OpenCores
URL https://opencores.org/ocsvn/or1k_old/or1k_old/trunk

Subversion Repositories or1k_old

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /or1k_old/trunk/rc203soc/sw/uClinux/fs/hpfs
    from Rev 1765 to Rev 1782
    Reverse comparison

Rev 1765 → Rev 1782

/hpfs.h
0,0 → 1,500
/* The paper
 
Duncan, Roy
Design goals and implementation of the new High Performance File System
Microsoft Systems Journal Sept 1989 v4 n5 p1(13)
 
describes what HPFS looked like when it was new, and it is the source
of most of the information given here. The rest is conjecture.
 
For definitive information on the Duncan paper, see it, not this file.
For definitive information on HPFS, ask somebody else -- this is guesswork.
There are certain to be many mistakes. */
 
/* Notation */
 
typedef unsigned secno; /* sector number, partition relative */
 
typedef secno dnode_secno; /* sector number of a dnode */
typedef secno fnode_secno; /* sector number of an fnode */
typedef secno anode_secno; /* sector number of an anode */
 
/* sector 0 */
 
/* The boot block is very like a FAT boot block, except that the
29h signature byte is 28h instead, and the ID string is "HPFS". */
 
struct hpfs_boot_block
{
unsigned char jmp[3];
unsigned char oem_id[8];
unsigned char bytes_per_sector[2]; /* 512 */
unsigned char sectors_per_cluster;
unsigned char n_reserved_sectors[2];
unsigned char n_fats;
unsigned char n_rootdir_entries[2];
unsigned char n_sectors_s[2];
unsigned char media_byte;
unsigned short sectors_per_fat;
unsigned short sectors_per_track;
unsigned short heads_per_cyl;
unsigned int n_hidden_sectors;
unsigned int n_sectors_l; /* size of partition */
unsigned char drive_number;
unsigned char mbz;
unsigned char sig_28h; /* 28h */
unsigned char vol_serno[4];
unsigned char vol_label[11];
unsigned char sig_hpfs[8]; /* "HPFS " */
unsigned char pad[448];
unsigned short magic; /* aa55 */
};
 
 
/* sector 16 */
 
/* The super block has the pointer to the root directory. */
 
#define SB_MAGIC 0xf995e849
 
struct hpfs_super_block
{
unsigned magic; /* f995 e849 */
unsigned magic1; /* fa53 e9c5, more magic? */
unsigned huh202; /* ?? 202 = N. of B. in 1.00390625 S.*/
fnode_secno root; /* fnode of root directory */
secno n_sectors; /* size of filesystem */
unsigned n_badblocks; /* number of bad blocks */
secno bitmaps; /* pointers to free space bit maps */
unsigned zero1; /* 0 */
secno badblocks; /* bad block list */
unsigned zero3; /* 0 */
time_t last_chkdsk; /* date last checked, 0 if never */
unsigned zero4; /* 0 */
secno n_dir_band; /* number of sectors in dir band */
secno dir_band_start; /* first sector in dir band */
secno dir_band_end; /* last sector in dir band */
secno dir_band_bitmap; /* free space map, 1 dnode per bit */
unsigned zero5[8]; /* 0 */
secno scratch_dnodes; /* ?? 8 preallocated sectors near dir
band, 4-aligned. */
unsigned zero6[103]; /* 0 */
};
 
 
/* sector 17 */
 
/* The spare block has pointers to spare sectors. */
 
#define SP_MAGIC 0xf9911849
 
struct hpfs_spare_block
{
unsigned magic; /* f991 1849 */
unsigned magic1; /* fa52 29c5, more magic? */
 
unsigned dirty: 1; /* 0 clean, 1 "improperly stopped" */
unsigned flag1234: 4; /* unknown flags */
unsigned fast: 1; /* partition was fast formatted */
unsigned flag6to31: 26; /* unknown flags */
 
secno hotfix_map; /* info about remapped bad sectors */
unsigned n_spares_used; /* number of hotfixes */
unsigned n_spares; /* number of spares in hotfix map */
unsigned n_dnode_spares_free; /* spare dnodes unused */
unsigned n_dnode_spares; /* length of spare_dnodes[] list,
follows in this block*/
secno code_page_dir; /* code page directory block */
unsigned n_code_pages; /* number of code pages */
unsigned large_numbers[2]; /* ?? */
unsigned zero1[15];
dnode_secno spare_dnodes[20]; /* emergency free dnode list */
unsigned zero2[81]; /* room for more? */
};
 
/* The bad block list is 4 sectors long. The first word must be zero,
the remaining words give n_badblocks bad block numbers.
I bet you can see it coming... */
 
#define BAD_MAGIC 0
/* The hotfix map is 4 sectors long. It looks like
 
secno from[n_spares];
secno to[n_spares];
 
The to[] list is initialized to point to n_spares preallocated empty
sectors. The from[] list contains the sector numbers of bad blocks
which have been remapped to corresponding sectors in the to[] list.
n_spares_used gives the length of the from[] list. */
 
 
/* Sectors 18 and 19 are preallocated and unused.
Maybe they're spares for 16 and 17, but simple substitution fails. */
 
 
/* The code page info pointed to by the spare block consists of an index
block and blocks containing uppercasing tables. I don't know what
these are for (CHKDSK, maybe?) -- OS/2 does not seem to use them
itself. Linux doesn't use them either. */
 
/* block pointed to by spareblock->code_page_dir */
 
#define CP_DIR_MAGIC 0x494521f7
 
struct code_page_directory
{
unsigned magic; /* 4945 21f7 */
unsigned n_code_pages; /* number of pointers following */
unsigned zero1[2];
struct {
unsigned short ix; /* index */
unsigned short code_page_number; /* code page number */
unsigned bounds; /* matches corresponding word
in data block */
secno code_page_data; /* sector number of a code_page_data
containing c.p. array */
unsigned index; /* index in c.p. array in that sector*/
} array[31]; /* unknown length */
};
 
/* blocks pointed to by code_page_directory */
 
#define CP_DATA_MAGIC 0x894521f7
 
struct code_page_data
{
unsigned magic; /* 8945 21f7 */
unsigned n_used; /* # elements used in c_p_data[] */
unsigned bounds[3]; /* looks a bit like
(beg1,end1), (beg2,end2)
one byte each */
unsigned short offs[3]; /* offsets from start of sector
to start of c_p_data[ix] */
struct {
unsigned short ix; /* index */
unsigned short code_page_number; /* code page number */
unsigned short zero1;
unsigned char map[128]; /* upcase table for chars 80..ff */
unsigned short zero2;
} code_page[3];
unsigned char incognita[78];
};
 
 
/* Free space bitmaps are 4 sectors long, which is 16384 bits.
16384 sectors is 8 meg, and each 8 meg band has a 4-sector bitmap.
Bit order in the maps is little-endian. 0 means taken, 1 means free.
 
Bit map sectors are marked allocated in the bit maps, and so are sectors
off the end of the partition.
 
Band 0 is sectors 0-3fff, its map is in sectors 18-1b.
Band 1 is 4000-7fff, its map is in 7ffc-7fff.
Band 2 is 8000-ffff, its map is in 8000-8003.
The remaining bands have maps in their first (even) or last (odd) 4 sectors
-- if the last, partial, band is odd its map is in its last 4 sectors.
 
The bitmap locations are given in a table pointed to by the super block.
No doubt they aren't constrained to be at 18, 7ffc, 8000, ...; that is
just where they usually are.
 
The "directory band" is a bunch of sectors preallocated for dnodes.
It has a 4-sector free space bitmap of its own. Each bit in the map
corresponds to one 4-sector dnode, bit 0 of the map corresponding to
the first 4 sectors of the directory band. The entire band is marked
allocated in the main bitmap. The super block gives the locations
of the directory band and its bitmap. ("band" doesn't mean it is
8 meg long; it isn't.) */
 
 
/* dnode: directory. 4 sectors long */
 
/* A directory is a tree of dnodes. The fnode for a directory
contains one pointer, to the root dnode of the tree. The fnode
never moves, the dnodes do the B-tree thing, splitting and merging
as files are added and removed. */
 
