_rem_pio2.c -- float version of e_rem_pio2.c |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* __ieee754_rem_pio2f(x,y) |
* |
* return the remainder of x rem pi/2 in y[0]+y[1] |
* use __kernel_rem_pio2f() |
*/ |
|
#include "fdlibm.h" |
|
/* |
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi |
*/ |
#ifdef __STDC__ |
static const __int32_t two_over_pi[] = { |
#else |
static __int32_t two_over_pi[] = { |
#endif |
0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC, |
0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62, |
0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63, |
0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A, |
0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09, |
0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29, |
0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44, |
0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41, |
0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C, |
0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8, |
0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11, |
0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF, |
0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E, |
0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5, |
0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92, |
0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08, |
0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0, |
0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3, |
0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85, |
0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80, |
0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA, |
0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B, |
}; |
|
/* This array is like the one in e_rem_pio2.c, but the numbers are |
single precision and the last 8 bits are forced to 0. */ |
#ifdef __STDC__ |
static const __int32_t npio2_hw[] = { |
#else |
static __int32_t npio2_hw[] = { |
#endif |
0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00, |
0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00, |
0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100, |
0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00, |
0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00, |
0x4242c700, 0x42490f00 |
}; |
|
/* |
* invpio2: 24 bits of 2/pi |
* pio2_1: first 17 bit of pi/2 |
* pio2_1t: pi/2 - pio2_1 |
* pio2_2: second 17 bit of pi/2 |
* pio2_2t: pi/2 - (pio2_1+pio2_2) |
* pio2_3: third 17 bit of pi/2 |
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) |
*/ |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
zero = 0.0000000000e+00, /* 0x00000000 */ |
half = 5.0000000000e-01, /* 0x3f000000 */ |
two8 = 2.5600000000e+02, /* 0x43800000 */ |
invpio2 = 6.3661980629e-01, /* 0x3f22f984 */ |
pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */ |
pio2_1t = 1.0804334124e-05, /* 0x37354443 */ |
pio2_2 = 1.0804273188e-05, /* 0x37354400 */ |
pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */ |
pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */ |
pio2_3t = 6.1232342629e-17; /* 0x248d3132 */ |
|
#ifdef __STDC__ |
__int32_t __ieee754_rem_pio2f(float x, float *y) |
#else |
__int32_t __ieee754_rem_pio2f(x,y) |
float x,y[]; |
#endif |
{ |
float z,w,t,r,fn; |
float tx[3]; |
__int32_t i,j,n,ix,hx; |
int e0,nx; |
|
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */ |
{y[0] = x; y[1] = 0; return 0;} |
if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */ |
if(hx>0) { |
z = x - pio2_1; |
if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */ |
y[0] = z - pio2_1t; |
y[1] = (z-y[0])-pio2_1t; |
} else { /* near pi/2, use 24+24+24 bit pi */ |
z -= pio2_2; |
y[0] = z - pio2_2t; |
y[1] = (z-y[0])-pio2_2t; |
} |
return 1; |
} else { /* negative x */ |
z = x + pio2_1; |
if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */ |
y[0] = z + pio2_1t; |
y[1] = (z-y[0])+pio2_1t; |
} else { /* near pi/2, use 24+24+24 bit pi */ |
z += pio2_2; |
y[0] = z + pio2_2t; |
y[1] = (z-y[0])+pio2_2t; |
} |
return -1; |
} |
} |
if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */ |
t = fabsf(x); |
n = (__int32_t) (t*invpio2+half); |
fn = (float)n; |
r = t-fn*pio2_1; |
w = fn*pio2_1t; /* 1st round good to 40 bit */ |
if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) { |
y[0] = r-w; /* quick check no cancellation */ |
} else { |
__uint32_t high; |
j = ix>>23; |
y[0] = r-w; |
GET_FLOAT_WORD(high,y[0]); |
i = j-((high>>23)&0xff); |
if(i>8) { /* 2nd iteration needed, good to 57 */ |
t = r; |
w = fn*pio2_2; |
r = t-w; |
w = fn*pio2_2t-((t-r)-w); |
y[0] = r-w; |
GET_FLOAT_WORD(high,y[0]); |
i = j-((high>>23)&0xff); |
if(i>25) { /* 3rd iteration need, 74 bits acc */ |
t = r; /* will cover all possible cases */ |
w = fn*pio2_3; |
r = t-w; |
w = fn*pio2_3t-((t-r)-w); |
y[0] = r-w; |
} |
} |
} |
y[1] = (r-y[0])-w; |
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} |
else return n; |
} |
/* |
* all other (large) arguments |
*/ |
if(!FLT_UWORD_IS_FINITE(ix)) { |
y[0]=y[1]=x-x; return 0; |
} |
/* set z = scalbn(|x|,ilogb(x)-7) */ |
e0 = (int)((ix>>23)-134); /* e0 = ilogb(z)-7; */ |
SET_FLOAT_WORD(z, ix - ((__int32_t)e0<<23)); |
for(i=0;i<2;i++) { |
tx[i] = (float)((__int32_t)(z)); |
z = (z-tx[i])*two8; |
} |
tx[2] = z; |
nx = 3; |
while(tx[nx-1]==zero) nx--; /* skip zero term */ |
n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi); |
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} |
return n; |
} |
/k_rem_pio2.c
0,0 → 1,320
|
/* @(#)k_rem_pio2.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
* double x[],y[]; int e0,nx,prec; int ipio2[]; |
* |
* __kernel_rem_pio2 return the last three digits of N with |
* y = x - N*pi/2 |
* so that |y| < pi/2. |
* |
* The method is to compute the integer (mod 8) and fraction parts of |
* (2/pi)*x without doing the full multiplication. In general we |
* skip the part of the product that are known to be a huge integer ( |
* more accurately, = 0 mod 8 ). Thus the number of operations are |
* independent of the exponent of the input. |
* |
* (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
* |
* Input parameters: |
* x[] The input value (must be positive) is broken into nx |
* pieces of 24-bit integers in double precision format. |
* x[i] will be the i-th 24 bit of x. The scaled exponent |
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
* match x's up to 24 bits. |
* |
* Example of breaking a double positive z into x[0]+x[1]+x[2]: |
* e0 = ilogb(z)-23 |
* z = scalbn(z,-e0) |
* for i = 0,1,2 |
* x[i] = floor(z) |
* z = (z-x[i])*2**24 |
* |
* |
* y[] ouput result in an array of double precision numbers. |
* The dimension of y[] is: |
* 24-bit precision 1 |
* 53-bit precision 2 |
* 64-bit precision 2 |
* 113-bit precision 3 |
* The actual value is the sum of them. Thus for 113-bit |
* precison, one may have to do something like: |
* |
* long double t,w,r_head, r_tail; |
* t = (long double)y[2] + (long double)y[1]; |
* w = (long double)y[0]; |
* r_head = t+w; |
* r_tail = w - (r_head - t); |
* |
* e0 The exponent of x[0] |
* |
* nx dimension of x[] |
* |
* prec an integer indicating the precision: |
* 0 24 bits (single) |
* 1 53 bits (double) |
* 2 64 bits (extended) |
* 3 113 bits (quad) |
* |
* ipio2[] |
* integer array, contains the (24*i)-th to (24*i+23)-th |
* bit of 2/pi after binary point. The corresponding |
* floating value is |
* |
* ipio2[i] * 2^(-24(i+1)). |
* |
* External function: |
* double scalbn(), floor(); |
* |
* |
* Here is the description of some local variables: |
* |
* jk jk+1 is the initial number of terms of ipio2[] needed |
* in the computation. The recommended value is 2,3,4, |
* 6 for single, double, extended,and quad. |
* |
* jz local integer variable indicating the number of |
* terms of ipio2[] used. |
* |
* jx nx - 1 |
* |
* jv index for pointing to the suitable ipio2[] for the |
* computation. In general, we want |
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
* is an integer. Thus |
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
* Hence jv = max(0,(e0-3)/24). |
* |
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
* |
* q[] double array with integral value, representing the |
* 24-bits chunk of the product of x and 2/pi. |
* |
* q0 the corresponding exponent of q[0]. Note that the |
* exponent for q[i] would be q0-24*i. |
* |
* PIo2[] double precision array, obtained by cutting pi/2 |
* into 24 bits chunks. |
* |
* f[] ipio2[] in floating point |
* |
* iq[] integer array by breaking up q[] in 24-bits chunk. |
* |
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
* |
* ih integer. If >0 it indicates q[] is >= 0.5, hence |
* it also indicates the *sign* of the result. |
* |
*/ |
|
|
/* |
* Constants: |
* The hexadecimal values are the intended ones for the following |
* constants. The decimal values may be used, provided that the |
* compiler will convert from decimal to binary accurately enough |
* to produce the hexadecimal values shown. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ |
#else |
static int init_jk[] = {2,3,4,6}; |
#endif |
|
#ifdef __STDC__ |
static const double PIo2[] = { |
#else |
static double PIo2[] = { |
#endif |
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
}; |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
zero = 0.0, |
one = 1.0, |
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
|
#ifdef __STDC__ |
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const __int32_t *ipio2) |
#else |
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
double x[], y[]; int e0,nx,prec; __int32_t ipio2[]; |
#endif |
{ |
__int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
double z,fw,f[20],fq[20],q[20]; |
|
/* initialize jk*/ |
jk = init_jk[prec]; |
jp = jk; |
|
/* determine jx,jv,q0, note that 3>q0 */ |
jx = nx-1; |
jv = (e0-3)/24; if(jv<0) jv=0; |
q0 = e0-24*(jv+1); |
|
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
j = jv-jx; m = jx+jk; |
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; |
|
/* compute q[0],q[1],...q[jk] */ |
for (i=0;i<=jk;i++) { |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
} |
|
jz = jk; |
recompute: |
/* distill q[] into iq[] reversingly */ |
for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
fw = (double)((__int32_t)(twon24* z)); |
iq[i] = (__int32_t)(z-two24*fw); |
z = q[j-1]+fw; |
} |
|
/* compute n */ |
z = scalbn(z,(int)q0); /* actual value of z */ |
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ |
n = (__int32_t) z; |
z -= (double)n; |
ih = 0; |
if(q0>0) { /* need iq[jz-1] to determine n */ |
i = (iq[jz-1]>>(24-q0)); n += i; |
iq[jz-1] -= i<<(24-q0); |
ih = iq[jz-1]>>(23-q0); |
} |
else if(q0==0) ih = iq[jz-1]>>23; |
else if(z>=0.5) ih=2; |
|
if(ih>0) { /* q > 0.5 */ |
n += 1; carry = 0; |
for(i=0;i<jz ;i++) { /* compute 1-q */ |
j = iq[i]; |
if(carry==0) { |
if(j!=0) { |
carry = 1; iq[i] = 0x1000000- j; |
} |
} else iq[i] = 0xffffff - j; |
} |
if(q0>0) { /* rare case: chance is 1 in 12 */ |
switch(q0) { |
case 1: |
iq[jz-1] &= 0x7fffff; break; |
case 2: |
iq[jz-1] &= 0x3fffff; break; |
} |
} |
if(ih==2) { |
z = one - z; |
if(carry!=0) z -= scalbn(one,(int)q0); |
} |
} |
|
/* check if recomputation is needed */ |
if(z==zero) { |
j = 0; |
for (i=jz-1;i>=jk;i--) j |= iq[i]; |
if(j==0) { /* need recomputation */ |
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
|
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
f[jx+i] = (double) ipio2[jv+i]; |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
q[i] = fw; |
} |
jz += k; |
goto recompute; |
} |
} |
|
/* chop off zero terms */ |
if(z==0.0) { |
jz -= 1; q0 -= 24; |
while(iq[jz]==0) { jz--; q0-=24;} |
} else { /* break z into 24-bit if necessary */ |
z = scalbn(z,-(int)q0); |
if(z>=two24) { |
fw = (double)((__int32_t)(twon24*z)); |
iq[jz] = (__int32_t)(z-two24*fw); |
jz += 1; q0 += 24; |
iq[jz] = (__int32_t) fw; |
} else iq[jz] = (__int32_t) z ; |
} |
|
/* convert integer "bit" chunk to floating-point value */ |
fw = scalbn(one,(int)q0); |
for(i=jz;i>=0;i--) { |
q[i] = fw*(double)iq[i]; fw*=twon24; |
} |
|
/* compute PIo2[0,...,jp]*q[jz,...,0] */ |
for(i=jz;i>=0;i--) { |
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
fq[jz-i] = fw; |
} |
|
/* compress fq[] into y[] */ |
switch(prec) { |
case 0: |
fw = 0.0; |
for (i=jz;i>=0;i--) fw += fq[i]; |
y[0] = (ih==0)? fw: -fw; |
break; |
case 1: |
case 2: |
fw = 0.0; |
for (i=jz;i>=0;i--) fw += fq[i]; |
y[0] = (ih==0)? fw: -fw; |
fw = fq[0]-fw; |
for (i=1;i<=jz;i++) fw += fq[i]; |
y[1] = (ih==0)? fw: -fw; |
break; |
case 3: /* painful */ |
for (i=jz;i>0;i--) { |
fw = fq[i-1]+fq[i]; |
fq[i] += fq[i-1]-fw; |
fq[i-1] = fw; |
} |
for (i=jz;i>1;i--) { |
fw = fq[i-1]+fq[i]; |
fq[i] += fq[i-1]-fw; |
fq[i-1] = fw; |
} |
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
if(ih==0) { |
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
} else { |
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
} |
} |
return n&7; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_atanh.c
0,0 → 1,83
/* wf_atanh.c -- float version of w_atanh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
/* |
* wrapper atanhf(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float atanhf(float x) /* wrapper atanhf */ |
#else |
float atanhf(x) /* wrapper atanhf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_atanhf(x); |
#else |
float z,y; |
struct exception exc; |
z = __ieee754_atanhf(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; |
y = fabsf(x); |
if(y>=(float)1.0) { |
if(y>(float)1.0) { |
/* atanhf(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = "atanhf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* atanhf(|x|=1) */ |
exc.type = SING; |
exc.name = "atanhf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = x/0.0; /* sign(x)*inf */ |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double atanh(double x) |
#else |
double atanh(x) |
double x; |
#endif |
{ |
return (double) atanhf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_atan2.c
0,0 → 1,117
|
/* @(#)w_atan2.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* |
FUNCTION |
<<atan2>>, <<atan2f>>---arc tangent of y/x |
|
INDEX |
atan2 |
INDEX |
atan2f |
|
ANSI_SYNOPSIS |
#include <math.h> |
double atan2(double <[y]>,double <[x]>); |
float atan2f(float <[y]>,float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double atan2(<[y]>,<[x]>); |
double <[y]>; |
double <[x]>; |
|
float atan2f(<[y]>,<[x]>); |
float <[y]>; |
float <[x]>; |
|
DESCRIPTION |
|
<<atan2>> computes the inverse tangent (arc tangent) of <[y]>/<[x]>. |
<<atan2>> produces the correct result even for angles near |
@ifinfo |
pi/2 or -pi/2 |
@end ifinfo |
@tex |
$\pi/2$ or $-\pi/2$ |
@end tex |
(that is, when <[x]> is near 0). |
|
<<atan2f>> is identical to <<atan2>>, save that it takes and returns |
<<float>>. |
|
RETURNS |
<<atan2>> and <<atan2f>> return a value in radians, in the range of |
@ifinfo |
-pi to pi. |
@end ifinfo |
@tex |
$-\pi$ to $\pi$. |
@end tex |
|
If both <[x]> and <[y]> are 0.0, <<atan2>> causes a <<DOMAIN>> error. |
|
You can modify error handling for these functions using <<matherr>>. |
|
PORTABILITY |
<<atan2>> is ANSI C. <<atan2f>> is an extension. |
|
|
*/ |
|
/* |
* wrapper atan2(y,x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double atan2(double y, double x) /* wrapper atan2 */ |
#else |
double atan2(y,x) /* wrapper atan2 */ |
double y,x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_atan2(y,x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_atan2(y,x); |
if(_LIB_VERSION == _IEEE_||isnan(x)||isnan(y)) return z; |
if(x==0.0&&y==0.0) { |
/* atan2(+-0,+-0) */ |
exc.arg1 = y; |
exc.arg2 = x; |
exc.type = DOMAIN; |
exc.name = "atan2"; |
exc.err = 0; |
exc.retval = 0.0; |
if(_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/kf_rem_pio2.c
0,0 → 1,208
/* kf_rem_pio2.c -- float version of k_rem_pio2.c |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
/* In the float version, the input parameter x contains 8 bit |
integers, not 24 bit integers. 113 bit precision is not supported. */ |
|
#ifdef __STDC__ |
static const int init_jk[] = {4,7,9}; /* initial value for jk */ |
#else |
static int init_jk[] = {4,7,9}; |
#endif |
|
#ifdef __STDC__ |
static const float PIo2[] = { |
#else |
static float PIo2[] = { |
#endif |
1.5703125000e+00, /* 0x3fc90000 */ |
4.5776367188e-04, /* 0x39f00000 */ |
2.5987625122e-05, /* 0x37da0000 */ |
7.5437128544e-08, /* 0x33a20000 */ |
6.0026650317e-11, /* 0x2e840000 */ |
7.3896444519e-13, /* 0x2b500000 */ |
5.3845816694e-15, /* 0x27c20000 */ |
5.6378512969e-18, /* 0x22d00000 */ |
8.3009228831e-20, /* 0x1fc40000 */ |
3.2756352257e-22, /* 0x1bc60000 */ |
6.3331015649e-25, /* 0x17440000 */ |
}; |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
zero = 0.0, |
one = 1.0, |
two8 = 2.5600000000e+02, /* 0x43800000 */ |
twon8 = 3.9062500000e-03; /* 0x3b800000 */ |
|
#ifdef __STDC__ |
int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const __int32_t *ipio2) |
#else |
int __kernel_rem_pio2f(x,y,e0,nx,prec,ipio2) |
float x[], y[]; int e0,nx,prec; __int32_t ipio2[]; |
#endif |
{ |
__int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
float z,fw,f[20],fq[20],q[20]; |
|
/* initialize jk*/ |
jk = init_jk[prec]; |
jp = jk; |
|
/* determine jx,jv,q0, note that 3>q0 */ |
jx = nx-1; |
jv = (e0-3)/8; if(jv<0) jv=0; |
q0 = e0-8*(jv+1); |
|
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
j = jv-jx; m = jx+jk; |
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j]; |
|
/* compute q[0],q[1],...q[jk] */ |
for (i=0;i<=jk;i++) { |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
} |
|
jz = jk; |
recompute: |
/* distill q[] into iq[] reversingly */ |
for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
fw = (float)((__int32_t)(twon8* z)); |
iq[i] = (__int32_t)(z-two8*fw); |
z = q[j-1]+fw; |
} |
|
/* compute n */ |
z = scalbnf(z,(int)q0); /* actual value of z */ |
z -= (float)8.0*floorf(z*(float)0.125); /* trim off integer >= 8 */ |
n = (__int32_t) z; |
z -= (float)n; |
ih = 0; |
if(q0>0) { /* need iq[jz-1] to determine n */ |
i = (iq[jz-1]>>(8-q0)); n += i; |
iq[jz-1] -= i<<(8-q0); |
ih = iq[jz-1]>>(7-q0); |
} |
else if(q0==0) ih = iq[jz-1]>>8; |
else if(z>=(float)0.5) ih=2; |
|
if(ih>0) { /* q > 0.5 */ |
n += 1; carry = 0; |
for(i=0;i<jz ;i++) { /* compute 1-q */ |
j = iq[i]; |
if(carry==0) { |
if(j!=0) { |
carry = 1; iq[i] = 0x100- j; |
} |
} else iq[i] = 0xff - j; |
} |
if(q0>0) { /* rare case: chance is 1 in 12 */ |
switch(q0) { |
case 1: |
iq[jz-1] &= 0x7f; break; |
case 2: |
iq[jz-1] &= 0x3f; break; |
} |
} |
if(ih==2) { |
z = one - z; |
if(carry!=0) z -= scalbnf(one,(int)q0); |
} |
} |
|
/* check if recomputation is needed */ |
if(z==zero) { |
j = 0; |
for (i=jz-1;i>=jk;i--) j |= iq[i]; |
if(j==0) { /* need recomputation */ |
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
|
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
f[jx+i] = (float) ipio2[jv+i]; |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
q[i] = fw; |
} |
jz += k; |
goto recompute; |
} |
} |
|
/* chop off zero terms */ |
if(z==(float)0.0) { |
jz -= 1; q0 -= 8; |
while(iq[jz]==0) { jz--; q0-=8;} |
} else { /* break z into 8-bit if necessary */ |
z = scalbnf(z,-(int)q0); |
