OpenCores
URL https://opencores.org/ocsvn/xulalx25soc/xulalx25soc/trunk

Subversion Repositories xulalx25soc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /xulalx25soc/trunk/rtl
    from Rev 19 to Rev 21
    Reverse comparison

Rev 19 → Rev 21

/legal.v File deleted
/rtclight.v
0,0 → 1,411
///////////////////////////////////////////////////////////////////////////
//
// Filename: rtclight.v
//
// Project: A Wishbone Controlled Real--time Clock Core
//
// Purpose: Implement a real time clock, including alarm, count--down
// timer, stopwatch, variable time frequency, and more.
//
// This is a light-weight version of the RTC found in this directory.
// Unlike the full RTC, this version does not support time hacks, seven
// segment display outputs, or LED's. It is an RTC for an internal core
// only. (That's how I was using it on one of my projects anyway ...)
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
module rtclight(i_clk,
// Wishbone interface
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
// o_wb_ack, o_wb_stb, o_wb_data, // no reads here
// // Button inputs
// i_btn,
// Output registers
o_data, // multiplexed based upon i_wb_addr
// Output controls
o_interrupt,
// A once-per-day strobe on the last clock of the day
o_ppd);
parameter DEFAULT_SPEED = 32'd2814750; // 100 Mhz
input i_clk;
input i_wb_cyc, i_wb_stb, i_wb_we;
input [2:0] i_wb_addr;
input [31:0] i_wb_data;
// input i_btn;
output reg [31:0] o_data;
output wire o_interrupt, o_ppd;
 
reg [21:0] clock;
reg [31:0] stopwatch, ckspeed;
reg [25:0] timer;
wire ck_sel, tm_sel, sw_sel, sp_sel, al_sel;
assign ck_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b000));
assign tm_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b001));
assign sw_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b010));
assign al_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b011));
assign sp_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b100));
 
reg [39:0] ck_counter;
reg ck_carry;
always @(posedge i_clk)
{ ck_carry, ck_counter } <= ck_counter + { 8'h00, ckspeed };
 
wire ck_pps;
reg ck_prepps, ck_ppm, ck_pph, ck_ppd;
reg [7:0] ck_sub;
initial clock = 22'h00000;
assign ck_pps = (ck_carry)&&(ck_prepps);
always @(posedge i_clk)
begin
if (ck_carry)
ck_sub <= ck_sub + 8'h1;
ck_prepps <= (ck_sub == 8'hff);
 
if (ck_pps)
begin // advance the seconds
if (clock[3:0] >= 4'h9)
clock[3:0] <= 4'h0;
else
clock[3:0] <= clock[3:0] + 4'h1;
if (clock[7:0] >= 8'h59)
clock[7:4] <= 4'h0;
else if (clock[3:0] >= 4'h9)
clock[7:4] <= clock[7:4] + 4'h1;
end
ck_ppm <= (clock[7:0] == 8'h59);
 
if ((ck_pps)&&(ck_ppm))
begin // advance the minutes
if (clock[11:8] >= 4'h9)
clock[11:8] <= 4'h0;
else
clock[11:8] <= clock[11:8] + 4'h1;
if (clock[15:8] >= 8'h59)
clock[15:12] <= 4'h0;
else if (clock[11:8] >= 4'h9)
clock[15:12] <= clock[15:12] + 4'h1;
end
ck_pph <= (clock[15:0] == 16'h5959);
 
if ((ck_pps)&&(ck_pph))
begin // advance the hours
if (clock[21:16] >= 6'h23)
begin
clock[19:16] <= 4'h0;
clock[21:20] <= 2'h0;
end else if (clock[19:16] >= 4'h9)
begin
clock[19:16] <= 4'h0;
clock[21:20] <= clock[21:20] + 2'h1;
end else begin
clock[19:16] <= clock[19:16] + 4'h1;
end
end
ck_ppd <= (clock[21:0] == 22'h235959);
 
 
if ((ck_sel)&&(i_wb_we))
begin
if (8'hff != i_wb_data[7:0])
begin
clock[7:0] <= i_wb_data[7:0];
ck_ppm <= (i_wb_data[7:0] == 8'h59);
end
if (8'hff != i_wb_data[15:8])
begin
clock[15:8] <= i_wb_data[15:8];
ck_pph <= (i_wb_data[15:8] == 8'h59);
end
if (6'h3f != i_wb_data[21:16])
clock[21:16] <= i_wb_data[21:16];
if (8'h00 == i_wb_data[7:0])
ck_sub <= 8'h00;
end
end
 
// Clock updates take several clocks, so let's make sure we
// are only looking at a valid clock value before testing it.
reg [21:0] ck_last_clock;
always @(posedge i_clk)
ck_last_clock <= clock[21:0];
 
reg tm_pps, tm_ppm, tm_int;
wire tm_stopped, tm_running, tm_alarm;
assign tm_stopped = ~timer[24];
assign tm_running = timer[24];
assign tm_alarm = timer[25];
reg [23:0] tm_start;
reg [7:0] tm_sub;
initial tm_start = 24'h00;
initial timer = 26'h00;
initial tm_int = 1'b0;
initial tm_pps = 1'b0;
always @(posedge i_clk)
begin
if (ck_carry)
begin
tm_sub <= tm_sub + 8'h1;
tm_pps <= (tm_sub == 8'hff);
end else
tm_pps <= 1'b0;
if ((~tm_alarm)&&(tm_running)&&(tm_pps))
begin // If we are running ...
timer[25] <= 1'b0;
if (timer[23:0] == 24'h00)
timer[25] <= 1'b1;
else if (timer[3:0] != 4'h0)
timer[3:0] <= timer[3:0]-4'h1;
else begin // last digit is a zero
timer[3:0] <= 4'h9;
if (timer[7:4] != 4'h0)
timer[7:4] <= timer[7:4]-4'h1;
else begin // last two digits are zero
timer[7:4] <= 4'h5;
if (timer[11:8] != 4'h0)
timer[11:8] <= timer[11:8]-4'h1;
else begin // last three digits are zero
timer[11:8] <= 4'h9;
if (timer[15:12] != 4'h0)
timer[15:12] <= timer[15:12]-4'h1;
else begin
timer[15:12] <= 4'h5;
if (timer[19:16] != 4'h0)
timer[19:16] <= timer[19:16]-4'h1;
else begin
//
timer[19:16] <= 4'h9;
timer[23:20] <= timer[23:20]-4'h1;
end
end
end
end
end
end
 
if((~tm_alarm)&&(tm_running))
begin
timer[25] <= (timer[23:0] == 24'h00);
tm_int <= (timer[23:0] == 24'h00);
end else tm_int <= 1'b0;
if (tm_alarm)
timer[24] <= 1'b0;
 
if ((tm_sel)&&(i_wb_we)&&(tm_running)) // Writes while running
// Only allowed to stop the timer, nothing more
timer[24] <= i_wb_data[24];
else if ((tm_sel)&&(i_wb_we)&&(tm_stopped)) // Writes while off
begin
timer[24] <= i_wb_data[24];
if ((timer[24])||(i_wb_data[24]))
timer[25] <= 1'b0;
if (i_wb_data[23:0] != 24'h0000)
begin
timer[23:0] <= i_wb_data[23:0];
tm_start <= i_wb_data[23:0];
tm_sub <= 8'h00;
end else if (timer[23:0] == 24'h00)
begin // Resetting timer to last valid timer start val
timer[23:0] <= tm_start;
tm_sub <= 8'h00;
end
// Any write clears the alarm
timer[25] <= 1'b0;
end
end
 
//
// Stopwatch functionality
//
// Setting bit '0' starts the stop watch, clearing it stops it.
// Writing to the register with bit '1' high will clear the stopwatch,
// and return it to zero provided that the stopwatch is stopped either
// before or after the write. Hence, writing a '2' to the device
// will always stop and clear it, whereas writing a '3' to the device
// will only clear it if it was already stopped.
reg sw_pps, sw_ppm, sw_pph;
reg [7:0] sw_sub;
wire sw_running;
assign sw_running = stopwatch[0];
initial stopwatch = 32'h00000;
always @(posedge i_clk)
begin
sw_pps <= 1'b0;
if (sw_running)
begin
if (ck_carry)
begin
sw_sub <= sw_sub + 8'h1;
sw_pps <= (sw_sub == 8'hff);
end
end
 
stopwatch[7:1] <= sw_sub[7:1];
 
if (sw_pps)
begin // Second hand
if (stopwatch[11:8] >= 4'h9)
stopwatch[11:8] <= 4'h0;
else
stopwatch[11:8] <= stopwatch[11:8] + 4'h1;
 
if (stopwatch[15:8] >= 8'h59)
stopwatch[15:12] <= 4'h0;
else if (stopwatch[11:8] >= 4'h9)
stopwatch[15:12] <= stopwatch[15:12] + 4'h1;
sw_ppm <= (stopwatch[15:8] == 8'h59);
end else sw_ppm <= 1'b0;
 
if (sw_ppm)
begin // Minutes
if (stopwatch[19:16] >= 4'h9)
stopwatch[19:16] <= 4'h0;
else
stopwatch[19:16] <= stopwatch[19:16]+4'h1;
 
if (stopwatch[23:16] >= 8'h59)
stopwatch[23:20] <= 4'h0;
else if (stopwatch[19:16] >= 4'h9)
stopwatch[23:20] <= stopwatch[23:20]+4'h1;
sw_pph <= (stopwatch[23:16] == 8'h59);
end else sw_pph <= 1'b0;
 
if (sw_pph)
begin // And hours
if (stopwatch[27:24] >= 4'h9)
stopwatch[27:24] <= 4'h0;
else
stopwatch[27:24] <= stopwatch[27:24]+4'h1;
 
if((stopwatch[27:24] >= 4'h9)&&(stopwatch[31:28] < 4'hf))
stopwatch[31:28] <= stopwatch[27:24]+4'h1;
end
 
if ((sw_sel)&&(i_wb_we))
begin
stopwatch[0] <= i_wb_data[0];
if((i_wb_data[1])&&((~stopwatch[0])||(~i_wb_data[0])))
begin
stopwatch[31:1] <= 31'h00;
sw_sub <= 8'h00;
sw_pps <= 1'b0;
sw_ppm <= 1'b0;
sw_pph <= 1'b0;
end
end
end
 
//
// The alarm code
//
// Set the alarm register to the time you wish the board to "alarm".
// The "alarm" will take place once per day at that time. At that
// time, the RTC code will generate a clock interrupt, and the CPU/host
// can come and see that the alarm tripped.
//
//
reg [21:0] alarm_time;
reg al_int, // The alarm interrupt line
al_enabled, // Whether the alarm is enabled
al_tripped; // Whether the alarm has tripped
initial al_enabled= 1'b0;
initial al_tripped= 1'b0;
always @(posedge i_clk)
begin
if ((al_sel)&&(i_wb_we))
begin
// Only adjust the alarm hours if the requested hours
// are valid. This allows writes to the register,
// without a prior read, to leave these configuration
// bits alone.
if (i_wb_data[21:16] != 6'h3f)
alarm_time[21:16] <= i_wb_data[21:16];
// Here's the same thing for the minutes: only adjust
// the alarm minutes if the new bits are not all 1's.
if (i_wb_data[15:8] != 8'hff)
alarm_time[15:8] <= i_wb_data[15:8];
// Here's the same thing for the seconds: only adjust
// the alarm minutes if the new bits are not all 1's.
if (i_wb_data[7:0] != 8'hff)
alarm_time[7:0] <= i_wb_data[7:0];
al_enabled <= i_wb_data[24];
// Reset the alarm if a '1' is written to the tripped
// register, or if the alarm is disabled.
if ((i_wb_data[25])||(~i_wb_data[24]))
al_tripped <= 1'b0;
end
 
al_int <= 1'b0;
if ((ck_last_clock != alarm_time)&&(clock[21:0] == alarm_time)
&&(al_enabled))
begin
al_tripped <= 1'b1;
al_int <= 1'b1;
end
end
 
//
// The ckspeed register is equal to 2^48 divded by the number of
// clock ticks you expect per second. Adjust high for a slower
// clock, lower for a faster clock. In this fashion, a single
// real time clock RTL file can handle tracking the clock in any
// device. Further, because this is only the lower 32 bits of a
// 48 bit counter per seconds, the clock jitter is kept below
// 1 part in 65 thousand.
//
initial ckspeed = DEFAULT_SPEED; // 2af31e = 2^48 / 100e6 MHz
// In the case of verilator, comment the above and uncomment the line
// below. The clock constant below is "close" to simulation time,
// meaning that my verilator simulation is running about 300x slower
// than board time.
// initial ckspeed = 32'd786432000;
always @(posedge i_clk)
if ((sp_sel)&&(i_wb_we))
ckspeed <= i_wb_data;
 
assign o_interrupt = tm_int || al_int;
 
// A once-per day strobe, on the last second of the day so that the
// the next clock is the first clock of the day. This is useful for
// connecting this module to a year/month/date date/calendar module.
assign o_ppd = (ck_ppd)&&(ck_pps);
 
always @(posedge i_clk)
case(i_wb_addr[2:0])
3'b000: o_data <= { 10'h0, ck_last_clock };
3'b001: o_data <= { 6'h00, timer };
3'b010: o_data <= stopwatch;
3'b011: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time };
3'b100: o_data <= ckspeed;
default: o_data <= 32'h000;
endcase
 
endmodule
/cpu/wbarbiter.v
0,0 → 1,184
///////////////////////////////////////////////////////////////////////////
//
// Filename: wbarbiter.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: At some point in time, I might wish to have two masters connect
// to the same wishbone bus. As an example, I might wish to have
// both the instruction fetch and the load/store operators
// of my Zip CPU access the the same bus. How shall they both
// get access to the same resource? This module allows the
// wishbone interfaces from two sources to drive the bus, while
// guaranteeing that only one drives the bus at a time.
//
// The core logic works like this:
//
// 1. If 'A' or 'B' asserts the o_cyc line, a bus cycle will begin,
// with acccess granted to whomever requested it.
// 2. If both 'A' and 'B' assert o_cyc at the same time, only 'A'
// will be granted the bus. (If the alternating parameter
// is set, A and B will alternate who gets the bus in
// this case.)
// 3. The bus will remain owned by whomever the bus was granted to
// until they deassert the o_cyc line.
// 4. At the end of a bus cycle, o_cyc is guaranteed to be
// deasserted (low) for one clock.
// 5. On the next clock, bus arbitration takes place again. If
// 'A' requests the bus, no matter how long 'B' was
// waiting, 'A' will then be granted the bus. (Unless
// again the alternating parameter is set, then the
// access is guaranteed to switch to B.)
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
`define WBA_ALTERNATING
module wbarbiter(i_clk, i_rst,
// Bus A
i_a_adr, i_a_dat, i_a_we, i_a_stb, i_a_cyc, o_a_ack, o_a_stall, o_a_err,
// Bus B
i_b_adr, i_b_dat, i_b_we, i_b_stb, i_b_cyc, o_b_ack, o_b_stall, o_b_err,
// Both buses
o_adr, o_dat, o_we, o_stb, o_cyc, i_ack, i_stall, i_err);
// 18 bits will address one GB, 4 bytes at a time.
// 19 bits will allow the ability to address things other than just
// the 1GB of memory we are expecting.
parameter DW=32, AW=19;
// Wishbone doesn't use an i_ce signal. While it could, they dislike
// what it would (might) do to the synchronous reset signal, i_rst.
input i_clk, i_rst;
input [(AW-1):0] i_a_adr, i_b_adr;
input [(DW-1):0] i_a_dat, i_b_dat;
input i_a_we, i_a_stb, i_a_cyc;
input i_b_we, i_b_stb, i_b_cyc;
output wire o_a_ack, o_b_ack, o_a_stall, o_b_stall,
o_a_err, o_b_err;
output wire [(AW-1):0] o_adr;
output wire [(DW-1):0] o_dat;
output wire o_we, o_stb, o_cyc;
input i_ack, i_stall, i_err;
 
// All the fancy stuff here is done with the three primary signals:
// o_cyc
// w_a_owner
// w_b_owner
// These signals are helped by r_cyc, r_a_owner, and r_b_owner.
// If you understand these signals, all else will fall into place.
 
// r_cyc just keeps track of the last o_cyc value. That way, on
// the next clock we can tell if we've had one non-cycle before
// starting another cycle. Specifically, no new cycles will be
// allowed to begin unless r_cyc=0.
reg r_cyc;
always @(posedge i_clk)
if (i_rst)
r_cyc <= 1'b0;
else
r_cyc <= o_cyc;
 
// Go high immediately (new cycle) if ...
// Previous cycle was low and *someone* is requesting a bus cycle
// Go low immadiately if ...
// We were just high and the owner no longer wants the bus
// WISHBONE Spec recommends no logic between a FF and the o_cyc
// This violates that spec. (Rec 3.15, p35)
assign o_cyc = ((~r_cyc)&&((i_a_cyc)||(i_b_cyc))) || ((r_cyc)&&((w_a_owner)||(w_b_owner)));
 
 
// Register keeping track of the last owner, wire keeping track of the
// current owner allowing us to not lose a clock in arbitrating the
// first clock of the bus cycle
reg r_a_owner, r_b_owner;
wire w_a_owner, w_b_owner;
`ifdef WBA_ALTERNATING
reg r_a_last_owner;
// Stall must be asserted on the same cycle the input master asserts
// the bus, if the bus isn't granted to him.
assign o_a_stall = (w_a_owner) ? i_stall : 1'b1;
assign o_b_stall = (w_b_owner) ? i_stall : 1'b1;
 
`endif
always @(posedge i_clk)
if (i_rst)
begin
r_a_owner <= 1'b0;
r_b_owner <= 1'b0;
end else begin
r_a_owner <= w_a_owner;
r_b_owner <= w_b_owner;
`ifdef WBA_ALTERNATING
if (w_a_owner)
r_a_last_owner <= 1'b1;
else if (w_b_owner)
r_a_last_owner <= 1'b0;
`endif
end
//
// If you are the owner, retain ownership until i_x_cyc is no
// longer asserted. Likewise, you cannot become owner until o_cyc
// is de-asserted for one cycle.
//
// 'A' is given arbitrary priority over 'B'
// 'A' may own the bus only if he wants it. When 'A' drops i_a_cyc,
// o_cyc must drop and so must w_a_owner on the same cycle.
// However, when 'A' asserts i_a_cyc, he can only capture the bus if
// it's had an idle cycle.
// The same is true for 'B' with one exception: if both contend for the
// bus on the same cycle, 'A' arbitrarily wins.
`ifdef WBA_ALTERNATING
assign w_a_owner = (i_a_cyc) // if A requests ownership, and either
&& ((r_a_owner) // A has already been recognized or
|| ((~r_cyc) // the bus is free and
&&((~i_b_cyc) // B has not requested, or if he
||(~r_a_last_owner)) )); // has, it's A's turn
assign w_b_owner = (i_b_cyc)&& ((r_b_owner) || ((~r_cyc)&&((~i_a_cyc)||(r_a_last_owner)) ));
`else
assign w_a_owner = (i_a_cyc)&& ((r_a_owner) || (~r_cyc) );
assign w_b_owner = (i_b_cyc)&& ((r_b_owner) || ((~r_cyc)&&(~i_a_cyc)) );
`endif
 
// Realistically, if neither master owns the bus, the output is a
// don't care. Thus we trigger off whether or not 'A' owns the bus.
// If 'B' owns it all we care is that 'A' does not. Likewise, if
// neither owns the bus than the values on the various lines are
// irrelevant.
assign o_adr = (w_a_owner) ? i_a_adr : i_b_adr;
assign o_dat = (w_a_owner) ? i_a_dat : i_b_dat;
assign o_we = (w_a_owner) ? i_a_we : i_b_we;
assign o_stb = (o_cyc) && ((w_a_owner) ? i_a_stb : i_b_stb);
 
// We cannot allow the return acknowledgement to ever go high if
// the master in question does not own the bus. Hence we force it
// low if the particular master doesn't own the bus.
assign o_a_ack = (w_a_owner) ? i_ack : 1'b0;
assign o_b_ack = (w_b_owner) ? i_ack : 1'b0;
 
//
//
assign o_a_err = (w_a_owner) ? i_err : 1'b0;
assign o_b_err = (w_b_owner) ? i_err : 1'b0;
 
endmodule
 
/cpu/div.v
0,0 → 1,134
///////////////////////////////////////////////////////////////////////////////
//
// Filename: div.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: Provide an Integer divide capability to the Zip CPU.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////////
//
// `include "cpudefs.v"
//
module div(i_clk, i_rst, i_wr, i_signed, i_numerator, i_denominator,
o_busy, o_valid, o_err, o_quotient, o_flags);
parameter BW=32, LGBW = 5;
input i_clk, i_rst;
// Input parameters
input i_wr, i_signed;
input [(BW-1):0] i_numerator, i_denominator;
// Output parameters
output reg o_busy, o_valid, o_err;
output reg [(BW-1):0] o_quotient;
output wire [3:0] o_flags;
 
reg [(2*BW-2):0] r_divisor;
reg [(BW-1):0] r_dividend;
wire [(BW):0] diff; // , xdiff[(BW-1):0];
assign diff = r_dividend - r_divisor[(BW-1):0];
// assign xdiff= r_dividend - { 1'b0, r_divisor[(BW-1):1] };
 
reg r_sign, pre_sign, r_z, r_c;
reg [(LGBW):0] r_bit;
 
always @(posedge i_clk)
if (i_rst)
begin
o_busy <= 1'b0;
end else if (i_wr)
begin
o_busy <= 1'b1;
end else if ((o_busy)&&((r_bit == 6'h0)||(o_err)))
o_busy <= 1'b0;
// else busy is zero and stays at zero
 
always @(posedge i_clk)
if ((i_rst)||(i_wr))
o_valid <= 1'b0;
else if (o_busy)
begin
if ((r_bit == 6'h0)||(o_err))
o_valid <= (o_err)||(~r_sign);
end else if (r_sign)
begin
// if (o_err), o_valid is already one.
// if not, o_valid has not yet become one.
o_valid <= (~o_err); // 1'b1;
end else
o_valid <= 1'b0;
 
always @(posedge i_clk)
if((i_rst)||(o_valid))
o_err <= 1'b0;
else if (o_busy)
o_err <= (r_divisor == 0);
 
always @(posedge i_clk)
if (i_wr)
begin
o_quotient <= 0;
// r_bit <= { 1'b1, {(LGBW){1'b0}} };
r_bit <= { 1'b0, {(LGBW){1'b1}} };
r_divisor <= { i_denominator, {(BW-1){1'b0}} };
r_dividend <= i_numerator;
r_sign <= 1'b0;
pre_sign <= i_signed;
r_z <= 1'b1;
end else if (pre_sign)
begin
// r_bit <= r_bit - 1;
r_sign <= ((r_divisor[(2*BW-2)])^(r_dividend[(BW-1)]));;
if (r_dividend[BW-1])
r_dividend <= -r_dividend;
if (r_divisor[(2*BW-2)])
r_divisor[(2*BW-2):(BW-1)] <= -r_divisor[(2*BW-2):(BW-1)];
pre_sign <= 1'b0;
end else if (o_busy)
begin
r_bit <= r_bit + {(LGBW+1){1'b1}}; // r_bit = r_bit - 1;
r_divisor <= { 1'b0, r_divisor[(2*BW-2):1] };
if (|r_divisor[(2*BW-2):(BW)])
begin
end else if (diff[BW])
begin
end else begin
r_dividend <= diff[(BW-1):0];
o_quotient[r_bit[(LGBW-1):0]] <= 1'b1;
r_z <= 1'b0;
end
end else if (r_sign)
begin
r_sign <= 1'b0;
o_quotient <= -o_quotient;
end
 
// Set Carry on an exact divide
wire w_n;
always @(posedge i_clk)
r_c <= (o_busy)&&((diff == 0)||(r_dividend == 0));
assign w_n = o_quotient[(BW-1)];
 
assign o_flags = { 1'b0, w_n, r_c, r_z };
endmodule
/cpu/wbwatchdog.v
0,0 → 1,76
///////////////////////////////////////////////////////////////////////////
//
// Filename: wbwatchdog.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: A Zip timer, redesigned to be a bus watchdog
//
// This is a **really** stripped down Zip Timer. All options for external
// control have been removed. This timer may be reset, and ... that's
// about it. The goal is that this stripped down timer be used as a bus
// watchdog element. Even at that, it's not really fully featured. The
// rest of the important features can be found in the zipsystem module.
//
// As a historical note, the wishbone watchdog timer began as a normal
// timer, with some fixed inputs. This makes sense, if you think about it:
// if the goal is to interrupt a stalled wishbone transaction by inserting
// a bus error, then you can't use the bus to set it up or configure it
// simply because the bus in question is ... well, unreliable. You're
// trying to make it reliable.
//
// The problem with using the ziptimer in a stripped down implementation
// was that the fixed inputs caused the synthesis tool to complain about
// the use of registers values would never change. This solves that
// problem by explicitly removing the cruft that would otherwise
// just create synthesis warnings and errors.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module wbwatchdog(i_clk, i_rst, i_ce, i_timeout, o_int);
parameter BW = 32;
input i_clk, i_rst, i_ce;
// Inputs (these were at one time wishbone controlled ...)
input [(BW-1):0] i_timeout;
// Interrupt line
output reg o_int;
 
reg [(BW-1):0] r_value;
initial r_value = 0;
always @(posedge i_clk)
if (i_rst)
r_value <= i_timeout[(BW-1):0];
else if ((i_ce)&&(~o_int))
r_value <= r_value + {(BW){1'b1}}; // r_value - 1;
 
// Set the interrupt on our last tick.
initial o_int = 1'b0;
always @(posedge i_clk)
if ((i_rst)||(~i_ce))
o_int <= 1'b0;
else
o_int <= (r_value == { {(BW-1){1'b0}}, 1'b1 });
 
endmodule
/cpu/pfcache.v
0,0 → 1,233
////////////////////////////////////////////////////////////////////////////////
//
// Filename: pfcache.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: Keeping our CPU fed with instructions, at one per clock and
// with no stalls. An unusual feature of this cache is the
// requirement that the entire cache may be cleared (if necessary).
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
module pfcache(i_clk, i_rst, i_new_pc, i_clear_cache,
// i_early_branch, i_from_addr,
i_stall_n, i_pc, o_i, o_pc, o_v,
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data,
o_illegal);
parameter LGCACHELEN = 8, ADDRESS_WIDTH=24,
CACHELEN=(1<<LGCACHELEN), BUSW=32, AW=ADDRESS_WIDTH,
CW=LGCACHELEN, PW=LGCACHELEN-5;
input i_clk, i_rst, i_new_pc;
input i_clear_cache;
input i_stall_n;
input [(AW-1):0] i_pc;
output reg [(BUSW-1):0] o_i;
output reg [(AW-1):0] o_pc;
output wire o_v;
//
output reg o_wb_cyc, o_wb_stb;
output wire o_wb_we;
output reg [(AW-1):0] o_wb_addr;
output wire [(BUSW-1):0] o_wb_data;
//
input i_wb_ack, i_wb_stall, i_wb_err;
input [(BUSW-1):0] i_wb_data;
//
output reg o_illegal;
 
// Fixed bus outputs: we read from the bus only, never write.
// Thus the output data is ... irrelevant and don't care. We set it
// to zero just to set it to something.
assign o_wb_we = 1'b0;
assign o_wb_data = 0;
 
reg r_v;
(* ram_style = "distributed" *)
reg [(BUSW-1):0] cache [0:((1<<CW)-1)];
reg [(AW-CW-1):0] tags [0:((1<<(CW-PW))-1)];
reg [((1<<(CW-PW))-1):0] vmask;
 
reg [(AW-1):0] lastpc;
reg [(CW-1):0] rdaddr;
reg [(AW-1):CW] tagval;
wire [(AW-1):PW] lasttag;
reg [(AW-1):PW] illegal_cache;
 
initial o_i = 32'h76_00_00_00; // A NOOP instruction
initial o_pc = 0;
always @(posedge i_clk)
if (~r_v)
begin
o_i <= cache[lastpc[(CW-1):0]];
o_pc <= lastpc;
end else if ((i_stall_n)||(i_new_pc))
begin
o_i <= cache[i_pc[(CW-1):0]];
o_pc <= i_pc;
end
 
initial tagval = 0;
always @(posedge i_clk)
if((o_wb_cyc)&&(rdaddr[(PW-1):0]=={(PW){1'b1}})
&&(i_wb_ack)&&(~i_wb_err))
// Our tag value changes any time we finish reading a
// new cache line
tagval <= o_wb_addr[(AW-1):CW];
else if ((i_stall_n)&&(~o_wb_cyc))
// Otherwise, as long as we're not reading new stuff,
// the tag line changes any time the pipeline steps
// forwards. Our purpose here is primarily just to
// catch sudden changes. The result is that walking
// from one cache line to the next will cost a clock.
tagval <= tags[i_pc[(CW-1):PW]];
 
// i_pc will only increment when everything else isn't stalled, thus
// we can set it without worrying about that. Doing this enables
// us to work in spite of stalls. For example, if the next address
// isn't valid, but the decoder is stalled, get the next address
// anyway.
initial lastpc = 0;
always @(posedge i_clk)
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
lastpc <= i_pc;
 
assign lasttag = lastpc[(AW-1):PW];
// initial lasttag = 0;
// always @(posedge i_clk)
// if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
// lasttag <= i_pc[(AW-1):PW];
 
wire r_v_from_pc, r_v_from_last;
assign r_v_from_pc = ((i_pc[(AW-1):PW] == lasttag)
&&(tagval == i_pc[(AW-1):CW])
&&(vmask[i_pc[(CW-1):PW]]));
assign r_v_from_last = (
//(lastpc[(AW-1):PW] == lasttag)&&
(tagval == lastpc[(AW-1):CW])
&&(vmask[lastpc[(CW-1):PW]]));
 
reg [1:0] delay;
 
initial delay = 2'h3;
initial r_v = 1'b0;
always @(posedge i_clk)
if ((i_rst)||(i_clear_cache)||(i_new_pc)||((r_v)&&(i_stall_n)))
begin
r_v <= r_v_from_pc;
delay <= 2'h2;
end else if (~r_v) begin // Otherwise, r_v was true and we were
r_v <= r_v_from_last; // stalled, hence only if ~r_v
if (o_wb_cyc)
delay <= 2'h2;
else if (delay != 0)
delay <= delay + 2'b11; // i.e. delay -= 1;
end
 
assign o_v = (r_v)&&(~i_new_pc);
 
 
initial o_wb_cyc = 1'b0;
initial o_wb_stb = 1'b0;
initial o_wb_addr = {(AW){1'b0}};
initial rdaddr = 0;
always @(posedge i_clk)
if ((i_rst)||(i_clear_cache))
begin
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
end else if (o_wb_cyc)
begin
if ((o_wb_stb)&&(~i_wb_stall))
begin
if (o_wb_addr[(PW-1):0] == {(PW){1'b1}})
o_wb_stb <= 1'b0;
else
o_wb_addr[(PW-1):0] <= o_wb_addr[(PW-1):0]+1;
end
 
if (i_wb_ack)
begin
rdaddr <= rdaddr + 1;
if (rdaddr[(PW-1):0] == {(PW){1'b1}})
tags[o_wb_addr[(CW-1):PW]] <= o_wb_addr[(AW-1):CW];
end
 
if (((i_wb_ack)&&(rdaddr[(PW-1):0]=={(PW){1'b1}}))||(i_wb_err))
o_wb_cyc <= 1'b0;
 
