OpenCores
URL https://opencores.org/ocsvn/or1k_old/or1k_old/trunk

Subversion Repositories or1k_old

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /or1k_old/trunk/rc203soc/sw/uClinux/fs/jffs
    from Rev 1765 to Rev 1782
    Reverse comparison

Rev 1765 → Rev 1782

/inode.c
0,0 → 1,1740
/*
* JFFS -- Journalling Flash File System, Linux implementation.
*
* Copyright (C) 1999, 2000 Finn Hakansson, Axis Communications, Inc.
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* $Id: inode.c,v 1.1 2005-12-20 10:26:13 jcastillo Exp $
*
*/
 
/* inode.c -- Contains the code that is called from the VFS. */
 
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/malloc.h>
#include <linux/jffs.h>
#include <linux/fs.h>
#include <linux/locks.h>
#include <linux/sched.h>
#include <linux/ioctl.h>
#include <linux/stat.h>
#include <linux/blkdev.h>
#include <asm/byteorder.h>
#include "jffs_fm.h"
#include "intrep.h"
 
#if defined(CONFIG_JFFS_FS_VERBOSE) && CONFIG_JFFS_FS_VERBOSE
#define D(x) x
#else
#define D(x)
#endif
#define D1(x)
#define D2(x)
#define D3(x)
#define ASSERT(x) x
 
static int jffs_remove(struct inode *dir, const char *name,
int len, int type, int must_iput);
 
static struct super_operations jffs_ops;
static struct file_operations jffs_file_operations;
static struct inode_operations jffs_file_inode_operations;
static struct file_operations jffs_dir_operations;
static struct inode_operations jffs_dir_inode_operations;
static struct inode_operations jffs_symlink_inode_operations;
 
 
/* Called by the VFS at mount time to initialize the whole file system. */
static struct super_block *
jffs_read_super(struct super_block *sb, void *data, int silent)
{
kdev_t dev = sb->s_dev;
 
printk(KERN_NOTICE "JFFS: Trying to mount device %s.\n",
kdevname(dev));
 
MOD_INC_USE_COUNT;
lock_super(sb);
set_blocksize(dev, BLOCK_SIZE);
sb->s_blocksize = BLOCK_SIZE;
sb->s_blocksize_bits = BLOCK_SIZE_BITS;
sb->u.generic_sbp = (void *) 0;
 
/* Build the file system. */
if (jffs_build_fs(sb) < 0) {
goto jffs_sb_err1;
}
sb->s_magic = JFFS_MAGIC_SB_BITMASK;
sb->s_op = &jffs_ops;
 
/* Get the root directory of this file system. */
if (!(sb->s_mounted = iget(sb, JFFS_MIN_INO))) {
goto jffs_sb_err2;
}
 
#ifdef USE_GC
/* Do a garbage collect every time we mount. */
jffs_garbage_collect((struct jffs_control *)sb->u.generic_sbp);
#endif
 
unlock_super(sb);
printk(KERN_NOTICE "JFFS: Successfully mounted device %s.\n",
kdevname(dev));
return sb;
 
jffs_sb_err2:
jffs_cleanup_control((struct jffs_control *)sb->u.generic_sbp);
jffs_sb_err1:
unlock_super(sb);
MOD_DEC_USE_COUNT;
printk(KERN_WARNING "JFFS: Failed to mount device %s.\n",
kdevname(dev));
return 0;
}
 
 
/* This function is called when the file system is umounted. */
static void
jffs_put_super(struct super_block *sb)
{
kdev_t dev = sb->s_dev;
D2(printk("jffs_put_super()\n"));
lock_super(sb);
sb->s_dev = 0;
jffs_cleanup_control((struct jffs_control *)sb->u.generic_sbp);
unlock_super(sb);
MOD_DEC_USE_COUNT;
printk(KERN_NOTICE "JFFS: Successfully unmounted device %s.\n",
kdevname(dev));
}
 
 
/* This function is called when user commands like chmod, chgrp and
chown are executed. System calls like trunc() results in a call
to this function. */
static int
jffs_notify_change(struct inode *inode, struct iattr *iattr)
{
struct jffs_raw_inode raw_inode;
struct jffs_control *c;
struct jffs_fmcontrol *fmc;
struct jffs_file *f;
struct jffs_node *new_node;
char *name = 0;
int update_all;
int res;
 
f = (struct jffs_file *)inode->u.generic_ip;
ASSERT(if (!f) {
printk("jffs_notify_change(): Invalid inode number: %lu\n",
inode->i_ino);
return -1;
});
 
D1(printk("***jffs_notify_change(): file: \"%s\", ino: %u\n",
f->name, f->ino));
 
c = f->c;
fmc = c->fmc;
update_all = iattr->ia_valid & ATTR_FORCE;
 
if (!JFFS_ENOUGH_SPACE(fmc)) {
if (((update_all || iattr->ia_valid & ATTR_SIZE)
&& (iattr->ia_size < f->size))) {
/* See this case where someone is trying to
shrink the size of a file as an exception.
Accept it. */
}
else {
D1(printk("jffs_notify_change(): Free size = %u\n",
jffs_free_size1(fmc)
+ jffs_free_size2(fmc)));
D(printk(KERN_NOTICE "JFFS: No space left on "
"device\n"));
return -ENOSPC;
}
}
 
if (!(new_node = (struct jffs_node *)
kmalloc(sizeof(struct jffs_node), GFP_KERNEL))) {
D(printk("jffs_notify_change(): Allocation failed!\n"));
return -ENOMEM;
}
DJM(no_jffs_node++);
new_node->data_offset = 0;
new_node->removed_size = 0;
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = f->ino;
raw_inode.pino = f->pino;
raw_inode.version = f->highest_version + 1;
raw_inode.mode = f->mode;
raw_inode.uid = f->uid;
raw_inode.gid = f->gid;
raw_inode.atime = f->atime;
raw_inode.mtime = f->mtime;
raw_inode.ctime = f->ctime;
raw_inode.dsize = 0;
raw_inode.offset = 0;
raw_inode.rsize = 0;
raw_inode.dsize = 0;
raw_inode.nsize = 0;
raw_inode.nlink = f->nlink;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 0;
 
if (update_all || iattr->ia_valid & ATTR_MODE) {
raw_inode.mode = iattr->ia_mode;
inode->i_mode = iattr->ia_mode;
}
if (update_all || iattr->ia_valid & ATTR_UID) {
raw_inode.uid = iattr->ia_uid;
inode->i_uid = iattr->ia_uid;
}
if (update_all || iattr->ia_valid & ATTR_GID) {
raw_inode.gid = iattr->ia_gid;
inode->i_gid = iattr->ia_gid;
}
if (update_all || iattr->ia_valid & ATTR_SIZE) {
int len;
D1(printk("jffs_notify_change(): Changing size "
"to %lu bytes!\n", iattr->ia_size));
raw_inode.offset = iattr->ia_size;
 
/* Calculate how many bytes need to be removed from
the end. */
 
if (f->size < iattr->ia_size) {
len = 0;
}
else {
len = f->size - iattr->ia_size;
}
 
raw_inode.rsize = len;
 
/* The updated node will be a removal node, with
base at the new size and size of the nbr of bytes
to be removed. */
 
new_node->data_offset = iattr->ia_size;
new_node->removed_size = len;
inode->i_size = iattr->ia_size;
 
/* If we truncate a file we want to add the name. If we
always do that, we could perhaps free more space on
the flash (and besides it doesn't hurt). */
name = f->name;
raw_inode.nsize = f->nsize;
if (len) {
invalidate_inode_pages(inode);
}
inode->i_ctime = CURRENT_TIME;
inode->i_mtime = inode->i_ctime;
}
if (update_all || iattr->ia_valid & ATTR_ATIME) {
raw_inode.atime = iattr->ia_atime;
inode->i_atime = iattr->ia_atime;
}
if (update_all || iattr->ia_valid & ATTR_MTIME) {
raw_inode.mtime = iattr->ia_mtime;
inode->i_mtime = iattr->ia_mtime;
}
if (update_all || iattr->ia_valid & ATTR_CTIME) {
raw_inode.ctime = iattr->ia_ctime;
inode->i_ctime = iattr->ia_ctime;
}
 
/* Write this node to the flash. */
if ((res = jffs_write_node(c, new_node, &raw_inode, name, 0)) < 0) {
D(printk("jffs_notify_change(): The write failed!\n"));
kfree(new_node);
DJM(no_jffs_node--);
return res;
}
 
jffs_insert_node(c, f, &raw_inode, 0, new_node);
inode->i_dirt = 1;
return 0;
} /* jffs_notify_change() */
 
 
/* Get statistics of the file system. */
static void
jffs_statfs(struct super_block *sb, struct statfs *buf, int bufsize)
{
struct statfs tmp;
struct jffs_control *c = (struct jffs_control *) sb->u.generic_sbp;
struct jffs_fmcontrol *fmc = c->fmc;
 
D2(printk("jffs_statfs()\n"));
 
c = (struct jffs_control *)sb->u.generic_sbp;
memset(&tmp, 0, sizeof(tmp));
tmp.f_type = JFFS_MAGIC_SB_BITMASK;
tmp.f_bsize = PAGE_SIZE;
tmp.f_blocks = (fmc->flash_size / BLOCK_SIZE)
- (fmc->min_free_size / BLOCK_SIZE);
tmp.f_bfree = (jffs_free_size1(fmc) / BLOCK_SIZE
+ jffs_free_size2(fmc) / BLOCK_SIZE)
- (fmc->min_free_size / BLOCK_SIZE);
/* Find out how many files there are in the filesystem. */
tmp.f_files = jffs_foreach_file(c, jffs_file_count);
tmp.f_ffree = tmp.f_bfree;
/* tmp.f_fsid = 0; */
tmp.f_namelen = JFFS_MAX_NAME_LEN;
memcpy_tofs(buf, &tmp, bufsize);
}
 
 
/* Rename a file. */
int
jffs_rename(struct inode *old_dir, const char *old_name, int old_len,
struct inode *new_dir, const char *new_name, int new_len,
int must_be_dir)
{
struct jffs_raw_inode raw_inode;
struct jffs_control *c;
struct jffs_file *old_dir_f;
struct jffs_file *new_dir_f;
struct jffs_file *del_f;
struct jffs_file *f;
struct jffs_node *node;
struct inode *inode;
int result = 0;
__u32 rename_data = 0;
 
D2(printk("***jffs_rename()\n"));
 
if (!old_dir || !old_name || !new_dir || !new_name) {
D(printk("jffs_rename(): old_dir: 0x%p, old_name: 0x%p, "
"new_dir: 0x%p, new_name: 0x%p\n",
old_dir, old_name, new_dir, new_name));
return -1;
}
 
c = (struct jffs_control *)old_dir->i_sb->u.generic_sbp;
ASSERT(if (!c) {
printk(KERN_ERR "jffs_rename(): The old_dir inode "
"didn't have a reference to a jffs_file struct\n");
return -1;
});
 
if (!JFFS_ENOUGH_SPACE(c->fmc)) {
D1(printk("jffs_rename(): Free size = %u\n",
jffs_free_size1(c->fmc) + jffs_free_size2(c->fmc)));
D(printk(KERN_NOTICE "JFFS: No space left on device\n"));
return -ENOSPC;
}
 
while (c->rename_lock) {
sleep_on(&c->rename_wait);
}
c->rename_lock = 1;
 
/* Check the lengths of the names. */
if ((old_len > JFFS_MAX_NAME_LEN) || (new_len > JFFS_MAX_NAME_LEN)) {
result = -ENAMETOOLONG;
goto jffs_rename_end;
}
/* Find the the old directory. */
if (!(old_dir_f = (struct jffs_file *)old_dir->u.generic_ip)) {
D(printk("jffs_rename(): Old dir invalid.\n"));
result = -ENOTDIR;
goto jffs_rename_end;
}
/* See if it really is a directory. */
if (!S_ISDIR(old_dir_f->mode)) {
D(printk("jffs_rename(): old_dir is not a directory.\n"));
result = -ENOTDIR;
goto jffs_rename_end;
}
/* Try to find the file to move. */
if (!(f = jffs_find_child(old_dir_f, old_name, old_len))) {
result = -ENOENT;
goto jffs_rename_end;
}
/* Try to find the new directory's node. */
if (!(new_dir_f = (struct jffs_file *)new_dir->u.generic_ip)) {
D(printk("jffs_rename(): New dir invalid.\n"));
result = -ENOTDIR;
goto jffs_rename_end;
}
/* See if the node really is a directory. */
if (!S_ISDIR(new_dir_f->mode)) {
D(printk("jffs_rename(): The new position of the node "
"is not a directory.\n"));
result = -ENOTDIR;
goto jffs_rename_end;
}
 
/* Create a node and initialize as much as needed. */
if (!(node = (struct jffs_node *) kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
D(printk("jffs_rename(): Allocation failed: node == 0\n"));
result = -ENOMEM;
goto jffs_rename_end;
}
DJM(no_jffs_node++);
node->data_offset = 0;
node->removed_size = 0;
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = f->ino;
raw_inode.pino = new_dir_f->ino;
raw_inode.version = f->highest_version + 1;
raw_inode.mode = f->mode;
raw_inode.uid = current->fsuid;
raw_inode.gid = current->fsgid;
#if 0
raw_inode.uid = f->uid;
raw_inode.gid = f->gid;
#endif
raw_inode.atime = CURRENT_TIME;
raw_inode.mtime = raw_inode.atime;
raw_inode.ctime = f->ctime;
raw_inode.offset = 0;
raw_inode.dsize = 0;
raw_inode.rsize = 0;
raw_inode.nsize = new_len;
raw_inode.nlink = f->nlink;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 0;
 
/* See if there already exists a file with the same name as
new_name. */
if ((del_f = jffs_find_child(new_dir_f, new_name, new_len))) {
raw_inode.rename = 1;
/*raw_inode.mode = del_f->ino;*/
}
 
/* Write the new node to the flash memory. */
if ((result = jffs_write_node(c, node, &raw_inode, new_name,
(unsigned char*)&rename_data)) < 0) {
D(printk("jffs_rename(): Failed to write node to flash.\n"));
kfree(node);
DJM(no_jffs_node--);
goto jffs_rename_end;
}
 
if (raw_inode.rename) {
/* The file with the same name must be deleted. */
c->fmc->no_call_gc = 1;
if ((result = jffs_remove(new_dir, new_name, new_len,
del_f->mode, 0)) < 0) {
/* This is really bad. */
printk(KERN_ERR "JFFS: An error occurred in "
"rename().\n");
}
c->fmc->no_call_gc = 0;
}
 
if (old_dir_f != new_dir_f) {
/* Remove the file from its old position in the
filesystem tree. */
jffs_unlink_file_from_tree(f);
}
 
/* Insert the new node into the file system. */
if ((result = jffs_insert_node(c, f, &raw_inode,
new_name, node)) < 0) {
D(printk(KERN_ERR "jffs_rename(): jffs_insert_node() "
"failed!\n"));
}
 
if (old_dir_f != new_dir_f) {
/* Insert the file to its new position in the
file system. */
jffs_insert_file_into_tree(f);
}
 
/* This is a kind of update of the inode we're about to make
here. This is what they do in ext2fs. Kind of. */
if ((inode = iget(new_dir->i_sb, f->ino))) {
inode->i_ctime = CURRENT_TIME;
inode->i_dirt = 1;
iput(inode);
}
 
jffs_rename_end:
iput(old_dir);
iput(new_dir);
c->rename_lock = 0;
wake_up(&c->rename_wait);
return result;
} /* jffs_rename() */
 
 
/* Read the contents of a directory. Used by programs like `ls'
for instance. */
static int
jffs_readdir(struct inode *dir, struct file *filp, void *dirent, filldir_t filldir)
{
struct jffs_file *f;
int j;
int ddino;
 
D2(printk("jffs_readdir(): dir: 0x%p, filp: 0x%p\n", dir, filp));
 
if (!dir || !S_ISDIR(dir->i_mode)) {
D(printk("jffs_readdir(): 'dir' is NULL or not a dir!\n"));
return -EBADF;
}
 
switch (filp->f_pos)
{
case 0:
D3(printk("jffs_readdir(): \".\" %lu\n", dir->i_ino));
if (filldir(dirent, ".", 1, filp->f_pos, dir->i_ino) < 0) {
return 0;
}
filp->f_pos = 1;
case 1:
if (dir->i_ino == JFFS_MIN_INO) {
ddino = dir->i_sb->s_covered->i_ino;
}
else {
ddino = ((struct jffs_file *)dir->u.generic_ip)->pino;
}
D3(printk("jffs_readdir(): \"..\" %u\n", ddino));
if (filldir(dirent, "..", 2, filp->f_pos, ddino) < 0)
return 0;
filp->f_pos++;
default:
f = ((struct jffs_file *)dir->u.generic_ip)->children;
for (j = 2; (j < filp->f_pos) && f; j++) {
f = f->sibling_next;
}
for (; f ; f = f->sibling_next) {
D3(printk("jffs_readdir(): \"%s\" ino: %u\n",
(f->name ? f->name : ""), f->ino));
if (filldir(dirent, f->name, f->nsize,
filp->f_pos , f->ino) < 0)
return 0;
filp->f_pos++;
}
}
return filp->f_pos;
} /* jffs_readdir() */
 
 
/* Find a file in a directory. If the file exists, return its
corresponding inode in the argument `result'. */
static int
jffs_lookup(struct inode *dir, const char *name, int len,
struct inode **result)
{
struct jffs_file *d;
struct jffs_file *f;
int r = 0;
 
D3({
char *s = (char *)kmalloc(len + 1, GFP_KERNEL);
memcpy(s, name, len);
s[len] = '\0';
printk("jffs_lookup(): dir: 0x%p, name: \"%s\"\n", dir, s);
kfree(s);
});
 
*result = (struct inode *)0;
if (!dir) {
return -ENOENT;
}
if (!S_ISDIR(dir->i_mode)) {
r = -ENOTDIR;
goto jffs_lookup_end;
}
if (len > JFFS_MAX_NAME_LEN) {
r = -ENAMETOOLONG;
goto jffs_lookup_end;
}
 
if (!(d = (struct jffs_file *)dir->u.generic_ip)) {
D(printk("jffs_lookup(): No such inode! (%lu)\n", dir->i_ino));
r = -ENOENT;
goto jffs_lookup_end;
}
 
/* Get the corresponding inode to the file. */
if ((len == 1) && (name[0] == '.')) {
if (!(*result = iget(dir->i_sb, d->ino))) {
D(printk("jffs_lookup(): . iget() ==> NULL\n"));
r = -ENOENT;
}
}
else if ((len == 2) && (name[0] == '.') && (name[1] == '.')) {
if (!(*result = iget(dir->i_sb, d->pino))) {
D(printk("jffs_lookup(): .. iget() ==> NULL\n"));
r = -ENOENT;
}
}
else if ((f = jffs_find_child(d, name, len))) {
if (!(*result = iget(dir->i_sb, f->ino))) {
D(printk("jffs_lookup(): iget() ==> NULL\n"));
r = -ENOENT;
}
}
else {
D3(printk("jffs_lookup(): Couldn't find the file. "
"f = 0x%p, name = \"%s\", d = 0x%p, d->ino = %u\n",
f, name, d, d->ino));
r = -ENOENT;
}
 
jffs_lookup_end:
iput(dir);
return r;
} /* jffs_lookup() */
 
 
/* Try to read a page of data from a file. */
static int
jffs_readpage(struct inode *inode, struct page *page)
{
unsigned long buf;
unsigned long read_len;
int result = -EIO;
struct jffs_file *f = (struct jffs_file *)inode->u.generic_ip;
int r;
 
D2(printk("***jffs_readpage(): file = \"%s\", page->offset = %lu\n",
(f->name ? f->name : ""), page->offset));
 
page->count++;
set_bit(PG_locked, &page->flags);
buf = page_address(page);
clear_bit(PG_uptodate, &page->flags);
clear_bit(PG_error, &page->flags);
 
if (page->offset < inode->i_size) {
read_len = jffs_min(inode->i_size - page->offset, PAGE_SIZE);
r = jffs_read_data(f, (char *)buf, page->offset, read_len);
if (r == read_len) {
if (read_len < PAGE_SIZE) {
memset((void *)(buf + read_len), 0,
PAGE_SIZE - read_len);
}
set_bit(PG_uptodate, &page->flags);
result = 0;
}
D(else {
printk("***jffs_readpage(): Read error! "
"Wanted to read %lu bytes but only "
"read %d bytes.\n", read_len, r);
});
}
if (result) {
set_bit(PG_error, &page->flags);
memset((void *)buf, 0, PAGE_SIZE);
}
 
clear_bit(PG_locked, &page->flags);
wake_up(&page->wait);
free_page(buf);
 
D3(printk("jffs_readpage(): Leaving...\n"));
 
return result;
} /* jffs_readpage() */
 
 
/* Create a new directory. */
static int
jffs_mkdir(struct inode *dir, const char *name, int len, int mode)
{
struct jffs_raw_inode raw_inode;
struct jffs_control *c;
struct jffs_node *node;
struct jffs_file *dir_f;
int dir_mode;
int result = 0;
 
D1({
char *_name = (char *) kmalloc(len + 1, GFP_KERNEL);
memcpy(_name, name, len);
_name[len] = '\0';
printk("***jffs_mkdir(): dir = 0x%p, name = \"%s\", "
"len = %d, mode = 0x%08x\n", dir, _name, len, mode);
kfree(_name);
});
 
if (!dir) {
return -ENOENT;
}
if (len > JFFS_MAX_NAME_LEN) {
result = -ENAMETOOLONG;
goto jffs_mkdir_end;
}
 
dir_f = (struct jffs_file *)dir->u.generic_ip;
ASSERT(if (!dir_f) {
printk(KERN_ERR "jffs_mkdir(): No reference to a "
"jffs_file struct in inode.\n");
result = -1;
goto jffs_mkdir_end;
});
 
c = dir_f->c;
 
if (!JFFS_ENOUGH_SPACE(c->fmc)) {
D1(printk("jffs_mkdir(): Free size = %u\n",
jffs_free_size1(c->fmc) + jffs_free_size2(c->fmc)));
D(printk(KERN_NOTICE "JFFS: No space left on device\n"));
result = -ENOSPC;
goto jffs_mkdir_end;
}
 
/* If there already exists a file or directory with the same name,
then this operation should fail. I originally thought that VFS
should take care of this issue. */
if (jffs_find_child(dir_f, name, len)) {
D(printk("jffs_mkdir(): There already exists a file or "
"directory with the same name!\n"));
result = -EEXIST;
goto jffs_mkdir_end;
}
 
dir_mode = S_IFDIR | (mode & (S_IRWXUGO|S_ISVTX)
& ~current->fs->umask);
if (dir->i_mode & S_ISGID) {
dir_mode |= S_ISGID;
}
 