if(z>=two8) { |
fw = (float)((__int32_t)(twon8*z)); |
iq[jz] = (__int32_t)(z-two8*fw); |
jz += 1; q0 += 8; |
iq[jz] = (__int32_t) fw; |
} else iq[jz] = (__int32_t) z ; |
} |
|
/* convert integer "bit" chunk to floating-point value */ |
fw = scalbnf(one,(int)q0); |
for(i=jz;i>=0;i--) { |
q[i] = fw*(float)iq[i]; fw*=twon8; |
} |
|
/* compute PIo2[0,...,jp]*q[jz,...,0] */ |
for(i=jz;i>=0;i--) { |
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
fq[jz-i] = fw; |
} |
|
/* compress fq[] into y[] */ |
switch(prec) { |
case 0: |
fw = 0.0; |
for (i=jz;i>=0;i--) fw += fq[i]; |
y[0] = (ih==0)? fw: -fw; |
break; |
case 1: |
case 2: |
fw = 0.0; |
for (i=jz;i>=0;i--) fw += fq[i]; |
y[0] = (ih==0)? fw: -fw; |
fw = fq[0]-fw; |
for (i=1;i<=jz;i++) fw += fq[i]; |
y[1] = (ih==0)? fw: -fw; |
break; |
case 3: /* painful */ |
for (i=jz;i>0;i--) { |
fw = fq[i-1]+fq[i]; |
fq[i] += fq[i-1]-fw; |
fq[i-1] = fw; |
} |
for (i=jz;i>1;i--) { |
fw = fq[i-1]+fq[i]; |
fq[i] += fq[i-1]-fw; |
fq[i-1] = fw; |
} |
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
if(ih==0) { |
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
} else { |
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
} |
} |
return n&7; |
} |
/e_sqrt.c
0,0 → 1,452
|
/* @(#)e_sqrt.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_sqrt(x) |
* Return correctly rounded sqrt. |
* ------------------------------------------ |
* | Use the hardware sqrt if you have one | |
* ------------------------------------------ |
* Method: |
* Bit by bit method using integer arithmetic. (Slow, but portable) |
* 1. Normalization |
* Scale x to y in [1,4) with even powers of 2: |
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then |
* sqrt(x) = 2^k * sqrt(y) |
* 2. Bit by bit computation |
* Let q = sqrt(y) truncated to i bit after binary point (q = 1), |
* i 0 |
* i+1 2 |
* s = 2*q , and y = 2 * ( y - q ). (1) |
* i i i i |
* |
* To compute q from q , one checks whether |
* i+1 i |
* |
* -(i+1) 2 |
* (q + 2 ) <= y. (2) |
* i |
* -(i+1) |
* If (2) is false, then q = q ; otherwise q = q + 2 . |
* i+1 i i+1 i |
* |
* With some algebric manipulation, it is not difficult to see |
* that (2) is equivalent to |
* -(i+1) |
* s + 2 <= y (3) |
* i i |
* |
* The advantage of (3) is that s and y can be computed by |
* i i |
* the following recurrence formula: |
* if (3) is false |
* |
* s = s , y = y ; (4) |
* i+1 i i+1 i |
* |
* otherwise, |
* -i -(i+1) |
* s = s + 2 , y = y - s - 2 (5) |
* i+1 i i+1 i i |
* |
* One may easily use induction to prove (4) and (5). |
* Note. Since the left hand side of (3) contain only i+2 bits, |
* it does not necessary to do a full (53-bit) comparison |
* in (3). |
* 3. Final rounding |
* After generating the 53 bits result, we compute one more bit. |
* Together with the remainder, we can decide whether the |
* result is exact, bigger than 1/2ulp, or less than 1/2ulp |
* (it will never equal to 1/2ulp). |
* The rounding mode can be detected by checking whether |
* huge + tiny is equal to huge, and whether huge - tiny is |
* equal to huge for some floating point number "huge" and "tiny". |
* |
* Special cases: |
* sqrt(+-0) = +-0 ... exact |
* sqrt(inf) = inf |
* sqrt(-ve) = NaN ... with invalid signal |
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN |
* |
* Other methods : see the appended file at the end of the program below. |
*--------------- |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double one = 1.0, tiny=1.0e-300; |
#else |
static double one = 1.0, tiny=1.0e-300; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_sqrt(double x) |
#else |
double __ieee754_sqrt(x) |
double x; |
#endif |
{ |
double z; |
__int32_t sign = (int)0x80000000; |
__uint32_t r,t1,s1,ix1,q1; |
__int32_t ix0,s0,q,m,t,i; |
|
EXTRACT_WORDS(ix0,ix1,x); |
|
/* take care of Inf and NaN */ |
if((ix0&0x7ff00000)==0x7ff00000) { |
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf |
sqrt(-inf)=sNaN */ |
} |
/* take care of zero */ |
if(ix0<=0) { |
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ |
else if(ix0<0) |
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ |
} |
/* normalize x */ |
m = (ix0>>20); |
if(m==0) { /* subnormal x */ |
while(ix0==0) { |
m -= 21; |
ix0 |= (ix1>>11); ix1 <<= 21; |
} |
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; |
m -= i-1; |
ix0 |= (ix1>>(32-i)); |
ix1 <<= i; |
} |
m -= 1023; /* unbias exponent */ |
ix0 = (ix0&0x000fffff)|0x00100000; |
if(m&1){ /* odd m, double x to make it even */ |
ix0 += ix0 + ((ix1&sign)>>31); |
ix1 += ix1; |
} |
m >>= 1; /* m = [m/2] */ |
|
/* generate sqrt(x) bit by bit */ |
ix0 += ix0 + ((ix1&sign)>>31); |
ix1 += ix1; |
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ |
r = 0x00200000; /* r = moving bit from right to left */ |
|
while(r!=0) { |
t = s0+r; |
if(t<=ix0) { |
s0 = t+r; |
ix0 -= t; |
q += r; |
} |
ix0 += ix0 + ((ix1&sign)>>31); |
ix1 += ix1; |
r>>=1; |
} |
|
r = sign; |
while(r!=0) { |
t1 = s1+r; |
t = s0; |
if((t<ix0)||((t==ix0)&&(t1<=ix1))) { |
s1 = t1+r; |
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; |
ix0 -= t; |
if (ix1 < t1) ix0 -= 1; |
ix1 -= t1; |
q1 += r; |
} |
ix0 += ix0 + ((ix1&sign)>>31); |
ix1 += ix1; |
r>>=1; |
} |
|
/* use floating add to find out rounding direction */ |
if((ix0|ix1)!=0) { |
z = one-tiny; /* trigger inexact flag */ |
if (z>=one) { |
z = one+tiny; |
if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;} |
else if (z>one) { |
if (q1==(__uint32_t)0xfffffffe) q+=1; |
q1+=2; |
} else |
q1 += (q1&1); |
} |
} |
ix0 = (q>>1)+0x3fe00000; |
ix1 = q1>>1; |
if ((q&1)==1) ix1 |= sign; |
ix0 += (m <<20); |
INSERT_WORDS(z,ix0,ix1); |
return z; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
|
/* |
Other methods (use floating-point arithmetic) |
------------- |
(This is a copy of a drafted paper by Prof W. Kahan |
and K.C. Ng, written in May, 1986) |
|
Two algorithms are given here to implement sqrt(x) |
(IEEE double precision arithmetic) in software. |
Both supply sqrt(x) correctly rounded. The first algorithm (in |
Section A) uses newton iterations and involves four divisions. |
The second one uses reciproot iterations to avoid division, but |
requires more multiplications. Both algorithms need the ability |
to chop results of arithmetic operations instead of round them, |
and the INEXACT flag to indicate when an arithmetic operation |
is executed exactly with no roundoff error, all part of the |
standard (IEEE 754-1985). The ability to perform shift, add, |
subtract and logical AND operations upon 32-bit words is needed |
too, though not part of the standard. |
|
A. sqrt(x) by Newton Iteration |
|
(1) Initial approximation |
|
Let x0 and x1 be the leading and the trailing 32-bit words of |
a floating point number x (in IEEE double format) respectively |
|
1 11 52 ...widths |
------------------------------------------------------ |
x: |s| e | f | |
------------------------------------------------------ |
msb lsb msb lsb ...order |
|
|
------------------------ ------------------------ |
x0: |s| e | f1 | x1: | f2 | |
------------------------ ------------------------ |
|
By performing shifts and subtracts on x0 and x1 (both regarded |
as integers), we obtain an 8-bit approximation of sqrt(x) as |
follows. |
|
k := (x0>>1) + 0x1ff80000; |
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits |
Here k is a 32-bit integer and T1[] is an integer array containing |
correction terms. Now magically the floating value of y (y's |
leading 32-bit word is y0, the value of its trailing word is 0) |
approximates sqrt(x) to almost 8-bit. |
|
Value of T1: |
static int T1[32]= { |
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, |
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, |
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, |
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; |
|
(2) Iterative refinement |
|
Apply Heron's rule three times to y, we have y approximates |
sqrt(x) to within 1 ulp (Unit in the Last Place): |
|
y := (y+x/y)/2 ... almost 17 sig. bits |
y := (y+x/y)/2 ... almost 35 sig. bits |
y := y-(y-x/y)/2 ... within 1 ulp |
|
|
Remark 1. |
Another way to improve y to within 1 ulp is: |
|
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) |
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) |
|
2 |
(x-y )*y |
y := y + 2* ---------- ...within 1 ulp |
2 |
3y + x |
|
|
This formula has one division fewer than the one above; however, |
it requires more multiplications and additions. Also x must be |
scaled in advance to avoid spurious overflow in evaluating the |
expression 3y*y+x. Hence it is not recommended uless division |
is slow. If division is very slow, then one should use the |
reciproot algorithm given in section B. |
|
(3) Final adjustment |
|
By twiddling y's last bit it is possible to force y to be |
correctly rounded according to the prevailing rounding mode |
as follows. Let r and i be copies of the rounding mode and |
inexact flag before entering the square root program. Also we |
use the expression y+-ulp for the next representable floating |
numbers (up and down) of y. Note that y+-ulp = either fixed |
point y+-1, or multiply y by nextafter(1,+-inf) in chopped |
mode. |
|
I := FALSE; ... reset INEXACT flag I |
R := RZ; ... set rounding mode to round-toward-zero |
z := x/y; ... chopped quotient, possibly inexact |
If(not I) then { ... if the quotient is exact |
if(z=y) { |
I := i; ... restore inexact flag |
R := r; ... restore rounded mode |
return sqrt(x):=y. |
} else { |
z := z - ulp; ... special rounding |
} |
} |
i := TRUE; ... sqrt(x) is inexact |
If (r=RN) then z=z+ulp ... rounded-to-nearest |
If (r=RP) then { ... round-toward-+inf |
y = y+ulp; z=z+ulp; |
} |
y := y+z; ... chopped sum |
y0:=y0-0x00100000; ... y := y/2 is correctly rounded. |
I := i; ... restore inexact flag |
R := r; ... restore rounded mode |
return sqrt(x):=y. |
|
(4) Special cases |
|
Square root of +inf, +-0, or NaN is itself; |
Square root of a negative number is NaN with invalid signal. |
|
|
B. sqrt(x) by Reciproot Iteration |
|
(1) Initial approximation |
|
Let x0 and x1 be the leading and the trailing 32-bit words of |
a floating point number x (in IEEE double format) respectively |
(see section A). By performing shifs and subtracts on x0 and y0, |
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. |
|
k := 0x5fe80000 - (x0>>1); |
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits |
|
Here k is a 32-bit integer and T2[] is an integer array |
containing correction terms. Now magically the floating |
value of y (y's leading 32-bit word is y0, the value of |
its trailing word y1 is set to zero) approximates 1/sqrt(x) |
to almost 7.8-bit. |
|
Value of T2: |
static int T2[64]= { |
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, |
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, |
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, |
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, |
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, |
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, |
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, |
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; |
|
(2) Iterative refinement |
|
Apply Reciproot iteration three times to y and multiply the |
result by x to get an approximation z that matches sqrt(x) |
to about 1 ulp. To be exact, we will have |
-1ulp < sqrt(x)-z<1.0625ulp. |
|
... set rounding mode to Round-to-nearest |
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) |
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) |
... special arrangement for better accuracy |
z := x*y ... 29 bits to sqrt(x), with z*y<1 |
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) |
|
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that |
(a) the term z*y in the final iteration is always less than 1; |
(b) the error in the final result is biased upward so that |
-1 ulp < sqrt(x) - z < 1.0625 ulp |
instead of |sqrt(x)-z|<1.03125ulp. |
|
(3) Final adjustment |
|
By twiddling y's last bit it is possible to force y to be |
correctly rounded according to the prevailing rounding mode |
as follows. Let r and i be copies of the rounding mode and |
inexact flag before entering the square root program. Also we |
use the expression y+-ulp for the next representable floating |
numbers (up and down) of y. Note that y+-ulp = either fixed |
point y+-1, or multiply y by nextafter(1,+-inf) in chopped |
mode. |
|
R := RZ; ... set rounding mode to round-toward-zero |
switch(r) { |
case RN: ... round-to-nearest |
if(x<= z*(z-ulp)...chopped) z = z - ulp; else |
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; |
break; |
case RZ:case RM: ... round-to-zero or round-to--inf |
R:=RP; ... reset rounding mod to round-to-+inf |
if(x<z*z ... rounded up) z = z - ulp; else |
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; |
break; |
case RP: ... round-to-+inf |
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else |
if(x>z*z ...chopped) z = z+ulp; |
break; |
} |
|
Remark 3. The above comparisons can be done in fixed point. For |
example, to compare x and w=z*z chopped, it suffices to compare |
x1 and w1 (the trailing parts of x and w), regarding them as |
two's complement integers. |
|
...Is z an exact square root? |
To determine whether z is an exact square root of x, let z1 be the |
trailing part of z, and also let x0 and x1 be the leading and |
trailing parts of x. |
|
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 |
I := 1; ... Raise Inexact flag: z is not exact |
else { |
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 |
k := z1 >> 26; ... get z's 25-th and 26-th |
fraction bits |
I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); |
} |
R:= r ... restore rounded mode |
return sqrt(x):=z. |
|
If multiplication is cheaper then the foregoing red tape, the |
Inexact flag can be evaluated by |
|
I := i; |
I := (z*z!=x) or I. |
|
Note that z*z can overwrite I; this value must be sensed if it is |
True. |
|
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be |
zero. |
|
-------------------- |
z1: | f2 | |
-------------------- |
bit 31 bit 0 |
|
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd |
or even of logb(x) have the following relations: |
|
------------------------------------------------- |
bit 27,26 of z1 bit 1,0 of x1 logb(x) |
------------------------------------------------- |
00 00 odd and even |
01 01 even |
10 10 odd |
10 00 even |
11 01 even |
------------------------------------------------- |
|
(4) Special cases (see (4) of Section A). |
|
*/ |
/w_j1.c
0,0 → 1,121
|
/* @(#)w_j1.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper of j1,y1 |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double j1(double x) /* wrapper j1 */ |
#else |
double j1(x) /* wrapper j1 */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_j1(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_j1(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; |
if(fabs(x)>X_TLOSS) { |
/* j1(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "j1"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef __STDC__ |
double y1(double x) /* wrapper y1 */ |
#else |
double y1(x) /* wrapper y1 */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_y1(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_y1(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; |
if(x <= 0.0){ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
/* y1(0) = -inf or y1(x<0) = NaN */ |
exc.type = DOMAIN; /* should be SING for IEEE */ |
exc.name = "y1"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
if(x>X_TLOSS) { |
/* y1(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "y1"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
|
|
|
|
|
/sf_isnan.c
0,0 → 1,47
/* sf_isnan.c -- float version of s_isnan.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* isnanf(x) returns 1 is x is nan, else 0; |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
int isnanf(float x) |
#else |
int isnanf(x) |
float x; |
#endif |
{ |
__int32_t ix; |
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; |
return FLT_UWORD_IS_NAN(ix); |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
int isnan(double x) |
#else |
int isnan(x) |
double x; |
#endif |
{ |
return isnanf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wrf_gamma.c
0,0 → 1,74
/* wrf_gamma.c -- float version of wr_gamma.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper float gammaf_r(float x, int *signgamp) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float gammaf_r(float x, int *signgamp) /* wrapper lgammaf_r */ |
#else |
float gammaf_r(x,signgamp) /* wrapper lgammaf_r */ |
float x; int *signgamp; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_gammaf_r(x,signgamp); |
#else |
float y; |
struct exception exc; |
y = __ieee754_gammaf_r(x,signgamp); |
if(_LIB_VERSION == _IEEE_) return y; |
if(!finitef(y)&&finitef(x)) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "gammaf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if(floorf(x)==x&&x<=(float)0.0) { |
/* gammaf(-integer) or gamma(0) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* gammaf(finite) overflow */ |
exc.type = OVERFLOW; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return y; |
#endif |
} |
/s_signif.c
0,0 → 1,34
|
/* @(#)s_signif.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* significand(x) computes just |
* scalb(x, (double) -ilogb(x)), |
* for exercising the fraction-part(F) IEEE 754-1985 test vector. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double significand(double x) |
#else |
double significand(x) |
double x; |
#endif |
{ |
return __ieee754_scalb(x,(double) -ilogb(x)); |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/ef_asin.c
0,0 → 1,88
/* ef_asin.c -- float version of e_asin.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
one = 1.0000000000e+00, /* 0x3F800000 */ |
huge = 1.000e+30, |
pio2_hi = 1.57079637050628662109375f, |
pio2_lo = -4.37113900018624283e-8f, |
pio4_hi = 0.785398185253143310546875f, |
/* coefficient for R(x^2) */ |
pS0 = 1.6666667163e-01, /* 0x3e2aaaab */ |
pS1 = -3.2556581497e-01, /* 0xbea6b090 */ |
pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */ |
pS3 = -4.0055535734e-02, /* 0xbd241146 */ |
pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */ |
pS5 = 3.4793309169e-05, /* 0x3811ef08 */ |
qS1 = -2.4033949375e+00, /* 0xc019d139 */ |
qS2 = 2.0209457874e+00, /* 0x4001572d */ |
qS3 = -6.8828397989e-01, /* 0xbf303361 */ |
qS4 = 7.7038154006e-02; /* 0x3d9dc62e */ |
|
#ifdef __STDC__ |
float __ieee754_asinf(float x) |
#else |
float __ieee754_asinf(x) |
float x; |
#endif |
{ |
float t,w,p,q,c,r,s; |
__int32_t hx,ix; |
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix==0x3f800000) { |
/* asin(1)=+-pi/2 with inexact */ |
return x*pio2_hi+x*pio2_lo; |
} else if(ix> 0x3f800000) { /* |x|>= 1 */ |
return (x-x)/(x-x); /* asin(|x|>1) is NaN */ |
} else if (ix<0x3f000000) { /* |x|<0.5 */ |
if(ix<0x32000000) { /* if |x| < 2**-27 */ |
if(huge+x>one) return x;/* return x with inexact if x!=0*/ |
} else { |
t = x*x; |
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
w = p/q; |
return x+x*w; |
} |
} |
/* 1> |x|>= 0.5 */ |
w = one-fabsf(x); |
t = w*(float)0.5; |
