URL
https://opencores.org/ocsvn/phr/phr/trunk
Subversion Repositories phr
Compare Revisions
- This comparison shows the changes necessary to convert path
/phr/trunk/doc
- from Rev 286 to Rev 287
- ↔ Reverse comparison
Rev 286 → Rev 287
/papers/PHR/uEA2014/slide/beamer/beamer-Warsaw.tex
File deleted
\ No newline at end of file
papers/PHR/uEA2014/slide/beamer/beamer-Warsaw.tex
Property changes :
Deleted: svn:eol-style
## -1 +0,0 ##
-native
\ No newline at end of property
Deleted: svn:keywords
## -1 +0,0 ##
-Author Date Id Rev URL
\ No newline at end of property
Index: papers/PHR/uEA2014/slide/beamer/template.tex
===================================================================
--- papers/PHR/uEA2014/slide/beamer/template.tex (revision 286)
+++ papers/PHR/uEA2014/slide/beamer/template.tex (nonexistent)
@@ -1,744 +0,0 @@
-% Copyright 2007 by Till Tantau
-%
-% This file may be distributed and/or modified
-%
-% 1. under the LaTeX Project Public License and/or
-% 2. under the GNU Public License.
-%
-% See the file doc/licenses/LICENSE for more details.
-
-
-
-\documentclass{beamer}
-
-%
-% DO NOT USE THIS FILE AS A TEMPLATE FOR YOUR OWN TALKS¡!!
-%
-% Use a file in the directory solutions instead.
-% They are much better suited.
-%
-
-
-% Setup appearance:
-
-\usetheme{Darmstadt}
-\usefonttheme[onlylarge]{structurebold}
-\setbeamerfont*{frametitle}{size=\normalsize,series=\bfseries}
-\setbeamertemplate{navigation symbols}{}
-
-
-% Standard packages
-
-\usepackage[english]{babel}
-\usepackage[latin1]{inputenc}
-\usepackage{times}
-\usepackage[T1]{fontenc}
-
-
-% Setup TikZ
-
-\usepackage{tikz}
-\usetikzlibrary{arrows}
-\tikzstyle{block}=[draw opacity=0.7,line width=1.4cm]
-
-
-% Author, Title, etc.
-
-\title[Block Partitioning and Perfect Phylogenies]
-{%
- On the Complexity of SNP Block Partitioning Under the Perfect
- Phylogeny Model%
-}
-
-\author[Gramm, Hartman, Nierhoff, Sharan, Tantau]
-{
- Jens~Gramm\inst{1} \and
- Tzvika~Hartman\inst{2} \and
- Till~Nierhoff\inst{3} \and
- Roded~Sharan\inst{4} \and
- \textcolor{green!50!black}{Till~Tantau}\inst{5}
-}
-
-\institute[Tübingen and others]
-{
- \inst{1}%
- Universität Tübingen, Germany
- \and
- \vskip-2mm
- \inst{2}%
- Bar-Ilan University, Ramat-Gan, Israel
- \and
- \vskip-2mm
- \inst{3}%
- International Computer Science Institute, Berkeley, USA
- \and
- \vskip-2mm
- \inst{4}%
- Tel-Aviv University, Israel
- \and
- \vskip-2mm
- \inst{5}%
- Universität zu Lübeck, Germany
-}
-
-\date[WABI 2006]
-{Workshop on Algorithms in Bioinformatics, 2006}
-
-
-
-% The main document
-
-\begin{document}
-
-\begin{frame}
- \titlepage
-\end{frame}
-
-\begin{frame}{Outline}
- \tableofcontents
-\end{frame}
-
-
-\section{Introduction}
-
-\subsection{The Model and the Problem}
-
-\begin{frame}{What is haplotyping and why is it important?}
- You hopefully know this after the previous three talks\dots
-\end{frame}
-
-\begin{frame}[t]{General formalization of haplotyping.}
- \begin{block}{Inputs}
- \begin{itemize}
- \item A \alert{genotype matrix} $G$.
- \item The \alert{rows} of the matrix are \alert{taxa / individuals}.
- \item The \alert{columns} of the matrix are \alert{SNP sites /
- characters}.
- \end{itemize}
- \end{block}
- \begin{block}{Outputs}
- \begin{itemize}
- \item A \alert{haplotype matrix} $H$.
- \item Pairs of rows in $H$ \alert{explain} the rows of $G$.