#define DNODE_MAGIC 0x77e40aae
 
struct dnode {
unsigned magic; /* 77e4 0aae */
unsigned first_free; /* offset from start of dnode to
first free dir entry */
unsigned increment_me; /* some kind of activity counter?
Neither HPFS.IFS nor CHKDSK cares
if you change this word */
secno up; /* (root dnode) directory's fnode
(nonroot) parent dnode */
dnode_secno self; /* pointer to this dnode */
unsigned char dirent[2028]; /* one or more dirents */
};
 
struct hpfs_dirent {
unsigned short length; /* offset to next dirent */
unsigned first: 1; /* set on phony ^A^A (".") entry */
unsigned flag1: 1;
unsigned down: 1; /* down pointer present (after name) */
unsigned last: 1; /* set on phony \377 entry */
unsigned flag4: 1;
unsigned flag5: 1;
unsigned flag6: 1;
unsigned has_needea: 1; /* ?? some EA has NEEDEA set
I have no idea why this is
interesting in a dir entry */
unsigned read_only: 1; /* dos attrib */
unsigned hidden: 1; /* dos attrib */
unsigned system: 1; /* dos attrib */
unsigned flag11: 1; /* would be volume label dos attrib */
unsigned directory: 1; /* dos attrib */
unsigned archive: 1; /* dos attrib */
unsigned not_8x3: 1; /* name is not 8.3 */
unsigned flag15: 1;
fnode_secno fnode; /* fnode giving allocation info */
time_t write_date; /* mtime */
unsigned file_size; /* file length, bytes */
time_t read_date; /* atime */
time_t creation_date; /* ctime */
unsigned ea_size; /* total EA length, bytes */
unsigned char zero1;
unsigned char ix; /* code page index (of filename), see
struct code_page_data */
unsigned char namelen, name[1]; /* file name */
/* dnode_secno down; btree down pointer, if present,
follows name on next word boundary, or maybe it
precedes next dirent, which is on a word boundary. */
};
 
/* The b-tree down pointer from a dir entry */
 
static inline dnode_secno de_down_pointer (struct hpfs_dirent *de)
{
return *(dnode_secno *) ((void *) de + de->length - 4);
}
 
/* The first dir entry in a dnode */
 
static inline struct hpfs_dirent *dnode_first_de (struct dnode *dnode)
{
return (void *) dnode->dirent;
}
 
/* The end+1 of the dir entries */
 
static inline struct hpfs_dirent *dnode_end_de (struct dnode *dnode)
{
return (void *) dnode + dnode->first_free;
}
 
/* The dir entry after dir entry de */
 
static inline struct hpfs_dirent *de_next_de (struct hpfs_dirent *de)
{
return (void *) de + de->length;
}
 
 
/* B+ tree: allocation info in fnodes and anodes */
 
/* dnodes point to fnodes which are responsible for listing the sectors
assigned to the file. This is done with trees of (length,address)
pairs. (Actually triples, of (length, file-address, disk-address)
which can represent holes. Find out if HPFS does that.)
At any rate, fnodes contain a small tree; if subtrees are needed
they occupy essentially a full block in anodes. A leaf-level tree node
has 3-word entries giving sector runs, a non-leaf node has 2-word
entries giving subtree pointers. A flag in the header says which. */
 
struct bplus_leaf_node
{
unsigned file_secno; /* first file sector in extent */
unsigned length; /* length, sectors */
secno disk_secno; /* first corresponding disk sector */
};
 
struct bplus_internal_node
{
unsigned file_secno; /* subtree maps sectors < this */
anode_secno down; /* pointer to subtree */
};
 
struct bplus_header
{
unsigned flag0: 1;
unsigned flag1: 1;
unsigned flag2: 1;
unsigned flag3: 1;
unsigned flag4: 1;
unsigned fnode_parent: 1; /* ? we're pointed to by an fnode,
the data btree or some ea or the
main ea bootage pointer ea_secno */
/* also can get set in fnodes, which
may be a chkdsk glitch or may mean
this bit is irrelevant in fnodes,
or this interpretation is all wet */
unsigned flag6: 1;
unsigned internal: 1; /* 1 -> (internal) tree of anodes
0 -> (leaf) list of extents */
unsigned char fill[3];
unsigned char n_free_nodes; /* free nodes in following array */
unsigned char n_used_nodes; /* used nodes in following array */
unsigned short first_free; /* offset from start of header to
first free node in array */
union {
struct bplus_internal_node internal[0]; /* (internal) 2-word entries giving
subtree pointers */
struct bplus_leaf_node external[0]; /* (external) 3-word entries giving
sector runs */
} u;
};
 
/* fnode: root of allocation b+ tree, and EA's */
 
/* Every file and every directory has one fnode, pointed to by the directory
entry and pointing to the file's sectors or directory's root dnode. EA's
are also stored here, and there are said to be ACL's somewhere here too. */
 
#define FNODE_MAGIC 0xf7e40aae
 
struct fnode
{
unsigned magic; /* f7e4 0aae */
unsigned zero1[2];
unsigned char len, name[15]; /* true length, truncated name */
fnode_secno up; /* pointer to file's directory fnode */
unsigned zero2[3];
unsigned ea_size_l; /* length of disk-resident ea's */
secno ea_secno; /* first sector of disk-resident ea's*/
unsigned short ea_size_s; /* length of fnode-resident ea's */
 
unsigned flag0: 1;
unsigned ea_anode: 1; /* 1 -> ea_secno is an anode */
unsigned flag2: 1;
unsigned flag3: 1;
unsigned flag4: 1;
unsigned flag5: 1;
unsigned flag6: 1;
unsigned flag7: 1;
unsigned dirflag: 1; /* 1 -> directory. first & only extent
points to dnode. */
unsigned flag9: 1;
unsigned flag10: 1;
unsigned flag11: 1;
unsigned flag12: 1;
unsigned flag13: 1;
unsigned flag14: 1;
unsigned flag15: 1;
 
struct bplus_header btree; /* b+ tree, 8 extents or 12 subtrees */
union {
struct bplus_leaf_node external[8];
struct bplus_internal_node internal[12];
} u;
 
unsigned file_size; /* file length, bytes */
unsigned n_needea; /* number of EA's with NEEDEA set */
unsigned zero4[4];
unsigned ea_offs; /* offset from start of fnode
to first fnode-resident ea */
unsigned zero5[2];
unsigned char ea[316]; /* zero or more EA's, packed together
with no alignment padding.
(Do not use this name, get here
via fnode + ea_offs. I think.) */
};
 
 
/* anode: 99.44% pure allocation tree */
 
#define ANODE_MAGIC 0x37e40aae
 
struct anode
{
unsigned magic; /* 37e4 0aae */
anode_secno self; /* pointer to this anode */
secno up; /* parent anode or fnode */
 
struct bplus_header btree; /* b+tree, 40 extents or 60 subtrees */
union {
struct bplus_leaf_node external[40];
struct bplus_internal_node internal[60];
} u;
 
unsigned fill[3]; /* unused */
};
 
 
/* extended attributes.
 
A file's EA info is stored as a list of (name,value) pairs. It is
usually in the fnode, but (if it's large) it is moved to a single
sector run outside the fnode, or to multiple runs with an anode tree
that points to them.
 
The value of a single EA is stored along with the name, or (if large)
it is moved to a single sector run, or multiple runs pointed to by an
anode tree, pointed to by the value field of the (name,value) pair.
 
Flags in the EA tell whether the value is immediate, in a single sector
run, or in multiple runs. Flags in the fnode tell whether the EA list
is immediate, in a single run, or in multiple runs. */
 
struct extended_attribute
{
unsigned indirect: 1; /* 1 -> value gives sector number
where real value starts */
unsigned anode: 1; /* 1 -> sector is an anode
that points to fragmented value */
unsigned flag2: 1;
unsigned flag3: 1;
unsigned flag4: 1;
unsigned flag5: 1;
unsigned flag6: 1;
unsigned needea: 1; /* required ea */
unsigned char namelen; /* length of name, bytes */
unsigned short valuelen; /* length of value, bytes */
/*
unsigned char name[namelen]; ascii attrib name
unsigned char nul; terminating '\0', not counted
unsigned char value[valuelen]; value, arbitrary
if this.indirect, valuelen is 8 and the value is
unsigned length; real length of value, bytes
secno secno; sector address where it starts
if this.anode, the above sector number is the root of an anode tree
which points to the value.
*/
};
 
static inline unsigned char *ea_name (struct extended_attribute *ea)
{
return (void *) ea + sizeof *ea;
}
 
static inline unsigned char *ea_value (struct extended_attribute *ea)
{
return (void *) ea + sizeof *ea + ea->namelen + 1;
}
 
static inline struct extended_attribute *
ea_next_ea (struct extended_attribute *ea)
{
return (void *) ea + sizeof *ea + ea->namelen + 1 + ea->valuelen;
}
 
static inline unsigned ea_indirect_length (struct extended_attribute *ea)
{
unsigned *v = (void *) ea_value (ea);
return v[0];
}
 
static inline secno ea_indirect_secno (struct extended_attribute *ea)
{
unsigned *v = (void *) ea_value (ea);
return v[1];
}
 
/*
Local Variables:
comment-column: 40
End:
*/
/hpfs_caps.c
0,0 → 1,171
/* Capitalization rules for HPFS */
 
/* In OS/2, HPFS filenames preserve upper and lower case letter distinctions
but filename matching ignores case. That is, creating a file "Foo"
actually creates a file named "Foo" which can be looked up as "Foo",
"foo", or "FOO", among other possibilities.
 
Also, HPFS is internationalized -- a table giving the uppercase
equivalent of every character is stored in the filesystem, so that
any national character set may be used. If several different
national character sets are in use, several tables are stored
in the filesystem.
 
It would be perfectly reasonable for Linux HPFS to act as a Unix
filesystem and match "Foo" only if asked for "Foo" exactly. But
the sort order of HPFS directories is case-insensitive, so Linux
still has to know the capitalization rules used by OS/2. Because
of this, it turns out to be more natural for us to be case-insensitive
than not.
 