// else if (rdaddr[(PW-1):1] == {(PW-1){1'b1}})
// tags[lastpc[(CW-1):PW]] <= lastpc[(AW-1):CW];
 
end else if ((~r_v)&&(delay==0)
&&((tagval != lastpc[(AW-1):CW])
||(~vmask[lastpc[(CW-1):PW]]))
&&(~o_illegal))
begin
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
o_wb_addr <= { lastpc[(AW-1):PW], {(PW){1'b0}} };
rdaddr <= { lastpc[(CW-1):PW], {(PW){1'b0}} };
end
 
// Can't initialize an array, so leave cache uninitialized
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_ack))
cache[rdaddr] <= i_wb_data;
 
// VMask ... is a section loaded?
initial vmask = 0;
always @(posedge i_clk)
if ((i_rst)||(i_clear_cache))
vmask <= 0;
else if ((~r_v)&&(tagval != lastpc[(AW-1):CW])&&(delay == 0))
vmask[lastpc[(CW-1):PW]] <= 1'b0;
else if ((o_wb_cyc)&&(i_wb_ack)&&(rdaddr[(PW-1):0] == {(PW){1'b1}}))
vmask[rdaddr[(CW-1):PW]] <= 1'b1;
 
reg illegal_valid;
initial illegal_cache = 0;
initial illegal_valid = 0;
always @(posedge i_clk)
if ((i_rst)||(i_clear_cache))
begin
illegal_cache <= 0;
illegal_valid <= 0;
end else if ((o_wb_cyc)&&(i_wb_err))
begin
illegal_cache <= lastpc[(AW-1):PW];
illegal_valid <= 1'b1;
end
 
initial o_illegal = 1'b0;
always @(posedge i_clk)
if ((i_rst)||(i_clear_cache))
o_illegal <= 1'b0;
else
o_illegal <= (illegal_valid)
&&(tagval == i_pc[(AW-1):CW])
&&(illegal_cache == i_pc[(AW-1):PW]);
 
endmodule
/cpu/icontrol.v
0,0 → 1,153
////////////////////////////////////////////////////////////////////////////////
//
// Filename: icontrol.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: An interrupt controller, for managing many interrupt sources.
//
// This interrupt controller started from the question of how best to
// design a simple interrupt controller. As such, it has a few nice
// qualities to it:
// 1. This is wishbone compliant
// 2. It sits on a 32-bit wishbone data bus
// 3. It only consumes one address on that wishbone bus.
// 4. There is no extra delays associated with reading this
// device.
// 5. Common operations can all be done in one clock.
//
// So, how shall this be used? First, the 32-bit word is broken down as
// follows:
//
// Bit 31 - This is the global interrupt enable bit. If set, interrupts
// will be generated and passed on as they come in.
// Bits 16-30 - These are specific interrupt enable lines. If set,
// interrupts from source (bit#-16) will be enabled.
// To set this line and enable interrupts from this source, write
// to the register with this bit set and the global enable set.
// To disable this line, write to this register with global enable
// bit not set, but this bit set. (Writing a zero to any of these
// bits has no effect, either setting or unsetting them.)
// Bit 15 - This is the any interrupt pin. If any interrupt is pending,
// this bit will be set.
// Bits 0-14 - These are interrupt bits. When set, an interrupt is
// pending from the corresponding source--regardless of whether
// it was enabled. (If not enabled, it won't generate an
// interrupt, but it will still register here.) To clear any
// of these bits, write a '1' to the corresponding bit. Writing
// a zero to any of these bits has no effect.
//
// The peripheral also sports a parameter, IUSED, which can be set
// to any value between 1 and (buswidth/2-1, or) 15 inclusive. This will
// be the number of interrupts handled by this routine. (Without the
// parameter, Vivado was complaining about unused bits. With it, we can
// keep the complaints down and still use the routine).
//
// To get access to more than 15 interrupts, chain these together, so
// that one interrupt controller device feeds another.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
module icontrol(i_clk, i_reset, i_wr, i_proc_bus, o_proc_bus,
i_brd_ints, o_interrupt);
parameter IUSED = 15;
input i_clk, i_reset;
input i_wr;
input [31:0] i_proc_bus;
output wire [31:0] o_proc_bus;
input [(IUSED-1):0] i_brd_ints;
output wire o_interrupt;
 
reg [(IUSED-1):0] r_int_state;
reg [(IUSED-1):0] r_int_enable;
wire [(IUSED-1):0] nxt_int_state;
reg r_any, r_interrupt, r_gie;
 
assign nxt_int_state = (r_int_state|i_brd_ints);
initial r_int_state = 0;
always @(posedge i_clk)
if (i_reset)
r_int_state <= 0;
else if (i_wr)
r_int_state <= nxt_int_state & (~i_proc_bus[(IUSED-1):0]);
else
r_int_state <= nxt_int_state;
initial r_int_enable = 0;
always @(posedge i_clk)
if (i_reset)
r_int_enable <= 0;
else if ((i_wr)&&(i_proc_bus[31]))
r_int_enable <= r_int_enable | i_proc_bus[(16+IUSED-1):16];
else if ((i_wr)&&(~i_proc_bus[31]))
r_int_enable <= r_int_enable & (~ i_proc_bus[(16+IUSED-1):16]);
 
initial r_gie = 1'b0;
always @(posedge i_clk)
if (i_reset)
r_gie <= 1'b0;
else if (i_wr)
r_gie <= i_proc_bus[31];
 
initial r_any = 1'b0;
always @(posedge i_clk)
r_any <= ((r_int_state & r_int_enable) != 0);
initial r_interrupt = 1'b0;
always @(posedge i_clk)
r_interrupt <= r_gie & r_any;
 
generate
if (IUSED < 15)
begin
assign o_proc_bus = {
r_gie, { {(15-IUSED){1'b0}}, r_int_enable },
r_any, { {(15-IUSED){1'b0}}, r_int_state } };
end else begin
assign o_proc_bus = { r_gie, r_int_enable, r_any, r_int_state };
end endgenerate
 
/*
reg int_condition;
initial int_condition = 1'b0;
initial o_interrupt_strobe = 1'b0;
always @(posedge i_clk)
if (i_reset)
begin
int_condition <= 1'b0;
o_interrupt_strobe <= 1'b0;
end else if (~r_interrupt) // This might end up generating
begin // many, many, (wild many) interrupts
int_condition <= 1'b0;
o_interrupt_strobe <= 1'b0;
end else if ((~int_condition)&&(r_interrupt))
begin
int_condition <= 1'b1;
o_interrupt_strobe <= 1'b1;
end else
o_interrupt_strobe <= 1'b0;
*/
 
assign o_interrupt = r_interrupt;
 
endmodule
/cpu/wbdblpriarb.v
0,0 → 1,142
///////////////////////////////////////////////////////////////////////////
//
// Filename: wbdblpriarb.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This should almost be identical to the priority arbiter, save
// for a simple diffence: it allows the arbitration of two
// separate wishbone buses. The purpose of this is to push the address
// resolution back one cycle, so that by the first clock visible to this
// core, it is known which of two parts of the bus the desired address
// will be on, save that we still use the arbiter since the underlying
// device doesn't know that there are two wishbone buses.
//
// So at this point we've deviated from the WB spec somewhat, by allowing
// two CYC and two STB lines. Everything else is the same. This allows
// (in this case the Zip CPU) to determine whether or not the access
// will be to the local ZipSystem bus or the external WB bus on the clock
// before the local bus access, otherwise peripherals were needing to do
// multiple device selection comparisons/test within a clock: 1) is this
// for the local or external bus, and 2) is this referencing me as a
// peripheral. This then caused the ZipCPU to fail all timing specs.
// By creating the two pairs of lines, CYC_A/STB_A and CYC_B/STB_B, the
// determination of local vs external can be made one clock earlier
// where there's still time for the logic, and the second comparison
// now has time to complete.
//
// So let me try to explain this again. To use this arbiter, one of the
// two masters sets CYC and STB before, only the master determines which
// of two address spaces the CYC and STB apply to before the clock and
// only sets the appropriate CYC and STB lines. Then, on the clock tick,
// the arbiter determines who gets *both* busses, as they both share every
// other WB line. Thus, only one of CYC_A and CYC_B going out will ever
// be high at a given time.
//
// Hopefully this makes more sense than it sounds. If not, check out the
// code below for a better explanation.
//
// 20150919 -- Added supported for the WB error signal.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module wbdblpriarb(i_clk, i_rst,
// Bus A
i_a_cyc_a,i_a_cyc_b,i_a_stb_a,i_a_stb_b,i_a_we,i_a_adr, i_a_dat, o_a_ack, o_a_stall, o_a_err,
// Bus B
i_b_cyc_a,i_b_cyc_b,i_b_stb_a,i_b_stb_b,i_b_we,i_b_adr, i_b_dat, o_b_ack, o_b_stall, o_b_err,
// Both buses
o_cyc_a, o_cyc_b, o_stb_a, o_stb_b, o_we, o_adr, o_dat,
i_ack, i_stall, i_err);
parameter DW=32, AW=32;
// Wishbone doesn't use an i_ce signal. While it could, they dislike
// what it would (might) do to the synchronous reset signal, i_rst.
input i_clk, i_rst;
// Bus A
input i_a_cyc_a, i_a_cyc_b, i_a_stb_a, i_a_stb_b, i_a_we;
input [(AW-1):0] i_a_adr;
input [(DW-1):0] i_a_dat;
output wire o_a_ack, o_a_stall, o_a_err;
// Bus B
input i_b_cyc_a, i_b_cyc_b, i_b_stb_a, i_b_stb_b, i_b_we;
input [(AW-1):0] i_b_adr;
input [(DW-1):0] i_b_dat;
output wire o_b_ack, o_b_stall, o_b_err;
//
output wire o_cyc_a,o_cyc_b, o_stb_a, o_stb_b, o_we;
output wire [(AW-1):0] o_adr;
output wire [(DW-1):0] o_dat;
input i_ack, i_stall, i_err;
 
// All of our logic is really captured in the 'r_a_owner' register.
// This register determines who owns the bus. If no one is requesting
// the bus, ownership goes to A on the next clock. Otherwise, if B is
// requesting the bus and A is not, then ownership goes to not A on
// the next clock. (Sounds simple ...)
//
// The CYC logic is here to make certain that, by the time we determine
// who the bus owner is, we can do so based upon determined criteria.
assign o_cyc_a = (~i_rst)&&((r_a_owner) ? i_a_cyc_a : i_b_cyc_a);
assign o_cyc_b = (~i_rst)&&((r_a_owner) ? i_a_cyc_b : i_b_cyc_b);
reg r_a_owner;
initial r_a_owner = 1'b1;
always @(posedge i_clk)
if (i_rst)
r_a_owner <= 1'b1;
else if ((~o_cyc_a)&&(~o_cyc_b))
r_a_owner <= ((i_b_cyc_a)||(i_b_cyc_b))? 1'b0:1'b1;
 
 
// Realistically, if neither master owns the bus, the output is a
// don't care. Thus we trigger off whether or not 'A' owns the bus.
// If 'B' owns it all we care is that 'A' does not. Likewise, if
// neither owns the bus than the values on these various lines are
// irrelevant.
assign o_stb_a = (r_a_owner) ? i_a_stb_a : i_b_stb_a;
assign o_stb_b = (r_a_owner) ? i_a_stb_b : i_b_stb_b;
assign o_we = (r_a_owner) ? i_a_we : i_b_we;
assign o_adr = (r_a_owner) ? i_a_adr : i_b_adr;
assign o_dat = (r_a_owner) ? i_a_dat : i_b_dat;
 
// We cannot allow the return acknowledgement to ever go high if
// the master in question does not own the bus. Hence we force it
// low if the particular master doesn't own the bus.
assign o_a_ack = ( r_a_owner) ? i_ack : 1'b0;
assign o_b_ack = (~r_a_owner) ? i_ack : 1'b0;
 
// Stall must be asserted on the same cycle the input master asserts
// the bus, if the bus isn't granted to him.
assign o_a_stall = ( r_a_owner) ? i_stall : 1'b1;
assign o_b_stall = (~r_a_owner) ? i_stall : 1'b1;
 
//
// These error lines will be implemented soon, as soon as the rest of
// the Zip CPU is ready to support them.
//
assign o_a_err = ( r_a_owner) ? i_err : 1'b0;
assign o_b_err = (~r_a_owner) ? i_err : 1'b0;
 
endmodule
 
/cpu/wbpriarbiter.v
0,0 → 1,117
///////////////////////////////////////////////////////////////////////////
//
// Filename: wbpriarbiter.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This is a priority bus arbiter. It allows two separate wishbone
// masters to connect to the same bus, while also guaranteeing
// that one master can have the bus with no delay any time the
// other master is not using the bus. The goal is to eliminate
// the combinatorial logic required in the other wishbone
// arbiter, while still guarateeing access time for the priority
// channel.
//
// The core logic works like this:
//
// 1. When no one requests the bus, 'A' is granted the bus and
// guaranteed that any access will go right through.
// 2. If 'B' requests the bus (asserts cyc), and the bus is idle,
// then 'B' will be granted the bus.
// 3. Bus grants last as long as the 'cyc' line is high.
// 4. Once 'cyc' is dropped, the bus returns to 'A' as the owner.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module wbpriarbiter(i_clk,
// Bus A
i_a_cyc, i_a_stb, i_a_we, i_a_adr, i_a_dat, o_a_ack, o_a_stall, o_a_err,
// Bus B
i_b_cyc, i_b_stb, i_b_we, i_b_adr, i_b_dat, o_b_ack, o_b_stall, o_b_err,
// Both buses
o_cyc, o_stb, o_we, o_adr, o_dat, i_ack, i_stall, i_err);
parameter DW=32, AW=32;
//
input i_clk;
// Bus A
input i_a_cyc, i_a_stb, i_a_we;
input [(AW-1):0] i_a_adr;
input [(DW-1):0] i_a_dat;
output wire o_a_ack, o_a_stall, o_a_err;
// Bus B
input i_b_cyc, i_b_stb, i_b_we;
input [(AW-1):0] i_b_adr;
input [(DW-1):0] i_b_dat;
output wire o_b_ack, o_b_stall, o_b_err;
//
output wire o_cyc, o_stb, o_we;
output wire [(AW-1):0] o_adr;
output wire [(DW-1):0] o_dat;
input i_ack, i_stall, i_err;
 
// Go high immediately (new cycle) if ...
// Previous cycle was low and *someone* is requesting a bus cycle
// Go low immadiately if ...
// We were just high and the owner no longer wants the bus
// WISHBONE Spec recommends no logic between a FF and the o_cyc
// This violates that spec. (Rec 3.15, p35)
assign o_cyc = (r_a_owner) ? i_a_cyc : i_b_cyc;
reg r_a_owner;
initial r_a_owner = 1'b1;
always @(posedge i_clk)
if (~i_b_cyc)
r_a_owner <= 1'b1;
else if ((i_b_cyc)&&(~i_a_cyc))
r_a_owner <= 1'b0;
 
 
// Realistically, if neither master owns the bus, the output is a
// don't care. Thus we trigger off whether or not 'A' owns the bus.
// If 'B' owns it all we care is that 'A' does not. Likewise, if
// neither owns the bus than the values on the various lines are
// irrelevant.
assign o_stb = (r_a_owner) ? i_a_stb : i_b_stb;
assign o_we = (r_a_owner) ? i_a_we : i_b_we;
assign o_adr = (r_a_owner) ? i_a_adr : i_b_adr;
assign o_dat = (r_a_owner) ? i_a_dat : i_b_dat;
 
// We cannot allow the return acknowledgement to ever go high if
// the master in question does not own the bus. Hence we force it
// low if the particular master doesn't own the bus.
assign o_a_ack = ( r_a_owner) ? i_ack : 1'b0;
assign o_b_ack = (~r_a_owner) ? i_ack : 1'b0;
 
// Stall must be asserted on the same cycle the input master asserts
// the bus, if the bus isn't granted to him.
assign o_a_stall = ( r_a_owner) ? i_stall : 1'b1;
assign o_b_stall = (~r_a_owner) ? i_stall : 1'b1;
 
//
//
assign o_a_err = ( r_a_owner) ? i_err : 1'b0;
assign o_b_err = (~r_a_owner) ? i_err : 1'b0;
 
endmodule
 
/cpu/pipemem.v
0,0 → 1,190
///////////////////////////////////////////////////////////////////////////
//
// Filename: pipemem.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: A memory unit to support a CPU, this time one supporting
// pipelined wishbone memory accesses. The goal is to be able
// to issue one pipelined wishbone access per clock, and (given the memory
// is fast enough) to be able to read the results back at one access per
// clock. This renders on-chip memory fast enough to handle single cycle
// (pipelined) access.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module pipemem(i_clk, i_rst, i_pipe_stb, i_lock,
i_op, i_addr, i_data, i_oreg,
o_busy, o_pipe_stalled, o_valid, o_err, o_wreg, o_result,
o_wb_cyc_gbl, o_wb_cyc_lcl,
o_wb_stb_gbl, o_wb_stb_lcl,
o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data);
parameter ADDRESS_WIDTH=24, IMPLEMENT_LOCK=0, AW=ADDRESS_WIDTH;
input i_clk, i_rst;
input i_pipe_stb, i_lock;
// CPU interface
input i_op;
input [31:0] i_addr;
input [31:0] i_data;
input [4:0] i_oreg;
// CPU outputs
output wire o_busy;
output wire o_pipe_stalled;
output reg o_valid;
output reg o_err;
output reg [4:0] o_wreg;
output reg [31:0] o_result;
// Wishbone outputs
output wire o_wb_cyc_gbl;
output reg o_wb_stb_gbl;
output wire o_wb_cyc_lcl;
output reg o_wb_stb_lcl, o_wb_we;
output reg [(AW-1):0] o_wb_addr;
output reg [31:0] o_wb_data;
// Wishbone inputs
input i_wb_ack, i_wb_stall, i_wb_err;
input [31:0] i_wb_data;
 
reg r_wb_cyc_gbl, r_wb_cyc_lcl;
reg [3:0] rdaddr, wraddr;
wire [3:0] nxt_rdaddr;
reg [(5-1):0] fifo_oreg [0:15];
initial rdaddr = 0;
initial wraddr = 0;
always @(posedge i_clk)
fifo_oreg[wraddr] <= i_oreg;
always @(posedge i_clk)
if ((i_rst)||(i_wb_err))
wraddr <= 0;
else if (i_pipe_stb)
wraddr <= wraddr + 4'h1;
always @(posedge i_clk)
if ((i_rst)||(i_wb_err))
rdaddr <= 0;
else if ((i_wb_ack)&&(cyc))
rdaddr <= rdaddr + 4'h1;
assign nxt_rdaddr = rdaddr + 4'h1;
 
reg cyc;
wire gbl_stb, lcl_stb;
assign lcl_stb = (i_addr[31:8]==24'hc00000)&&(i_addr[7:5]==3'h0);
assign gbl_stb = (~lcl_stb);
//= ((i_addr[31:8]!=24'hc00000)||(i_addr[7:5]!=3'h0));
 
initial cyc = 0;
initial r_wb_cyc_lcl = 0;
initial r_wb_cyc_gbl = 0;
always @(posedge i_clk)
if (i_rst)
begin
r_wb_cyc_gbl <= 1'b0;
r_wb_cyc_lcl <= 1'b0;
o_wb_stb_gbl <= 1'b0;
o_wb_stb_lcl <= 1'b0;
cyc <= 1'b0;
end else if (cyc)
begin
if ((~i_wb_stall)&&(~i_pipe_stb))
begin
o_wb_stb_gbl <= 1'b0;
o_wb_stb_lcl <= 1'b0;
// end else if ((i_pipe_stb)&&(~i_wb_stall))
// begin
// o_wb_addr <= i_addr[(AW-1):0];
// o_wb_data <= i_data;
end
 
if (((i_wb_ack)&&(nxt_rdaddr == wraddr))||(i_wb_err))
begin
r_wb_cyc_gbl <= 1'b0;
r_wb_cyc_lcl <= 1'b0;
cyc <= 1'b0;
end
end else if (i_pipe_stb) // New memory operation
begin // Grab the wishbone
r_wb_cyc_lcl <= lcl_stb;
r_wb_cyc_gbl <= gbl_stb;
o_wb_stb_lcl <= lcl_stb;
o_wb_stb_gbl <= gbl_stb;
cyc <= 1'b1;
// o_wb_addr <= i_addr[(AW-1):0];
// o_wb_data <= i_data;
// o_wb_we <= i_op
end
always @(posedge i_clk)
if ((cyc)&&(i_pipe_stb)&&(~i_wb_stall))
begin
o_wb_addr <= i_addr[(AW-1):0];
o_wb_data <= i_data;
end else if ((~cyc)&&(i_pipe_stb))
begin
o_wb_addr <= i_addr[(AW-1):0];
o_wb_data <= i_data;
end
always @(posedge i_clk)
if ((i_pipe_stb)&&(~cyc))
o_wb_we <= i_op;
 
initial o_valid = 1'b0;
always @(posedge i_clk)
o_valid <= (cyc)&&(i_wb_ack)&&(~o_wb_we);
initial o_err = 1'b0;
always @(posedge i_clk)
o_err <= (cyc)&&(i_wb_err);
assign o_busy = cyc;
 
always @(posedge i_clk)
o_wreg <= fifo_oreg[rdaddr];
always @(posedge i_clk)
if (i_wb_ack)
o_result <= i_wb_data;
 
assign o_pipe_stalled = (cyc)
&&((i_wb_stall)||((~o_wb_stb_lcl)&&(~o_wb_stb_gbl)));
 
generate
if (IMPLEMENT_LOCK != 0)
begin
reg lock_gbl, lock_lcl;
 
initial lock_gbl = 1'b0;
initial lock_lcl = 1'b0;
always @(posedge i_clk)
begin
lock_gbl <= (i_lock)&&((r_wb_cyc_gbl)||(lock_gbl));
lock_lcl <= (i_lock)&&((r_wb_cyc_lcl)||(lock_gbl));
end
 
assign o_wb_cyc_gbl = (r_wb_cyc_gbl)||(lock_gbl);
assign o_wb_cyc_lcl = (r_wb_cyc_lcl)||(lock_lcl);
 
end else begin
assign o_wb_cyc_gbl = (r_wb_cyc_gbl);
assign o_wb_cyc_lcl = (r_wb_cyc_lcl);
end endgenerate
 
endmodule
/cpu/idecode.v
0,0 → 1,405
///////////////////////////////////////////////////////////////////////////////
//
// Filename: idecode.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This RTL file specifies how instructions are to be decoded
// into their underlying meanings. This is specifically a version
// designed to support a "Next Generation", or "Version 2" instruction
// set as (currently) activated by the OPT_NEW_INSTRUCTION_SET option
// in cpudefs.v.
//
// I expect to (eventually) retire the old instruction set, at which point
// this will become the default instruction set decoder.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////////
//
//
//
`define CPU_CC_REG 4'he
`define CPU_PC_REG 4'hf
//
`include "cpudefs.v"
//
//
//
module idecode(i_clk, i_rst, i_ce, i_stalled,
i_instruction, i_gie, i_pc, i_pf_valid,
i_illegal,
o_phase, o_illegal,
o_pc, o_gie,
o_dcdR, o_dcdA, o_dcdB, o_I, o_zI,
o_cond, o_wF,
o_op, o_ALU, o_M, o_DV, o_FP, o_break, o_lock,
o_wR, o_rA, o_rB,
o_early_branch, o_branch_pc,
o_pipe
);
parameter ADDRESS_WIDTH=24, IMPLEMENT_MPY=1, EARLY_BRANCHING=1,
IMPLEMENT_DIVIDE=1, IMPLEMENT_FPU=0, AW = ADDRESS_WIDTH;
input i_clk, i_rst, i_ce, i_stalled;
input [31:0] i_instruction;
input i_gie;
input [(AW-1):0] i_pc;
input i_pf_valid, i_illegal;
output wire o_phase;
output reg o_illegal;
output reg [(AW-1):0] o_pc;
output reg o_gie;
output reg [6:0] o_dcdR, o_dcdA, o_dcdB;
output wire [31:0] o_I;
output reg o_zI;
output reg [3:0] o_cond;
output reg o_wF;
output reg [3:0] o_op;
output reg o_ALU, o_M, o_DV, o_FP, o_break, o_lock;
output reg o_wR, o_rA, o_rB;
output wire o_early_branch;
output wire [(AW-1):0] o_branch_pc;
output reg o_pipe;
 
wire dcdA_stall, dcdB_stall, dcdF_stall;
wire o_dcd_early_branch;
wire [(AW-1):0] o_dcd_branch_pc;
reg o_dcdI, o_dcdIz;
 
 
wire [4:0] w_op;
wire w_ldi, w_mov, w_cmptst, w_ldixx, w_ALU;
wire [4:0] w_dcdR, w_dcdB, w_dcdA;
wire w_dcdR_pc, w_dcdR_cc;
wire w_dcdA_pc, w_dcdA_cc;
wire w_dcdB_pc, w_dcdB_cc;
wire [3:0] w_cond;
wire w_wF, w_dcdM, w_dcdDV, w_dcdFP;
wire w_wR, w_rA, w_rB, w_wR_n;
 
 
wire [31:0] iword;
`ifdef OPT_VLIW
reg [16:0] r_nxt_half;
assign iword = (o_phase)
// set second half as a NOOP ... but really
// shouldn't matter
? { r_nxt_half[16:7], 1'b0, r_nxt_half[6:0], 5'b11000, 3'h7, 6'h00 }
: i_instruction;
`else
assign iword = { 1'b0, i_instruction[30:0] };
`endif
 
assign w_op= iword[26:22];
assign w_mov = (w_op == 5'h0f);
assign w_ldi = (w_op[4:1] == 4'hb);
assign w_cmptst = (w_op[4:1] == 4'h8);
assign w_ldixx = (w_op[4:1] == 4'h4);
assign w_ALU = (~w_op[4]);
 
// 4 LUTs
assign w_dcdR = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[18]:i_gie,
iword[30:27] };
// 4 LUTs
assign w_dcdB = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[13]:i_gie,
iword[17:14] };
 
// 0 LUTs
assign w_dcdA = w_dcdR;
// 2 LUTs, 1 delay each
assign w_dcdR_pc = (w_dcdR == {i_gie, `CPU_PC_REG});
assign w_dcdR_cc = (w_dcdR == {i_gie, `CPU_CC_REG});
// 0 LUTs
assign w_dcdA_pc = w_dcdR_pc;
assign w_dcdA_cc = w_dcdR_cc;
// 2 LUTs, 1 delays each
assign w_dcdB_pc = (w_dcdB[3:0] == `CPU_PC_REG);
assign w_dcdB_cc = (w_dcdB[3:0] == `CPU_CC_REG);
 
// Under what condition will we execute this
// instruction? Only the load immediate instruction
// is completely unconditional.
//
// 3+4 LUTs
assign w_cond = (w_ldi) ? 4'h8 :
(iword[31])?{(iword[20:19]==2'b00),
1'b0,iword[20:19]}
: { (iword[21:19]==3'h0), iword[21:19] };
 
// 1 LUT
assign w_dcdM = (w_op[4:1] == 4'h9);
// 1 LUT
assign w_dcdDV = (w_op[4:1] == 4'ha);
// 1 LUT
assign w_dcdFP = (w_op[4:3] == 2'b11)&&(w_dcdR[3:1] != 3'h7);
// 4 LUT's--since it depends upon FP/NOOP condition (vs 1 before)
// Everything reads A but ... NOOP/BREAK/LOCK, LDI, LOD, MOV
assign w_rA = (w_dcdFP)
// Divide's read A
||(w_dcdDV)
// ALU read's A, unless it's a MOV to A
// This includes LDIHI/LDILO
||((~w_op[4])&&(w_op[3:0]!=4'hf))
// STO's read A
||((w_dcdM)&&(w_op[0]))
// Test/compares
||(w_op[4:1]== 4'h8);
// 1 LUTs -- do we read a register for operand B? Specifically, do
// we need to stall if the register is not (yet) ready?
assign w_rB = (w_mov)||((iword[18])&&((~w_ldi)&&(~w_ldixx)));
// 1 LUT: All but STO, NOOP/BREAK/LOCK, and CMP/TST write back to w_dcdR
assign w_wR_n = ((w_dcdM)&&(w_op[0]))
||((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7))
||(w_cmptst);
assign w_wR = ~w_wR_n;
// 1-output bit (5 Opcode bits, 3 out-reg bits, 3 condition bits)
//
// This'd be 4 LUTs, save that we have the carve out for NOOPs
assign w_wF = (w_cmptst)
||((w_cond[3])&&((w_dcdFP)||(w_dcdDV)
||((w_ALU)&&(~w_mov)&&(~w_ldixx))));
 
// Bottom 13 bits: no LUT's
// w_dcd[12: 0] -- no LUTs
// w_dcd[ 13] -- 2 LUTs
// w_dcd[17:14] -- (5+i0+i1) = 3 LUTs, 1 delay
// w_dcd[22:18] : 5 LUTs, 1 delay (assuming high bit is o/w determined)
reg [22:0] r_I;
wire [22:0] w_I, w_fullI;
wire w_Iz;
 
assign w_fullI = (w_ldi) ? { iword[22:0] } // LDI
:((w_mov) ?{ {(23-13){iword[12]}}, iword[12:0] } // Move
:((~iword[18]) ? { {(23-18){iword[17]}}, iword[17:0] }
: { {(23-14){iword[13]}}, iword[13:0] }
));
 
`ifdef OPT_VLIW
wire [5:0] w_halfI;
assign w_halfI = (w_ldi) ? iword[5:0]
:((iword[5]) ? 6'h00 : {iword[4],iword[4:0]});
assign w_I = (iword[31])? {{(23-6){w_halfI[5]}}, w_halfI }:w_fullI;
`else
assign w_I = w_fullI;
`endif
assign w_Iz = (w_I == 0);
 
 
`ifdef OPT_VLIW
//
// The o_phase parameter is special. It needs to let the software
// following know that it cannot break/interrupt on an o_phase asserted
// instruction, lest the break take place between the first and second
// half of a VLIW instruction. To do this, o_phase must be asserted
// when the first instruction half is valid, but not asserted on either
// a 32-bit instruction or the second half of a 2x16-bit instruction.
reg r_phase;
initial r_phase = 1'b0;
always @(posedge i_clk)
if (i_rst) // When no instruction is in the pipe, phase is zero
r_phase <= 1'b0;
else if (i_ce)
r_phase <= (o_phase)? 1'b0:(i_instruction[31]);
// Phase is '1' on the first instruction of a two-part set
// But, due to the delay in processing, it's '1' when our output is
// valid for that first part, but that'll be the same time we
// are processing the second part ... so it may look to us like a '1'
// on the second half of processing.
 