- \item The haplotypes in $H$ are \alert{biologically plausible}.
- \end{itemize}
- \end{block}
-\end{frame}
-
-
-\begin{frame}[t]{Our formalization of haplotyping.}
- \begin{block}{Inputs}
- \begin{itemize}
- \item A genotype matrix $G$.
- \item The rows of the matrix are individuals / taxa.
- \item The columns of the matrix are SNP sites / characters.
- \item
- The problem is directed: one haplotype is known.
- \item
- The input is biallelic: there are only two homozygous
- states (0 and 1) and one heterozygous state (2).
- \end{itemize}
- \end{block}
- \begin{block}{Outputs}
- \begin{itemize}
- \item A haplotype matrix $H$.
- \item Pairs of rows in $H$ explain the rows of $G$.
- \item The haplotypes in $H$ form a perfect phylogeny.
- \end{itemize}
- \end{block}
-\end{frame}
-
-
-\begin{frame}{We can do perfect phylogeny haplotyping efficiently, but
- \dots}
- \begin{enumerate}
- \item \alert{Data may be missing.}
- \begin{itemize}
- \item This makes the problem NP-complete \dots
- \item \dots even for very restricted cases.
- \end{itemize}
- \textcolor{green!50!black}{Solutions:}
- \begin{itemize}
- \item Additional assumption like the rich data hypothesis.
- \end{itemize}
- \item \alert{No perfect phylogeny is possible.}
- \begin{itemize}
- \item This can be caused by chromosomal crossing-over effects.
- \item This can be caused by incorrect data.
- \item This can be caused by multiple mutations at the same sites.
- \end{itemize}
- \textcolor{green!50!black}{Solutions:}
- \begin{itemize}
- \item Look for phylogenetic networks.
- \item Correct data.
- \item
- Find blocks where a perfect phylogeny is possible.
- \end{itemize}
- \end{enumerate}
-\end{frame}
-
-
-\subsection{The Integrated Approach}
-
-\begin{frame}{How blocks help in perfect phylogeny haplotyping.}
- \begin{enumerate}
- \item Partition the site set into overlapping contiguous blocks.
- \item Compute a perfect phylogeny for each block and combine them.
- \item Use dynamic programming for finding the partition.
- \end{enumerate}
-
- \begin{tikzpicture}
- \useasboundingbox (0,-1) rectangle (10,2);
-
- \draw[line width=2mm,dash pattern=on 1mm off 1mm]
- (0,1) -- (9.99,1) node[midway,above] {Genotype matrix}
- (0,0.6666) -- (9.99,0.6666)
- (0,0.3333) -- (9.99,0.3333)
- (0,0) -- (9.99,0) node[midway,below] {\only<1>{no perfect phylogeny}};
-
- \begin{scope}[xshift=-.5mm]
- \only<2->
- {
- \draw[red,block] (0,.5) -- (3,.5)
- node[midway,below] {perfect phylogeny};
- }
-
- \only<3->
- {
- \draw[green!50!black,block] (2.5,.5) -- (7,.5)
- node[pos=0.6,below] {perfect phylogeny};
- }
-
- \only<4->
- {
- \draw[blue,block] (6.5,.5) -- (10,.5)
- node[pos=0.6,below] {perfect phylogeny};
- }
- \end{scope}
- \end{tikzpicture}
-\end{frame}
-
-\begin{frame}{Objective of the integrated approach.}
- \begin{enumerate}
- \item Partition the site set into \alert{noncontiguous} blocks.
- \item Compute a perfect phylogeny for each block and combine them.
- \item Compute partition while computing perfect
- phylogenies.
- \end{enumerate}
-
- \begin{tikzpicture}
- \useasboundingbox (0,-1) rectangle (10,2);
-
- \draw[line width=2mm,dash pattern=on 1mm off 1mm]
- (0,1) -- (9.99,1) node[midway,above] {Genotype matrix}
- (0,0.6666) -- (9.99,0.6666)
- (0,0.3333) -- (9.99,0.3333)
- (0,0) -- (9.99,0) node[midway,below] {\only<1>{no perfect phylogeny}};
-
- \only<2->
- {
- \begin{scope}[xshift=-0.5mm]
- \draw[red,block] (0,.5) -- (3,.5)
- node[midway,below] {perfect phylogeny}
- (8,.5) -- (9,.5);
-
- \draw[green!50!black,block]
- (3,.5) -- (6,.5)
- node[pos=0.6,below] {perfect phylogeny}
- (6.4,.5) -- (8,.5)
- (9,.5) -- (10,.5);
-
- \draw[blue,block] (6,.5) -- (6.4,.5)
- node[midway,below=5mm] {perfect phylogeny};
- \end{scope}
- }
- \end{tikzpicture}
-\end{frame}
-
-
-\begin{frame}{The formal computational problem.}
- We are interested in the computational complexity of \\
- \alert{the function \alert{$\chi_{\operatorname{PP}}$}}:
- \begin{itemize}
- \item It gets genotype matrices as input.
