OpenCores
URL https://opencores.org/ocsvn/xulalx25soc/xulalx25soc/trunk

Subversion Repositories xulalx25soc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /xulalx25soc
    from Rev 108 to Rev 109
    Reverse comparison

Rev 108 → Rev 109

/trunk/rtl/wbudecompress.v
2,7 → 2,7
//
// Filename: wbudecompress.v
//
// Project: XuLA2 board
// Project: FPGA library
//
// Purpose: Compression via this interface is simply a lookup table.
// When writing, if requested, rather than writing a new 36-bit
17,7 → 17,7
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
94,7 → 94,7
if (~r_word[34])
rd_len <= 10'h01 + { 6'h00, r_word[33:31] };
else
rd_len <= 10'h08 + { 1'b0, r_word[33:31], r_word[29:24] };
rd_len <= 10'h09 + { 1'b0, r_word[33:31], r_word[29:24] };
// Clock three, read the table value
// { o_stb, r_stb } = 4'h4 when done
/trunk/rtl/wbuexec.v
2,7 → 2,7
//
// Filename: wbuexec.v
//
// Project: XuLA2 board
// Project: FPGA library
//
// Purpose: This is the part of the USB-JTAG to wishbone conversion that
// actually conducts a wishbone transaction. Transactions are
52,7 → 52,8
input [35:0] i_codword;
output wire o_busy;
// Wishbone outputs
output wire o_wb_cyc, o_wb_stb;
output reg o_wb_cyc;
output reg o_wb_stb;
output reg o_wb_we;
output reg [31:0] o_wb_addr, o_wb_data;
// Wishbone inputs
79,6 → 80,7
reg [2:0] wb_state;
reg [9:0] r_acks_needed, r_len;
reg r_inc, r_new_addr, last_read_request, last_ack, zero_acks;
reg single_read_request;
 
initial r_new_addr = 1'b1;
initial wb_state = `WB_IDLE;
88,9 → 90,13
begin
wb_state <= `WB_IDLE;
o_stb <= 1'b1;
o_codword <= { 6'h3, i_wb_data[29:0] };
o_codword <= { 6'h3, i_wb_data[29:0] }; // BUS Reset
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
end else case(wb_state)
`WB_IDLE: begin
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
// Now output codewords while we're idle,
// ... unless we get an address command (later).
o_stb <= 1'b0;
127,18 → 133,21
//
casez(i_codword[35:32])
4'b0000: begin // Set a new (arbitrary) address
r_new_addr <= 1'b1;
o_wb_addr <= i_codword[31:0];
// r_new_addr <= 1'b1;
o_wb_addr <= i_codword[31:0]; //w_cod_data
end
4'b001?: begin // Set a new relative address
r_new_addr <= 1'b1;
o_wb_addr <= o_wb_addr
// r_new_addr <= 1'b1;
o_wb_addr <= o_wb_addr // + w_cod_data;
 
+ { i_codword[32:31], i_codword[29:0] };
end
4'b01??: begin // Start a write transaction,
// address is alrdy set
r_new_addr <= 1'b1;
// r_new_addr <= 1'b1;
wb_state <= `WB_WRITE_REQUEST;
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
end
4'b11??: begin // Start a vector read
// Address is already set ...
146,6 → 155,8
if (r_new_addr)
o_stb <= 1'b1;
wb_state <= `WB_READ_REQUEST;
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
end
default:
;
152,7 → 163,8
endcase
end end
`WB_READ_REQUEST: begin
r_new_addr <= 1'b0;
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
 
if (i_wb_err)
wb_state <= `WB_IDLE;
159,9 → 171,9
 
o_stb <= (i_wb_err)||(i_wb_ack);
 
if (i_wb_err)
if (i_wb_err) // Bus Error
o_codword <= { 6'h5, i_wb_data[29:0] };
else
else // Read data on ack
o_codword <= { 3'h7, i_wb_data[31:30], r_inc,
i_wb_data[29:0] };
 