Currently the standard character set used by Linux is Latin-1.
Work is underway to permit people to use UTF-8 instead, therefore
all code that depends on the character set is segregated here.
 
(It would be wonderful if Linux HPFS could be independent of what
character set is in use on the Linux side, but because of the
necessary case folding this is impossible.)
 
There is a map from Latin-1 into code page 850 for every printing
character in Latin-1. The NLS documentation of OS/2 shows that
everybody has 850 available unless they don't have Western latin
chars available at all (so fitting them to Linux without Unicode
is a doomed exercise).
 
It is not clear exactly how HPFS.IFS handles the situation when
multiple code pages are in use. Experiments show that
 
- tables on the disk give uppercasing rules for the installed code pages
 
- each directory entry is tagged with what code page was current
when that name was created
 
- doing just CHCP, without changing what's on the disk in any way,
can change what DIR reports, and what name a case-folded match
will match.
 
This means, I think, that HPFS.IFS operates in the current code
page, without regard to the uppercasing information recorded in
the tables on the disk. It does record the uppercasing rules
it used, perhaps for CHKDSK, but it does not appear to use them
itself.
 
So: Linux, a Latin-1 system, will operate in code page 850. We
recode between 850 and Latin-1 when dealing with the names actually
on the disk. We don't use the uppercasing tables either.
 
In a hypothetical UTF-8 implementation, one reasonable way to
proceed that matches OS/2 (for least surprise) is: do case
translation in UTF-8, and recode to/from one of the code pages
available on the mounted filesystem. Reject as invalid any name
containing chars that can't be represented on disk by one of the
code pages OS/2 is using. Recoding from on-disk names to UTF-8
could use the code page tags, though this is not what OS/2 does. */
 
 
static const unsigned char tb_cp850_to_latin1[128] =
{
199, 252, 233, 226, 228, 224, 229, 231,
234, 235, 232, 239, 238, 236, 196, 197,
201, 230, 198, 244, 246, 242, 251, 249,
255, 214, 220, 248, 163, 216, 215, 159,
225, 237, 243, 250, 241, 209, 170, 186,
191, 174, 172, 189, 188, 161, 171, 187,
155, 156, 157, 144, 151, 193, 194, 192,
169, 135, 128, 131, 133, 162, 165, 147,
148, 153, 152, 150, 145, 154, 227, 195,
132, 130, 137, 136, 134, 129, 138, 164,
240, 208, 202, 203, 200, 158, 205, 206,
207, 149, 146, 141, 140, 166, 204, 139,
211, 223, 212, 210, 245, 213, 181, 254,
222, 218, 219, 217, 253, 221, 175, 180,
173, 177, 143, 190, 182, 167, 247, 184,
176, 168, 183, 185, 179, 178, 142, 160,
};
 
#if 0
static const unsigned char tb_latin1_to_cp850[128] =
{
186, 205, 201, 187, 200, 188, 204, 185,
203, 202, 206, 223, 220, 219, 254, 242,
179, 196, 218, 191, 192, 217, 195, 180,
194, 193, 197, 176, 177, 178, 213, 159,
255, 173, 189, 156, 207, 190, 221, 245,
249, 184, 166, 174, 170, 240, 169, 238,
248, 241, 253, 252, 239, 230, 244, 250,
247, 251, 167, 175, 172, 171, 243, 168,
183, 181, 182, 199, 142, 143, 146, 128,
212, 144, 210, 211, 222, 214, 215, 216,
209, 165, 227, 224, 226, 229, 153, 158,
157, 235, 233, 234, 154, 237, 232, 225,
133, 160, 131, 198, 132, 134, 145, 135,
138, 130, 136, 137, 141, 161, 140, 139,
208, 164, 149, 162, 147, 228, 148, 246,
155, 151, 163, 150, 129, 236, 231, 152,
};
#endif
 
#define A_GRAVE 0300
#define THORN 0336
#define MULTIPLY 0327
#define a_grave 0340
#define thorn 0376
#define divide 0367
 
static inline unsigned latin1_upcase (unsigned c)
{
if (c - 'a' <= 'z' - 'a'
|| (c - a_grave <= thorn - a_grave
&& c != divide))
return c - 'a' + 'A';
else
return c;
}
 
static inline unsigned latin1_downcase (unsigned c)
{
if (c - 'A' <= 'Z' - 'A'
|| (c - A_GRAVE <= THORN - A_GRAVE
&& c != MULTIPLY))
return c + 'a' - 'A';
else
return c;
}
 
#if 0
static inline unsigned latin1_to_cp850 (unsigned c)
{
if ((signed) c - 128 >= 0)
return tb_latin1_to_cp850[c - 128];
else
return c;
}
#endif
 
static inline unsigned cp850_to_latin1 (unsigned c)
{
if ((signed) c - 128 >= 0)
return tb_cp850_to_latin1[c - 128];
else
return c;
}
 
unsigned hpfs_char_to_upper_linux (unsigned c)
{
return latin1_upcase (cp850_to_latin1 (c));
}
 
unsigned linux_char_to_upper_linux (unsigned c)
{
return latin1_upcase (c);
}
 
unsigned hpfs_char_to_lower_linux (unsigned c)
{
return latin1_downcase (cp850_to_latin1 (c));
}
 
unsigned hpfs_char_to_linux (unsigned c)
{
return cp850_to_latin1 (c);
}
/hpfs_fs.c
0,0 → 1,1772
/*
* linux/fs/hpfs/hpfs_fs.c
* read-only HPFS
* version 1.0
*
* Chris Smith 1993
*
* Sources & references:
* Duncan, _Design ... of HPFS_, MSJ 4(5) (C) 1989 Microsoft Corp
* linux/fs/minix Copyright (C) 1991, 1992, 1993 Linus Torvalds
* linux/fs/msdos Written 1992, 1993 by Werner Almesberger
* linux/fs/isofs Copyright (C) 1991 Eric Youngdale
*/
 
#include <linux/module.h>
 
#include <linux/fs.h>
#include <linux/hpfs_fs.h>
#include <linux/errno.h>
#include <linux/malloc.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/locks.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <asm/bitops.h>
#include <asm/segment.h>
 
#include "hpfs.h"
#include "hpfs_caps.h"
 
/*
* HPFS is a mixture of 512-byte blocks and 2048-byte blocks. The 2k blocks
* are used for directories and bitmaps. For bmap to work, we must run the
* file system with 512-byte blocks. The 2k blocks are assembled in buffers
* obtained from kmalloc.
*
* For a file's i-number we use the sector number of its fnode, coded.
* (Directory ino's are even, file ino's are odd, and ino >> 1 is the
* sector address of the fnode. This is a hack to allow lookup() to
* tell read_inode() whether it is necessary to read the fnode.)
*
* The map_xxx routines all read something into a buffer and return a
* pointer somewhere in the buffer. The caller must do the brelse.
* The other routines are balanced.
*
* For details on the data structures see hpfs.h and the Duncan paper.
*
* Overview
*
* [ The names of these data structures, except fnode, are not Microsoft's
* or IBM's. I don't know what names they use. The semantics described
* here are those of this implementation, and any coincidence between it
* and real HPFS is to be hoped for but not guaranteed by me, and
* certainly not guaranteed by MS or IBM. Who know nothing about this. ]
*
* [ Also, the following will make little sense if you haven't read the
* Duncan paper, which is excellent. ]
*
* HPFS is a tree. There are 3 kinds of nodes. A directory is a tree
* of dnodes, and a file's allocation info is a tree of sector runs
* stored in fnodes and anodes.
*
* The top pointer is in the super block, it points to the fnode of the
* root directory.
*
* The root directory -- all directories -- gives file names, dates &c,
* and fnode addresses. If the directory fits in one dnode, that's it,
* otherwise the top dnode points to other dnodes, forming a tree. A
* dnode tree (one directory) might look like
*
* ((a b c) d (e f g) h (i j) k l (m n o p))
*
* The subtrees appear between the files. Each dir entry contains, along
* with the name and fnode, a dnode pointer to the subtree that precedes it
* (if there is one; a flag tells that). The first entry in every directory
* is ^A^A, the "." entry for the directory itself. The last entry in every
* dnode is \377, a fake entry whose only valid fields are the bit marking
* it last and the down pointer to the subtree preceding it, if any.
*
* The "value" field of directory entries is an fnode address. The fnode
* tells where the sectors of the file are. The fnode for a subdirectory
* contains one pointer, to the root dnode of the subdirectory. The fnode
* for a data file contains, in effect, a tiny anode. (Most of the space
* in fnodes is for extended attributes.)
*
* anodes and the anode part of fnodes are trees of extents. An extent
* is a (length, disk address) pair, labeled with the file address being
* mapped. E.g.,
*
* (0: 3@1000 3: 1@2000 4: 2@10)
*
* means the file:disk sector map (0:1000 1:1001 2:1002 3:2000 4:10 5:11).
*
* There is space for 8 file:len@disk triples in an fnode, or for 40 in an
* anode. If this is insufficient, subtrees are used, as in
*
* (6: (0: 3@1000 3: 1@2000 4: 2@10) 12: (6: 3@8000 9: 1@9000 10: 2@20))
*
* The label on a subtree is the first address *after* that tree. The
* subtrees are always anodes. The label:subtree pairs require only
* two words each, so non-leaf subtrees have a different format; there
* is room for 12 label:subtree pairs in an fnode, or 60 in an anode.
*
* Within a directory, each dnode contains a pointer up to its parent
* dnode. The root dnode points up to the directory's fnode.
*
* Each fnode contains a pointer to the directory that contains it
* (to the fnode of the directory). So this pointer in a directory
* fnode is "..".
*
* On the disk, dnodes are all together in the center of the partition,
* and HPFS even manages to put all the dnodes for a single directory
* together, generally. fnodes are out with the data. anodes are seldom
* seen -- in fact noncontiguous files are seldom seen. I think this is
* partly the open() call that lets programs specify the length of an
* output file when they know it, and partly because HPFS.IFS really is
* very good at resisting fragmentation.
*/
/* notation */
 