- \item It maps them to a number $k$.
- \item This number is minimal such that the sites can be
- covered by $k$ sets, each admitting a perfect phylogeny.
- \\
- (We call this a \alert{pp-partition}.)
- \end{itemize}
-\end{frame}
-
-
-\section{Bad News: Hardness Results}
-
-\subsection{Hardness of PP-Partitioning of Haplotype Matrices}
-
-\begin{frame}{Finding pp-partitions of haplotype matrices.}
- We start with a special case:
- \begin{itemize}
- \item The inputs $M$ are \alert{already haplotype matrices}.
- \item The inputs $M$ \alert{do not allow a perfect phylogeny}.
- \item What is $\chi_{\operatorname{PP}}(M)$?
- \end{itemize}
- \begin{example}
- \begin{columns}
- \column{.3\textwidth}
- $M\colon$
- \footnotesize
- \begin{tabular}{cccc}
- 0 & 0 & 0 & 1 \\
- 0 & 1 & 0 & 0 \\
- 1 & 0 & 0 & 0 \\
- 0 & 1 & 0 & 0 \\
- 1 & 0 & 0 & 0 \\
- 0 & 1 & 0 & 1 \\
- 1 & 1 & 0 & 0 \\
- 0 & 0 & 1 & 0 \\
- 1 & 0 & 1 & 0
- \end{tabular}%
- \only<2>
- {%
- \begin{tikzpicture}
- \useasboundingbox (2.9,0);
-
- \draw [red, opacity=0.7,line width=1cm] (1.7 ,1.9) -- (1.7 ,-1.7);
- \draw [blue,opacity=0.7,line width=5mm] (0.85,1.9) -- (0.85,-1.7)
- (2.55,1.9) -- (2.55,-1.7);
- \end{tikzpicture}
- }
- \column{.6\textwidth}
- \begin{overprint}
- \onslide<1>
- No perfect phylogeny is possible.
-
- \onslide<2>
- \textcolor{blue!70!bg}{Perfect phylogeny}
-
- \textcolor{red!70!bg}{Perfect phylogeny}
-
- $\chi_{\operatorname{PP}}(M) = 2$.
-
- \end{overprint}
- \end{columns}
- \end{example}
-\end{frame}
-
-\begin{frame}{Bad news about pp-partitions of haplotype matrices.}
- \begin{theorem}
- Finding \alert{optimal pp-partition of haplotype matrices}\\
- is equivalent to finding \alert{optimal graph colorings}.
- \end{theorem}
-
- \begin{proof}[Proof sketch for first direction]
- \begin{enumerate}
- \item Let $G$ be a graph.
- \item Build a matrix with a column for each vertex of $G$.
- \item For each edge of $G$ add four rows inducing\\the
- submatrix $\left(
- \begin{smallmatrix}
- 0 & 0 \\
- 0 & 1 \\
- 1 & 0 \\
- 1 & 1
- \end{smallmatrix}\right)$.
- \item The submatrix enforces that the columns lie in different
- perfect phylogenies. \qedhere
- \end{enumerate}
- \end{proof}
-\end{frame}
-
-\begin{frame}{Implications for pp-partitions of haplotype matrices.}
- \begin{corollary}
- If $\chi_{\operatorname{PP}}(M) = 2$ for a haplotype matrix $M$,
- we can find an optimal pp-partition in polynomial time.
- \end{corollary}
-
- \begin{corollary}
- Computing $\chi_{\operatorname{PP}}$ for haplotype matrices is
- \begin{itemize}
- \item $\operatorname{NP}$-hard,
- \item not fixed-parameter tractable, unless
- $\operatorname{P}=\operatorname{NP}$,
- \item very hard to approximate.