/* Create a node and initialize it as much as needed. */
if (!(node = (struct jffs_node *) kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
D(printk("jffs_mkdir(): Allocation failed: node == 0\n"));
result = -ENOMEM;
goto jffs_mkdir_end;
}
DJM(no_jffs_node++);
node->data_offset = 0;
node->removed_size = 0;
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = c->next_ino++;
raw_inode.pino = dir_f->ino;
raw_inode.version = 1;
raw_inode.mode = dir_mode;
raw_inode.uid = current->fsuid;
raw_inode.gid = current->fsgid;
raw_inode.atime = CURRENT_TIME;
raw_inode.mtime = raw_inode.atime;
raw_inode.ctime = raw_inode.atime;
raw_inode.offset = 0;
raw_inode.dsize = 0;
raw_inode.rsize = 0;
raw_inode.nsize = len;
raw_inode.nlink = 1;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 0;
 
/* Write the new node to the flash. */
if (jffs_write_node(c, node, &raw_inode, name, 0) < 0) {
D(printk("jffs_mkdir(): jffs_write_node() failed.\n"));
kfree(node);
DJM(no_jffs_node--);
result = -1;
goto jffs_mkdir_end;
}
 
/* Insert the new node into the file system. */
result = jffs_insert_node(c, 0, &raw_inode, name, node);
 
jffs_mkdir_end:
iput(dir);
return result;
} /* jffs_mkdir() */
 
 
/* Remove a directory. */
static int
jffs_rmdir(struct inode *dir, const char *name, int len)
{
D3(printk("***jffs_rmdir()\n"));
return jffs_remove(dir, name, len, S_IFDIR, 1);
}
 
 
/* Remove any kind of file except for directories. */
static int
jffs_unlink(struct inode *dir, const char *name, int len)
{
D3(printk("***jffs_unlink()\n"));
return jffs_remove(dir, name, len, 0, 1);
}
 
 
/* Remove a JFFS entry, i.e. plain files, directories, etc. Here we
shouldn't test for free space on the device. */
static int
jffs_remove(struct inode *dir, const char *name, int len, int type,
int must_iput)
{
struct jffs_raw_inode raw_inode;
struct jffs_control *c;
struct jffs_file *dir_f; /* The file-to-remove's parent. */
struct jffs_file *del_f; /* The file to remove. */
struct jffs_node *del_node;
struct inode *inode = 0;
int result = 0;
 
D1({
char *_name = (char *) kmalloc(len + 1, GFP_KERNEL);
memcpy(_name, name, len);
_name[len] = '\0';
printk("***jffs_remove(): file = \"%s\"\n", _name);
kfree(_name);
});
 
if (!dir) {
return -ENOENT;
}
if (len > JFFS_MAX_NAME_LEN) {
result = -ENAMETOOLONG;
goto jffs_remove_end;
}
 
dir_f = (struct jffs_file *) dir->u.generic_ip;
c = dir_f->c;
 
if (!(del_f = jffs_find_child(dir_f, name, len))) {
D(printk("jffs_remove(): jffs_find_child() failed.\n"));
result = -ENOENT;
goto jffs_remove_end;
}
 
if (S_ISDIR(type)) {
if (!S_ISDIR(del_f->mode)) {
result = -ENOTDIR;
goto jffs_remove_end;
}
if (del_f->children) {
result = -ENOTEMPTY;
goto jffs_remove_end;
}
}
else if (S_ISDIR(del_f->mode)) {
D(printk("jffs_remove(): node is a directory "
"but it shouldn't be.\n"));
result = -EPERM;
goto jffs_remove_end;
}
 
if (!(inode = iget(dir->i_sb, del_f->ino))) {
printk(KERN_ERR "JFFS: Unlink failed.\n");
result = -ENOENT;
goto jffs_remove_end;
}
 
/* Create a node for the deletion. */
if (!(del_node = (struct jffs_node *)
kmalloc(sizeof(struct jffs_node), GFP_KERNEL))) {
D(printk("jffs_remove(): Allocation failed!\n"));
result = -ENOMEM;
goto jffs_remove_end;
}
DJM(no_jffs_node++);
del_node->data_offset = 0;
del_node->removed_size = 0;
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = del_f->ino;
raw_inode.pino = del_f->pino;
raw_inode.version = del_f->highest_version + 1;
raw_inode.mode = del_f->mode;
raw_inode.uid = current->fsuid;
raw_inode.gid = current->fsgid;
raw_inode.atime = CURRENT_TIME;
raw_inode.mtime = del_f->mtime;
raw_inode.ctime = raw_inode.atime;
raw_inode.offset = 0;
raw_inode.dsize = 0;
raw_inode.rsize = 0;
raw_inode.nsize = 0;
raw_inode.nlink = del_f->nlink;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 1;
 
/* Write the new node to the flash memory. */
if (jffs_write_node(c, del_node, &raw_inode, 0, 0) < 0) {
kfree(del_node);
DJM(no_jffs_node--);
result = -1;
goto jffs_remove_end;
}
 
/* Update the file. This operation will make the file disappear
from the in-memory file system structures. */
jffs_insert_node(c, del_f, &raw_inode, 0, del_node);
 
dir->i_ctime = dir->i_mtime = CURRENT_TIME;
dir->i_dirt = 1;
inode->i_nlink = inode->i_nlink ? inode->i_nlink - 1 : 0;
if (inode->i_nlink == 0) {
inode->u.generic_ip = 0;
}
inode->i_dirt = 1;
inode->i_ctime = dir->i_ctime;
 
jffs_remove_end:
if (must_iput) {
iput(dir);
}
if (inode) {
iput(inode);
}
return result;
} /* jffs_remove() */
 
 
static int
jffs_mknod(struct inode *dir, const char *name, int len, int mode, int rdev)
{
struct jffs_raw_inode raw_inode;
struct jffs_file *dir_f;
struct jffs_node *node = 0;
struct jffs_control *c;
int result = 0;
kdev_t dev = to_kdev_t(rdev);
 
D1(printk("***jffs_mknod()\n"));
 
if (!dir) {
return -ENOENT;
}
if (len > JFFS_MAX_NAME_LEN) {
result = -ENAMETOOLONG;
goto jffs_mknod_end;
}
 
dir_f = (struct jffs_file *)dir->u.generic_ip;
c = dir_f->c;
 
if (!JFFS_ENOUGH_SPACE(c->fmc)) {
D1(printk("jffs_mknod(): Free size = %u\n",
jffs_free_size1(c->fmc) + jffs_free_size2(c->fmc)));
D(printk(KERN_NOTICE "JFFS: No space left on device\n"));
result = -ENOSPC;
goto jffs_mknod_end;
}
 
/* Check and see if the file exists already. */
if (jffs_find_child(dir_f, name, len)) {
D(printk("jffs_mknod(): There already exists a file or "
"directory with the same name!\n"));
result = -EEXIST;
goto jffs_mknod_end;
}
 
/* Create and initialize a new node. */
if (!(node = (struct jffs_node *) kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
D(printk("jffs_mknod(): Allocation failed!\n"));
result = -ENOMEM;
goto jffs_mknod_err;
}
DJM(no_jffs_node++);
node->data_offset = 0;
node->removed_size = 0;
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = c->next_ino++;
raw_inode.pino = dir_f->ino;
raw_inode.version = 1;
raw_inode.mode = mode;
raw_inode.uid = current->fsuid;
raw_inode.gid = current->fsgid;
raw_inode.atime = CURRENT_TIME;
raw_inode.mtime = raw_inode.atime;
raw_inode.ctime = raw_inode.atime;
raw_inode.offset = 0;
raw_inode.dsize = sizeof(kdev_t);
raw_inode.rsize = 0;
raw_inode.nsize = len;
raw_inode.nlink = 1;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 0;
 
/* Write the new node to the flash. */
if (jffs_write_node(c, node, &raw_inode, name,
(unsigned char *)&dev) < 0) {
D(printk("jffs_mknod(): jffs_write_node() failed.\n"));
result = -1;
goto jffs_mknod_err;
}
 
/* Insert the new node into the file system. */
if (jffs_insert_node(c, 0, &raw_inode, name, node) < 0) {
result = -1;
goto jffs_mknod_end;
}
 
goto jffs_mknod_end;
 
jffs_mknod_err:
if (node) {
kfree(node);
DJM(no_jffs_node--);
}
 
jffs_mknod_end:
iput(dir);
return result;
} /* jffs_mknod() */
 
 
static int
jffs_symlink(struct inode *dir, const char *name, int len, const char *symname)
{
struct jffs_raw_inode raw_inode;
struct jffs_control *c;
struct jffs_file *dir_f;
struct jffs_node *node;
int symname_len = strlen(symname);
 
D1({
char *_name = (char *)kmalloc(len + 1, GFP_KERNEL);
char *_symname = (char *)kmalloc(symname_len + 1, GFP_KERNEL);
memcpy(_name, name, len);
_name[len] = '\0';
memcpy(_symname, symname, symname_len);
_symname[symname_len] = '\0';
printk("***jffs_symlink(): dir = 0x%p, name = \"%s\", "
"symname = \"%s\"\n", dir, _name, _symname);
kfree(_name);
kfree(_symname);
});
 
if (!dir) {
return -ENOENT;
}
if (len > JFFS_MAX_NAME_LEN) {
iput(dir);
return -ENAMETOOLONG;
}
 
dir_f = (struct jffs_file *)dir->u.generic_ip;
ASSERT(if (!dir_f) {
printk(KERN_ERR "jffs_symlink(): No reference to a "
"jffs_file struct in inode.\n");
iput(dir);
return -1;
});
 
c = dir_f->c;
 
if (!JFFS_ENOUGH_SPACE(c->fmc)) {
D1(printk("jffs_symlink(): Free size = %u\n",
jffs_free_size1(c->fmc) + jffs_free_size2(c->fmc)));
D(printk(KERN_NOTICE "JFFS: No space left on device\n"));
iput(dir);
return -ENOSPC;
}
 
/* Check so there isn't an already existing file with the
specified name. */
if (jffs_find_child(dir_f, name, len)) {
iput(dir);
return -EEXIST;
}
 
/* Create a node and initialize it as much as needed. */
if (!(node = (struct jffs_node *) kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
D(printk("jffs_symlink(): Allocation failed: node == NULL\n"));
iput(dir);
return -ENOMEM;
}
DJM(no_jffs_node++);
node->data_offset = 0;
node->removed_size = 0;
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = c->next_ino++;
raw_inode.pino = dir_f->ino;
raw_inode.version = 1;
raw_inode.mode = S_IFLNK | S_IRWXUGO;
raw_inode.uid = current->fsuid;
raw_inode.gid = current->fsgid;
raw_inode.atime = CURRENT_TIME;
raw_inode.mtime = raw_inode.atime;
raw_inode.ctime = raw_inode.atime;
raw_inode.offset = 0;
raw_inode.dsize = symname_len;
raw_inode.rsize = 0;
raw_inode.nsize = len;
raw_inode.nlink = 1;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 0;
 
/* Write the new node to the flash. */
if (jffs_write_node(c, node, &raw_inode, name,
(const unsigned char *)symname) < 0) {
D(printk("jffs_symlink(): jffs_write_node() failed.\n"));
kfree(node);
DJM(no_jffs_node--);
iput(dir);
return -1;
}
 
/* Insert the new node into the file system. */
if (jffs_insert_node(c, 0, &raw_inode, name, node) < 0) {
iput(dir);
return -1;
}
 
iput(dir);
return 0;
} /* jffs_symlink() */
 
 
/* Read the path that a symbolic link is referring to. */
static int
jffs_readlink(struct inode *inode, char *buffer, int buflen)
{
struct jffs_file *f;
int i;
char *link;
int result;
 
D2(printk("***jffs_readlink()\n"));
 
/* Continue only if the file is a symbolic link. */
if (!S_ISLNK(inode->i_mode)) {
result = -EINVAL;
goto jffs_readlink_end1;
}
f = (struct jffs_file *)inode->u.generic_ip;
ASSERT(if (!f) {
printk(KERN_ERR "jffs_readlink(): No reference to a "
"jffs_file struct in inode.\n");
result = -1;
goto jffs_readlink_end1;
});
if (!(link = (char *)kmalloc(f->size + 1, GFP_KERNEL))) {
result = -ENOMEM;
goto jffs_readlink_end1;
}
if ((result = jffs_read_data(f, link, 0, f->size)) < 0) {
goto jffs_readlink_end2;
}
link[result] = '\0';
for (i = 0; (i < buflen) && (i < result); i++) {
put_user(link[i], buffer++);
}
UPDATE_ATIME(inode);
 
jffs_readlink_end2:
kfree(link);
jffs_readlink_end1:
iput(inode);
return result;
} /* jffs_readlink() */
 
 
static int
jffs_follow_link(struct inode *dir, struct inode *inode, int flag,
int mode, struct inode **res_inode)
{
struct jffs_file *f;
char *link;
int r;
 
D3(printk("jffs_follow_link(): dir = 0x%p, "
"inode = 0x%p, flag = 0x%08x, mode = 0x%08x\n",
dir, inode, flag, mode));
 
*res_inode = 0;
if (!dir) {
dir = current->fs->root;
dir->i_count++;
}
if (!inode) {
iput(dir);
return -ENOENT;
}
if (!S_ISLNK(inode->i_mode)) {
*res_inode = inode;
iput(dir);
return 0;
}
if (current->link_count > 5) {
iput(inode);
iput(dir);
return -ELOOP;
}
 
f = (struct jffs_file *)inode->u.generic_ip;
if (!(link = (char *)kmalloc(f->size + 1, GFP_KERNEL))) {
D(printk("jffs_follow_link(): kmalloc() failed.\n"));
iput(inode);
iput(dir);
return -ENOMEM;
}
r = jffs_read_data(f, link, 0, f->size);
if (r < f->size) {
D(printk("jffs_follow_link(): Failed to read symname.\n"));
kfree(link);
iput(inode);
iput(dir);
return -EIO;
}
link[r] = '\0';
UPDATE_ATIME(inode);
current->link_count++;
r = open_namei(link, flag, mode, res_inode, dir);
current->link_count--;
kfree(link);
iput(inode);
return r;
} /* jffs_follow_link() */
 
 
/* Create an inode inside a JFFS directory (dir) and return it. */
static int
jffs_create(struct inode *dir, const char *name, int len,
int mode, struct inode **result)
{
struct jffs_raw_inode raw_inode;
struct jffs_control *c;
struct jffs_node *node;
struct jffs_file *dir_f; /* JFFS representation of the directory. */
struct inode *inode;
 
*result = (struct inode *)0;
 
D1({
char *s = (char *)kmalloc(len + 1, GFP_KERNEL);
memcpy(s, name, len);
s[len] = '\0';
printk("jffs_create(): dir: 0x%p, name: \"%s\"\n", dir, s);
kfree(s);
});
 
if (!dir) {
return -ENOENT;
}
if (len > JFFS_MAX_NAME_LEN) {
iput(dir);
return -ENAMETOOLONG;
}
 
dir_f = (struct jffs_file *)dir->u.generic_ip;
ASSERT(if (!dir_f) {
printk(KERN_ERR "jffs_create(): No reference to a "
"jffs_file struct in inode.\n");
iput(dir);
return -1;
});
 
c = dir_f->c;
 
if (!JFFS_ENOUGH_SPACE(c->fmc)) {
D1(printk("jffs_create(): Free size = %u\n",
jffs_free_size1(c->fmc) + jffs_free_size2(c->fmc)));
D(printk(KERN_NOTICE "JFFS: No space left on device\n"));
iput(dir);
return -ENOSPC;
}
 
/* If there already exists a file or directory with the same name,
then this operation should fail. I originally thought that VFS
should take care of this issue. */
if (jffs_find_child(dir_f, name, len)) {
D(printk("jffs_create(): There already exists a file or "
"directory named \"%s\"!\n", name));
iput(dir);
return -EEXIST;
}
 
/* Create a node and initialize as much as needed. */
if (!(node = (struct jffs_node *) kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
D(printk("jffs_create(): Allocation failed: node == 0\n"));
iput(dir);
return -ENOMEM;
}
DJM(no_jffs_node++);
node->data_offset = 0;
node->removed_size = 0;
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = c->next_ino++;
raw_inode.pino = dir_f->ino;
raw_inode.version = 1;
raw_inode.mode = mode;
raw_inode.uid = current->fsuid;
raw_inode.gid = current->fsgid;
raw_inode.atime = CURRENT_TIME;
raw_inode.mtime = raw_inode.atime;
raw_inode.ctime = raw_inode.atime;
raw_inode.offset = 0;
raw_inode.dsize = 0;
raw_inode.rsize = 0;
raw_inode.nsize = len;
raw_inode.nlink = 1;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 0;
 
/* Write the new node to the flash. */
if (jffs_write_node(c, node, &raw_inode, name, 0) < 0) {
D(printk("jffs_create(): jffs_write_node() failed.\n"));
kfree(node);
DJM(no_jffs_node--);
iput(dir);
return -1;
}
 
/* Insert the new node into the file system. */
if (jffs_insert_node(c, 0, &raw_inode, name, node) < 0) {
iput(dir);
return -1;
}
 
/* Initialize an inode. */
if (!(inode = get_empty_inode())) {
iput(dir);
return -1;
}
inode->i_dev = dir->i_sb->s_dev;
inode->i_ino = raw_inode.ino;
inode->i_mode = mode;
inode->i_nlink = raw_inode.nlink;
inode->i_uid = raw_inode.uid;
inode->i_gid = raw_inode.gid;
inode->i_rdev = 0;
inode->i_size = 0;
inode->i_atime = raw_inode.atime;
inode->i_mtime = raw_inode.mtime;
inode->i_ctime = raw_inode.ctime;
inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */
inode->i_blocks = 0;
inode->i_version = 0;
inode->i_nrpages = 0;
/*inode->i_sem = 0;*/
inode->i_op = &jffs_file_inode_operations;
inode->i_sb = dir->i_sb;
inode->i_wait = 0;
inode->i_flock = 0;
inode->i_count = 1;
inode->i_flags = dir->i_sb->s_flags;
inode->i_dirt = 1;
inode->u.generic_ip = (void *)jffs_find_file(c, raw_inode.ino);
 
iput(dir);
*result = inode;
return 0;
} /* jffs_create() */
 
 
/* Write, append or rewrite data to an existing file. */
static int
jffs_file_write(struct inode *inode, struct file *filp,
const char *buf, int count)
{
struct jffs_raw_inode raw_inode;
struct jffs_control *c;
struct jffs_file *f;
struct jffs_node *node;
int written = 0;
int pos;
 
D2(printk("***jffs_file_write(): inode: 0x%p (ino: %lu), "
"filp: 0x%p, buf: 0x%p, count: %d\n",
inode, inode->i_ino, filp, buf, count));
 
if (!inode) {
D(printk("jffs_file_write(): inode == NULL\n"));
return -EINVAL;
}
 
if (inode->i_sb->s_flags & MS_RDONLY) {
D(printk("jffs_file_write(): MS_RDONLY\n"));
return -ENOSPC;
}
if (!S_ISREG(inode->i_mode)) {
D(printk("jffs_file_write(): inode->i_mode == 0x%08x\n",
inode->i_mode));
return -EINVAL;
}
 
if (!(f = (struct jffs_file *)inode->u.generic_ip)) {
D(printk("jffs_file_write(): inode->u.generic_ip = 0x%p\n",
inode->u.generic_ip));
return -EINVAL;
}
c = f->c;
 
if (!JFFS_ENOUGH_SPACE(c->fmc)) {
D1(printk("jffs_file_write(): Free size = %u\n",
jffs_free_size1(c->fmc) + jffs_free_size2(c->fmc)));
D(printk(KERN_NOTICE "JFFS: No space left on device\n"));
return -ENOSPC;
}
 
if (filp->f_flags & O_APPEND) {
pos = inode->i_size;
}
else {
pos = filp->f_pos;
}
 
/* Things are going to be written so we could allocate and
initialize the necessary data structures now. */
if (!(node = (struct jffs_node *) kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
D(printk("jffs_file_write(): node == 0\n"));
return -ENOMEM;
}
DJM(no_jffs_node++);
node->data_offset = f->size;
node->removed_size = 0;
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = f->ino;
raw_inode.pino = f->pino;
raw_inode.version = f->highest_version + 1;
raw_inode.mode = f->mode;
raw_inode.uid = current->fsuid;
raw_inode.gid = current->fsgid;
raw_inode.atime = CURRENT_TIME;
raw_inode.mtime = raw_inode.atime;
raw_inode.ctime = f->ctime;
raw_inode.offset = f->size;
raw_inode.dsize = count;
raw_inode.rsize = 0;
raw_inode.nsize = 0;
raw_inode.nlink = f->nlink;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 0;
 
/* Write the new node to the flash. */
if ((written = jffs_write_node(c, node, &raw_inode, 0,
(const unsigned char *)buf)) < 0) {
D(printk("jffs_file_write(): jffs_write_node() failed.\n"));
kfree(node);
DJM(no_jffs_node--);
return -1;
}
 
/* Insert the new node into the file system. */
if (jffs_insert_node(c, f, &raw_inode, 0, node) < 0) {
return -1;
}
pos += written;
filp->f_pos = pos;
 
D3(printk("jffs_file_write(): new f_pos %d.\n", pos));
 
/* Fix things in the real inode. */
if (pos > inode->i_size) {
inode->i_size = pos;
}
inode->i_ctime = inode->i_mtime = CURRENT_TIME;
inode->i_dirt = 1;
 
return written;
} /* jffs_file_write() */
 
 
/* This is our ioctl() routine. */
static int
jffs_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct jffs_control *c;
int err;
 