171,15 → 183,20
 
if (~i_wb_stall) // Deal with the strobe line
begin // Strobe was accepted, busy should be '1' here
if (last_read_request) // (r_len != 0) // read
if ((single_read_request)||(last_read_request)) // (r_len != 0) // read
begin
wb_state <= `WB_ACK;
o_wb_stb <= 1'b0;
end
end end
`WB_WRITE_REQUEST: begin
r_new_addr <= 1'b0;
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b1;
//
 
if (i_wb_err)
if (i_wb_err) // Bus Err
o_codword <= { 6'h5, i_wb_data[29:0] };
else
else // Write acknowledgement
o_codword <= { 6'h2, i_wb_data[29:0] };
 
if ((r_inc)&&(~i_wb_stall))
196,11 → 213,16
begin
wb_state <= `WB_FLUSH_WRITE_REQUESTS;
//
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
end else if (~i_wb_stall)
begin
wb_state <= `WB_WAIT_ON_NEXT_WRITE;
end
o_wb_stb <= 1'b0;
end end
`WB_ACK: begin
r_new_addr <= 1'b0;
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b0;
//
// No strobes are being sent out. No further
// bus transactions are requested. We only need
208,9 → 230,9
// for (and recording?) their acks.
//
// Process acknowledgements
if (i_wb_err)
if (i_wb_err) // Bus error
o_codword <= { 6'h5, i_wb_data[29:0] };
else
else // Read data
o_codword <= { 3'h7, i_wb_data[31:30], r_inc,
i_wb_data[29:0] };
 
219,22 → 241,33
o_stb <= (((i_wb_ack)&&(~o_wb_we)) || (i_wb_err));
 
if (((last_ack)&&(i_wb_ack))||(zero_acks)||(i_wb_err))
begin
o_wb_cyc <= 1'b0;
wb_state <= `WB_IDLE;
end
end end
`WB_WAIT_ON_NEXT_WRITE: begin
r_new_addr <= 1'b0;
 
o_codword <= { 6'h5, i_wb_data[29:0] };
o_stb <= (i_wb_err)||(w_new_err);
 
o_wb_data <= w_cod_data;
o_wb_cyc <= 1'b1;
o_wb_stb <= 1'b0;
 
if (w_new_err) // Something other than a write or EOW
begin
o_wb_cyc <= 1'b0;
wb_state <= `WB_IDLE;
else if (i_wb_err) // Bus returns an error
end else if (i_wb_err) // Bus returns an error
begin
o_wb_cyc <= 1'b0;
wb_state <= `WB_FLUSH_WRITE_REQUESTS;
end
else if (w_newwr) // Need to make a new write request
begin
wb_state <= `WB_WRITE_REQUEST;
o_wb_stb <= 1'b1;
end
else if (w_eow) // All done writing, wait for last ack
wb_state <= `WB_ACK;
end
247,8 → 280,9
// In the off chance that we are in here in error, or
// out of sync, we'll transition to WB_IDLE and just
// issue a second error token.
r_new_addr <= 1'b0;
 
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
o_codword <= { 6'h5, i_wb_data[29:0] };
o_stb <= (w_new_err);
 
259,6 → 293,8
o_stb <= 1'b1;
o_codword <= { 6'h3, i_wb_data[29:0] };
wb_state <= `WB_IDLE;
o_wb_cyc <= 1'b0;
o_wb_stb <= 1'b0;
end
endcase
 
265,15 → 301,23
assign o_busy = (wb_state != `WB_IDLE)
&&(wb_state != `WB_WAIT_ON_NEXT_WRITE)
&&(wb_state != `WB_FLUSH_WRITE_REQUESTS);
assign o_wb_cyc = (wb_state == `WB_READ_REQUEST)
||(wb_state == `WB_WRITE_REQUEST)
||(wb_state == `WB_ACK)
||(wb_state == `WB_WAIT_ON_NEXT_WRITE);
assign o_wb_stb = (wb_state == `WB_READ_REQUEST)
||(wb_state == `WB_WRITE_REQUEST);
//assign o_wb_cyc = (wb_state == `WB_READ_REQUEST)
//||(wb_state == `WB_WRITE_REQUEST)
//||(wb_state == `WB_ACK)
//||(wb_state == `WB_WAIT_ON_NEXT_WRITE);
//assign o_wb_stb = (wb_state == `WB_READ_REQUEST)
// ||(wb_state == `WB_WRITE_REQUEST);
 
always @(posedge i_clk)
if (wb_state == `WB_IDLE)
if (i_rst)
r_new_addr <= 1'b1;
else if ((~o_wb_cyc)&&(i_stb)&&(~i_codword[35]))
r_new_addr <= 1'b1;
else if (o_wb_cyc)
r_new_addr <= 1'b0;
 
always @(posedge i_clk)
if (~o_wb_cyc)
r_acks_needed <= 10'h00; // (i_codword[35])?i_codword[9:0]:10'h00;
else if ((o_wb_stb)&&(~i_wb_stall)&&(~i_wb_ack))
r_acks_needed <= r_acks_needed + 10'h01;
281,18 → 325,26
r_acks_needed <= r_acks_needed - 10'h01;
 