- \end{itemize}
- \end{corollary}
-\end{frame}
-
-
-\subsection{Hardness of PP-Partitioning of Genotype Matrices}
-
-
-\begin{frame}{Finding pp-partitions of genotype matrices.}
- Now comes the general case:
- \begin{itemize}
- \item The inputs $M$ are \alert{genotype matrices}.
- \item The inputs $M$ \alert{do not allow a perfect phylogeny}.
- \item What is $\chi_{\operatorname{PP}}(M)$?
- \end{itemize}
- \begin{example}
- \begin{columns}
- \column{.3\textwidth}
- $M\colon$
- \footnotesize
- \begin{tabular}{cccc}
- 2 & 2 & 2 & 2 \\
- 1 & 0 & 0 & 0 \\
- 0 & 0 & 0 & 1 \\
- 0 & 0 & 1 & 0 \\
- 0 & 2 & 2 & 0 \\
- 1 & 1 & 0 & 0
- \end{tabular}%
- \only<2>
- {%
- \begin{tikzpicture}
- \useasboundingbox (2.9,0);
-
- \draw [red, opacity=0.7,line width=1cm] (1.7 ,1.3) -- (1.7 ,-1.1);
- \draw [blue,opacity=0.7,line width=5mm] (0.85,1.3) -- (0.85,-1.1)
- (2.55,1.3) -- (2.55,-1.1);
- \end{tikzpicture}
- }
- \column{.6\textwidth}
- \begin{overprint}
- \onslide<1>
- No perfect phylogeny is possible.
-
- \onslide<2>
- \textcolor{blue!70!bg}{Perfect phylogeny}
-
- \textcolor{red!70!bg}{Perfect phylogeny}
-
- $\chi_{\operatorname{PP}}(M) = 2$.
-
- \end{overprint}
- \end{columns}
- \end{example}
-\end{frame}
-
-
-\begin{frame}{Bad news about pp-partitions of haplotype matrices.}
- \begin{theorem}
- Finding \alert{optimal pp-partition of genotype matrices}
- is at least as hard as finding \alert{optimal colorings of
- 3-uniform hypergraphs}.
- \end{theorem}
-
- \begin{proof}[Proof sketch]
- \begin{enumerate}
- \item Let $G$ be a 3-uniform hypergraph.
- \item Build a matrix with a column for each vertex of $G$.
- \item For each hyperedge of $G$ add four rows inducing\\ the submatrix
- $\left(
- \begin{smallmatrix}
- 2 & 2 & 2 \\
- 1 & 0 & 0 \\
- 0 & 1 & 0 \\
- 0 & 0 & 1
- \end{smallmatrix}\right)
- $.
- \item The submatrix enforces that the three columns do not all lie
- in the same perfect phylogeny. \qedhere
- \end{enumerate}
- \end{proof}
-\end{frame}
-
-\begin{frame}{Implications for pp-partitions of genotype matrices.}
- \begin{corollary}
- Even if we know $\chi_{\operatorname{PP}}(M) = 2$ for a genotype matrix $M$,\\
- finding a pp-partition of any fixed size is still
- \begin{itemize}
- \item $\operatorname{NP}$-hard,
- \item not fixed-parameter tractable, unless
- $\operatorname{P}=\operatorname{NP}$,
- \item very hard to approximate.
- \end{itemize}
- \end{corollary}
-\end{frame}
-
-
-\section{Good News: Tractability Results}
-
-\subsection{Perfect Path Phylogenies}
-
-\begin{frame}{Automatic optimal pp-partitioning is hopeless, but\dots}
- \begin{itemize}
- \item The hardness results are \alert{worst-case} results for\\
- \alert{highly artificial inputs}.
- \item \alert{Real biological data} might have special properties
- that make the problem \alert{tractable}.
- \item One such property is that perfect phylogenies are often
- perfect \alert{path} phylogenies:
-
- In HapMap data, in 70\% of the blocks where a perfect phylogeny
- is possible a perfect path phylogeny is also possible.