D2(printk("***jffs_ioctl(): cmd = 0x%08x, arg = 0x%08lx\n", cmd, arg));
 
if (!(c = (struct jffs_control *)inode->i_sb->u.generic_sbp)) {
printk(KERN_ERR "JFFS: Bad inode in ioctl() call. "
"(cmd = 0x%08x)\n", cmd);
return -1;
}
 
switch (cmd) {
case JFFS_PRINT_HASH:
jffs_print_hash_table(c);
break;
case JFFS_PRINT_TREE:
jffs_print_tree(c->root, 0);
break;
case JFFS_GET_STATUS:
{
struct jffs_flash_status fst;
struct jffs_fmcontrol *fmc = c->fmc;
printk("Flash status -- ");
err = verify_area(VERIFY_WRITE,
(struct jffs_flash_status *)arg,
sizeof(struct jffs_flash_status));
if (err) {
D(printk("jffs_ioctl(): Bad arg in "
"JFFS_GET_STATUS ioctl!\n"));
return err;
}
fst.size = fmc->flash_size;
fst.used = fmc->used_size;
fst.dirty = fmc->dirty_size;
fst.begin = fmc->head->offset;
fst.end = fmc->tail->offset + fmc->tail->size;
printk("size: %d, used: %d, dirty: %d, "
"begin: %d, end: %d\n",
fst.size, fst.used, fst.dirty,
fst.begin, fst.end);
memcpy_tofs((struct jffs_flash_status *)arg, &fst,
sizeof(struct jffs_flash_status));
}
break;
default:
return -ENOTTY;
}
 
return 0;
} /* jffs_ioctl() */
 
 
static struct file_operations jffs_file_operations =
{
NULL, /* lseek - default */
generic_file_read, /* read */
jffs_file_write, /* write */
NULL, /* readdir */
NULL, /* select - default */
jffs_ioctl, /* ioctl */
generic_file_mmap, /* mmap */
NULL, /* open */
NULL, /* release */
NULL, /* fsync */
NULL, /* fasync */
NULL, /* check_media_change */
NULL /* revalidate */
};
 
static struct inode_operations jffs_file_inode_operations =
{
&jffs_file_operations,
NULL, /* create */
jffs_lookup, /* lookup */
NULL, /* link */
NULL, /* unlink */
NULL, /* symlink */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* mknod */
NULL, /* rename */
NULL, /* readlink */
NULL, /* follow_link */
jffs_readpage, /* readpage */
NULL, /* writepage */
NULL, /* bmap -- not really */
NULL, /* truncate */
NULL, /* permission */
NULL /* smap */
};
 
 
static struct file_operations jffs_dir_operations =
{
NULL, /* lseek - default */
NULL, /* read */
NULL, /* write */
jffs_readdir, /* readdir */
NULL, /* select - default */
NULL, /* ioctl */
NULL, /* mmap */
NULL, /* open */
NULL, /* release */
NULL, /* fsync */
NULL, /* fasync */
NULL, /* check_media_change */
NULL /* revalidate */
};
 
static struct inode_operations jffs_dir_inode_operations =
{
&jffs_dir_operations,
jffs_create, /* create */
jffs_lookup, /* lookup */
NULL, /* link */
jffs_unlink, /* unlink */
jffs_symlink, /* symlink */
jffs_mkdir, /* mkdir */
jffs_rmdir, /* rmdir */
jffs_mknod, /* mknod */
jffs_rename, /* rename */
NULL, /* readlink */
NULL, /* follow_link */
NULL, /* readpage */
NULL, /* writepage */
NULL, /* bmap */
NULL, /* truncate */
NULL, /* permission */
NULL /* smap */
};
 
 
static struct inode_operations jffs_symlink_inode_operations =
{
NULL, /* No file operations. */
NULL, /* create */
NULL, /* lookup */
NULL, /* link */
NULL, /* unlink */
NULL, /* symlink */
NULL, /* mkdir */
NULL, /* rmdir */
NULL, /* mknod */
NULL, /* rename */
jffs_readlink, /* readlink */
jffs_follow_link, /* follow_link */
NULL, /* readpage */
NULL, /* writepage */
NULL, /* bmap */
NULL, /* truncate */
NULL, /* permission */
NULL /* smap */
};
 
 
/* Initialize an inode for the VFS. */
static void
jffs_read_inode(struct inode *inode)
{
struct jffs_file *f;
struct jffs_control *c;
 
D3(printk("jffs_read_inode(): inode->i_ino == %lu\n", inode->i_ino));
 
if (!inode->i_sb) {
D(printk("jffs_read_inode(): !inode->i_sb ==> "
"No super block!\n"));
return;
}
c = (struct jffs_control *)inode->i_sb->u.generic_sbp;
if (!(f = jffs_find_file(c, inode->i_ino))) {
D(printk("jffs_read_inode(): No such inode (%lu).\n",
inode->i_ino));
return;
}
inode->u.generic_ip = (void *)f;
inode->i_mode = f->mode;
inode->i_nlink = f->nlink;
inode->i_uid = f->uid;
inode->i_gid = f->gid;
inode->i_size = f->size;
inode->i_atime = f->atime;
inode->i_mtime = f->mtime;
inode->i_ctime = f->ctime;
inode->i_blksize = PAGE_SIZE;
inode->i_blocks = 0;
if (S_ISREG(inode->i_mode)) {
inode->i_op = &jffs_file_inode_operations;
}
else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &jffs_dir_inode_operations;
}
else if (S_ISLNK(inode->i_mode)) {
inode->i_op = &jffs_symlink_inode_operations;
}
else if (S_ISCHR(inode->i_mode)) {
inode->i_op = &chrdev_inode_operations;
}
else if (S_ISBLK(inode->i_mode)) {
inode->i_op = &blkdev_inode_operations;
}
 
/* If the node is a device of some sort, then the number of the
device should be read from the flash memory and then added
to the inode's i_rdev member. */
if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
kdev_t rdev;
jffs_read_data(f, (char *)&rdev, 0, sizeof(kdev_t));
inode->i_rdev = kdev_t_to_nr(rdev);
}
}
 
 
void
jffs_write_super(struct super_block *sb)
{
#ifdef USE_GC
jffs_garbage_collect((struct jffs_control *)sb->u.generic_sbp);
#endif
}
 
 
static struct super_operations jffs_ops =
{
jffs_read_inode, /* read inode */
jffs_notify_change, /* notify change */
NULL, /* write inode */
NULL, /* put inode */
jffs_put_super, /* put super */
jffs_write_super, /* write super */
jffs_statfs, /* statfs */
NULL /* remount */
};
 
 
static struct file_system_type jffs_fs_type =
{
jffs_read_super,
"jffs",
1,
NULL
};
 
 
int
init_jffs_fs(void)
{
printk("JFFS "
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
"(Flash Shortcut) "
#endif
"version " JFFS_VERSION_STRING
", (C) 1999, 2000 Axis Communications AB\n");
return register_filesystem(&jffs_fs_type);
}
 
 
#ifdef MODULE
int
init_module(void)
{
int status;
 
if ((status = init_jffs_fs()) == 0) {
register_symtab(0);
}
return status;
}
 
void
cleanup_module(void)
{
unregister_filesystem(&jffs_fs_type);
}
#endif
/jffs_fm.h
0,0 → 1,123
/*
* JFFS -- Journalling Flash File System, Linux implementation.
*
* Copyright (C) 1999, 2000 Finn Hakansson, Axis Communications, Inc.
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* $Id: jffs_fm.h,v 1.1 2005-12-20 10:26:13 jcastillo Exp $
*
*/
 
#ifndef __LINUX_JFFS_FM_H__
#define __LINUX_JFFS_FM_H__
 
#include <linux/types.h>
#include <linux/jffs.h>
#include <linux/flash.h>
 
/* The alignment between two nodes in the flash memory. */
#define JFFS_ALIGN_SIZE 4
 
/* Run without the buffer cache? */
#define JFFS_FLASH_SHORTCUT 1
 
/* Mark the on-flash space as obsolete when appropriate. */
#define JFFS_MARK_OBSOLETE 0
 
/* How many padding bytes should be inserted between two chunks of data
on the flash? */
#define JFFS_GET_PAD_BYTES(size) ((JFFS_ALIGN_SIZE \
- ((__u32)(size) % JFFS_ALIGN_SIZE)) \
% JFFS_ALIGN_SIZE)
 
/* Is there enough space on the flash? */
#define JFFS_ENOUGH_SPACE(fmc) (((fmc)->flash_size - (fmc)->used_size \
- (fmc)->dirty_size) >= (fmc)->min_free_size)
 
 
struct jffs_node_ref
{
struct jffs_node *node;
struct jffs_node_ref *next;
};
 
 
/* The struct jffs_fm represents a chunk of data in the flash memory. */
struct jffs_fm
{
__u32 offset;
__u32 size;
struct jffs_fm *prev;
struct jffs_fm *next;
struct jffs_node_ref *nodes; /* USED if != 0. */
};
 
struct jffs_fmcontrol
{
__u32 flash_start;
__u32 flash_size;
__u32 used_size;
__u32 dirty_size;
__u32 sector_size;
__u32 min_free_size; /* The minimum free space needed to be able
to perform garbage collections. */
__u32 max_chunk_size; /* The maximum size of a chunk of data. */
void *flash_part;
__u32 no_call_gc;
struct jffs_control *c;
struct jffs_fm *head;
struct jffs_fm *tail;
struct jffs_fm *head_extra;
struct jffs_fm *tail_extra;
};
 
/* Notice the two members head_extra and tail_extra in the jffs_control
structure above. Those are only used during the scanning of the flash
memory; while the file system is being built. If the data in the flash
memory is organized like
 
+----------------+------------------+----------------+
| USED / DIRTY | FREE | USED / DIRTY |
+----------------+------------------+----------------+
 
then the scan is split in two parts. The first scanned part of the
flash memory is organized through the members head and tail. The
second scanned part is organized with head_extra and tail_extra. When
the scan is completed, the two lists are merged together. The jffs_fm
struct that head_extra references is the logical beginning of the
flash memory so it will be referenced by the head member. */
 
 
struct jffs_fmcontrol *jffs_build_begin(struct jffs_control *c, kdev_t dev);
void jffs_build_end(struct jffs_fmcontrol *fmc);
void jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc);
 
int jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size,
struct jffs_node *node, struct jffs_fm **result);
int jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm,
struct jffs_node *node);
 
__u32 jffs_free_size1(struct jffs_fmcontrol *fmc);
__u32 jffs_free_size2(struct jffs_fmcontrol *fmc);
void jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size);
struct jffs_fm *jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size);
struct jffs_node *jffs_get_oldest_node(struct jffs_fmcontrol *fmc);
long jffs_erasable_size(struct jffs_fmcontrol *fmc);
struct jffs_fm *jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset,
__u32 size, struct jffs_node *node);
int jffs_add_node(struct jffs_node *node);
void jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm,
__u32 size);
 
void jffs_print_fmcontrol(struct jffs_fmcontrol *fmc);
void jffs_print_fm(struct jffs_fm *fm);
void jffs_print_node_ref(struct jffs_node_ref *ref);
 
extern int flash_write(unsigned char *ptr, const unsigned char *source,
unsigned int size);
 
#endif /* __LINUX_JFFS_FM_H__ */
/intrep.c
0,0 → 1,3294
/*
* JFFS -- Journalling Flash File System, Linux implementation.
*
* Copyright (C) 1999, 2000 Finn Hakansson, Axis Communications, Inc.
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* $Id: intrep.c,v 1.1 2005-12-20 10:26:13 jcastillo Exp $
*
*/
 
/* This file contains the code for the internal structure of the
Journalling Flash File System, JFFS. */
 
/*
* Todo list:
*
* memcpy_to_flash()- and memcpy_from_flash()-functions.
*
* Implementation of hard links.
*
* Organize the source code in a better way. Against the VFS we could
* have jffs_ext.c, and against the block device jffs_int.c.
* A better file-internal organization too.
*
* A better checksum algorithm.
*
* Consider endianness stuff. ntohl() etc.
*
* Check all comments beginning with XXX.
*
* Are we handling the atime, mtime, ctime members of the inode right?
*
* Remove some duplicated code. Take a look at jffs_write_node() and
* jffs_rewrite_data() for instance.
*
* Implement more meaning of the nlink member in various data structures.
* nlink could be used in conjunction with hard links for instance.
*
* Fix the rename stuff. (I.e. if we have two files `a' and `b' and we
* do a `mv b a'.) Half of this is already implemented.
*
*/
 
#include <linux/module.h>
#include <linux/types.h>
#include <linux/malloc.h>
#include <linux/jffs.h>
#include <linux/fs.h>
#include <linux/stat.h>
#include <linux/pagemap.h>
#include <linux/locks.h>
#include <asm/byteorder.h>
 
#include "intrep.h"
#include "jffs_fm.h"
 
#if defined(CONFIG_JFFS_FS_VERBOSE) && CONFIG_JFFS_FS_VERBOSE
#define D(x) x
#else
#define D(x)
#endif
#define D1(x)
#define D2(x)
#define D3(x)
#define ASSERT(x) x
 
#if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG
long no_jffs_file = 0;
long no_jffs_node = 0;
long no_jffs_control = 0;
long no_jffs_raw_inode = 0;
long no_jffs_node_ref = 0;
long no_jffs_fm = 0;
long no_jffs_fmcontrol = 0;
long no_hash = 0;
long no_name = 0;
#endif
 
static int jffs_scan_flash(struct jffs_control *c);
static int jffs_update_file(struct jffs_file *f, struct jffs_node *node);
 
#if 0
#define _U 01
#define _L 02
#define _N 04
#define _S 010
#define _P 020
#define _C 040
#define _X 0100
#define _B 0200
 
const unsigned char jffs_ctype_[1 + 256] = {
0,
_C, _C, _C, _C, _C, _C, _C, _C,
_C, _C|_S, _C|_S, _C|_S, _C|_S, _C|_S, _C, _C,
_C, _C, _C, _C, _C, _C, _C, _C,
_C, _C, _C, _C, _C, _C, _C, _C,
_S|_B, _P, _P, _P, _P, _P, _P, _P,
_P, _P, _P, _P, _P, _P, _P, _P,
_N, _N, _N, _N, _N, _N, _N, _N,
_N, _N, _P, _P, _P, _P, _P, _P,
_P, _U|_X, _U|_X, _U|_X, _U|_X, _U|_X, _U|_X, _U,
_U, _U, _U, _U, _U, _U, _U, _U,
_U, _U, _U, _U, _U, _U, _U, _U,
_U, _U, _U, _P, _P, _P, _P, _P,
_P, _L|_X, _L|_X, _L|_X, _L|_X, _L|_X, _L|_X, _L,
_L, _L, _L, _L, _L, _L, _L, _L,
_L, _L, _L, _L, _L, _L, _L, _L,
_L, _L, _L, _P, _P, _P, _P, _C
};
 
#define jffs_isalpha(c) ((jffs_ctype_+1)[c]&(_U|_L))
#define jffs_isupper(c) ((jffs_ctype_+1)[c]&_U)
#define jffs_islower(c) ((jffs_ctype_+1)[c]&_L)
#define jffs_isdigit(c) ((jffs_ctype_+1)[c]&_N)
#define jffs_isxdigit(c) ((jffs_ctype_+1)[c]&(_X|_N))
#define jffs_isspace(c) ((jffs_ctype_+1)[c]&_S)
#define jffs_ispunct(c) ((jffs_ctype_+1)[c]&_P)
#define jffs_isalnum(c) ((jffs_ctype_+1)[c]&(_U|_L|_N))
#define jffs_isprint(c) ((jffs_ctype_+1)[c]&(_P|_U|_L|_N|_B))
#define jffs_isgraph(c) ((jffs_ctype_+1)[c]&(_P|_U|_L|_N))
#define jffs_iscntrl(c) ((jffs_ctype_+1)[c]&_C)
 
void
jffs_hexdump(const unsigned char* ptr, int size)
{
char line[16];
int j = 0;
 
while (size > 0) {
int i;
 
printk("%p:", ptr);
for (j = 0; j < 16; j++) {
line[j] = *ptr++;
}
for (i = 0; i < j; i++) {
if (!(i & 1)) {
printk(" %.2x", line[i] & 0xff);
}
else {
printk("%.2x", line[i] & 0xff);
}
}
 
/* Print empty space */
for (; i < 16; i++) {
if (!(i & 1)) {
printk(" ");
}
else {
printk(" ");
}
}
printk(" ");
 
for (i = 0; i < j; i++) {
if (jffs_isgraph(line[i])) {
printk("%c", line[i]);
}
else {
printk(".");
}
}
printk("\n");
size -= 16;
}
}
#endif
 
inline int
jffs_min(int a, int b)
{
return (a < b ? a : b);
}
 
 
inline int
jffs_max(int a, int b)
{
return (a > b ? a : b);
}
 
 
/* This routine calculates checksums in JFFS. */
__u32
jffs_checksum(const void *data, int size)
{
__u32 sum = 0;
__u8 *ptr = (__u8 *)data;
D3(printk("#csum at 0x%p, {0x%08lx, 0x%08lx, ... }, size: %d",
data, *(long *)data, *((long *)data + 1), size));
while (size-- > 0) {
sum += *ptr++;
}
D3(printk(", result: 0x%08x\n", sum));
return sum;
}
 
 
/* Create and initialize a new struct jffs_file. */
static struct jffs_file *
jffs_create_file(struct jffs_control *c,
const struct jffs_raw_inode *raw_inode)
{
struct jffs_file *f;
 
if (!(f = (struct jffs_file *)kmalloc(sizeof(struct jffs_file),
GFP_KERNEL))) {
D(printk("jffs_create_file(): Failed!\n"));
return 0;
}
DJM(no_jffs_file++);
memset(f, 0, sizeof(struct jffs_file));
f->ino = raw_inode->ino;
f->pino = raw_inode->pino;
f->nlink = raw_inode->nlink;
f->deleted = raw_inode->deleted;
f->c = c;
 
return f;
}
 
 
/* Build a control block for the file system. */
static struct jffs_control *
jffs_create_control(kdev_t dev)
{
struct jffs_control *c;
register int s = sizeof(struct jffs_control);
D(char *t = 0);
 
D2(printk("jffs_create_control()\n"));
 
if (!(c = (struct jffs_control *)kmalloc(s, GFP_KERNEL))) {
goto fail_control;
}
DJM(no_jffs_control++);
c->root = 0;
c->hash_len = JFFS_HASH_SIZE;
s = sizeof(struct jffs_file *) * c->hash_len;
if (!(c->hash = (struct jffs_file **)kmalloc(s, GFP_KERNEL))) {
goto fail_hash;
}
DJM(no_hash++);
memset(c->hash, 0, s);
if (!(c->fmc = jffs_build_begin(c, dev))) {
goto fail_fminit;
}
c->next_ino = JFFS_MIN_INO + 1;
c->rename_lock = 0;
c->rename_wait = (struct wait_queue *)0;
return c;
 
fail_fminit:
D(t = "c->fmc");
fail_hash:
kfree(c);
DJM(no_jffs_control--);
D(t = t ? t : "c->hash");
fail_control:
D(t = t ? t : "control");
D(printk("jffs_create_control(): Allocation failed: (%s)\n", t));
return (struct jffs_control *)0;
}
 
 
/* Clean up all data structures associated with the file system. */
void
jffs_cleanup_control(struct jffs_control *c)
{
D2(printk("jffs_cleanup_control()\n"));
 
if (!c) {
D(printk("jffs_cleanup_control(): c == NULL !!!\n"));
return;
}
 
/* Free all files and nodes. */
if (c->hash) {
jffs_foreach_file(c, jffs_free_node_list);
kfree(c->hash);
DJM(no_hash--);
}
jffs_cleanup_fmcontrol(c->fmc);
kfree(c);
DJM(no_jffs_control--);
D3(printk("jffs_cleanup_control(): Leaving...\n"));
}
 
 
/* This function adds a virtual root node to the in-RAM representation.
Called by jffs_build_fs(). */
static int
jffs_add_virtual_root(struct jffs_control *c)
{
struct jffs_file *root;
struct jffs_node *node;
 
D2(printk("jffs_add_virtual_root(): "
"Creating a virtual root directory.\n"));
 
if (!(root = (struct jffs_file *)kmalloc(sizeof(struct jffs_file),
GFP_KERNEL))) {
return -ENOMEM;
}
DJM(no_jffs_file++);
if (!(node = (struct jffs_node *)kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
kfree(root);
DJM(no_jffs_file--);
return -ENOMEM;
}
DJM(no_jffs_node++);
memset(node, 0, sizeof(struct jffs_node));
node->ino = JFFS_MIN_INO;
memset(root, 0, sizeof(struct jffs_file));
root->ino = JFFS_MIN_INO;
root->mode = S_IFDIR | S_IRWXU | S_IRGRP
| S_IXGRP | S_IROTH | S_IXOTH;
root->atime = root->mtime = root->ctime = CURRENT_TIME;
root->nlink = 1;
root->c = c;
root->version_head = root->version_tail = node;
jffs_insert_file_into_hash(root);
return 0;
}
 
 
/* This is where the file system is built and initialized. */
int
jffs_build_fs(struct super_block *sb)
{
struct jffs_control *c;
int err = 0;
 
D2(printk("jffs_build_fs()\n"));
 
if (!(c = jffs_create_control(sb->s_dev))) {
return -ENOMEM;
}
c->building_fs = 1;
c->sb = sb;
if ((err = jffs_scan_flash(c)) < 0) {
goto jffs_build_fs_fail;
}
 
/* Add a virtual root node if no one exists. */
if (!jffs_find_file(c, JFFS_MIN_INO)) {
if ((err = jffs_add_virtual_root(c)) < 0) {
goto jffs_build_fs_fail;
}
}
 
/* Remove deleted nodes. */
if ((err = jffs_foreach_file(c, jffs_possibly_delete_file)) < 0) {
printk(KERN_ERR "JFFS: Failed to remove deleted nodes.\n");
goto jffs_build_fs_fail;
}
/* Remove redundant nodes. (We are not interested in the
return value in this case.) */
jffs_foreach_file(c, jffs_remove_redundant_nodes);
/* Try to build a tree from all the nodes. */
if ((err = jffs_foreach_file(c, jffs_insert_file_into_tree)) < 0) {
printk("JFFS: Failed to build tree.\n");
goto jffs_build_fs_fail;
}
/* Compute the sizes of all files in the filesystem. Adjust if
necessary. */
if ((err = jffs_foreach_file(c, jffs_build_file)) < 0) {
printk("JFFS: Failed to build file system.\n");
goto jffs_build_fs_fail;
}
sb->u.generic_sbp = (void *)c;
c->building_fs = 0;
 
D1(jffs_print_hash_table(c));
D1(jffs_print_tree(c->root, 0));
 
return 0;
 
jffs_build_fs_fail:
jffs_cleanup_control(c);
return err;
} /* jffs_build_fs() */
 
 
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
 
/* Scan the whole flash memory in order to find all nodes in the
file systems. */
static int
jffs_scan_flash(struct jffs_control *c)
{
char name[JFFS_MAX_NAME_LEN + 2];
struct jffs_raw_inode raw_inode;
struct jffs_node *node = 0;
struct jffs_fmcontrol *fmc = c->fmc;
__u32 checksum;
__u8 tmp_accurate;
__u16 tmp_chksum;
unsigned char *pos = (unsigned char *) fmc->flash_start;
unsigned char *start;
unsigned char *end = (unsigned char *)
(fmc->flash_start + fmc->flash_size);
 
D1(printk("jffs_scan_flash(): start pos = 0x%p, end = 0x%p\n",
pos, end));
 
flash_safe_acquire(fmc->flash_part);
 