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); |
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); |
s = __ieee754_sqrtf(t); |
if(ix>=0x3F79999A) { /* if |x| > 0.975 */ |
w = p/q; |
t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo); |
} else { |
__int32_t iw; |
w = s; |
GET_FLOAT_WORD(iw,w); |
SET_FLOAT_WORD(w,iw&0xfffff000); |
c = (t-w*w)/(s+w); |
r = p/q; |
p = (float)2.0*s*r-(pio2_lo-(float)2.0*c); |
q = pio4_hi-(float)2.0*w; |
t = pio4_hi-(p-q); |
} |
if(hx>0) return t; else return -t; |
} |
/wf_j1.c
0,0 → 1,139
/* wf_j1.c -- float version of w_j1.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper of j1f,y1f |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
|
#ifdef __STDC__ |
float j1f(float x) /* wrapper j1f */ |
#else |
float j1f(x) /* wrapper j1f */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_j1f(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_j1f(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; |
if(fabsf(x)>(float)X_TLOSS) { |
/* j1f(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "j1f"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef __STDC__ |
float y1f(float x) /* wrapper y1f */ |
#else |
float y1f(x) /* wrapper y1f */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_y1f(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_y1f(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; |
if(x <= (float)0.0){ |
/* y1f(0) = -inf or y1f(x<0) = NaN */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = DOMAIN; /* should be SING for IEEE */ |
exc.name = "y1f"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} |
if(x>(float)X_TLOSS) { |
/* y1f(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = "y1f"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double j1(double x) |
#else |
double j1(x) |
double x; |
#endif |
{ |
return (double) j1f((float) x); |
} |
|
#ifdef __STDC__ |
double y1(double x) |
#else |
double y1(x) |
double x; |
#endif |
{ |
return (double) y1f((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_frexp.c
0,0 → 1,114
|
/* @(#)s_frexp.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<frexp>>, <<frexpf>>---split floating-point number |
INDEX |
frexp |
INDEX |
frexpf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double frexp(double <[val]>, int *<[exp]>); |
float frexpf(float <[val]>, int *<[exp]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double frexp(<[val]>, <[exp]>) |
double <[val]>; |
int *<[exp]>; |
|
float frexpf(<[val]>, <[exp]>) |
float <[val]>; |
int *<[exp]>; |
|
|
DESCRIPTION |
All non zero, normal numbers can be described as <[m]> * 2**<[p]>. |
<<frexp>> represents the double <[val]> as a mantissa <[m]> |
and a power of two <[p]>. The resulting mantissa will always |
be greater than or equal to <<0.5>>, and less than <<1.0>> (as |
long as <[val]> is nonzero). The power of two will be stored |
in <<*>><[exp]>. |
|
@ifinfo |
<[m]> and <[p]> are calculated so that |
<[val]> is <[m]> times <<2>> to the power <[p]>. |
@end ifinfo |
@tex |
<[m]> and <[p]> are calculated so that |
$ val = m \times 2^p $. |
@end tex |
|
<<frexpf>> is identical, other than taking and returning |
floats rather than doubles. |
|
RETURNS |
<<frexp>> returns the mantissa <[m]>. If <[val]> is <<0>>, infinity, |
or Nan, <<frexp>> will set <<*>><[exp]> to <<0>> and return <[val]>. |
|
PORTABILITY |
<<frexp>> is ANSI. |
<<frexpf>> is an extension. |
|
|
*/ |
|
/* |
* for non-zero x |
* x = frexp(arg,&exp); |
* return a double fp quantity x such that 0.5 <= |x| <1.0 |
* and the corresponding binary exponent "exp". That is |
* arg = x*2^exp. |
* If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg |
* with *exp=0. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */ |
|
#ifdef __STDC__ |
double frexp(double x, int *eptr) |
#else |
double frexp(x, eptr) |
double x; int *eptr; |
#endif |
{ |
__int32_t hx, ix, lx; |
EXTRACT_WORDS(hx,lx,x); |
ix = 0x7fffffff&hx; |
*eptr = 0; |
if(ix>=0x7ff00000||((ix|lx)==0)) return x; /* 0,inf,nan */ |
if (ix<0x00100000) { /* subnormal */ |
x *= two54; |
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
*eptr = -54; |
} |
*eptr += (ix>>20)-1022; |
hx = (hx&0x800fffff)|0x3fe00000; |
SET_HIGH_WORD(x,hx); |
return x; |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/e_hypot.c
0,0 → 1,128
|
/* @(#)e_hypot.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_hypot(x,y) |
* |
* Method : |
* If (assume round-to-nearest) z=x*x+y*y |
* has error less than sqrt(2)/2 ulp, than |
* sqrt(z) has error less than 1 ulp (exercise). |
* |
* So, compute sqrt(x*x+y*y) with some care as |
* follows to get the error below 1 ulp: |
* |
* Assume x>y>0; |
* (if possible, set rounding to round-to-nearest) |
* 1. if x > 2y use |
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y |
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else |
* 2. if x <= 2y use |
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) |
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, |
* y1= y with lower 32 bits chopped, y2 = y-y1. |
* |
* NOTE: scaling may be necessary if some argument is too |
* large or too tiny |
* |
* Special cases: |
* hypot(x,y) is INF if x or y is +INF or -INF; else |
* hypot(x,y) is NAN if x or y is NAN. |
* |
* Accuracy: |
* hypot(x,y) returns sqrt(x^2+y^2) with error less |
* than 1 ulps (units in the last place) |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double __ieee754_hypot(double x, double y) |
#else |
double __ieee754_hypot(x,y) |
double x, y; |
#endif |
{ |
double a=x,b=y,t1,t2,y1,y2,w; |
__int32_t j,k,ha,hb; |
|
GET_HIGH_WORD(ha,x); |
ha &= 0x7fffffff; |
GET_HIGH_WORD(hb,y); |
hb &= 0x7fffffff; |
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} |
SET_HIGH_WORD(a,ha); /* a <- |a| */ |
SET_HIGH_WORD(b,hb); /* b <- |b| */ |
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ |
k=0; |
if(ha > 0x5f300000) { /* a>2**500 */ |
if(ha >= 0x7ff00000) { /* Inf or NaN */ |
__uint32_t low; |
w = a+b; /* for sNaN */ |
GET_LOW_WORD(low,a); |
if(((ha&0xfffff)|low)==0) w = a; |
GET_LOW_WORD(low,b); |
if(((hb^0x7ff00000)|low)==0) w = b; |
return w; |
} |
/* scale a and b by 2**-600 */ |
ha -= 0x25800000; hb -= 0x25800000; k += 600; |
SET_HIGH_WORD(a,ha); |
SET_HIGH_WORD(b,hb); |
} |
if(hb < 0x20b00000) { /* b < 2**-500 */ |
if(hb <= 0x000fffff) { /* subnormal b or 0 */ |
__uint32_t low; |
GET_LOW_WORD(low,b); |
if((hb|low)==0) return a; |
t1=0; |
SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */ |
b *= t1; |
a *= t1; |
k -= 1022; |
} else { /* scale a and b by 2^600 */ |
ha += 0x25800000; /* a *= 2^600 */ |
hb += 0x25800000; /* b *= 2^600 */ |
k -= 600; |
SET_HIGH_WORD(a,ha); |
SET_HIGH_WORD(b,hb); |
} |
} |
/* medium size a and b */ |
w = a-b; |
if (w>b) { |
t1 = 0; |
SET_HIGH_WORD(t1,ha); |
t2 = a-t1; |
w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1))); |
} else { |
a = a+a; |
y1 = 0; |
SET_HIGH_WORD(y1,hb); |
y2 = b - y1; |
t1 = 0; |
SET_HIGH_WORD(t1,ha+0x00100000); |
t2 = a - t1; |
w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); |
} |
if(k!=0) { |
__uint32_t high; |
t1 = 1.0; |
GET_HIGH_WORD(high,t1); |
SET_HIGH_WORD(t1,high+(k<<20)); |
return t1*w; |
} else return w; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/math.tex
0,0 → 1,199
@node Math |
@chapter Mathematical Functions (@file{math.h}) |
|
This chapter groups a wide variety of mathematical functions. The |
corresponding definitions and declarations are in @file{math.h}. |
Two definitions from @file{math.h} are of particular interest. |
|
@enumerate |
@item |
The representation of infinity as a @code{double} is defined as |
@code{HUGE_VAL}; this number is returned on overflow by many functions. |
|
@item |
The structure @code{exception} is used when you write customized error |
handlers for the mathematical functions. You can customize error |
handling for most of these functions by defining your own version of |
@code{matherr}; see the section on @code{matherr} for details. |
@end enumerate |
|
@cindex system calls |
@cindex support subroutines |
@cindex stubs |
@cindex OS stubs |
Since the error handling code calls @code{fputs}, the mathematical |
subroutines require stubs or minimal implementations for the same list |
of OS subroutines as @code{fputs}: @code{close}, @code{fstat}, |
@code{isatty}, @code{lseek}, @code{read}, @code{sbrk}, @code{write}. |
@xref{syscalls,,System Calls, libc.info, The Cygnus C Support Library}, |
for a discussion and for sample minimal implementations of these support |
subroutines. |
|
Alternative declarations of the mathematical functions, which exploit |
specific machine capabilities to operate faster---but generally have |
less error checking and may reflect additional limitations on some |
machines---are available when you include @file{fastmath.h} instead of |
@file{math.h}. |
|
@menu |
* version:: Version of library |
* acos:: Arccosine |
* acosh:: Inverse hyperbolic cosine |
* asin:: Arcsine |
* asinh:: Inverse hyperbolic sine |
* atan:: Arctangent |
* atan2:: Arctangent of y/x |
* atanh:: Inverse hyperbolic tangent |
* jN:: Bessel functions (jN, yN) |
* cbrt:: Cube root |
* copysign:: Sign of Y, magnitude of X |
* cosh:: Hyperbolic cosine |
* erf:: Error function (erf, erfc) |
* exp:: Exponential |
* expm1:: Exponential of x, - 1 |
* fabs:: Absolute value (magnitude) |
* floor:: Floor and ceiling (floor, ceil) |
* fmod:: Floating-point remainder (modulo) |
* frexp:: Split floating-point number |
* gamma:: Logarithmic gamma function |
* hypot:: Distance from origin |
* ilogb:: Get exponent |
* infinity:: Floating infinity |
* isnan:: Check type of number |
* ldexp:: Load exponent |
* log:: Natural logarithms |
* log10:: Base 10 logarithms |
* log1p:: Log of 1 + X |
* matherr:: Modifiable math error handler |
* modf:: Split fractional and integer parts |
* nan:: Floating Not a Number |
* nextafter:: Get next representable number |
* pow:: X to the power Y |
* remainder:: remainder of X divided by Y |
* scalbn:: scalbn |
* sin:: Sine or cosine (sin, cos) |
* sinh:: Hyperbolic sine |
* sqrt:: Positive square root |
* tan:: Tangent |
* tanh:: Hyperbolic tangent |
@end menu |
|
@page |
@node version |
@section Version of library |
|
There are four different versions of the math library routines: IEEE, |
POSIX, X/Open, or SVID. The version may be selected at runtime by |
setting the global variable @code{_LIB_VERSION}, defined in |
@file{math.h}. It may be set to one of the following constants defined |
in @file{math.h}: @code{_IEEE_}, @code{_POSIX_}, @code{_XOPEN_}, or |
@code{_SVID_}. The @code{_LIB_VERSION} variable is not specific to any |
thread, and changing it will affect all threads. |
|
The versions of the library differ only in how errors are handled. |
|
In IEEE mode, the @code{matherr} function is never called, no warning |
messages are printed, and @code{errno} is never set. |
|
In POSIX mode, @code{errno} is set correctly, but the @code{matherr} |
function is never called and no warning messages are printed. |
|
In X/Open mode, @code{errno} is set correctly, and @code{matherr} is |
called, but warning message are not printed. |
|
In SVID mode, functions which overflow return 3.40282346638528860e+38, |
the maximum single precision floating point value, rather than infinity. |
Also, @code{errno} is set correctly, @code{matherr} is called, and, if |
@code{matherr} returns 0, warning messages are printed for some errors. |
For example, by default @samp{log(-1.0)} writes this message on standard |
error output: |
|
@example |
log: DOMAIN error |
@end example |
|
The library is set to X/Open mode by default. |
|
@page |
@include math/wacos.def |
|
@page |
@include math/wacosh.def |
|
@page |
@include math/wasin.def |
|
@page |
@include math/sasinh.def |
|
@page |
@include math/satan.def |
|
@page |
@include math/watan2.def |
|
@page |
@include math/watanh.def |
|
@page |
@include math/wj0.def |
|
@page |
@include math/wcosh.def |
|
@page |
@include math/serf.def |
|
@page |
@include math/wexp.def |
|
@page |
@include math/sfabs.def |
|
@page |
@include math/sfloor.def |
|
@page |
@include math/wfmod.def |
|
@page |
@include math/sfrexp.def |
|
@page |
@include math/wgamma.def |
|
@page |
@include math/whypot.def |
|
@page |
@include math/sisnan.def |
|
@page |
@include math/sldexp.def |
|
@page |
@include math/wlog.def |
|
@page |
@include math/wlog10.def |
|
@page |
@include math/wpow.def |
|
@page |
@include math/wremainder.def |
|
@page |
@include math/wsqrt.def |
|
@page |
@include math/ssin.def |
|
@page |
@include math/wsinh.def |
|
@page |
@include math/stan.def |
|
@page |
@include math/stanh.def |
/kf_sin.c
0,0 → 1,49
/* kf_sin.c -- float version of k_sin.c |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
half = 5.0000000000e-01,/* 0x3f000000 */ |
S1 = -1.6666667163e-01, /* 0xbe2aaaab */ |
S2 = 8.3333337680e-03, /* 0x3c088889 */ |
S3 = -1.9841270114e-04, /* 0xb9500d01 */ |
S4 = 2.7557314297e-06, /* 0x3638ef1b */ |
S5 = -2.5050759689e-08, /* 0xb2d72f34 */ |
S6 = 1.5896910177e-10; /* 0x2f2ec9d3 */ |
|
#ifdef __STDC__ |
float __kernel_sinf(float x, float y, int iy) |
#else |
float __kernel_sinf(x, y, iy) |
float x,y; int iy; /* iy=0 if y is zero */ |
#endif |
{ |
float z,r,v; |
__int32_t ix; |
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; /* high word of x */ |
if(ix<0x32000000) /* |x| < 2**-27 */ |
{if((int)x==0) return x;} /* generate inexact */ |
z = x*x; |
v = z*x; |
r = S2+z*(S3+z*(S4+z*(S5+z*S6))); |
if(iy==0) return x+v*(S1+z*r); |
else return x-((z*(half*y-v*r)-y)-v*S1); |
} |
/w_acos.c
0,0 → 1,118
|
/* @(#)w_acos.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<acos>>, <<acosf>>---arc cosine |
|
INDEX |
acos |
INDEX |
acosf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double acos(double <[x]>); |
float acosf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double acos(<[x]>) |
double <[x]>; |
|
float acosf(<[x]>) |
float <[x]>; |
|
|
|
DESCRIPTION |
|
<<acos>> computes the inverse cosine (arc cosine) of the input value. |
Arguments to <<acos>> must be in the range @minus{}1 to 1. |
|
<<acosf>> is identical to <<acos>>, except that it performs |
its calculations on <<floats>>. |
|
RETURNS |
@ifinfo |
<<acos>> and <<acosf>> return values in radians, in the range of 0 to pi. |
@end ifinfo |
@tex |
<<acos>> and <<acosf>> return values in radians, in the range of <<0>> to $\pi$. |
@end tex |
|
If <[x]> is not between @minus{}1 and 1, the returned value is NaN |
(not a number) the global variable <<errno>> is set to <<EDOM>>, and a |
<<DOMAIN error>> message is sent as standard error output. |
|
You can modify error handling for these functions using <<matherr>>. |
|
|
QUICKREF ANSI SVID POSIX RENTRANT |
acos y,y,y,m |
acosf n,n,n,m |
|
MATHREF |
acos, [-1,1], acos(arg),,, |
acos, NAN, arg,DOMAIN,EDOM |
|
MATHREF |
acosf, [-1,1], acosf(arg),,, |
acosf, NAN, argf,DOMAIN,EDOM |
|
*/ |
|
/* |
* wrap_acos(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double acos(double x) /* wrapper acos */ |
#else |
double acos(x) /* wrapper acos */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_acos(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_acos(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; |
if(fabs(x)>1.0) { |
/* acos(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = "acos"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
exc.retval = 0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_hypot.c
0,0 → 1,83
/* ef_hypot.c -- float version of e_hypot.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
float __ieee754_hypotf(float x, float y) |
#else |
float __ieee754_hypotf(x,y) |
float x, y; |
#endif |
{ |
float a=x,b=y,t1,t2,y1,y2,w; |
__int32_t j,k,ha,hb; |
|
GET_FLOAT_WORD(ha,x); |
ha &= 0x7fffffffL; |
GET_FLOAT_WORD(hb,y); |
hb &= 0x7fffffffL; |
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} |
SET_FLOAT_WORD(a,ha); /* a <- |a| */ |
SET_FLOAT_WORD(b,hb); /* b <- |b| */ |
if((ha-hb)>0xf000000L) {return a+b;} /* x/y > 2**30 */ |
k=0; |
if(ha > 0x58800000L) { /* a>2**50 */ |
if(!FLT_UWORD_IS_FINITE(ha)) { /* Inf or NaN */ |
w = a+b; /* for sNaN */ |
if(FLT_UWORD_IS_INFINITE(ha)) w = a; |
if(FLT_UWORD_IS_INFINITE(hb)) w = b; |
return w; |
} |
/* scale a and b by 2**-60 */ |
ha -= 0x5d800000L; hb -= 0x5d800000L; k += 60; |
SET_FLOAT_WORD(a,ha); |
SET_FLOAT_WORD(b,hb); |
} |
if(hb < 0x26800000L) { /* b < 2**-50 */ |
if(FLT_UWORD_IS_ZERO(hb)) { |
return a; |
} else if(FLT_UWORD_IS_SUBNORMAL(hb)) { |
SET_FLOAT_WORD(t1,0x3f000000L); /* t1=2^126 */ |
b *= t1; |
a *= t1; |
k -= 126; |
} else { /* scale a and b by 2^60 */ |
ha += 0x5d800000; /* a *= 2^60 */ |
hb += 0x5d800000; /* b *= 2^60 */ |
k -= 60; |
SET_FLOAT_WORD(a,ha); |
SET_FLOAT_WORD(b,hb); |
} |
} |
/* medium size a and b */ |
w = a-b; |
if (w>b) { |
SET_FLOAT_WORD(t1,ha&0xfffff000L); |
t2 = a-t1; |
w = __ieee754_sqrtf(t1*t1-(b*(-b)-t2*(a+t1))); |
} else { |
a = a+a; |
SET_FLOAT_WORD(y1,hb&0xfffff000L); |
y2 = b - y1; |
SET_FLOAT_WORD(t1,ha+0x00800000L); |
t2 = a - t1; |
w = __ieee754_sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b))); |
} |
if(k!=0) { |
SET_FLOAT_WORD(t1,0x3f800000L+(k<<23)); |
return t1*w; |
} else return w; |
} |
/sf_sin.c
0,0 → 1,62
/* sf_sin.c -- float version of s_sin.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
float sinf(float x) |
#else |
float sinf(x) |
float x; |
#endif |
{ |
float y[2],z=0.0; |
__int32_t n,ix; |
|
GET_FLOAT_WORD(ix,x); |
|
/* |x| ~< pi/4 */ |
ix &= 0x7fffffff; |
if(ix <= 0x3f490fd8) return __kernel_sinf(x,z,0); |
|
/* sin(Inf or NaN) is NaN */ |
else if (!FLT_UWORD_IS_FINITE(ix)) return x-x; |
|
/* argument reduction needed */ |
else { |
n = __ieee754_rem_pio2f(x,y); |
switch(n&3) { |
case 0: return __kernel_sinf(y[0],y[1],1); |
case 1: return __kernel_cosf(y[0],y[1]); |
case 2: return -__kernel_sinf(y[0],y[1],1); |
default: |
return -__kernel_cosf(y[0],y[1]); |
} |
} |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double sin(double x) |
#else |
double sin(x) |
double x; |
#endif |
{ |
return (double) sinf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_cosh.c
0,0 → 1,116
|
/* @(#)w_cosh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
|
FUNCTION |
<<cosh>>, <<coshf>>---hyperbolic cosine |
|
ANSI_SYNOPSIS |
#include <math.h> |
double cosh(double <[x]>); |
float coshf(float <[x]>) |
|
TRAD_SYNOPSIS |
#include <math.h> |
double cosh(<[x]>) |
double <[x]>; |
|
float coshf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
|
<<cosh>> computes the hyperbolic cosine of the argument <[x]>. |
<<cosh(<[x]>)>> is defined as |
@ifinfo |
. (exp(x) + exp(-x))/2 |
@end ifinfo |
@tex |
$${(e^x + e^{-x})} \over 2$$ |
@end tex |
|
Angles are specified in radians. |
|
<<coshf>> is identical, save that it takes and returns <<float>>. |
|
RETURNS |
The computed value is returned. When the correct value would create |
an overflow, <<cosh>> returns the value <<HUGE_VAL>> with the |
appropriate sign, and the global value <<errno>> is set to <<ERANGE>>. |
|
You can modify error handling for these functions using the |
function <<matherr>>. |
|
PORTABILITY |
<<cosh>> is ANSI. |
<<coshf>> is an extension. |
|
QUICKREF |
cosh ansi pure |
coshf - pure |
*/ |
|
/* |