- \end{itemize}
-\end{frame}
-
-
-\begin{frame}{Example of a perfect path phylogeny.}
- \begin{columns}[t]
- \column{.3\textwidth}
- \begin{exampleblock}{Genotype matrix}
- $G\colon$
- \begin{tabular}{ccc}
- A & B & C \\\hline
- 2 & 2 & 2 \\
- 0 & 2 & 0 \\
- 2 & 0 & 0 \\
- 0 & 2 & 2
- \end{tabular}
- \end{exampleblock}
-
- \column{.3\textwidth}
- \begin{exampleblock}{Haplotype matrix}
- $H\colon$
- \begin{tabular}{ccc}
- A & B & C \\\hline
- 1 & 0 & 0 \\
- 0 & 1 & 1 \\
- 0 & 0 & 0 \\
- 0 & 1 & 0 \\
- 0 & 0 & 0 \\
- 1 & 0 & 0 \\
- 0 & 0 & 0 \\
- 0 & 1 & 1
- \end{tabular}
- \end{exampleblock}
-
- \column{.4\textwidth}
- \begin{exampleblock}{Perfect path phylogeny}
- \begin{center}
- \begin{tikzpicture}[auto,thick]
- \tikzstyle{node}=%
- [%
- minimum size=10pt,%
- inner sep=0pt,%
- outer sep=0pt,%
- ball color=example text.fg,%
- circle%
- ]
-
- \node [node] {} [->]
- child {node [node] {} edge from parent node[swap]{A}}
- child {node [node] {}
- child {node [node] {} edge from parent node{C}}
- edge from parent node{B}
- };
- \end{tikzpicture}
- \end{center}
- \end{exampleblock}
- \end{columns}
-\end{frame}
-
-
-\begin{frame}{The modified formal computational problem.}
- We are interested in the computational complexity of \\
- the function $\chi_{{\operatorname{PPP}}}$:
- \begin{itemize}
- \item It gets genotype matrices as input.
- \item It maps them to a number $k$.
- \item This number is minimal such that the sites can be
- covered by $k$ sets, each admitting a perfect \alert{path} phylogeny.
- \\
- (We call this a ppp-partition.)
- \end{itemize}
-\end{frame}
-
-
-
-\subsection{Tractability of PPP-Partitioning of Genotype Matrices}
-
-\begin{frame}{Good news about ppp-partitions of genotype matrices.}
- \begin{theorem}
- \alert{Optimal ppp-partitions of genotype matrices} can be
- computed in \alert{polynomial time}.
- \end{theorem}
- \begin{block}{Algorithm}
- \begin{enumerate}
- \item Build the following partial order:
- \begin{itemize}
- \item Can one column be above the other in a phylogeny?
- \item Can the columns be the two children of the root of a
- perfect path phylogeny?
- \end{itemize}
- \item Cover the partial order with as few compatible chain pairs
- as possible.
-
- For this, a maximal matching in a special graph needs to be
- computed.
- \end{enumerate}
- \end{block}
- \hyperlink{algorithm<1>}{\beamergotobutton{The algorithm in action}}
- \hypertarget{return}{}
-\end{frame}
-
-\section*{Summary}
-
-\begin{frame}
- \frametitle{Summary}
-
- \begin{itemize}
- \item
- Finding optimal pp-partitions is \alert{intractable}.
- \item
- It is even intractable to find a pp-partition when \alert{just two
- noncontiguous blocks are known to suffice}.
- \item
- For perfect \alert{path} phylogenies, optimal partitions can be
- computed \alert{in polynomial time}.