/* Start the scan. */
while (pos < end) {
 
/* Remember the position from where we started this scan. */
start = pos;
 
switch (*(__u32 *)pos) {
case JFFS_EMPTY_BITMASK:
/* We have found 0xff on this block. We have to
scan the rest of the block to be sure it is
filled with 0xff. */
D1(printk("jffs_scan_flash(): 0xff at pos 0x%p.\n",
pos));
for (; pos < end
&& JFFS_EMPTY_BITMASK == *(__u32 *)pos;
pos += 4);
D1(printk("jffs_scan_flash(): 0xff ended at "
"pos 0x%p.\n", pos));
continue;
 
case JFFS_DIRTY_BITMASK:
/* We have found 0x00 on this block. We have to
scan as far as possible to find out how much
is dirty. */
D1(printk("jffs_scan_flash(): 0x00 at pos 0x%p.\n",
pos));
for (; pos < end
&& JFFS_DIRTY_BITMASK == *(__u32 *)pos;
pos += 4);
D1(printk("jffs_scan_flash(): 0x00 ended at "
"pos 0x%p.\n", pos));
jffs_fmalloced(fmc, (__u32) start,
(__u32) (pos - start), 0);
continue;
 
case JFFS_MAGIC_BITMASK:
/* We have probably found a new raw inode. */
break;
 
default:
bad_inode:
/* We're f*cked. This is not solved yet. We have
to scan for the magic pattern. */
D1(printk("*************** Dirty flash memory or bad inode: "
"hexdump(pos = 0x%p, len = 128):\n",
pos));
D1(jffs_hexdump(pos, 128));
for (pos += 4; pos < end; pos += 4) {
switch (*(__u32 *)pos) {
case JFFS_MAGIC_BITMASK:
jffs_fmalloced(fmc, (__u32) start,
(__u32) (pos - start),
0);
goto cont_scan;
default:
break;
}
}
cont_scan:
continue;
}
 
/* We have found the beginning of an inode. Create a
node for it. */
if (!node) {
if (!(node = (struct jffs_node *)
kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
flash_safe_release(fmc->flash_part);
return -ENOMEM;
}
DJM(no_jffs_node++);
}
 
/* Read the next raw inode. */
memcpy(&raw_inode, pos, sizeof(struct jffs_raw_inode));
 
/* When we compute the checksum for the inode, we never
count the 'accurate' or the 'checksum' fields. */
tmp_accurate = raw_inode.accurate;
tmp_chksum = raw_inode.chksum;
raw_inode.accurate = 0;
raw_inode.chksum = 0;
checksum = jffs_checksum(&raw_inode,
sizeof(struct jffs_raw_inode));
raw_inode.accurate = tmp_accurate;
raw_inode.chksum = tmp_chksum;
 
D3(printk("*** We have found this raw inode at pos 0x%p "
"on the flash:\n", pos));
D3(jffs_print_raw_inode(&raw_inode));
 
if (checksum != raw_inode.chksum) {
D1(printk("jffs_scan_flash(): Bad checksum: "
"checksum = %u, "
"raw_inode.chksum = %u\n",
checksum, raw_inode.chksum));
pos += sizeof(struct jffs_raw_inode);
jffs_fmalloced(fmc, (__u32) start,
(__u32) (pos - start), 0);
/* Reuse this unused struct jffs_node. */
continue;
}
 
/* Check the raw inode read so far. Start with the
maximum length of the filename. */
if (raw_inode.nsize > JFFS_MAX_NAME_LEN) {
goto bad_inode;
}
/* The node's data segment should not exceed a
certain length. */
if (raw_inode.dsize > fmc->max_chunk_size) {
goto bad_inode;
}
 
pos += sizeof(struct jffs_raw_inode);
 
/* This shouldn't be necessary because a node that
violates the flash boundaries shouldn't be written
in the first place. */
if (pos >= end) {
goto check_node;
}
 
/* Read the name. */
*name = 0;
if (raw_inode.nsize) {
memcpy(name, pos, raw_inode.nsize);
name[raw_inode.nsize] = '\0';
pos += raw_inode.nsize
+ JFFS_GET_PAD_BYTES(raw_inode.nsize);
D3(printk("name == \"%s\"\n", name));
checksum = jffs_checksum(name, raw_inode.nsize);
if (checksum != raw_inode.nchksum) {
D1(printk("jffs_scan_flash(): Bad checksum: "
"checksum = %u, "
"raw_inode.nchksum = %u\n",
checksum, raw_inode.nchksum));
jffs_fmalloced(fmc, (__u32) start,
(__u32) (pos - start), 0);
/* Reuse this unused struct jffs_node. */
continue;
}
if (pos >= end) {
goto check_node;
}
}
 
/* Read the data in order to be sure it matches the
checksum. */
checksum = jffs_checksum(pos, raw_inode.dsize);
pos += raw_inode.dsize + JFFS_GET_PAD_BYTES(raw_inode.dsize);
 
if (checksum != raw_inode.dchksum) {
D1(printk("jffs_scan_flash(): Bad checksum: "
"checksum = %u, "
"raw_inode.dchksum = %u\n",
checksum, raw_inode.dchksum));
jffs_fmalloced(fmc, (__u32) start,
(__u32) (pos - start), 0);
/* Reuse this unused struct jffs_node. */
continue;
}
 
check_node:
 
/* Remember the highest inode number in the whole file
system. This information will be used when assigning
new files new inode numbers. */
if (c->next_ino <= raw_inode.ino) {
c->next_ino = raw_inode.ino + 1;
}
 
if (raw_inode.accurate) {
int err;
node->data_offset = raw_inode.offset;
node->data_size = raw_inode.dsize;
node->removed_size = raw_inode.rsize;
/* Compute the offset to the actual data in the
on-flash node. */
node->fm_offset
= sizeof(struct jffs_raw_inode)
+ raw_inode.nsize
+ JFFS_GET_PAD_BYTES(raw_inode.nsize);
node->fm = jffs_fmalloced(fmc, (__u32) start,
(__u32) (pos - start),
node);
if (!node->fm) {
D(printk("jffs_scan_flash(): !node->fm\n"));
kfree(node);
DJM(no_jffs_node--);
flash_safe_release(fmc->flash_part);
return -ENOMEM;
}
if ((err = jffs_insert_node(c, 0, &raw_inode,
name, node)) < 0) {
printk("JFFS: Failed to handle raw inode. "
"(err = %d)\n", err);
break;
}
D3(jffs_print_node(node));
node = 0; /* Don't free the node! */
}
else {
jffs_fmalloced(fmc, (__u32) start,
(__u32) (pos - start), 0);
D3(printk("jffs_scan_flash(): Just found an obsolete "
"raw_inode. Continuing the scan...\n"));
/* Reuse this unused struct jffs_node. */
}
}
 
if (node) {
kfree(node);
DJM(no_jffs_node--);
}
jffs_build_end(fmc);
D3(printk("jffs_scan_flash(): Leaving...\n"));
flash_safe_release(fmc->flash_part);
return 0;
} /* jffs_scan_flash() */
 
#else
 
/* Scan the whole flash memory in order to find all nodes in the
file systems. */
int
jffs_scan_flash(struct jffs_control *c)
{
char name[JFFS_MAX_NAME_LEN + 2];
struct jffs_raw_inode raw_inode;
struct jffs_node *node = 0;
struct buffer_head *bh;
kdev_t dev = c->sb->s_dev;
__u32 block = 0;
__u32 last_block = c->fmc->flash_size / BLOCK_SIZE - 1;
__u32 block_offset = 0;
__u32 read_size;
__u32 checksum;
__u32 offset; /* Offset relative to the start of the flash memory. */
__u8 tmp_accurate;
__u32 tmp_chksum;
__u32 size;
 
D(printk("jffs_scan_flash()\n"));
 
if (!(bh = bread(dev, block, BLOCK_SIZE))) {
D(printk("jffs_scan_flash(): First bread() failed.\n"));
return -1;
}
 
/* Start the scan. */
while (block <= last_block) {
if (block_offset >= BLOCK_SIZE) {
brelse(bh);
if (block == last_block) {
bh = 0;
goto end_of_scan;
}
if (!(bh = bread(dev, ++block, BLOCK_SIZE))) {
return -1;
}
block_offset = 0;
}
offset = block * BLOCK_SIZE + block_offset;
D(printk("jffs_scan_flash(): offset = %u\n", offset));
 
switch (*(__u32 *)&bh->b_data[block_offset]) {
case JFFS_EMPTY_BITMASK:
/* We have found 0xff on this block. We have to
scan the rest of the block to be sure it is
filled with 0xff. */
D(printk("jffs_scan_flash(): 0xff on block %u, "
"block_offset %u.\n", block, block_offset));
block_offset += 4;
while (block <= last_block) {
for (; block_offset < BLOCK_SIZE;
block_offset += 4) {
if (JFFS_EMPTY_BITMASK
!= *(__u32 *)&bh->b_data[block_offset]) {
goto ff_scan_end;
}
}
brelse(bh);
block_offset = 0;
if (block >= last_block) {
bh = 0;
D(printk("jffs_scan_flash(): "
"0xff size: %d\n",
(last_block + 1) * BLOCK_SIZE
- offset));
goto end_of_scan;
}
if (!(bh = bread(dev, ++block, BLOCK_SIZE))) {
return -1;
}
}
ff_scan_end:
D(printk("jffs_scan_flash(): 0xff size: %d\n",
block * BLOCK_SIZE + block_offset - offset));
continue;
case JFFS_DIRTY_BITMASK:
/* We have found 0x00 on this block. We have to
scan as far as possible to find out how much
is dirty. */
D(printk("jffs_scan_flash(): 0x00 on block %u, "
"block_offset %u.\n",
block, block_offset));
block_offset += 4;
while (block < last_block) {
for (; block_offset < BLOCK_SIZE;
block_offset += 4) {
if (*(__u32 *)&bh->b_data[block_offset]
!= JFFS_DIRTY_BITMASK) {
goto zero_scan_end;
}
}
brelse(bh);
if (!(bh = bread(dev, ++block, BLOCK_SIZE))) {
return -1;
}
block_offset = 0;
}
zero_scan_end:
D(printk("jffs_scan_flash(): 0x00 size: %d\n",
block * BLOCK_SIZE + block_offset - offset));
jffs_fmalloced(c->fmc, offset,
block * BLOCK_SIZE + block_offset
- offset, 0);
continue;
case JFFS_MAGIC_BITMASK:
/* We have probably found a new raw inode. */
break;
default:
/* We're f*cked. This is not solved yet. We have
to scan for the magic pattern. */
D(printk("jffs_scan_flash(): Block #%u at "
"block_offset %u is dirty!\n",
block, block_offset));
D(printk(" offset: %u\n", offset));
D(printk(" data: %u\n",
*(__u32 *)&bh->b_data[block_offset]));
jffs_fmalloced(c->fmc, offset,
BLOCK_SIZE - block_offset, 0);
block_offset = BLOCK_SIZE;
continue;
}
 
/* We have found the beginning of an inode. Create a
node for it. */
if (!node) {
if (!(node = (struct jffs_node *)
kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
brelse(bh);
return -ENOMEM;
}
DJM(no_jffs_node++);
}
 
/* Read the next raw inode. */
read_size = jffs_min(BLOCK_SIZE - block_offset,
sizeof(struct jffs_raw_inode));
memcpy(&raw_inode, &bh->b_data[block_offset], read_size);
D(printk("jffs_scan_flash(): block_offset: %u, "
"read_size: %u\n", block_offset, read_size));
block_offset += read_size;
if (read_size < sizeof(struct jffs_raw_inode)) {
brelse(bh);
if (!(bh = bread(dev, ++block, BLOCK_SIZE))) {
return -1;
}
block_offset = sizeof(struct jffs_raw_inode) - read_size;
memcpy((void *)&raw_inode + read_size, bh->b_data,
block_offset);
}
/* When we compute the checksum for the inode, we never count
the 'accurate' or the 'checksum' fields. */
tmp_accurate = raw_inode.accurate;
tmp_chksum = raw_inode.chksum;
raw_inode.accurate = 0;
raw_inode.chksum = 0;
checksum = jffs_checksum(&raw_inode,
sizeof(struct jffs_raw_inode));
raw_inode.accurate = tmp_accurate;
raw_inode.chksum = tmp_chksum;
 
D(printk("*** We have found this raw inode at pos 0x%08x "
"on the flash:\n", offset));
jffs_print_raw_inode(&raw_inode);
 
if (block_offset == BLOCK_SIZE) {
brelse(bh);
if (block == last_block) {
bh = 0;
goto check_node;
}
if (!(bh = bread(dev, ++block, BLOCK_SIZE))) {
return -1;
}
block_offset = 0;
}
 
/* Read the name. */
*name = 0;
if (raw_inode.nsize) {
read_size = jffs_min(BLOCK_SIZE - block_offset,
raw_inode.nsize);
memcpy(name, &bh->b_data[block_offset], read_size);
block_offset += read_size;
if (read_size < raw_inode.nsize) {
/* We haven't read the whole name. */
brelse(bh);
if (!(bh = bread(dev, ++block, BLOCK_SIZE))) {
return -1;
}
block_offset = raw_inode.nsize - read_size;
memcpy(&name[read_size], bh->b_data, block_offset);
}
block_offset += JFFS_GET_PAD_BYTES(block_offset);
name[raw_inode.nsize] = '\0';
checksum += jffs_checksum(name, raw_inode.nsize);
}
 
if (block_offset == BLOCK_SIZE) {
brelse(bh);
if (block == last_block) {
bh = 0;
goto check_node;
}
if (!(bh = bread(dev, ++block, BLOCK_SIZE))) {
return -1;
}
block_offset = 0;
}
 
/* Read the data in order to be sure it matches the
checksum. */
if (raw_inode.dsize) {
__u32 chunk_size = jffs_min(BLOCK_SIZE - block_offset,
raw_inode.dsize);
__u32 data_read = chunk_size;
checksum += jffs_checksum(&bh->b_data[block_offset],
data_read);
block_offset += chunk_size;
while (data_read < raw_inode.dsize) {
brelse(bh);
if (!(bh = bread(dev, ++block, BLOCK_SIZE))) {
return -1;
}
chunk_size = jffs_min(BLOCK_SIZE,
raw_inode.dsize
- data_read);
data_read += chunk_size;
checksum += jffs_checksum(bh->b_data,
chunk_size);
block_offset = chunk_size;
}
}
size = sizeof(struct jffs_raw_inode) + raw_inode.nsize
+ raw_inode.dsize;
 
block_offset += JFFS_GET_PAD_BYTES(block_offset);
 
/* Make sure the checksums are equal. */
if (checksum != raw_inode.chksum) {
/* Something was wrong with the node. The node
has to be discarded. */
D(printk("jffs_scan_flash(): checksum == %u, "
"raw_inode.chksum == %u\n",
checksum, raw_inode.chksum));
jffs_fmalloced(c->fmc, offset, size, 0);
/* Reuse this unused struct jffs_node. */
continue;
}
 
/* Remember the highest inode number in the whole file
system. This information will be used when assigning
new files new inode numbers. */
if (c->next_ino <= raw_inode.ino) {
c->next_ino = raw_inode.ino + 1;
}
 
check_node:
if (raw_inode.accurate) {
node->data_offset = raw_inode.offset;
node->data_size = raw_inode.dsize;
node->removed_size = raw_inode.rsize;
node->fm_offset = sizeof(struct jffs_raw_inode)
+ raw_inode.nsize
+ JFFS_GET_PAD_BYTES(raw_inode.nsize);
node->fm = jffs_fmalloced(c->fmc, offset, size, node);
if (!node->fm) {
D(printk("jffs_scan_flash(): !node->fm\n"));
kfree(node);
DJM(no_jffs_node--);
brelse(bh);
return -ENOMEM;
}
jffs_insert_node(c, 0, &raw_inode, name, node);
jffs_print_node(node);
node = 0; /* Don't free the node! */
}
else {
jffs_fmalloced(c->fmc, offset, size, 0);
D(printk("jffs_scan_flash(): Just found an obsolete "
"raw_inode. Continuing the scan...\n"));
/* Reuse this unused struct jffs_node. */
}
}
 
end_of_scan:
brelse(bh);
if (node) {
kfree(node);
DJM(no_jffs_node--);
}
jffs_build_end(c->fmc);
D(printk("jffs_scan_flash(): Leaving...\n"));
return 0;
} /* jffs_scan_flash() */
 
#endif
 
 
/* Insert any kind of node into the file system. Take care of data
insertions and deletions. Also remove redundant information. The
memory allocated for the `name' is regarded as "given away" in the
caller's perspective. */
int
jffs_insert_node(struct jffs_control *c, struct jffs_file *f,
const struct jffs_raw_inode *raw_inode,
const char *name, struct jffs_node *node)
{
int update_name = 0;
int insert_into_tree = 0;
 
D2(printk("jffs_insert_node(): ino = %u, version = %u, name = \"%s\"\n",
raw_inode->ino, raw_inode->version,
((name && *name) ? name : "")));
 
/* If there doesn't exist an associated jffs_file, then
create, initialize and insert one into the file system. */
if (!f && !(f = jffs_find_file(c, raw_inode->ino))) {
if (!(f = jffs_create_file(c, raw_inode))) {
return -ENOMEM;
}
jffs_insert_file_into_hash(f);
insert_into_tree = 1;
}
 
node->ino = raw_inode->ino;
node->version = raw_inode->version;
node->data_size = raw_inode->dsize;
node->fm_offset = sizeof(struct jffs_raw_inode) + raw_inode->nsize
+ JFFS_GET_PAD_BYTES(raw_inode->nsize);
node->name_size = raw_inode->nsize;
 
/* Now insert the node at the correct position into the file's
version list. */
if (!f->version_head) {
/* This is the first node. */
f->version_head = node;
f->version_tail = node;
node->version_prev = 0;
node->version_next = 0;
f->highest_version = node->version;
update_name = 1;
f->mode = raw_inode->mode;
f->uid = raw_inode->uid;
f->gid = raw_inode->gid;
f->atime = raw_inode->atime;
f->mtime = raw_inode->mtime;
f->ctime = raw_inode->ctime;
f->deleted = raw_inode->deleted;
}
else if ((f->highest_version < node->version)
|| (node->version == 0)) {
/* Insert at the end of the list. I.e. this node is the
oldest one so far. */
node->version_prev = f->version_tail;
node->version_next = 0;
f->version_tail->version_next = node;
f->version_tail = node;
f->highest_version = node->version;
update_name = 1;
f->pino = raw_inode->pino;
f->mode = raw_inode->mode;
f->uid = raw_inode->uid;
f->gid = raw_inode->gid;
f->atime = raw_inode->atime;
f->mtime = raw_inode->mtime;
f->ctime = raw_inode->ctime;
f->deleted = raw_inode->deleted;
}
else if (f->version_head->version > node->version) {
/* Insert at the bottom of the list. */
node->version_prev = 0;
node->version_next = f->version_head;
f->version_head->version_prev = node;
f->version_head = node;
if (!f->name) {
update_name = 1;
}
if (raw_inode->deleted) {
f->deleted = raw_inode->deleted;
}
}
else {
struct jffs_node *n;
int newer_name = 0;
/* Search for the insertion position starting from
the tail (newest node). */
for (n = f->version_tail; n; n = n->version_prev) {
if (n->version < node->version) {
node->version_prev = n;
node->version_next = n->version_next;
node->version_next->version_prev = node;
n->version_next = node;
if (!newer_name) {
update_name = 1;
}
break;
}
if (n->name_size) {
newer_name = 1;
}
}
}
 
/* Perhaps update the name. */
if (raw_inode->nsize && update_name && name && *name) {
if (f->name) {
kfree(f->name);
DJM(no_name--);
}
if (!(f->name = (char *) kmalloc(raw_inode->nsize + 1,
GFP_KERNEL))) {
return -ENOMEM;
}
DJM(no_name++);
memcpy(f->name, name, raw_inode->nsize);
f->name[raw_inode->nsize] = '\0';
f->nsize = raw_inode->nsize;
D3(printk("jffs_insert_node(): Updated the name of "
"the file to \"%s\".\n", name));
}
 
if (!c->building_fs) {
D3(printk("jffs_insert_node(): ---------------------------"
"------------------------------------------- 1\n"));
if (insert_into_tree) {
jffs_insert_file_into_tree(f);
}
if (f->deleted) {
/* Mark all versions of the node as obsolete. */
jffs_possibly_delete_file(f);
}
else {
if (node->data_size || node->removed_size) {
jffs_update_file(f, node);
}
jffs_remove_redundant_nodes(f);
}
#ifdef USE_GC
if (!c->fmc->no_call_gc) {
jffs_garbage_collect(c);
}
#endif
D3(printk("jffs_insert_node(): ---------------------------"
"------------------------------------------- 2\n"));
}
 
return 0;
} /* jffs_insert_node() */
 
 
/* Unlink a jffs_node from the version list it is in. */
static inline void
jffs_unlink_node_from_version_list(struct jffs_file *f,
struct jffs_node *node)
{
if (node->version_prev) {
node->version_prev->version_next = node->version_next;
} else {
f->version_head = node->version_next;
}
if (node->version_next) {
node->version_next->version_prev = node->version_prev;
} else {
f->version_tail = node->version_prev;
}
}
 
 
/* Unlink a jffs_node from the range list it is in. */
static inline void
jffs_unlink_node_from_range_list(struct jffs_file *f, struct jffs_node *node)
{
if (node->range_prev) {
node->range_prev->range_next = node->range_next;
}
else {
f->range_head = node->range_next;
}
if (node->range_next) {
node->range_next->range_prev = node->range_prev;
}
else {
f->range_tail = node->range_prev;
}
}
 
 
/* Function used by jffs_remove_redundant_nodes() below. This function
classifies what kind of information a node adds to a file. */
static inline __u8
jffs_classify_node(struct jffs_node *node)
{
__u8 mod_type = JFFS_MODIFY_INODE;
 
if (node->name_size) {
mod_type |= JFFS_MODIFY_NAME;
}
if (node->data_size || node->removed_size) {
mod_type |= JFFS_MODIFY_DATA;
}
return mod_type;
}
 
 
/* Remove redundant nodes from a file. Mark the on-flash memory
as dirty. */
int
jffs_remove_redundant_nodes(struct jffs_file *f)
{
struct jffs_node *newest_node;
struct jffs_node *cur;
struct jffs_node *prev;
__u8 newest_type;
__u8 mod_type;
__u8 node_with_name_later = 0;
 
if (!(newest_node = f->version_tail)) {
return 0;
}
 
/* What does the `newest_node' modify? */
newest_type = jffs_classify_node(newest_node);
node_with_name_later = newest_type & JFFS_MODIFY_NAME;
 
D3(printk("jffs_remove_redundant_nodes(): ino: %u, name: \"%s\", "
"newest_type: %u\n", f->ino, (f->name ? f->name : ""),
newest_type));
 
/* Traverse the file's nodes and determine which of them that are
superfluous. Yeah, this might look very complex at first
glance but it is actually very simple. */
for (cur = newest_node->version_prev; cur; cur = prev) {
prev = cur->version_prev;
mod_type = jffs_classify_node(cur);
if ((mod_type <= JFFS_MODIFY_INODE)
|| ((newest_type & JFFS_MODIFY_NAME)
&& (mod_type
<= (JFFS_MODIFY_INODE + JFFS_MODIFY_NAME)))
|| (cur->data_size == 0 && cur->removed_size
&& !cur->version_prev && node_with_name_later)) {
/* Yes, this node is redundant. Remove it. */
D2(printk("jffs_remove_redundant_nodes(): "
"Removing node: ino: %u, version: %u, "
"mod_type: %u\n", cur->ino, cur->version,
mod_type));
jffs_unlink_node_from_version_list(f, cur);
jffs_fmfree(f->c->fmc, cur->fm, cur);
kfree(cur);
DJM(no_jffs_node--);
}
else {
node_with_name_later |= (mod_type & JFFS_MODIFY_NAME);
}
}
 
return 0;
}
 
 
/* Insert a file into the hash table. */
int
jffs_insert_file_into_hash(struct jffs_file *f)
{
int i = f->ino % f->c->hash_len;
 