* wrapper cosh(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double cosh(double x) /* wrapper cosh */ |
#else |
double cosh(x) /* wrapper cosh */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_cosh(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_cosh(x); |
if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; |
if(fabs(x)>7.10475860073943863426e+02) { |
/* cosh(finite) overflow */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = OVERFLOW; |
exc.name = "cosh"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_asinh.c
0,0 → 1,107
|
/* @(#)s_asinh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<asinh>>, <<asinhf>>---inverse hyperbolic sine |
|
INDEX |
asinh |
INDEX |
asinhf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double asinh(double <[x]>); |
float asinhf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double asinh(<[x]>) |
double <[x]>; |
|
float asinhf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<asinh>> calculates the inverse hyperbolic sine of <[x]>. |
<<asinh>> is defined as |
@ifinfo |
. sgn(<[x]>) * log(abs(<[x]>) + sqrt(1+<[x]>*<[x]>)) |
@end ifinfo |
@tex |
$$sign(x) \times ln\Bigl(|x| + \sqrt{1+x^2}\Bigr)$$ |
@end tex |
|
<<asinhf>> is identical, other than taking and returning floats. |
|
RETURNS |
<<asinh>> and <<asinhf>> return the calculated value. |
|
PORTABILITY |
Neither <<asinh>> nor <<asinhf>> are ANSI C. |
|
*/ |
|
/* asinh(x) |
* Method : |
* Based on |
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] |
* we have |
* asinh(x) := x if 1+x*x=1, |
* := sign(x)*(log(x)+ln2)) for large |x|, else |
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else |
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
huge= 1.00000000000000000000e+300; |
|
#ifdef __STDC__ |
double asinh(double x) |
#else |
double asinh(x) |
double x; |
#endif |
{ |
double t,w; |
__int32_t hx,ix; |
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */ |
if(ix< 0x3e300000) { /* |x|<2**-28 */ |
if(huge+x>one) return x; /* return x inexact except 0 */ |
} |
if(ix>0x41b00000) { /* |x| > 2**28 */ |
w = __ieee754_log(fabs(x))+ln2; |
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */ |
t = fabs(x); |
w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t)); |
} else { /* 2.0 > |x| > 2**-28 */ |
t = x*x; |
w =log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t))); |
} |
if(hx>0) return w; else return -w; |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/wf_asin.c
0,0 → 1,71
/* wf_asin.c -- float version of w_asin.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* |
* wrapper asinf(x) |
*/ |
|
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float asinf(float x) /* wrapper asinf */ |
#else |
float asinf(x) /* wrapper asinf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_asinf(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_asinf(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; |
if(fabsf(x)>(float)1.0) { |
/* asinf(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = "asinf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0; |
if(_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double asin(double x) |
#else |
double asin(x) |
double x; |
#endif |
{ |
return (double) asinf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_hypot.c
0,0 → 1,109
|
/* @(#)w_hypot.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<hypot>>, <<hypotf>>---distance from origin |
INDEX |
hypot |
INDEX |
hypotf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double hypot(double <[x]>, double <[y]>); |
float hypotf(float <[x]>, float <[y]>); |
|
TRAD_SYNOPSIS |
double hypot(<[x]>, <[y]>) |
double <[x]>, <[y]>; |
|
float hypotf(<[x]>, <[y]>) |
float <[x]>, <[y]>; |
|
DESCRIPTION |
<<hypot>> calculates the Euclidean distance |
@tex |
$\sqrt{x^2+y^2}$ |
@end tex |
@ifinfo |
<<sqrt(<[x]>*<[x]> + <[y]>*<[y]>)>> |
@end ifinfo |
between the origin (0,0) and a point represented by the |
Cartesian coordinates (<[x]>,<[y]>). <<hypotf>> differs only |
in the type of its arguments and result. |
|
RETURNS |
Normally, the distance value is returned. On overflow, |
<<hypot>> returns <<HUGE_VAL>> and sets <<errno>> to |
<<ERANGE>>. |
|
You can change the error treatment with <<matherr>>. |
|
PORTABILITY |
<<hypot>> and <<hypotf>> are not ANSI C. */ |
|
/* |
* wrapper hypot(x,y) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double hypot(double x, double y)/* wrapper hypot */ |
#else |
double hypot(x,y) /* wrapper hypot */ |
double x,y; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_hypot(x,y); |
#else |
double z; |
struct exception exc; |
z = __ieee754_hypot(x,y); |
if(_LIB_VERSION == _IEEE_) return z; |
if((!finite(z))&&finite(x)&&finite(y)) { |
/* hypot(finite,finite) overflow */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = OVERFLOW; |
exc.name = "hypot"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = y; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_erf.c
0,0 → 1,373
|
/* @(#)s_erf.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function |
INDEX |
erf |
INDEX |
erff |
INDEX |
erfc |
INDEX |
erfcf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double erf(double <[x]>); |
float erff(float <[x]>); |
double erfc(double <[x]>); |
float erfcf(float <[x]>); |
TRAD_SYNOPSIS |
#include <math.h> |
|
double erf(<[x]>) |
double <[x]>; |
|
float erff(<[x]>) |
float <[x]>; |
|
double erfc(<[x]>) |
double <[x]>; |
|
float erfcf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<erf>> calculates an approximation to the ``error function'', |
which estimates the probability that an observation will fall within |
<[x]> standard deviations of the mean (assuming a normal |
distribution). |
@tex |
The error function is defined as |
$${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$ |
@end tex |
|
<<erfc>> calculates the complementary probability; that is, |
<<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>. <<erfc>> is computed directly, |
so that you can use it to avoid the loss of precision that would |
result from subtracting large probabilities (on large <[x]>) from 1. |
|
<<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the |
argument and result types. |
|
RETURNS |
For positive arguments, <<erf>> and all its variants return a |
probability---a number between 0 and 1. |
|
PORTABILITY |
None of the variants of <<erf>> are ANSI C. |
*/ |
|
/* double erf(double x) |
* double erfc(double x) |
* x |
* 2 |\ |
* erf(x) = --------- | exp(-t*t)dt |
* sqrt(pi) \| |
* 0 |
* |
* erfc(x) = 1-erf(x) |
* Note that |
* erf(-x) = -erf(x) |
* erfc(-x) = 2 - erfc(x) |
* |
* Method: |
* 1. For |x| in [0, 0.84375] |
* erf(x) = x + x*R(x^2) |
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25] |
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] |
* where R = P/Q where P is an odd poly of degree 8 and |
* Q is an odd poly of degree 10. |
* -57.90 |
* | R - (erf(x)-x)/x | <= 2 |
* |
* |
* Remark. The formula is derived by noting |
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) |
* and that |
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
* is close to one. The interval is chosen because the fix |
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is |
* near 0.6174), and by some experiment, 0.84375 is chosen to |
* guarantee the error is less than one ulp for erf. |
* |
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and |
* c = 0.84506291151 rounded to single (24 bits) |
* erf(x) = sign(x) * (c + P1(s)/Q1(s)) |
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 |
* 1+(c+P1(s)/Q1(s)) if x < 0 |
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 |
* Remark: here we use the taylor series expansion at x=1. |
* erf(1+s) = erf(1) + s*Poly(s) |
* = 0.845.. + P1(s)/Q1(s) |
* That is, we use rational approximation to approximate |
* erf(1+s) - (c = (single)0.84506291151) |
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
* where |
* P1(s) = degree 6 poly in s |
* Q1(s) = degree 6 poly in s |
* |
* 3. For x in [1.25,1/0.35(~2.857143)], |
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) |
* erf(x) = 1 - erfc(x) |
* where |
* R1(z) = degree 7 poly in z, (z=1/x^2) |
* S1(z) = degree 8 poly in z |
* |
* 4. For x in [1/0.35,28] |
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 |
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 |
* = 2.0 - tiny (if x <= -6) |
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else |
* erf(x) = sign(x)*(1.0 - tiny) |
* where |
* R2(z) = degree 6 poly in z, (z=1/x^2) |
* S2(z) = degree 7 poly in z |
* |
* Note1: |
* To compute exp(-x*x-0.5625+R/S), let s be a single |
* precision number and s := x; then |
* -x*x = -s*s + (s-x)*(s+x) |
* exp(-x*x-0.5626+R/S) = |
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
* Note2: |
* Here 4 and 5 make use of the asymptotic series |
* exp(-x*x) |
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) |
* x*sqrt(pi) |
* We use rational approximation to approximate |
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 |
* Here is the error bound for R1/S1 and R2/S2 |
* |R1/S1 - f(x)| < 2**(-62.57) |
* |R2/S2 - f(x)| < 2**(-61.52) |
* |
* 5. For inf > x >= 28 |
* erf(x) = sign(x) *(1 - tiny) (raise inexact) |
* erfc(x) = tiny*tiny (raise underflow) if x > 0 |
* = 2 - tiny if x<0 |
* |
* 7. Special case: |
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
* erfc/erf(NaN) is NaN |
*/ |
|
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
tiny = 1e-300, |
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ |
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
/* c = (float)0.84506291151 */ |
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ |
/* |
* Coefficients for approximation to erf on [0,0.84375] |
*/ |
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ |
efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ |
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ |
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ |
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ |
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ |
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ |
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ |
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ |
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ |
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ |
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ |
/* |
* Coefficients for approximation to erf in [0.84375,1.25] |
*/ |
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ |
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ |
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ |
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ |
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ |
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ |
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ |
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ |
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ |
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ |
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ |
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ |
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ |
/* |
* Coefficients for approximation to erfc in [1.25,1/0.35] |
*/ |
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ |
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ |
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ |
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ |
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ |
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ |
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ |
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ |
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ |
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ |
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ |
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ |
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ |
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ |
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ |
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ |
/* |
* Coefficients for approximation to erfc in [1/.35,28] |
*/ |
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ |
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ |
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ |
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ |
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ |
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ |
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ |
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ |
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ |
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ |
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ |
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ |
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ |
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ |
|
#ifdef __STDC__ |
double erf(double x) |
#else |
double erf(x) |
double x; |
#endif |
{ |
__int32_t hx,ix,i; |
double R,S,P,Q,s,y,z,r; |
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>=0x7ff00000) { /* erf(nan)=nan */ |
i = ((__uint32_t)hx>>31)<<1; |
return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */ |
} |
|
if(ix < 0x3feb0000) { /* |x|<0.84375 */ |
if(ix < 0x3e300000) { /* |x|<2**-28 */ |
if (ix < 0x00800000) |
return 0.125*(8.0*x+efx8*x); /*avoid underflow */ |
return x + efx*x; |
} |
z = x*x; |
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
y = r/s; |
return x + x*y; |
} |
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ |
s = fabs(x)-one; |
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
if(hx>=0) return erx + P/Q; else return -erx - P/Q; |
} |
if (ix >= 0x40180000) { /* inf>|x|>=6 */ |
if(hx>=0) return one-tiny; else return tiny-one; |
} |
x = fabs(x); |
s = one/(x*x); |
if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ |
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
ra5+s*(ra6+s*ra7)))))); |
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
sa5+s*(sa6+s*(sa7+s*sa8))))))); |
} else { /* |x| >= 1/0.35 */ |
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
rb5+s*rb6))))); |
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
sb5+s*(sb6+s*sb7)))))); |
} |
z = x; |
SET_LOW_WORD(z,0); |
r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S); |
if(hx>=0) return one-r/x; else return r/x-one; |
} |
|
#ifdef __STDC__ |
double erfc(double x) |
#else |
double erfc(x) |
double x; |
#endif |
{ |
__int32_t hx,ix; |
double R,S,P,Q,s,y,z,r; |
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>=0x7ff00000) { /* erfc(nan)=nan */ |
/* erfc(+-inf)=0,2 */ |
return (double)(((__uint32_t)hx>>31)<<1)+one/x; |
} |
|
if(ix < 0x3feb0000) { /* |x|<0.84375 */ |
if(ix < 0x3c700000) /* |x|<2**-56 */ |
return one-x; |
z = x*x; |
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); |
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); |
y = r/s; |
if(hx < 0x3fd00000) { /* x<1/4 */ |
return one-(x+x*y); |
} else { |
r = x*y; |
r += (x-half); |
return half - r ; |
} |
} |
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ |
s = fabs(x)-one; |
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); |
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); |
if(hx>=0) { |
z = one-erx; return z - P/Q; |
} else { |
z = erx+P/Q; return one+z; |
} |
} |
if (ix < 0x403c0000) { /* |x|<28 */ |
x = fabs(x); |
s = one/(x*x); |
if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ |
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( |
ra5+s*(ra6+s*ra7)))))); |
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( |
sa5+s*(sa6+s*(sa7+s*sa8))))))); |
} else { /* |x| >= 1/.35 ~ 2.857143 */ |
if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ |
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( |
rb5+s*rb6))))); |
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( |
sb5+s*(sb6+s*sb7)))))); |
} |
z = x; |
SET_LOW_WORD(z,0); |
r = __ieee754_exp(-z*z-0.5625)* |
__ieee754_exp((z-x)*(z+x)+R/S); |
if(hx>0) return r/x; else return two-r/x; |
} else { |
if(hx>0) return tiny*tiny; else return two-tiny; |
} |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/w_gamma.c
0,0 → 1,193
|
/* @(#)w_gamma.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* |
FUNCTION |
<<gamma>>, <<gammaf>>, <<lgamma>>, <<lgammaf>>, <<gamma_r>>, |
<<gammaf_r>>, <<lgamma_r>>, <<lgammaf_r>>---logarithmic gamma |
function |
INDEX |
gamma |
INDEX |
gammaf |
INDEX |
lgamma |
INDEX |
lgammaf |
INDEX |
gamma_r |
INDEX |
gammaf_r |
INDEX |
lgamma_r |
INDEX |
lgammaf_r |
|
ANSI_SYNOPSIS |
#include <math.h> |
double gamma(double <[x]>); |
float gammaf(float <[x]>); |
double lgamma(double <[x]>); |
float lgammaf(float <[x]>); |
double gamma_r(double <[x]>, int *<[signgamp]>); |
float gammaf_r(float <[x]>, int *<[signgamp]>); |
double lgamma_r(double <[x]>, int *<[signgamp]>); |
float lgammaf_r(float <[x]>, int *<[signgamp]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double gamma(<[x]>) |
double <[x]>; |
float gammaf(<[x]>) |
float <[x]>; |
double lgamma(<[x]>) |
double <[x]>; |
float lgammaf(<[x]>) |
float <[x]>; |
double gamma_r(<[x]>, <[signgamp]>) |
double <[x]>; |
int <[signgamp]>; |
float gammaf_r(<[x]>, <[signgamp]>) |
float <[x]>; |
int <[signgamp]>; |
double lgamma_r(<[x]>, <[signgamp]>) |
double <[x]>; |
int <[signgamp]>; |
float lgammaf_r(<[x]>, <[signgamp]>) |
float <[x]>; |
int <[signgamp]>; |
|
DESCRIPTION |
<<gamma>> calculates |
@tex |
$\mit ln\bigl(\Gamma(x)\bigr)$, |
@end tex |
the natural logarithm of the gamma function of <[x]>. The gamma function |
(<<exp(gamma(<[x]>))>>) is a generalization of factorial, and retains |
the property that |
@ifinfo |
<<exp(gamma(N))>> is equivalent to <<N*exp(gamma(N-1))>>. |
@end ifinfo |
@tex |
$\mit \Gamma(N)\equiv N\times\Gamma(N-1)$. |
@end tex |
Accordingly, the results of the gamma function itself grow very |
quickly. <<gamma>> is defined as |
@tex |
$\mit ln\bigl(\Gamma(x)\bigr)$ rather than simply $\mit \Gamma(x)$ |
@end tex |
@ifinfo |
the natural log of the gamma function, rather than the gamma function |
itself, |
@end ifinfo |
to extend the useful range of results representable. |
|
The sign of the result is returned in the global variable <<signgam>>, |
which is declared in math.h. |
|
<<gammaf>> performs the same calculation as <<gamma>>, but uses and |
returns <<float>> values. |
|
<<lgamma>> and <<lgammaf>> are alternate names for <<gamma>> and |
<<gammaf>>. The use of <<lgamma>> instead of <<gamma>> is a reminder |
that these functions compute the log of the gamma function, rather |
than the gamma function itself. |
|
The functions <<gamma_r>>, <<gammaf_r>>, <<lgamma_r>>, and |
<<lgammaf_r>> are just like <<gamma>>, <<gammaf>>, <<lgamma>>, and |
<<lgammaf>>, respectively, but take an additional argument. This |
additional argument is a pointer to an integer. This additional |
argument is used to return the sign of the result, and the global |
variable <<signgam>> is not used. These functions may be used for |
reentrant calls (but they will still set the global variable <<errno>> |
if an error occurs). |
|
RETURNS |