assign o_phase = r_phase;
`else
assign o_phase = 1'b0;
`endif
 
 
initial o_illegal = 1'b0;
always @(posedge i_clk)
if (i_rst)
o_illegal <= 1'b0;
else if (i_ce)
begin
`ifdef OPT_VLIW
o_illegal <= (i_illegal);
`else
o_illegal <= ((i_illegal) || (i_instruction[31]));
`endif
if ((IMPLEMENT_MPY!=1)&&(w_op[4:1]==4'h5))
o_illegal <= 1'b1;
 
if ((IMPLEMENT_DIVIDE==0)&&(w_dcdDV))
o_illegal <= 1'b1;
else if ((IMPLEMENT_DIVIDE!=0)&&(w_dcdDV)&&(w_dcdR[3:1]==3'h7))
o_illegal <= 1'b1;
 
 
if ((IMPLEMENT_FPU!=0)&&(w_dcdFP)&&(w_dcdR[3:1]==3'h7))
o_illegal <= 1'b1;
else if ((IMPLEMENT_FPU==0)&&(w_dcdFP))
o_illegal <= 1'b1;
 
if ((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)
&&(
(w_op[2:0] != 3'h2) // LOCK
&&(w_op[2:0] != 3'h1) // BREAK
&&(w_op[2:0] != 3'h0))) // NOOP
o_illegal <= 1'b1;
end
 
 
always @(posedge i_clk)
if (i_ce)
begin
`ifdef OPT_VLIW
if (~o_phase)
begin
o_gie<= i_gie;
// i.e. dcd_pc+1
o_pc <= i_pc+{{(AW-1){1'b0}},1'b1};
end
`else
o_gie<= i_gie;
o_pc <= i_pc+{{(AW-1){1'b0}},1'b1};
`endif
 
// Under what condition will we execute this
// instruction? Only the load immediate instruction
// is completely unconditional.
o_cond <= w_cond;
// Don't change the flags on conditional instructions,
// UNLESS: the conditional instruction was a CMP
// or TST instruction.
o_wF <= w_wF;
 
// Record what operation/op-code (4-bits) we are doing
// Note that LDI magically becomes a MOV
// instruction here. That way it's a pass through
// the ALU. Likewise, the two compare instructions
// CMP and TST becomes SUB and AND here as well.
// We keep only the bottom four bits, since we've
// already done the rest of the decode necessary to
// settle between the other instructions. For example,
// o_FP plus these four bits uniquely defines the FP
// instruction, o_DV plus the bottom of these defines
// the divide, etc.
o_op <= (w_ldi)? 4'hf:w_op[3:0];
 
// Default values
o_dcdR <= { w_dcdR_cc, w_dcdR_pc, w_dcdR};
o_dcdA <= { w_dcdA_cc, w_dcdA_pc, w_dcdA};
o_dcdB <= { w_dcdB_cc, w_dcdB_pc, w_dcdB};
o_wR <= w_wR;
o_rA <= w_rA;
o_rB <= w_rB;
r_I <= w_I;
o_zI <= w_Iz;
 
o_ALU <= (w_ALU)||(w_ldi)||(w_cmptst); // 1 LUT
o_M <= w_dcdM;
o_DV <= w_dcdDV;
o_FP <= w_dcdFP;
 
o_break <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b001);
o_lock <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b010);
`ifdef OPT_VLIW
r_nxt_half <= { iword[31], iword[13:5],
((iword[21])? iword[20:19] : 2'h0),
iword[4:0] };
`endif
end
 
 
generate
if (EARLY_BRANCHING!=0)
begin
reg r_early_branch;
reg [(AW-1):0] r_branch_pc;
always @(posedge i_clk)
if ((i_ce)&&(w_dcdR_pc)&&(w_cond[3]))
begin
if ((w_op == 5'hf)&&(w_dcdB_pc)&&(w_dcdA_pc))
begin // Move (X+PC) to PC
r_early_branch <= 1'b1;
end else if (w_op[4:1] == 4'hb) // LDI to PC
begin // LDI x,PC
r_early_branch <= 1'b1;
end else if ((w_op[4:0] == 5'h00)&&(~w_rB)&&(w_dcdA_pc))
begin // Add x,PC
r_early_branch <= 1'b1;
end else begin
r_early_branch <= 1'b0;
end
end else begin
if (i_ce)
r_early_branch <= 1'b0;
end
always @(posedge i_clk)
if (i_ce)
begin
if (w_op[4:1] == 4'hb)
r_branch_pc <= {{(AW-23){w_I[22]}},w_I};
else
r_branch_pc <= i_pc+{{(AW-23){w_I[22]}},w_I}
+{{(AW-1){1'b0}},1'b1};
end
 
assign o_early_branch = r_early_branch;
assign o_branch_pc = r_branch_pc;
end else begin
assign o_early_branch = 1'b0;
assign o_branch_pc = {(AW){1'b0}};
end endgenerate
 
 
// To be a pipeable operation there must be ...
// 1. Two valid adjacent instructions
// 2. Both must be memory operations, of the same time (both lods
// or both stos)
// 3. Both must use the same register base address
// 4. Both must be to the same address, or the address incremented
// by one
// Note that we're not using iword here ... there's a lot of logic
// taking place, and it's only valid if the new word is not compressed.
//
reg r_valid;
always @(posedge i_clk)
if (i_ce)
o_pipe <= (r_valid)&&(i_pf_valid)&&(~i_instruction[31])
&&(w_dcdM)&&(o_M)&&(o_op[0] ==i_instruction[22])
&&(i_instruction[17:14] == o_dcdB[3:0])
&&(i_gie == o_gie)
&&((i_instruction[21:19]==o_cond[2:0])
||(o_cond[2:0] == 3'h0))
&&((i_instruction[13:0]==r_I[13:0])
||({1'b0, i_instruction[13:0]}==(r_I[13:0]+14'h1)));
always @(posedge i_clk)
if (i_rst)
r_valid <= 1'b0;
else if ((i_ce)&&(i_pf_valid))
r_valid <= 1'b1;
else if (~i_stalled)
r_valid <= 1'b0;
 
assign o_I = { {(32-22){r_I[22]}}, r_I[21:0] };
 
endmodule
/cpu/wbdmac.v
0,0 → 1,336
////////////////////////////////////////////////////////////////////////////////
//
//
// Filename: wbdmac.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: Wishbone DMA controller
//
// This module is controllable via the wishbone, and moves values from
// one location in the wishbone address space to another. The amount of
// memory moved at any given time can be up to 4kB, or equivalently 1kW.
// Four registers control this DMA controller: a control/status register,
// a length register, a source WB address and a destination WB address.
// These register may be read at any time, but they may only be written
// to when the controller is idle.
//
// The meanings of three of the setup registers should be self explanatory:
// - The length register controls the total number of words to
// transfer.
// - The source address register controls where the DMA controller
// reads from. This address may or may not be incremented
// after each read, depending upon the setting in the
// control/status register.
// - The destination address register, which controls where the DMA
// controller writes to. This address may or may not be
// incremented after each write, also depending upon the
// setting in the control/status register.
//
// It is the control/status register, at local address zero, that needs
// more definition:
//
// Bits:
// 31 R Write protect If this is set to one, it means the
// write protect bit is set and the controller
// is therefore idle. This bit will be set upon
// completing any transfer.
// 30 R Error. The controller stopped mid-transfer
// after receiving a bus error.
// 29 R/W inc_s_n If set to one, the source address
// will not increment from one read to the next.
// 28 R/W inc_d_n If set to one, the destination address
// will not increment from one write to the next.
// 27 R Always 0
// 26..16 R nread Indicates how many words have been read,
// and not necessarily written (yet). This
// combined with the cfg_len parameter should tell
// exactly where the controller is at mid-transfer.
// 27..16 W WriteProtect When a 12'h3db is written to these
// bits, the write protect bit will be cleared.
//
// 15 R/W on_dev_trigger When set to '1', the controller will
// wait for an external interrupt before starting.
// 14..10 R/W device_id This determines which external interrupt
// will trigger a transfer.
// 9..0 R/W transfer_len How many bytes to transfer at one time.
// The minimum transfer length is one, while zero
// is mapped to a transfer length of 1kW.
//
//
// To use this, follow this checklist:
// 1. Wait for any prior DMA operation to complete
// (Read address 0, wait 'till either top bit is set or cfg_len==0)
// 2. Write values into length, source and destination address.
// (writei(3, &vals) should be sufficient for this.)
// 3. Enable the DMAC interrupt in whatever interrupt controller is present
// on the system.
// 4. Write the final start command to the setup/control/status register:
// Set inc_s_n, inc_d_n, on_dev_trigger, dev_trigger,
// appropriately for your task
// Write 12'h3db to the upper word.
// Set the lower word to either all zeros, or a smaller transfer
// length if desired.
// 5. wait() for the interrupt and the operation to complete.
// Prior to completion, number of items successfully transferred
// be read from the length register. If the internal buffer is
// being used, then you can read how much has been read into that
// buffer by reading from bits 25..16 of this control/status
// register.
//
// Creator: Dan Gisselquist
// Gisselquist Technology, LLC
//
// Copyright: 2015
//
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
//
module wbdmac(i_clk,
i_swb_cyc, i_swb_stb, i_swb_we, i_swb_addr, i_swb_data,
o_swb_ack, o_swb_stall, o_swb_data,
o_mwb_cyc, o_mwb_stb, o_mwb_we, o_mwb_addr, o_mwb_data,
i_mwb_ack, i_mwb_stall, i_mwb_data, i_mwb_err,
i_dev_ints,
o_interrupt);
parameter ADDRESS_WIDTH=32, LGMEMLEN = 10,
DW=32, LGDV=5,AW=ADDRESS_WIDTH;
input i_clk;
// Slave/control wishbone inputs
input i_swb_cyc, i_swb_stb, i_swb_we;
input [1:0] i_swb_addr;
input [(DW-1):0] i_swb_data;
// Slave/control wishbone outputs
output reg o_swb_ack;
output wire o_swb_stall;
output reg [(DW-1):0] o_swb_data;
// Master/DMA wishbone control
output reg o_mwb_cyc, o_mwb_stb, o_mwb_we;
output reg [(AW-1):0] o_mwb_addr;
output reg [(DW-1):0] o_mwb_data;
// Master/DMA wishbone responses from the bus
input i_mwb_ack, i_mwb_stall;
input [(DW-1):0] i_mwb_data;
input i_mwb_err;
// The interrupt device interrupt lines
input [(DW-1):0] i_dev_ints;
// An interrupt to be set upon completion
output reg o_interrupt;
// Need to release the bus for a higher priority user
// This logic had lots of problems, so it is being
// removed. If you want to make sure the bus is available
// for a higher priority user, adjust the transfer length
// accordingly.
//
// input i_other_busmaster_requests_bus;
//
 
 
reg cfg_wp; // Write protect
reg cfg_err;
reg [(AW-1):0] cfg_waddr, cfg_raddr, cfg_len;
reg [(LGMEMLEN-1):0] cfg_blocklen_sub_one;
reg cfg_incs, cfg_incd;
reg [(LGDV-1):0] cfg_dev_trigger;
reg cfg_on_dev_trigger;
 
// Single block operations: We'll read, then write, up to a single
// memory block here.
 
reg [(DW-1):0] dma_mem [0:(((1<<LGMEMLEN))-1)];
reg [(LGMEMLEN):0] nread, nwritten, nacks;
wire [(AW-1):0] bus_nacks;
assign bus_nacks = { {(AW-LGMEMLEN-1){1'b0}}, nacks };
 
initial o_interrupt = 1'b0;
initial o_mwb_cyc = 1'b0;
initial cfg_err = 1'b0;
initial cfg_wp = 1'b0;
initial cfg_len = {(AW){1'b0}};
initial cfg_blocklen_sub_one = {(LGMEMLEN){1'b1}};
initial cfg_on_dev_trigger = 1'b0;
always @(posedge i_clk)
if ((o_mwb_cyc)&&(o_mwb_we)) // Write cycle
begin
if ((o_mwb_stb)&&(~i_mwb_stall))
begin
nwritten <= nwritten+1;
if (nwritten == nread-1)
// Wishbone interruptus
o_mwb_stb <= 1'b0;
else if (cfg_incd) begin
o_mwb_addr <= o_mwb_addr + 1;
cfg_waddr <= cfg_waddr + 1;
end
// o_mwb_data <= dma_mem[nwritten + 1];
end
 
if (i_mwb_err)
begin
o_mwb_cyc <= 1'b0;
cfg_err <= 1'b1;
cfg_len <= 0;
nread <= 0;
end else if (i_mwb_ack)
begin
nacks <= nacks+1;
cfg_len <= cfg_len - 1;
if ((nacks+1 == nwritten)&&(~o_mwb_stb))
begin
o_mwb_cyc <= 1'b0;
nread <= 0;
o_interrupt <= (cfg_len == 1);
// Turn write protect back on
cfg_wp <= 1'b1;
end
end
end else if ((o_mwb_cyc)&&(~o_mwb_we)) // Read cycle
begin
if ((o_mwb_stb)&&(~i_mwb_stall))
begin
nacks <= nacks+1;
if ((nacks == {1'b0, cfg_blocklen_sub_one})
||(bus_nacks <= cfg_len-1))
// Wishbone interruptus
o_mwb_stb <= 1'b0;
else if (cfg_incs) begin
o_mwb_addr <= o_mwb_addr + 1;
end
end
 
if (i_mwb_err)
begin
o_mwb_cyc <= 1'b0;
cfg_err <= 1'b1;
cfg_len <= 0;
nread <= 0;
end else if (i_mwb_ack)
begin
nread <= nread+1;
if ((~o_mwb_stb)&&(nread+1 == nacks))
begin
o_mwb_cyc <= 1'b0;
nacks <= 0;
end
if (cfg_incs)
cfg_raddr <= cfg_raddr + 1;
// dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
end
end else if ((~o_mwb_cyc)&&(nread > 0)&&(~cfg_err))
begin // Initiate/continue a write cycle
o_mwb_cyc <= 1'b1;
o_mwb_stb <= 1'b1;
o_mwb_we <= 1'b1;
// o_mwb_data <= dma_mem[0];
o_mwb_addr <= cfg_waddr;
// nwritten <= 0; // Can't set to zero, in case we're
// nacks <= 0; // continuing a cycle
end else if ((~o_mwb_cyc)&&(nread == 0)&&(cfg_len>0)&&(~cfg_wp)
&&((~cfg_on_dev_trigger)
||(i_dev_ints[cfg_dev_trigger])))
begin // Initiate a read cycle
o_mwb_cyc <= 1'b1;
o_mwb_stb <= 1'b1;
o_mwb_we <= 1'b0;
o_mwb_addr<= cfg_raddr;
nwritten <= 0;
nread <= 0;
nacks <= 0;
end else begin
o_mwb_cyc <= 1'b0;
o_mwb_stb <= 1'b0;
o_mwb_we <= 1'b0;
o_mwb_addr <= cfg_raddr;
o_interrupt<= 1'b0;
nwritten <= 0;
if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we))
begin
cfg_wp <= 1'b1;
case(i_swb_addr)
2'b00: begin
cfg_wp <= (i_swb_data[27:16]!=12'hfed);
cfg_blocklen_sub_one
<= i_swb_data[(LGMEMLEN-1):0]
+ {(LGMEMLEN){1'b1}};
// i.e. -1;
cfg_dev_trigger <= i_swb_data[14:10];
cfg_on_dev_trigger <= i_swb_data[15];
cfg_incs <= ~i_swb_data[29];
cfg_incd <= ~i_swb_data[28];
cfg_err <= 1'b0;
end
2'b01: cfg_len <= i_swb_data[(AW-1):0];
2'b10: cfg_raddr <= i_swb_data[(AW-1):0];
2'b11: cfg_waddr <= i_swb_data[(AW-1):0];
endcase
end
end
 
//
// This is tricky. In order for Vivado to consider dma_mem to be a
// proper memory, it must have a simple address fed into it. Hence
// the read_address (rdaddr) register. The problem is that this
// register must always be one greater than the address we actually
// want to read from, unless we are idling. So ... the math is touchy.
//
reg [(LGMEMLEN-1):0] rdaddr;
always @(posedge i_clk)
if ((o_mwb_cyc)&&(o_mwb_we)&&(o_mwb_stb)&&(~i_mwb_stall))
// This would be the normal advance, save that we are
// already one ahead of nwritten
rdaddr <= rdaddr + 1; // {{(LGMEMLEN-1){1'b0}},1};
else if ((~o_mwb_cyc)&&(nread > 0)&&(~cfg_err))
// Here's where we do our extra advance
rdaddr <= nwritten[(LGMEMLEN-1):0]+1;
else if ((~o_mwb_cyc)||(~o_mwb_we))
rdaddr <= nwritten[(LGMEMLEN-1):0];
always @(posedge i_clk)
if ((~o_mwb_cyc)||((o_mwb_we)&&(o_mwb_stb)&&(~i_mwb_stall)))
o_mwb_data <= dma_mem[rdaddr];
always @(posedge i_clk)
if ((o_mwb_cyc)&&(~o_mwb_we)&&(i_mwb_ack))
dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
 
always @(posedge i_clk)
casez(i_swb_addr)
2'b00: o_swb_data <= { ~cfg_wp, cfg_err,
~cfg_incs, ~cfg_incd,
1'b0, nread,
cfg_on_dev_trigger, cfg_dev_trigger,
cfg_blocklen_sub_one
};
2'b01: o_swb_data <= { {(DW-AW){1'b0}}, cfg_len };
2'b10: o_swb_data <= { {(DW-AW){1'b0}}, cfg_raddr};
2'b11: o_swb_data <= { {(DW-AW){1'b0}}, cfg_waddr};
endcase
 
always @(posedge i_clk)
if ((i_swb_cyc)&&(i_swb_stb)) // &&(~i_swb_we))
o_swb_ack <= 1'b1;
// else if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we)&&(~o_mwb_cyc)&&(nread == 0))
else
o_swb_ack <= 1'b0;
 
assign o_swb_stall = 1'b0;
 
endmodule
 
/cpu/prefetch.v
0,0 → 1,124
////////////////////////////////////////////////////////////////////////////////
//
// Filename: prefetch.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This is a very simple instruction fetch approach. It gets
// one instruction at a time. Future versions should pipeline
// fetches and perhaps even cache results--this doesn't do that.
// It should, however, be simple enough to get things running.
//
// The interface is fascinating. The 'i_pc' input wire is just
// a suggestion of what to load. Other wires may be loaded
// instead. i_pc is what must be output, not necessarily input.
//
// 20150919 -- Added support for the WB error signal. When reading an
// instruction results in this signal being raised, the pipefetch
// module will set an illegal instruction flag to be returned to
// the CPU together with the instruction. Hence, the ZipCPU
// can trap on it if necessary.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
// Flash requires a minimum of 4 clocks per byte to read, so that would be
// 4*(4bytes/32bit word) = 16 clocks per word read---and that's in pipeline
// mode which this prefetch does not support. In non--pipelined mode, the
// flash will require (16+6+6)*2 = 56 clocks plus 16 clocks per word read,
// or 72 clocks to fetch one instruction.
module prefetch(i_clk, i_rst, i_ce, i_stalled_n, i_pc, i_aux,
o_i, o_pc, o_aux, o_valid, o_illegal,
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data);
parameter ADDRESS_WIDTH=32, AUX_WIDTH = 1, AW=ADDRESS_WIDTH;
input i_clk, i_rst, i_ce, i_stalled_n;
input [(AW-1):0] i_pc;
input [(AUX_WIDTH-1):0] i_aux;
output reg [31:0] o_i;
output reg [(AW-1):0] o_pc;
output reg [(AUX_WIDTH-1):0] o_aux;
output reg o_valid, o_illegal;
// Wishbone outputs
output reg o_wb_cyc, o_wb_stb;
output wire o_wb_we;
output reg [(AW-1):0] o_wb_addr;
output wire [31:0] o_wb_data;
// And return inputs
input i_wb_ack, i_wb_stall, i_wb_err;
input [31:0] i_wb_data;
 
assign o_wb_we = 1'b0;
assign o_wb_data = 32'h0000;
 
// Let's build it simple and upgrade later: For each instruction
// we do one bus cycle to get the instruction. Later we should
// pipeline this, but for now let's just do one at a time.
initial o_wb_cyc = 1'b0;
initial o_wb_stb = 1'b0;
initial o_wb_addr= 0;
always @(posedge i_clk)
if ((i_rst)||(i_wb_ack))
begin
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
end else if ((i_ce)&&(~o_wb_cyc)) // Initiate a bus cycle
begin
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
end else if (o_wb_cyc) // Independent of ce
begin
if ((o_wb_cyc)&&(o_wb_stb)&&(~i_wb_stall))
o_wb_stb <= 1'b0;
if (i_wb_ack)
o_wb_cyc <= 1'b0;
end
 
always @(posedge i_clk)
if (i_rst) // Set the address to guarantee the result is invalid
o_wb_addr <= {(AW){1'b1}};
else if ((i_ce)&&(~o_wb_cyc))
o_wb_addr <= i_pc;
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_ack))
o_aux <= i_aux;
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_ack))
o_i <= i_wb_data;
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_ack))
o_pc <= o_wb_addr;
initial o_valid = 1'b0;
initial o_illegal = 1'b0;
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_ack))
begin
o_valid <= (i_pc == o_wb_addr)&&(~i_wb_err);
o_illegal <= i_wb_err;
end else if (i_stalled_n)
begin
o_valid <= 1'b0;
o_illegal <= 1'b0;
end
 
endmodule
/cpu/memops.v
0,0 → 1,150
///////////////////////////////////////////////////////////////////////////
//
// Filename: memops.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: A memory unit to support a CPU.
//
// In the interests of code simplicity, this memory operator is
// susceptible to unknown results should a new command be sent to it
// before it completes the last one. Unpredictable results might then
// occurr.
//
// 20150919 -- Added support for handling BUS ERR's (i.e., the WB
// error signal).
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module memops(i_clk, i_rst, i_stb, i_lock,
i_op, i_addr, i_data, i_oreg,
o_busy, o_valid, o_err, o_wreg, o_result,
o_wb_cyc_gbl, o_wb_cyc_lcl,
o_wb_stb_gbl, o_wb_stb_lcl,
o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data);
parameter ADDRESS_WIDTH=24, IMPLEMENT_LOCK=0, AW=ADDRESS_WIDTH;
input i_clk, i_rst;
input i_stb, i_lock;
// CPU interface
input i_op;
input [31:0] i_addr;
input [31:0] i_data;
input [4:0] i_oreg;
// CPU outputs
output wire o_busy;
output reg o_valid;
output reg o_err;
output reg [4:0] o_wreg;
output reg [31:0] o_result;
// Wishbone outputs
output wire o_wb_cyc_gbl;
output reg o_wb_stb_gbl;
output wire o_wb_cyc_lcl;
output reg o_wb_stb_lcl;
output reg o_wb_we;
output reg [(AW-1):0] o_wb_addr;
output reg [31:0] o_wb_data;
// Wishbone inputs
input i_wb_ack, i_wb_stall, i_wb_err;
input [31:0] i_wb_data;
 
reg r_wb_cyc_gbl, r_wb_cyc_lcl;
wire gbl_stb, lcl_stb;
assign lcl_stb = (i_stb)&&(i_addr[31:8]==24'hc00000)&&(i_addr[7:5]==3'h0);
assign gbl_stb = (i_stb)&&((i_addr[31:8]!=24'hc00000)||(i_addr[7:5]!=3'h0));
 
initial r_wb_cyc_gbl = 1'b0;
initial r_wb_cyc_lcl = 1'b0;
always @(posedge i_clk)
if (i_rst)
begin
r_wb_cyc_gbl <= 1'b0;
r_wb_cyc_lcl <= 1'b0;
end else if ((r_wb_cyc_gbl)||(r_wb_cyc_lcl))
begin
if ((i_wb_ack)||(i_wb_err))
begin
r_wb_cyc_gbl <= 1'b0;
r_wb_cyc_lcl <= 1'b0;
end
end else if (i_stb) // New memory operation
begin // Grab the wishbone
r_wb_cyc_lcl <= lcl_stb;
r_wb_cyc_gbl <= gbl_stb;
end
always @(posedge i_clk)
if (o_wb_cyc_gbl)
o_wb_stb_gbl <= (o_wb_stb_gbl)&&(i_wb_stall);
else
o_wb_stb_gbl <= gbl_stb; // Grab wishbone on new operation
always @(posedge i_clk)
if (o_wb_cyc_lcl)
o_wb_stb_lcl <= (o_wb_stb_lcl)&&(i_wb_stall);
else
o_wb_stb_lcl <= lcl_stb; // Grab wishbone on new operation
always @(posedge i_clk)
if (i_stb)
begin
o_wb_we <= i_op;
o_wb_data <= i_data;
o_wb_addr <= i_addr[(AW-1):0];
end
 
initial o_valid = 1'b0;
always @(posedge i_clk)
o_valid <= ((o_wb_cyc_gbl)||(o_wb_cyc_lcl))&&(i_wb_ack)&&(~o_wb_we);
initial o_err = 1'b0;
always @(posedge i_clk)
o_err <= ((o_wb_cyc_gbl)||(o_wb_cyc_lcl))&&(i_wb_err);
assign o_busy = (o_wb_cyc_gbl)||(o_wb_cyc_lcl);
 
always @(posedge i_clk)
if (i_stb)
o_wreg <= i_oreg;
always @(posedge i_clk)
if (i_wb_ack)
o_result <= i_wb_data;
 
generate
if (IMPLEMENT_LOCK != 0)
begin
reg lock_gbl, lock_lcl;
 
initial lock_gbl = 1'b0;
initial lock_lcl = 1'b0;
 
always @(posedge i_clk)
begin
lock_gbl <= (i_lock)&&((r_wb_cyc_gbl)||(lock_gbl));
lock_lcl <= (i_lock)&&((r_wb_cyc_lcl)||(lock_lcl));
end
 
assign o_wb_cyc_gbl = (r_wb_cyc_gbl)||(lock_gbl);
assign o_wb_cyc_lcl = (r_wb_cyc_lcl)||(lock_lcl);
end else begin
assign o_wb_cyc_gbl = (r_wb_cyc_gbl);
assign o_wb_cyc_lcl = (r_wb_cyc_lcl);
end endgenerate
endmodule
/cpu/zipjiffies.v
0,0 → 1,142
////////////////////////////////////////////////////////////////////////////////
//
// Filename: zipjiffies.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This peripheral is motivated by the Linux use of 'jiffies'.
// A process, in Linux, can request to be put to sleep until a certain
// number of 'jiffies' have elapsed. Using this interface, the CPU can
// read the number of 'jiffies' from this peripheral (it only has the
// one location in address space), add the sleep length to it, and
// write the result back to the peripheral. The zipjiffies peripheral
// will record the value written to it only if it is nearer the current
// counter value than the last current waiting interrupt time. If no
// other interrupts are waiting, and this time is in the future, it will
// be enabled. (There is currrently no way to disable a jiffie interrupt
// once set.) The processor may then place this sleep request into a
// list among other sleep requests. Once the timer expires, it would
// write the next jiffy request to the peripheral and wake up the process
// whose timer had expired.
//
// Quite elementary, really.
//
// Interface:
// This peripheral contains one register: a counter. Reads from the
// register return the current value of the counter. Writes within
// the (N-1) bit space following the current time set an interrupt.
// Writes of values that occurred in the last 2^(N-1) ticks will be
// ignored. The timer then interrupts when it's value equals that time.
// Multiple writes cause the jiffies timer to select the nearest possible
// interrupt. Upon an interrupt, the next interrupt time/value is cleared
// and will need to be reset if the CPU wants to get notified again. With
// only the single interface, there is no way of knowing when the next
// interrupt is scheduled for, neither is there any way to slow down the
// interrupt timer in case you don't want it overflowing as often and you
// wish to wait more jiffies than it supports. Thus, currently, if you
// have a timer you wish to wait upon that is more than 2^31 into the
// future, you would need to set timers along the way, wake up on those
// timers, and set further timer's until you finally get to your
// destination.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
module zipjiffies(i_clk, i_ce,
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data,
o_int);
parameter BW = 32, VW = (BW-2);
input i_clk, i_ce;
// Wishbone inputs
input i_wb_cyc, i_wb_stb, i_wb_we;
input [(BW-1):0] i_wb_data;
// Wishbone outputs
output reg o_wb_ack;
output wire o_wb_stall;
output wire [(BW-1):0] o_wb_data;
// Interrupt line
output reg o_int;
 
//
// Our counter logic: The counter is always counting up--it cannot
// be stopped or altered. It's really quite simple. Okay, not quite.
// We still support the clock enable line. We do this in order to
// support debugging, so that if we get everything running inside a
// debugger, the timer's all slow down so that everything can be stepped
// together, one clock at a time.
//
reg [(BW-1):0] r_counter;
always @(posedge i_clk)
if (i_ce)
r_counter <= r_counter+1;
 
//
// Writes to the counter set an interrupt--but only if they are in the
// future as determined by the signed result of an unsigned subtract.
//
reg int_set, new_set;
reg [(BW-1):0] int_when, new_when;
wire signed [(BW-1):0] till_when, till_wb;
assign till_when = int_when-r_counter;
assign till_wb = new_when-r_counter;
 
initial new_set = 1'b0;
always @(posedge i_clk)
// Delay things by a clock to simplify our logic
if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we))
begin
new_set <= 1'b1;
new_when<= i_wb_data;
end else
new_set <= 1'b0;
 
initial o_int = 1'b0;
initial int_set = 1'b0;
always @(posedge i_clk)
begin
o_int <= 1'b0;
if ((i_ce)&&(int_set)&&(r_counter == int_when))
begin // Interrupts are self-clearing
o_int <= 1'b1; // Set the interrupt flag
int_set <= 1'b0;// Clear the interrupt
end
 
if ((new_set)&&(till_wb > 0)&&((till_wb<till_when)||(~int_set)))
begin
int_when <= new_when;
int_set <= ((int_set)||(till_wb>0));
end
end
 