D3(printk("jffs_insert_file_into_hash(): f->ino: %u\n", f->ino));
 
f->hash_next = f->c->hash[i];
if (f->hash_next) {
f->hash_next->hash_prev = f;
}
f->hash_prev = 0;
f->c->hash[i] = f;
return 0;
}
 
 
/* Insert a file into the file system tree. */
int
jffs_insert_file_into_tree(struct jffs_file *f)
{
struct jffs_file *parent;
 
D3(printk("jffs_insert_file_into_tree(): name: \"%s\"\n",
(f->name ? f->name : "")));
 
if (!(parent = jffs_find_file(f->c, f->pino))) {
if (f->pino == 0) {
f->c->root = f;
f->parent = 0;
f->sibling_prev = 0;
f->sibling_next = 0;
return 0;
}
else {
D1(printk("jffs_insert_file_into_tree(): Found "
"inode with no parent and pino == %u\n",
f->pino));
return -1;
}
}
f->parent = parent;
f->sibling_next = parent->children;
if (f->sibling_next) {
f->sibling_next->sibling_prev = f;
}
f->sibling_prev = 0;
parent->children = f;
return 0;
}
 
 
/* Remove a file from the hash table. */
int
jffs_unlink_file_from_hash(struct jffs_file *f)
{
D3(printk("jffs_unlink_file_from_hash(): f: 0x%p, "
"ino %u\n", f, f->ino));
 
if (f->hash_next) {
f->hash_next->hash_prev = f->hash_prev;
}
if (f->hash_prev) {
f->hash_prev->hash_next = f->hash_next;
}
else {
f->c->hash[f->ino % f->c->hash_len] = f->hash_next;
}
return 0;
}
 
 
/* Just remove the file from the parent's children. Don't free
any memory. */
int
jffs_unlink_file_from_tree(struct jffs_file *f)
{
D3(printk("jffs_unlink_file_from_tree(): ino: %d, name: "
"\"%s\"\n", f->ino, (f->name ? f->name : "")));
 
if (f->sibling_prev) {
f->sibling_prev->sibling_next = f->sibling_next;
}
else {
f->parent->children = f->sibling_next;
}
if (f->sibling_next) {
f->sibling_next->sibling_prev = f->sibling_prev;
}
return 0;
}
 
 
/* Find a file with its inode number. */
struct jffs_file *
jffs_find_file(struct jffs_control *c, __u32 ino)
{
struct jffs_file *f;
int i = ino % c->hash_len;
 
D3(printk("jffs_find_file(): ino: %u\n", ino));
 
for (f = c->hash[i]; f && (ino != f->ino); f = f->hash_next);
 
D3(if (f) {
printk("jffs_find_file(): Found file with ino "
"%u. (name: \"%s\")\n",
ino, (f->name ? f->name : ""));
}
else {
printk("jffs_find_file(): Didn't find file "
"with ino %u.\n", ino);
});
 
return f;
}
 
 
/* Find a file in a directory. We are comparing the names. */
struct jffs_file *
jffs_find_child(struct jffs_file *dir, const char *name, int len)
{
struct jffs_file *f;
 
D3(printk("jffs_find_child()\n"));
 
for (f = dir->children; f; f = f->sibling_next) {
if (f->name
&& !strncmp(f->name, name, len)
&& f->name[len] == '\0') {
break;
}
}
 
D3(if (f) {
printk("jffs_find_child(): Found \"%s\".\n", f->name);
}
else {
char *copy = (char *) kmalloc(len + 1, GFP_KERNEL);
if (copy) {
memcpy(copy, name, len);
copy[len] = '\0';
}
printk("jffs_find_child(): Didn't find the file \"%s\".\n",
(copy ? copy : ""));
if (copy) {
kfree(copy);
}
});
 
return f;
}
 
 
#if !defined(JFFS_FLASH_SHORTCUT) || ! JFFS_FLASH_SHORTCUT
 
struct buffer_head *
jffs_get_write_buffer(kdev_t dev, int block)
{
struct buffer_head *bh;
 
D3(printk("jffs_get_write_buffer(): block = %u\n", block));
if (!(bh = bread(dev, block, BLOCK_SIZE))) {
D(printk("jffs_get_write_buffer(): bread() failed. "
"(block == %u)\n", block));
}
 
D3(printk("jffs_get_write_buffer(): bh = 0x%08x\n", bh));
return bh;
}
 
void
jffs_put_write_buffer(struct buffer_head *bh)
{
D3(printk("jffs_put_write_buffer(): bh = 0x%08x\n", bh));
mark_buffer_dirty(bh, 1);
ll_rw_block(WRITE, 1, &bh);
wait_on_buffer(bh);
brelse(bh);
}
 
 
/* Structure used by jffs_write_chunk() and jffs_write_node(). */
struct jffs_write_task
{
struct buffer_head *bh;
__u32 block;
__u32 block_offset;
};
 
 
/* Write a chunk of data to the flash memory. This is a helper routine
to jffs_write_node(). */
int
jffs_write_chunk(struct jffs_control *c, struct jffs_write_task *wt,
const unsigned char *data, __u32 size)
{
int write_len = 0;
int len;
int buf_pos = 0;
 
D3(printk("jffs_write_chunk(): size = %u\n", size));
 
ASSERT(if (!wt) {
printk("jffs_write_chunk(): wt == NULL\n");
return -1;
});
 
if (size == 0) {
return 0;
}
 
if (wt->block_offset == BLOCK_SIZE) {
if (wt->bh) {
jffs_put_write_buffer(wt->bh);
wt->bh = 0;
}
wt->block++;
wt->block_offset = 0;
}
 
if (!wt->bh
&& !(wt->bh = jffs_get_write_buffer(c->sb->s_dev, wt->block))) {
return -1;
}
 
while (write_len < size) {
len = jffs_min(size - write_len,
BLOCK_SIZE - wt->block_offset);
memcpy(&wt->bh->b_data[wt->block_offset],
&data[buf_pos], len);
write_len += len;
wt->block_offset += len;
D3(printk(" write_len: %u\n", write_len));
D3(printk(" len: %u\n", len));
D3(printk(" size: %u\n", size));
if (write_len < size) {
jffs_put_write_buffer(wt->bh);
wt->block++;
wt->block_offset = 0;
wt->bh = 0;
if (!(wt->bh = jffs_get_write_buffer(c->sb->s_dev,
wt->block))) {
return write_len;
}
buf_pos += len;
}
}
 
return write_len;
}
#endif
 
 
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
 
/* Write a raw inode that takes up a certain amount of space in the flash
memory. At the end of the flash device, there is often space that is
impossible to use. At these times we want to mark this space as not
used. In the cases when the amount of space is greater or equal than
a struct jffs_raw_inode, we write a "dummy node" that takes up this
space. The space after the raw inode, if it exists, is left as it is.
Since this space after the raw inode contains JFFS_EMPTY_BITMASK bytes,
we can compute the checksum of it; we don't have to manipulate it any
further.
 
If the space left on the device is less than the size of a struct
jffs_raw_inode, this space is filled with JFFS_DIRTY_BITMASK bytes.
No raw inode is written this time. */
static int
jffs_write_dummy_node(struct jffs_control *c, struct jffs_fm *dirty_fm)
{
struct jffs_fmcontrol *fmc = c->fmc;
int err;
 
D1(printk("jffs_write_dummy_node(): dirty_fm->offset = 0x%08x, "
"dirty_fm->size = %u\n",
dirty_fm->offset, dirty_fm->size));
 
if (dirty_fm->size >= sizeof(struct jffs_raw_inode)) {
struct jffs_raw_inode raw_inode;
memset(&raw_inode, 0, sizeof(struct jffs_raw_inode));
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.dsize = dirty_fm->size
- sizeof(struct jffs_raw_inode);
raw_inode.dchksum = raw_inode.dsize * 0xff;
raw_inode.chksum
= jffs_checksum(&raw_inode, sizeof(struct jffs_raw_inode));
 
if ((err = flash_safe_write(fmc->flash_part,
(unsigned char *)dirty_fm->offset,
(unsigned char *)&raw_inode,
sizeof(struct jffs_raw_inode)))
< 0) {
return err;
}
}
else {
flash_safe_acquire(fmc->flash_part);
flash_memset((unsigned char *) dirty_fm->offset, 0,
dirty_fm->size);
flash_safe_release(fmc->flash_part);
}
 
D3(printk("jffs_write_dummy_node(): Leaving...\n"));
return 0;
}
 
#else
 
 
/* Write a raw inode that takes up a certain amount of space in the flash
memory. */
static int
jffs_write_dummy_node(struct jffs_control *c, struct jffs_fm *dirty_fm)
{
struct jffs_raw_inode raw_inode;
struct buffer_head *bh;
__u32 block = dirty_fm->offset / BLOCK_SIZE;
__u32 block_offset = dirty_fm->offset - block * BLOCK_SIZE;
kdev_t dev = c->sb->s_dev;
 
D1(printk("jffs_write_dummy_node(): dirty_fm->offset = %u, "
"dirty_fm->size = %u\n",
dirty_fm->offset, dirty_fm->size));
 
if (!(bh = jffs_get_write_buffer(dev, block))) {
D(printk("jffs_write_dummy_node(): "
"Failed to read block.\n"));
return -1;
}
 
memset(&raw_inode, 0, sizeof(struct jffs_raw_inode));
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.dsize = dirty_fm->size - sizeof(struct jffs_raw_inode);
raw_inode.chksum = jffs_checksum(&raw_inode,
sizeof(struct jffs_raw_inode))
+ raw_inode.dsize * 0xff;
 
if (BLOCK_SIZE - block_offset < sizeof(struct jffs_raw_inode)) {
__u32 write_size = BLOCK_SIZE - block_offset;
memcpy(&bh->b_data[block_offset], &raw_inode, write_size);
jffs_put_write_buffer(bh);
bh = jffs_get_write_buffer(dev, ++block);
memcpy(bh->b_data, (void *)&raw_inode + write_size,
sizeof(struct jffs_raw_inode) - write_size);
}
else {
memcpy(&bh->b_data[block_offset], &raw_inode,
sizeof(struct jffs_raw_inode));
}
 
jffs_put_write_buffer(bh);
D3(printk("jffs_write_dummy_node(): Leaving...\n"));
return 0;
}
 
#endif
 
 
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
 
/* Write a raw inode, possibly its name and possibly some data. */
int
jffs_write_node(struct jffs_control *c, struct jffs_node *node,
struct jffs_raw_inode *raw_inode,
const char *name, const unsigned char *data)
{
struct jffs_fmcontrol *fmc = c->fmc;
struct jffs_fm *fm;
unsigned char *pos;
int err;
__u32 total_name_size = raw_inode->nsize
+ JFFS_GET_PAD_BYTES(raw_inode->nsize);
__u32 total_data_size = raw_inode->dsize
+ JFFS_GET_PAD_BYTES(raw_inode->dsize);
__u32 total_size = sizeof(struct jffs_raw_inode)
+ total_name_size + total_data_size;
 
/* Fire the retrorockets and shoot the fruiton torpedoes, sir! */
 
ASSERT(if (!node) {
printk("jffs_write_node(): node == NULL\n");
return -EINVAL;
});
ASSERT(if (raw_inode && raw_inode->nsize && !name) {
printk("*** jffs_write_node(): nsize = %u but name == NULL\n",
raw_inode->nsize);
return -EINVAL;
});
 
D1(printk("jffs_write_node(): filename = \"%s\", ino = %u, "
"version = %u, total_size = %u\n",
(name ? name : ""), raw_inode->ino,
raw_inode->version, total_size));
 
/* First try to allocate some flash memory. */
if ((err = jffs_fmalloc(fmc, total_size, node, &fm)) < 0) {
D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) "
"failed!\n", fmc, total_size));
return err;
}
else if (!fm->nodes) {
/* The jffs_fm struct that we got is not good enough.
Make that space dirty. */
if ((err = jffs_write_dummy_node(c, fm)) < 0) {
D(printk("jffs_write_node(): "
"jffs_write_dummy_node(): Failed!\n"));
kfree(fm);
DJM(no_jffs_fm--);
return err;
}
/* Get a new one. */
if ((err = jffs_fmalloc(fmc, total_size, node, &fm)) < 0) {
D(printk("jffs_write_node(): Second "
"jffs_fmalloc(0x%p, %u) failed!\n",
fmc, total_size));
return err;
}
}
node->fm = fm;
 
ASSERT(if (fm->nodes == 0) {
printk(KERN_ERR "jffs_write_node(): fm->nodes == 0\n");
});
 
pos = (unsigned char *) node->fm->offset;
 
/* Compute the checksum for the data and name chunks. */
raw_inode->dchksum = jffs_checksum(data, raw_inode->dsize);
raw_inode->nchksum = jffs_checksum(name, raw_inode->nsize);
 
/* The checksum is calculated without the chksum and accurate
fields so set them to zero first. */
raw_inode->accurate = 0;
raw_inode->chksum = 0;
raw_inode->chksum = jffs_checksum(raw_inode,
sizeof(struct jffs_raw_inode));
raw_inode->accurate = 0xff;
 
D3(printk("jffs_write_node(): About to write this raw inode to the "
"flash at pos 0x%p:\n", pos));
D3(jffs_print_raw_inode(raw_inode));
 
/* Step 1: Write the raw jffs inode to the flash. */
if ((err = flash_safe_write(fmc->flash_part, pos,
(unsigned char *)raw_inode,
sizeof(struct jffs_raw_inode))) < 0) {
jffs_fmfree_partly(fmc, fm,
total_name_size + total_data_size);
D1(printk("jffs_write_node(): Failed to write raw_inode.\n"));
return err;
}
pos += sizeof(struct jffs_raw_inode);
 
/* Step 2: Write the name, if there is any. */
if (raw_inode->nsize) {
if ((err = flash_safe_write(fmc->flash_part, pos,
(unsigned char *)name,
raw_inode->nsize)) < 0) {
jffs_fmfree_partly(fmc, fm, total_data_size);
D1(printk("jffs_write_node(): Failed to write "
"the name.\n"));
return err;
}
pos += total_name_size;
}
 
/* Step 3: Append the actual data, if any. */
if (raw_inode->dsize) {
if ((err = flash_safe_write(fmc->flash_part, pos, data,
raw_inode->dsize)) < 0) {
jffs_fmfree_partly(fmc, fm, 0);
D1(printk("jffs_write_node(): Failed to write "
"the data.\n"));
return err;
}
}
 
D3(printk("jffs_write_node(): Leaving...\n"));
return raw_inode->dsize;
} /* jffs_write_node() */
 
#else
 
/* Write a raw inode, possibly its name and possibly some data. */
int
jffs_write_node(struct jffs_control *c, struct jffs_node *node,
struct jffs_raw_inode *raw_inode,
const char *name, const unsigned char *buf)
{
struct jffs_write_task wt;
struct jffs_fm *fm;
int err;
__u32 total_size = sizeof(struct jffs_raw_inode)
+ raw_inode->nsize
+ JFFS_GET_PAD_BYTES(raw_inode->nsize)
+ raw_inode->dsize
+ JFFS_GET_PAD_BYTES(raw_inode->dsize);
 
/* fire the retrorockets and shoot the fruiton torpedoes, sir! */
 
D1(printk("jffs_write_node(): ino: %u\n", raw_inode->ino));
 
ASSERT(if (!node) {
printk("jffs_write_node(): node == NULL\n");
return -1;
});
 
/* First try to allocate some flash memory. */
if ((err = jffs_fmalloc(c->fmc, total_size, node, &fm)) < 0 ) {
D(printk("jffs_write_node(): jffs_fmalloc(0x%08x, %u) "
"failed!\n", c->fmc, total_size));
return err;
}
else if (!fm->nodes) {
/* The jffs_fm struct that we got is not good enough. */
if (jffs_write_dummy_node(c, fm) < 0) {
D(printk("jffs_write_node(): "
"jffs_write_dummy_node(): Failed!\n"));
kfree(fm);
DJM(no_jffs_fm--);
return -1;
}
/* Get a new one. */
if ((err = jffs_fmalloc(c->fmc, total_size, node)) < 0) {
D(printk("jffs_write_node(): Second "
"jffs_fmalloc(0x%08x, %u) failed!\n",
c->fmc, total_size));
return err;
}
}
node->fm = fm;
 
ASSERT(if (fm->nodes == 0) {
printk(KERN_ERR "jffs_write_node(): fm->nodes == 0\n");
});
 
wt.bh = 0;
wt.block = node->fm->offset / BLOCK_SIZE;
wt.block_offset = node->fm->offset % BLOCK_SIZE;
 
/* Calculate the checksum for this jffs_raw_node and its name
and data. The checksum is performed without the chksum and
accurate fields so set them to zero first. */
raw_inode->accurate = 0;
raw_inode->chksum = 0;
raw_inode->chksum = jffs_checksum(raw_inode,
sizeof(struct jffs_raw_inode));
raw_inode->accurate = 0xff;
if (raw_inode->nsize) {
raw_inode->chksum += jffs_checksum(name, raw_inode->nsize);
}
if (raw_inode->dsize) {
raw_inode->chksum += jffs_checksum((void *)buf,
raw_inode->dsize);
}
 
/* Step 1: Write the raw jffs inode to the flash. */
if (jffs_write_chunk(c, &wt, (unsigned char *)raw_inode,
sizeof(struct jffs_raw_inode))
< sizeof(struct jffs_raw_inode)) {
return -1;
}
 
/* Step 2: Write the name, if there is any. */
if (raw_inode->nsize && name) {
if (jffs_write_chunk(c, &wt, name, raw_inode->nsize)
< raw_inode->nsize) {
return -1;
}
/* XXX: Hack! (I'm so lazy.) */
if (JFFS_GET_PAD_BYTES(wt.block_offset)) {
__u32 ff = 0xffffffff
jffs_write_chunk(c, &wt, (unsigned char *)&ff,
JFFS_GET_PAD_BYTES(wt.block_offset));
}
}
 
/* Step 3: Append the actual data, if any. */
if (raw_inode->dsize && buf) {
if (jffs_write_chunk(c, &wt, buf, raw_inode->dsize)
< raw_inode->dsize) {
return -1;
}
}
 
if (wt.bh) {
D3(printk("jffs_write_node(): wt.bh != NULL, Final write.\n"));
jffs_put_write_buffer(wt.bh);
}
 
D3(printk("jffs_write_node(): Leaving...\n"));
return raw_inode->dsize;
}
 
#endif
 
 
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
 
/* Read data from the node and write it to the buffer. 'node_offset'
is how much we have read from this particular node before and which
shouldn't be read again. 'max_size' is how much space there is in
the buffer. */
static int
jffs_get_node_data(struct jffs_file *f, struct jffs_node *node, char *buf,
__u32 node_offset, __u32 max_size, kdev_t dev)
{
struct jffs_fmcontrol *fmc = f->c->fmc;
__u32 pos = node->fm->offset + node->fm_offset + node_offset;
__u32 avail = node->data_size - node_offset;
__u32 r;
 
D2(printk(" jffs_get_node_data(): file: \"%s\", ino: %u, "
"version: %u, node_offset: %u\n",
f->name, node->ino, node->version, node_offset));
 
r = jffs_min(avail, max_size);
flash_safe_read(fmc->flash_part, (unsigned char *) pos,
(unsigned char *)buf, r);
 
D3(printk(" jffs_get_node_data(): Read %u byte%s.\n",
r, (r == 1 ? "" : "s")));
 
return r;
}
 
#else
 
/* Read data from the node and write it to the buffer. 'node_offset'
is how much we have read from this particular node before and which
shouldn't be read again. 'max_size' is how much space there is in
the buffer. */
static int
jffs_get_node_data(struct jffs_file *f, struct jffs_node *node,
char *buf, __u32 node_offset,
__u32 max_size, kdev_t dev)
{
struct buffer_head *bh;
__u32 first = node->fm->offset + node->fm_offset + node_offset;
__u32 block = first / BLOCK_SIZE;
__u32 block_offset = first - block * BLOCK_SIZE;
__u32 read_len;
__u32 total_read = 0;
__u32 avail = node->data_size - node_offset;
 
D2(printk("jffs_get_node_data(): file: \"%s\", ino: %lu, "
"version: %lu, node_offset: %lu\n",
f->name, node->ino, node->version, node_offset));
 
while ((total_read < max_size) && (avail > 0)) {
read_len = jffs_min(avail, BLOCK_SIZE - block_offset);
read_len = jffs_min(read_len, max_size - total_read);
if (!(bh = bread(dev, block, BLOCK_SIZE))) {
D(printk("jffs_get_node_data(): bread() failed. "
"(block == %u)\n", block));
return -EIO;
}
memcpy(&buf[total_read], &bh->b_data[block_offset], read_len);
brelse(bh);
block++;
avail -= read_len;
total_read += read_len;
block_offset = 0;
}
 
return total_read;
}
 
#endif
 
 
/* Read data from the file's nodes. Write the data to the buffer
'buf'. 'read_offset' tells how much data we should skip. */
int
jffs_read_data(struct jffs_file *f, char *buf, __u32 read_offset, __u32 size)
{
struct jffs_node *node;
__u32 read_data = 0; /* Total amount of read data. */
__u32 node_offset = 0;
__u32 pos = 0; /* Number of bytes traversed. */
 
D1(printk("jffs_read_data(): file = \"%s\", read_offset = %d, "
"size = %u\n",
(f->name ? f->name : ""), read_offset, size));
 
if (read_offset >= f->size) {
D(printk(" f->size: %d\n", f->size));
return 0;
}
 
/* First find the node to read data from. */
node = f->range_head;
while (pos <= read_offset) {
node_offset = read_offset - pos;
if (node_offset >= node->data_size) {
pos += node->data_size;
node = node->range_next;
}
else {
break;
}
}
 
/* "Cats are living proof that not everything in nature
has to be useful."
- Garrison Keilor ('97) */
 
/* Fill the buffer. */
while (node && (read_data < size)) {
int r;
if (!node->fm) {
/* This node does not refer to real data. */
r = jffs_min(size - read_data,
node->data_size - node_offset);
memset(&buf[read_data], 0, r);
}
else if ((r = jffs_get_node_data(f, node, &buf[read_data],
node_offset,
size - read_data,
f->c->sb->s_dev)) < 0) {
return r;
}
read_data += r;
node_offset = 0;
node = node->range_next;
}
D3(printk(" jffs_read_data(): Read %u bytes.\n", read_data));
return read_data;
}
 
 
/* Used for traversing all nodes in the hash table. */
int
jffs_foreach_file(struct jffs_control *c, int (*func)(struct jffs_file *))
{
struct jffs_file *f;
struct jffs_file *next_f;
int pos;
int r;
int result = 0;
 
for (pos = 0; pos < c->hash_len; pos++) {
for (f = c->hash[pos]; f; f = next_f) {
/* We need a reference to the next file in the
list because `func' might remove the current
file `f'. */
next_f = f->hash_next;
if ((r = func(f)) < 0) {
return r;
}
result += r;
}
}
 
return result;
}
 
 
/* Free all memory associated with a file. */
int
jffs_free_node_list(struct jffs_file *f)
{
struct jffs_node *node;
struct jffs_node *p;
 
D3(printk("jffs_free_node_list(): f #%u, \"%s\"\n",
f->ino, (f->name ? f->name : "")));
node = f->version_head;
while (node) {
p = node;
node = node->version_next;
kfree(p);
DJM(no_jffs_node--);
}
return 0;
}
 
 
/* See if a file is deleted. If so, mark that file's nodes as obsolete. */
int
jffs_possibly_delete_file(struct jffs_file *f)
{
struct jffs_node *n;
 
D3(printk("jffs_possibly_delete_file(): ino: %u\n",
f->ino));
 
ASSERT(if (!f) {
printk(KERN_ERR "jffs_possibly_delete_file(): f == NULL\n");
return -1;
});
 
if (f->deleted) {
/* First try to remove all older versions. */
for (n = f->version_head; n; n = n->version_next) {
if (!n->fm) {
continue;
}
if (jffs_fmfree(f->c->fmc, n->fm, n) < 0) {
break;
}
}
/* Unlink the file from the filesystem. */
jffs_unlink_file_from_tree(f);
jffs_unlink_file_from_hash(f);
jffs_free_node_list(f);
if (f->name) {
kfree(f->name);
DJM(no_name--);
}
kfree(f);
DJM(no_jffs_file--);
}
return 0;
}
 
 
/* Used in conjunction with jffs_foreach_file() to count the number
of files in the file system. */
int
jffs_file_count(struct jffs_file *f)
{
return 1;
}
 
 
/* Build up a file's range list from scratch by going through the
version list. */
int
jffs_build_file(struct jffs_file *f)
{
struct jffs_node *n;
 
D3(printk("jffs_build_file(): ino: %u, name: \"%s\"\n",
f->ino, (f->name ? f->name : "")));
 
for (n = f->version_head; n; n = n->version_next) {
jffs_update_file(f, n);
}
return 0;
}
 
 
/* Remove an amount of data from a file. If this amount of data is
zero, that could mean that a node should be split in two parts.
We remove or change the appropriate nodes in the lists.
 