Normally, the computed result is returned. |
|
When <[x]> is a nonpositive integer, <<gamma>> returns <<HUGE_VAL>> |
and <<errno>> is set to <<EDOM>>. If the result overflows, <<gamma>> |
returns <<HUGE_VAL>> and <<errno>> is set to <<ERANGE>>. |
|
You can modify this error treatment using <<matherr>>. |
|
PORTABILITY |
Neither <<gamma>> nor <<gammaf>> is ANSI C. */ |
|
/* double gamma(double x) |
* Return the logarithm of the Gamma function of x. |
* |
* Method: call gamma_r |
*/ |
|
#include "fdlibm.h" |
#include <reent.h> |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double gamma(double x) |
#else |
double gamma(x) |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_gamma_r(x,&(_REENT->_new._reent._gamma_signgam)); |
#else |
double y; |
struct exception exc; |
y = __ieee754_gamma_r(x,&(_REENT->_new._reent._gamma_signgam)); |
if(_LIB_VERSION == _IEEE_) return y; |
if(!finite(y)&&finite(x)) { |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.name = "gamma"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if(floor(x)==x&&x<=0.0) { |
/* gamma(-integer) or gamma(0) */ |
exc.type = SING; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
} else { |
/* gamma(finite) overflow */ |
exc.type = OVERFLOW; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return y; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/er_gamma.c
0,0 → 1,32
|
/* @(#)er_gamma.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* __ieee754_gamma_r(x, signgamp) |
* Reentrant version of the logarithm of the Gamma function |
* with user provide pointer for the sign of Gamma(x). |
* |
* Method: See __ieee754_lgamma_r |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
double __ieee754_gamma_r(double x, int *signgamp) |
#else |
double __ieee754_gamma_r(x,signgamp) |
double x; int *signgamp; |
#endif |
{ |
return __ieee754_lgamma_r(x,signgamp); |
} |
/sf_floor.c
0,0 → 1,80
/* sf_floor.c -- float version of s_floor.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* floorf(x) |
* Return x rounded toward -inf to integral value |
* Method: |
* Bit twiddling. |
* Exception: |
* Inexact flag raised if x not equal to floorf(x). |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float huge = 1.0e30; |
#else |
static float huge = 1.0e30; |
#endif |
|
#ifdef __STDC__ |
float floorf(float x) |
#else |
float floorf(x) |
float x; |
#endif |
{ |
__int32_t i0,j0; |
__uint32_t i,ix; |
GET_FLOAT_WORD(i0,x); |
ix = (i0&0x7fffffff); |
j0 = (ix>>23)-0x7f; |
if(j0<23) { |
if(j0<0) { /* raise inexact if x != 0 */ |
if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */ |
if(i0>=0) {i0=0;} |
else if(!FLT_UWORD_IS_ZERO(ix)) |
{ i0=0xbf800000;} |
} |
} else { |
i = (0x007fffff)>>j0; |
if((i0&i)==0) return x; /* x is integral */ |
if(huge+x>(float)0.0) { /* raise inexact flag */ |
if(i0<0) i0 += (0x00800000)>>j0; |
i0 &= (~i); |
} |
} |
} else { |
if(!FLT_UWORD_IS_FINITE(ix)) return x+x; /* inf or NaN */ |
else return x; /* x is integral */ |
} |
SET_FLOAT_WORD(x,i0); |
return x; |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double floor(double x) |
#else |
double floor(x) |
double x; |
#endif |
{ |
return (double) floorf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_remainder.c
0,0 → 1,80
|
/* @(#)e_remainder.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_remainder(x,p) |
* Return : |
* returns x REM p = x - [x/p]*p as if in infinite |
* precise arithmetic, where [x/p] is the (infinite bit) |
* integer nearest x/p (in half way case choose the even one). |
* Method : |
* Based on fmod() return x-[x/p]chopped*p exactlp. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double zero = 0.0; |
#else |
static double zero = 0.0; |
#endif |
|
|
#ifdef __STDC__ |
double __ieee754_remainder(double x, double p) |
#else |
double __ieee754_remainder(x,p) |
double x,p; |
#endif |
{ |
__int32_t hx,hp; |
__uint32_t sx,lx,lp; |
double p_half; |
|
EXTRACT_WORDS(hx,lx,x); |
EXTRACT_WORDS(hp,lp,p); |
sx = hx&0x80000000; |
hp &= 0x7fffffff; |
hx &= 0x7fffffff; |
|
/* purge off exception values */ |
if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */ |
if((hx>=0x7ff00000)|| /* x not finite */ |
((hp>=0x7ff00000)&& /* p is NaN */ |
(((hp-0x7ff00000)|lp)!=0))) |
return (x*p)/(x*p); |
|
|
if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */ |
if (((hx-hp)|(lx-lp))==0) return zero*x; |
x = fabs(x); |
p = fabs(p); |
if (hp<0x00200000) { |
if(x+x>p) { |
x-=p; |
if(x+x>=p) x -= p; |
} |
} else { |
p_half = 0.5*p; |
if(x>p_half) { |
x-=p; |
if(x>=p_half) x -= p; |
} |
} |
GET_HIGH_WORD(hx,x); |
SET_HIGH_WORD(x,hx^sx); |
return x; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/k_standard.c
0,0 → 1,784
|
/* @(#)k_standard.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _USE_WRITE |
#include <stdio.h> /* fputs(), stderr */ |
#define WRITE2(u,v) fputs(u, stderr) |
#else /* !defined(_USE_WRITE) */ |
#include <unistd.h> /* write */ |
#define WRITE2(u,v) write(2, u, v) |
#undef fflush |
#endif /* !defined(_USE_WRITE) */ |
|
#ifdef __STDC__ |
static const double zero = 0.0; /* used as const */ |
#else |
static double zero = 0.0; /* used as const */ |
#endif |
|
/* |
* Standard conformance (non-IEEE) on exception cases. |
* Mapping: |
* 1 -- acos(|x|>1) |
* 2 -- asin(|x|>1) |
* 3 -- atan2(+-0,+-0) |
* 4 -- hypot overflow |
* 5 -- cosh overflow |
* 6 -- exp overflow |
* 7 -- exp underflow |
* 8 -- y0(0) |
* 9 -- y0(-ve) |
* 10-- y1(0) |
* 11-- y1(-ve) |
* 12-- yn(0) |
* 13-- yn(-ve) |
* 14-- lgamma(finite) overflow |
* 15-- lgamma(-integer) |
* 16-- log(0) |
* 17-- log(x<0) |
* 18-- log10(0) |
* 19-- log10(x<0) |
* 20-- pow(0.0,0.0) |
* 21-- pow(x,y) overflow |
* 22-- pow(x,y) underflow |
* 23-- pow(0,negative) |
* 24-- pow(neg,non-integral) |
* 25-- sinh(finite) overflow |
* 26-- sqrt(negative) |
* 27-- fmod(x,0) |
* 28-- remainder(x,0) |
* 29-- acosh(x<1) |
* 30-- atanh(|x|>1) |
* 31-- atanh(|x|=1) |
* 32-- scalb overflow |
* 33-- scalb underflow |
* 34-- j0(|x|>X_TLOSS) |
* 35-- y0(x>X_TLOSS) |
* 36-- j1(|x|>X_TLOSS) |
* 37-- y1(x>X_TLOSS) |
* 38-- jn(|x|>X_TLOSS, n) |
* 39-- yn(x>X_TLOSS, n) |
* 40-- gamma(finite) overflow |
* 41-- gamma(-integer) |
* 42-- pow(NaN,0.0) |
*/ |
|
|
#ifdef __STDC__ |
double __kernel_standard(double x, double y, int type) |
#else |
double __kernel_standard(x,y,type) |
double x,y; int type; |
#endif |
{ |
struct exception exc; |
#ifndef HUGE_VAL /* this is the only routine that uses HUGE_VAL */ |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
|
#ifdef _USE_WRITE |
/* (void) fflush(_stdout_r(p)); */ |
#endif |
exc.arg1 = x; |
exc.arg2 = y; |
exc.err = 0; |
switch(type) { |
case 1: |
case 101: |
/* acos(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "acos" : "acosf"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if(_LIB_VERSION == _SVID_) { |
(void) WRITE2("acos: DOMAIN error\n", 19); |
} */ |
errno = EDOM; |
} |
break; |
case 2: |
case 102: |
/* asin(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "asin" : "asinf"; |
exc.retval = zero; |
if(_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if(_LIB_VERSION == _SVID_) { |
(void) WRITE2("asin: DOMAIN error\n", 19); |
} */ |
errno = EDOM; |
} |
break; |
case 3: |
case 103: |
/* atan2(+-0,+-0) */ |
exc.arg1 = y; |
exc.arg2 = x; |
exc.type = DOMAIN; |
exc.name = type < 100 ? "atan2" : "atan2f"; |
exc.retval = zero; |
if(_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if(_LIB_VERSION == _SVID_) { |
(void) WRITE2("atan2: DOMAIN error\n", 20); |
} */ |
errno = EDOM; |
} |
break; |
case 4: |
case 104: |
/* hypot(finite,finite) overflow */ |
exc.type = OVERFLOW; |
exc.name = type < 100 ? "hypot" : "hypotf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 5: |
case 105: |
/* cosh(finite) overflow */ |
exc.type = OVERFLOW; |
exc.name = type < 100 ? "cosh" : "coshf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 6: |
case 106: |
/* exp(finite) overflow */ |
exc.type = OVERFLOW; |
exc.name = type < 100 ? "exp" : "expf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 7: |
case 107: |
/* exp(finite) underflow */ |
exc.type = UNDERFLOW; |
exc.name = type < 100 ? "exp" : "expf"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 8: |
case 108: |
/* y0(0) = -inf */ |
exc.type = DOMAIN; /* should be SING for IEEE */ |
exc.name = type < 100 ? "y0" : "y0f"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("y0: DOMAIN error\n", 17); |
} */ |
errno = EDOM; |
} |
break; |
case 9: |
case 109: |
/* y0(x<0) = NaN */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "y0" : "y0f"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/*if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("y0: DOMAIN error\n", 17); |
} */ |
errno = EDOM; |
} |
break; |
case 10: |
case 110: |
/* y1(0) = -inf */ |
exc.type = DOMAIN; /* should be SING for IEEE */ |
exc.name = type < 100 ? "y1" : "y1f"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("y1: DOMAIN error\n", 17); |
} */ |
errno = EDOM; |
} |
break; |
case 11: |
case 111: |
/* y1(x<0) = NaN */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "y1" : "y1f"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("y1: DOMAIN error\n", 17); |
} */ |
errno = EDOM; |
} |
break; |
case 12: |
case 112: |
/* yn(n,0) = -inf */ |
exc.type = DOMAIN; /* should be SING for IEEE */ |
exc.name = type < 100 ? "yn" : "ynf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("yn: DOMAIN error\n", 17); |
} */ |
errno = EDOM; |
} |
break; |
case 13: |
case 113: |
/* yn(x<0) = NaN */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "yn" : "ynf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("yn: DOMAIN error\n", 17); |
} */ |
errno = EDOM; |
} |
break; |
case 14: |
case 114: |
/* lgamma(finite) overflow */ |
exc.type = OVERFLOW; |
exc.name = type < 100 ? "lgamma" : "lgammaf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 15: |
case 115: |
/* lgamma(-integer) or lgamma(0) */ |
exc.type = SING; |
exc.name = type < 100 ? "lgamma" : "lgammaf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("lgamma: SING error\n", 19); |
} */ |
errno = EDOM; |
} |
break; |
case 16: |
case 116: |
/* log(0) */ |
exc.type = SING; |
exc.name = type < 100 ? "log" : "logf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("log: SING error\n", 16); |
} */ |
errno = EDOM; |
} |
break; |
case 17: |
case 117: |
/* log(x<0) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "log" : "logf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("log: DOMAIN error\n", 18); |
} */ |
errno = EDOM; |
} |
break; |
case 18: |
case 118: |
/* log10(0) */ |
exc.type = SING; |
exc.name = type < 100 ? "log10" : "log10f"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("log10: SING error\n", 18); |
} */ |
errno = EDOM; |
} |
break; |
case 19: |
case 119: |
/* log10(x<0) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "log10" : "log10f"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = -HUGE; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("log10: DOMAIN error\n", 20); |
} */ |
errno = EDOM; |
} |
break; |
case 20: |
case 120: |
/* pow(0.0,0.0) */ |
/* error only if _LIB_VERSION == _SVID_ */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "pow" : "powf"; |
exc.retval = zero; |
if (_LIB_VERSION != _SVID_) exc.retval = 1.0; |
else if (!matherr(&exc)) { |
/* (void) WRITE2("pow(0,0): DOMAIN error\n", 23); */ |
errno = EDOM; |
} |
break; |
case 21: |
case 121: |
/* pow(x,y) overflow */ |
exc.type = OVERFLOW; |
exc.name = type < 100 ? "pow" : "powf"; |
if (_LIB_VERSION == _SVID_) { |
exc.retval = HUGE; |
y *= 0.5; |
if(x<zero&&rint(y)!=y) exc.retval = -HUGE; |
} else { |
exc.retval = HUGE_VAL; |
y *= 0.5; |
if(x<zero&&rint(y)!=y) exc.retval = -HUGE_VAL; |
} |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 22: |
case 122: |
/* pow(x,y) underflow */ |
exc.type = UNDERFLOW; |
exc.name = type < 100 ? "pow" : "powf"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 23: |
case 123: |
/* 0**neg */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "pow" : "powf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = zero; |
else |
exc.retval = -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("pow(0,neg): DOMAIN error\n", 25); |
} */ |
errno = EDOM; |
} |
break; |
case 24: |
case 124: |
/* neg**non-integral */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "pow" : "powf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = zero; |
else |
exc.retval = zero/zero; /* X/Open allow NaN */ |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("neg**non-integral: DOMAIN error\n", 32); |
} */ |
errno = EDOM; |
} |
break; |
case 25: |
case 125: |
/* sinh(finite) overflow */ |
exc.type = OVERFLOW; |
exc.name = type < 100 ? "sinh" : "sinhf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = ( (x>zero) ? HUGE : -HUGE); |
else |
exc.retval = ( (x>zero) ? HUGE_VAL : -HUGE_VAL); |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 26: |
case 126: |
/* sqrt(x<0) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "sqrt" : "sqrtf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = zero; |
else |
exc.retval = zero/zero; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("sqrt: DOMAIN error\n", 19); |
} */ |
errno = EDOM; |
} |
break; |
case 27: |
case 127: |
/* fmod(x,0) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "fmod" : "fmodf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = x; |
else |
exc.retval = zero/zero; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("fmod: DOMAIN error\n", 20); |
} */ |
errno = EDOM; |
} |
break; |
case 28: |
case 128: |
/* remainder(x,0) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "remainder" : "remainderf"; |
exc.retval = zero/zero; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("remainder: DOMAIN error\n", 24); |
} */ |
errno = EDOM; |
} |
break; |
case 29: |
case 129: |
/* acosh(x<1) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "acosh" : "acoshf"; |
exc.retval = zero/zero; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("acosh: DOMAIN error\n", 20); |
} */ |
errno = EDOM; |
} |
break; |
case 30: |
case 130: |
/* atanh(|x|>1) */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "atanh" : "atanhf"; |
exc.retval = zero/zero; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("atanh: DOMAIN error\n", 20); |
} */ |
errno = EDOM; |
} |
break; |
case 31: |
case 131: |
/* atanh(|x|=1) */ |
exc.type = SING; |
exc.name = type < 100 ? "atanh" : "atanhf"; |
exc.retval = x/zero; /* sign(x)*inf */ |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("atanh: SING error\n", 18); |
} */ |
errno = EDOM; |
} |
break; |
case 32: |
case 132: |
/* scalb overflow; SVID also returns +-HUGE_VAL */ |
exc.type = OVERFLOW; |
exc.name = type < 100 ? "scalb" : "scalbf"; |
exc.retval = x > zero ? HUGE_VAL : -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 33: |
case 133: |
/* scalb underflow */ |
exc.type = UNDERFLOW; |
exc.name = type < 100 ? "scalb" : "scalbf"; |
exc.retval = copysign(zero,x); |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 34: |
case 134: |
/* j0(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = type < 100 ? "j0" : "j0f"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2(exc.name, 2); |
(void) WRITE2(": TLOSS error\n", 14); |
} */ |
errno = ERANGE; |
} |
break; |
case 35: |
case 135: |
/* y0(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = type < 100 ? "y0" : "y0f"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2(exc.name, 2); |
(void) WRITE2(": TLOSS error\n", 14); |
} */ |
errno = ERANGE; |
} |
break; |
case 36: |
case 136: |
/* j1(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = type < 100 ? "j1" : "j1f"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2(exc.name, 2); |
(void) WRITE2(": TLOSS error\n", 14); |
} */ |
errno = ERANGE; |
} |
break; |
case 37: |
case 137: |
/* y1(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = type < 100 ? "y1" : "y1f"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2(exc.name, 2); |
(void) WRITE2(": TLOSS error\n", 14); |
} */ |
errno = ERANGE; |
} |
break; |
case 38: |
case 138: |
/* jn(|x|>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = type < 100 ? "jn" : "jnf"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2(exc.name, 2); |
(void) WRITE2(": TLOSS error\n", 14); |
} */ |
errno = ERANGE; |
} |
break; |
case 39: |
case 139: |
/* yn(x>X_TLOSS) */ |
exc.type = TLOSS; |
exc.name = type < 100 ? "yn" : "ynf"; |
exc.retval = zero; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2(exc.name, 2); |
(void) WRITE2(": TLOSS error\n", 14); |
} */ |
errno = ERANGE; |
} |
break; |
case 40: |
case 140: |
/* gamma(finite) overflow */ |
exc.type = OVERFLOW; |
exc.name = type < 100 ? "gamma" : "gammaf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
break; |
case 41: |
case 141: |
/* gamma(-integer) or gamma(0) */ |
exc.type = SING; |
exc.name = type < 100 ? "gamma" : "gammaf"; |
if (_LIB_VERSION == _SVID_) |
exc.retval = HUGE; |
else |
exc.retval = HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
/* if (_LIB_VERSION == _SVID_) { |
(void) WRITE2("gamma: SING error\n", 18); |
} */ |
errno = EDOM; |
} |
break; |
case 42: |
case 142: |
/* pow(NaN,0.0) */ |
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */ |
exc.type = DOMAIN; |
exc.name = type < 100 ? "pow" : "powf"; |
exc.retval = x; |
if (_LIB_VERSION == _IEEE_ || |
_LIB_VERSION == _POSIX_) exc.retval = 1.0; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
break; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
|
|
/e_jn.c
0,0 → 1,281
|
/* @(#)e_jn.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* __ieee754_jn(n, x), __ieee754_yn(n, x) |
* floating point Bessel's function of the 1st and 2nd kind |
* of order n |
* |
* Special cases: |
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
* Note 2. About jn(n,x), yn(n,x) |
* For n=0, j0(x) is called, |
* for n=1, j1(x) is called, |
* for n<x, forward recursion us used starting |
* from values of j0(x) and j1(x). |
* for n>x, a continued fraction approximation to |
* j(n,x)/j(n-1,x) is evaluated and then backward |
* recursion is used starting from a supposed value |
* for j(n,x). The resulting value of j(0,x) is |
* compared with the actual value to correct the |
* supposed value of j(n,x). |
* |
* yn(n,x) is similar in all respects, except |
* that forward recursion is used for all |
* values of n>1. |
* |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ |
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ |
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ |
|
#ifdef __STDC__ |
static const double zero = 0.00000000000000000000e+00; |
#else |
static double zero = 0.00000000000000000000e+00; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_jn(int n, double x) |
#else |
double __ieee754_jn(n,x) |
int n; double x; |
#endif |
{ |
__int32_t i,hx,ix,lx, sgn; |
double a, b, temp, di; |
double z, w; |
|
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
* Thus, J(-n,x) = J(n,-x) |
*/ |
EXTRACT_WORDS(hx,lx,x); |
ix = 0x7fffffff&hx; |
/* if J(n,NaN) is NaN */ |
if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; |
if(n<0){ |
n = -n; |
x = -x; |
hx ^= 0x80000000; |
} |
if(n==0) return(__ieee754_j0(x)); |
if(n==1) return(__ieee754_j1(x)); |