//
// Acknowledge any wishbone accesses -- everything we did took only
// one clock anyway.
//
always @(posedge i_clk)
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
 
assign o_wb_data = r_counter;
assign o_wb_stall = 1'b0;
endmodule
/cpu/zipcounter.v
0,0 → 1,82
///////////////////////////////////////////////////////////////////////////
//
// Filename: zipcounter.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose:
// A very, _very_ simple counter. It's purpose doesn't really
// include rollover, but it will interrupt on rollover. It can be set,
// although my design concept is that it can be reset. It cannot be
// halted. It will always produce interrupts--whether or not they are
// handled interrupts is another question--that's up to the interrupt
// controller.
//
// My intention is to use this counter for process accounting: I should
// be able to use this to count clock ticks of processor time assigned to
// each task by resetting the counter at the beginning of every task
// interval, and reading the result at the end of the interval. As long
// as the interval is less than 2^32 clocks, there should be no problem.
// Similarly, this can be used to measure CPU wishbone bus stalls,
// prefetch stalls, or other CPU stalls (i.e. stalling as part of a JMP
// instruction, or a read from the condition codes following a write).
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module zipcounter(i_clk, i_ce,
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data,
o_int);
parameter BW = 32;
input i_clk, i_ce;
// Wishbone inputs
input i_wb_cyc, i_wb_stb, i_wb_we;
input [(BW-1):0] i_wb_data;
// Wishbone outputs
output reg o_wb_ack;
output wire o_wb_stall;
output reg [(BW-1):0] o_wb_data;
// Interrupt line
output reg o_int;
 
initial o_wb_data = 32'h00;
always @(posedge i_clk)
if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we))
o_wb_data <= i_wb_data;
else if (i_ce)
o_wb_data <= o_wb_data + 1;
 
initial o_int = 0;
always @(posedge i_clk)
if (i_ce)
o_int <= &o_wb_data;
else
o_int <= 1'b0;
 
initial o_wb_ack = 1'b0;
always @(posedge i_clk)
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
assign o_wb_stall = 1'b0;
endmodule
/cpu/ziptimer.v
0,0 → 1,135
///////////////////////////////////////////////////////////////////////////
//
// Filename: ziptimer.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: A lighter weight implementation of the Zip Timer.
//
// Interface:
// Two options:
// 1. One combined register for both control and value, and ...
// The reload value is set any time the timer data value is "set".
// Reading the register returns the timer value. Controls are
// set so that writing a value to the timer automatically starts
// it counting down.
// 2. Two registers, one for control one for value.
// The control register would have the reload value in it.
// On the clock when the interface is set to zero the interrupt is set.
// Hence setting the timer to zero will disable the timer without
// setting any interrupts. Thus setting it to five will count
// 5 clocks: 5, 4, 3, 2, 1, Interrupt.
//
//
// Control bits:
// (Start_n/Stop. This bit has been dropped. Writing to this
// timer any value but zero starts it. Writing a zero
// clears and stops it.)
// AutoReload. If set, then on reset the timer automatically
// loads the last set value and starts over. This is
// useful for distinguishing between a one-time interrupt
// timer, and a repetitive interval timer.
// (INTEN. Interrupt enable--reaching zero always creates an
// interrupt, so this control bit isn't needed. The
// interrupt controller can be used to mask the interrupt.)
// (COUNT-DOWN/UP: This timer is *only* a count-down timer.
// There is no means of setting it to count up.)
// WatchDog
// This timer can be implemented as a watchdog timer simply by
// connecting the interrupt line to the reset line of the CPU.
// When the timer then expires, it will trigger a CPU reset.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module ziptimer(i_clk, i_rst, i_ce,
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data,
o_int);
parameter BW = 32, VW = (BW-1);
input i_clk, i_rst, i_ce;
// Wishbone inputs
input i_wb_cyc, i_wb_stb, i_wb_we;
input [(BW-1):0] i_wb_data;
// Wishbone outputs
output reg o_wb_ack;
output wire o_wb_stall;
output wire [(BW-1):0] o_wb_data;
// Interrupt line
output reg o_int;
 
reg r_auto_reload, r_running;
reg [(VW-1):0] r_reload_value;
 
wire wb_write;
assign wb_write = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we));
 
initial r_running = 1'b0;
initial r_auto_reload = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_running <= 1'b0;
else if (wb_write)
r_running <= (|i_wb_data[(VW-1):0]);
else if ((o_int)&&(~r_auto_reload))
r_running <= 1'b0;
 
 
always @(posedge i_clk)
if (wb_write)
r_auto_reload <= (i_wb_data[(BW-1)]);
 
// If setting auto-reload mode, and the value to other
// than zero, set the auto-reload value
always @(posedge i_clk)
if ((wb_write)&&(i_wb_data[(BW-1)])&&(|i_wb_data[(VW-1):0]))
r_reload_value <= i_wb_data[(VW-1):0];
 
reg [(VW-1):0] r_value;
initial r_value = 0;
always @(posedge i_clk)
if (wb_write)
r_value <= i_wb_data[(VW-1):0];
else if ((r_running)&&(i_ce)&&(~o_int))
r_value <= r_value + {(VW){1'b1}}; // r_value - 1;
else if ((r_running)&&(r_auto_reload)&&(o_int))
r_value <= r_reload_value;
 
// Set the interrupt on our last tick.
initial o_int = 1'b0;
always @(posedge i_clk)
if (i_ce)
o_int <= (r_running)&&(r_value == { {(VW-1){1'b0}}, 1'b1 });
else
o_int <= 1'b0;
 
initial o_wb_ack = 1'b0;
always @(posedge i_clk)
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
assign o_wb_stall = 1'b0;
 
assign o_wb_data = { r_auto_reload, r_value };
 
endmodule
/cpu/pipefetch.v
0,0 → 1,299
////////////////////////////////////////////////////////////////////////////////
//
// Filename: pipefetch.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: Keeping our CPU fed with instructions, at one per clock and
// with no stalls, can be quite a chore. Worse, the Wishbone
// takes a couple of cycles just to read one instruction from
// the bus. However, if we use pipeline accesses to the Wishbone
// bus, then we can read more and faster. Further, if we cache
// these results so that we have them before we need them, then
// we have a chance of keeping our CPU from stalling. Those are
// the purposes of this instruction fetch module: 1) Pipeline
// wishbone accesses, and 2) an instruction cache.
//
// 20150919 -- Fixed a nasty race condition whereby the pipefetch routine
// would produce either the same instruction twice, or skip
// an instruction. This condition was dependent on the CPU stall
// condition, and would only take place if the pipeline wasn't
// completely full throughout the stall.
//
// Interface support was also added for trapping on illegal
// instructions (i.e., instruction fetches that cause bus errors),
// however the internal interface has not caught up to supporting
// these exceptions yet.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
//
module pipefetch(i_clk, i_rst, i_new_pc, i_clear_cache, i_stall_n, i_pc,
o_i, o_pc, o_v,
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data, i_wb_request,
o_illegal);
parameter RESET_ADDRESS=32'h0010_0000,
LGCACHELEN = 6, ADDRESS_WIDTH=24,
CACHELEN=(1<<LGCACHELEN), BUSW=32, AW=ADDRESS_WIDTH;
input i_clk, i_rst, i_new_pc,
i_clear_cache, i_stall_n;
input [(AW-1):0] i_pc;
output reg [(BUSW-1):0] o_i;
output reg [(AW-1):0] o_pc;
output wire o_v;
//
output reg o_wb_cyc, o_wb_stb;
output wire o_wb_we;
output reg [(AW-1):0] o_wb_addr;
output wire [(BUSW-1):0] o_wb_data;
//
input i_wb_ack, i_wb_stall, i_wb_err;
input [(BUSW-1):0] i_wb_data;
//
// Is the (data) memory unit also requesting access to the bus?
input i_wb_request;
output wire o_illegal;
 
// Fixed bus outputs: we read from the bus only, never write.
// Thus the output data is ... irrelevant and don't care. We set it
// to zero just to set it to something.
assign o_wb_we = 1'b0;
assign o_wb_data = 0;
 
reg [(AW-1):0] r_cache_base;
reg [(LGCACHELEN):0] r_nvalid, r_acks_waiting;
reg [(BUSW-1):0] cache[0:(CACHELEN-1)];
 
wire [(LGCACHELEN-1):0] w_cache_offset;
reg [1:0] r_cache_offset;
 
reg r_addr_set;
reg [(AW-1):0] r_addr;
 
wire [(AW-1):0] bus_nvalid;
assign bus_nvalid = { {(AW-LGCACHELEN-1){1'b0}}, r_nvalid };
 
// What are some of the conditions for which we need to restart the
// cache?
wire w_pc_out_of_bounds;
assign w_pc_out_of_bounds = ((i_new_pc)&&((r_nvalid == 0)
||(i_pc < r_cache_base)
||(i_pc >= r_cache_base + CACHELEN)
||(i_pc >= r_cache_base + bus_nvalid+5)));
wire w_ran_off_end_of_cache;
assign w_ran_off_end_of_cache =((r_addr_set)&&((r_addr < r_cache_base)
||(r_addr >= r_cache_base + CACHELEN)
||(r_addr >= r_cache_base + bus_nvalid+5)));
wire w_running_out_of_cache;
assign w_running_out_of_cache = (r_addr_set)
&&(r_addr >= r_cache_base +
// {{(AW-LGCACHELEN-1),{1'b0}},2'b11,
// {(LGCACHELEN-1){1'b0}}})
// (1<<(LGCACHELEN-2)) + (1<<(LGCACHELEN-1)))
+(3<<(LGCACHELEN-2)))
&&(|r_nvalid[(LGCACHELEN):(LGCACHELEN-1)]);
 
initial r_cache_base = RESET_ADDRESS;
always @(posedge i_clk)
begin
if ((i_rst)||(i_clear_cache)||((o_wb_cyc)&&(i_wb_err)))
begin
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
// r_cache_base <= RESET_ADDRESS;
// end else if ((~o_wb_cyc)&&(i_new_pc)&&(r_nvalid != 0)
// &&(i_pc >= r_cache_base)
// &&(i_pc < r_cache_base + bus_nvalid))
// begin
// The new instruction is in our cache, do nothing
// with the bus here.
end else if ((o_wb_cyc)&&(w_pc_out_of_bounds))
begin
// We need to abandon our bus action to start over in
// a new region, setting up a new cache. This may
// happen mid cycle while waiting for a result. By
// dropping o_wb_cyc, we state that we are no longer
// interested in that result--whatever it might be.
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
end else if ((~o_wb_cyc)&&(~r_nvalid[LGCACHELEN])&&(~i_wb_request)&&(r_addr_set))
begin
// Restart a bus cycle that was interrupted when the
// data section wanted access to our bus.
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
// o_wb_addr <= r_cache_base + bus_nvalid;
end else if ((~o_wb_cyc)&&(
(w_pc_out_of_bounds)||(w_ran_off_end_of_cache)))
begin
// Start a bus transaction
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
// o_wb_addr <= (i_new_pc) ? i_pc : r_addr;
// r_nvalid <= 0;
// r_cache_base <= (i_new_pc) ? i_pc : r_addr;
// w_cache_offset <= 0;
end else if ((~o_wb_cyc)&&(w_running_out_of_cache))
begin
// If we're using the last quarter of the cache, then
// let's start a bus transaction to extend the cache.
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
// o_wb_addr <= r_cache_base + (1<<(LGCACHELEN));
// r_nvalid <= r_nvalid - (1<<(LGCACHELEN-2));
// r_cache_base <= r_cache_base + (1<<(LGCACHELEN-2));
// w_cache_offset <= w_cache_offset + (1<<(LGCACHELEN-2));
end else if (o_wb_cyc)
begin
// This handles everything ... but the case where
// while reading we need to extend our cache.
if ((o_wb_stb)&&(~i_wb_stall))
begin
// o_wb_addr <= o_wb_addr + 1;
if ((o_wb_addr - r_cache_base >= CACHELEN-1)
||(i_wb_request))
o_wb_stb <= 1'b0;
end
 
if (i_wb_ack)
begin
// r_nvalid <= r_nvalid + 1;
if ((r_acks_waiting == 1)&&(~o_wb_stb))
o_wb_cyc <= 1'b0;
end else if ((r_acks_waiting == 0)&&(~o_wb_stb))
o_wb_cyc <= 1'b0;
end
end
 
initial r_nvalid = 0;
always @(posedge i_clk)
if ((i_rst)||(i_clear_cache)) // Required, so we can reload memoy and then reset
r_nvalid <= 0;
else if ((~o_wb_cyc)&&(
(w_pc_out_of_bounds)||(w_ran_off_end_of_cache)))
r_nvalid <= 0;
else if ((~o_wb_cyc)&&(w_running_out_of_cache))
r_nvalid[LGCACHELEN:(LGCACHELEN-2)]
<= r_nvalid[LGCACHELEN:(LGCACHELEN-2)] +3'b111;
// i.e. - (1<<(LGCACHELEN-2));
else if ((o_wb_cyc)&&(i_wb_ack))
r_nvalid <= r_nvalid + {{(LGCACHELEN){1'b0}},1'b1}; // +1;
 
always @(posedge i_clk)
if (i_clear_cache)
r_cache_base <= i_pc;
else if ((~o_wb_cyc)&&(
(w_pc_out_of_bounds)
||(w_ran_off_end_of_cache)))
r_cache_base <= (i_new_pc) ? i_pc : r_addr;
else if ((~o_wb_cyc)&&(w_running_out_of_cache))
r_cache_base[(AW-1):(LGCACHELEN-2)]
<= r_cache_base[(AW-1):(LGCACHELEN-2)]
+ {{(AW-LGCACHELEN+1){1'b0}},1'b1};
// i.e. + (1<<(LGCACHELEN-2));
 
always @(posedge i_clk)
if (i_clear_cache)
r_cache_offset <= 0;
else if ((~o_wb_cyc)&&(
(w_pc_out_of_bounds)
||(w_ran_off_end_of_cache)))
r_cache_offset <= 0;
else if ((~o_wb_cyc)&&(w_running_out_of_cache))
r_cache_offset[1:0] <= r_cache_offset[1:0] + 2'b01;
assign w_cache_offset = { r_cache_offset, {(LGCACHELEN-2){1'b0}} };
 
always @(posedge i_clk)
if (i_clear_cache)
o_wb_addr <= i_pc;
else if ((o_wb_cyc)&&(w_pc_out_of_bounds))
begin
if (i_wb_ack)
o_wb_addr <= r_cache_base + bus_nvalid+1;
else
o_wb_addr <= r_cache_base + bus_nvalid;
end else if ((~o_wb_cyc)&&((w_pc_out_of_bounds)
||(w_ran_off_end_of_cache)))
o_wb_addr <= (i_new_pc) ? i_pc : r_addr;
else if ((o_wb_stb)&&(~i_wb_stall)) // && o_wb_cyc
o_wb_addr <= o_wb_addr + 1;
 
initial r_acks_waiting = 0;
always @(posedge i_clk)
if (~o_wb_cyc)
r_acks_waiting <= 0;
// o_wb_cyc *must* be true for all following
else if ((o_wb_stb)&&(~i_wb_stall)&&(~i_wb_ack)) //&&(o_wb_cyc)
r_acks_waiting <= r_acks_waiting + {{(LGCACHELEN){1'b0}},1'b1};
else if ((i_wb_ack)&&((~o_wb_stb)||(i_wb_stall))) //&&(o_wb_cyc)
r_acks_waiting <= r_acks_waiting + {(LGCACHELEN+1){1'b1}}; // - 1;
 
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_ack))
cache[r_nvalid[(LGCACHELEN-1):0]+w_cache_offset]
<= i_wb_data;
 
initial r_addr_set = 1'b0;
always @(posedge i_clk)
if ((i_rst)||(i_clear_cache))
r_addr_set <= 1'b0;
else if (i_new_pc)
r_addr_set <= 1'b1;
 
// Now, read from the cache
wire w_cv; // Cache valid, address is in the cache
reg r_cv;
assign w_cv = ((r_nvalid != 0)&&(r_addr>=r_cache_base)
&&(r_addr-r_cache_base < bus_nvalid));
always @(posedge i_clk)
r_cv <= (~i_new_pc)&&((w_cv)||((~i_stall_n)&&(r_cv)));
assign o_v = (r_cv)&&(~i_new_pc);
 
always @(posedge i_clk)
if (i_new_pc)
r_addr <= i_pc;
else if ( ((i_stall_n)&&(w_cv)) || ((~i_stall_n)&&(w_cv)&&(r_addr == o_pc)) )
r_addr <= r_addr + {{(AW-1){1'b0}},1'b1};
 
wire [(LGCACHELEN-1):0] c_rdaddr, c_cache_base;
assign c_cache_base = r_cache_base[(LGCACHELEN-1):0];
assign c_rdaddr = r_addr[(LGCACHELEN-1):0]-c_cache_base+w_cache_offset;
always @(posedge i_clk)
if ((~o_v)||((i_stall_n)&&(o_v)))
o_i <= cache[c_rdaddr];
always @(posedge i_clk)
if ((~o_v)||((i_stall_n)&&(o_v)))
o_pc <= r_addr;
 
reg [(AW-1):0] ill_address;
initial ill_address = 0;
always @(posedge i_clk)
if ((o_wb_cyc)&&(i_wb_err))
ill_address <= o_wb_addr - {{(AW-LGCACHELEN-1){1'b0}}, r_acks_waiting};
 
assign o_illegal = (o_pc == ill_address);
 
 
endmodule
/cpu/zipsystem.v
0,0 → 1,802
///////////////////////////////////////////////////////////////////////////
//
// Filename: zipsystem.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This portion of the ZIP CPU implements a number of soft
// peripherals to the CPU nearby its CORE. The functionality
// sits on the data bus, and does not include any true
// external hardware peripherals. The peripherals included here
// include:
//
//
// Local interrupt controller--for any/all of the interrupts generated
// here. This would include a pin for interrupts generated
// elsewhere, so this interrupt controller could be a master
// handling all interrupts. My interrupt controller would work
// for this purpose.
//
// The ZIP-CPU supports only one interrupt because, as I understand
// modern systems (Linux), they tend to send all interrupts to the
// same interrupt vector anyway. Hence, that's what we do here.
//
// Bus Error interrupts -- generates an interrupt any time the wishbone
// bus produces an error on a given access, for whatever purpose
// also records the address on the bus at the time of the error.
//
// Trap instructions
// Writing to this "register" will always create an interrupt.
// After the interrupt, this register may be read to see what
// value had been written to it.
//
// Bit reverse register ... ?
//
// (Potentially an eventual floating point co-processor ...)
//
// Real-time clock
//
// Interval timer(s) (Count down from fixed value, and either stop on
// zero, or issue an interrupt and restart automatically on zero)
// These can be implemented as watchdog timers if desired--the
// only difference is that a watchdog timer's interrupt feeds the
// reset line instead of the processor interrupt line.
//
// Watch-dog timer: this is the same as an interval timer, only it's
// interrupt/time-out line is wired to the reset line instead of
// the interrupt line of the CPU.
//
// ROM Memory map
// Set a register to control this map, and a DMA will begin to
// fill this memory from a slower FLASH. Once filled, accesses
// will be from this memory instead of
//
//
// Doing some market comparison, let's look at what peripherals a TI
// MSP430 might offer: MSP's may have I2C ports, SPI, UART, DMA, ADC,
// Comparators, 16,32-bit timers, 16x16 or 32x32 timers, AES, BSL,
// brown-out-reset(s), real-time-clocks, temperature sensors, USB ports,
// Spi-Bi-Wire, UART Boot-strap Loader (BSL), programmable digital I/O,
// watchdog-timers,
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
`include "cpudefs.v"
//
// While I hate adding delays to any bus access, this next delay is required
// to make timing close in my Basys-3 design.
`define DELAY_DBG_BUS
// On my previous version, I needed to add a delay to access the external
// bus. Activate the define below and that delay will be put back into place.
// This particular version no longer needs the delay in order to run at
// 100 MHz. Timing indicates I may even run this at 250 MHz without the
// delay too, so we're doing better. To get rid of this, I placed the logic
// determining whether or not I was accessing the local system bus one clock
// earlier, or into the memops.v file. This also required my wishbone bus
// arbiter to maintain the bus selection as well, so that got updated ...
// you get the picture. But, the bottom line is that I no longer need this
// delay.
//
// `define DELAY_EXT_BUS // Required no longer!
//
//
// If space is tight, you might not wish to have your performance and
// accounting counters, so let's make those optional here
// Without this flag, Slice LUT count is 3315 (ZipSystem),2432 (ZipCPU)
// When including counters,
// Slice LUTs ZipSystem ZipCPU
// With Counters 3315 2432
// Without Counters 2796 2046
 
//
// Now, where am I placing all of my peripherals?
`define PERIPHBASE 32'hc0000000
`define INTCTRL 5'h0 //
`define WATCHDOG 5'h1 // Interrupt generates reset signal
`define BUSWATCHDOG 5'h2 // Sets IVEC[0]
`define CTRINT 5'h3 // Sets IVEC[5]
`define TIMER_A 5'h4 // Sets IVEC[4]
`define TIMER_B 5'h5 // Sets IVEC[3]
`define TIMER_C 5'h6 // Sets IVEC[2]
`define JIFFIES 5'h7 // Sets IVEC[1]
 
 
`ifdef INCLUDE_ACCOUNTING_COUNTERS
`define MSTR_TASK_CTR 5'h08
`define MSTR_MSTL_CTR 5'h09
`define MSTR_PSTL_CTR 5'h0a
`define MSTR_INST_CTR 5'h0b
`define USER_TASK_CTR 5'h0c
`define USER_MSTL_CTR 5'h0d
`define USER_PSTL_CTR 5'h0e
`define USER_INST_CTR 5'h0f
`endif
 
// Although I have a hole at 5'h2, the DMA controller requires four wishbone
// addresses, therefore we place it by itself and expand our address bus
// width here by another bit.
`define DMAC 5'h10
 
// `define RTC_CLOCK 32'hc0000008 // A global something
// `define BITREV 32'hc0000003
//
// DBGCTRL
// 10 HALT
// 9 HALT(ED)
// 8 STEP (W=1 steps, and returns to halted)
// 7 INTERRUPT-FLAG
// 6 RESET_FLAG
// ADDRESS:
// 5 PERIPHERAL-BIT
// [4:0] REGISTER-ADDR
// DBGDATA
// read/writes internal registers
//
//
//
module zipsystem(i_clk, i_rst,
// Wishbone master interface from the CPU
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
// Incoming interrupts
i_ext_int,
// Our one outgoing interrupt
o_ext_int,
// Wishbone slave interface for debugging purposes
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
o_dbg_ack, o_dbg_stall, o_dbg_data
`ifdef DEBUG_SCOPE
, o_cpu_debug
`endif
);
parameter RESET_ADDRESS=24'h0100000, ADDRESS_WIDTH=24,
LGICACHE=10, START_HALTED=1, EXTERNAL_INTERRUPTS=1,
`ifdef OPT_MULTIPLY
IMPLEMENT_MPY = 1,
`else
IMPLEMENT_MPY = 0,
`endif
`ifdef OPT_DIVIDE
IMPLEMENT_DIVIDE=1,
`else
IMPLEMENT_DIVIDE=0,
`endif
`ifdef OPT_IMPLEMENT_FPU
IMPLEMENT_FPU=1,
`else
IMPLEMENT_FPU=0,
`endif
IMPLEMENT_LOCK=1,
// Derived parameters
AW=ADDRESS_WIDTH;
input i_clk, i_rst;
// Wishbone master
output wire o_wb_cyc, o_wb_stb, o_wb_we;
output wire [(AW-1):0] o_wb_addr;
output wire [31:0] o_wb_data;
input i_wb_ack, i_wb_stall;
input [31:0] i_wb_data;
input i_wb_err;
// Incoming interrupts
input [(EXTERNAL_INTERRUPTS-1):0] i_ext_int;
// Outgoing interrupt
output wire o_ext_int;
// Wishbone slave
input i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr;
input [31:0] i_dbg_data;
output wire o_dbg_ack;
output wire o_dbg_stall;
output wire [31:0] o_dbg_data;
//
`ifdef DEBUG_SCOPE
output wire [31:0] o_cpu_debug;
`endif
 
wire [31:0] ext_idata;
 
// Handle our interrupt vector generation/coordination
wire [14:0] main_int_vector, alt_int_vector;
wire ctri_int, tma_int, tmb_int, tmc_int, jif_int, dmac_int;
wire mtc_int, moc_int, mpc_int, mic_int,
utc_int, uoc_int, upc_int, uic_int;
generate
if (EXTERNAL_INTERRUPTS < 9)
assign main_int_vector = { {(9-EXTERNAL_INTERRUPTS){1'b0}},
i_ext_int, ctri_int,
tma_int, tmb_int, tmc_int,
jif_int, dmac_int };
else
assign main_int_vector = { i_ext_int[8:0], ctri_int,
tma_int, tmb_int, tmc_int,
jif_int, dmac_int };
endgenerate
generate
if (EXTERNAL_INTERRUPTS <= 9)
`ifdef INCLUDE_ACCOUNTING_COUNTERS
assign alt_int_vector = { 7'h00,
mtc_int, moc_int, mpc_int, mic_int,
utc_int, uoc_int, upc_int, uic_int };
`else
assign alt_int_vector = { 15'h00 };
`endif
else
`ifdef INCLUDE_ACCOUNTING_COUNTERS
assign alt_int_vector = { {(7-(EXTERNAL_INTERRUPTS-9)){1'b0}},
i_ext_int[(EXTERNAL_INTERRUPTS-1):9],
mtc_int, moc_int, mpc_int, mic_int,
utc_int, uoc_int, upc_int, uic_int };
`else
assign alt_int_vector = { {(15-(EXTERNAL_INTERRUPTS-9)){1'b0}},
i_ext_int[(EXTERNAL_INTERRUPTS-1):9] };
`endif
endgenerate
 
// Delay the debug port by one clock, to meet timing requirements
wire dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_stall;
wire [31:0] dbg_idata, dbg_odata;
reg dbg_ack;
`ifdef DELAY_DBG_BUS
wire dbg_err, no_dbg_err;
assign dbg_err = 1'b0;
busdelay #(1,32) wbdelay(i_clk,
i_dbg_cyc, i_dbg_stb, i_dbg_we, i_dbg_addr, i_dbg_data,
o_dbg_ack, o_dbg_stall, o_dbg_data, no_dbg_err,
dbg_cyc, dbg_stb, dbg_we, dbg_addr, dbg_idata,
dbg_ack, dbg_stall, dbg_odata, dbg_err);
`else
assign dbg_cyc = i_dbg_cyc;
assign dbg_stb = i_dbg_stb;
assign dbg_we = i_dbg_we;
assign dbg_addr = i_dbg_addr;
assign dbg_idata = i_dbg_data;
assign o_dbg_ack = dbg_ack;
assign o_dbg_stall = dbg_stall;
assign o_dbg_data = dbg_odata;
`endif
 
//
//
//
wire sys_cyc, sys_stb, sys_we;
wire [4:0] sys_addr;
wire [(AW-1):0] cpu_addr;
wire [31:0] sys_data;
wire sys_ack, sys_stall;
 
//
// The external debug interface
//
// We offer only a limited interface here, requiring a pre-register
// write to set the local address. This interface allows access to
// the Zip System on a debug basis only, and not to the rest of the
// wishbone bus. Further, to access these registers, the control
// register must first be accessed to both stop the CPU and to
// set the following address in question. Hence all accesses require
// two accesses: write the address to the control register (and halt
// the CPU if not halted), then read/write the data from the data
// register.
//
wire cpu_break, dbg_cmd_write;
reg cmd_reset, cmd_halt, cmd_step, cmd_clear_pf_cache;
reg [5:0] cmd_addr;
wire [3:0] cpu_dbg_cc;
assign dbg_cmd_write = (dbg_cyc)&&(dbg_stb)&&(dbg_we)&&(~dbg_addr);
//
initial cmd_reset = 1'b1;
always @(posedge i_clk)
cmd_reset <= ((dbg_cmd_write)&&(dbg_idata[6]));
//
initial cmd_halt = 1'b1;
always @(posedge i_clk)
if (i_rst)
cmd_halt <= (START_HALTED == 1)? 1'b1 : 1'b0;
else if (dbg_cmd_write)
cmd_halt <= ((dbg_idata[10])||(dbg_idata[8]));
else if ((cmd_step)||(cpu_break))
cmd_halt <= 1'b1;
 
always @(posedge i_clk)
cmd_clear_pf_cache = (~i_rst)&&(dbg_cmd_write)
&&((dbg_idata[11])||(dbg_idata[6]));
//
initial cmd_step = 1'b0;
always @(posedge i_clk)
cmd_step <= (dbg_cmd_write)&&(dbg_idata[8]);
//
always @(posedge i_clk)
if (dbg_cmd_write)
cmd_addr <= dbg_idata[5:0];
 
wire cpu_reset;
assign cpu_reset = (cmd_reset)||(wdt_reset)||(i_rst);
 
wire cpu_halt, cpu_dbg_stall;
assign cpu_halt = (i_rst)||((cmd_halt)&&(~cmd_step));
wire [31:0] pic_data;
wire [31:0] cmd_data;
// Values:
// 0x0003f -> cmd_addr mask
// 0x00040 -> reset
// 0x00080 -> PIC interrrupt pending
// 0x00100 -> cmd_step
// 0x00200 -> cmd_stall
// 0x00400 -> cmd_halt
// 0x00800 -> cmd_clear_pf_cache
// 0x01000 -> cc.sleep
// 0x02000 -> cc.gie
// 0x04000 -> External (PIC) interrupt line is high
// Other external interrupts follow
generate
if (EXTERNAL_INTERRUPTS < 16)
assign cmd_data = { {(16-EXTERNAL_INTERRUPTS){1'b0}},
i_ext_int,
cpu_dbg_cc, // 4 bits
1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0,
pic_data[15], cpu_reset, cmd_addr };
else
assign cmd_data = { i_ext_int[15:0], cpu_dbg_cc,
1'b0, cmd_halt, (~cpu_dbg_stall), 1'b0,
pic_data[15], cpu_reset, cmd_addr };
endgenerate
 
wire cpu_gie;
assign cpu_gie = cpu_dbg_cc[1];
 
`ifdef USE_TRAP
//
// The TRAP peripheral
//
wire trap_ack, trap_stall, trap_int;
wire [31:0] trap_data;
ziptrap trapp(i_clk,
sys_cyc, (sys_stb)&&(sys_addr == `TRAP_ADDR), sys_we,
sys_data,
trap_ack, trap_stall, trap_data, trap_int);
`endif
 
//
// The WATCHDOG Timer
//
wire wdt_ack, wdt_stall, wdt_reset;
wire [31:0] wdt_data;
ziptimer watchdog(i_clk, cpu_reset, ~cmd_halt,
sys_cyc, ((sys_stb)&&(sys_addr == `WATCHDOG)), sys_we,
sys_data,
wdt_ack, wdt_stall, wdt_data, wdt_reset);
 
//
// Position two, a second watchdog timer--this time for the wishbone
// bus, in order to tell/find wishbone bus lockups. In its current
// configuration, it cannot be configured and all bus accesses must
// take less than the number written to this register.
//
reg wdbus_ack;
reg [(AW-1):0] r_wdbus_data;
wire [31:0] wdbus_data;
wire [14:0] wdbus_ignored_data;
wire reset_wdbus_timer, wdbus_int;
assign reset_wdbus_timer = ((o_wb_cyc)&&((o_wb_stb)||(i_wb_ack)));
wbwatchdog #(14) watchbus(i_clk,(cpu_reset)||(reset_wdbus_timer),
o_wb_cyc, 14'h2000, wdbus_int);
initial r_wdbus_data = 0;
always @(posedge i_clk)
if ((wdbus_int)||(cpu_ext_err))
r_wdbus_data = o_wb_addr;
assign wdbus_data = { {(32-AW){1'b0}}, r_wdbus_data };
initial wdbus_ack = 1'b0;
always @(posedge i_clk)
wdbus_ack <= ((sys_cyc)&&(sys_stb)&&(sys_addr == 5'h02));
 