Starting offset of area to be removed is node->data_offset,
and the length of the area is in node->removed_size. */
static void
jffs_delete_data(struct jffs_file *f, struct jffs_node *node)
{
struct jffs_node *n;
__u32 offset = node->data_offset;
__u32 remove_size = node->removed_size;
 
D3(printk("jffs_delete_data(): offset = %u, remove_size = %u\n",
offset, remove_size));
 
if (remove_size == 0
&& f->range_tail
&& f->range_tail->data_offset + f->range_tail->data_size
== offset) {
/* A simple append; nothing to remove or no node to split. */
return;
}
 
/* Find the node where we should begin the removal. */
for (n = f->range_head; n; n = n->range_next) {
if (n->data_offset + n->data_size > offset) {
break;
}
}
if (!n) {
/* If there's no data in the file there's no data to
remove either. */
return;
}
 
if (n->data_offset > offset) {
/* XXX: Not implemented yet. */
printk(KERN_WARNING "JFFS: An unexpected situation "
"occurred in jffs_delete_data.\n");
}
else if (n->data_offset < offset) {
/* See if the node has to be split into two parts. */
if (n->data_offset + n->data_size < offset + remove_size) {
/* Do the split. */
struct jffs_node *new_node;
D3(printk("jffs_delete_data(): Split node with "
"version number %u.\n", n->version));
 
if (!(new_node = (struct jffs_node *)
kmalloc(sizeof(struct jffs_node),
GFP_KERNEL))) {
D(printk("jffs_delete_data(): -ENOMEM\n"));
return;
}
DJM(no_jffs_node++);
 
new_node->ino = n->ino;
new_node->version = n->version;
new_node->data_offset = offset;
new_node->data_size = n->data_size
- (remove_size
+ (offset - n->data_offset));
new_node->fm_offset = n->fm_offset + n->data_size
+ remove_size;
new_node->name_size = n->name_size;
new_node->fm = n->fm;
new_node->version_prev = n;
new_node->version_next = n->version_next;
if (new_node->version_next) {
new_node->version_next->version_prev
= new_node;
}
else {
f->version_tail = new_node;
}
n->version_next = new_node;
new_node->range_prev = n;
new_node->range_next = n->range_next;
if (new_node->range_next) {
new_node->range_next->range_prev = new_node;
}
else {
f->range_tail = new_node;
}
/* A very interesting can of worms. */
n->range_next = new_node;
n->data_size = offset - n->data_offset;
jffs_add_node(new_node);
n = new_node->range_next;
remove_size = 0;
}
else {
/* No. No need to split the node. Just remove
the end of the node. */
int r = jffs_min(n->data_offset + n->data_size
- offset, remove_size);
n->data_size -= r;
remove_size -= r;
n = n->range_next;
}
}
 
/* Remove as many nodes as necessary. */
while (n && remove_size) {
if (n->data_size <= remove_size) {
struct jffs_node *p = n;
remove_size -= n->data_size;
n = n->range_next;
D3(printk("jffs_delete_data(): Removing node: "
"ino: %u, version: %u\n",
p->ino, p->version));
if (p->fm) {
jffs_fmfree(f->c->fmc, p->fm, p);
}
jffs_unlink_node_from_range_list(f, p);
jffs_unlink_node_from_version_list(f, p);
kfree(p);
DJM(no_jffs_node--);
}
else {
n->data_size -= remove_size;
n->fm_offset += remove_size;
n->data_offset -= (node->removed_size - remove_size);
n = n->range_next;
break;
}
}
 
/* Adjust the following nodes' information about offsets etc. */
while (n && node->removed_size) {
n->data_offset -= node->removed_size;
n = n->range_next;
}
 
f->size -= node->removed_size;
D3(printk("jffs_delete_data(): f->size = %d\n", f->size));
} /* jffs_delete_data() */
 
 
/* Insert some data into a file. Prior to the call to this function,
jffs_delete_data() should be called. */
static void
jffs_insert_data(struct jffs_file *f, struct jffs_node *node)
{
D3(printk("jffs_insert_data(): node->data_offset = %u, "
"node->data_size = %u, f->size = %u\n",
node->data_offset, node->data_size, f->size));
 
/* Find the position where we should insert data. */
 
if (node->data_offset == f->size) {
/* A simple append. This is the most common operation. */
node->range_next = 0;
node->range_prev = f->range_tail;
if (node->range_prev) {
node->range_prev->range_next = node;
}
f->range_tail = node;
f->size += node->data_size;
if (!f->range_head) {
f->range_head = node;
}
}
else if (node->data_offset < f->size) {
/* Trying to insert data into the middle of the file. This
means no problem because jffs_delete_data() has already
prepared the range list for us. */
struct jffs_node *n;
 
/* Find the correct place for the insertion and then insert
the node. */
for (n = f->range_head; n; n = n->range_next) {
D1(printk("Cool stuff's happening!\n"));
 
if (n->data_offset == node->data_offset) {
node->range_prev = n->range_prev;
if (node->range_prev) {
node->range_prev->range_next = node;
}
else {
f->range_head = node;
}
node->range_next = n;
n->range_prev = node;
break;
}
ASSERT(else if (n->data_offset + n->data_size >
node->data_offset) {
printk(KERN_ERR "jffs_insert_data(): "
"Couldn't find a place to insert "
"the data!\n");
return;
});
}
 
/* Adjust later nodes' offsets etc. */
n = node->range_next;
while (n) {
n->data_offset += node->data_size;
n = n->range_next;
}
f->size += node->data_size;
}
else if (node->data_offset > f->size) {
/* Not implemented yet. */
#if 0
/* Below is some example code for future use if we decide
to implement it. */
/* This is code that isn't supported by VFS. So there aren't
really any reasons to implement it yet. */
if (!f->range_head) {
if (node->data_offset > f->size) {
if (!(nn = jffs_alloc_node())) {
D(printk("jffs_insert_data(): "
"Allocation failed.\n"));
return;
}
nn->version = JFFS_MAGIC_BITMASK;
nn->data_offset = 0;
nn->data_size = node->data_offset;
nn->removed_size = 0;
nn->fm_offset = 0;
nn->name_size = 0;
nn->fm = 0; /* This is a virtual data holder. */
nn->version_prev = 0;
nn->version_next = 0;
nn->range_prev = 0;
nn->range_next = 0;
nh->range_head = nn;
nh->range_tail = nn;
}
}
#endif
}
 
D3(printk("jffs_insert_data(): f->size = %d\n", f->size));
}
 
 
/* A new node (with data) has been added to the file and now the range
list has to be modified. */
static int
jffs_update_file(struct jffs_file *f, struct jffs_node *node)
{
D3(printk("jffs_update_file(): ino: %u, version: %u\n",
f->ino, node->version));
 
if (node->data_size == 0) {
if (node->removed_size == 0) {
/* data_offset == X */
/* data_size == 0 */
/* remove_size == 0 */
}
else {
/* data_offset == X */
/* data_size == 0 */
/* remove_size != 0 */
jffs_delete_data(f, node);
}
}
else {
/* data_offset == X */
/* data_size != 0 */
/* remove_size == Y */
jffs_delete_data(f, node);
jffs_insert_data(f, node);
}
return 0;
}
 
 
/* Print the contents of a node. */
void
jffs_print_node(struct jffs_node *n)
{
D(printk("jffs_node: 0x%p\n", n));
D(printk("{\n"));
D(printk(" 0x%08x, /* version */\n", n->version));
D(printk(" 0x%08x, /* data_offset */\n", n->data_offset));
D(printk(" 0x%08x, /* data_size */\n", n->data_size));
D(printk(" 0x%08x, /* removed_size */\n", n->removed_size));
D(printk(" 0x%08x, /* fm_offset */\n", n->fm_offset));
D(printk(" 0x%02x, /* name_size */\n", n->name_size));
D(printk(" 0x%p, /* fm, fm->offset: %u */\n",
n->fm, n->fm->offset));
D(printk(" 0x%p, /* version_prev */\n", n->version_prev));
D(printk(" 0x%p, /* version_next */\n", n->version_next));
D(printk(" 0x%p, /* range_prev */\n", n->range_prev));
D(printk(" 0x%p, /* range_next */\n", n->range_next));
D(printk("}\n"));
}
 
 
/* Print the contents of a raw inode. */
void
jffs_print_raw_inode(struct jffs_raw_inode *raw_inode)
{
D(printk("jffs_raw_inode: inode number: %u\n", raw_inode->ino));
D(printk("{\n"));
D(printk(" 0x%08x, /* magic */\n", raw_inode->magic));
D(printk(" 0x%08x, /* ino */\n", raw_inode->ino));
D(printk(" 0x%08x, /* pino */\n", raw_inode->pino));
D(printk(" 0x%08x, /* version */\n", raw_inode->version));
D(printk(" 0x%08x, /* mode */\n", raw_inode->mode));
D(printk(" 0x%04x, /* uid */\n", raw_inode->uid));
D(printk(" 0x%04x, /* gid */\n", raw_inode->gid));
D(printk(" 0x%08x, /* atime */\n", raw_inode->atime));
D(printk(" 0x%08x, /* mtime */\n", raw_inode->mtime));
D(printk(" 0x%08x, /* ctime */\n", raw_inode->ctime));
D(printk(" 0x%08x, /* offset */\n", raw_inode->offset));
D(printk(" 0x%08x, /* dsize */\n", raw_inode->dsize));
D(printk(" 0x%08x, /* rsize */\n", raw_inode->rsize));
D(printk(" 0x%02x, /* nsize */\n", raw_inode->nsize));
D(printk(" 0x%02x, /* nlink */\n", raw_inode->nlink));
D(printk(" 0x%02x, /* spare */\n",
raw_inode->spare));
D(printk(" %u, /* rename */\n",
raw_inode->rename));
D(printk(" %u, /* deleted */\n",
raw_inode->deleted));
D(printk(" 0x%02x, /* accurate */\n",
raw_inode->accurate));
D(printk(" 0x%08x, /* dchksum */\n", raw_inode->dchksum));
D(printk(" 0x%04x, /* nchksum */\n", raw_inode->nchksum));
D(printk(" 0x%04x, /* chksum */\n", raw_inode->chksum));
D(printk("}\n"));
}
 
 
/* Print the contents of a file. */
int
jffs_print_file(struct jffs_file *f)
{
D(int i);
D(printk("jffs_file: 0x%p\n", f));
D(printk("{\n"));
D(printk(" 0x%08x, /* ino */\n", f->ino));
D(printk(" 0x%08x, /* pino */\n", f->pino));
D(printk(" 0x%08x, /* mode */\n", f->mode));
D(printk(" 0x%04x, /* uid */\n", f->uid));
D(printk(" 0x%04x, /* gid */\n", f->gid));
D(printk(" 0x%08x, /* atime */\n", f->atime));
D(printk(" 0x%08x, /* mtime */\n", f->mtime));
D(printk(" 0x%08x, /* ctime */\n", f->ctime));
D(printk(" 0x%02x, /* nsize */\n", f->nsize));
D(printk(" 0x%02x, /* nlink */\n", f->nlink));
D(printk(" 0x%02x, /* deleted */\n", f->deleted));
D(printk(" \"%s\", ", (f->name ? f->name : "")));
D(for (i = strlen(f->name ? f->name : ""); i < 8; ++i) {
printk(" ");
});
D(printk("/* name */\n"));
D(printk(" 0x%08x, /* size */\n", f->size));
D(printk(" 0x%08x, /* highest_version */\n",
f->highest_version));
D(printk(" 0x%p, /* c */\n", f->c));
D(printk(" 0x%p, /* parent */\n", f->parent));
D(printk(" 0x%p, /* children */\n", f->children));
D(printk(" 0x%p, /* sibling_prev */\n", f->sibling_prev));
D(printk(" 0x%p, /* sibling_next */\n", f->sibling_next));
D(printk(" 0x%p, /* hash_prev */\n", f->hash_prev));
D(printk(" 0x%p, /* hash_next */\n", f->hash_next));
D(printk(" 0x%p, /* range_head */\n", f->range_head));
D(printk(" 0x%p, /* range_tail */\n", f->range_tail));
D(printk(" 0x%p, /* version_head */\n", f->version_head));
D(printk(" 0x%p, /* version_tail */\n", f->version_tail));
D(printk("}\n"));
return 0;
}
 
 
void
jffs_print_hash_table(struct jffs_control *c)
{
struct jffs_file *f;
int i;
 
printk("JFFS: Dumping the file system's hash table...\n");
for (i = 0; i < c->hash_len; i++) {
for (f = c->hash[i]; f; f = f->hash_next) {
printk("*** c->hash[%u]: \"%s\" "
"(ino: %u, pino: %u)\n",
i, (f->name ? f->name : ""),
f->ino, f->pino);
}
}
}
 
 
void
jffs_print_tree(struct jffs_file *first_file, int indent)
{
struct jffs_file *f;
char *space;
 
if (!first_file) {
return;
}
 
if (!(space = (char *) kmalloc(indent + 1, GFP_KERNEL))) {
printk("jffs_print_tree(): Out of memory!\n");
return;
}
 
memset(space, ' ', indent);
space[indent] = '\0';
 
for (f = first_file; f; f = f->sibling_next) {
printk("%s%s (ino: %u, highest_version: %u, size: %u)\n",
space, (f->name ? f->name : "/"),
f->ino, f->highest_version, f->size);
if (S_ISDIR(f->mode)) {
jffs_print_tree(f->children, indent + 2);
}
}
 
kfree(space);
}
 
 
#if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG
void
jffs_print_memory_allocation_statistics(void)
{
static long printout = 0;
printk("________ Memory printout #%ld ________\n", ++printout);
printk("no_jffs_file = %ld\n", no_jffs_file);
printk("no_jffs_node = %ld\n", no_jffs_node);
printk("no_jffs_control = %ld\n", no_jffs_control);
printk("no_jffs_raw_inode = %ld\n", no_jffs_raw_inode);
printk("no_jffs_node_ref = %ld\n", no_jffs_node_ref);
printk("no_jffs_fm = %ld\n", no_jffs_fm);
printk("no_jffs_fmcontrol = %ld\n", no_jffs_fmcontrol);
printk("no_hash = %ld\n", no_hash);
printk("no_name = %ld\n", no_name);
printk("\n");
}
#endif
 
 
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
 
/* Rewrite `size' bytes, and begin at `node'. */
int
jffs_rewrite_data(struct jffs_file *f, struct jffs_node *node, int size)
{
struct jffs_control *c = f->c;
struct jffs_fmcontrol *fmc = c->fmc;
struct jffs_raw_inode raw_inode;
struct jffs_node *new_node;
struct jffs_fm *fm;
unsigned char *pos;
unsigned char *pos_dchksum;
__u32 total_name_size;
__u32 total_data_size;
__u32 total_size;
int err;
 
D1(printk("***jffs_rewrite_data(): node: %u, name: \"%s\", size: %u\n",
f->ino, (f->name ? f->name : ""), size));
 
/* Create and initialize the new node. */
if (!(new_node = (struct jffs_node *)
kmalloc(sizeof(struct jffs_node), GFP_KERNEL))) {
D(printk("jffs_rewrite_data(): "
"Failed to allocate node.\n"));
return -ENOMEM;
}
DJM(no_jffs_node++);
new_node->data_offset = node->data_offset;
new_node->data_size = size;
new_node->removed_size = size;
total_name_size = f->nsize + JFFS_GET_PAD_BYTES(f->nsize);
total_data_size = size + JFFS_GET_PAD_BYTES(size);
total_size = sizeof(struct jffs_raw_inode)
+ total_name_size + total_data_size;
new_node->fm_offset = sizeof(struct jffs_raw_inode)
+ total_name_size;
 
if ((err = jffs_fmalloc(fmc, total_size, new_node, &fm)) < 0) {
D(printk("jffs_rewrite_data(): Failed to allocate fm.\n"));
kfree(new_node);
DJM(no_jffs_node--);
return err;
}
else if (!fm->nodes) {
/* The jffs_fm struct that we got is not good enough. */
if ((err = jffs_write_dummy_node(c, fm)) < 0) {
D(printk("jffs_rewrite_data(): "
"jffs_write_dummy_node() Failed!\n"));
kfree(fm);
DJM(no_jffs_fm--);
return err;
}
/* Get a new one. */
if ((err = jffs_fmalloc(fmc, total_size, node, &fm)) < 0) {
D(printk("jffs_rewrite_data(): Second "
"jffs_fmalloc(0x%p, %u) failed!\n",
fmc, total_size));
return err;
}
}
new_node->fm = fm;
 
ASSERT(if (new_node->fm->nodes == 0) {
printk(KERN_ERR "jffs_rewrite_data(): "
"new_node->fm->nodes == 0\n");
});
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = f->ino;
raw_inode.pino = f->pino;
raw_inode.version = f->highest_version + 1;
raw_inode.mode = f->mode;
raw_inode.uid = f->uid;
raw_inode.gid = f->gid;
raw_inode.atime = f->atime;
raw_inode.mtime = f->mtime;
raw_inode.ctime = f->ctime;
raw_inode.offset = node->data_offset;
raw_inode.dsize = size;
raw_inode.rsize = size;
raw_inode.nsize = f->nsize;
raw_inode.nlink = f->nlink;
raw_inode.spare = 0;
raw_inode.rename = 0;
raw_inode.deleted = 0;
raw_inode.accurate = 0xff;
raw_inode.dchksum = 0;
raw_inode.nchksum = 0;
 
pos = (unsigned char *) new_node->fm->offset;
pos_dchksum = &pos[JFFS_RAW_INODE_DCHKSUM_OFFSET];
 
D3(printk("jffs_rewrite_data(): Writing this raw inode "
"to pos 0x%p.\n", pos));
D3(jffs_print_raw_inode(&raw_inode));
 
if ((err = flash_safe_write(fmc->flash_part, pos,
(unsigned char *) &raw_inode,
sizeof(struct jffs_raw_inode)
- sizeof(__u32)
- sizeof(__u16) - sizeof(__u16))) < 0) {
D(printk(KERN_WARNING "JFFS: Write error during "
"rewrite. (raw inode)\n"));
jffs_fmfree_partly(fmc, fm,
total_name_size + total_data_size);
return err;
}
pos += sizeof(struct jffs_raw_inode);
 
/* Write the name to the flash memory. */
if (f->nsize) {
D3(printk("jffs_rewrite_data(): Writing name \"%s\" to "
"pos 0x%p.\n", f->name, pos));
if ((err = flash_safe_write(fmc->flash_part, pos,
(unsigned char *)f->name,
f->nsize)) < 0) {
D(printk(KERN_WARNING "JFFS: Write error during "
"rewrite. (name)\n"));
jffs_fmfree_partly(fmc, fm, total_data_size);
return err;
}
pos += total_name_size;
raw_inode.nchksum = jffs_checksum(f->name, f->nsize);
}
 
/* Write the data. */
if (size) {
int r;
unsigned char *page;
__u32 offset = node->data_offset;
 
if (!(page = (unsigned char *)__get_free_page(GFP_KERNEL))) {
jffs_fmfree_partly(fmc, fm, 0);
return -1;
}
 
while (size) {
__u32 s = jffs_min(size, PAGE_SIZE);
if ((r = jffs_read_data(f, (char *)page,
offset, s)) < s) {
D(printk("jffs_rewrite_data(): "
"jffs_read_data() "
"failed! (r = %d)\n", r));
jffs_fmfree_partly(fmc, fm, 0);
return -1;
}
if ((err = flash_safe_write(fmc->flash_part,
pos, page, r)) < 0) {
D(printk(KERN_WARNING "JFFS: Write error "
"during rewrite. (data)\n"));
free_page((__u32)page);
jffs_fmfree_partly(fmc, fm, 0);
return err;
}
pos += r;
size -= r;
offset += r;
raw_inode.dchksum += jffs_checksum(page, r);
}
 
free_page((__u32)page);
}
 
raw_inode.accurate = 0;
raw_inode.chksum = jffs_checksum(&raw_inode,
sizeof(struct jffs_raw_inode)
- sizeof(__u16));
 