#define little_ushort(x) (*(unsigned short *) &(x))
typedef void nonconst;
 
/* super block ops */
 
static void hpfs_read_inode(struct inode *);
static void hpfs_put_super(struct super_block *);
static void hpfs_statfs(struct super_block *, struct statfs *, int);
static int hpfs_remount_fs(struct super_block *, int *, char *);
 
static const struct super_operations hpfs_sops =
{
hpfs_read_inode, /* read_inode */
NULL, /* notify_change */
NULL, /* write_inode */
NULL, /* put_inode */
hpfs_put_super, /* put_super */
NULL, /* write_super */
hpfs_statfs, /* statfs */
hpfs_remount_fs, /* remount_fs */
};
 
/* file ops */
 
static int hpfs_file_read(struct inode *, struct file *, char *, int);
static secno hpfs_bmap(struct inode *, unsigned);
 
static const struct file_operations hpfs_file_ops =
{
NULL, /* lseek - default */
hpfs_file_read, /* read */
NULL, /* write */
NULL, /* readdir - bad */
NULL, /* select - default */
NULL, /* ioctl - default */
generic_file_mmap, /* mmap */
NULL, /* no special open is needed */
NULL, /* release */
file_fsync, /* fsync */
};
 
static const struct inode_operations hpfs_file_iops =
{
(nonconst *) & hpfs_file_ops, /* default file operations */
NULL, /* create */
NULL, /* lookup */
NULL, /* link */
NULL, /* unlink */
NULL, /* symlink */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* mknod */
NULL, /* rename */
NULL, /* readlink */
NULL, /* follow_link */
generic_readpage, /* readpage */
NULL, /* writepage */
(int (*)(struct inode *, int))
&hpfs_bmap, /* bmap */
NULL, /* truncate */
NULL, /* permission */
};
 
/* directory ops */
 
static int hpfs_dir_read(struct inode *inode, struct file *filp,
char *buf, int count);
static int hpfs_readdir(struct inode *inode, struct file *filp,
void *dirent, filldir_t filldir);
static int hpfs_lookup(struct inode *, const char *, int, struct inode **);
 
static const struct file_operations hpfs_dir_ops =
{
NULL, /* lseek - default */
hpfs_dir_read, /* read */
NULL, /* write - bad */
hpfs_readdir, /* readdir */
NULL, /* select - default */
NULL, /* ioctl - default */
NULL, /* mmap */
NULL, /* no special open code */
NULL, /* no special release code */
file_fsync, /* fsync */
};
 
static const struct inode_operations hpfs_dir_iops =
{
(nonconst *) & hpfs_dir_ops, /* default directory file ops */
NULL, /* create */
hpfs_lookup, /* lookup */
NULL, /* link */
NULL, /* unlink */
NULL, /* symlink */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* mknod */
NULL, /* rename */
NULL, /* readlink */
NULL, /* follow_link */
NULL, /* readpage */
NULL, /* writepage */
NULL, /* bmap */
NULL, /* truncate */
NULL, /* permission */
};
 
/* Four 512-byte buffers and the 2k block obtained by concatenating them */
 
struct quad_buffer_head {
struct buffer_head *bh[4];
void *data;
};
 
/* forwards */
 
static int parse_opts(char *opts, uid_t *uid, gid_t *gid, umode_t *umask,
int *lowercase, int *conv, int *nocheck);
static int check_warn(int not_ok,
const char *p1, const char *p2, const char *p3);
static int zerop(void *addr, unsigned len);
static void count_dnodes(struct inode *inode, dnode_secno dno,
unsigned *n_dnodes, unsigned *n_subdirs);
static unsigned count_bitmap(struct super_block *s);
static unsigned count_one_bitmap(kdev_t dev, secno secno);
static secno bplus_lookup(struct inode *inode, struct bplus_header *b,
secno file_secno, struct buffer_head **bhp);
static struct hpfs_dirent *map_dirent(struct inode *inode, dnode_secno dno,
const unsigned char *name, unsigned len,
struct quad_buffer_head *qbh);
static struct hpfs_dirent *map_pos_dirent(struct inode *inode, loff_t *posp,
struct quad_buffer_head *qbh);
static dnode_secno dir_subdno(struct inode *inode, unsigned pos);
static struct hpfs_dirent *map_nth_dirent(kdev_t dev, dnode_secno dno,
int n,
struct quad_buffer_head *qbh);
static unsigned choose_conv(unsigned char *p, unsigned len);
static unsigned convcpy_tofs(unsigned char *out, unsigned char *in,
unsigned len);
static dnode_secno fnode_dno(kdev_t dev, ino_t ino);
static struct fnode *map_fnode(kdev_t dev, ino_t ino,
struct buffer_head **bhp);
static struct anode *map_anode(kdev_t dev, unsigned secno,
struct buffer_head **bhp);
static struct dnode *map_dnode(kdev_t dev, unsigned secno,
struct quad_buffer_head *qbh);
static void *map_sector(kdev_t dev, unsigned secno, struct buffer_head **bhp);
static void *map_4sectors(kdev_t dev, unsigned secno,
struct quad_buffer_head *qbh);
static void brelse4(struct quad_buffer_head *qbh);
 
/*
* make inode number for a file
*/
 
static inline ino_t file_ino(fnode_secno secno)
{
return secno << 1 | 1;
}
 
/*
* make inode number for a directory
*/
 
static inline ino_t dir_ino(fnode_secno secno)
{
return secno << 1;
}
 
/*
* get fnode address from an inode number
*/
 
static inline fnode_secno ino_secno(ino_t ino)
{
return ino >> 1;
}
 
/*
* test for directory's inode number
*/
 
static inline int ino_is_dir(ino_t ino)
{
return (ino & 1) == 0;
}
 
/*
* conv= options
*/
 
#define CONV_BINARY 0 /* no conversion */
#define CONV_TEXT 1 /* crlf->newline */
#define CONV_AUTO 2 /* decide based on file contents */
 
/*
* local time (HPFS) to GMT (Unix)
*/
 
static inline time_t local_to_gmt(time_t t)
{
extern struct timezone sys_tz;
return t + sys_tz.tz_minuteswest * 60;
}
/* super block ops */
 
/*
* mount. This gets one thing, the root directory inode. It does a
* bunch of guessed-at consistency checks.
*/
 
struct super_block *hpfs_read_super(struct super_block *s,
void *options, int silent)
{
struct hpfs_boot_block *bootblock;
struct hpfs_super_block *superblock;
struct hpfs_spare_block *spareblock;
struct hpfs_dirent *de;
struct buffer_head *bh0, *bh1, *bh2;
struct quad_buffer_head qbh;
dnode_secno root_dno;
kdev_t dev;
uid_t uid;
gid_t gid;
umode_t umask;
int lowercase;
int conv;
int dubious;
int nocheck;
 
MOD_INC_USE_COUNT;
 
/*
* Get the mount options
*/
 
if (!parse_opts(options, &uid, &gid, &umask, &lowercase, &conv,
&nocheck)) {
printk("HPFS: syntax error in mount options. Not mounted.\n");
s->s_dev = 0;
MOD_DEC_USE_COUNT;
return 0;
}
 
/*
* Fill in the super block struct
*/
 
lock_super(s);
dev = s->s_dev;
set_blocksize(dev, 512);
 
/*
* fetch sectors 0, 16, 17
*/
 
bootblock = map_sector(dev, 0, &bh0);
if (!bootblock)
goto bail;
 
superblock = map_sector(dev, 16, &bh1);
if (!superblock)
goto bail0;
 
spareblock = map_sector(dev, 17, &bh2);
if (!spareblock)
goto bail1;
 