// Counters -- for performance measurement and accounting
//
// Here's the stuff we'll be counting ....
//
wire cpu_op_stall, cpu_pf_stall, cpu_i_count;
 
`ifdef INCLUDE_ACCOUNTING_COUNTERS
//
// The master counters will, in general, not be reset. They'll be used
// for an overall counter.
//
// Master task counter
wire mtc_ack, mtc_stall;
wire [31:0] mtc_data;
zipcounter mtask_ctr(i_clk, (~cpu_halt), sys_cyc,
(sys_stb)&&(sys_addr == `MSTR_TASK_CTR),
sys_we, sys_data,
mtc_ack, mtc_stall, mtc_data, mtc_int);
 
// Master Operand Stall counter
wire moc_ack, moc_stall;
wire [31:0] moc_data;
zipcounter mmstall_ctr(i_clk,(cpu_op_stall), sys_cyc,
(sys_stb)&&(sys_addr == `MSTR_MSTL_CTR),
sys_we, sys_data,
moc_ack, moc_stall, moc_data, moc_int);
 
// Master PreFetch-Stall counter
wire mpc_ack, mpc_stall;
wire [31:0] mpc_data;
zipcounter mpstall_ctr(i_clk,(cpu_pf_stall), sys_cyc,
(sys_stb)&&(sys_addr == `MSTR_PSTL_CTR),
sys_we, sys_data,
mpc_ack, mpc_stall, mpc_data, mpc_int);
 
// Master Instruction counter
wire mic_ack, mic_stall;
wire [31:0] mic_data;
zipcounter mins_ctr(i_clk,(cpu_i_count), sys_cyc,
(sys_stb)&&(sys_addr == `MSTR_INST_CTR),
sys_we, sys_data,
mic_ack, mic_stall, mic_data, mic_int);
 
//
// The user counters are different from those of the master. They will
// be reset any time a task is given control of the CPU.
//
// User task counter
wire utc_ack, utc_stall;
wire [31:0] utc_data;
zipcounter utask_ctr(i_clk,(~cpu_halt)&&(cpu_gie), sys_cyc,
(sys_stb)&&(sys_addr == `USER_TASK_CTR),
sys_we, sys_data,
utc_ack, utc_stall, utc_data, utc_int);
 
// User Op-Stall counter
wire uoc_ack, uoc_stall;
wire [31:0] uoc_data;
zipcounter umstall_ctr(i_clk,(cpu_op_stall)&&(cpu_gie), sys_cyc,
(sys_stb)&&(sys_addr == `USER_MSTL_CTR),
sys_we, sys_data,
uoc_ack, uoc_stall, uoc_data, uoc_int);
 
// User PreFetch-Stall counter
wire upc_ack, upc_stall;
wire [31:0] upc_data;
zipcounter upstall_ctr(i_clk,(cpu_pf_stall)&&(cpu_gie), sys_cyc,
(sys_stb)&&(sys_addr == `USER_PSTL_CTR),
sys_we, sys_data,
upc_ack, upc_stall, upc_data, upc_int);
 
// User instruction counter
wire uic_ack, uic_stall;
wire [31:0] uic_data;
zipcounter uins_ctr(i_clk,(cpu_i_count)&&(cpu_gie), sys_cyc,
(sys_stb)&&(sys_addr == `USER_INST_CTR),
sys_we, sys_data,
uic_ack, uic_stall, uic_data, uic_int);
 
// A little bit of pre-cleanup (actr = accounting counters)
wire actr_ack, actr_stall;
wire [31:0] actr_data;
assign actr_ack = ((mtc_ack | moc_ack | mpc_ack | mic_ack)
|(utc_ack | uoc_ack | upc_ack | uic_ack));
assign actr_stall = ((mtc_stall | moc_stall | mpc_stall | mic_stall)
|(utc_stall | uoc_stall | upc_stall|uic_stall));
assign actr_data = ((mtc_ack) ? mtc_data
: ((moc_ack) ? moc_data
: ((mpc_ack) ? mpc_data
: ((mic_ack) ? mic_data
: ((utc_ack) ? utc_data
: ((uoc_ack) ? uoc_data
: ((upc_ack) ? upc_data
: uic_data)))))));
`else // INCLUDE_ACCOUNTING_COUNTERS
reg actr_ack;
wire actr_stall;
wire [31:0] actr_data;
assign actr_stall = 1'b0;
assign actr_data = 32'h0000;
 
assign mtc_int = 1'b0;
assign moc_int = 1'b0;
assign mpc_int = 1'b0;
assign mic_int = 1'b0;
assign utc_int = 1'b0;
assign uoc_int = 1'b0;
assign upc_int = 1'b0;
assign uic_int = 1'b0;
 
always @(posedge i_clk)
actr_ack <= (sys_stb)&&(sys_addr[4:3] == 2'b01);
`endif // INCLUDE_ACCOUNTING_COUNTERS
 
//
// The DMA Controller
//
wire dmac_stb, dc_err;
wire [31:0] dmac_data;
wire dmac_ack, dmac_stall;
wire dc_cyc, dc_stb, dc_we, dc_ack, dc_stall;
wire [31:0] dc_data;
wire [(AW-1):0] dc_addr;
wire cpu_gbl_cyc;
assign dmac_stb = (sys_stb)&&(sys_addr[4]);
`ifdef INCLUDE_DMA_CONTROLLER
wbdmac #(AW) dma_controller(i_clk,
sys_cyc, dmac_stb, sys_we,
sys_addr[1:0], sys_data,
dmac_ack, dmac_stall, dmac_data,
// Need the outgoing DMAC wishbone bus
dc_cyc, dc_stb, dc_we, dc_addr, dc_data,
dc_ack, dc_stall, ext_idata, dc_err,
// External device interrupts
{ 1'b0, alt_int_vector, 1'b0,
main_int_vector[14:1], 1'b0 },
// DMAC interrupt, for upon completion
dmac_int);
// Whether or not the CPU wants the bus, and
// thus we must kick the DMAC off.
// However, the logic required for this
// override never worked well, so here
// we just don't use it.
// cpu_gbl_cyc);
`else
reg r_dmac_ack;
always @(posedge i_clk)
r_dmac_ack <= (sys_cyc)&&(dmac_stb);
assign dmac_ack = r_dmac_ack;
assign dmac_data = 32'h000;
assign dmac_stall = 1'b0;
 
assign dc_cyc = 1'b0;
assign dc_stb = 1'b0;
assign dc_we = 1'b0;
assign dc_addr = { (AW) {1'b0} };
assign dc_data = 32'h00;
 
assign dmac_int = 1'b0;
`endif
 
wire ctri_sel, ctri_stall;
reg ctri_ack;
wire [31:0] ctri_data;
assign ctri_sel = (sys_cyc)&&(sys_stb)&&(sys_addr == `CTRINT);
always @(posedge i_clk)
ctri_ack <= ctri_sel;
assign ctri_stall = 1'b0;
`ifdef INCLUDE_ACCOUNTING_COUNTERS
//
// Counter Interrupt controller
//
generate
if (EXTERNAL_INTERRUPTS <= 9)
begin
icontrol #(8) ctri(i_clk, cpu_reset, (ctri_sel),
sys_data, ctri_data, alt_int_vector[7:0],
ctri_int);
end else begin
icontrol #(8+(EXTERNAL_INTERRUPTS-9))
ctri(i_clk, cpu_reset, (ctri_sel),
sys_data, ctri_data,
alt_int_vector[(EXTERNAL_INTERRUPTS-1):0],
ctri_int);
end endgenerate
 
`else // INCLUDE_ACCOUNTING_COUNTERS
 
generate
if (EXTERNAL_INTERRUPTS <= 9)
begin
assign ctri_stall = 1'b0;
assign ctri_data = 32'h0000;
assign ctri_int = 1'b0;
end else begin
icontrol #(EXTERNAL_INTERRUPTS-9)
ctri(i_clk, cpu_reset, (ctri_sel),
sys_data, ctri_data,
alt_int_vector[(EXTERNAL_INTERRUPTS-10):0],
ctri_int);
end endgenerate
`endif // INCLUDE_ACCOUNTING_COUNTERS
 
 
//
// Timer A
//
wire tma_ack, tma_stall;
wire [31:0] tma_data;
ziptimer timer_a(i_clk, cpu_reset, ~cmd_halt,
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_A), sys_we,
sys_data,
tma_ack, tma_stall, tma_data, tma_int);
 
//
// Timer B
//
wire tmb_ack, tmb_stall;
wire [31:0] tmb_data;
ziptimer timer_b(i_clk, cpu_reset, ~cmd_halt,
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_B), sys_we,
sys_data,
tmb_ack, tmb_stall, tmb_data, tmb_int);
 
//
// Timer C
//
wire tmc_ack, tmc_stall;
wire [31:0] tmc_data;
ziptimer timer_c(i_clk, cpu_reset, ~cmd_halt,
sys_cyc, (sys_stb)&&(sys_addr == `TIMER_C), sys_we,
sys_data,
tmc_ack, tmc_stall, tmc_data, tmc_int);
 
//
// JIFFIES
//
wire jif_ack, jif_stall;
wire [31:0] jif_data;
zipjiffies jiffies(i_clk, ~cmd_halt,
sys_cyc, (sys_stb)&&(sys_addr == `JIFFIES), sys_we,
sys_data,
jif_ack, jif_stall, jif_data, jif_int);
 
//
// The programmable interrupt controller peripheral
//
wire pic_interrupt;
generate
if (EXTERNAL_INTERRUPTS < 9)
begin
icontrol #(6+EXTERNAL_INTERRUPTS) pic(i_clk, cpu_reset,
(sys_cyc)&&(sys_stb)&&(sys_we)
&&(sys_addr==`INTCTRL),
sys_data, pic_data,
main_int_vector[(6+EXTERNAL_INTERRUPTS-1):0], pic_interrupt);
end else begin
icontrol #(15) pic(i_clk, cpu_reset,
(sys_cyc)&&(sys_stb)&&(sys_we)
&&(sys_addr==`INTCTRL),
sys_data, pic_data,
main_int_vector[14:0], pic_interrupt);
end endgenerate
 
wire pic_stall;
assign pic_stall = 1'b0;
reg pic_ack;
always @(posedge i_clk)
pic_ack <= (sys_cyc)&&(sys_stb)&&(sys_addr == `INTCTRL);
 
//
// The CPU itself
//
wire cpu_gbl_stb, cpu_lcl_cyc, cpu_lcl_stb,
cpu_we, cpu_dbg_we;
wire [31:0] cpu_data, wb_data;
wire cpu_ack, cpu_stall, cpu_err;
wire [31:0] cpu_dbg_data;
assign cpu_dbg_we = ((dbg_cyc)&&(dbg_stb)&&(~cmd_addr[5])
&&(dbg_we)&&(dbg_addr));
zipcpu #(RESET_ADDRESS,ADDRESS_WIDTH,LGICACHE, IMPLEMENT_MPY,
IMPLEMENT_DIVIDE, IMPLEMENT_FPU, IMPLEMENT_LOCK)
thecpu(i_clk, cpu_reset, pic_interrupt,
cpu_halt, cmd_clear_pf_cache, cmd_addr[4:0], cpu_dbg_we,
dbg_idata, cpu_dbg_stall, cpu_dbg_data,
cpu_dbg_cc, cpu_break,
cpu_gbl_cyc, cpu_gbl_stb,
cpu_lcl_cyc, cpu_lcl_stb,
cpu_we, cpu_addr, cpu_data,
cpu_ack, cpu_stall, wb_data,
cpu_err,
cpu_op_stall, cpu_pf_stall, cpu_i_count
`ifdef DEBUG_SCOPE
, o_cpu_debug
`endif
);
 
// Now, arbitrate the bus ... first for the local peripherals
// For the debugger to have access to the local system bus, the
// following must be true:
// (dbg_cyc) The debugger must request the bus
// (~cpu_lcl_cyc) The CPU cannot be using it (CPU gets priority)
// (dbg_addr) The debugger must be requesting its data
// register, not just the control register
// and one of two other things. Either
// ((cpu_halt)&&(~cpu_dbg_stall)) the CPU is completely halted,
// or
// (~cmd_addr[5]) we are trying to read a CPU register
// while in motion. Let the user beware that,
// by not waiting for the CPU to fully halt,
// his results may not be what he expects.
//
wire sys_dbg_cyc = ((dbg_cyc)&&(~cpu_lcl_cyc)&&(dbg_addr))
&&(((cpu_halt)&&(~cpu_dbg_stall))
||(~cmd_addr[5]));
assign sys_cyc = (cpu_lcl_cyc)||(sys_dbg_cyc);
assign sys_stb = (cpu_lcl_cyc)
? (cpu_lcl_stb)
: ((dbg_stb)&&(dbg_addr)&&(cmd_addr[5]));
 
assign sys_we = (cpu_lcl_cyc) ? cpu_we : dbg_we;
assign sys_addr= (cpu_lcl_cyc) ? cpu_addr[4:0] : cmd_addr[4:0];
assign sys_data= (cpu_lcl_cyc) ? cpu_data : dbg_idata;
 
// Return debug response values
assign dbg_odata = (~dbg_addr)?cmd_data
:((~cmd_addr[5])?cpu_dbg_data : wb_data);
initial dbg_ack = 1'b0;
always @(posedge i_clk)
dbg_ack <= (dbg_cyc)&&(~dbg_stall);
assign dbg_stall=(dbg_cyc)&&((~sys_dbg_cyc)||(sys_stall))&&(dbg_addr);
 
// Now for the external wishbone bus
// Need to arbitrate between the flash cache and the CPU
// The way this works, though, the CPU will stall once the flash
// cache gets access to the bus--the CPU will be stuck until the
// flash cache is finished with the bus.
wire ext_cyc, ext_stb, ext_we, ext_err;
wire cpu_ext_ack, cpu_ext_stall, ext_ack, ext_stall,
cpu_ext_err;
wire [(AW-1):0] ext_addr;
wire [31:0] ext_odata;
wbpriarbiter #(32,AW) dmacvcpu(i_clk,
cpu_gbl_cyc, cpu_gbl_stb, cpu_we, cpu_addr, cpu_data,
cpu_ext_ack, cpu_ext_stall, cpu_ext_err,
dc_cyc, dc_stb, dc_we, dc_addr, dc_data,
dc_ack, dc_stall, dc_err,
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
ext_ack, ext_stall, ext_err);
 
`ifdef DELAY_EXT_BUS
busdelay #(AW,32) extbus(i_clk,
ext_cyc, ext_stb, ext_we, ext_addr, ext_odata,
ext_ack, ext_stall, ext_idata, ext_err,
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_data, (i_wb_err)||(wdbus_int));
`else
assign o_wb_cyc = ext_cyc;
assign o_wb_stb = ext_stb;
assign o_wb_we = ext_we;
assign o_wb_addr = ext_addr;
assign o_wb_data = ext_odata;
assign ext_ack = i_wb_ack;
assign ext_stall = i_wb_stall;
assign ext_idata = i_wb_data;
assign ext_err = (i_wb_err)||(wdbus_int);
`endif
 
wire tmr_ack;
assign tmr_ack = (tma_ack|tmb_ack|tmc_ack|jif_ack);
wire [31:0] tmr_data;
assign tmr_data = (tma_ack)?tma_data
:(tmb_ack ? tmb_data
:(tmc_ack ? tmc_data
:jif_data));
assign wb_data = (tmr_ack|wdt_ack)?((tmr_ack)?tmr_data:wdt_data)
:((actr_ack|dmac_ack)?((actr_ack)?actr_data:dmac_data)
:((pic_ack|ctri_ack)?((pic_ack)?pic_data:ctri_data)
:((wdbus_ack)?wdbus_data:(ext_idata))));
 
assign sys_stall = (tma_stall | tmb_stall | tmc_stall | jif_stall
| wdt_stall | ctri_stall | actr_stall
| pic_stall | dmac_stall);
assign cpu_stall = (sys_stall)|(cpu_ext_stall);
assign sys_ack = (tmr_ack|wdt_ack|ctri_ack|actr_ack|pic_ack|dmac_ack|wdbus_ack);
assign cpu_ack = (sys_ack)||(cpu_ext_ack);
assign cpu_err = (cpu_ext_err)&&(cpu_gbl_cyc);
 
assign o_ext_int = (cmd_halt) && (~cpu_stall);
 
endmodule
/cpu/busdelay.v
0,0 → 1,101
///////////////////////////////////////////////////////////////////////////
//
// Filename: busdelay.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: Delay any access to the wishbone bus by a single clock.
//
// When the first Zip System would not meet the timing requirements of
// the board it was placed upon, this bus delay was added to help out.
// It may no longer be necessary, having cleaned some other problems up
// first, but it will remain here as a means of alleviating timing
// problems.
//
// The specific problem takes place on the stall line: a wishbone master
// *must* know on the first clock whether or not the bus will stall.
//
//
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module busdelay(i_clk,
// The input bus
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data, o_wb_err,
// The delayed bus
o_dly_cyc, o_dly_stb, o_dly_we, o_dly_addr, o_dly_data,
i_dly_ack, i_dly_stall, i_dly_data, i_dly_err);
parameter AW=32, DW=32;
input i_clk;
// Input/master bus
input i_wb_cyc, i_wb_stb, i_wb_we;
input [(AW-1):0] i_wb_addr;
input [(DW-1):0] i_wb_data;
output reg o_wb_ack;
output wire o_wb_stall;
output reg [(DW-1):0] o_wb_data;
output wire o_wb_err;
// Delayed bus
output reg o_dly_cyc, o_dly_stb, o_dly_we;
output reg [(AW-1):0] o_dly_addr;
output reg [(DW-1):0] o_dly_data;
input i_dly_ack;
input i_dly_stall;
input [(DW-1):0] i_dly_data;
input i_dly_err;
 
initial o_dly_cyc = 1'b0;
initial o_dly_stb = 1'b0;
 
always @(posedge i_clk)
o_dly_cyc <= i_wb_cyc;
// Add the i_wb_cyc criteria here, so we can simplify the o_wb_stall
// criteria below, which would otherwise *and* these two.
always @(posedge i_clk)
if (~o_wb_stall)
o_dly_stb <= ((i_wb_cyc)&&(i_wb_stb));
always @(posedge i_clk)
if (~o_wb_stall)
o_dly_we <= i_wb_we;
always @(posedge i_clk)
if (~o_wb_stall)
o_dly_addr<= i_wb_addr;
always @(posedge i_clk)
if (~o_wb_stall)
o_dly_data <= i_wb_data;
always @(posedge i_clk)
o_wb_ack <= (i_dly_ack)&&(o_dly_cyc)&&(i_wb_cyc);
always @(posedge i_clk)
o_wb_data <= i_dly_data;
 
// Our only non-delayed line, yet still really delayed. Perhaps
// there's a way to register this?
// o_wb_stall <= (i_wb_cyc)&&(i_wb_stb) ... or some such?
// assign o_wb_stall=((i_wb_cyc)&&(i_dly_stall)&&(o_dly_stb));//&&o_cyc
assign o_wb_stall = ((i_dly_stall)&&(o_dly_stb));//&&o_cyc
assign o_wb_err = i_dly_err;
 
endmodule
/cpu/cpuops.v
0,0 → 1,200
///////////////////////////////////////////////////////////////////////////
//
// Filename: cpuops.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This supports the instruction set reordering of operations
// created by the second generation instruction set, as well as
// the new operations of POPC (population count) and BREV (bit reversal).
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module cpuops(i_clk,i_rst, i_ce, i_valid, i_op, i_a, i_b, o_c, o_f, o_valid,
o_illegal, o_busy);
parameter IMPLEMENT_MPY = 1;
input i_clk, i_rst, i_ce;
input [3:0] i_op;
input [31:0] i_a, i_b;
input i_valid;
output reg [31:0] o_c;
output wire [3:0] o_f;
output reg o_valid;
output wire o_illegal;
output wire o_busy;
 
// Rotate-left pre-logic
wire [63:0] w_rol_tmp;
assign w_rol_tmp = { i_a, i_a } << i_b[4:0];
wire [31:0] w_rol_result;
assign w_rol_result = w_rol_tmp[63:32]; // Won't set flags
 
// Shift register pre-logic
wire [32:0] w_lsr_result, w_asr_result;
assign w_asr_result = (|i_b[31:5])? {(33){i_a[31]}}
: ( {i_a, 1'b0 } >>> (i_b[4:0]) );// ASR
assign w_lsr_result = (|i_b[31:5])? 33'h00
: ( { i_a, 1'b0 } >> (i_b[4:0]) );// LSR
 
// Bit reversal pre-logic
wire [31:0] w_brev_result;
genvar k;
generate
for(k=0; k<32; k=k+1)
begin : bit_reversal_cpuop
assign w_brev_result[k] = i_b[31-k];
end endgenerate
 
// Popcount pre-logic
wire [31:0] w_popc_result;
assign w_popc_result[5:0]=
({5'h0,i_b[ 0]}+{5'h0,i_b[ 1]}+{5'h0,i_b[ 2]}+{5'h0,i_b[ 3]})
+({5'h0,i_b[ 4]}+{5'h0,i_b[ 5]}+{5'h0,i_b[ 6]}+{5'h0,i_b[ 7]})
+({5'h0,i_b[ 8]}+{5'h0,i_b[ 9]}+{5'h0,i_b[10]}+{5'h0,i_b[11]})
+({5'h0,i_b[12]}+{5'h0,i_b[13]}+{5'h0,i_b[14]}+{5'h0,i_b[15]})
+({5'h0,i_b[16]}+{5'h0,i_b[17]}+{5'h0,i_b[18]}+{5'h0,i_b[19]})
+({5'h0,i_b[20]}+{5'h0,i_b[21]}+{5'h0,i_b[22]}+{5'h0,i_b[23]})
+({5'h0,i_b[24]}+{5'h0,i_b[25]}+{5'h0,i_b[26]}+{5'h0,i_b[27]})
+({5'h0,i_b[28]}+{5'h0,i_b[29]}+{5'h0,i_b[30]}+{5'h0,i_b[31]});
assign w_popc_result[31:6] = 26'h00;
 
// Prelogic for our flags registers
wire z, n, v;
reg c, pre_sign, set_ovfl;
always @(posedge i_clk)
if (i_ce) // 1 LUT
set_ovfl =(((i_op==4'h0)&&(i_a[31] != i_b[31]))//SUB&CMP
||((i_op==4'h2)&&(i_a[31] == i_b[31])) // ADD
||(i_op == 4'h6) // LSL
||(i_op == 4'h5)); // LSR
 
 
// A 4-way multiplexer can be done in one 6-LUT.
// A 16-way multiplexer can therefore be done in 4x 6-LUT's with
// the Xilinx multiplexer fabric that follows.
// Given that we wish to apply this multiplexer approach to 33-bits,
// this will cost a minimum of 132 6-LUTs.
generate
if (IMPLEMENT_MPY == 0)
begin
always @(posedge i_clk)
if (i_ce)
begin
pre_sign <= (i_a[31]);
c <= 1'b0;
casez(i_op)
4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB
4'b0001: o_c <= i_a & i_b; // BTST/And
4'b0010:{c,o_c } <= i_a + i_b; // Add
4'b0011: o_c <= i_a | i_b; // Or
4'b0100: o_c <= i_a ^ i_b; // Xor
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
4'b0110:{c,o_c } <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
4'b1000: o_c <= { i_b[15: 0], i_a[15:0] }; // LODIHI
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
// 4'h1010: The unimplemented MPYU,
// 4'h1011: and here for the unimplemented MPYS
4'b1100: o_c <= w_brev_result; // BREV
4'b1101: o_c <= w_popc_result; // POPC
4'b1110: o_c <= w_rol_result; // ROL
default: o_c <= i_b; // MOV, LDI
endcase
end
 
assign o_busy = 1'b0;
 
reg r_illegal;
always @(posedge i_clk)
r_illegal <= (i_ce)&&((i_op == 4'h3)||(i_op == 4'h4));
assign o_illegal = r_illegal;
end else begin
//
// Multiply pre-logic
//
wire signed [16:0] w_mpy_a_input, w_mpy_b_input;
wire [33:0] w_mpy_result;
reg [31:0] r_mpy_result;
assign w_mpy_a_input ={ ((i_a[15])&(i_op[0])), i_a[15:0] };
assign w_mpy_b_input ={ ((i_b[15])&(i_op[0])), i_b[15:0] };
assign w_mpy_result = w_mpy_a_input * w_mpy_b_input;
always @(posedge i_clk)
if (i_ce)
r_mpy_result = w_mpy_result[31:0];
 
//
// The master ALU case statement
//
always @(posedge i_clk)
if (i_ce)
begin
pre_sign <= (i_a[31]);
c <= 1'b0;
casez(i_op)
4'b0000:{c,o_c } <= {1'b0,i_a}-{1'b0,i_b};// CMP/SUB
4'b0001: o_c <= i_a & i_b; // BTST/And
4'b0010:{c,o_c } <= i_a + i_b; // Add
4'b0011: o_c <= i_a | i_b; // Or
4'b0100: o_c <= i_a ^ i_b; // Xor
4'b0101:{o_c,c } <= w_lsr_result[32:0]; // LSR
4'b0110:{c,o_c } <= (|i_b[31:5])? 33'h00 : {1'b0, i_a } << i_b[4:0]; // LSL
4'b0111:{o_c,c } <= w_asr_result[32:0]; // ASR
4'b1000: o_c <= { i_b[15: 0], i_a[15:0] }; // LODIHI
4'b1001: o_c <= { i_a[31:16], i_b[15:0] }; // LODILO
4'b1010: o_c <= r_mpy_result; // MPYU
4'b1011: o_c <= r_mpy_result; // MPYS
4'b1100: o_c <= w_brev_result; // BREV
4'b1101: o_c <= w_popc_result; // POPC
4'b1110: o_c <= w_rol_result; // ROL
default: o_c <= i_b; // MOV, LDI
endcase
end else if (r_busy)
o_c <= r_mpy_result;
 
reg r_busy;
initial r_busy = 1'b0;
always @(posedge i_clk)
r_busy <= (~i_rst)&&(i_ce)&&(i_valid)
&&(i_op[3:1] == 3'h5);
 
assign o_busy = r_busy;
 
assign o_illegal = 1'b0;
end endgenerate
 
assign z = (o_c == 32'h0000);
assign n = (o_c[31]);
assign v = (set_ovfl)&&(pre_sign != o_c[31]);
 
assign o_f = { v, n, c, z };
 
initial o_valid = 1'b0;
always @(posedge i_clk)
if (i_rst)
o_valid <= 1'b0;
else
o_valid <= (i_ce)&&(i_valid)&&(i_op[3:1] != 3'h5)
||(o_busy);
endmodule
/cpu/zipcpu.v
0,0 → 1,1656
///////////////////////////////////////////////////////////////////////////////
//
// Filename: zipcpu.v
//
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
//
// Purpose: This is the top level module holding the core of the Zip CPU
// together. The Zip CPU is designed to be as simple as possible.
// (actual implementation aside ...) The instruction set is about as
// RISC as you can get, there are only 16 instruction types supported.
// Please see the accompanying spec.pdf file for a description of these
// instructions.
//
// All instructions are 32-bits wide. All bus accesses, both address and
// data, are 32-bits over a wishbone bus.
//
// The Zip CPU is fully pipelined with the following pipeline stages:
//
// 1. Prefetch, returns the instruction from memory.
//
// 2. Instruction Decode
//
// 3. Read Operands
//
// 4. Apply Instruction
//
// 4. Write-back Results
//
// Further information about the inner workings of this CPU may be
// found in the spec.pdf file. (The documentation within this file
// had become out of date and out of sync with the spec.pdf, so look
// to the spec.pdf for accurate and up to date information.)
//
//
// In general, the pipelining is controlled by three pieces of logic
// per stage: _ce, _stall, and _valid. _valid means that the stage
// holds a valid instruction. _ce means that the instruction from the
// previous stage is to move into this one, and _stall means that the
// instruction from the previous stage may not move into this one.
// The difference between these control signals allows individual stages
// to propagate instructions independently. In general, the logic works
// as:
//
//
// assign (n)_ce = (n-1)_valid && (~(n)_stall)
//
//
// always @(posedge i_clk)
// if ((i_rst)||(clear_pipeline))
// (n)_valid = 0
// else if (n)_ce
// (n)_valid = 1
// else if (n+1)_ce
// (n)_valid = 0
//
// assign (n)_stall = ( (n-1)_valid && ( pipeline hazard detection ) )
// || ( (n)_valid && (n+1)_stall );
//
// and ...
//
// always @(posedge i_clk)
// if (n)_ce
// (n)_variable = ... whatever logic for this stage
//
// Note that a stage can stall even if no instruction is loaded into
// it.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////////
//
// We can either pipeline our fetches, or issue one fetch at a time. Pipelined
// fetches are more complicated and therefore use more FPGA resources, while
// single fetches will cause the CPU to stall for about 5 stalls each
// instruction cycle, effectively reducing the instruction count per clock to
// about 0.2. However, the area cost may be worth it. Consider:
//
// Slice LUTs ZipSystem ZipCPU
// Single Fetching 2521 1734
// Pipelined fetching 2796 2046
//
//
//
`define CPU_CC_REG 4'he
`define CPU_PC_REG 4'hf
`define CPU_FPUERR_BIT 12 // Floating point error flag, set on error
`define CPU_DIVERR_BIT 11 // Divide error flag, set on divide by zero
`define CPU_BUSERR_BIT 10 // Bus error flag, set on error
`define CPU_TRAP_BIT 9 // User TRAP has taken place
`define CPU_ILL_BIT 8 // Illegal instruction
`define CPU_BREAK_BIT 7
`define CPU_STEP_BIT 6 // Will step one or two (VLIW) instructions
`define CPU_GIE_BIT 5
`define CPU_SLEEP_BIT 4
// Compile time defines
//
`include "cpudefs.v"
//
//
module zipcpu(i_clk, i_rst, i_interrupt,
// Debug interface
i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data,
o_dbg_stall, o_dbg_reg, o_dbg_cc,
o_break,
// CPU interface to the wishbone bus
o_wb_gbl_cyc, o_wb_gbl_stb,
o_wb_lcl_cyc, o_wb_lcl_stb,
o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_data,
i_wb_err,
// Accounting/CPU usage interface
o_op_stall, o_pf_stall, o_i_count
`ifdef DEBUG_SCOPE
, o_debug
`endif
);
parameter RESET_ADDRESS=32'h0100000, ADDRESS_WIDTH=24,
LGICACHE=6;
`ifdef OPT_MULTIPLY
parameter IMPLEMENT_MPY = 1;
`else
parameter IMPLEMENT_MPY = 0;
`endif
`ifdef OPT_DIVIDE
parameter IMPLEMENT_DIVIDE = 1;
`else
parameter IMPLEMENT_DIVIDE = 0;
`endif
`ifdef OPT_IMPLEMENT_FPU
parameter IMPLEMENT_FPU = 1,
`else
parameter IMPLEMENT_FPU = 0,
`endif
IMPLEMENT_LOCK=1;
`ifdef OPT_EARLY_BRANCHING
parameter EARLY_BRANCHING = 1;
`else
parameter EARLY_BRANCHING = 0;
`endif
parameter AW=ADDRESS_WIDTH;
input i_clk, i_rst, i_interrupt;
// Debug interface -- inputs
input i_halt, i_clear_pf_cache;
input [4:0] i_dbg_reg;
input i_dbg_we;
input [31:0] i_dbg_data;
// Debug interface -- outputs
output reg o_dbg_stall;
output reg [31:0] o_dbg_reg;
output reg [3:0] o_dbg_cc;
output wire o_break;
// Wishbone interface -- outputs
output wire o_wb_gbl_cyc, o_wb_gbl_stb;
output wire o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we;
output wire [(AW-1):0] o_wb_addr;
output wire [31:0] o_wb_data;
// Wishbone interface -- inputs
input i_wb_ack, i_wb_stall;
input [31:0] i_wb_data;
input i_wb_err;
// Accounting outputs ... to help us count stalls and usage
output wire o_op_stall;
output wire o_pf_stall;
output wire o_i_count;
//
`ifdef DEBUG_SCOPE
output reg [31:0] o_debug;
`endif
 