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
x = fabs(x); |
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */ |
b = zero; |
else if((double)n<=x) { |
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
if(ix>=0x52D00000) { /* x > 2**302 */ |
/* (x >> n**2) |
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
* Let s=sin(x), c=cos(x), |
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
* |
* n sin(xn)*sqt2 cos(xn)*sqt2 |
* ---------------------------------- |
* 0 s-c c+s |
* 1 -s-c -c+s |
* 2 -s+c -c-s |
* 3 s+c c-s |
*/ |
switch(n&3) { |
case 0: temp = cos(x)+sin(x); break; |
case 1: temp = -cos(x)+sin(x); break; |
case 2: temp = -cos(x)-sin(x); break; |
case 3: temp = cos(x)-sin(x); break; |
} |
b = invsqrtpi*temp/__ieee754_sqrt(x); |
} else { |
a = __ieee754_j0(x); |
b = __ieee754_j1(x); |
for(i=1;i<n;i++){ |
temp = b; |
b = b*((double)(i+i)/x) - a; /* avoid underflow */ |
a = temp; |
} |
} |
} else { |
if(ix<0x3e100000) { /* x < 2**-29 */ |
/* x is tiny, return the first Taylor expansion of J(n,x) |
* J(n,x) = 1/n!*(x/2)^n - ... |
*/ |
if(n>33) /* underflow */ |
b = zero; |
else { |
temp = x*0.5; b = temp; |
for (a=one,i=2;i<=n;i++) { |
a *= (double)i; /* a = n! */ |
b *= temp; /* b = (x/2)^n */ |
} |
b = b/a; |
} |
} else { |
/* use backward recurrence */ |
/* x x^2 x^2 |
* J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
* 2n - 2(n+1) - 2(n+2) |
* |
* 1 1 1 |
* (for large x) = ---- ------ ------ ..... |
* 2n 2(n+1) 2(n+2) |
* -- - ------ - ------ - |
* x x x |
* |
* Let w = 2n/x and h=2/x, then the above quotient |
* is equal to the continued fraction: |
* 1 |
* = ----------------------- |
* 1 |
* w - ----------------- |
* 1 |
* w+h - --------- |
* w+2h - ... |
* |
* To determine how many terms needed, let |
* Q(0) = w, Q(1) = w(w+h) - 1, |
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
* When Q(k) > 1e4 good for single |
* When Q(k) > 1e9 good for double |
* When Q(k) > 1e17 good for quadruple |
*/ |
/* determine k */ |
double t,v; |
double q0,q1,h,tmp; __int32_t k,m; |
w = (n+n)/(double)x; h = 2.0/(double)x; |
q0 = w; z = w+h; q1 = w*z - 1.0; k=1; |
while(q1<1.0e9) { |
k += 1; z += h; |
tmp = z*q1 - q0; |
q0 = q1; |
q1 = tmp; |
} |
m = n+n; |
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
a = t; |
b = one; |
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
* Hence, if n*(log(2n/x)) > ... |
* single 8.8722839355e+01 |
* double 7.09782712893383973096e+02 |
* long double 1.1356523406294143949491931077970765006170e+04 |
* then recurrent value may overflow and the result is |
* likely underflow to zero |
*/ |
tmp = n; |
v = two/x; |
tmp = tmp*__ieee754_log(fabs(v*tmp)); |
if(tmp<7.09782712893383973096e+02) { |
for(i=n-1,di=(double)(i+i);i>0;i--){ |
temp = b; |
b *= di; |
b = b/x - a; |
a = temp; |
di -= two; |
} |
} else { |
for(i=n-1,di=(double)(i+i);i>0;i--){ |
temp = b; |
b *= di; |
b = b/x - a; |
a = temp; |
di -= two; |
/* scale b to avoid spurious overflow */ |
if(b>1e100) { |
a /= b; |
t /= b; |
b = one; |
} |
} |
} |
b = (t*__ieee754_j0(x)/b); |
} |
} |
if(sgn==1) return -b; else return b; |
} |
|
#ifdef __STDC__ |
double __ieee754_yn(int n, double x) |
#else |
double __ieee754_yn(n,x) |
int n; double x; |
#endif |
{ |
__int32_t i,hx,ix,lx; |
__int32_t sign; |
double a, b, temp; |
|
EXTRACT_WORDS(hx,lx,x); |
ix = 0x7fffffff&hx; |
/* if Y(n,NaN) is NaN */ |
if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; |
if((ix|lx)==0) return -one/zero; |
if(hx<0) return zero/zero; |
sign = 1; |
if(n<0){ |
n = -n; |
sign = 1 - ((n&1)<<1); |
} |
if(n==0) return(__ieee754_y0(x)); |
if(n==1) return(sign*__ieee754_y1(x)); |
if(ix==0x7ff00000) return zero; |
if(ix>=0x52D00000) { /* x > 2**302 */ |
/* (x >> n**2) |
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
* Let s=sin(x), c=cos(x), |
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
* |
* n sin(xn)*sqt2 cos(xn)*sqt2 |
* ---------------------------------- |
* 0 s-c c+s |
* 1 -s-c -c+s |
* 2 -s+c -c-s |
* 3 s+c c-s |
*/ |
switch(n&3) { |
case 0: temp = sin(x)-cos(x); break; |
case 1: temp = -sin(x)-cos(x); break; |
case 2: temp = -sin(x)+cos(x); break; |
case 3: temp = sin(x)+cos(x); break; |
} |
b = invsqrtpi*temp/__ieee754_sqrt(x); |
} else { |
__uint32_t high; |
a = __ieee754_y0(x); |
b = __ieee754_y1(x); |
/* quit if b is -inf */ |
GET_HIGH_WORD(high,b); |
for(i=1;i<n&&high!=0xfff00000;i++){ |
temp = b; |
b = ((double)(i+i)/x)*b - a; |
GET_HIGH_WORD(high,b); |
a = temp; |
} |
} |
if(sign>0) return b; else return -b; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_drem.c
0,0 → 1,15
/* |
* drem() wrapper for remainder(). |
* |
* Written by J.T. Conklin, <jtc@wimsey.com> |
* Placed into the Public Domain, 1994. |
*/ |
|
#include "fdlibm.h" |
|
double |
drem(x, y) |
double x, y; |
{ |
return remainder(x, y); |
} |
/ef_remainder.c
0,0 → 1,68
/* ef_remainder.c -- float version of e_remainder.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float zero = 0.0; |
#else |
static float zero = 0.0; |
#endif |
|
|
#ifdef __STDC__ |
float __ieee754_remainderf(float x, float p) |
#else |
float __ieee754_remainderf(x,p) |
float x,p; |
#endif |
{ |
__int32_t hx,hp; |
__uint32_t sx; |
float p_half; |
|
GET_FLOAT_WORD(hx,x); |
GET_FLOAT_WORD(hp,p); |
sx = hx&0x80000000; |
hp &= 0x7fffffff; |
hx &= 0x7fffffff; |
|
/* purge off exception values */ |
if(FLT_UWORD_IS_ZERO(hp)|| |
!FLT_UWORD_IS_FINITE(hx)|| |
FLT_UWORD_IS_NAN(hp)) |
return (x*p)/(x*p); |
|
|
if (hp<=FLT_UWORD_HALF_MAX) x = __ieee754_fmodf(x,p+p); /* now x < 2p */ |
if ((hx-hp)==0) return zero*x; |
x = fabsf(x); |
p = fabsf(p); |
if (hp<0x01000000) { |
if(x+x>p) { |
x-=p; |
if(x+x>=p) x -= p; |
} |
} else { |
p_half = (float)0.5*p; |
if(x>p_half) { |
x-=p; |
if(x>=p_half) x -= p; |
} |
} |
GET_FLOAT_WORD(hx,x); |
SET_FLOAT_WORD(x,hx^sx); |
return x; |
} |
/ef_j0.c
0,0 → 1,439
/* ef_j0.c -- float version of e_j0.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static float pzerof(float), qzerof(float); |
#else |
static float pzerof(), qzerof(); |
#endif |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
huge = 1e30, |
one = 1.0, |
invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
tpi = 6.3661974669e-01, /* 0x3f22f983 */ |
/* R0/S0 on [0, 2.00] */ |
R02 = 1.5625000000e-02, /* 0x3c800000 */ |
R03 = -1.8997929874e-04, /* 0xb947352e */ |
R04 = 1.8295404516e-06, /* 0x35f58e88 */ |
R05 = -4.6183270541e-09, /* 0xb19eaf3c */ |
S01 = 1.5619102865e-02, /* 0x3c7fe744 */ |
S02 = 1.1692678527e-04, /* 0x38f53697 */ |
S03 = 5.1354652442e-07, /* 0x3509daa6 */ |
S04 = 1.1661400734e-09; /* 0x30a045e8 */ |
|
#ifdef __STDC__ |
static const float zero = 0.0; |
#else |
static float zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_j0f(float x) |
#else |
float __ieee754_j0f(x) |
float x; |
#endif |
{ |
float z, s,c,ss,cc,r,u,v; |
__int32_t hx,ix; |
|
GET_FLOAT_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(!FLT_UWORD_IS_FINITE(ix)) return one/(x*x); |
x = fabsf(x); |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
s = sinf(x); |
c = cosf(x); |
ss = s-c; |
cc = s+c; |
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */ |
z = -cosf(x+x); |
if ((s*c)<zero) cc = z/ss; |
else ss = z/cc; |
} |
/* |
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
*/ |
if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x); |
else { |
u = pzerof(x); v = qzerof(x); |
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x); |
} |
return z; |
} |
if(ix<0x39000000) { /* |x| < 2**-13 */ |
if(huge+x>one) { /* raise inexact if x != 0 */ |
if(ix<0x32000000) return one; /* |x|<2**-27 */ |
else return one - (float)0.25*x*x; |
} |
} |
z = x*x; |
r = z*(R02+z*(R03+z*(R04+z*R05))); |
s = one+z*(S01+z*(S02+z*(S03+z*S04))); |
if(ix < 0x3F800000) { /* |x| < 1.00 */ |
return one + z*((float)-0.25+(r/s)); |
} else { |
u = (float)0.5*x; |
return((one+u)*(one-u)+z*(r/s)); |
} |
} |
|
#ifdef __STDC__ |
static const float |
#else |
static float |
#endif |
u00 = -7.3804296553e-02, /* 0xbd9726b5 */ |
u01 = 1.7666645348e-01, /* 0x3e34e80d */ |
u02 = -1.3818567619e-02, /* 0xbc626746 */ |
u03 = 3.4745343146e-04, /* 0x39b62a69 */ |
u04 = -3.8140706238e-06, /* 0xb67ff53c */ |
u05 = 1.9559013964e-08, /* 0x32a802ba */ |
u06 = -3.9820518410e-11, /* 0xae2f21eb */ |
v01 = 1.2730483897e-02, /* 0x3c509385 */ |
v02 = 7.6006865129e-05, /* 0x389f65e0 */ |
v03 = 2.5915085189e-07, /* 0x348b216c */ |
v04 = 4.4111031494e-10; /* 0x2ff280c2 */ |
|
#ifdef __STDC__ |
float __ieee754_y0f(float x) |
#else |
float __ieee754_y0f(x) |
float x; |
#endif |
{ |
float z, s,c,ss,cc,u,v; |
__int32_t hx,ix; |
|
GET_FLOAT_WORD(hx,x); |
ix = 0x7fffffff&hx; |
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ |
if(!FLT_UWORD_IS_FINITE(ix)) return one/(x+x*x); |
if(FLT_UWORD_IS_ZERO(ix)) return -one/zero; |
if(hx<0) return zero/zero; |
if(ix >= 0x40000000) { /* |x| >= 2.0 */ |
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) |
* where x0 = x-pi/4 |
* Better formula: |
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) |
* = 1/sqrt(2) * (sin(x) + cos(x)) |
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
* = 1/sqrt(2) * (sin(x) - cos(x)) |
* To avoid cancellation, use |
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
* to compute the worse one. |
*/ |
s = sinf(x); |
c = cosf(x); |
ss = s-c; |
cc = s+c; |
/* |
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) |
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) |
*/ |
if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */ |
z = -cosf(x+x); |
if ((s*c)<zero) cc = z/ss; |
else ss = z/cc; |
} |
if(ix>0x80000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x); |
else { |
u = pzerof(x); v = qzerof(x); |
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x); |
} |
return z; |
} |
if(ix<=0x32000000) { /* x < 2**-27 */ |
return(u00 + tpi*__ieee754_logf(x)); |
} |
z = x*x; |
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); |
v = one+z*(v01+z*(v02+z*(v03+z*v04))); |
return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x))); |
} |
|
/* The asymptotic expansions of pzero is |
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. |
* For x >= 2, We approximate pzero by |
* pzero(x) = 1 + (R/S) |
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 |
* S = 1 + pS0*s^2 + ... + pS4*s^10 |
* and |
* | pzero(x)-1-R/S | <= 2 ** ( -60.26) |
*/ |
#ifdef __STDC__ |
static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#else |
static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#endif |
0.0000000000e+00, /* 0x00000000 */ |
-7.0312500000e-02, /* 0xbd900000 */ |
-8.0816707611e+00, /* 0xc1014e86 */ |
-2.5706311035e+02, /* 0xc3808814 */ |
-2.4852163086e+03, /* 0xc51b5376 */ |
-5.2530439453e+03, /* 0xc5a4285a */ |
}; |
#ifdef __STDC__ |
static const float pS8[5] = { |
#else |
static float pS8[5] = { |
#endif |
1.1653436279e+02, /* 0x42e91198 */ |
3.8337448730e+03, /* 0x456f9beb */ |
4.0597855469e+04, /* 0x471e95db */ |
1.1675296875e+05, /* 0x47e4087c */ |
4.7627726562e+04, /* 0x473a0bba */ |
}; |
#ifdef __STDC__ |
static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#else |
static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#endif |
-1.1412546255e-11, /* 0xad48c58a */ |
-7.0312492549e-02, /* 0xbd8fffff */ |
-4.1596107483e+00, /* 0xc0851b88 */ |
-6.7674766541e+01, /* 0xc287597b */ |
-3.3123129272e+02, /* 0xc3a59d9b */ |
-3.4643338013e+02, /* 0xc3ad3779 */ |
}; |
#ifdef __STDC__ |
static const float pS5[5] = { |
#else |
static float pS5[5] = { |
#endif |
6.0753936768e+01, /* 0x42730408 */ |
1.0512523193e+03, /* 0x44836813 */ |
5.9789707031e+03, /* 0x45bad7c4 */ |
9.6254453125e+03, /* 0x461665c8 */ |
2.4060581055e+03, /* 0x451660ee */ |
}; |
|
#ifdef __STDC__ |
static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#else |
static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#endif |
-2.5470459075e-09, /* 0xb12f081b */ |
-7.0311963558e-02, /* 0xbd8fffb8 */ |
-2.4090321064e+00, /* 0xc01a2d95 */ |
-2.1965976715e+01, /* 0xc1afba52 */ |
-5.8079170227e+01, /* 0xc2685112 */ |
-3.1447946548e+01, /* 0xc1fb9565 */ |
}; |
#ifdef __STDC__ |
static const float pS3[5] = { |
#else |
static float pS3[5] = { |
#endif |
3.5856033325e+01, /* 0x420f6c94 */ |
3.6151397705e+02, /* 0x43b4c1ca */ |
1.1936077881e+03, /* 0x44953373 */ |
1.1279968262e+03, /* 0x448cffe6 */ |
1.7358093262e+02, /* 0x432d94b8 */ |
}; |
|
#ifdef __STDC__ |
static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#else |
static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#endif |
-8.8753431271e-08, /* 0xb3be98b7 */ |
-7.0303097367e-02, /* 0xbd8ffb12 */ |
-1.4507384300e+00, /* 0xbfb9b1cc */ |
-7.6356959343e+00, /* 0xc0f4579f */ |
-1.1193166733e+01, /* 0xc1331736 */ |
-3.2336456776e+00, /* 0xc04ef40d */ |
}; |
#ifdef __STDC__ |
static const float pS2[5] = { |
#else |
static float pS2[5] = { |
#endif |
2.2220300674e+01, /* 0x41b1c32d */ |
1.3620678711e+02, /* 0x430834f0 */ |
2.7047027588e+02, /* 0x43873c32 */ |
1.5387539673e+02, /* 0x4319e01a */ |
1.4657617569e+01, /* 0x416a859a */ |
}; |
|
#ifdef __STDC__ |
static float pzerof(float x) |
#else |
static float pzerof(x) |
float x; |
#endif |
{ |
#ifdef __STDC__ |
const float *p,*q; |
#else |
float *p,*q; |
#endif |
float z,r,s; |
__int32_t ix; |
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; |
if(ix>=0x41000000) {p = pR8; q= pS8;} |
else if(ix>=0x40f71c58){p = pR5; q= pS5;} |
else if(ix>=0x4036db68){p = pR3; q= pS3;} |
else {p = pR2; q= pS2;} |
z = one/(x*x); |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
return one+ r/s; |
} |
|
|
/* For x >= 8, the asymptotic expansions of qzero is |
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x. |
* We approximate qzero by |
* qzero(x) = s*(-1.25 + (R/S)) |
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 |
* S = 1 + qS0*s^2 + ... + qS5*s^12 |
* and |
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) |
*/ |
#ifdef __STDC__ |
static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#else |
static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
#endif |
0.0000000000e+00, /* 0x00000000 */ |
7.3242187500e-02, /* 0x3d960000 */ |
1.1768206596e+01, /* 0x413c4a93 */ |
5.5767340088e+02, /* 0x440b6b19 */ |
8.8591972656e+03, /* 0x460a6cca */ |
3.7014625000e+04, /* 0x471096a0 */ |
}; |
#ifdef __STDC__ |
static const float qS8[6] = { |
#else |
static float qS8[6] = { |
#endif |
1.6377603149e+02, /* 0x4323c6aa */ |
8.0983447266e+03, /* 0x45fd12c2 */ |
1.4253829688e+05, /* 0x480b3293 */ |
8.0330925000e+05, /* 0x49441ed4 */ |
8.4050156250e+05, /* 0x494d3359 */ |
-3.4389928125e+05, /* 0xc8a7eb69 */ |
}; |
|
#ifdef __STDC__ |
static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#else |
static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
#endif |
1.8408595828e-11, /* 0x2da1ec79 */ |
7.3242180049e-02, /* 0x3d95ffff */ |
5.8356351852e+00, /* 0x40babd86 */ |
1.3511157227e+02, /* 0x43071c90 */ |
1.0272437744e+03, /* 0x448067cd */ |
1.9899779053e+03, /* 0x44f8bf4b */ |
}; |
#ifdef __STDC__ |
static const float qS5[6] = { |
#else |
static float qS5[6] = { |
#endif |
8.2776611328e+01, /* 0x42a58da0 */ |
2.0778142090e+03, /* 0x4501dd07 */ |
1.8847289062e+04, /* 0x46933e94 */ |
5.6751113281e+04, /* 0x475daf1d */ |
3.5976753906e+04, /* 0x470c88c1 */ |
-5.3543427734e+03, /* 0xc5a752be */ |
}; |
|
#ifdef __STDC__ |
static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#else |
static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ |
#endif |
4.3774099900e-09, /* 0x3196681b */ |
7.3241114616e-02, /* 0x3d95ff70 */ |
3.3442313671e+00, /* 0x405607e3 */ |
4.2621845245e+01, /* 0x422a7cc5 */ |
1.7080809021e+02, /* 0x432acedf */ |
1.6673394775e+02, /* 0x4326bbe4 */ |
}; |
#ifdef __STDC__ |
static const float qS3[6] = { |
#else |
static float qS3[6] = { |
#endif |
4.8758872986e+01, /* 0x42430916 */ |
7.0968920898e+02, /* 0x44316c1c */ |
3.7041481934e+03, /* 0x4567825f */ |
6.4604252930e+03, /* 0x45c9e367 */ |
2.5163337402e+03, /* 0x451d4557 */ |
-1.4924745178e+02, /* 0xc3153f59 */ |
}; |
|
#ifdef __STDC__ |
static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#else |
static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
#endif |
1.5044444979e-07, /* 0x342189db */ |
7.3223426938e-02, /* 0x3d95f62a */ |
1.9981917143e+00, /* 0x3fffc4bf */ |
1.4495602608e+01, /* 0x4167edfd */ |
3.1666231155e+01, /* 0x41fd5471 */ |
1.6252708435e+01, /* 0x4182058c */ |
}; |
#ifdef __STDC__ |
static const float qS2[6] = { |
#else |
static float qS2[6] = { |
#endif |
3.0365585327e+01, /* 0x41f2ecb8 */ |
2.6934811401e+02, /* 0x4386ac8f */ |
8.4478375244e+02, /* 0x44533229 */ |
8.8293585205e+02, /* 0x445cbbe5 */ |
2.1266638184e+02, /* 0x4354aa98 */ |
-5.3109550476e+00, /* 0xc0a9f358 */ |
}; |
|
#ifdef __STDC__ |
static float qzerof(float x) |
#else |
static float qzerof(x) |
float x; |
#endif |
{ |
#ifdef __STDC__ |
const float *p,*q; |
#else |
float *p,*q; |
#endif |
float s,r,z; |
__int32_t ix; |
GET_FLOAT_WORD(ix,x); |
ix &= 0x7fffffff; |
if(ix>=0x41000000) {p = qR8; q= qS8;} |
else if(ix>=0x40f71c58){p = qR5; q= qS5;} |
else if(ix>=0x4036db68){p = qR3; q= qS3;} |
else {p = qR2; q= qS2;} |
z = one/(x*x); |
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
return (-(float).125 + r/s)/x; |
} |
/e_log.c
0,0 → 1,146
|
/* @(#)e_log.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_log(x) |
* Return the logrithm of x |
* |
* Method : |
* 1. Argument Reduction: find k and f such that |
* x = 2^k * (1+f), |
* where sqrt(2)/2 < 1+f < sqrt(2) . |
* |
* 2. Approximation of log(1+f). |
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
* = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
* = 2s + s*R |
* We use a special Reme algorithm on [0,0.1716] to generate |
* a polynomial of degree 14 to approximate R The maximum error |
* of this polynomial approximation is bounded by 2**-58.45. In |
* other words, |
* 2 4 6 8 10 12 14 |
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
* (the values of Lg1 to Lg7 are listed in the program) |
* and |
* | 2 14 | -58.45 |
* | Lg1*s +...+Lg7*s - R(z) | <= 2 |
* | | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
* In order to guarantee error in log below 1ulp, we compute log |
* by |
* log(1+f) = f - s*(f - R) (if f is not too large) |
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
* |
* 3. Finally, log(x) = k*ln2 + log(1+f). |
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
* Here ln2 is split into two floating point number: |
* ln2_hi + ln2_lo, |
* where n*ln2_hi is always exact for |n| < 2000. |
* |
* Special cases: |
* log(x) is NaN with signal if x < 0 (including -INF) ; |
* log(+INF) is +INF; log(0) is -INF with signal; |
* log(NaN) is that NaN with no signal. |
* |
* Accuracy: |
* according to an error analysis, the error is always less than |
* 1 ulp (unit in the last place). |
* |
* Constants: |
* The hexadecimal values are the intended ones for the following |
* constants. The decimal values may be used, provided that the |
* compiler will convert from decimal to binary accurately enough |
* to produce the hexadecimal values shown. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
|
#ifdef __STDC__ |
static const double zero = 0.0; |
#else |
static double zero = 0.0; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_log(double x) |