/*
* Check that this fs looks enough like a known one that we can find
* and read the root directory.
*/
 
if (bootblock->magic != 0xaa55
|| superblock->magic != SB_MAGIC
|| spareblock->magic != SP_MAGIC
|| bootblock->sig_28h != 0x28
|| memcmp(&bootblock->sig_hpfs, "HPFS ", 8)
|| little_ushort(bootblock->bytes_per_sector) != 512) {
printk("HPFS: hpfs_read_super: Not HPFS\n");
goto bail2;
}
 
/*
* Check for inconsistencies -- possibly wrong guesses here, possibly
* filesystem problems.
*/
 
dubious = 0;
 
dubious |= check_warn(spareblock->dirty != 0,
"`Improperly stopped'", "flag is set", "run CHKDSK");
dubious |= check_warn(spareblock->n_spares_used != 0,
"Spare blocks", "may be in use", "run CHKDSK");
 
/*
* Above errors mean we could get wrong answers if we proceed,
* so don't
*/
 
if (dubious && !nocheck)
goto bail2;
 
dubious |= check_warn((spareblock->n_dnode_spares !=
spareblock->n_dnode_spares_free),
"Spare dnodes", "may be in use", "run CHKDSK");
dubious |= check_warn(superblock->zero1 != 0,
"#1", "unknown word nonzero", "investigate");
dubious |= check_warn(superblock->zero3 != 0,
"#3", "unknown word nonzero", "investigate");
dubious |= check_warn(superblock->zero4 != 0,
"#4", "unknown word nonzero", "investigate");
dubious |= check_warn(!zerop(superblock->zero5,
sizeof superblock->zero5),
"#5", "unknown word nonzero", "investigate");
dubious |= check_warn(!zerop(superblock->zero6,
sizeof superblock->zero6),
"#6", "unknown word nonzero", "investigate");
 
if (dubious)
printk("HPFS: Proceeding, but operation may be unreliable\n");
 
/*
* set fs read only
*/
 
s->s_flags |= MS_RDONLY;
 
/*
* fill in standard stuff
*/
 
s->s_magic = HPFS_SUPER_MAGIC;
s->s_blocksize = 512;
s->s_blocksize_bits = 9;
s->s_op = (struct super_operations *) &hpfs_sops;
 
/*
* fill in hpfs stuff
*/
 
s->s_hpfs_root = dir_ino(superblock->root);
s->s_hpfs_fs_size = superblock->n_sectors;
s->s_hpfs_dirband_size = superblock->n_dir_band / 4;
s->s_hpfs_dmap = superblock->dir_band_bitmap;
s->s_hpfs_bitmaps = superblock->bitmaps;
s->s_hpfs_uid = uid;
s->s_hpfs_gid = gid;
s->s_hpfs_mode = 0777 & ~umask;
s->s_hpfs_n_free = -1;
s->s_hpfs_n_free_dnodes = -1;
s->s_hpfs_lowercase = lowercase;
s->s_hpfs_conv = conv;
 
/*
* done with the low blocks
*/
 
brelse(bh2);
brelse(bh1);
brelse(bh0);
 
/*
* all set. try it out.
*/
 
s->s_mounted = iget(s, s->s_hpfs_root);
unlock_super(s);
 
if (!s->s_mounted) {
printk("HPFS: hpfs_read_super: inode get failed\n");
s->s_dev = 0;
MOD_DEC_USE_COUNT;
return 0;
}
 
/*
* find the root directory's . pointer & finish filling in the inode
*/
 
root_dno = fnode_dno(dev, s->s_hpfs_root);
if (root_dno)
de = map_dirent(s->s_mounted, root_dno, "\001\001", 2, &qbh);
if (!root_dno || !de) {
printk("HPFS: "
"hpfs_read_super: root dir isn't in the root dir\n");
s->s_dev = 0;
MOD_DEC_USE_COUNT;
return 0;
}
 
s->s_mounted->i_atime = local_to_gmt(de->read_date);
s->s_mounted->i_mtime = local_to_gmt(de->write_date);
s->s_mounted->i_ctime = local_to_gmt(de->creation_date);
 
brelse4(&qbh);
return s;
 
bail2:
brelse(bh2);
bail1:
brelse(bh1);
bail0:
brelse(bh0);
bail:
s->s_dev = 0;
unlock_super(s);
MOD_DEC_USE_COUNT;
return 0;
}
 
static int check_warn(int not_ok,
const char *p1, const char *p2, const char *p3)
{
if (not_ok)
printk("HPFS: %s %s. Please %s\n", p1, p2, p3);
return not_ok;
}
 
static int zerop(void *addr, unsigned len)
{
unsigned char *p = addr;
return p[0] == 0 && memcmp(p, p + 1, len - 1) == 0;
}
 
/*
* A tiny parser for option strings, stolen from dosfs.
*/
 
static int parse_opts(char *opts, uid_t *uid, gid_t *gid, umode_t *umask,
int *lowercase, int *conv, int *nocheck)
{
char *p, *rhs;
 
*uid = current->uid;
*gid = current->gid;
*umask = current->fs->umask;
*lowercase = 1;
*conv = CONV_BINARY;
*nocheck = 0;
 
if (!opts)
return 1;
 
for (p = strtok(opts, ","); p != 0; p = strtok(0, ",")) {
if ((rhs = strchr(p, '=')) != 0)
*rhs++ = '\0';
if (!strcmp(p, "uid")) {
if (!rhs || !*rhs)
return 0;
*uid = simple_strtoul(rhs, &rhs, 0);
if (*rhs)
return 0;
}
else if (!strcmp(p, "gid")) {
if (!rhs || !*rhs)
return 0;
*gid = simple_strtoul(rhs, &rhs, 0);
if (*rhs)
return 0;
}
else if (!strcmp(p, "umask")) {
if (!rhs || !*rhs)
return 0;
*umask = simple_strtoul(rhs, &rhs, 8);
if (*rhs)
return 0;
}
else if (!strcmp(p, "case")) {
if (!strcmp(rhs, "lower"))
*lowercase = 1;
else if (!strcmp(rhs, "asis"))
*lowercase = 0;
else
return 0;
}
else if (!strcmp(p, "conv")) {
if (!strcmp(rhs, "binary"))
*conv = CONV_BINARY;
else if (!strcmp(rhs, "text"))
*conv = CONV_TEXT;
else if (!strcmp(rhs, "auto"))
*conv = CONV_AUTO;
else
return 0;
}
else if (!strcmp(p,"nocheck"))
*nocheck=1;
else
return 1;
}
 
return 1;
}
 
/*
* read_inode. This is called with exclusive access to a new inode that
* has only (i_dev,i_ino) set. It is responsible for filling in the rest.
* We leave the dates blank, to be filled in from the dir entry.
*
* NOTE that there must be no sleeping from the return in this routine
* until lookup() finishes filling in the inode, otherwise the partly
* completed inode would be visible during the sleep.
*
* It is done in this strange and sinful way because the alternative
* is to read the fnode, find the dir pointer in it, read that fnode
* to get the dnode pointer, search through that whole directory for
* the ino we're reading, and get the dates. It works that way, but
* ls sounds like fsck.
*/
 
static void hpfs_read_inode(struct inode *inode)
{
struct super_block *s = inode->i_sb;
 
/* be ready to bail out */
 
inode->i_op = 0;
inode->i_mode = 0;
 
if (inode->i_ino == 0
|| ino_secno(inode->i_ino) >= inode->i_sb->s_hpfs_fs_size) {
printk("HPFS: read_inode: bad ino\n");
return;
}
 
/*
* canned stuff
*/
 
inode->i_uid = s->s_hpfs_uid;
inode->i_gid = s->s_hpfs_gid;
inode->i_mode = s->s_hpfs_mode;
inode->i_hpfs_conv = s->s_hpfs_conv;
 
inode->i_hpfs_dno = 0;
inode->i_hpfs_n_secs = 0;
inode->i_hpfs_file_sec = 0;
inode->i_hpfs_disk_sec = 0;
inode->i_hpfs_dpos = 0;
inode->i_hpfs_dsubdno = 0;
 
/*
* figure out whether we are looking at a directory or a file
*/
 
if (ino_is_dir(inode->i_ino))
inode->i_mode |= S_IFDIR;
else {
inode->i_mode |= S_IFREG;
inode->i_mode &= ~0111;
}
 
/*
* these fields must be filled in from the dir entry, which we don't
* have but lookup does. It will fill them in before letting the
* inode out of its grasp.
*/
 
inode->i_atime = 0;
inode->i_mtime = 0;
inode->i_ctime = 0;
inode->i_size = 0;
 
/*
* fill in the rest
*/
 
if (S_ISREG(inode->i_mode)) {
 
inode->i_op = (struct inode_operations *) &hpfs_file_iops;
inode->i_nlink = 1;
inode->i_blksize = 512;
 