 
// Registers
//
// The distributed RAM style comment is necessary on the
// SPARTAN6 with XST to prevent XST from oversimplifying the register
// set and in the process ruining everything else. It basically
// optimizes logic away, to where it no longer works. The logic
// as described herein will work, this just makes sure XST implements
// that logic.
//
(* ram_style = "distributed" *)
reg [31:0] regset [0:31];
 
// Condition codes
// (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z
reg [3:0] flags, iflags;
wire [13:0] w_uflags, w_iflags;
reg trap, break_en, step, gie, sleep;
`ifdef OPT_ILLEGAL_INSTRUCTION
reg ill_err_u, ill_err_i;
`else
wire ill_err_u, ill_err_i;
`endif
reg ibus_err_flag, ubus_err_flag;
wire idiv_err_flag, udiv_err_flag;
wire ifpu_err_flag, ufpu_err_flag;
wire ihalt_phase, uhalt_phase;
 
// The master chip enable
wire master_ce;
 
//
//
// PIPELINE STAGE #1 :: Prefetch
// Variable declarations
//
reg [(AW-1):0] pf_pc;
reg new_pc;
wire clear_pipeline;
assign clear_pipeline = new_pc || i_clear_pf_cache;
 
wire dcd_stalled;
wire pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err;
wire [(AW-1):0] pf_addr;
wire [31:0] pf_data;
wire [31:0] instruction;
wire [(AW-1):0] instruction_pc;
wire pf_valid, instruction_gie, pf_illegal;
 
//
//
// PIPELINE STAGE #2 :: Instruction Decode
// Variable declarations
//
//
reg opvalid, opvalid_mem, opvalid_alu;
reg opvalid_div, opvalid_fpu;
wire op_stall, dcd_ce, dcd_phase;
wire [3:0] dcdOp;
wire [4:0] dcdA, dcdB, dcdR;
wire dcdA_cc, dcdB_cc, dcdA_pc, dcdB_pc, dcdR_cc, dcdR_pc;
wire [3:0] dcdF;
wire dcdR_wr, dcdA_rd, dcdB_rd,
dcdALU, dcdM, dcdDV, dcdFP,
dcdF_wr, dcd_gie, dcd_break, dcd_lock,
dcd_pipe;
reg r_dcdvalid;
wire dcdvalid;
wire [(AW-1):0] dcd_pc;
wire [31:0] dcdI;
wire dcd_zI; // true if dcdI == 0
wire dcdA_stall, dcdB_stall, dcdF_stall;
 
wire dcd_illegal;
wire dcd_early_branch;
wire [(AW-1):0] dcd_branch_pc;
 
 
//
//
// PIPELINE STAGE #3 :: Read Operands
// Variable declarations
//
//
//
// Now, let's read our operands
reg [4:0] alu_reg;
reg [3:0] opn;
reg [4:0] opR;
reg [31:0] r_opA, r_opB;
reg [(AW-1):0] op_pc;
wire [31:0] w_opA, w_opB;
wire [31:0] opA_nowait, opB_nowait, opA, opB;
reg opR_wr, opR_cc, opF_wr, op_gie;
wire [13:0] opFl;
reg [5:0] r_opF;
wire [7:0] opF;
wire op_ce, op_phase;
// Some pipeline control wires
`ifdef OPT_PIPELINED
reg opA_alu, opA_mem;
reg opB_alu, opB_mem;
`endif
`ifdef OPT_ILLEGAL_INSTRUCTION
reg op_illegal;
`endif
reg op_break;
wire op_lock;
 
 
//
//
// PIPELINE STAGE #4 :: ALU / Memory
// Variable declarations
//
//
reg [(AW-1):0] alu_pc;
reg alu_pc_valid;
wire alu_phase;
wire alu_ce, alu_stall;
wire [31:0] alu_result;
wire [3:0] alu_flags;
wire alu_valid, alu_busy;
wire set_cond;
reg alu_wr, alF_wr, alu_gie;
wire alu_illegal_op;
wire alu_illegal;
 
 
 
wire mem_ce, mem_stalled;
`ifdef OPT_PIPELINED_BUS_ACCESS
wire mem_pipe_stalled;
`endif
wire mem_valid, mem_ack, mem_stall, mem_err, bus_err,
mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we;
wire [4:0] mem_wreg;
 
wire mem_busy, mem_rdbusy;
wire [(AW-1):0] mem_addr;
wire [31:0] mem_data, mem_result;
 
wire div_ce, div_error, div_busy, div_valid;
wire [31:0] div_result;
wire [3:0] div_flags;
 
assign div_ce = (master_ce)&&(~clear_pipeline)&&(opvalid_div)
&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
&&(set_cond);
 
wire fpu_ce, fpu_error, fpu_busy, fpu_valid;
wire [31:0] fpu_result;
wire [3:0] fpu_flags;
 
assign fpu_ce = (master_ce)&&(~clear_pipeline)&&(opvalid_fpu)
&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
&&(set_cond);
 
 
//
//
// PIPELINE STAGE #5 :: Write-back
// Variable declarations
//
wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc;
wire [4:0] wr_reg_id;
wire [31:0] wr_reg_vl;
wire w_switch_to_interrupt, w_release_from_interrupt;
reg [(AW-1):0] upc, ipc;
 
 
 
//
// MASTER: clock enable.
//
assign master_ce = (~i_halt)&&(~o_break)&&(~sleep);
 
 
//
// PIPELINE STAGE #1 :: Prefetch
// Calculate stall conditions
//
// These are calculated externally, within the prefetch module.
//
 
//
// PIPELINE STAGE #2 :: Instruction Decode
// Calculate stall conditions
`ifdef OPT_PIPELINED
assign dcd_ce = ((~dcdvalid)||(~dcd_stalled))&&(~clear_pipeline);
`else
assign dcd_ce = 1'b1;
`endif
`ifdef OPT_PIPELINED
assign dcd_stalled = (dcdvalid)&&(op_stall);
`else
// If not pipelined, there will be no opvalid_ anything, and the
// op_stall will be false, dcdX_stall will be false, thus we can simply
// do a ...
assign dcd_stalled = 1'b0;
`endif
//
// PIPELINE STAGE #3 :: Read Operands
// Calculate stall conditions
wire op_lock_stall;
`ifdef OPT_PIPELINED
assign op_stall = (opvalid)&&( // Only stall if we're loaded w/validins
// Stall if we're stopped, and not allowed to execute
// an instruction
// (~master_ce) // Already captured in alu_stall
//
// Stall if going into the ALU and the ALU is stalled
// i.e. if the memory is busy, or we are single
// stepping. This also includes our stalls for
// op_break and op_lock, so we don't need to
// include those as well here.
// This also includes whether or not the divide or
// floating point units are busy.
(alu_stall)
//
// Stall if we are going into memory with an operation
// that cannot be pipelined, and the memory is
// already busy
||(mem_stalled) // &&(opvalid_mem) part of mem_stalled
)
||(dcdvalid)&&(
// Stall if we need to wait for an operand A
// to be ready to read
(dcdA_stall)
// Likewise for B, also includes logic
// regarding immediate offset (register must
// be in register file if we need to add to
// an immediate)
||(dcdB_stall)
// Or if we need to wait on flags to work on the
// CC register
||(dcdF_stall)
);
assign op_ce = ((dcdvalid)||(dcd_illegal))&&(~op_stall)&&(~clear_pipeline);
`else
assign op_stall = (opvalid)&&(~master_ce);
assign op_ce = ((dcdvalid)||(dcd_illegal));
`endif
 
//
// PIPELINE STAGE #4 :: ALU / Memory
// Calculate stall conditions
//
// 1. Basic stall is if the previous stage is valid and the next is
// busy.
// 2. Also stall if the prior stage is valid and the master clock enable
// is de-selected
// 3. Stall if someone on the other end is writing the CC register,
// since we don't know if it'll put us to sleep or not.
// 4. Last case: Stall if we would otherwise move a break instruction
// through the ALU. Break instructions are not allowed through
// the ALU.
`ifdef OPT_PIPELINED
assign alu_stall = (((~master_ce)||(mem_rdbusy)||(alu_busy))&&(opvalid_alu)) //Case 1&2
// Old case #3--this isn't an ALU stall though ...
||((opvalid_alu)&&(wr_reg_ce)&&(wr_reg_id[4] == op_gie)
&&(wr_write_cc)) // Case 3
||((opvalid)&&(op_lock)&&(op_lock_stall))
||((opvalid)&&(op_break))
||(div_busy)||(fpu_busy);
assign alu_ce = (master_ce)&&((opvalid_alu)||(op_illegal))
&&(~alu_stall)
&&(~clear_pipeline);
`else
assign alu_stall = ((~master_ce)&&(opvalid_alu))
||((opvalid_alu)&&(op_break));
assign alu_ce = (master_ce)&&((opvalid_alu)||(op_illegal))&&(~alu_stall);
`endif
//
 
//
// Note: if you change the conditions for mem_ce, you must also change
// alu_pc_valid.
//
`ifdef OPT_PIPELINED
assign mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled)
&&(~clear_pipeline);
`else
// If we aren't pipelined, then no one will be changing what's in the
// pipeline (i.e. clear_pipeline), while our only instruction goes
// through the ... pipeline.
assign mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled);
`endif
`ifdef OPT_PIPELINED_BUS_ACCESS
assign mem_stalled = (~master_ce)||(alu_busy)||((opvalid_mem)&&(
(mem_pipe_stalled)
||((~op_pipe)&&(mem_busy))
||(div_busy)
||(fpu_busy)
// Stall waiting for flags to be valid
// Or waiting for a write to the PC register
// Or CC register, since that can change the
// PC as well
||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)
&&((wr_write_pc)||(wr_write_cc)))));
`else
`ifdef OPT_PIPELINED
assign mem_stalled = (mem_busy)||((opvalid_mem)&&(
(~master_ce)
// Stall waiting for flags to be valid
// Or waiting for a write to the PC register
// Or CC register, since that can change the
// PC as well
||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc)))));
`else
assign mem_stalled = (opvalid_mem)&&(~master_ce);
`endif
`endif
 
 
//
//
// PIPELINE STAGE #1 :: Prefetch
//
//
`ifdef OPT_SINGLE_FETCH
wire pf_ce;
 
assign pf_ce = (~pf_valid)&&(~dcdvalid)&&(~opvalid)&&(~alu_valid);
prefetch #(ADDRESS_WIDTH)
pf(i_clk, i_rst, (pf_ce), (~dcd_stalled), pf_pc, gie,
instruction, instruction_pc, instruction_gie,
pf_valid, pf_illegal,
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
pf_ack, pf_stall, pf_err, i_wb_data);
 
initial r_dcdvalid = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_dcdvalid <= 1'b0;
else if (dcd_ce)
r_dcdvalid <= (pf_valid)&&(~clear_pipeline)&&((~r_dcdvalid)||(~dcd_early_branch));
else if ((op_ce)||(clear_pipeline))
r_dcdvalid <= 1'b0;
assign dcdvalid = r_dcdvalid;
 
`else // Pipe fetch
 
`ifdef OPT_TRADITIONAL_PFCACHE
pfcache #(LGICACHE, ADDRESS_WIDTH)
pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(dcdvalid)),
i_clear_pf_cache,
// dcd_pc,
~dcd_stalled,
((dcd_early_branch)&&(dcdvalid)&&(~new_pc))
? dcd_branch_pc:pf_pc,
instruction, instruction_pc, pf_valid,
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
pf_ack, pf_stall, pf_err, i_wb_data,
pf_illegal);
`else
pipefetch #(RESET_ADDRESS, LGICACHE, ADDRESS_WIDTH)
pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(dcdvalid)),
i_clear_pf_cache, ~dcd_stalled,
(new_pc)?pf_pc:dcd_branch_pc,
instruction, instruction_pc, pf_valid,
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
pf_ack, pf_stall, pf_err, i_wb_data,
//`ifdef OPT_PRECLEAR_BUS
//((dcd_clear_bus)&&(dcdvalid))
//||((op_clear_bus)&&(opvalid))
//||
//`endif
(mem_cyc_lcl)||(mem_cyc_gbl),
pf_illegal);
`endif
assign instruction_gie = gie;
 
initial r_dcdvalid = 1'b0;
always @(posedge i_clk)
if ((i_rst)||(clear_pipeline))
r_dcdvalid <= 1'b0;
else if (dcd_ce)
r_dcdvalid <= (pf_valid)&&(~clear_pipeline)&&((~r_dcdvalid)||(~dcd_early_branch));
else if (op_ce)
r_dcdvalid <= 1'b0;
assign dcdvalid = r_dcdvalid;
`endif
 
`ifdef OPT_NEW_INSTRUCTION_SET
idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
IMPLEMENT_FPU)
instruction_decoder(i_clk, (i_rst)||(clear_pipeline),
dcd_ce, dcd_stalled, instruction, instruction_gie,
instruction_pc, pf_valid, pf_illegal, dcd_phase,
dcd_illegal, dcd_pc, dcd_gie,
{ dcdR_cc, dcdR_pc, dcdR },
{ dcdA_cc, dcdA_pc, dcdA },
{ dcdB_cc, dcdB_pc, dcdB },
dcdI, dcd_zI, dcdF, dcdF_wr, dcdOp,
dcdALU, dcdM, dcdDV, dcdFP, dcd_break, dcd_lock,
dcdR_wr,dcdA_rd, dcdB_rd,
dcd_early_branch,
dcd_branch_pc,
dcd_pipe);
`else
idecode_deprecated
#(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
IMPLEMENT_FPU)
instruction_decoder(i_clk, (i_rst)||(clear_pipeline),
dcd_ce, dcd_stalled, instruction, instruction_gie,
instruction_pc, pf_valid, pf_illegal, dcd_phase,
dcd_illegal, dcd_pc, dcd_gie,
{ dcdR_cc, dcdR_pc, dcdR },
{ dcdA_cc, dcdA_pc, dcdA },
{ dcdB_cc, dcdB_pc, dcdB },
dcdI, dcd_zI, dcdF, dcdF_wr, dcdOp,
dcdALU, dcdM, dcdDV, dcdFP, dcd_break, dcd_lock,
dcdR_wr,dcdA_rd, dcdB_rd,
dcd_early_branch,
dcd_branch_pc,
dcd_pipe);
`endif
 
`ifdef OPT_PIPELINED_BUS_ACCESS
reg op_pipe;
 
initial op_pipe = 1'b0;
// To be a pipeable operation, there must be
// two valid adjacent instructions
// Both must be memory instructions
// Both must be writes, or both must be reads
// Both operations must be to the same identical address,
// or at least a single (one) increment above that address
//
// However ... we need to know this before this clock, hence this is
// calculated in the instruction decoder.
always @(posedge i_clk)
if (op_ce)
op_pipe <= dcd_pipe;
`endif
 
//
//
// PIPELINE STAGE #3 :: Read Operands (Registers)
//
//
assign w_opA = regset[dcdA];
assign w_opB = regset[dcdB];
 
wire [31:0] w_pcA_v;
generate
if (AW < 32)
assign w_pcA_v = {{(32-AW){1'b0}}, (dcdA[4] == dcd_gie)?dcd_pc:upc };
else
assign w_pcA_v = (dcdA[4] == dcd_gie)?dcd_pc:upc;
endgenerate
 
`ifdef OPT_PIPELINED
reg [4:0] opA_id, opB_id;
reg opA_rd, opB_rd;
always @(posedge i_clk)
if (op_ce)
begin
opA_id <= dcdA;
opB_id <= dcdB;
opA_rd <= dcdA_rd;
opB_rd <= dcdB_rd;
end
`endif
 
always @(posedge i_clk)
if (op_ce) // &&(dcdvalid))
begin
if ((wr_reg_ce)&&(wr_reg_id == dcdA))
r_opA <= wr_reg_vl;
else if (dcdA_pc)
r_opA <= w_pcA_v;
else if (dcdA_cc)
r_opA <= { w_opA[31:14], (dcdA[4])?w_uflags:w_iflags };
else
r_opA <= w_opA;
`ifdef OPT_PIPELINED
end else
begin // We were going to pick these up when they became valid,
// but for some reason we're stuck here as they became
// valid. Pick them up now anyway
// if (((opA_alu)&&(alu_wr))||((opA_mem)&&(mem_valid)))
// r_opA <= wr_reg_vl;
if ((wr_reg_ce)&&(wr_reg_id == opA_id)&&(opA_rd))
r_opA <= wr_reg_vl;
`endif
end
 
wire [31:0] w_opBnI, w_pcB_v;
generate
if (AW < 32)
assign w_pcB_v = {{(32-AW){1'b0}}, (dcdB[4] == dcd_gie)?dcd_pc:upc };
else
assign w_pcB_v = (dcdB[4] == dcd_gie)?dcd_pc:upc;
endgenerate
 
assign w_opBnI = (~dcdB_rd) ? 32'h00
: (((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_reg_vl
: ((dcdB_pc) ? w_pcB_v
: ((dcdB_cc) ? { w_opB[31:14], (dcdB[4])?w_uflags:w_iflags}
: w_opB)));
 
always @(posedge i_clk)
if (op_ce) // &&(dcdvalid))
r_opB <= w_opBnI + dcdI;
`ifdef OPT_PIPELINED
else if ((wr_reg_ce)&&(opB_id == wr_reg_id)&&(opB_rd))
r_opB <= wr_reg_vl;
`endif
 
// The logic here has become more complex than it should be, no thanks
// to Xilinx's Vivado trying to help. The conditions are supposed to
// be two sets of four bits: the top bits specify what bits matter, the
// bottom specify what those top bits must equal. However, two of
// conditions check whether bits are on, and those are the only two
// conditions checking those bits. Therefore, Vivado complains that
// these two bits are redundant. Hence the convoluted expression
// below, arriving at what we finally want in the (now wire net)
// opF.
always @(posedge i_clk)
if (op_ce)
begin // Set the flag condition codes, bit order is [3:0]=VNCZ
case(dcdF[2:0])
3'h0: r_opF <= 6'h00; // Always
`ifdef OPT_NEW_INSTRUCTION_SET
// These were remapped as part of the new instruction
// set in order to make certain that the low order
// two bits contained the most commonly used
// conditions: Always, LT, Z, and NZ.
3'h1: r_opF <= 6'h24; // LT
3'h2: r_opF <= 6'h11; // Z
3'h3: r_opF <= 6'h10; // NE
3'h4: r_opF <= 6'h30; // GT (!N&!Z)
3'h5: r_opF <= 6'h20; // GE (!N)
`else
3'h1: r_opF <= 6'h11; // Z
3'h2: r_opF <= 6'h10; // NE
3'h3: r_opF <= 6'h20; // GE (!N)
3'h4: r_opF <= 6'h30; // GT (!N&!Z)
3'h5: r_opF <= 6'h24; // LT
`endif
3'h6: r_opF <= 6'h02; // C
3'h7: r_opF <= 6'h08; // V
endcase
end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value }
assign opF = { r_opF[3], r_opF[5], r_opF[1], r_opF[4:0] };
 
wire w_opvalid;
assign w_opvalid = (~clear_pipeline)&&(dcdvalid);
initial opvalid = 1'b0;
initial opvalid_alu = 1'b0;
initial opvalid_mem = 1'b0;
always @(posedge i_clk)
if (i_rst)
begin
opvalid <= 1'b0;
opvalid_alu <= 1'b0;
opvalid_mem <= 1'b0;
end else if (op_ce)
begin
// Do we have a valid instruction?
// The decoder may vote to stall one of its
// instructions based upon something we currently
// have in our queue. This instruction must then
// move forward, and get a stall cycle inserted.
// Hence, the test on dcd_stalled here. If we must
// wait until our operands are valid, then we aren't
// valid yet until then.
opvalid<= w_opvalid;
`ifdef OPT_ILLEGAL_INSTRUCTION
opvalid_alu <= ((dcdALU)||(dcd_illegal))&&(w_opvalid);
opvalid_mem <= (dcdM)&&(~dcd_illegal)&&(w_opvalid);
opvalid_div <= (dcdDV)&&(~dcd_illegal)&&(w_opvalid);
opvalid_fpu <= (dcdFP)&&(~dcd_illegal)&&(w_opvalid);
`else
opvalid_alu <= (dcdALU)&&(w_opvalid);
opvalid_mem <= (dcdM)&&(w_opvalid);
opvalid_div <= (dcdDV)&&(w_opvalid);
opvalid_fpu <= (dcdFP)&&(w_opvalid);
`endif
end else if ((clear_pipeline)||(alu_ce)||(mem_ce)||(div_ce)||(fpu_ce))
begin
opvalid <= 1'b0;
opvalid_alu <= 1'b0;
opvalid_mem <= 1'b0;
opvalid_div <= 1'b0;
opvalid_fpu <= 1'b0;
end
 
// Here's part of our debug interface. When we recognize a break
// instruction, we set the op_break flag. That'll prevent this
// instruction from entering the ALU, and cause an interrupt before
// this instruction. Thus, returning to this code will cause the
// break to repeat and continue upon return. To get out of this
// condition, replace the break instruction with what it is supposed
// to be, step through it, and then replace it back. In this fashion,
// a debugger can step through code.
// assign w_op_break = (dcd_break)&&(r_dcdI[15:0] == 16'h0001);
initial op_break = 1'b0;
always @(posedge i_clk)
if (i_rst) op_break <= 1'b0;
else if (op_ce) op_break <= (dcd_break);
else if ((clear_pipeline)||(~opvalid))
op_break <= 1'b0;
 
`ifdef OPT_PIPELINED
generate
if (IMPLEMENT_LOCK != 0)
begin
reg r_op_lock, r_op_lock_stall;
 
initial r_op_lock_stall = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_op_lock_stall <= 1'b0;
else
r_op_lock_stall <= (~opvalid)||(~op_lock)
||(~dcdvalid)||(~pf_valid);
 
assign op_lock_stall = r_op_lock_stall;
 
initial r_op_lock = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_op_lock <= 1'b0;
else if ((op_ce)&&(dcd_lock))
r_op_lock <= 1'b1;
else if ((op_ce)||(clear_pipeline))
r_op_lock <= 1'b0;
assign op_lock = r_op_lock;
 
end else begin
assign op_lock_stall = 1'b0;
assign op_lock = 1'b0;
end endgenerate
 
`else
assign op_lock_stall = 1'b0;
assign op_lock = 1'b0;
`endif
 
`ifdef OPT_ILLEGAL_INSTRUCTION
initial op_illegal = 1'b0;
always @(posedge i_clk)
if ((i_rst)||(clear_pipeline))
op_illegal <= 1'b0;
else if(op_ce)
`ifdef OPT_PIPELINED
op_illegal <=(dcd_illegal)||((dcd_lock)&&(IMPLEMENT_LOCK == 0));
`else
op_illegal <= (dcd_illegal)||(dcd_lock);
`endif
`endif
 
// No generate on EARLY_BRANCHING here, since if EARLY_BRANCHING is not
// set, dcd_early_branch will simply be a wire connected to zero and
// this logic should just optimize.
always @(posedge i_clk)
if (op_ce)
begin
opF_wr <= (dcdF_wr)&&((~dcdR_cc)||(~dcdR_wr))
&&(~dcd_early_branch)&&(~dcd_illegal);
opR_wr <= (dcdR_wr)&&(~dcd_early_branch)&&(~dcd_illegal);
end
 
always @(posedge i_clk)
if (op_ce)
begin
opn <= dcdOp; // Which ALU operation?
// opM <= dcdM; // Is this a memory operation?
// What register will these results be written into?
opR <= dcdR;
opR_cc <= (dcdR_cc)&&(dcdR_wr)&&(dcdR[4]==dcd_gie);
// User level (1), vs supervisor (0)/interrupts disabled
op_gie <= dcd_gie;
 
 
//
op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc;
end
assign opFl = (op_gie)?(w_uflags):(w_iflags);
 
`ifdef OPT_VLIW
reg r_op_phase;
initial r_op_phase = 1'b0;
always @(posedge i_clk)
if ((i_rst)||(clear_pipeline))
r_op_phase <= 1'b0;
else if (op_ce)
r_op_phase <= dcd_phase;
assign op_phase = r_op_phase;
`else
assign op_phase = 1'b0;
`endif
 
// This is tricky. First, the PC and Flags registers aren't kept in
// register set but in special registers of their own. So step one
// is to select the right register. Step to is to replace that
// register with the results of an ALU or memory operation, if such
// results are now available. Otherwise, we'd need to insert a wait
// state of some type.
//
// The alternative approach would be to define some sort of
// op_stall wire, which would stall any upstream stage.
// We'll create a flag here to start our coordination. Once we
// define this flag to something other than just plain zero, then
// the stalls will already be in place.
`ifdef OPT_PIPELINED
assign opA = ((wr_reg_ce)&&(wr_reg_id == opA_id)) // &&(opA_rd))
? wr_reg_vl : r_opA;
`else
assign opA = r_opA;
`endif
 
`ifdef OPT_PIPELINED
// Stall if we have decoded an instruction that will read register A
// AND ... something that may write a register is running
// AND (series of conditions here ...)
// The operation might set flags, and we wish to read the
// CC register
// OR ... (No other conditions)
assign dcdA_stall = (dcdA_rd) // &&(dcdvalid) is checked for elsewhere
&&((opvalid)||(mem_rdbusy)
||(div_busy)||(fpu_busy))
&&((opF_wr)&&(dcdA_cc));
`else
// There are no pipeline hazards, if we aren't pipelined
assign dcdA_stall = 1'b0;
`endif
 
`ifdef OPT_PIPELINED
assign opB = ((wr_reg_ce)&&(wr_reg_id == opB_id)&&(opB_rd))
? wr_reg_vl: r_opB;
`else
assign opB = r_opB;
`endif
 
`ifdef OPT_PIPELINED
// Stall if we have decoded an instruction that will read register B
// AND ... something that may write a (unknown) register is running
// AND (series of conditions here ...)
// The operation might set flags, and we wish to read the
// CC register
// OR the operation might set register B, and we still need
// a clock to add the offset to it
assign dcdB_stall = (dcdB_rd) // &&(dcdvalid) is checked for elsewhere
// If the op stage isn't valid, yet something
// is running, then it must have been valid.
// We'll use the last values from that stage
// (opR_wr, opF_wr, opR) in our logic below.
&&((opvalid)||(mem_rdbusy)
||(div_busy)||(fpu_busy))
&&(
// Stall on memory ops writing to my register
// (i.e. loads), or on any write to my
// register if I have an immediate offset
// Note the exception for writing to the PC:
// if I write to the PC, the whole next
// instruction is invalid, not just the
// operand. That'll get wiped in the
// next operation anyway, so don't stall
// here. This keeps a BC X, BNZ Y from
// stalling between the two branches.
// BC X, BRA Y is still clear, since BRA Y
// is an early branch instruction.
// (This exception is commented out in
// order to help keep our logic simple, and
// because multiple conditional branches
// following each other constitutes a
// fairly unusualy code structure.)
//
((~dcd_zI)&&(opR == dcdB)&&(opR_wr))
// &&(opR != { op_gie, `CPU_PC_REG } )
// Stall following any instruction that will
// set the flags, if we're going to need the
// flags (CC) register for opB.
||((opF_wr)&&(dcdB_cc))
// Stall on any ongoing memory operation that
// will write to opB -- captured above
// ||((mem_busy)&&(~mem_we)&&(mem_last_reg==dcdB)&&(~dcd_zI))
);
`else
// No stalls without pipelining, 'cause how can you have a pipeline
// hazard without the pipeline?
assign dcdB_stall = 1'b0;
`endif
assign dcdF_stall = ((~dcdF[3])
||((dcdA_rd)&&(dcdA_cc))
||((dcdB_rd)&&(dcdB_cc)))
&&(opvalid)&&(opR_cc);
// &&(dcdvalid) is checked for elsewhere
//
//
// PIPELINE STAGE #4 :: Apply Instruction
//
//
`ifdef OPT_NEW_INSTRUCTION_SET
cpuops #(IMPLEMENT_MPY) doalu(i_clk, i_rst, alu_ce,
(opvalid_alu), opn, opA, opB,
alu_result, alu_flags, alu_valid, alu_illegal_op,
alu_busy);
`else
cpuops_deprecated #(IMPLEMENT_MPY) doalu(i_clk, i_rst, alu_ce,
(opvalid_alu), opn, opA, opB,
alu_result, alu_flags, alu_valid, alu_illegal_op);
assign alu_busy = 1'b0;
`endif
 
generate
if (IMPLEMENT_DIVIDE != 0)
begin
div thedivide(i_clk, (i_rst)||(clear_pipeline), div_ce, opn[0],
opA, opB, div_busy, div_valid, div_error, div_result,
div_flags);
end else begin
assign div_error = 1'b1;
assign div_busy = 1'b0;
assign div_valid = 1'b0;
assign div_result= 32'h00;
assign div_flags = 4'h0;
end endgenerate
 
generate
if (IMPLEMENT_FPU != 0)
begin
//
// sfpu thefpu(i_clk, i_rst, fpu_ce,
// opA, opB, fpu_busy, fpu_valid, fpu_err, fpu_result,
// fpu_flags);
//
assign fpu_error = 1'b1;
assign fpu_busy = 1'b0;
assign fpu_valid = 1'b0;
assign fpu_result= 32'h00;
assign fpu_flags = 4'h0;
end else begin
assign fpu_error = 1'b1;
assign fpu_busy = 1'b0;
assign fpu_valid = 1'b0;
assign fpu_result= 32'h00;
assign fpu_flags = 4'h0;
end endgenerate
 
 
assign set_cond = ((opF[7:4]&opFl[3:0])==opF[3:0]);
initial alF_wr = 1'b0;
initial alu_wr = 1'b0;
always @(posedge i_clk)
if (i_rst)
begin
alu_wr <= 1'b0;
alF_wr <= 1'b0;
end else if (alu_ce)
begin
// alu_reg <= opR;
alu_wr <= (opR_wr)&&(set_cond);
alF_wr <= (opF_wr)&&(set_cond);
end else if (~alu_busy) begin
// These are strobe signals, so clear them if not
// set for any particular clock
alu_wr <= (i_halt)&&(i_dbg_we);
alF_wr <= 1'b0;
end
 