- \end{itemize}
-\end{frame}
-
-
-\appendix
-
-\section*{Appendix}
-
-\begin{frame}[label=algorithm]{The algorithm in action.}{Computation of
- the partial order.}
- \begin{columns}[t]
- \column{.4\textwidth}
- \begin{exampleblock}{Genotype matrix}
- $G\colon$
- \begin{tabular}{ccccc}
- A & B & C & D & E \\\hline
- 2 & 2 & 2 & 2 & 2 \\
- 0 & 1 & 2 & 1 & 0 \\
- 1 & 0 & 0 & 1 & 2 \\
- 0 & 2 & 2 & 0 & 0
- \end{tabular}
- \end{exampleblock}
- \column{.6\textwidth}
- \begin{exampleblock}{Partial order}
- \begin{tikzpicture}[node distance=15mm]
- \tikzstyle{every node}=
- [%
- fill=green!50!black!20,%
- draw=green!50!black,%
- minimum size=7mm,%
- circle,%
- thick%
- ]
-
- \node (A) {A};
- \node (B) [right of=A] {B};
- \node (C) [below of=B] {C};
- \node (D) [above of=A] {D};
- \node (E) [below of=A] {E};
-
- \path [thick,shorten >=1pt,-stealth'] (A) edge (E)
- (B) edge (C)
- (D) edge (A)
- edge[bend right] (E);
-
- \uncover<2>{
- \path [-,blue,thick](A) edge (B)
- edge (C)
- (B) edge (E)
- (C) edge (E);}
- \end{tikzpicture}
-
- Partial order: \tikz[baseline] \draw[thick,-stealth'] (0pt,.5ex)
- -- (5mm,.5ex);
-
- \uncover<2>{\textcolor{blue}{Compatible as children of root:
- \tikz[baseline] \draw[thick] (0pt,.5ex) -- (5mm,.5ex);}}
- \end{exampleblock}
- \end{columns}
-\end{frame}
-
-\begin{frame}{The algorithm in action.}{The matching in the special graph.}
- \begin{columns}[t]
- \column{.3\textwidth}
- \begin{exampleblock}{Partial order}
- \begin{tikzpicture}[node distance=15mm]
- \tikzstyle{every node}=%
- [%
- fill=green!50!black!20,%
- draw=green!50!black,%
- minimum size=8mm,%
- circle,%
- thick%
- ]
-
- \node (A) {$A$};
- \node (B) [right of=A] {$B$};
- \node (C) [below of=B] {$C$};
- \node (D) [above of=A] {$D$};
- \node (E) [below of=A] {$E$};
-
- \path [thick,shorten >=1pt,-stealth'] (A) edge (E)
- (B) edge (C)
- (D) edge (A)
- edge[bend right] (E);
-
- \path [-,blue,thick](A) edge (B)
- edge (C)
- (B) edge (E)
- (C) edge (E);
-
- \only<3->
- {
- \path[very thick,shorten >=1pt,-stealth',red] (D) edge (A) (B) edge (C);
- \path [-,red,very thick](E) edge (B);
- }
- \end{tikzpicture}
- \end{exampleblock}
- \column{.7\textwidth}
- \begin{exampleblock}{Matching graph}
- \begin{tikzpicture}[node distance=15mm]
- \tikzstyle{every node}=%
- [%
- fill=green!50!black!20,%
- draw=green!50!black,%
- minimum size=8mm,%
- circle,%
- thick,%
- inner sep=0pt%
- ]
-
- \node (A) {$A$};
- \node (B) [right of=A] {$B$};
- \node (C) [below of=B] {$C$};
- \node (D) [above of=A] {$D$};
- \node (E) [below of=A] {$E$};
-
- \begin{scope}[xshift=4.75cm]
- \node (A') {$A'$};
- \node (B') [right of=A'] {$B'$};
- \node (C') [below of=B'] {$C'$};
- \node (D') [above of=A'] {$D'$};
- \node (E') [below of=A'] {$E'$};
- \end{scope}
-
- \path [thick] (A) edge (E')
- (B) edge (C')
- (D) edge (A')
- edge (E');
-
- \path [blue,thick](A') edge (B')
- edge (C')
- (B') edge (E')
- (C') edge (E');
-
- \only<2->
- {
- \path[very thick,red] (D) edge (A')
- (B) edge (C')
- (B') edge (E');
- }
- \end{tikzpicture}
- \end{exampleblock}
- \end{columns}
-
- \medskip
- \uncover<2->{A \alert{maximal matching} in the matching graph
- \uncover<3>{induces\\ \alert{perfect path phylogenies}.}}
-
- \hfill\hyperlink{return}{\beamerreturnbutton{Return}}
-\end{frame}
-
-\end{document}
-
-
papers/PHR/uEA2014/slide/beamer/template.tex
Property changes :
Deleted: svn:eol-style
## -1 +0,0 ##
-native
\ No newline at end of property
Deleted: svn:keywords
## -1 +0,0 ##
-Author Date Id Rev URL
\ No newline at end of property
Index: papers/PHR/uEA2014/slide/beamer/beamer-Warsaw.pdf
===================================================================
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Index: papers/PHR/uEA2014/slide/beamer/beamer-Warsaw.pdf
===================================================================
--- papers/PHR/uEA2014/slide/beamer/beamer-Warsaw.pdf (revision 286)
+++ papers/PHR/uEA2014/slide/beamer/beamer-Warsaw.pdf (nonexistent)
papers/PHR/uEA2014/slide/beamer/beamer-Warsaw.pdf
Property changes :
Deleted: svn:mime-type
## -1 +0,0 ##
-application/octet-stream
\ No newline at end of property