}
else {
unsigned n_dnodes, n_subdirs;
struct buffer_head *bh0;
struct fnode *fnode = map_fnode(inode->i_dev,
inode->i_ino, &bh0);
 
if (!fnode) {
printk("HPFS: read_inode: no fnode\n");
inode->i_mode = 0;
return;
}
 
inode->i_hpfs_parent_dir = dir_ino(fnode->up);
inode->i_hpfs_dno = fnode->u.external[0].disk_secno;
 
brelse(bh0);
 
n_dnodes = n_subdirs = 0;
count_dnodes(inode, inode->i_hpfs_dno, &n_dnodes, &n_subdirs);
 
inode->i_op = (struct inode_operations *) &hpfs_dir_iops;
inode->i_blksize = 512; /* 2048 here confuses ls & du & ... */
inode->i_blocks = 4 * n_dnodes;
inode->i_size = 512 * inode->i_blocks;
inode->i_nlink = 2 + n_subdirs;
}
}
 
/*
* unmount.
*/
 
static void hpfs_put_super(struct super_block *s)
{
lock_super(s);
s->s_dev = 0;
unlock_super(s);
MOD_DEC_USE_COUNT;
}
 
/*
* statfs. For free inode counts we report the count of dnodes in the
* directory band -- not exactly right but pretty analogous.
*/
 
static void hpfs_statfs(struct super_block *s, struct statfs *buf, int bufsiz)
{
struct statfs tmp;
 
/*
* count the bits in the bitmaps, unless we already have
*/
if (s->s_hpfs_n_free == -1) {
s->s_hpfs_n_free = count_bitmap(s);
s->s_hpfs_n_free_dnodes =
count_one_bitmap(s->s_dev, s->s_hpfs_dmap);
}
 
/*
* fill in the user statfs struct
*/
tmp.f_type = s->s_magic;
tmp.f_bsize = 512;
tmp.f_blocks = s->s_hpfs_fs_size;
tmp.f_bfree = s->s_hpfs_n_free;
tmp.f_bavail = s->s_hpfs_n_free;
tmp.f_files = s->s_hpfs_dirband_size;
tmp.f_ffree = s->s_hpfs_n_free_dnodes;
tmp.f_namelen = 254;
memcpy_tofs(buf, &tmp, bufsiz);
}
 
/*
* remount. Don't let read only be turned off.
*/
 
static int hpfs_remount_fs(struct super_block *s, int *flags, char *data)
{
if (!(*flags & MS_RDONLY))
return -EINVAL;
return 0;
}
 
/*
* count the dnodes in a directory, and the subdirs.
*/
 
static void count_dnodes(struct inode *inode, dnode_secno dno,
unsigned *n_dnodes, unsigned *n_subdirs)
{
struct quad_buffer_head qbh;
struct dnode *dnode;
struct hpfs_dirent *de;
struct hpfs_dirent *de_end;
 
dnode = map_dnode(inode->i_dev, dno, &qbh);
if (!dnode)
return;
de = dnode_first_de(dnode);
de_end = dnode_end_de(dnode);
 
(*n_dnodes)++;
 
for (; de < de_end; de = de_next_de(de)) {
if (de->down)
count_dnodes(inode, de_down_pointer(de),
n_dnodes, n_subdirs);
if (de->directory && !de->first)
(*n_subdirs)++;
if (de->last || de->length == 0)
break;
}
 
brelse4(&qbh);
}
 
/*
* count the bits in the free space bit maps
*/
 
static unsigned count_bitmap(struct super_block *s)
{
unsigned n, count, n_bands;
secno *bitmaps;
struct quad_buffer_head qbh;
 
/*
* there is one bit map for each 16384 sectors
*/
n_bands = (s->s_hpfs_fs_size + 0x3fff) >> 14;
 
/*
* their locations are given in an array pointed to by the super
* block
*/
bitmaps = map_4sectors(s->s_dev, s->s_hpfs_bitmaps, &qbh);
if (!bitmaps)
return 0;
 
count = 0;
 
/*
* map each one and count the free sectors
*/
for (n = 0; n < n_bands; n++)
if (bitmaps[n] == 0)
printk("HPFS: bit map pointer missing\n");
else
count += count_one_bitmap(s->s_dev, bitmaps[n]);
 
brelse4(&qbh);
return count;
}
 
/*
* Read in one bit map, count the bits, return the count.
*/
 
static unsigned count_one_bitmap(kdev_t dev, secno secno)
{
struct quad_buffer_head qbh;
char *bits;
unsigned i, count;
 
bits = map_4sectors(dev, secno, &qbh);
if (!bits)
return 0;
 
count = 0;
 
for (i = 0; i < 8 * 2048; i++)
count += (test_bit(i, bits) != 0);
brelse4(&qbh);
 
return count;
}
/* file ops */
 
/*
* read. Read the bytes, put them in buf, return the count.
*/
 
static int hpfs_file_read(struct inode *inode, struct file *filp,
char *buf, int count)
{
unsigned q, r, n, n0;
struct buffer_head *bh;
char *block;
char *start;
 
if (inode == 0 || !S_ISREG(inode->i_mode))
return -EINVAL;
 
/*
* truncate count at EOF
*/
if (count > inode->i_size - (off_t) filp->f_pos)
count = inode->i_size - filp->f_pos;
 
start = buf;
while (count > 0) {
/*
* get file sector number, offset in sector, length to end of
* sector
*/
q = filp->f_pos >> 9;
r = filp->f_pos & 511;
n = 512 - r;
 
/*
* get length to copy to user buffer
*/
if (n > count)
n = count;
 
/*
* read the sector, copy to user
*/
block = map_sector(inode->i_dev, hpfs_bmap(inode, q), &bh);
if (!block)
return -EIO;
 
/*
* but first decide if it has \r\n, if the mount option said
* to do that
*/
if (inode->i_hpfs_conv == CONV_AUTO)
inode->i_hpfs_conv = choose_conv(block + r, n);
 
if (inode->i_hpfs_conv == CONV_BINARY) {
/*
* regular copy, output length is same as input
* length
*/
memcpy_tofs(buf, block + r, n);
n0 = n;
}
else {
/*
* squeeze out \r, output length varies
*/
n0 = convcpy_tofs(buf, block + r, n);
if (count > inode->i_size - (off_t) filp->f_pos - n + n0)
count = inode->i_size - filp->f_pos - n + n0;
}
 
brelse(bh);
 
/*
* advance input n bytes, output n0 bytes
*/
filp->f_pos += n;
buf += n0;
count -= n0;
}
 
return buf - start;
}
 
/*
* This routine implements conv=auto. Return CONV_BINARY or CONV_TEXT.
*/
 
static unsigned choose_conv(unsigned char *p, unsigned len)
{
unsigned tvote, bvote;
unsigned c;
 
tvote = bvote = 0;
 
while (len--) {
c = *p++;
if (c < ' ')
if (c == '\r' && len && *p == '\n')
tvote += 10;
else if (c == '\t' || c == '\n');
else
bvote += 5;
else if (c < '\177')
tvote++;
else
bvote += 5;
}
 
if (tvote > bvote)
return CONV_TEXT;
else
return CONV_BINARY;
}
 
/*
* This routine implements conv=text. :s/crlf/nl/
*/
 
static unsigned convcpy_tofs(unsigned char *out, unsigned char *in,
unsigned len)
{
unsigned char *start = out;
 
while (len--) {
unsigned c = *in++;
if (c == '\r' && (len == 0 || *in == '\n'));
else
put_user(c, out++);
}
 
return out - start;
}
 
/*
* Return the disk sector number containing a file sector.
*/
 
static secno hpfs_bmap(struct inode *inode, unsigned file_secno)
{
unsigned n, disk_secno;
struct fnode *fnode;
struct buffer_head *bh;
 
/*
* There is one sector run cached in the inode. See if the sector is
* in it.
*/
 
n = file_secno - inode->i_hpfs_file_sec;
if (n < inode->i_hpfs_n_secs)
return inode->i_hpfs_disk_sec + n;
 
/*
* No, read the fnode and go find the sector.
*/
 
else {
fnode = map_fnode(inode->i_dev, inode->i_ino, &bh);
if (!fnode)
return 0;
disk_secno = bplus_lookup(inode, &fnode->btree,
file_secno, &bh);
brelse(bh);
return disk_secno;
}
}
 
/*
* Search allocation tree *b for the given file sector number and return
* the disk sector number. Buffer *bhp has the tree in it, and can be
* reused for subtrees when access to *b is no longer needed.
* *bhp is busy on entry and exit.
*/
 
static secno bplus_lookup(struct inode *inode, struct bplus_header *b,
secno file_secno, struct buffer_head **bhp)
{
int i;
 
/*
* A leaf-level tree gives a list of sector runs. Find the one
* containing the file sector we want, cache the map info in the
* inode for later, and return the corresponding disk sector.
*/
 
if (!b->internal) {
struct bplus_leaf_node *n = b->u.external;
for (i = 0; i < b->n_used_nodes; i++) {
unsigned t = file_secno - n[i].file_secno;
if (t < n[i].length) {
inode->i_hpfs_file_sec = n[i].file_secno;
inode->i_hpfs_disk_sec = n[i].disk_secno;
inode->i_hpfs_n_secs = n[i].length;
return n[i].disk_secno + t;
}
}
}
 