/* Add the checksum. */
if ((err
= flash_safe_write(fmc->flash_part, pos_dchksum,
&((unsigned char *)
&raw_inode)[JFFS_RAW_INODE_DCHKSUM_OFFSET],
sizeof(__u32) + sizeof(__u16)
+ sizeof(__u16))) < 0) {
D(printk(KERN_WARNING "JFFS: Write error during "
"rewrite. (checksum)\n"));
jffs_fmfree_partly(fmc, fm, 0);
return err;
}
 
/* Now make the file system aware of the newly written node. */
jffs_insert_node(c, f, &raw_inode, f->name, new_node);
 
D3(printk("jffs_rewrite_data(): Leaving...\n"));
return 0;
} /* jffs_rewrite_data() */
 
#else
 
/* Rewrite `size' bytes, and begin at `node'. */
int
jffs_rewrite_data(struct jffs_file *f, struct jffs_node *node, int size)
{
struct jffs_raw_inode raw_inode;
struct jffs_node *new_node;
struct jffs_fm *fm;
struct buffer_head *bh;
__u32 chksum;
__u32 write_size;
__u32 block_offset;
__u32 block;
__u32 copied_data = 0;
__u32 pos_chksum;
__u32 block_chksum;
__u32 total_size;
kdev_t dev = f->c->sb->s_dev;
int err;
 
D(printk("jffs_rewrite_data(): node: %u, name: \"%s\", size: %u\n",
f->ino, (f->name ? f->name : ""), size));
 
/* Create and initialize the new node. */
if (!(new_node = (struct jffs_node *)
kmalloc(sizeof(struct jffs_node), GFP_KERNEL))) {
D(printk("jffs_rewrite_data(): "
"Failed to allocate node.\n"));
return -ENOMEM;
}
DJM(no_jffs_node++);
new_node->data_offset = node->data_offset;
new_node->data_size = size;
new_node->removed_size = size;
total_size = sizeof(struct jffs_raw_inode)
+ f->nsize + JFFS_GET_PAD_BYTES(f->nsize)
+ size + JFFS_GET_PAD_BYTES(size);
new_node->fm_offset = sizeof(struct jffs_raw_inode)
+ f->nsize + JFFS_GET_PAD_BYTES(f->nsize);
 
if ((err = jffs_fmalloc(f->c->fmc, total_size, new_node, &fm)) < 0) {
D(printk("jffs_rewrite_data(): Failed to allocate fm.\n"));
kfree(new_node);
DJM(no_jffs_node--);
return err;
}
else if (!fm->nodes) {
/* The jffs_fm struct that we got is not good enough. */
if ((err = jffs_write_dummy_node(f->c, fm)) < 0) {
D(printk("jffs_rewrite_data(): "
"jffs_write_dummy_node() Failed!\n"));
kfree(fm);
DJM(no_jffs_fm--);
return err;
}
/* Get a new one. */
if ((err = jffs_fmalloc(f->c->fmc, total_size, node, &fm)) < 0) {
D(printk("jffs_rewrite_data(): Second "
"jffs_fmalloc(0x%08x, %u) failed!\n",
f->c->fmc, total_size));
return err;
}
}
new_node->fm = fm;
 
ASSERT(if (new_node->fm->nodes == 0) {
printk(KERN_ERR "jffs_rewrite_data(): "
"new_node->fm->nodes == 0\n");
});
 
/* Initialize the raw inode. */
raw_inode.magic = JFFS_MAGIC_BITMASK;
raw_inode.ino = f->ino;
raw_inode.pino = f->pino;
raw_inode.version = f->highest_version + 1;
raw_inode.mode = f->mode;
raw_inode.uid = f->uid;
raw_inode.gid = f->gid;
raw_inode.atime = f->atime;
raw_inode.mtime = f->mtime;
raw_inode.ctime = f->ctime;
raw_inode.offset = node->data_offset;
raw_inode.dsize = size;
raw_inode.rsize = size;
raw_inode.nsize = f->nsize;
raw_inode.nlink = f->nlink;
raw_inode.deleted = 0;
raw_inode.accurate = 0;
raw_inode.chksum = 0;
chksum = jffs_checksum(&raw_inode, sizeof(struct jffs_raw_inode));
raw_inode.accurate = 0xff;
raw_inode.chksum = JFFS_EMPTY_BITMASK;
 
/* Retrieve the first block to which the new node is going
to be written. */
block = new_node->fm->offset / BLOCK_SIZE;
block_offset = new_node->fm->offset - block * BLOCK_SIZE;
 
D(printk("jffs_rewrite_data(): Writing to dev = 0x%04x, block = %u, "
"block_offset = %u, block * BLOCK_SIZE + offset = %u\n",
dev, block, block_offset, new_node->fm->offset));
 
if (!(bh = jffs_get_write_buffer(dev, block))) {
D(printk("jffs_rewrite_data(): Failed to read block.\n"));
kfree(new_node->fm);
DJM(no_jffs_fm--);
kfree(new_node);
DJM(no_jffs_node--);
return -1;
}
 
/* Write the raw_inode to the flash. */
if (BLOCK_SIZE - block_offset < sizeof(struct jffs_raw_inode)) {
/* Too little space left on this block. */
write_size = BLOCK_SIZE - block_offset;
memcpy(&bh->b_data[block_offset], &raw_inode, write_size);
jffs_put_write_buffer(bh);
bh = jffs_get_write_buffer(dev, ++block);
memcpy(bh->b_data, (void *)&raw_inode + write_size,
sizeof(struct jffs_raw_inode) - write_size);
block_offset = sizeof(struct jffs_raw_inode) - write_size;
pos_chksum = (block_offset - 4);
block_chksum = block;
}
else {
memcpy(&bh->b_data[block_offset], &raw_inode,
sizeof(struct jffs_raw_inode));
block_offset += sizeof(struct jffs_raw_inode);
pos_chksum = (block_offset - 4);
block_chksum = block;
if (block_offset == BLOCK_SIZE) {
jffs_put_write_buffer(bh);
bh = 0;
block_offset = 0;
}
}
 
if (!bh && (f->nsize || size)) {
bh = jffs_get_write_buffer(dev, ++block);
}
 
/* Write the name to the flash memory. */
if (f->nsize) {
if (BLOCK_SIZE - block_offset < f->nsize) {
write_size = BLOCK_SIZE - block_offset;
memcpy(&bh->b_data[block_offset], f->name, write_size);
jffs_put_write_buffer(bh);
bh = jffs_get_write_buffer(dev, ++block);
memcpy(bh->b_data, &f->name[write_size],
f->nsize - write_size);
block_offset = f->nsize - write_size;
}
else {
memcpy(&bh->b_data[block_offset], f->name, f->nsize);
block_offset += f->nsize;
if (block_offset == BLOCK_SIZE) {
jffs_put_write_buffer(bh);
bh = 0;
block_offset = 0;
}
}
block_offset += JFFS_GET_PAD_BYTES(block_offset);
chksum += jffs_checksum(f->name, f->nsize);
}
 
if (!bh && size) {
bh = jffs_get_write_buffer(dev, ++block);
}
 
/* Write the data. */
while (copied_data < size) {
int r;
D(printk("jffs_rewrite_data(): copied_data = %u, "
"block_offset = %u\n",
copied_data, block_offset));
if (block_offset == BLOCK_SIZE) {
jffs_put_write_buffer(bh);
bh = jffs_get_write_buffer(dev, ++block);
block_offset = 0;
}
write_size = jffs_min(size - copied_data,
BLOCK_SIZE - block_offset);
if ((r = jffs_read_data(f, &bh->b_data[block_offset], copied_data,
write_size)) < write_size) {
D(printk("jffs_rewrite_data(): jffs_read_data() "
"failed! (r = %d)\n", r));
brelse(bh);
return -1;
}
chksum += jffs_checksum(&bh->b_data[block_offset], write_size);
block_offset += r;
copied_data += r;
}
 
if (bh) {
jffs_put_write_buffer(bh);
}
 
/* Add the checksum. */
if (!(bh = jffs_get_write_buffer(dev, block_chksum))) {
D(printk("jffs_rewrite_data(): Failed to read "
"chksum block. (%u)\n", block_chksum));
return -1;
}
*(__u32 *)&bh->b_data[pos_chksum] = chksum;
jffs_put_write_buffer(bh);
D(printk("jffs_rewrite_data(): Added chksum 0x%08x.\n", chksum));
 
/* Now make the file system aware of the newly written node. */
jffs_insert_node(f->c, f, &raw_inode, 0, new_node);
 
D(printk("jffs_rewrite_data(): Leaving...\n"));
return 0;
} /* jffs_rewrite_data() */
 
#endif
 
 
int
jffs_garbage_collect_next(struct jffs_control *c)
{
struct jffs_fmcontrol *fmc = c->fmc;
struct jffs_node *node;
struct jffs_file *f;
int size;
int free_size = fmc->flash_size - (fmc->used_size + fmc->dirty_size);
__u32 free_chunk_size1 = jffs_free_size1(fmc);
D2(__u32 free_chunk_size2 = jffs_free_size2(fmc));
 
/* Get the oldest node in the flash. */
node = jffs_get_oldest_node(fmc);
ASSERT(if (!node) {
printk(KERN_ERR "JFFS: No oldest node!\n");
return -1;
});
 
/* Find its corresponding file too. */
f = jffs_find_file(c, node->ino);
ASSERT(if (!f) {
printk(KERN_ERR "JFFS: No file to garbage collect! "
"ino = 0x%08x\n", node->ino);
return -1;
});
 
D1(printk("jffs_garbage_collect_next(): \"%s\", "
"ino: %u, version: %u\n",
(f->name ? f->name : ""), node->ino, node->version));
 
/* Compute how much we want to rewrite at the moment. */
size = sizeof(struct jffs_raw_inode) + f->nsize
+ f->size - node->data_offset;
D2(printk(" size: %u\n", size));
D2(printk(" f->nsize: %u\n", f->nsize));
D2(printk(" f->size: %u\n", f->size));
D2(printk(" free_chunk_size1: %u\n", free_chunk_size1));
D2(printk(" free_chunk_size2: %u\n", free_chunk_size2));
if (size > fmc->max_chunk_size) {
size = fmc->max_chunk_size;
}
if (size > free_chunk_size1) {
 
if (free_chunk_size1 <
(sizeof(struct jffs_raw_inode) + f->nsize + BLOCK_SIZE)) {
/* The space left is too small to be of any
use really. */
struct jffs_fm *dirty_fm
= jffs_fmalloced(fmc,
fmc->tail->offset + fmc->tail->size,
free_chunk_size1, NULL);
if (dirty_fm) {
return -1;
}
jffs_write_dummy_node(c, dirty_fm);
goto jffs_garbage_collect_next_end;
}
 
size = free_chunk_size1;
}
 
D2(printk(" size: %u (again)\n", size));
 
if (free_size - size < fmc->sector_size) {
/* Just rewrite that node (or even less). */
size -= (sizeof(struct jffs_raw_inode) + f->nsize);
jffs_rewrite_data(f, node, jffs_min(node->data_size, size));
}
else {
size -= (sizeof(struct jffs_raw_inode) + f->nsize);
jffs_rewrite_data(f, node, size);
}
 
jffs_garbage_collect_next_end:
D3(printk("jffs_garbage_collect_next(): Leaving...\n"));
return 0;
}
 
 
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
 
/* If an obsolete node is partly going to be erased due to garbage
collection, the part that isn't going to be erased must be filled
with zeroes so that the scan of the flash will work smoothly next
time.
There are two phases in this procedure: First, the clearing of
the name and data parts of the node. Second, possibly also clearing
a part of the raw inode as well. If the box is power cycled during
the first phase, only the checksum of this node-to-be-cleared-at-
the-end will be wrong. If the box is power cycled during, or after,
the clearing of the raw inode, the information like the length of
the name and data parts are zeroed. The next time the box is
powered up, the scanning algorithm manages this faulty data too
because:
 
- The checksum is invalid and thus the raw inode must be discarded
in any case.
- If the lengths of the data part or the name part are zeroed, the
scanning just continues after the raw inode. But after the inode
the scanning procedure just finds zeroes which is the same as
dirt.
 
So, in the end, this could never fail. :-) Even if it does fail,
the scanning algorithm should manage that too. */
 
static int
jffs_clear_end_of_node(struct jffs_control *c, __u32 erase_size)
{
struct jffs_fm *fm;
struct jffs_fmcontrol *fmc = c->fmc;
__u32 zero_offset;
__u32 zero_size;
__u32 zero_offset_data;
__u32 zero_size_data;
__u32 cutting_raw_inode = 0;
 
if (!(fm = jffs_cut_node(fmc, erase_size))) {
D3(printk("jffs_clear_end_of_node(): fm == NULL\n"));
return 0;
}
 
/* Where and how much shall we clear? */
zero_offset = fmc->head->offset + erase_size;
zero_size = fm->offset + fm->size - zero_offset;
 
/* Do we have to clear the raw_inode explicitly? */
if (fm->size - zero_size < sizeof(struct jffs_raw_inode)) {
cutting_raw_inode = sizeof(struct jffs_raw_inode)
- (fm->size - zero_size);
}
 
/* First, clear the name and data fields. */
zero_offset_data = zero_offset + cutting_raw_inode;
zero_size_data = zero_size - cutting_raw_inode;
flash_safe_acquire(fmc->flash_part);
flash_memset((unsigned char *) zero_offset_data, 0, zero_size_data);
flash_safe_release(fmc->flash_part);
 
/* Should we clear a part of the raw inode? */
if (cutting_raw_inode) {
/* I guess it is ok to clear the raw inode in this order. */
flash_safe_acquire(fmc->flash_part);
flash_memset((unsigned char *) zero_offset, 0,
cutting_raw_inode);
flash_safe_release(fmc->flash_part);
}
 
return 0;
} /* jffs_clear_end_of_node() */
 
#else
 
static int
jffs_clear_end_of_node(struct jffs_control *c, __u32 erase_size)
{
struct jffs_fm *fm;
__u32 zero_offset;
__u32 zero_size;
__u32 first_block;
__u32 last_block;
__u32 block_offset;
__u32 block_clear_size;
__u32 block;
int cutting_raw_inode = 0;
struct buffer_head *bh;
kdev_t dev;
 
if (!(fm = jffs_cut_node(c->fmc, erase_size))) {
D(printk("jffs_clear_end_of_node(): fm == NULL\n"));
return 0;
}
 
/* It is necessary to write zeroes to the flash.
Find out where and how much to write. */
zero_offset = c->fmc->head->offset + erase_size;
zero_size = fm->offset + fm->size - zero_offset;
/* Do we have to clear the raw_inode explicitly? */
if (fm->size - zero_size < sizeof(struct jffs_raw_inode)) {
cutting_raw_inode = sizeof(struct jffs_raw_inode)
- (fm->size - zero_size);
}
/* The last block of non-raw inode data should be
cleared first. */
first_block = zero_offset / BLOCK_SIZE;
last_block = (zero_offset + zero_size) / BLOCK_SIZE;
block_offset = 0;
block_clear_size = (zero_offset + zero_size)
- last_block * BLOCK_SIZE;
dev = c->sb->s_dev;
 
D3(printk("jffs_clear_end_of_node(): zero_offset: 0x%08x\n", zero_offset));
D3(printk("jffs_clear_end_of_node(): zero_size: 0x%08x\n", zero_size));
D3(printk("jffs_clear_end_of_node(): first_block: 0x%08x\n", first_block));
D3(printk("jffs_clear_end_of_node(): last_block: 0x%08x\n", last_block));
D3(printk("jffs_clear_end_of_node(): block_offset: 0x%08x\n", block_offset));
D3(printk("jffs_clear_end_of_node(): block_clear_size: 0x%08x\n", block_clear_size));
 
/* Fill the flash memory with zeroes. */
for (block = last_block;
block >= first_block; block--) {
if (block == first_block) {
block_offset = cutting_raw_inode;
block_clear_size -= cutting_raw_inode;
}
if (!(bh = jffs_get_write_buffer(dev, block))) {
D(printk("jffs_clear_end_of_node(): "
"Failed to get buffer!\n"));
return -1;
}
memset(&bh->b_data[block_offset], 0, block_clear_size);
jffs_put_write_buffer(bh);
block_clear_size = BLOCK_SIZE;
}
 
if (cutting_raw_inode) {
if (!(bh = jffs_get_write_buffer(dev, first_block))) {
D(printk("jffs_clear_end_of_node(): Failed to "
"get first buffer!\n"));
return -1;
}
memset(bh->b_data, 0, cutting_raw_inode);
jffs_put_write_buffer(bh);
}
 
return 0;
} /* jffs_clear_end_of_node() */
 
#endif
 
 
/* Try to erase as much as possible of the dirt in the flash memory. */
long
jffs_try_to_erase(struct jffs_control *c)
{
struct jffs_fmcontrol *fmc = c->fmc;
long erase_size;
int err;
__u32 offset;
 
D3(printk("jffs_try_to_erase()\n"));
 
erase_size = jffs_erasable_size(fmc);
 
D2(printk("jffs_try_to_erase(): erase_size = %ld\n", erase_size));
 
if (erase_size <= 0) {
return erase_size;
}
 
if (jffs_clear_end_of_node(c, erase_size) < 0) {
printk(KERN_ERR "JFFS: Clearing of node failed.\n");
return -1;
}
 
offset = fmc->head->offset - fmc->flash_start;
 
/* Now, let's try to do the erase. */
if ((err = flash_erase_region(c->sb->s_dev,
offset, erase_size)) < 0) {
printk(KERN_ERR "JFFS: Erase of flash failed. "
"offset = %u, erase_size = %ld\n",
offset, erase_size);
/* XXX: Here we should allocate this area as dirty
with jffs_fmalloced or something similar. Now
we just report the error. */
return err;
}
 
#if 0
/* Check if the erased sectors really got erased. */
{
__u32 pos;
__u32 end;
 
pos = (__u32)flash_get_direct_pointer(c->sb->s_dev, offset);
end = pos + erase_size;
 
D2(printk("JFFS: Checking erased sector(s)...\n"));
 
flash_safe_acquire(fmc->flash_part);
 
for (; pos < end; pos += 4) {
if (*(__u32 *)pos != JFFS_EMPTY_BITMASK) {
printk("JFFS: Erase failed! pos = 0x%p\n",
(unsigned char *)pos);
jffs_hexdump((unsigned char *)pos,
jffs_min(256, end - pos));
err = -1;
break;
}
}
 
flash_safe_release(fmc->flash_part);
 
if (!err) {
D2(printk("JFFS: Erase succeeded.\n"));
}
else {
/* XXX: Here we should allocate the memory
with jffs_fmalloced() in order to prevent
JFFS from using this area accidentally. */
return err;
}
}
#endif
 
/* Update the flash memory data structures. */
jffs_sync_erase(fmc, erase_size);
 
return erase_size;
}
 
 
/* There are different criteria that should trigger a garbage collect:
1. There is too much dirt in the memory.
2. The free space is becoming small.
3. There are many versions of a node.
 
The garbage collect should always be done in a manner that guarantees
that future garbage collects cannot be locked. E.g. Rewritten chunks
should not be too large (span more than one sector in the flash memory
for exemple). Of course there is a limit on how intelligent this garbage
collection can be. */
int
jffs_garbage_collect(struct jffs_control *c)
{
struct jffs_fmcontrol *fmc = c->fmc;
long erased_total = 0;
long erased;
int result = 0;
D1(int i = 1);
 
D2(printk("***jffs_garbage_collect(): fmc->dirty_size = %u\n",
fmc->dirty_size));
D2(jffs_print_fmcontrol(fmc));
 
c->fmc->no_call_gc = 1;
 
/* While there is too much dirt left and it is possible
to garbage collect, do so. */
 
while (fmc->dirty_size >= fmc->sector_size) {
 
D1(printk("***jffs_garbage_collect(): round #%u, "
"fmc->dirty_size = %u\n", i++, fmc->dirty_size));
D2(jffs_print_fmcontrol(fmc));
 
/* At least one sector should be able to free now. */
if ((erased = jffs_try_to_erase(c)) < 0) {
printk(KERN_WARNING "JFFS: Error in "
"garbage collector.\n");
result = erased;
goto gc_end;
}
else if (erased == 0) {
__u32 free_size = fmc->flash_size
- (fmc->used_size
+ fmc->dirty_size);
 
if (free_size > 0) {
/* Let's dare to make a garbage collect. */
if ((result = jffs_garbage_collect_next(c))
< 0) {
printk(KERN_ERR "JFFS: Something "
"has gone seriously wrong "
"with a garbage collect.\n");
goto gc_end;
}
}
else {
/* What should we do here? */
D(printk(" jffs_garbage_collect(): "
"erased: %ld, free_size: %u\n",
erased, free_size));
result = -1;
goto gc_end;
}
}
 
D1(printk(" jffs_garbage_collect(): erased: %ld\n", erased));
erased_total += erased;
DJM(jffs_print_memory_allocation_statistics());
}
 
 
gc_end:
c->fmc->no_call_gc = 0;
 
D3(printk(" jffs_garbage_collect(): Leaving...\n"));
D1(if (erased_total) {
printk("erased_total = %ld\n", erased_total);
jffs_print_fmcontrol(fmc);
});
return result;
}
/intrep.h
0,0 → 1,63
/*
* JFFS -- Journalling Flash File System, Linux implementation.
*
* Copyright (C) 1999, 2000 Finn Hakansson, Axis Communications, Inc.
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* $Id: intrep.h,v 1.1 2005-12-20 10:26:13 jcastillo Exp $
*
*/
 
#ifndef __LINUX_JFFS_INTREP_H__
#define __LINUX_JFFS_INTREP_H__
 
void jffs_hexdump(const unsigned char* ptr, int size);
inline int jffs_min(int a, int b);
inline int jffs_max(int a, int b);
__u32 jffs_checksum(const void *data, int size);
 
void jffs_cleanup_control(struct jffs_control *c);
int jffs_build_fs(struct super_block *sb);
 
int jffs_insert_node(struct jffs_control *c, struct jffs_file *f,
const struct jffs_raw_inode *raw_inode,
const char *name, struct jffs_node *node);
struct jffs_file *jffs_find_file(struct jffs_control *c, __u32 ino);
struct jffs_file *jffs_find_child(struct jffs_file *dir, const char *name, int len);
 
void jffs_free_node(struct jffs_node *node);
 
int jffs_foreach_file(struct jffs_control *c, int (*func)(struct jffs_file *));
int jffs_free_node_list(struct jffs_file *f);
int jffs_possibly_delete_file(struct jffs_file *f);
int jffs_build_file(struct jffs_file *f);
int jffs_insert_file_into_hash(struct jffs_file *f);
int jffs_insert_file_into_tree(struct jffs_file *f);
int jffs_unlink_file_from_hash(struct jffs_file *f);
int jffs_unlink_file_from_tree(struct jffs_file *f);
int jffs_remove_redundant_nodes(struct jffs_file *f);
int jffs_file_count(struct jffs_file *f);
 
int jffs_write_node(struct jffs_control *c, struct jffs_node *node,
struct jffs_raw_inode *raw_inode,
const char *name, const unsigned char *buf);
int jffs_read_data(struct jffs_file *f, char *buf, __u32 read_offset, __u32 size);
 