#else |
double __ieee754_log(x) |
double x; |
#endif |
{ |
double hfsq,f,s,z,R,w,t1,t2,dk; |
__int32_t k,hx,i,j; |
__uint32_t lx; |
|
EXTRACT_WORDS(hx,lx,x); |
|
k=0; |
if (hx < 0x00100000) { /* x < 2**-1022 */ |
if (((hx&0x7fffffff)|lx)==0) |
return -two54/zero; /* log(+-0)=-inf */ |
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
k -= 54; x *= two54; /* subnormal number, scale up x */ |
GET_HIGH_WORD(hx,x); |
} |
if (hx >= 0x7ff00000) return x+x; |
k += (hx>>20)-1023; |
hx &= 0x000fffff; |
i = (hx+0x95f64)&0x100000; |
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ |
k += (i>>20); |
f = x-1.0; |
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ |
if(f==zero) { if(k==0) return zero; else {dk=(double)k; |
return dk*ln2_hi+dk*ln2_lo;}} |
R = f*f*(0.5-0.33333333333333333*f); |
if(k==0) return f-R; else {dk=(double)k; |
return dk*ln2_hi-((R-dk*ln2_lo)-f);} |
} |
s = f/(2.0+f); |
dk = (double)k; |
z = s*s; |
i = hx-0x6147a; |
w = z*z; |
j = 0x6b851-hx; |
t1= w*(Lg2+w*(Lg4+w*Lg6)); |
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
i |= j; |
R = t2+t1; |
if(i>0) { |
hfsq=0.5*f*f; |
if(k==0) return f-(hfsq-s*(hfsq+R)); else |
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); |
} else { |
if(k==0) return f-s*(f-R); else |
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); |
} |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_sinh.c
0,0 → 1,120
|
/* @(#)w_sinh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
|
/* |
FUNCTION |
<<sinh>>, <<sinhf>>---hyperbolic sine |
|
INDEX |
sinh |
INDEX |
sinhf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double sinh(double <[x]>); |
float sinhf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double sinh(<[x]>) |
double <[x]>; |
|
float sinhf(<[x]>) |
float <[x]>; |
|
DESCRIPTION |
<<sinh>> computes the hyperbolic sine of the argument <[x]>. |
Angles are specified in radians. <<sinh>>(<[x]>) is defined as |
@ifinfo |
. (exp(<[x]>) - exp(-<[x]>))/2 |
@end ifinfo |
@tex |
$${e^x - e^{-x}}\over 2$$ |
@end tex |
|
<<sinhf>> is identical, save that it takes and returns <<float>> values. |
|
RETURNS |
The hyperbolic sine of <[x]> is returned. |
|
When the correct result is too large to be representable (an |
overflow), <<sinh>> returns <<HUGE_VAL>> with the |
appropriate sign, and sets the global value <<errno>> to |
<<ERANGE>>. |
|
You can modify error handling for these functions with <<matherr>>. |
|
PORTABILITY |
<<sinh>> is ANSI C. |
<<sinhf>> is an extension. |
|
QUICKREF |
sinh ansi pure |
sinhf - pure |
*/ |
|
/* |
* wrapper sinh(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double sinh(double x) /* wrapper sinh */ |
#else |
double sinh(x) /* wrapper sinh */ |
double x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_sinh(x); |
#else |
double z; |
struct exception exc; |
z = __ieee754_sinh(x); |
if(_LIB_VERSION == _IEEE_) return z; |
if(!finite(z)&&finite(x)) { |
/* sinh(finite) overflow */ |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
exc.type = OVERFLOW; |
exc.name = "sinh"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = ( (x>0.0) ? HUGE : -HUGE); |
else |
exc.retval = ( (x>0.0) ? HUGE_VAL : -HUGE_VAL); |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_scalb.c
0,0 → 1,55
|
/* @(#)e_scalb.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* __ieee754_scalb(x, fn) is provide for |
* passing various standard test suite. One |
* should use scalbn() instead. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef _SCALB_INT |
#ifdef __STDC__ |
double __ieee754_scalb(double x, int fn) |
#else |
double __ieee754_scalb(x,fn) |
double x; int fn; |
#endif |
#else |
#ifdef __STDC__ |
double __ieee754_scalb(double x, double fn) |
#else |
double __ieee754_scalb(x,fn) |
double x, fn; |
#endif |
#endif |
{ |
#ifdef _SCALB_INT |
return scalbn(x,fn); |
#else |
if (isnan(x)||isnan(fn)) return x*fn; |
if (!finite(fn)) { |
if(fn>0.0) return x*fn; |
else return x/(-fn); |
} |
if (rint(fn)!=fn) return (fn-fn)/(fn-fn); |
if ( fn > 65000.0) return scalbn(x, 65000); |
if (-fn > 65000.0) return scalbn(x,-65000); |
return scalbn(x,(int)fn); |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_acosh.c
0,0 → 1,70
/* wf_acosh.c -- float version of w_acosh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* |
* wrapper acoshf(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float acoshf(float x) /* wrapper acoshf */ |
#else |
float acoshf(x) /* wrapper acoshf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_acoshf(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_acoshf(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; |
if(x<(float)1.0) { |
/* acoshf(x<1) */ |
exc.type = DOMAIN; |
exc.name = "acoshf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double acosh(double x) |
#else |
double acosh(x) |
double x; |
#endif |
{ |
return (double) acoshf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_acos.c
0,0 → 1,111
|
/* @(#)e_acos.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_acos(x) |
* Method : |
* acos(x) = pi/2 - asin(x) |
* acos(-x) = pi/2 + asin(x) |
* For |x|<=0.5 |
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) |
* For x>0.5 |
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) |
* = 2asin(sqrt((1-x)/2)) |
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) |
* = 2f + (2c + 2s*z*R(z)) |
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term |
* for f so that f+c ~ sqrt(z). |
* For x<-0.5 |
* acos(x) = pi - 2asin(sqrt((1-|x|)/2)) |
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) |
* |
* Special cases: |
* if x is NaN, return x itself; |
* if |x|>1, return NaN with invalid signal. |
* |
* Function needed: sqrt |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
|
#ifdef __STDC__ |
double __ieee754_acos(double x) |
#else |
double __ieee754_acos(x) |
double x; |
#endif |
{ |
double z,p,q,r,w,s,c,df; |
__int32_t hx,ix; |
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; |
if(ix>=0x3ff00000) { /* |x| >= 1 */ |
__uint32_t lx; |
GET_LOW_WORD(lx,x); |
if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */ |
if(hx>0) return 0.0; /* acos(1) = 0 */ |
else return pi+2.0*pio2_lo; /* acos(-1)= pi */ |
} |
return (x-x)/(x-x); /* acos(|x|>1) is NaN */ |
} |
if(ix<0x3fe00000) { /* |x| < 0.5 */ |
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ |
z = x*x; |
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
r = p/q; |
return pio2_hi - (x - (pio2_lo-x*r)); |
} else if (hx<0) { /* x < -0.5 */ |
z = (one+x)*0.5; |
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
s = __ieee754_sqrt(z); |
r = p/q; |
w = r*s-pio2_lo; |
return pi - 2.0*(s+w); |
} else { /* x > 0.5 */ |
z = (one-x)*0.5; |
s = __ieee754_sqrt(z); |
df = s; |
SET_LOW_WORD(df,0); |
c = (z-df*df)/(s+df); |
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
r = p/q; |
w = r*s+c; |
return 2.0*(df+w); |
} |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_isnan.c
0,0 → 1,122
|
/* @(#)s_isnan.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<isnan>>,<<isnanf>>,<<isinf>>,<<isinff>>,<<finite>>,<<finitef>>---test for exceptional numbers |
|
INDEX |
isnan |
INDEX |
isinf |
INDEX |
finite |
|
INDEX |
isnanf |
INDEX |
isinff |
INDEX |
finitef |
|
ANSI_SYNOPSIS |
#include <ieeefp.h> |
int isnan(double <[arg]>); |
int isinf(double <[arg]>); |
int finite(double <[arg]>); |
int isnanf(float <[arg]>); |
int isinff(float <[arg]>); |
int finitef(float <[arg]>); |
|
TRAD_SYNOPSIS |
#include <ieeefp.h> |
int isnan(<[arg]>) |
double <[arg]>; |
int isinf(<[arg]>) |
double <[arg]>; |
int finite(<[arg]>); |
double <[arg]>; |
int isnanf(<[arg]>); |
float <[arg]>; |
int isinff(<[arg]>); |
float <[arg]>; |
int finitef(<[arg]>); |
float <[arg]>; |
|
|
DESCRIPTION |
These functions provide information on the floating point |
argument supplied. |
|
There are five major number formats - |
o+ |
o zero |
a number which contains all zero bits. |
o subnormal |
Is used to represent number with a zero exponent, but a non zero fraction. |
o normal |
A number with an exponent, and a fraction |
o infinity |
A number with an all 1's exponent and a zero fraction. |
o NAN |
A number with an all 1's exponent and a non zero fraction. |
|
o- |
|
<<isnan>> returns 1 if the argument is a nan. <<isinf>> |
returns 1 if the argument is infinity. <<finite>> returns 1 if the |
argument is zero, subnormal or normal. |
|
The <<isnanf>>, <<isinff>> and <<finitef>> perform the same |
operations as their <<isnan>>, <<isinf>> and <<finite>> |
counterparts, but on single precision floating point numbers. |
|
QUICKREF |
isnan - pure |
QUICKREF |
isinf - pure |
QUICKREF |
finite - pure |
QUICKREF |
isnan - pure |
QUICKREF |
isinf - pure |
QUICKREF |
finite - pure |
*/ |
|
/* |
* isnan(x) returns 1 is x is nan, else 0; |
* no branching! |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
int isnan(double x) |
#else |
int isnan(x) |
double x; |
#endif |
{ |
__int32_t hx,lx; |
EXTRACT_WORDS(hx,lx,x); |
hx &= 0x7fffffff; |
hx |= (__uint32_t)(lx|(-lx))>>31; |
hx = 0x7ff00000 - hx; |
return (int)(((__uint32_t)(hx))>>31); |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/w_remainder.c
0,0 → 1,108
|
/* @(#)w_remainder.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
FUNCTION |
<<remainder>>, <<remainderf>>---round and remainder |
INDEX |
remainder |
INDEX |
remainderf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double remainder(double <[x]>, double <[y]>); |
float remainderf(float <[x]>, float <[y]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double remainder(<[x]>,<[y]>) |
double <[x]>, <[y]>; |
float remainderf(<[x]>,<[y]>) |
float <[x]>, <[y]>; |
|
DESCRIPTION |
<<remainder>> and <<remainderf>> find the remainder of |
<[x]>/<[y]>; this value is in the range -<[y]>/2 .. +<[y]>/2. |
|
RETURNS |
<<remainder>> returns the integer result as a double. |
|
PORTABILITY |
<<remainder>> is a System V release 4. |
<<remainderf>> is an extension. |
|
*/ |
|
/* |
* wrapper remainder(x,p) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double remainder(double x, double y) /* wrapper remainder */ |
#else |
double remainder(x,y) /* wrapper remainder */ |
double x,y; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_remainder(x,y); |
#else |
double z; |
struct exception exc; |
z = __ieee754_remainder(x,y); |
if(_LIB_VERSION == _IEEE_ || isnan(y)) return z; |
if(y==0.0) { |
/* remainder(x,0) */ |
exc.type = DOMAIN; |
exc.name = "remainder"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = y; |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} else |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/k_tan.c
0,0 → 1,132
|
/* @(#)k_tan.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __kernel_tan( x, y, k ) |
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
* Input x is assumed to be bounded by ~pi/4 in magnitude. |
* Input y is the tail of x. |
* Input k indicates whether tan (if k=1) or |
* -1/tan (if k= -1) is returned. |
* |
* Algorithm |
* 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
* 3. tan(x) is approximated by a odd polynomial of degree 27 on |
* [0,0.67434] |
* 3 27 |
* tan(x) ~ x + T1*x + ... + T13*x |
* where |
* |
* |tan(x) 2 4 26 | -59.2 |
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
* | x | |
* |
* Note: tan(x+y) = tan(x) + tan'(x)*y |
* ~ tan(x) + (1+x*x)*y |
* Therefore, for better accuracy in computing tan(x+y), let |
* 3 2 2 2 2 |
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
* then |
* 3 2 |
* tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
* |
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
T[] = { |
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
}; |
|
#ifdef __STDC__ |
double __kernel_tan(double x, double y, int iy) |
#else |
double __kernel_tan(x, y, iy) |
double x,y; int iy; |
#endif |
{ |
double z,r,v,w,s; |
__int32_t ix,hx; |
GET_HIGH_WORD(hx,x); |
ix = hx&0x7fffffff; /* high word of |x| */ |
if(ix<0x3e300000) /* x < 2**-28 */ |
{if((int)x==0) { /* generate inexact */ |
__uint32_t low; |
GET_LOW_WORD(low,x); |
if(((ix|low)|(iy+1))==0) return one/fabs(x); |
else return (iy==1)? x: -one/x; |
} |
} |
if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
if(hx<0) {x = -x; y = -y;} |
z = pio4-x; |
w = pio4lo-y; |
x = z+w; y = 0.0; |
} |
z = x*x; |
w = z*z; |
/* Break x^5*(T[1]+x^2*T[2]+...) into |
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
*/ |
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
s = z*x; |
r = y + z*(s*(r+v)+y); |
r += T[0]*s; |
w = x+r; |
if(ix>=0x3FE59428) { |
v = (double)iy; |
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
} |
if(iy==1) return w; |
else { /* if allow error up to 2 ulp, |
simply return -1.0/(x+r) here */ |
/* compute -1.0/(x+r) accurately */ |
double a,t; |
z = w; |
SET_LOW_WORD(z,0); |
v = r-(z - x); /* z+v = r+x */ |
t = a = -1.0/w; /* a = -1.0/w */ |
SET_LOW_WORD(t,0); |
s = 1.0+t*z; |
return t+a*(s+t*v); |
} |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_scalb.c
0,0 → 1,53
/* ef_scalb.c -- float version of e_scalb.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
#include <limits.h> |
|
#ifdef _SCALB_INT |
#ifdef __STDC__ |
float __ieee754_scalbf(float x, int fn) |
#else |
float __ieee754_scalbf(x,fn) |
float x; int fn; |
#endif |
#else |
#ifdef __STDC__ |
float __ieee754_scalbf(float x, float fn) |
#else |
float __ieee754_scalbf(x,fn) |
float x, fn; |
#endif |
#endif |
{ |
#ifdef _SCALB_INT |
return scalbnf(x,fn); |
#else |
if (isnanf(x)||isnanf(fn)) return x*fn; |
if (!finitef(fn)) { |
if(fn>(float)0.0) return x*fn; |
else return x/(-fn); |
} |
if (rintf(fn)!=fn) return (fn-fn)/(fn-fn); |
#if INT_MAX > 65000 |
if ( fn > (float)65000.0) return scalbnf(x, 65000); |
if (-fn > (float)65000.0) return scalbnf(x,-65000); |
#else |
if ( fn > (float)32000.0) return scalbnf(x, 32000); |
if (-fn > (float)32000.0) return scalbnf(x,-32000); |
#endif |
return scalbnf(x,(int)fn); |
#endif |
} |
/k_cos.c
0,0 → 1,96
|
/* @(#)k_cos.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* __kernel_cos( x, y ) |
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
* Input x is assumed to be bounded by ~pi/4 in magnitude. |
* Input y is the tail of x. |
* |
* Algorithm |
* 1. Since cos(-x) = cos(x), we need only to consider positive x. |
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. |
* 3. cos(x) is approximated by a polynomial of degree 14 on |
* [0,pi/4] |
* 4 14 |
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
* where the remez error is |
* |
* | 2 4 6 8 10 12 14 | -58 |
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
* | | |
* |
* 4 6 8 10 12 14 |
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
* cos(x) = 1 - x*x/2 + r |
* since cos(x+y) ~ cos(x) - sin(x)*y |
* ~ cos(x) - x*y, |
* a correction term is necessary in cos(x) and hence |
* cos(x+y) = 1 - (x*x/2 - (r - x*y)) |
* For better accuracy when x > 0.3, let qx = |x|/4 with |
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
* Then |
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). |
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the |
* magnitude of the latter is at least a quarter of x*x/2, |
* thus, reducing the rounding error in the subtraction. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ |
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ |
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ |
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ |
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ |
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ |
|
#ifdef __STDC__ |
double __kernel_cos(double x, double y) |
#else |
double __kernel_cos(x, y) |
double x,y; |
#endif |
{ |
double a,hz,z,r,qx; |
__int32_t ix; |
GET_HIGH_WORD(ix,x); |
ix &= 0x7fffffff; /* ix = |x|'s high word*/ |
if(ix<0x3e400000) { /* if x < 2**27 */ |
if(((int)x)==0) return one; /* generate inexact */ |
} |
z = x*x; |
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); |
if(ix < 0x3FD33333) /* if |x| < 0.3 */ |
return one - (0.5*z - (z*r - x*y)); |
else { |
if(ix > 0x3fe90000) { /* x > 0.78125 */ |
qx = 0.28125; |
} else { |
INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ |
} |
hz = 0.5*z-qx; |
a = one-qx; |
return a - (hz - (z*r-x*y)); |
} |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/e_cosh.c
0,0 → 1,93
|
/* @(#)e_cosh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_cosh(x) |
* Method : |
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 |
* 1. Replace x by |x| (cosh(x) = cosh(-x)). |
* 2. |
* [ exp(x) - 1 ]^2 |
* 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- |
* 2*exp(x) |
* |
* exp(x) + 1/exp(x) |
* ln2/2 <= x <= 22 : cosh(x) := ------------------- |
* 2 |
* 22 <= x <= lnovft : cosh(x) := exp(x)/2 |
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) |
* ln2ovft < x : cosh(x) := huge*huge (overflow) |
* |
* Special cases: |
* cosh(x) is |x| if x is +INF, -INF, or NaN. |
* only cosh(0)=1 is exact for finite x. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double one = 1.0, half=0.5, huge = 1.0e300; |
#else |
static double one = 1.0, half=0.5, huge = 1.0e300; |
#endif |
|
#ifdef __STDC__ |
double __ieee754_cosh(double x) |
#else |
double __ieee754_cosh(x) |
double x; |
#endif |
{ |
double t,w; |
__int32_t ix; |
__uint32_t lx; |
|
/* High word of |x|. */ |
GET_HIGH_WORD(ix,x); |
ix &= 0x7fffffff; |
|
/* x is INF or NaN */ |
if(ix>=0x7ff00000) return x*x; |
|
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ |
if(ix<0x3fd62e43) { |
t = expm1(fabs(x)); |
w = one+t; |
if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */ |
return one+(t*t)/(w+w); |
} |
|
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ |
if (ix < 0x40360000) { |
t = __ieee754_exp(fabs(x)); |
return half*t+half/t; |
} |
|
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */ |
if (ix < 0x40862E42) return half*__ieee754_exp(fabs(x)); |
|
/* |x| in [log(maxdouble), overflowthresold] */ |
GET_LOW_WORD(lx,x); |
if (ix<0x408633CE || |
(ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) { |
w = __ieee754_exp(half*fabs(x)); |
t = half*w; |
return t*w; |
} |
|
/* |x| > overflowthresold, cosh(x) overflow */ |
return huge*huge; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_atan2.c
0,0 → 1,71
/* wf_atan2.c -- float version of w_atan2.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
* |
*/ |
|
/* |
* wrapper atan2f(y,x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float atan2f(float y, float x) /* wrapper atan2f */ |
#else |
float atan2f(y,x) /* wrapper atan2 */ |
float y,x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_atan2f(y,x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_atan2f(y,x); |
if(_LIB_VERSION == _IEEE_||isnanf(x)||isnanf(y)) return z; |
if(x==(float)0.0&&y==(float)0.0) { |
/* atan2f(+-0,+-0) */ |
exc.arg1 = y; |
exc.arg2 = x; |
exc.err = 0; |
exc.type = DOMAIN; |
exc.name = "atan2f"; |
exc.retval = 0.0; |
if(_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double atan2(double y, double x) |
#else |
double atan2(y,x) |
double y,x; |
#endif |
{ |
return (double) atan2f((float) y, (float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/ef_sqrt.c
0,0 → 1,90
/* ef_sqrtf.c -- float version of e_sqrt.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float one = 1.0, tiny=1.0e-30; |