/*
* A non-leaf tree gives a list of subtrees. Find the one containing
* the file sector we want, read it in, and recurse to search it.
*/
 
else {
struct bplus_internal_node *n = b->u.internal;
for (i = 0; i < b->n_used_nodes; i++) {
if (file_secno < n[i].file_secno) {
struct anode *anode;
anode_secno ano = n[i].down;
brelse(*bhp);
anode = map_anode(inode->i_dev, ano, bhp);
if (!anode)
break;
return bplus_lookup(inode, &anode->btree,
file_secno, bhp);
}
}
}
 
/*
* If we get here there was a hole in the file. As far as I know we
* never do get here, but falling off the end would be indelicate. So
* return a pointer to a handy all-zero sector. This is not a
* reasonable way to handle files with holes if they really do
* happen.
*/
 
printk("HPFS: bplus_lookup: sector not found\n");
return 15;
}
/* directory ops */
 
/*
* lookup. Search the specified directory for the specified name, set
* *result to the corresponding inode.
*
* lookup uses the inode number to tell read_inode whether it is reading
* the inode of a directory or a file -- file ino's are odd, directory
* ino's are even. read_inode avoids i/o for file inodes; everything
* needed is up here in the directory. (And file fnodes are out in
* the boondocks.)
*/
 
static int hpfs_lookup(struct inode *dir, const char *name, int len,
struct inode **result)
{
struct quad_buffer_head qbh;
struct hpfs_dirent *de;
struct inode *inode;
ino_t ino;
 
/* In case of madness */
 
*result = 0;
if (dir == 0)
return -ENOENT;
if (!S_ISDIR(dir->i_mode))
goto bail;
 
/*
* Read in the directory entry. "." is there under the name ^A^A .
* Always read the dir even for . and .. in case we need the dates.
*/
 
if (name[0] == '.' && len == 1)
de = map_dirent(dir, dir->i_hpfs_dno, "\001\001", 2, &qbh);
else if (name[0] == '.' && name[1] == '.' && len == 2)
de = map_dirent(dir,
fnode_dno(dir->i_dev, dir->i_hpfs_parent_dir),
"\001\001", 2, &qbh);
else
de = map_dirent(dir, dir->i_hpfs_dno, name, len, &qbh);
 
/*
* This is not really a bailout, just means file not found.
*/
 
if (!de)
goto bail;
 
/*
* Get inode number, what we're after.
*/
 
if (de->directory)
ino = dir_ino(de->fnode);
else
ino = file_ino(de->fnode);
 
/*
* Go find or make an inode.
*/
 
if (!(inode = iget(dir->i_sb, ino)))
goto bail1;
 
/*
* Fill in the info from the directory if this is a newly created
* inode.
*/
 
if (!inode->i_atime) {
inode->i_atime = local_to_gmt(de->read_date);
inode->i_mtime = local_to_gmt(de->write_date);
inode->i_ctime = local_to_gmt(de->creation_date);
if (de->read_only)
inode->i_mode &= ~0222;
if (!de->directory) {
inode->i_size = de->file_size;
/*
* i_blocks should count the fnode and any anodes.
* We count 1 for the fnode and don't bother about
* anodes -- the disk heads are on the directory band
* and we want them to stay there.
*/
inode->i_blocks = 1 + ((inode->i_size + 511) >> 9);
}
}
 
brelse4(&qbh);
 
/*
* Made it.
*/
 
*result = inode;
iput(dir);
return 0;
 
/*
* Didn't.
*/
bail1:
brelse4(&qbh);
bail:
iput(dir);
return -ENOENT;
}
 
/*
* Compare two counted strings ignoring case.
* HPFS directory order sorts letters as if they're upper case.
*/
 
static inline int memcasecmp(const unsigned char *s1, const unsigned char *s2,
unsigned n)
{
int t;
 
if (n != 0)
do {
unsigned c1 = linux_char_to_upper_linux (*s1++);
unsigned c2 = hpfs_char_to_upper_linux (*s2++);
if ((t = c1 - c2) != 0)
return t;
} while (--n != 0);
 
return 0;
}
 
/*
* Search a directory for the given name, return a pointer to its dir entry
* and a pointer to the buffer containing it.
*/
 
static struct hpfs_dirent *map_dirent(struct inode *inode, dnode_secno dno,
const unsigned char *name, unsigned len,
struct quad_buffer_head *qbh)
{
struct dnode *dnode;
struct hpfs_dirent *de;
struct hpfs_dirent *de_end;
int t, l;
 
/*
* read the dnode at the root of our subtree
*/
dnode = map_dnode(inode->i_dev, dno, qbh);
if (!dnode)
return 0;
 
/*
* get pointers to start and end+1 of dir entries
*/
de = dnode_first_de(dnode);
de_end = dnode_end_de(dnode);
 
/*
* look through the entries for the name we're after
*/
for ( ; de < de_end; de = de_next_de(de)) {
 
/*
* compare names
*/
l = len < de->namelen ? len : de->namelen;
t = memcasecmp(name, de->name, l);
 
/*
* initial substring matches, compare lengths
*/
if (t == 0) {
t = len - de->namelen;
/* bingo */
if (t == 0)
return de;
}
 
/*
* wanted name .lt. dir name => not present.
*/
if (t < 0) {
/*
* if there is a subtree, search it.
*/
if (de->down) {
dnode_secno sub_dno = de_down_pointer(de);
brelse4(qbh);
return map_dirent(inode, sub_dno,
name, len, qbh);
}
else
break;
}
 
/*
* de->last is set on the last name in the dnode (it's always
* a "\377" pseudo entry). de->length == 0 means we're about
* to infinite loop. This test does nothing in a well-formed
* dnode.
*/
if (de->last || de->length == 0)
break;
}
 
/*
* name not found.
*/
brelse4(qbh);
return 0;
}
 
/*
* readdir. Return exactly 1 dirent. (I tried and tried, but currently
* the interface with libc just does not permit more than 1. If it gets
* fixed, throw this out and just walk the tree and write records into
* the user buffer.)
*
* [ we now can handle multiple dirents, although the current libc doesn't
* use that. The way hpfs does this is pretty strange, as we need to do
* the name translation etc before calling "filldir()". This is untested,
* as I don't have any hpfs partitions to test against. Linus ]
*
* We keep track of our position in the dnode tree with a sort of
* dewey-decimal record of subtree locations. Like so:
*
* (1 (1.1 1.2 1.3) 2 3 (3.1 (3.1.1 3.1.2) 3.2 3.3 (3.3.1)) 4)
*
* Subtrees appear after their file, out of lexical order,
* which would be before their file. It's easier.
*
* A directory can't hold more than 56 files, so 6 bits are used for
* position numbers. If the tree is so deep that the position encoding
* doesn't fit, I'm sure something absolutely fascinating happens.
*
* The actual sequence of f_pos values is
* 0 => . -1 => .. 1 1.1 ... 8.9 9 => files -2 => eof
*
* The directory inode caches one position-to-dnode correspondence so
* we won't have to repeatedly scan the top levels of the tree.
*/
 
/*
* Translate the given name: Blam it to lowercase if the mount option said to.
*/
 
static void translate_hpfs_name(const unsigned char * from, int len, char * to, int lowercase)
{
while (len > 0) {
unsigned t = *from;
len--;
if (lowercase)
t = hpfs_char_to_lower_linux (t);
else
t = hpfs_char_to_linux (t);
*to = t;
from++;
to++;
}
}
 
static int hpfs_readdir(struct inode *inode, struct file *filp, void * dirent,
filldir_t filldir)
{
struct quad_buffer_head qbh;
struct hpfs_dirent *de;
int namelen, lc;
ino_t ino;
char * tempname;
long old_pos;
 
if (inode == 0
|| inode->i_sb == 0
|| !S_ISDIR(inode->i_mode))
return -EBADF;
 
tempname = (char *) __get_free_page(GFP_KERNEL);
if (!tempname)
return -ENOMEM;
 
lc = inode->i_sb->s_hpfs_lowercase;
switch ((long) filp->f_pos) {
case -2:
break;
 
case 0:
if (filldir(dirent, ".", 1, filp->f_pos, inode->i_ino) < 0)
break;
filp->f_pos = -1;
/* fall through */
 
case -1:
if (filldir(dirent, "..", 2, filp->f_pos, inode->i_hpfs_parent_dir) < 0)
break;
filp->f_pos = 1;
/* fall through */
 
default:
for (;;) {
old_pos = filp->f_pos;
de = map_pos_dirent(inode, &filp->f_pos, &qbh);
if (!de) {
filp->f_pos = -2;
break;
}
namelen = de->namelen;
translate_hpfs_name(de->name, namelen, tempname, lc);
if (de->directory)
ino = dir_ino(de->fnode);
else
ino = file_ino(de->fnode);
brelse4(&qbh);
if (filldir(dirent, tempname, namelen, old_pos, ino) < 0) {
filp->f_pos = old_pos;
break;
}
}
}
free_page((unsigned long) tempname);
return 0;
}
 