`ifdef OPT_VLIW
reg r_alu_phase;
initial r_alu_phase = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_alu_phase <= 1'b0;
else if ((alu_ce)||(mem_ce)||(div_ce)||(fpu_ce))
r_alu_phase <= op_phase;
assign alu_phase = r_alu_phase;
`else
assign alu_phase = 1'b0;
`endif
 
always @(posedge i_clk)
if ((alu_ce)||(div_ce)||(fpu_ce))
alu_reg <= opR;
else if ((i_halt)&&(i_dbg_we))
alu_reg <= i_dbg_reg;
 
reg [31:0] dbg_val;
reg dbgv;
always @(posedge i_clk)
dbg_val <= i_dbg_data;
initial dbgv = 1'b0;
always @(posedge i_clk)
dbgv <= (~i_rst)&&(~alu_ce)&&((i_halt)&&(i_dbg_we));
always @(posedge i_clk)
if ((alu_ce)||(mem_ce))
alu_gie <= op_gie;
always @(posedge i_clk)
if ((alu_ce)||((master_ce)&&(opvalid_mem)&&(~clear_pipeline)
&&(~mem_stalled)))
alu_pc <= op_pc;
 
`ifdef OPT_ILLEGAL_INSTRUCTION
reg r_alu_illegal;
initial r_alu_illegal = 0;
always @(posedge i_clk)
if (clear_pipeline)
r_alu_illegal <= 1'b0;
else if ((alu_ce)||(mem_ce))
r_alu_illegal <= op_illegal;
assign alu_illegal = (alu_illegal_op)||(r_alu_illegal);
`endif
 
// This _almost_ is equal to (alu_ce)||(mem_ce). The only
// problem is that mem_ce is gated by the set_cond, and
// the PC will be valid independent of the set condition. Hence, this
// equals (alu_ce)||(everything in mem_ce but the set condition)
initial alu_pc_valid = 1'b0;
always @(posedge i_clk)
alu_pc_valid <= ((alu_ce)
||((master_ce)&&(opvalid_mem)&&(~clear_pipeline)&&(~mem_stalled)));
 
wire bus_lock;
`ifdef OPT_PIPELINED
generate
if (IMPLEMENT_LOCK != 0)
begin
reg r_bus_lock;
initial r_bus_lock = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_bus_lock <= 1'b0;
else if ((op_ce)&&(op_lock))
r_bus_lock <= 1'b1;
else if (~opvalid_mem)
r_bus_lock <= 1'b0;
assign bus_lock = r_bus_lock;
end else begin
assign bus_lock = 1'b0;
end endgenerate
`else
assign bus_lock = 1'b0;
`endif
 
`ifdef OPT_PIPELINED_BUS_ACCESS
pipemem #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
(opn[0]), opB, opA, opR,
mem_busy, mem_pipe_stalled,
mem_valid, bus_err, mem_wreg, mem_result,
mem_cyc_gbl, mem_cyc_lcl,
mem_stb_gbl, mem_stb_lcl,
mem_we, mem_addr, mem_data,
mem_ack, mem_stall, mem_err, i_wb_data);
`else // PIPELINED_BUS_ACCESS
memops #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
(opn[0]), opB, opA, opR,
mem_busy,
mem_valid, bus_err, mem_wreg, mem_result,
mem_cyc_gbl, mem_cyc_lcl,
mem_stb_gbl, mem_stb_lcl,
mem_we, mem_addr, mem_data,
mem_ack, mem_stall, mem_err, i_wb_data);
`endif // PIPELINED_BUS_ACCESS
assign mem_rdbusy = ((mem_busy)&&(~mem_we));
 
// Either the prefetch or the instruction gets the memory bus, but
// never both.
wbdblpriarb #(32,AW) pformem(i_clk, i_rst,
// Memory access to the arbiter, priority position
mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl,
mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err,
// Prefetch access to the arbiter
pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data,
pf_ack, pf_stall, pf_err,
// Common wires, in and out, of the arbiter
o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb,
o_wb_we, o_wb_addr, o_wb_data,
i_wb_ack, i_wb_stall, i_wb_err);
 
//
//
// PIPELINE STAGE #5 :: Write-back results
//
//
// This stage is not allowed to stall. If results are ready to be
// written back, they are written back at all cost. Sleepy CPU's
// won't prevent write back, nor debug modes, halting the CPU, nor
// anything else. Indeed, the (master_ce) bit is only as relevant
// as knowinig something is available for writeback.
 
//
// Write back to our generic register set ...
// When shall we write back? On one of two conditions
// Note that the flags needed to be checked before issuing the
// bus instruction, so they don't need to be checked here.
// Further, alu_wr includes (set_cond), so we don't need to
// check for that here either.
`ifdef OPT_ILLEGAL_INSTRUCTION
assign wr_reg_ce = (~alu_illegal)&&
(((alu_wr)&&(~clear_pipeline)
&&((alu_valid)||(div_valid)||(fpu_valid)))
||(mem_valid));
`else
assign wr_reg_ce = ((alu_wr)&&(~clear_pipeline))||(mem_valid)||(div_valid)||(fpu_valid);
`endif
// Which register shall be written?
// COULD SIMPLIFY THIS: by adding three bits to these registers,
// One or PC, one for CC, and one for GIE match
// Note that the alu_reg is the register to write on a divide or
// FPU operation.
assign wr_reg_id = (alu_wr)?alu_reg:mem_wreg;
// Are we writing to the CC register?
assign wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG);
// Are we writing to the PC?
assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG);
// What value to write?
assign wr_reg_vl = ((mem_valid) ? mem_result
:((div_valid|fpu_valid))
? ((div_valid) ? div_result:fpu_result)
:((dbgv) ? dbg_val : alu_result));
always @(posedge i_clk)
if (wr_reg_ce)
regset[wr_reg_id] <= wr_reg_vl;
 
//
// Write back to the condition codes/flags register ...
// When shall we write to our flags register? alF_wr already
// includes the set condition ...
assign wr_flags_ce = ((alF_wr)||(div_valid)||(fpu_valid))&&(~clear_pipeline)&&(~alu_illegal);
assign w_uflags = { uhalt_phase, ufpu_err_flag,
udiv_err_flag, ubus_err_flag, trap, ill_err_u,
1'b0, step, 1'b1, sleep,
((wr_flags_ce)&&(alu_gie))?alu_flags:flags };
assign w_iflags = { ihalt_phase, ifpu_err_flag,
idiv_err_flag, ibus_err_flag, trap, ill_err_i,
break_en, 1'b0, 1'b0, sleep,
((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags };
 
 
// What value to write?
always @(posedge i_clk)
// If explicitly writing the register itself
if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_cc))
flags <= wr_reg_vl[3:0];
// Otherwise if we're setting the flags from an ALU operation
else if ((wr_flags_ce)&&(alu_gie))
flags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
: alu_flags);
 
always @(posedge i_clk)
if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc))
iflags <= wr_reg_vl[3:0];
else if ((wr_flags_ce)&&(~alu_gie))
iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
: alu_flags);
 
// The 'break' enable bit. This bit can only be set from supervisor
// mode. It control what the CPU does upon encountering a break
// instruction.
//
// The goal, upon encountering a break is that the CPU should stop and
// not execute the break instruction, choosing instead to enter into
// either interrupt mode or halt first.
// if ((break_en) AND (break_instruction)) // user mode or not
// HALT CPU
// else if (break_instruction) // only in user mode
// set an interrupt flag, go to supervisor mode
// allow supervisor to step the CPU.
// Upon a CPU halt, any break condition will be reset. The
// external debugger will then need to deal with whatever
// condition has taken place.
initial break_en = 1'b0;
always @(posedge i_clk)
if ((i_rst)||(i_halt))
break_en <= 1'b0;
else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc))
break_en <= wr_reg_vl[`CPU_BREAK_BIT];
`ifdef OPT_ILLEGAL_INSTRUCTION
assign o_break = ((break_en)||(~op_gie))&&(op_break)
&&(~alu_valid)&&(~mem_valid)&&(~mem_busy)
&&(~div_busy)&&(~fpu_busy)
&&(~clear_pipeline)
||((~alu_gie)&&(bus_err))
||((~alu_gie)&&(div_valid)&&(div_error))
||((~alu_gie)&&(fpu_valid)&&(fpu_error))
||((~alu_gie)&&(alu_pc_valid)&&(alu_illegal));
`else
assign o_break = (((break_en)||(~op_gie))&&(op_break)
&&(~alu_valid)&&(~mem_valid)&&(~mem_busy)
&&(~clear_pipeline))
||((~alu_gie)&&(bus_err));
`endif
 
 
// The sleep register. Setting the sleep register causes the CPU to
// sleep until the next interrupt. Setting the sleep register within
// interrupt mode causes the processor to halt until a reset. This is
// a panic/fault halt. The trick is that you cannot be allowed to
// set the sleep bit and switch to supervisor mode in the same
// instruction: users are not allowed to halt the CPU.
always @(posedge i_clk)
if ((i_rst)||(w_switch_to_interrupt))
sleep <= 1'b0;
else if ((wr_reg_ce)&&(wr_write_cc)&&(~alu_gie))
// In supervisor mode, we have no protections. The
// supervisor can set the sleep bit however he wants.
// Well ... not quite. Switching to user mode and
// sleep mode shouold only be possible if the interrupt
// flag isn't set.
// Thus: if (i_interrupt)&&(wr_reg_vl[GIE])
// don't set the sleep bit
// otherwise however it would o.w. be set
sleep <= (wr_reg_vl[`CPU_SLEEP_BIT])
&&((~i_interrupt)||(~wr_reg_vl[`CPU_GIE_BIT]));
else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_vl[`CPU_GIE_BIT]))
// In user mode, however, you can only set the sleep
// mode while remaining in user mode. You can't switch
// to sleep mode *and* supervisor mode at the same
// time, lest you halt the CPU.
sleep <= wr_reg_vl[`CPU_SLEEP_BIT];
 
always @(posedge i_clk)
if ((i_rst)||(w_switch_to_interrupt))
step <= 1'b0;
else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4])&&(wr_write_cc))
step <= wr_reg_vl[`CPU_STEP_BIT];
else if ((alu_pc_valid)&&(step)&&(gie))
step <= 1'b0;
 
// The GIE register. Only interrupts can disable the interrupt register
assign w_switch_to_interrupt = (gie)&&(
// On interrupt (obviously)
((i_interrupt)&&(~alu_phase)&&(~bus_lock))
// If we are stepping the CPU
||((alu_pc_valid)&&(step)&&(~alu_phase)&&(~bus_lock))
// If we encounter a break instruction, if the break
// enable isn't set.
||((master_ce)&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
&&(op_break)&&(~break_en))
`ifdef OPT_ILLEGAL_INSTRUCTION
// On an illegal instruction
||((alu_pc_valid)&&(alu_illegal))
`endif
// On division by zero. If the divide isn't
// implemented, div_valid and div_error will be short
// circuited and that logic will be bypassed
||((div_valid)&&(div_error))
// Same thing on a floating point error.
||((fpu_valid)&&(fpu_error))
//
||(bus_err)
// If we write to the CC register
||((wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT])
&&(wr_reg_id[4])&&(wr_write_cc))
);
assign w_release_from_interrupt = (~gie)&&(~i_interrupt)
// Then if we write the CC register
&&(((wr_reg_ce)&&(wr_reg_vl[`CPU_GIE_BIT])
&&(~wr_reg_id[4])&&(wr_write_cc))
);
always @(posedge i_clk)
if (i_rst)
gie <= 1'b0;
else if (w_switch_to_interrupt)
gie <= 1'b0;
else if (w_release_from_interrupt)
gie <= 1'b1;
 
initial trap = 1'b0;
always @(posedge i_clk)
if (i_rst)
trap <= 1'b0;
else if ((alu_gie)&&(wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT])
&&(wr_write_cc)) // &&(wr_reg_id[4]) implied
trap <= 1'b1;
else if (w_release_from_interrupt)
trap <= 1'b0;
 
`ifdef OPT_ILLEGAL_INSTRUCTION
initial ill_err_i = 1'b0;
always @(posedge i_clk)
if (i_rst)
ill_err_i <= 1'b0;
// The debug interface can clear this bit
else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
&&(~wr_reg_vl[`CPU_ILL_BIT]))
ill_err_i <= 1'b0;
else if ((alu_pc_valid)&&(alu_illegal)&&(~alu_gie))
ill_err_i <= 1'b1;
initial ill_err_u = 1'b0;
always @(posedge i_clk)
if (i_rst)
ill_err_u <= 1'b0;
// The bit is automatically cleared on release from interrupt
else if (w_release_from_interrupt)
ill_err_u <= 1'b0;
// If the supervisor writes to this register, clearing the
// bit, then clear it
else if (((~alu_gie)||(dbgv))
&&(wr_reg_ce)&&(~wr_reg_vl[`CPU_ILL_BIT])
&&(wr_reg_id[4])&&(wr_write_cc))
ill_err_u <= 1'b0;
else if ((alu_pc_valid)&&(alu_illegal)&&(alu_gie))
ill_err_u <= 1'b1;
`else
assign ill_err_u = 1'b0;
assign ill_err_i = 1'b0;
`endif
// Supervisor/interrupt bus error flag -- this will crash the CPU if
// ever set.
initial ibus_err_flag = 1'b0;
always @(posedge i_clk)
if (i_rst)
ibus_err_flag <= 1'b0;
else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
&&(~wr_reg_vl[`CPU_BUSERR_BIT]))
ibus_err_flag <= 1'b0;
else if ((bus_err)&&(~alu_gie))
ibus_err_flag <= 1'b1;
// User bus error flag -- if ever set, it will cause an interrupt to
// supervisor mode.
initial ubus_err_flag = 1'b0;
always @(posedge i_clk)
if (i_rst)
ubus_err_flag <= 1'b0;
else if (w_release_from_interrupt)
ubus_err_flag <= 1'b0;
// else if ((i_halt)&&(i_dbg_we)&&(~i_dbg_reg[4])
// &&(i_dbg_reg == {1'b1, `CPU_CC_REG})
// &&(~i_dbg_data[`CPU_BUSERR_BIT]))
// ubus_err_flag <= 1'b0;
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
&&(~wr_reg_vl[`CPU_BUSERR_BIT])
&&(wr_reg_id[4])&&(wr_write_cc))
ubus_err_flag <= 1'b0;
else if ((bus_err)&&(alu_gie))
ubus_err_flag <= 1'b1;
 
generate
if (IMPLEMENT_DIVIDE != 0)
begin
reg r_idiv_err_flag, r_udiv_err_flag;
 
// Supervisor/interrupt divide (by zero) error flag -- this will
// crash the CPU if ever set. This bit is thus available for us
// to be able to tell if/why the CPU crashed.
initial r_idiv_err_flag = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_idiv_err_flag <= 1'b0;
else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
&&(~wr_reg_vl[`CPU_DIVERR_BIT]))
r_idiv_err_flag <= 1'b0;
else if ((div_error)&&(div_valid)&&(~alu_gie))
r_idiv_err_flag <= 1'b1;
// User divide (by zero) error flag -- if ever set, it will
// cause a sudden switch interrupt to supervisor mode.
initial r_udiv_err_flag = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_udiv_err_flag <= 1'b0;
else if (w_release_from_interrupt)
r_udiv_err_flag <= 1'b0;
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
&&(~wr_reg_vl[`CPU_DIVERR_BIT])
&&(wr_reg_id[4])&&(wr_write_cc))
r_udiv_err_flag <= 1'b0;
else if ((div_error)&&(alu_gie)&&(div_valid))
r_udiv_err_flag <= 1'b1;
 
assign idiv_err_flag = r_idiv_err_flag;
assign udiv_err_flag = r_udiv_err_flag;
end else begin
assign idiv_err_flag = 1'b0;
assign udiv_err_flag = 1'b0;
end endgenerate
 
generate
if (IMPLEMENT_FPU !=0)
begin
// Supervisor/interrupt floating point error flag -- this will
// crash the CPU if ever set.
reg r_ifpu_err_flag, r_ufpu_err_flag;
initial r_ifpu_err_flag = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_ifpu_err_flag <= 1'b0;
else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
&&(~wr_reg_vl[`CPU_FPUERR_BIT]))
r_ifpu_err_flag <= 1'b0;
else if ((fpu_error)&&(fpu_valid)&&(~alu_gie))
r_ifpu_err_flag <= 1'b1;
// User floating point error flag -- if ever set, it will cause
// a sudden switch interrupt to supervisor mode.
initial r_ufpu_err_flag = 1'b0;
always @(posedge i_clk)
if (i_rst)
r_ufpu_err_flag <= 1'b0;
else if (w_release_from_interrupt)
r_ufpu_err_flag <= 1'b0;
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
&&(~wr_reg_vl[`CPU_FPUERR_BIT])
&&(wr_reg_id[4])&&(wr_write_cc))
r_ufpu_err_flag <= 1'b0;
else if ((fpu_error)&&(alu_gie)&&(fpu_valid))
r_ufpu_err_flag <= 1'b1;
 
assign ifpu_err_flag = r_ifpu_err_flag;
assign ufpu_err_flag = r_ufpu_err_flag;
end else begin
assign ifpu_err_flag = 1'b0;
assign ufpu_err_flag = 1'b0;
end endgenerate
 
`ifdef OPT_VLIW
reg r_ihalt_phase, r_uhalt_phase;
 
initial r_ihalt_phase = 0;
initial r_uhalt_phase = 0;
always @(posedge i_clk)
if (~alu_gie)
r_ihalt_phase <= alu_phase;
always @(posedge i_clk)
if (alu_gie)
r_uhalt_phase <= alu_phase;
else if (w_release_from_interrupt)
r_uhalt_phase <= 1'b0;
 
assign ihalt_phase = r_ihalt_phase;
assign uhalt_phase = r_uhalt_phase;
`else
assign ihalt_phase = 1'b0;
assign uhalt_phase = 1'b0;
`endif
 
//
// Write backs to the PC register, and general increments of it
// We support two: upc and ipc. If the instruction is normal,
// we increment upc, if interrupt level we increment ipc. If
// the instruction writes the PC, we write whichever PC is appropriate.
//
// Do we need to all our partial results from the pipeline?
// What happens when the pipeline has gie and ~gie instructions within
// it? Do we clear both? What if a gie instruction tries to clear
// a non-gie instruction?
always @(posedge i_clk)
if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc))
upc <= wr_reg_vl[(AW-1):0];
else if ((alu_gie)&&(alu_pc_valid)&&(~clear_pipeline))
upc <= alu_pc;
 
always @(posedge i_clk)
if (i_rst)
ipc <= RESET_ADDRESS;
else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc))
ipc <= wr_reg_vl[(AW-1):0];
else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline))
ipc <= alu_pc;
 
always @(posedge i_clk)
if (i_rst)
pf_pc <= RESET_ADDRESS;
else if (w_switch_to_interrupt)
pf_pc <= ipc;
else if (w_release_from_interrupt)
pf_pc <= upc;
else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
pf_pc <= wr_reg_vl[(AW-1):0];
`ifdef OPT_PIPELINED
else if ((~new_pc)&&((dcd_early_branch)&&(dcdvalid)))
pf_pc <= dcd_branch_pc + 1;
else if ((new_pc)||((~dcd_stalled)&&(pf_valid)))
pf_pc <= pf_pc + {{(AW-1){1'b0}},1'b1};
`else
else if ((alu_pc_valid)&&(~clear_pipeline))
pf_pc <= alu_pc;
`endif
 
initial new_pc = 1'b1;
always @(posedge i_clk)
if ((i_rst)||(i_clear_pf_cache))
new_pc <= 1'b1;
else if (w_switch_to_interrupt)
new_pc <= 1'b1;
else if (w_release_from_interrupt)
new_pc <= 1'b1;
else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
new_pc <= 1'b1;
else
new_pc <= 1'b0;
 
//
// The debug interface
generate
if (AW<32)
begin
always @(posedge i_clk)
begin
o_dbg_reg <= regset[i_dbg_reg];
if (i_dbg_reg[3:0] == `CPU_PC_REG)
o_dbg_reg <= {{(32-AW){1'b0}},(i_dbg_reg[4])?upc:ipc};
else if (i_dbg_reg[3:0] == `CPU_CC_REG)
begin
o_dbg_reg[13:0] <= (i_dbg_reg[4])?w_uflags:w_iflags;
o_dbg_reg[`CPU_GIE_BIT] <= gie;
end
end
end else begin
always @(posedge i_clk)
begin
o_dbg_reg <= regset[i_dbg_reg];
if (i_dbg_reg[3:0] == `CPU_PC_REG)
o_dbg_reg <= (i_dbg_reg[4])?upc:ipc;
else if (i_dbg_reg[3:0] == `CPU_CC_REG)
begin
o_dbg_reg[13:0] <= (i_dbg_reg[4])?w_uflags:w_iflags;
o_dbg_reg[`CPU_GIE_BIT] <= gie;
end
end
end endgenerate
 
always @(posedge i_clk)
o_dbg_cc <= { o_break, bus_err, gie, sleep };
 
always @(posedge i_clk)
o_dbg_stall <= (i_halt)&&(
(pf_cyc)||(mem_cyc_gbl)||(mem_cyc_lcl)||(mem_busy)
||((~opvalid)&&(~i_rst))
||((~dcdvalid)&&(~i_rst)));
 
//
//
// Produce accounting outputs: Account for any CPU stalls, so we can
// later evaluate how well we are doing.
//
//
assign o_op_stall = (master_ce)&&(op_stall);
assign o_pf_stall = (master_ce)&&(~pf_valid);
assign o_i_count = (alu_pc_valid)&&(~clear_pipeline);
 
`ifdef DEBUG_SCOPE
always @(posedge i_clk)
o_debug <= {
pf_pc[3:0], flags,
pf_valid, dcdvalid, opvalid, alu_valid, mem_valid,
op_ce, alu_ce, mem_ce,
//
master_ce, opvalid_alu, opvalid_mem,
//
alu_stall, mem_busy, op_pipe, mem_pipe_stalled,
mem_we,
// ((opvalid_alu)&&(alu_stall))
// ||((opvalid_mem)&&(~op_pipe)&&(mem_busy))
// ||((opvalid_mem)&&( op_pipe)&&(mem_pipe_stalled)));
// opA[23:20], opA[3:0],
gie, sleep,
wr_reg_ce, wr_reg_vl[4:0]
/*
i_rst, master_ce, (new_pc),
((dcd_early_branch)&&(dcdvalid)),
pf_valid, pf_illegal,
op_ce, dcd_ce, dcdvalid, dcd_stalled,
pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err,
pf_pc[7:0], pf_addr[7:0]
*/
};
`endif
endmodule
/rtcdate.v
0,0 → 1,188
///////////////////////////////////////////////////////////////////////////
//
// Filename: rtcdate.v
//
// Project: A Wishbone Controlled Real--time Clock Core
//
// Purpose:
// This core provides a real-time date function that can be coupled with
// a real-time clock. The date provided is in Binary Coded Decimal (bcd)
// form, and available for reading and writing over the Wishbone Bus.
//
// WARNING: Race conditions exist when updating the date across the Wishbone
// bus at or near midnight. (This should be obvious, but it bears
// stating.) Specifically, if the update command shows up at the same
// clock as the ppd clock, then the ppd clock will be ignored and the
// new date will be the date of the day following midnight. However,
// if the update command shows up one clock before the ppd, then the date
// may be updated, but may have problems dealing with the last day of the
// month or year. To avoid race conditions, update the date sometime
// after the stroke of midnight and before 5 clocks before the next
// midnight. If you are concerned that you might hit a race condition,
// just read the clock again (5+ clocks later) to make certain you set
// it correctly.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
module rtcdate(i_clk, i_ppd, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data);
input i_clk;
// A one part per day signal, i.e. basically a clock enable line that
// controls when the beginning of the day happens. This line should
// be high on the very last second of any day in order for the rtcdate
// module to always have the right date.
input i_ppd;
// Wishbone inputs
input i_wb_cyc, i_wb_stb, i_wb_we;
input [31:0] i_wb_data;
// Wishbone outputs
output reg o_wb_ack;
output wire o_wb_stall;
output wire [31:0] o_wb_data;
 
 
reg [5:0] r_day;
reg [4:0] r_mon;
reg [13:0] r_year;
 
reg last_day_of_month, last_day_of_year, is_leap_year;
always @(posedge i_clk)
last_day_of_year <= (last_day_of_month) && (r_mon == 5'h12);
always @(posedge i_clk)
begin
case(r_mon)
5'h01: last_day_of_month <= (r_day >= 6'h31); // Jan
5'h02: last_day_of_month <= (r_day >= 6'h29)
||((~is_leap_year)&&(r_day == 6'h28));
5'h03: last_day_of_month <= (r_day >= 6'h31); // March
5'h04: last_day_of_month <= (r_day >= 6'h30); // April
5'h05: last_day_of_month <= (r_day >= 6'h31); // May
5'h06: last_day_of_month <= (r_day >= 6'h30); // June
5'h07: last_day_of_month <= (r_day >= 6'h31); // July
5'h08: last_day_of_month <= (r_day >= 6'h31); // August
5'h09: last_day_of_month <= (r_day >= 6'h30); // Sept
5'h10: last_day_of_month <= (r_day >= 6'h31); // October
5'h11: last_day_of_month <= (r_day >= 6'h30); // November
5'h12: last_day_of_month <= (r_day >= 6'h31); // December
default: last_day_of_month <= 1'b0;
endcase
end
 
reg year_divisible_by_four, century_year, four_century_year;
always @(posedge i_clk)
year_divisible_by_four<= ((~r_year[0])&&(r_year[4]==r_year[1]));
always @(posedge i_clk)
century_year <= (r_year[7:0] == 8'h00);
always @(posedge i_clk)
four_century_year <= ((~r_year[8])&&((r_year[12]==r_year[9])));
always @(posedge i_clk)
is_leap_year <= (year_divisible_by_four)&&((~century_year)
||((century_year)&&(four_century_year)));
 
 
// Adjust the day of month
initial r_day = 6'h01;
always @(posedge i_clk)
begin
if ((r_day == 0)||(r_day > 6'h31)||(r_day[3:0] > 4'h9))
r_day <= 6'h01;
else if ((i_ppd)&&(last_day_of_month))
r_day <= 6'h01;
else if ((i_ppd)&&(r_day[3:0] != 4'h9))
r_day[3:0] <= r_day[3:0] + 4'h1;
else if (i_ppd)
begin
r_day[3:0] <= 4'h0;
r_day[5:4] <= r_day[5:4] + 2'h1;
end
 
if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we)&&(i_wb_data[7:0]!=8'hff))
r_day <= i_wb_data[5:0];
end
 
// Adjust the month of the year
initial r_mon = 5'h01;
always @(posedge i_clk)
begin
if ((r_mon == 0)||(r_mon > 5'h12)||(r_mon[3:0] > 4'h9))
r_mon <= 5'h01;
else if ((i_ppd)&&(last_day_of_year))
r_mon <= 5'h01;
else if ((i_ppd)&&(last_day_of_month)&&(r_mon[3:0] != 4'h9))
r_mon[3:0] <= r_mon[3:0] + 4'h1;
else if ((i_ppd)&&(last_day_of_month))
begin
r_mon[3:0] <= 4'h0;
r_mon[4] <= 1;
end
 
if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we)&&(i_wb_data[15:8]!=8'hff))
r_mon <= i_wb_data[12:8];
end
 
// Adjust the year
initial r_year = 14'h2000;
always @(posedge i_clk)
begin
// Deal with any out of bounds conditions
if (r_year[3:0] > 4'h9)
r_year[3:0] <= 4'h0;
if (r_year[7:4] > 4'h9)
r_year[7:4] <= 4'h0;
if (r_year[11:8] > 4'h9)
r_year[11:8] <= 4'h0;
if ((i_ppd)&&(last_day_of_year))
begin
if (r_year[3:0] != 4'h9)
r_year[3:0] <= r_year[3:0] + 4'h1;
else begin
r_year[3:0] <= 4'h0;
if (r_year[7:4] != 4'h9)
r_year[7:4] <= r_year[7:4] + 4'h1;
else begin
r_year[7:4] <= 4'h0;
if (r_year[11:8] != 4'h9)
r_year[11:8] <= r_year[11:8]+4'h1;
else begin
r_year[11:8] <= 4'h0;
r_year[13:12] <= r_year[13:12]+2'h1;
end
end
end
end
 
if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we)&&(i_wb_data[31:16]!=16'hffff))
r_year <= i_wb_data[29:16];
end
 
always @(posedge i_clk)
o_wb_ack <= ((i_wb_cyc)&&(i_wb_stb));
assign o_wb_stall = 1'b0;
assign o_wb_data = { 2'h0, r_year, 3'h0, r_mon, 2'h0, r_day };
endmodule
/wbicapesimple.v
0,0 → 1,170
///////////////////////////////////////////////////////////////////////////
//
// Filename: wbicapesimple.v
//
// Project: Wishbone to ICAPE_SPARTAN6 interface conversion
//
// Purpose: This is a companion project to the ICAPE2 conversion, instead
// involving a conversion from a 32-bit WISHBONE bus to read
// and write the ICAPE_SPARTAN6 program. Since this is a simple interface
// only, the smarts have been stripped out of it. Therefore, if you wish
// to write to or read from particular registers, you will need to do all
// the sequencing yourself.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
module wbicapesimple(i_clk,
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data, icap_dbg);
input i_clk;
// Wishbone inputs
input i_wb_cyc, i_wb_stb, i_wb_we;
input [15:0] i_wb_data;
// Wishbone outputs
output reg o_wb_ack;
output wire o_wb_stall;
output reg [15:0] o_wb_data;
output wire [25:0] icap_dbg;
 