#else |
static float one = 1.0, tiny=1.0e-30; |
#endif |
|
#ifdef __STDC__ |
float __ieee754_sqrtf(float x) |
#else |
float __ieee754_sqrtf(x) |
float x; |
#endif |
{ |
float z; |
__int32_t sign = (__int32_t)0x80000000; |
__uint32_t r,hx; |
__int32_t ix,s,q,m,t,i; |
|
GET_FLOAT_WORD(ix,x); |
hx = ix&0x7fffffff; |
|
/* take care of Inf and NaN */ |
if(!FLT_UWORD_IS_FINITE(hx)) |
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf |
sqrt(-inf)=sNaN */ |
/* take care of zero and -ves */ |
if(FLT_UWORD_IS_ZERO(hx)) return x;/* sqrt(+-0) = +-0 */ |
if(ix<0) return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ |
|
/* normalize x */ |
m = (ix>>23); |
if(FLT_UWORD_IS_SUBNORMAL(hx)) { /* subnormal x */ |
for(i=0;(ix&0x00800000L)==0;i++) ix<<=1; |
m -= i-1; |
} |
m -= 127; /* unbias exponent */ |
ix = (ix&0x007fffffL)|0x00800000L; |
if(m&1) /* odd m, double x to make it even */ |
ix += ix; |
m >>= 1; /* m = [m/2] */ |
|
/* generate sqrt(x) bit by bit */ |
ix += ix; |
q = s = 0; /* q = sqrt(x) */ |
r = 0x01000000L; /* r = moving bit from right to left */ |
|
while(r!=0) { |
t = s+r; |
if(t<=ix) { |
s = t+r; |
ix -= t; |
q += r; |
} |
ix += ix; |
r>>=1; |
} |
|
/* use floating add to find out rounding direction */ |
if(ix!=0) { |
z = one-tiny; /* trigger inexact flag */ |
if (z>=one) { |
z = one+tiny; |
if (z>one) |
q += 2; |
else |
q += (q&1); |
} |
} |
ix = (q>>1)+0x3f000000L; |
ix += (m <<23); |
SET_FLOAT_WORD(z,ix); |
return z; |
} |
/s_tan.c
0,0 → 1,114
|
/* @(#)s_tan.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
|
/* |
|
FUNCTION |
<<tan>>, <<tanf>>---tangent |
|
INDEX |
tan |
INDEX |
tanf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double tan(double <[x]>); |
float tanf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double tan(<[x]>) |
double <[x]>; |
|
float tanf(<[x]>) |
float <[x]>; |
|
|
DESCRIPTION |
<<tan>> computes the tangent of the argument <[x]>. |
Angles are specified in radians. |
|
<<tanf>> is identical, save that it takes and returns <<float>> values. |
|
RETURNS |
The tangent of <[x]> is returned. |
|
PORTABILITY |
<<tan>> is ANSI. <<tanf>> is an extension. |
*/ |
|
/* tan(x) |
* Return tangent function of x. |
* |
* kernel function: |
* __kernel_tan ... tangent function on [-pi/4,pi/4] |
* __ieee754_rem_pio2 ... argument reduction routine |
* |
* Method. |
* Let S,C and T denote the sin, cos and tan respectively on |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
* in [-pi/4 , +pi/4], and let n = k mod 4. |
* We have |
* |
* n sin(x) cos(x) tan(x) |
* ---------------------------------------------------------- |
* 0 S C T |
* 1 C -S -1/T |
* 2 -S -C T |
* 3 -C S -1/T |
* ---------------------------------------------------------- |
* |
* Special cases: |
* Let trig be any of sin, cos, or tan. |
* trig(+-INF) is NaN, with signals; |
* trig(NaN) is that NaN; |
* |
* Accuracy: |
* TRIG(x) returns trig(x) nearly rounded |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double tan(double x) |
#else |
double tan(x) |
double x; |
#endif |
{ |
double y[2],z=0.0; |
__int32_t n,ix; |
|
/* High word of x. */ |
GET_HIGH_WORD(ix,x); |
|
/* |x| ~< pi/4 */ |
ix &= 0x7fffffff; |
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); |
|
/* tan(Inf or NaN) is NaN */ |
else if (ix>=0x7ff00000) return x-x; /* NaN */ |
|
/* argument reduction needed */ |
else { |
n = __ieee754_rem_pio2(x,y); |
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even |
-1 -- n odd */ |
} |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/s_cos.c
0,0 → 1,82
|
/* @(#)s_cos.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* cos(x) |
* Return cosine function of x. |
* |
* kernel function: |
* __kernel_sin ... sine function on [-pi/4,pi/4] |
* __kernel_cos ... cosine function on [-pi/4,pi/4] |
* __ieee754_rem_pio2 ... argument reduction routine |
* |
* Method. |
* Let S,C and T denote the sin, cos and tan respectively on |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
* in [-pi/4 , +pi/4], and let n = k mod 4. |
* We have |
* |
* n sin(x) cos(x) tan(x) |
* ---------------------------------------------------------- |
* 0 S C T |
* 1 C -S -1/T |
* 2 -S -C T |
* 3 -C S -1/T |
* ---------------------------------------------------------- |
* |
* Special cases: |
* Let trig be any of sin, cos, or tan. |
* trig(+-INF) is NaN, with signals; |
* trig(NaN) is that NaN; |
* |
* Accuracy: |
* TRIG(x) returns trig(x) nearly rounded |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double cos(double x) |
#else |
double cos(x) |
double x; |
#endif |
{ |
double y[2],z=0.0; |
__int32_t n,ix; |
|
/* High word of x. */ |
GET_HIGH_WORD(ix,x); |
|
/* |x| ~< pi/4 */ |
ix &= 0x7fffffff; |
if(ix <= 0x3fe921fb) return __kernel_cos(x,z); |
|
/* cos(Inf or NaN) is NaN */ |
else if (ix>=0x7ff00000) return x-x; |
|
/* argument reduction needed */ |
else { |
n = __ieee754_rem_pio2(x,y); |
switch(n&3) { |
case 0: return __kernel_cos(y[0],y[1]); |
case 1: return -__kernel_sin(y[0],y[1],1); |
case 2: return -__kernel_cos(y[0],y[1]); |
default: |
return __kernel_sin(y[0],y[1],1); |
} |
} |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/e_pow.c
0,0 → 1,312
|
/* @(#)e_pow.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* __ieee754_pow(x,y) return x**y |
* |
* n |
* Method: Let x = 2 * (1+f) |
* 1. Compute and return log2(x) in two pieces: |
* log2(x) = w1 + w2, |
* where w1 has 53-24 = 29 bit trailing zeros. |
* 2. Perform y*log2(x) = n+y' by simulating muti-precision |
* arithmetic, where |y'|<=0.5. |
* 3. Return x**y = 2**n*exp(y'*log2) |
* |
* Special cases: |
* 1. (anything) ** 0 is 1 |
* 2. (anything) ** 1 is itself |
* 3. (anything) ** NAN is NAN |
* 4. NAN ** (anything except 0) is NAN |
* 5. +-(|x| > 1) ** +INF is +INF |
* 6. +-(|x| > 1) ** -INF is +0 |
* 7. +-(|x| < 1) ** +INF is +0 |
* 8. +-(|x| < 1) ** -INF is +INF |
* 9. +-1 ** +-INF is NAN |
* 10. +0 ** (+anything except 0, NAN) is +0 |
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
* 12. +0 ** (-anything except 0, NAN) is +INF |
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
* 15. +INF ** (+anything except 0,NAN) is +INF |
* 16. +INF ** (-anything except 0,NAN) is +0 |
* 17. -INF ** (anything) = -0 ** (-anything) |
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
* 19. (-anything except 0 and inf) ** (non-integer) is NAN |
* |
* Accuracy: |
* pow(x,y) returns x**y nearly rounded. In particular |
* pow(integer,integer) |
* always returns the correct integer provided it is |
* representable. |
* |
* Constants : |
* The hexadecimal values are the intended ones for the following |
* constants. The decimal values may be used, provided that the |
* compiler will convert from decimal to binary accurately enough |
* to produce the hexadecimal values shown. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double |
#else |
static double |
#endif |
bp[] = {1.0, 1.5,}, |
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
zero = 0.0, |
one = 1.0, |
two = 2.0, |
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
huge = 1.0e300, |
tiny = 1.0e-300, |
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
|
#ifdef __STDC__ |
double __ieee754_pow(double x, double y) |
#else |
double __ieee754_pow(x,y) |
double x, y; |
#endif |
{ |
double z,ax,z_h,z_l,p_h,p_l; |
double y1,t1,t2,r,s,t,u,v,w; |
__int32_t i,j,k,yisint,n; |
__int32_t hx,hy,ix,iy; |
__uint32_t lx,ly; |
|
EXTRACT_WORDS(hx,lx,x); |
EXTRACT_WORDS(hy,ly,y); |
ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
|
/* y==zero: x**0 = 1 */ |
if((iy|ly)==0) return one; |
|
/* +-NaN return x+y */ |
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
return x+y; |
|
/* determine if y is an odd int when x < 0 |
* yisint = 0 ... y is not an integer |
* yisint = 1 ... y is an odd int |
* yisint = 2 ... y is an even int |
*/ |
yisint = 0; |
if(hx<0) { |
if(iy>=0x43400000) yisint = 2; /* even integer y */ |
else if(iy>=0x3ff00000) { |
k = (iy>>20)-0x3ff; /* exponent */ |
if(k>20) { |
j = ly>>(52-k); |
if((j<<(52-k))==ly) yisint = 2-(j&1); |
} else if(ly==0) { |
j = iy>>(20-k); |
if((j<<(20-k))==iy) yisint = 2-(j&1); |
} |
} |
} |
|
/* special value of y */ |
if(ly==0) { |
if (iy==0x7ff00000) { /* y is +-inf */ |
if(((ix-0x3ff00000)|lx)==0) |
return y - y; /* inf**+-1 is NaN */ |
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ |
return (hy>=0)? y: zero; |
else /* (|x|<1)**-,+inf = inf,0 */ |
return (hy<0)?-y: zero; |
} |
if(iy==0x3ff00000) { /* y is +-1 */ |
if(hy<0) return one/x; else return x; |
} |
if(hy==0x40000000) return x*x; /* y is 2 */ |
if(hy==0x3fe00000) { /* y is 0.5 */ |
if(hx>=0) /* x >= +0 */ |
return __ieee754_sqrt(x); |
} |
} |
|
ax = fabs(x); |
/* special value of x */ |
if(lx==0) { |
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
z = ax; /*x is +-0,+-inf,+-1*/ |
if(hy<0) z = one/z; /* z = (1/|x|) */ |
if(hx<0) { |
if(((ix-0x3ff00000)|yisint)==0) { |
z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
} else if(yisint==1) |
z = -z; /* (x<0)**odd = -(|x|**odd) */ |
} |
return z; |
} |
} |
|
/* (x<0)**(non-int) is NaN */ |
/* CYGNUS LOCAL: This used to be |
if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x); |
but ANSI C says a right shift of a signed negative quantity is |
implementation defined. */ |
if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); |
|
/* |y| is huge */ |
if(iy>0x41e00000) { /* if |y| > 2**31 */ |
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
} |
/* over/underflow if x is not close to one */ |
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; |
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; |
/* now |1-x| is tiny <= 2**-20, suffice to compute |
log(x) by x-x^2/2+x^3/3-x^4/4 */ |
t = x-1; /* t has 20 trailing zeros */ |
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
v = t*ivln2_l-w*ivln2; |
t1 = u+v; |
SET_LOW_WORD(t1,0); |
t2 = v-(t1-u); |
} else { |
double s2,s_h,s_l,t_h,t_l; |
n = 0; |
/* take care subnormal number */ |
if(ix<0x00100000) |
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } |
n += ((ix)>>20)-0x3ff; |
j = ix&0x000fffff; |
/* determine interval */ |
ix = j|0x3ff00000; /* normalize ix */ |
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
else {k=0;n+=1;ix -= 0x00100000;} |
SET_HIGH_WORD(ax,ix); |
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
v = one/(ax+bp[k]); |
s = u*v; |
s_h = s; |
SET_LOW_WORD(s_h,0); |
/* t_h=ax+bp[k] High */ |
t_h = zero; |
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); |
t_l = ax - (t_h-bp[k]); |
s_l = v*((u-s_h*t_h)-s_h*t_l); |
/* compute log(ax) */ |
s2 = s*s; |
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
r += s_l*(s_h+s); |
s2 = s_h*s_h; |
t_h = 3.0+s2+r; |
SET_LOW_WORD(t_h,0); |
t_l = r-((t_h-3.0)-s2); |
/* u+v = s*(1+...) */ |
u = s_h*t_h; |
v = s_l*t_h+t_l*s; |
/* 2/(3log2)*(s+...) */ |
p_h = u+v; |
SET_LOW_WORD(p_h,0); |
p_l = v-(p_h-u); |
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
t = (double)n; |
t1 = (((z_h+z_l)+dp_h[k])+t); |
SET_LOW_WORD(t1,0); |
t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
} |
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0) |
s = -one;/* (-ve)**(odd int) */ |
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
y1 = y; |
SET_LOW_WORD(y1,0); |
p_l = (y-y1)*t1+y*t2; |
p_h = y1*t1; |
z = p_l+p_h; |
EXTRACT_WORDS(j,i,z); |
if (j>=0x40900000) { /* z >= 1024 */ |
if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
return s*huge*huge; /* overflow */ |
else { |
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ |
} |
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
return s*tiny*tiny; /* underflow */ |
else { |
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
} |
} |
/* |
* compute 2**(p_h+p_l) |
*/ |
i = j&0x7fffffff; |
k = (i>>20)-0x3ff; |
n = 0; |
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
n = j+(0x00100000>>(k+1)); |
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
t = zero; |
SET_HIGH_WORD(t,n&~(0x000fffff>>k)); |
n = ((n&0x000fffff)|0x00100000)>>(20-k); |
if(j<0) n = -n; |
p_h -= t; |
} |
t = p_l+p_h; |
SET_LOW_WORD(t,0); |
u = t*lg2_h; |
v = (p_l-(t-p_h))*lg2+t*lg2_l; |
z = u+v; |
w = v-(z-u); |
t = z*z; |
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
r = (z*t1)/(t1-two)-(w+z*w); |
z = one-(r-z); |
GET_HIGH_WORD(j,z); |
j += (n<<20); |
if((j>>20)<=0) z = scalbn(z,(int)n); /* subnormal output */ |
else SET_HIGH_WORD(z,j); |
return s*z; |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/w_scalb.c
0,0 → 1,94
|
/* @(#)w_scalb.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper scalb(double x, double fn) is provide for |
* passing various standard test suite. One |
* should use scalbn() instead. |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
#ifdef _SCALB_INT |
double scalb(double x, int fn) /* wrapper scalb */ |
#else |
double scalb(double x, double fn) /* wrapper scalb */ |
#endif |
#else |
double scalb(x,fn) /* wrapper scalb */ |
#ifdef _SCALB_INT |
double x; int fn; |
#else |
double x,fn; |
#endif |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_scalb(x,fn); |
#else |
double z; |
#ifndef HUGE_VAL |
#define HUGE_VAL inf |
double inf = 0.0; |
|
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ |
#endif |
struct exception exc; |
z = __ieee754_scalb(x,fn); |
if(_LIB_VERSION == _IEEE_) return z; |
if(!(finite(z)||isnan(z))&&finite(x)) { |
/* scalb overflow; SVID also returns +-HUGE_VAL */ |
exc.type = OVERFLOW; |
exc.name = "scalb"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = fn; |
exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL; |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
if(z==0.0&&z!=x) { |
/* scalb underflow */ |
exc.type = UNDERFLOW; |
exc.name = "scalb"; |
exc.err = 0; |
exc.arg1 = x; |
exc.arg2 = fn; |
exc.retval = copysign(0.0,x); |
if (_LIB_VERSION == _POSIX_) |
errno = ERANGE; |
else if (!matherr(&exc)) { |
errno = ERANGE; |
} |
if (exc.err != 0) |
errno = exc.err; |
return exc.retval; |
} |
#ifndef _SCALB_INT |
if(!finite(fn)) errno = ERANGE; |
#endif |
return z; |
#endif |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/s_tanh.c
0,0 → 1,128
|
/* @(#)s_tanh.c 5.1 93/09/24 */ |
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
|
FUNCTION |
<<tanh>>, <<tanhf>>---hyperbolic tangent |
|
INDEX |
tanh |
INDEX |
tanhf |
|
ANSI_SYNOPSIS |
#include <math.h> |
double tanh(double <[x]>); |
float tanhf(float <[x]>); |
|
TRAD_SYNOPSIS |
#include <math.h> |
double tanh(<[x]>) |
double <[x]>; |
|
float tanhf(<[x]>) |
float <[x]>; |
|
|
DESCRIPTION |
|
<<tanh>> computes the hyperbolic tangent of |
the argument <[x]>. Angles are specified in radians. |
|
<<tanh(<[x]>)>> is defined as |
. sinh(<[x]>)/cosh(<[x]>) |
|
<<tanhf>> is identical, save that it takes and returns <<float>> values. |
|
RETURNS |
The hyperbolic tangent of <[x]> is returned. |
|
PORTABILITY |
<<tanh>> is ANSI C. <<tanhf>> is an extension. |
|
*/ |
|
/* Tanh(x) |
* Return the Hyperbolic Tangent of x |
* |
* Method : |
* x -x |
* e - e |
* 0. tanh(x) is defined to be ----------- |
* x -x |
* e + e |
* 1. reduce x to non-negative by tanh(-x) = -tanh(x). |
* 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) |
* -t |
* 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) |
* t + 2 |
* 2 |
* 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) |
* t + 2 |
* 22.0 < x <= INF : tanh(x) := 1. |
* |
* Special cases: |
* tanh(NaN) is NaN; |
* only tanh(0)=0 is exact for finite argument. |
*/ |
|
#include "fdlibm.h" |
|
#ifndef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
static const double one=1.0, two=2.0, tiny = 1.0e-300; |
#else |
static double one=1.0, two=2.0, tiny = 1.0e-300; |
#endif |
|
#ifdef __STDC__ |
double tanh(double x) |
#else |
double tanh(x) |
double x; |
#endif |
{ |
double t,z; |
__int32_t jx,ix; |
|
/* High word of |x|. */ |
GET_HIGH_WORD(jx,x); |
ix = jx&0x7fffffff; |
|
/* x is INF or NaN */ |
if(ix>=0x7ff00000) { |
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ |
else return one/x-one; /* tanh(NaN) = NaN */ |
} |
|
/* |x| < 22 */ |
if (ix < 0x40360000) { /* |x|<22 */ |
if (ix<0x3c800000) /* |x|<2**-55 */ |
return x*(one+x); /* tanh(small) = small */ |
if (ix>=0x3ff00000) { /* |x|>=1 */ |
t = expm1(two*fabs(x)); |
z = one - two/(t+two); |
} else { |
t = expm1(-two*fabs(x)); |
z= -t/(t+two); |
} |
/* |x| > 22, return +-1 */ |
} else { |
z = one - tiny; /* raised inexact flag */ |
} |
return (jx>=0)? z: -z; |
} |
|
#endif /* _DOUBLE_IS_32BITS */ |
/sf_tanh.c
0,0 → 1,73
/* sf_tanh.c -- float version of s_tanh.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
#include "fdlibm.h" |
|
#ifdef __STDC__ |
static const float one=1.0, two=2.0, tiny = 1.0e-30; |
#else |
static float one=1.0, two=2.0, tiny = 1.0e-30; |
#endif |
|
#ifdef __STDC__ |
float tanhf(float x) |
#else |
float tanhf(x) |
float x; |
#endif |
{ |
float t,z; |
__int32_t jx,ix; |
|
GET_FLOAT_WORD(jx,x); |
ix = jx&0x7fffffff; |
|
/* x is INF or NaN */ |
if(!FLT_UWORD_IS_FINITE(ix)) { |
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ |
else return one/x-one; /* tanh(NaN) = NaN */ |
} |
|
/* |x| < 22 */ |
if (ix < 0x41b00000) { /* |x|<22 */ |
if (ix<0x24000000) /* |x|<2**-55 */ |
return x*(one+x); /* tanh(small) = small */ |
if (ix>=0x3f800000) { /* |x|>=1 */ |
t = expm1f(two*fabsf(x)); |
z = one - two/(t+two); |
} else { |
t = expm1f(-two*fabsf(x)); |
z= -t/(t+two); |
} |
/* |x| > 22, return +-1 */ |
} else { |
z = one - tiny; /* raised inexact flag */ |
} |
return (jx>=0)? z: -z; |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double tanh(double x) |
#else |
double tanh(x) |
double x; |
#endif |
{ |
return (double) tanhf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |
/wf_sqrt.c
0,0 → 1,72
/* wf_sqrt.c -- float version of w_sqrt.c. |
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
*/ |
|
/* |
* ==================================================== |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
* |
* Developed at SunPro, a Sun Microsystems, Inc. business. |
* Permission to use, copy, modify, and distribute this |
* software is freely granted, provided that this notice |
* is preserved. |
* ==================================================== |
*/ |
|
/* |
* wrapper sqrtf(x) |
*/ |
|
#include "fdlibm.h" |
#include <errno.h> |
|
#ifdef __STDC__ |
float sqrtf(float x) /* wrapper sqrtf */ |
#else |
float sqrtf(x) /* wrapper sqrtf */ |
float x; |
#endif |
{ |
#ifdef _IEEE_LIBM |
return __ieee754_sqrtf(x); |
#else |
float z; |
struct exception exc; |
z = __ieee754_sqrtf(x); |
if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; |
if(x<(float)0.0) { |
/* sqrtf(negative) */ |
exc.type = DOMAIN; |
exc.name = "sqrtf"; |
exc.err = 0; |
exc.arg1 = exc.arg2 = (double)x; |
if (_LIB_VERSION == _SVID_) |
exc.retval = 0.0; |
else |
exc.retval = 0.0/0.0; |
if (_LIB_VERSION == _POSIX_) |
errno = EDOM; |
else if (!matherr(&exc)) { |
errno = EDOM; |
} |
if (exc.err != 0) |
errno = exc.err; |
return (float)exc.retval; |
} else |
return z; |
#endif |
} |
|
#ifdef _DOUBLE_IS_32BITS |
|
#ifdef __STDC__ |
double sqrt(double x) |
#else |
double sqrt(x) |
double x; |
#endif |
{ |
return (double) sqrtf((float) x); |
} |
|
#endif /* defined(_DOUBLE_IS_32BITS) */ |