/*
* Map the dir entry at subtree coordinates given by *posp, and
* increment *posp to point to the following dir entry.
*/
 
static struct hpfs_dirent *map_pos_dirent(struct inode *inode, loff_t *posp,
struct quad_buffer_head *qbh)
{
unsigned pos, q, r;
dnode_secno dno;
struct hpfs_dirent *de;
 
/*
* Get the position code and split off the rightmost index r
*/
 
pos = *posp;
q = pos >> 6;
r = pos & 077;
 
/*
* Get the sector address of the dnode
* pointed to by the leading part q
*/
 
dno = dir_subdno(inode, q);
if (!dno)
return 0;
 
/*
* Get the entry at index r in dnode q
*/
 
de = map_nth_dirent(inode->i_dev, dno, r, qbh);
 
/*
* If none, we're out of files in this dnode. Ascend.
*/
 
if (!de) {
if (q == 0)
return 0;
*posp = q + 1;
return map_pos_dirent(inode, posp, qbh);
}
 
/*
* If a subtree is here, descend.
*/
 
if (de->down)
*posp = pos << 6 | 1;
else
*posp = pos + 1;
 
/*
* Don't return the ^A^A and \377 entries.
*/
 
if (de->first || de->last) {
brelse4(qbh);
return map_pos_dirent(inode, posp, qbh);
}
else
return de;
}
 
/*
* Return the address of the dnode with subtree coordinates given by pos.
*/
 
static dnode_secno dir_subdno(struct inode *inode, unsigned pos)
{
struct hpfs_dirent *de;
struct quad_buffer_head qbh;
 
/*
* 0 is the root dnode
*/
 
if (pos == 0)
return inode->i_hpfs_dno;
 
/*
* we have one pos->dnode translation cached in the inode
*/
 
else if (pos == inode->i_hpfs_dpos)
return inode->i_hpfs_dsubdno;
 
/*
* otherwise go look
*/
 
else {
unsigned q = pos >> 6;
unsigned r = pos & 077;
dnode_secno dno;
 
/*
* dnode at position q
*/
dno = dir_subdno(inode, q);
if (dno == 0)
return 0;
 
/*
* entry at index r
*/
de = map_nth_dirent(inode->i_dev, dno, r, &qbh);
if (!de || !de->down)
return 0;
 
/*
* get the dnode down pointer
*/
dno = de_down_pointer(de);
brelse4(&qbh);
 
/*
* cache it for next time
*/
inode->i_hpfs_dpos = pos;
inode->i_hpfs_dsubdno = dno;
return dno;
}
}
 
/*
* Return the dir entry at index n in dnode dno, or 0 if there isn't one
*/
 
static struct hpfs_dirent *map_nth_dirent(kdev_t dev, dnode_secno dno,
int n,
struct quad_buffer_head *qbh)
{
int i;
struct hpfs_dirent *de, *de_end;
struct dnode *dnode = map_dnode(dev, dno, qbh);
 
de = dnode_first_de(dnode);
de_end = dnode_end_de(dnode);
 
for (i = 1; de < de_end; i++, de = de_next_de(de)) {
if (i == n)
return de;
if (de->last || de->length == 0)
break;
}
 
brelse4(qbh);
return 0;
}
 
static int hpfs_dir_read(struct inode *inode, struct file *filp,
char *buf, int count)
{
return -EISDIR;
}
/* Return the dnode pointer in a directory fnode */
 
static dnode_secno fnode_dno(kdev_t dev, ino_t ino)
{
struct buffer_head *bh;
struct fnode *fnode;
dnode_secno dno;
 
fnode = map_fnode(dev, ino, &bh);
if (!fnode)
return 0;
 
dno = fnode->u.external[0].disk_secno;
brelse(bh);
return dno;
}
 
/* Map an fnode into a buffer and return pointers to it and to the buffer. */
 
static struct fnode *map_fnode(kdev_t dev, ino_t ino, struct buffer_head **bhp)
{
struct fnode *fnode;
 
if (ino == 0) {
printk("HPFS: missing fnode\n");
return 0;
}
 
fnode = map_sector(dev, ino_secno(ino), bhp);
if (fnode)
if (fnode->magic != FNODE_MAGIC) {
printk("HPFS: map_fnode: bad fnode pointer\n");
brelse(*bhp);
return 0;
}
return fnode;
}
 
/* Map an anode into a buffer and return pointers to it and to the buffer. */
 
static struct anode *map_anode(kdev_t dev, unsigned secno,
struct buffer_head **bhp)
{
struct anode *anode;
 
if (secno == 0) {
printk("HPFS: missing anode\n");
return 0;
}
 
anode = map_sector(dev, secno, bhp);
if (anode)
if (anode->magic != ANODE_MAGIC || anode->self != secno) {
printk("HPFS: map_anode: bad anode pointer\n");
brelse(*bhp);
return 0;
}
return anode;
}
 
/* Map a dnode into a buffer and return pointers to it and to the buffer. */
 
static struct dnode *map_dnode(kdev_t dev, unsigned secno,
struct quad_buffer_head *qbh)
{
struct dnode *dnode;
 
if (secno == 0) {
printk("HPFS: missing dnode\n");
return 0;
}
 
dnode = map_4sectors(dev, secno, qbh);
if (dnode)
if (dnode->magic != DNODE_MAGIC || dnode->self != secno) {
printk("HPFS: map_dnode: bad dnode pointer\n");
brelse4(qbh);
return 0;
}
return dnode;
}
 
/* Map a sector into a buffer and return pointers to it and to the buffer. */
 
static void *map_sector(kdev_t dev, unsigned secno, struct buffer_head **bhp)
{
struct buffer_head *bh;
 
if ((*bhp = bh = bread(dev, secno, 512)) != 0)
return bh->b_data;
else {
printk("HPFS: map_sector: read error\n");
return 0;
}
}
 
/* Map 4 sectors into a 4buffer and return pointers to it and to the buffer. */
 
static void *map_4sectors(kdev_t dev, unsigned secno,
struct quad_buffer_head *qbh)
{
struct buffer_head *bh;
char *data;
 
if (secno & 3) {
printk("HPFS: map_4sectors: unaligned read\n");
return 0;
}
 
qbh->data = data = kmalloc(2048, GFP_KERNEL);
if (!data)
goto bail;
 
qbh->bh[0] = bh = breada(dev, secno, 512, 0, UINT_MAX);
if (!bh)
goto bail0;
memcpy(data, bh->b_data, 512);
 
qbh->bh[1] = bh = bread(dev, secno + 1, 512);
if (!bh)
goto bail1;
memcpy(data + 512, bh->b_data, 512);
 
qbh->bh[2] = bh = bread(dev, secno + 2, 512);
if (!bh)
goto bail2;
memcpy(data + 2 * 512, bh->b_data, 512);
 
qbh->bh[3] = bh = bread(dev, secno + 3, 512);
if (!bh)
goto bail3;
memcpy(data + 3 * 512, bh->b_data, 512);
 
return data;
 
bail3:
brelse(qbh->bh[2]);
bail2:
brelse(qbh->bh[1]);
bail1:
brelse(qbh->bh[0]);
bail0:
kfree_s(data, 2048);
bail:
printk("HPFS: map_4sectors: read error\n");
return 0;
}
 
/* Deallocate a 4-buffer block */
 
static void brelse4(struct quad_buffer_head *qbh)
{
brelse(qbh->bh[3]);
brelse(qbh->bh[2]);
brelse(qbh->bh[1]);
brelse(qbh->bh[0]);
kfree_s(qbh->data, 2048);
}
 
static struct file_system_type hpfs_fs_type = {
hpfs_read_super, "hpfs", 1, NULL
};
 
int init_hpfs_fs(void)
{
return register_filesystem(&hpfs_fs_type);
}
 
#ifdef MODULE
int init_module(void)
{
int status;
 
if ((status = init_hpfs_fs()) == 0)
register_symtab(0);
return status;
}
 
void cleanup_module(void)
{
unregister_filesystem(&hpfs_fs_type);
}
 
#endif
 
/hpfs_caps.h
0,0 → 1,4
unsigned hpfs_char_to_linux (unsigned c);
unsigned hpfs_char_to_lower_linux (unsigned c);
unsigned hpfs_char_to_upper_linux (unsigned c);
unsigned linux_char_to_upper_linux (unsigned c);
/.depend
0,0 → 1,15
hpfs_fs.o: \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/module.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/fs.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/hpfs_fs.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/errno.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/malloc.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/kernel.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/sched.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/locks.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/stat.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/string.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/asm/bitops.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/asm/segment.h \
hpfs.h \
hpfs_caps.h
/Makefile
0,0 → 1,14
#
# Makefile for the linux HPFS filesystem routines.
#
# Note! Dependencies are done automagically by 'make dep', which also
# removes any old dependencies. DON'T put your own dependencies here
# unless it's something special (ie not a .c file).
#
# Note 2! The CFLAGS definitions are now in the main makefile...
 
O_TARGET := hpfs.o
O_OBJS := hpfs_fs.o hpfs_caps.o
M_OBJS := $(O_TARGET)
 
include $(TOPDIR)/Rules.make

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.