/* Garbage collection stuff. */
int jffs_garbage_collect(struct jffs_control *c);
 
/* For debugging purposes. */
void jffs_print_node(struct jffs_node *n);
void jffs_print_raw_inode(struct jffs_raw_inode *raw_inode);
int jffs_print_file(struct jffs_file *f);
void jffs_print_hash_table(struct jffs_control *c);
void jffs_print_tree(struct jffs_file *first_file, int indent);
 
struct buffer_head *jffs_get_write_buffer(kdev_t dev, int block);
void jffs_put_write_buffer(struct buffer_head *bh);
 
#endif /* __LINUX_JFFS_INTREP_H__ */
/jffs_fm.c
0,0 → 1,752
/*
* JFFS -- Journalling Flash File System, Linux implementation.
*
* Copyright (C) 1999, 2000 Finn Hakansson, Axis Communications, Inc.
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* $Id: jffs_fm.c,v 1.1 2005-12-20 10:26:13 jcastillo Exp $
*
*/
 
#include <linux/malloc.h>
#include <linux/blkdev.h>
#include <linux/jffs.h>
#include "jffs_fm.h"
 
#if defined(CONFIG_JFFS_FS_VERBOSE) && CONFIG_JFFS_FS_VERBOSE
#define D(x) x
#else
#define D(x)
#endif
#define D1(x)
#define D2(x)
#define D3(x)
#define ASSERT(x) x
 
#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset);
#endif
 
 
/* This function creates a new shiny flash memory control structure. */
struct jffs_fmcontrol *
jffs_build_begin(struct jffs_control *c, kdev_t dev)
{
struct jffs_fmcontrol *fmc;
 
D3(printk("jffs_build_begin()\n"));
fmc = (struct jffs_fmcontrol *)kmalloc(sizeof(struct jffs_fmcontrol),
GFP_KERNEL);
if (!fmc) {
D(printk("jffs_build_begin(): Allocation of "
"struct jffs_fmcontrol failed!\n"));
return (struct jffs_fmcontrol *)0;
}
DJM(no_jffs_fmcontrol++);
 
/* Retrieve the size of the flash memory. */
#ifdef CONFIG_SVINTO_SIM
fmc->flash_start = 0;
fmc->flash_size = 262144;
#else
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
fmc->flash_start = (__u32) flash_get_direct_pointer (dev, 0);
#else
fmc->flash_start = 0;
#endif
fmc->flash_size = blk_size[MAJOR(dev)][MINOR(dev)] << BLOCK_SIZE_BITS;
#endif
D3(printk(" fmc->flash_start = 0x%08x\n", fmc->flash_start));
D3(printk(" fmc->flash_size = %d bytes\n", fmc->flash_size));
 
fmc->used_size = 0;
fmc->dirty_size = 0;
fmc->sector_size = 65536;
fmc->max_chunk_size = fmc->sector_size >> 1;
fmc->min_free_size = (fmc->sector_size << 1) - fmc->max_chunk_size;
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
fmc->flash_part = flash_getpart(dev);
#else
fmc->flash_part = 0;
#endif
fmc->no_call_gc = 0;
fmc->c = c;
fmc->head = 0;
fmc->tail = 0;
fmc->head_extra = 0;
fmc->tail_extra = 0;
return fmc;
}
 
 
/* When the flash memory scan has completed, this function should be called
before use of the control structure. */
void
jffs_build_end(struct jffs_fmcontrol *fmc)
{
D3(printk("jffs_build_end()\n"));
 
if (!fmc->head) {
fmc->head = fmc->head_extra;
fmc->tail = fmc->tail_extra;
}
else if (fmc->head_extra) {
fmc->tail_extra->next = fmc->head;
fmc->head->prev = fmc->tail_extra;
fmc->head = fmc->head_extra;
}
fmc->head_extra = 0; /* These two instructions should be omitted. */
fmc->tail_extra = 0;
D3(jffs_print_fmcontrol(fmc));
}
 
 
/* Call this function when the file system is unmounted. This function
frees all memory used by this module. */
void
jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc)
{
if (fmc) {
struct jffs_fm *cur;
struct jffs_fm *next = fmc->head;
 
while ((cur = next)) {
next = next->next;
kfree(cur);
DJM(no_jffs_fm--);
}
kfree(fmc);
DJM(no_jffs_fmcontrol--);
}
}
 
 
/* This function returns the size of the first chunk of free space on the
flash memory. This function will return something nonzero if the flash
memory contains any free space. */
__u32
jffs_free_size1(struct jffs_fmcontrol *fmc)
{
__u32 head;
__u32 tail;
__u32 end = fmc->flash_start + fmc->flash_size;
 
if (!fmc->head) {
/* There is nothing on the flash. */
return fmc->flash_size;
}
 
/* Compute the beginning and ending of the contents of the flash. */
head = fmc->head->offset;
tail = fmc->tail->offset + fmc->tail->size;
if (tail == end) {
tail = fmc->flash_start;
}
ASSERT(else if (tail > end) {
printk(KERN_WARNING "jffs_free_size1(): tail > end\n");
tail = fmc->flash_start;
});
 
if (head <= tail) {
return end - tail;
}
else {
return head - tail;
}
}
 
/* This function will return something nonzero in case there are two free
areas on the flash. Like this:
 
+----------------+------------------+----------------+
| FREE 1 | USED / DIRTY | FREE 2 |
+----------------+------------------+----------------+
fmc->head -----^
fmc->tail ------------------------^
 
The value returned, will be the size of the first empty area on the
flash, in this case marked "FREE 1". */
__u32
jffs_free_size2(struct jffs_fmcontrol *fmc)
{
if (fmc->head) {
__u32 head = fmc->head->offset;
__u32 tail = fmc->tail->offset + fmc->tail->size;
if (tail == fmc->flash_start + fmc->flash_size) {
tail = fmc->flash_start;
}
 
if (tail >= head) {
return head - fmc->flash_start;
}
}
return 0;
}
 
 
/* Allocate a chunk of flash memory. If there is enough space on the
device, a reference to the associated node is stored in the jffs_fm
struct. */
int
jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node,
struct jffs_fm **result)
{
struct jffs_fm *fm;
__u32 free_chunk_size1;
__u32 free_chunk_size2;
 
D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, "
"node = 0x%p\n", fmc, size, node));
 
*result = 0;
 
if (!(fm = (struct jffs_fm*)kmalloc(sizeof(struct jffs_fm),
GFP_KERNEL))) {
D(printk("jffs_fmalloc(): kmalloc() failed! (fm)\n"));
return -ENOMEM;
}
DJM(no_jffs_fm++);
 
free_chunk_size1 = jffs_free_size1(fmc);
free_chunk_size2 = jffs_free_size2(fmc);
D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, "
"free_chunk_size2 = %u\n",
free_chunk_size1, free_chunk_size2));
 
if (size <= free_chunk_size1) {
if (!(fm->nodes = (struct jffs_node_ref *)
kmalloc(sizeof(struct jffs_node_ref),
GFP_KERNEL))) {
D(printk("jffs_fmalloc(): kmalloc() failed! "
"(node_ref)\n"));
kfree(fm);
DJM(no_jffs_fm--);
return -ENOMEM;
}
DJM(no_jffs_node_ref++);
fm->nodes->node = node;
fm->nodes->next = 0;
if (fmc->tail) {
fm->offset = fmc->tail->offset + fmc->tail->size;
if (fm->offset
== fmc->flash_start + fmc->flash_size) {
fm->offset = fmc->flash_start;
}
ASSERT(else if (fm->offset
> fmc->flash_start
+ fmc->flash_size) {
printk(KERN_WARNING "jffs_fmalloc(): "
"offset > flash_end\n");
fm->offset = fmc->flash_start;
});
}
else {
/* There don't have to be files in the file
system yet. */
fm->offset = fmc->flash_start;
}
fm->size = size;
fmc->used_size += size;
}
else if (size > free_chunk_size2) {
printk(KERN_WARNING "JFFS: Tried to allocate a too "
"large flash memory chunk. (size = %u)\n", size);
kfree(fm);
DJM(no_jffs_fm--);
return -ENOSPC;
}
else {
fm->offset = fmc->tail->offset + fmc->tail->size;
fm->size = free_chunk_size1;
fm->nodes = 0;
fmc->dirty_size += size;
}
 
fm->next = 0;
if (!fmc->head) {
fm->prev = 0;
fmc->head = fm;
fmc->tail = fm;
}
else {
fm->prev = fmc->tail;
fmc->tail->next = fm;
fmc->tail = fm;
}
 
D3(jffs_print_fmcontrol(fmc));
D3(jffs_print_fm(fm));
*result = fm;
return 0;
}
 
 
/* The on-flash space is not needed anymore by the passed node. Remove
the reference to the node from the node list. If the data chunk in
the flash memory isn't used by any more nodes anymore (fm->nodes == 0),
then mark that chunk as dirty. */
int
jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node)
{
struct jffs_node_ref *ref;
struct jffs_node_ref *prev;
ASSERT(int del = 0);
 
D2(printk("jffs_fmfree(): node->ino = %u, node->version = %u\n",
node->ino, node->version));
 
ASSERT(if (!fmc || !fm || !fm->nodes) {
printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, "
"fm->nodes: 0x%p\n",
fmc, fm, (fm ? fm->nodes : 0));
return -1;
});
 
/* Find the reference to the node that is going to be removed
and remove it. */
for (ref = fm->nodes, prev = 0; ref; ref = ref->next) {
if (ref->node == node) {
if (prev) {
prev->next = ref->next;
}
else {
fm->nodes = ref->next;
}
kfree(ref);
DJM(no_jffs_node_ref--);
ASSERT(del = 1);
break;
}
prev = ref;
}
 
/* If the data chunk in the flash memory isn't used anymore
just mark it as obsolete. */
if (!fm->nodes) {
/* No node uses this chunk so let's remove it. */
fmc->used_size -= fm->size;
fmc->dirty_size += fm->size;
#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
if (jffs_mark_obsolete(fmc, fm->offset) < 0) {
D1(printk("jffs_fmfree(): Failed to mark an on-flash "
"node obsolete!\n"));
return -1;
}
#endif
fmc->c->sb->s_dirt = 1;
}
 
ASSERT(if (!del) {
printk(KERN_WARNING "***jffs_fmfree(): "
"Didn't delete any node reference!\n");
});
 
return 0;
}
 
 
/* This allocation function is used during the initialization of
the file system. */
struct jffs_fm *
jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size,
struct jffs_node *node)
{
struct jffs_fm *fm;
 
D3(printk("jffs_fmalloced()\n"));
 
if (!(fm = (struct jffs_fm *)kmalloc(sizeof(struct jffs_fm),
GFP_KERNEL))) {
D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!\n",
fmc, offset, size, node));
return 0;
}
DJM(no_jffs_fm++);
fm->offset = offset;
fm->size = size;
fm->prev = 0;
fm->next = 0;
fm->nodes = 0;
if (node) {
/* `node' exists and it should be associated with the
jffs_fm structure `fm'. */
if (!(fm->nodes = (struct jffs_node_ref *)
kmalloc(sizeof(struct jffs_node_ref),
GFP_KERNEL))) {
D(printk("jffs_fmalloced(): !fm->nodes\n"));
kfree(fm);
DJM(no_jffs_fm--);
return 0;
}
DJM(no_jffs_node_ref++);
fm->nodes->node = node;
fm->nodes->next = 0;
fmc->used_size += size;
}
else {
/* If there is no node, then this is just a chunk of dirt. */
fmc->dirty_size += size;
}
 
if (fmc->head_extra) {
fm->prev = fmc->tail_extra;
fmc->tail_extra->next = fm;
fmc->tail_extra = fm;
}
else if (!fmc->head) {
fmc->head = fm;
fmc->tail = fm;
}
else if (fmc->tail->offset + fmc->tail->size < offset) {
fmc->head_extra = fm;
fmc->tail_extra = fm;
}
else {
fm->prev = fmc->tail;
fmc->tail->next = fm;
fmc->tail = fm;
}
D3(jffs_print_fmcontrol(fmc));
D3(jffs_print_fm(fm));
return fm;
}
 
 
/* Add a new node to an already existing jffs_fm struct. */
int
jffs_add_node(struct jffs_node *node)
{
struct jffs_node_ref *ref;
struct jffs_fm *fm = node->fm;
int s = sizeof(struct jffs_node_ref);
 
D3(printk("jffs_add_node(): ino = %u\n", node->ino));
 
if (!(ref = (struct jffs_node_ref *)kmalloc(s, GFP_KERNEL))) {
return -ENOMEM;
}
DJM(no_jffs_node_ref++);
ref->node = node;
ref->next = fm->nodes;
fm->nodes = ref;
return 0;
}
 
 
/* Free a part of some allocated space. */
void
jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size)
{
D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, "
"fm->nodes->node->ino = %u, size = %u\n",
fm, (fm ? fm->nodes : 0),
(!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size));
 
if (fm->nodes) {
kfree(fm->nodes);
DJM(no_jffs_node_ref--);
fm->nodes = 0;
}
fmc->used_size -= fm->size;
if (fm == fmc->tail) {
fm->size -= size;
}
fmc->dirty_size += fm->size;
}
 
 
/* Find the jffs_fm struct that contains the end of the data chunk that
begins at the logical beginning of the flash memory and spans `size'
bytes. If we want to erase a sector of the flash memory, we use this
function to find where the sector limit cuts a chunk of data. */
struct jffs_fm *
jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size)
{
struct jffs_fm *fm;
__u32 pos = 0;
 
if (size == 0) {
return 0;
}
 
ASSERT(if (!fmc) {
printk(KERN_ERR "jffs_cut_node(): fmc == NULL\n");
return 0;
});
 
fm = fmc->head;
 
while (fm) {
pos += fm->size;
if (pos < size) {
fm = fm->next;
}
else if (pos > size) {
break;
}
else {
fm = 0;
break;
}
}
 
return fm;
}
 
 
/* Move the head of the fmc structures and delete the obsolete parts. */
void
jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size)
{
struct jffs_fm *fm;
struct jffs_fm *del;
 
ASSERT(if (!fmc) {
printk(KERN_ERR "jffs_sync_erase(): fmc == NULL\n");
return;
});
 
fmc->dirty_size -= erased_size;
 
for (fm = fmc->head; fm && (erased_size > 0);) {
if (erased_size >= fm->size) {
erased_size -= fm->size;
del = fm;
fm = fm->next;
fm->prev = 0;
fmc->head = fm;
kfree(del);
DJM(no_jffs_fm--);
}
else {
fm->size -= erased_size;
fm->offset += erased_size;
break;
}
}
}
 
 
/* Return the oldest used node in the flash memory. */
struct jffs_node *
jffs_get_oldest_node(struct jffs_fmcontrol *fmc)
{
struct jffs_fm *fm;
struct jffs_node_ref *nref;
struct jffs_node *node = 0;
 
ASSERT(if (!fmc) {
printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULL\n");
return 0;
});
 
for (fm = fmc->head; fm && !fm->nodes; fm = fm->next);
 
if (!fm) {
return 0;
}
 
/* The oldest node is the last one in the reference list. This list
shouldn't be too long; just one or perhaps two elements. */
for (nref = fm->nodes; nref; nref = nref->next) {
node = nref->node;
}
 
D2(printk("jffs_get_oldest_node(): ino = %u, version = %u\n",
(node ? node->ino : 0), (node ? node->version : 0)));
 
return node;
}
 
 
#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
#if defined(JFFS_FLASH_SHORTCUT) && JFFS_FLASH_SHORTCUT
 
/* Mark an on-flash node as obsolete.
 
Note that this is just an optimization that isn't necessary for the
filesystem to work. */
 
static int
jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset)
{
/* The `accurate_pos' holds the position of the accurate byte
in the jffs_raw_inode structure that we are going to mark
as obsolete. */
__u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET;
unsigned char zero = 0x00;
 
D3(printk("jffs_mark_obsolete(): accurate_pos = %u\n", accurate_pos));
ASSERT(if (!fmc) {
printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n");
return -1;
});
 
/* Write 0x00 to the raw inode's accurate member. Don't care
about the return value. */
flash_safe_write(fmc->flash_part, (unsigned char *) accurate_pos,
&zero, 1);
return 0;
}
 
#else
 
/* Mark an on-flash node as obsolete. */
static int
jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset)
{
struct buffer_head *bh;
/* The `accurate_pos' holds the position of the accurate byte
in the jffs_raw_inode structure that we are going to mark
as obsolete. */
__u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET;
__u32 block = accurate_pos / BLOCK_SIZE;
 
D3(printk("jffs_mark_obsolete(): accurate_pos = %u, block = %d\n",
accurate_pos, block));
ASSERT(if (!fmc) {
printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n");
return -1;
});
ASSERT(if (accurate_pos == 0) {
printk(KERN_ERR "jffs_mark_obsolete(): accurate_pos = 0\n");
});
 
if (!(bh = bread(fmc->c->sb->s_dev, block, BLOCK_SIZE))) {
D(printk("jffs_mark_obsolete(): bread() failed. "
"(block == %u)\n", block));
return -1;
}
 
/* Write 0x00 to the raw inode. */
bh->b_data[accurate_pos - block * BLOCK_SIZE] = (char)0x00;
 
jffs_put_write_buffer(bh);
return 0;
}
 
#endif /* JFFS_FLASH_SHORTCUT */
#endif /* JFFS_MARK_OBSOLETE */
 
 
/* How much dirty flash memory is possible to erase at the moment? */
long
jffs_erasable_size(struct jffs_fmcontrol *fmc)
{
struct jffs_fm *fm;
__u32 size = 0;
long ret;
 
ASSERT(if (!fmc) {
printk(KERN_ERR "jffs_erasable_size(): fmc = NULL\n");
return -1;
});
 
if (!fmc->head) {
/* The flash memory is totally empty. No nodes. No dirt.
Just return. */
return 0;
}
 
/* Calculate how much space that is dirty. */
for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) {
if (size && fm->offset == fmc->flash_start) {
/* We have reached the beginning of the flash. */
break;
}
size += fm->size;
}
 
/* Someone's signature contained this:
There's a fine line between fishing and just standing on
the shore like an idiot... */
ret = flash_erasable_size(fmc->flash_part,
fmc->head->offset - fmc->flash_start, size);
 
ASSERT(if (ret < 0) {
printk("jffs_erasable_size: flash_erasable_size() "
"returned something less than zero (%ld).\n", ret);
printk("jffs_erasable_size: offset = 0x%08x\n",
fmc->head->offset - fmc->flash_start);
});
 
/* If there is dirt on the flash (which is the reason to why
this function was called in the first place) but no space is
possible to erase right now, the initial part of the list of
jffs_fm structs, that hold place for dirty space, could perhaps
be shortened. The list's initial "dirty" elements are merged
into just one large dirty jffs_fm struct. This operation must
only be performed if nothing is possible to erase. Otherwise,
jffs_clear_end_of_node() won't work as expected. */
if (ret == 0) {
struct jffs_fm *head = fmc->head;
struct jffs_fm *del;
while (head->nodes == 0
&& head->next
&& head->next->nodes == 0) {
del = head->next;
head->size += del->size;
head->next = del->next;
if (del->next) {
del->next->prev = head;
}
kfree(del);
DJM(no_jffs_fm--);
}
}
 
return (ret >= 0 ? ret : 0);
}
 
 
void
jffs_print_fmcontrol(struct jffs_fmcontrol *fmc)
{
D(printk("struct jffs_fmcontrol: 0x%p\n", fmc));
D(printk("{\n"));
D(printk(" 0x%08x, /* flash_start */\n", fmc->flash_start));
D(printk(" %u, /* flash_size */\n", fmc->flash_size));
D(printk(" %u, /* used_size */\n", fmc->used_size));
D(printk(" %u, /* dirty_size */\n", fmc->dirty_size));
D(printk(" %u, /* sector_size */\n", fmc->sector_size));
D(printk(" %u, /* min_free_size */\n", fmc->min_free_size));
D(printk(" %u, /* max_chunk_size */\n", fmc->max_chunk_size));
D(printk(" 0x%p, /* flash_part */\n", fmc->flash_part));
D(printk(" 0x%p, /* head */ "
"(head->offset = 0x%08x)\n",
fmc->head, (fmc->head ? fmc->head->offset : 0)));
D(printk(" 0x%p, /* tail */ "
"(tail->offset + tail->size = 0x%08x)\n",
fmc->tail,
(fmc->tail ? fmc->tail->offset + fmc->tail->size : 0)));
D(printk(" 0x%p, /* head_extra */\n", fmc->head_extra));
D(printk(" 0x%p, /* tail_extra */\n", fmc->tail_extra));
D(printk("}\n"));
}
 
void
jffs_print_fm(struct jffs_fm *fm)
{
D(printk("struct jffs_fm: 0x%p\n", fm));
D(printk("{\n"));
D(printk(" 0x%08x, /* offset */\n", fm->offset));
D(printk(" %u, /* size */\n", fm->size));
D(printk(" 0x%p, /* prev */\n", fm->prev));
D(printk(" 0x%p, /* next */\n", fm->next));
D(printk(" 0x%p, /* nodes */\n", fm->nodes));
D(printk("}\n"));
}
 
void
jffs_print_node_ref(struct jffs_node_ref *ref)
{
D(printk("struct jffs_node_ref: 0x%p\n", ref));
D(printk("{\n"));
D(printk(" 0x%p, /* node */\n", ref->node));
D(printk(" 0x%p, /* next */\n", ref->next));
D(printk("}\n"));
}
/.depend
0,0 → 1,37
inode.o: \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/module.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/types.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/errno.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/malloc.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/jffs.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/fs.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/locks.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/sched.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/ioctl.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/stat.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/blkdev.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/asm/byteorder.h \
jffs_fm.h \
intrep.h
intrep.o: \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/module.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/types.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/malloc.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/jffs.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/fs.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/stat.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/pagemap.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/locks.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/asm/byteorder.h \
intrep.h \
jffs_fm.h
jffs_fm.o: \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/malloc.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/blkdev.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/jffs.h \
jffs_fm.h
jffs_fm.h: \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/types.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/jffs.h \
/home/javier/opencores/or1k/rc203soc/sw/uClinux/include/linux/flash.h
@touch jffs_fm.h
/Makefile
0,0 → 1,14
#
# Makefile for the linux Journalling Flash FileSystem (JFFS) routines.
#
# Note! Dependencies are done automagically by 'make dep', which also
# removes any old dependencies. DON'T put your own dependencies here
# unless it's something special (ie not a .c file).
#
# Note 2! The CFLAGS definitions are now in the main makefile...
 
O_TARGET := jffs.o
O_OBJS := inode.o intrep.o jffs_fm.o
M_OBJS := $(O_TARGET)
 
include $(TOPDIR)/Rules.make

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.