 
// Divide our clock by 8. Thus, a 100 MHz clock with a 10 ns period
// gets divided down to an 80 ns period, which is greater than the
// minimum 50 ns as per the data sheet.
reg [2:0] clk_divider;
initial clk_divider=0;
always @(posedge i_clk)
clk_divider <= clk_divider + 3'h1;
 
reg icap_posedge, icap_preedge;
initial icap_posedge = 0;
always @(posedge i_clk)
icap_posedge <= (clk_divider == 3'b011);
initial icap_preedge = 0;
always @(posedge i_clk)
icap_preedge <= (clk_divider == 3'b010);
// icap_posedge <= (&clk_divider);
 
wire icap_clk;
assign icap_clk = clk_divider[2];
 
reg icap_ce_n, icap_we_n;
reg [15:0] icap_data_i;
 
 
wire icap_busy;
wire [15:0] icap_data_o;
ICAP_SPARTAN6 icap_inst(
.BUSY(icap_busy), // Active high, low during all writes
.O(icap_data_o),
.CE(icap_ce_n),
.CLK(icap_clk),
.I(icap_data_i),
.WRITE(icap_we_n));
 
// assign o_wb_stall = (i_wb_cyc)&&((~icap_posedge)||((~icap_ce_n)&&(icap_busy)));
 
wire [15:0] brev_i_wb_data;
assign brev_i_wb_data[ 0] = i_wb_data[ 7];
assign brev_i_wb_data[ 1] = i_wb_data[ 6];
assign brev_i_wb_data[ 2] = i_wb_data[ 5];
assign brev_i_wb_data[ 3] = i_wb_data[ 4];
assign brev_i_wb_data[ 4] = i_wb_data[ 3];
assign brev_i_wb_data[ 5] = i_wb_data[ 2];
assign brev_i_wb_data[ 6] = i_wb_data[ 1];
assign brev_i_wb_data[ 7] = i_wb_data[ 0];
//
assign brev_i_wb_data[ 8] = i_wb_data[15];
assign brev_i_wb_data[ 9] = i_wb_data[14];
assign brev_i_wb_data[10] = i_wb_data[13];
assign brev_i_wb_data[11] = i_wb_data[12];
assign brev_i_wb_data[12] = i_wb_data[11];
assign brev_i_wb_data[13] = i_wb_data[10];
assign brev_i_wb_data[14] = i_wb_data[ 9];
assign brev_i_wb_data[15] = i_wb_data[ 8];
//
 
initial icap_data_i = 0;
always @(posedge i_clk)
if (icap_preedge)
begin
if (~i_wb_cyc)
icap_data_i <= 16'hffff;
else if ((icap_ce_n)||(~icap_busy))
icap_data_i <= brev_i_wb_data[15:0];
end
 
initial icap_we_n = 1'b1;
always @(posedge i_clk)
if ((icap_preedge)&&((icap_ce_n)||(~icap_busy)))
icap_we_n <= ~i_wb_we;
initial icap_ce_n = 1'b1;
always @(posedge i_clk)
if ((icap_preedge)&&((icap_ce_n)||(~icap_busy)))
icap_ce_n <= ~((i_wb_cyc)&&(i_wb_stb));
else if ((icap_preedge)&&(~i_wb_cyc))
icap_ce_n <= 1'b1;
//initial r_wb_stall = 1'b0;
//always @(posedge i_clk)
//r_wb_stall <= (~icap_posedge)&&(
//&&(icap_preedge)&&(~icap_busy));
// assign o_wb_stall = (i_wb_cyc)&&((~icap_posedge)||((~icap_ce_n)&&(icap_busy)));
assign o_wb_stall = (~icap_posedge)
||((i_wb_cyc)&&(~icap_ce_n)&&(icap_busy));
initial o_wb_ack = 1'b0;
always @(posedge i_clk)
o_wb_ack <= ((~icap_ce_n)&&(i_wb_cyc)
&&(icap_preedge)&&(~icap_busy));
 
wire [15:0] brev_icap_data;
assign brev_icap_data[ 0] = icap_data_o[ 7];
assign brev_icap_data[ 1] = icap_data_o[ 6];
assign brev_icap_data[ 2] = icap_data_o[ 5];
assign brev_icap_data[ 3] = icap_data_o[ 4];
assign brev_icap_data[ 4] = icap_data_o[ 3];
assign brev_icap_data[ 5] = icap_data_o[ 2];
assign brev_icap_data[ 6] = icap_data_o[ 1];
assign brev_icap_data[ 7] = icap_data_o[ 0];
//
assign brev_icap_data[ 8] = icap_data_o[15];
assign brev_icap_data[ 9] = icap_data_o[14];
assign brev_icap_data[10] = icap_data_o[13];
assign brev_icap_data[11] = icap_data_o[12];
assign brev_icap_data[12] = icap_data_o[11];
assign brev_icap_data[13] = icap_data_o[10];
assign brev_icap_data[14] = icap_data_o[ 9];
assign brev_icap_data[15] = icap_data_o[ 8];
//
initial o_wb_data = 16'h000;
always @(posedge i_clk)
if ((icap_posedge)&&((icap_ce_n)||(~icap_busy)))
o_wb_data <= brev_icap_data;
 
assign icap_dbg[25:0] = {
i_wb_cyc,i_wb_stb, i_wb_we, o_wb_ack, o_wb_stall,
icap_posedge, icap_clk, icap_ce_n, icap_busy, icap_we_n,
(icap_we_n)?icap_data_o : icap_data_i };
 
endmodule
 
/wbicape6.v
0,0 → 1,304
///////////////////////////////////////////////////////////////////////////
//
// Filename: wbicape6.v
//
// Project: Wishbone to ICAPE_SPARTAN6 interface conversion
//
// Purpose: This is a companion project to the ICAPE2 conversion, instead
// involving a conversion from a 32-bit WISHBONE bus to read
// and write the ICAPE_SPARTAN6 program. This is the 'non-simple'
// portion of the interface, sporting all of the smarts necessary to run
// the simple interface and make working with ICAPE as simple as
// reading and writing from a wishbone bus. For example, register ID's
// are given by bus addresses, even though they take extra cycles to
// set and clear within the interface.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
///////////////////////////////////////////////////////////////////////////
//
// Following instructions on page 116-117 of the configuration guide ...
//
// W FFFF
// W FFFF
// W AA99
// W 5566
// W 2000 NOOP
// W 2901 Write Type-1 packet header to read register 901??
// W 2000 NOOP
// W 2000 NOOP
// W 2000 NOOP
// W 2000 NOOP
// R vvvv Read register from previous packet header command
// W 30A1 Write word to CMD register
// W 000D DESYNC command
// W 2000 NOOP
// W 2000 NOOP
//
// Bits need to be bit-reversed within a byte
//
//
// IPROG example
//
// W FFFF
// W AA99
// W 5566
// W 3261 Write 1 words to GENERAL_1
// W xxxx write Multiboot start address [15:0]
// W 3281 Write 1 words to GENERAL_2
// W xxxx write Opcode and multiboot start address [23:16]
// W 32A1 Write 1 words to GENERAL_3
// W xxxx write Fallback start address
// W 32C1 Write 1 words to GENERAL_4
// W xxxx write Opcode dne Fallback start address [23:16]
// W 30A1 Write 1 word to CMD
// W 000E IPGROG Cmd
// W 2000 NOOP
//
//
//
// This fails when using wgregs on the XuLA2 board because the ICAPE port and
// the JTAG port cannot both be active at the same time.
//
//
`define ICAP_IDLE 5'h0
`define ICAP_START 5'h1
`define ICAP_CLOSE 5'hf
module wbicape6(i_clk, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data, dbg_data);
input i_clk;
// Wishbone slave inputs
input i_wb_cyc, i_wb_stb, i_wb_we;
input [5:0] i_wb_addr;
input [31:0] i_wb_data;
// Wishbone outputs
output reg o_wb_ack;
output reg o_wb_stall;
output wire [31:0] o_wb_data;
output wire [31:0] dbg_data;
 
// Interface to the lower level ICAPE port
reg icap_cyc, icap_stb, icap_we;
reg [15:0] icap_data_i;
wire icap_ack, icap_stall;
wire [15:0] icap_data_o;
 
reg [4:0] state;
reg r_we;
reg [15:0] r_data;
 
wire [25:0] icap_dbg;
assign dbg_data = { i_wb_stb, state[3:0], r_we, icap_dbg };
 
reg stalled_state;
reg [7:0] r_cmd_word;
wire [15:0] w_cmd_word;
assign w_cmd_word = { 3'b001, r_cmd_word, 5'h00 }; // Type-1 packet hdr
initial icap_stb = 1'b0;
initial icap_cyc = 1'b0;
initial state = `ICAP_IDLE;
always @(posedge i_clk)
begin
o_wb_ack <= 1'b0;
o_wb_stall <= 1'b0;
if (stalled_state)
state <= `ICAP_IDLE;
else if ((~icap_stall)&&(state != `ICAP_IDLE))
state <= state + 1;
case(state)
`ICAP_IDLE: begin
icap_stb <= 1'b0;
icap_cyc <= 1'b0;
state <= `ICAP_IDLE;
r_data <= i_wb_data[15:0];
r_we <= i_wb_we;
if ((i_wb_cyc)&&(i_wb_stb))
begin
state <= `ICAP_START;
icap_stb <= i_wb_stb;
icap_cyc <= i_wb_cyc;
icap_we <= 1'b1;
icap_data_i <= 16'hffff;
r_cmd_word <= { (i_wb_we)? 2'b10:2'b01, i_wb_addr };
o_wb_stall <= 1'b1;
end end
`ICAP_START: begin
if (~icap_stall)
icap_data_i <= 16'hffff;
end
5'h2: begin
if (~icap_stall)
icap_data_i <= 16'haa99;
end
5'h3: begin
if (~icap_stall)
icap_data_i <= 16'h5566;
end
5'h4: begin
if (~icap_stall)
icap_data_i <= 16'h2000;
end
5'h5: begin
if (~icap_stall)
begin
icap_data_i <= w_cmd_word; // Includes address
end end
5'h6: begin // Write
if (~icap_stall)
begin
if (r_we)
icap_data_i <= r_data;
else
icap_data_i <= 16'h2000;
end end
5'h7: begin
// Need to send four NOOPs before we can begin
// reading. Send the four NOOPs for a write anyway.
if (~icap_stall)
icap_data_i <= 16'h2000;
end
5'h8: begin
if (~icap_stall)
icap_data_i <= 16'h2000;
end
5'h9: begin
if (~icap_stall)
begin
icap_data_i <= 16'h2000;
if (r_we)
state <= `ICAP_CLOSE;
end end
5'ha: begin
if (~icap_stall)
begin
// We now request the chip enable line be
// dropped, so we can switch from writing to
// reading
icap_data_i <= 16'h2000;
icap_stb <= 1'b0;
icap_cyc <= 1'b0;
end end
5'hb: begin
if (~icap_stall)
begin
// Switch the write line to read, must be done
// w/the chip enable off (hence _cyc=0). O/w
// the interface will abort.
icap_data_i <= 16'h2000;
icap_we <=1'b0;
end end
5'hc: begin
if (~icap_stall)
begin
// We can finally issue our read command
// Re-activate the interface, and read
icap_data_i <= 16'h2000;
icap_stb <= 1'b1;
icap_cyc <= 1'b1;
end end
5'hd: begin
if (~icap_stall)
begin
// De-activate the interface again so we can
// switch back to write.
icap_data_i <= 16'h2000;
icap_stb <= 1'b0;
icap_cyc <= 1'b0;
end end
5'he: begin
if (~icap_stall)
begin
// Switch back to write while the interface
// is deactivated.
icap_we <= 1'b1;
icap_data_i <= 16'h2000;
end end
`ICAP_CLOSE: begin
if (~icap_stall)
begin
icap_we <= 1'b1;
// Type 1: Write 1 word to CMD register
icap_data_i <= 16'h30a1;
r_data <= icap_data_o;
icap_stb <= 1'b1;
icap_cyc <= 1'b1;
end end
5'h10: begin // DESYNC Command
if (~icap_stall)
begin
icap_data_i <= 16'h000d;
end end
5'h11: begin // DESYNC must be followed by two NOOPs
if (~icap_stall)
begin
icap_data_i <= 16'h2000;
end end
5'h12: begin // NOOP
if (~icap_stall)
begin
icap_data_i <= 16'h2000;
state <= `ICAP_IDLE;
o_wb_ack <= 1'b1;
o_wb_stall <= 1'b0;
end end
default: begin
// If we were in the middle of a bus cycle, and got
// here then ... we just failed that cycle. Setting
// the bus error flag would be appropriate, but we
// have no such flag to our interface. Hence we just
// drop things and depend upon a bus watchdog to
// catch that we aren't answering.
o_wb_ack <= 1'b0;
o_wb_stall <= 1'b0;
icap_stb <= 1'b0;
icap_cyc <= 1'b0;
state <= `ICAP_IDLE;
end
endcase
end
 
wbicapesimple spartancfg(i_clk, icap_cyc, icap_stb, icap_we,
icap_data_i,
icap_ack, icap_stall, icap_data_o,
icap_dbg);
 
 
assign o_wb_data = { 16'h0000, r_data };
 
reg [3:0] last_state;
initial last_state = `ICAP_IDLE;
always @(posedge i_clk)
last_state <= state;
 
reg [11:0] reset_ctr;
always @(posedge i_clk)
if (last_state != state)
reset_ctr <= 0;
else if (state == `ICAP_IDLE)
reset_ctr <= 0;
else
reset_ctr <= reset_ctr + 1;
always @(posedge i_clk)
stalled_state <= (&reset_ctr);
endmodule
/wbscopc.v
0,0 → 1,212
///////////////////////////////////////////////////////////////////////////
//
// Filename: wbscopc.v
//
// Project: FPGA Library of Routines
//
// Purpose: This scope is identical in function to the wishbone scope
// found in wbscope, save that the output is compressed and that (as a
// result) it can only handle recording 31 bits at a time. This allows
// the top bit to indicate an 'address difference'. Okay, there's
// another difference as well: this version only works in a synchronous
// fashion with the clock from the WB bus. You cannot have a separate
// bus and data clock.
//
// Reading/decompressing the output of this scope works in this fashion:
// Once the scope has stopped, read from the port. Any time the high
// order bit is set, the other 31 bits tell you how many times to repeat
// the last value. If the high order bit is not set, then the value
// is a new data value.
//
// I've provided this version of a compressed scope to OpenCores for
// discussion purposes. While wbscope.v works and works well by itself,
// this compressed scope has a couple of fundamental flaw that I have
// yet to fix. One of them is that it is impossible to know when the
// trigger took place. The second problem is that it may be impossible
// to know the state of the scope at the beginning of the buffer--should
// the buffer begin with an address difference value instead of a data
// value.
//
// Ideally, the first item read out of the scope should be a data value,
// even if the scope was skipping values to a new address at the time.
// If it was in the middle of a skip, the next item out of the scope
// should be the skip length. This, though, violates the rule that there
// are (1<<LGMEMLEN) items in the memory, and that the trigger took place
// on the last item of memory ... so that portion of this compressed
// scope is still to be defined.
//
// Like I said, this version is placed here for discussion purposes,
// not because it runs well nor because I have recognized that it has any
// particular value (yet).
//
// Well, I take that back. When dealing with an interface such as the
// PS/2 interface, or even the 16x2 LCD interface, it is often true
// that things change _very_ slowly. They could change so slowly that
// the other approach to the scope doesn't work. This then gives you
// a working scope, by only capturing the changes. You'll still need
// to figure out (after the fact) when the trigge took place. Perhaps
// you'll wish to add the trigger as another data line, so you can find
// when it took place in your own data?
//
// Okay, I take that back twice: I'm finding this compressed scope very
// valuable for evaluating the timing associated with a GPS PPS and
// associated NMEA stream. I need to collect over a seconds worth of
// data, and I don't have enough memory to handle one memory value per
// clock, yet I still want to know exactly when the GPS PPS goes high,
// when it goes low, when I'm adjusting my clock, and when the clock's
// PPS output goes high. Did I synchronize them well? Oh, and when does
// the NMEA time string show up when compared with the PPS? All of those
// are valuable, but could never be done if the scope wasn't compressed.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory, run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
/////////////////////////////////////////////////////////////////////////////
//
//
module wbscopc(i_clk, i_ce, i_trigger, i_data,
i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data,
o_interrupt);
parameter LGMEM = 5'd10, NELM=32, BUSW = 32, SYNCHRONOUS=1;
// The input signals that we wish to record
input i_clk, i_ce, i_trigger;
input [(NELM-1):0] i_data;
// The WISHBONE bus for reading and configuring this scope
input i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we;
input i_wb_addr; // One address line only
input [(BUSW-1):0] i_wb_data;
output wire o_wb_ack, o_wb_stall;
output wire [(BUSW-1):0] o_wb_data;
// And, finally, for a final flair --- offer to interrupt the CPU after
// our trigger has gone off. This line is equivalent to the scope
// being stopped. It is not maskable here.
output wire o_interrupt;
 
 
// Let's first see how far we can get by cheating. We'll use the
// wbscope program, and suffer a lack of several features
 
// When is the full scope reset? Capture that reset bit from any
// write.
wire lcl_reset;
assign lcl_reset = (i_wb_cyc)&&(i_wb_stb)&&(~i_wb_addr)&&(i_wb_we)
&&(~i_wb_data[31]);
 
// A big part of this scope is the 'address' of any particular
// data value. As of this current version, the 'address' changed
// in definition from an absolute time (which had all kinds of
// problems) to a difference in time. Hence, when the address line
// is high on decompression, the 'address' field will record an
// address difference.
//
// To implement this, we set our 'address' to zero any time the
// data changes, but increment it on all other clocks. Should the
// address difference get to our maximum value, we let it saturate
// rather than overflow.
reg [(BUSW-2):0] ck_addr;
reg [(NELM-1):0] lst_dat;
initial ck_addr = 0;
always @(posedge i_clk)
if ((lcl_reset)||((i_ce)&&(i_data != lst_dat)))
ck_addr <= 0;
else if (&ck_addr)
; // Saturated (non-overflowing) address diff
else
ck_addr <= ck_addr + 1;
 
//
// To do our compression, we keep track of two registers: the most
// recent data to the device (imm_ prefix) and the data from one
// clock ago. This allows us to suppress writes to the scope which
// would otherwise be two address writes in a row.
reg imm_adr, lst_adr; // Is this an address (1'b1) or data value?
reg [(BUSW-2):0] lst_val, // Data for the scope, delayed by one
imm_val; // Data to write to the scope
initial lst_dat = 0;
initial lst_adr = 1'b1;
initial imm_adr = 1'b1;
always @(posedge i_clk)
if (lcl_reset)
begin
imm_val <= 31'h0;
imm_adr <= 1'b1;
lst_val <= 31'h0;
lst_adr <= 1'b1;
lst_dat <= 0;
end else if ((i_ce)&&(i_data != lst_dat))
begin
imm_val <= { {(BUSW-1-NELM){1'b0}}, i_data };
imm_adr <= 1'b0;
lst_val <= imm_val;
lst_adr <= imm_adr;
lst_dat <= i_data;
end else begin
imm_val <= ck_addr; // Minimum value here is '1'
imm_adr <= 1'b1;
lst_val <= imm_val;
lst_adr <= imm_adr;
end
 
//
// Here's where we suppress writing pairs of address words to the
// scope at once.
//
reg r_ce;
reg [(BUSW-1):0] r_data;
initial r_ce = 1'b0;
always @(posedge i_clk)
r_ce <= (~lst_adr)||(~imm_adr);
always @(posedge i_clk)
r_data <= ((~lst_adr)||(~imm_adr))
? { lst_adr, lst_val }
: { {(32 - NELM){1'b0}}, i_data };
 
 
//
// The trigger needs some extra attention, in order to keep triggers
// that happen between events from being ignored.
//
wire w_trigger;
assign w_trigger = (r_trigger)||(i_trigger);
 
reg r_trigger;
initial r_trigger = 1'b0;
always @(posedge i_clk)
if (lcl_reset)
r_trigger <= 1'b0;
else
r_trigger <= w_trigger;
 
//
// Call the regular wishbone scope to do all of our real work, now
// that we've compressed the input.
//
wbscope #(.SYNCHRONOUS(1), .LGMEM(LGMEM),
.BUSW(BUSW)) cheatersscope(i_clk, r_ce, w_trigger, r_data,
i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data, o_interrupt);
endmodule
/wbscope.v
0,0 → 1,333
///////////////////////////////////////////////////////////////////////////
//
// Filename: wbscope.v
//
// Project: FPGA Library of Routines
//
// Purpose: This is a generic/library routine for providing a bus accessed
// 'scope' or (perhaps more appropriately) a bus accessed logic
// analyzer. The general operation is such that this 'scope' can
// record and report on any 32 bit value transiting through the
// FPGA. Once started and reset, the scope records a copy of the
// input data every time the clock ticks with the circuit enabled.
// That is, it records these values up until the trigger. Once
// the trigger goes high, the scope will record for bw_holdoff
// more counts before stopping. Values may then be read from the
// buffer, oldest to most recent. After reading, the scope may
// then be reset for another run.
//
// In general, therefore, operation happens in this fashion:
// 1. A reset is issued.
// 2. Recording starts, in a circular buffer, and continues until
// 3. The trigger line is asserted.
// The scope registers the asserted trigger by setting
// the 'o_triggered' output flag.
// 4. A counter then ticks until the last value is written
// The scope registers that it has stopped recording by
// setting the 'o_stopped' output flag.
// 5. The scope recording is then paused until the next reset.
// 6. While stopped, the CPU can read the data from the scope
// 7. -- oldest to most recent
// 8. -- one value per i_rd&i_clk
// 9. Writes to the data register reset the address to the
// beginning of the buffer
//
// Although the data width DW is parameterized, it is not very changable,
// since the width is tied to the width of the data bus, as is the
// control word. Therefore changing the data width would require changing
// the interface. It's doable, but it would be a change to the interface.
//
// The SYNCHRONOUS parameter turns on and off meta-stability
// synchronization. Ideally a wishbone scope able to handle one or two
// clocks would have a changing number of ports as this SYNCHRONOUS
// parameter changed. Other than running another script to modify
// this, I don't know how to do that so ... we'll just leave it running
// off of two clocks or not.
//
//
// Internal to this routine, registers and wires are named with one of the
// following prefixes:
//
// i_ An input port to the routine
// o_ An output port of the routine
// br_ A register, controlled by the bus clock
// dr_ A register, controlled by the data clock
// bw_ A wire/net, controlled by the bus clock
// dw_ A wire/net, controlled by the data clock
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory, run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
/////////////////////////////////////////////////////////////////////////////
module wbscope(i_clk, i_ce, i_trigger, i_data,
i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
o_wb_ack, o_wb_stall, o_wb_data,
o_interrupt);
parameter LGMEM = 5'd10, BUSW = 32, SYNCHRONOUS=1;
// The input signals that we wish to record
input i_clk, i_ce, i_trigger;
input [(BUSW-1):0] i_data;
// The WISHBONE bus for reading and configuring this scope
input i_wb_clk, i_wb_cyc, i_wb_stb, i_wb_we;
input i_wb_addr; // One address line only
input [(BUSW-1):0] i_wb_data;
output wire o_wb_ack, o_wb_stall;
output reg [(BUSW-1):0] o_wb_data;
// And, finally, for a final flair --- offer to interrupt the CPU after
// our trigger has gone off. This line is equivalent to the scope
// being stopped. It is not maskable here.
output wire o_interrupt;
 
reg [(LGMEM-1):0] raddr;
reg [(BUSW-1):0] mem[0:((1<<LGMEM)-1)];
 
// Our status/config register
wire bw_reset_request, bw_manual_trigger,
bw_disable_trigger, bw_reset_complete;
reg [22:0] br_config;
wire [19:0] bw_holdoff;
initial br_config = ((1<<(LGMEM-1))-4);
always @(posedge i_wb_clk)
if ((i_wb_cyc)&&(i_wb_stb)&&(~i_wb_addr))
begin
if (i_wb_we)
br_config <= { i_wb_data[31],
(i_wb_data[27]),
i_wb_data[26],
i_wb_data[19:0] };
end else if (bw_reset_complete)
br_config[22] <= 1'b1;
assign bw_reset_request = (~br_config[22]);
assign bw_manual_trigger = (br_config[21]);
assign bw_disable_trigger = (br_config[20]);
assign bw_holdoff = br_config[19:0];
 
wire dw_reset, dw_manual_trigger, dw_disable_trigger;
generate
if (SYNCHRONOUS > 0)
begin
assign dw_reset = bw_reset_request;
assign dw_manual_trigger = bw_manual_trigger;
assign dw_disable_trigger = bw_disable_trigger;
assign bw_reset_complete = bw_reset_request;
end else begin
reg r_reset_complete;
reg [2:0] r_iflags, q_iflags;
 
// Resets are synchronous to the bus clock, not the data clock
// so do a clock transfer here
initial q_iflags = 3'b000;
initial r_reset_complete = 1'b0;
always @(posedge i_clk)
begin
q_iflags <= { bw_reset_request, bw_manual_trigger, bw_disable_trigger };
r_iflags <= q_iflags;
r_reset_complete <= (dw_reset);
end
 
assign dw_reset = r_iflags[2];
assign dw_manual_trigger = r_iflags[1];
assign dw_disable_trigger = r_iflags[0];
 
reg q_reset_complete, qq_reset_complete;
// Pass an acknowledgement back from the data clock to the bus
// clock that the reset has been accomplished
initial q_reset_complete = 1'b0;
initial qq_reset_complete = 1'b0;
always @(posedge i_wb_clk)
begin
q_reset_complete <= r_reset_complete;
qq_reset_complete <= q_reset_complete;
end
 
assign bw_reset_complete = qq_reset_complete;
end endgenerate
 
//
// Set up the trigger
//
//
// Write with the i-clk, or input clock. All outputs read with the
// WISHBONE-clk, or i_wb_clk clock.
reg dr_triggered, dr_primed;
wire dw_trigger;
assign dw_trigger = (dr_primed)&&(
((i_trigger)&&(~dw_disable_trigger))
||(dr_triggered)
||(dw_manual_trigger));
initial dr_triggered = 1'b0;
always @(posedge i_clk)
if (dw_reset)
dr_triggered <= 1'b0;
else if ((i_ce)&&(dw_trigger))
dr_triggered <= 1'b1;
 
//
// Determine when memory is full and capture is complete
//
// Writes take place on the data clock
reg dr_stopped;
reg [19:0] counter; // This is unsigned
initial dr_stopped = 1'b0;
initial counter = 20'h0000;
always @(posedge i_clk)
if (dw_reset)
begin
counter <= 0;
dr_stopped <= 1'b0;
end else if ((i_ce)&&(dr_triggered))
begin // MUST BE a < and not <=, so that we can keep this w/in
// 20 bits. Else we'd need to add a bit to comparison
// here.
if (counter < bw_holdoff)
counter <= counter + 20'h01;
else
dr_stopped <= 1'b1;
end
 
//
// Actually do our writes to memory. Record, via 'primed' when
// the memory is full.
//
// The 'waddr' address that we are using really crosses two clock
// domains. While writing and changing, it's in the data clock
// domain. Once stopped, it becomes part of the bus clock domain.
// The clock transfer on the stopped line handles the clock
// transfer for these signals.
//
reg [(LGMEM-1):0] waddr;
initial waddr = {(LGMEM){1'b0}};
initial dr_primed = 1'b0;
always @(posedge i_clk)
if (dw_reset) // For simulation purposes, supply a valid value
begin
waddr <= 0; // upon reset.
dr_primed <= 1'b0;
end else if ((i_ce)&&((~dr_triggered)||(counter < bw_holdoff)))
begin
// mem[waddr] <= i_data;
waddr <= waddr + {{(LGMEM-1){1'b0}},1'b1};
dr_primed <= (dr_primed)||(&waddr);
end
always @(posedge i_clk)
if ((i_ce)&&((~dr_triggered)||(counter < bw_holdoff)))
mem[waddr] <= i_data;
 
//
// Clock transfer of the status signals
//
wire bw_stopped, bw_triggered, bw_primed;
generate
if (SYNCHRONOUS > 0)
begin
assign bw_stopped = dr_stopped;
assign bw_triggered = dr_triggered;
assign bw_primed = dr_primed;
end else begin
// These aren't a problem, since none of these are strobe
// signals. They goes from low to high, and then stays high
// for many clocks. Swapping is thus easy--two flip flops to
// protect against meta-stability and we're done.
//
reg [2:0] q_oflags, r_oflags;
initial q_oflags = 3'h0;
initial r_oflags = 3'h0;
always @(posedge i_wb_clk)
if (bw_reset_request)
begin
q_oflags <= 3'h0;
r_oflags <= 3'h0;
end else begin
q_oflags <= { dr_stopped, dr_triggered, dr_primed };
r_oflags <= q_oflags;
end
 
assign bw_stopped = r_oflags[2];
assign bw_triggered = r_oflags[1];
assign bw_primed = r_oflags[0];
end endgenerate
 
// Reads use the bus clock
reg br_wb_ack;
initial br_wb_ack = 1'b0;
wire bw_cyc_stb;
assign bw_cyc_stb = ((i_wb_cyc)&&(i_wb_stb));
always @(posedge i_wb_clk)
begin
if ((bw_reset_request)
||((bw_cyc_stb)&&(i_wb_addr)&&(i_wb_we)))
raddr <= 0;
else if ((bw_cyc_stb)&&(i_wb_addr)&&(~i_wb_we)&&(bw_stopped))
raddr <= raddr + {{(LGMEM-1){1'b0}},1'b1}; // Data read, when stopped
 
if ((bw_cyc_stb)&&(~i_wb_we))
begin // Read from the bus
br_wb_ack <= 1'b1;
end else if ((bw_cyc_stb)&&(i_wb_we))
// We did this write above
br_wb_ack <= 1'b1;
else // Do nothing if either i_wb_cyc or i_wb_stb are low
br_wb_ack <= 1'b0;
end
 
reg [31:0] nxt_mem;
always @(posedge i_wb_clk)
nxt_mem <= mem[raddr+waddr+
(((bw_cyc_stb)&&(i_wb_addr)&&(~i_wb_we)) ?
{{(LGMEM-1){1'b0}},1'b1} : { (LGMEM){1'b0}} )];
 
wire [4:0] bw_lgmem;
assign bw_lgmem = LGMEM;
always @(posedge i_wb_clk)
if (~i_wb_addr) // Control register read
o_wb_data <= { bw_reset_request,
bw_stopped,
bw_triggered,
bw_primed,
bw_manual_trigger,
bw_disable_trigger,
(raddr == {(LGMEM){1'b0}}),
bw_lgmem,
bw_holdoff };
else if (~bw_stopped) // read, prior to stopping
o_wb_data <= i_data;
else // if (i_wb_addr) // Read from FIFO memory
o_wb_data <= nxt_mem; // mem[raddr+waddr];
 
assign o_wb_stall = 1'b0;
assign o_wb_ack = (i_wb_cyc)&&(br_wb_ack);
 
reg br_level_interrupt;
initial br_level_interrupt = 1'b0;
assign o_interrupt = (bw_stopped)&&(~bw_disable_trigger)
&&(~br_level_interrupt);
always @(posedge i_wb_clk)
if ((bw_reset_complete)||(bw_reset_request))
br_level_interrupt<= 1'b0;
else
br_level_interrupt<= (bw_stopped)&&(~bw_disable_trigger);
 
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.