always @(posedge i_clk)
last_ack <= (~o_wb_stb)&&(r_acks_needed == 10'h01);
last_ack <= (~o_wb_stb)&&(r_acks_needed == 10'h01)
||(o_wb_stb)&&(r_acks_needed == 10'h00);
 
always @(posedge i_clk)
zero_acks <= (~o_wb_stb)&&(r_acks_needed == 10'h00);
 
always @(posedge i_clk)
if ((wb_state == `WB_IDLE)&&(i_codword[35:34] == 2'b11))
r_len <= i_codword[9:0] - 10'h01;
if (~o_wb_cyc) // &&(i_codword[35:34] == 2'b11))
r_len <= i_codword[9:0];
else if ((o_wb_stb)&&(~i_wb_stall)&&(|r_len))
r_len <= r_len - 10'h01;
 
always @(posedge i_clk)
last_read_request <= (r_len[9:0] == 10'h000);
begin
single_read_request <= (~o_wb_cyc)&&(i_codword[9:0] == 10'h01);
// When there is one read request left, it will be the last one
// will be the last one
last_read_request <= (o_wb_stb)&&(r_len[9:2] == 8'h00)
&&((~r_len[1])
||((~r_len[0])&&(~i_wb_stall)));
end
 
endmodule
/trunk/rtl/wbucompress.v
2,7 → 2,7
//
// Filename: wbucompress.v
//
// Project: XuLA2 board
// Project: FPGA library
//
// Purpose: When reading many words that are identical, it makes no sense
// to spend the time transmitting the same thing over and over
26,7 → 26,7
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
133,7 → 133,7
// table is full or not. This logic follows:
//
reg [(TBITS-1):0] tbl_addr;
reg r_compressed, tbl_filled;
reg tbl_filled;
// First part, write the compression table
always @(posedge i_clk)
// If we send a new address, then reset the table to empty
175,29 → 175,58
// If we find any that matches, we're there. We might (or might not)
// make it through the table first. That's irrelevant. We just look
// while we can.
reg tbl_match, nxt_match; // <= (nxt_rd_addr == tbl_addr);
reg [(TBITS-1):0] rd_addr;
wire [(TBITS-1):0] nxt_rd_addr;
assign nxt_rd_addr = rd_addr - { {(TBITS-1){1'b0}}, 1'b1 };
reg [(TBITS-1):0] nxt_rd_addr;
initial rd_addr = 0;
initial tbl_match = 0;
always @(posedge i_clk)
begin
nxt_match <= ((nxt_rd_addr-tbl_addr)=={{(TBITS-1){1'b0}},1'b1});
if ((w_accepted)||(~a_stb))
begin
// Keep in mind, if a write was just accepted, then
// rd_addr will need to be reset on the next clock
// when (~a_stb). Hence this must be a two clock
// update
rd_addr <= tbl_addr + {(TBITS){1'b1}};
else if ((nxt_rd_addr != tbl_addr)&&(~match)
nxt_rd_addr = tbl_addr + { {(TBITS-1){1'b1}}, 1'b0 };
tbl_match <= 1'b0;
end else if ((~tbl_match)&&(~match)
&&((~nxt_rd_addr[TBITS-1])||(tbl_filled)))
begin
rd_addr <= nxt_rd_addr;
nxt_rd_addr = nxt_rd_addr - { {(TBITS-1){1'b0}}, 1'b1 };
tbl_match <= nxt_match;
end
end
 
reg [1:0] pmatch;
reg dmatch, // Match, on clock 'd'
vaddr; // Was the address valid then?
reg [(DW-1):0] cword;
reg [(TBITS-1):0] caddr;
reg [(TBITS-1):0] caddr, daddr, maddr;
always @(posedge i_clk)
begin
cword <= compression_tbl[rd_addr];
caddr <= rd_addr;
 
dmatch <= (cword == { r_word[32:31], r_word[29:0] });
daddr <= caddr;
maddr <= tbl_addr - caddr;
 
vaddr <= ( {1'b0, caddr} < {tbl_filled, tbl_addr} )
&&(caddr != tbl_addr);
end
 
always @(posedge i_clk)
if ((w_accepted)||(~a_stb))
pmatch <= 0; // rd_addr is set on this clock
else
// cword is set on the next clock, pmatch = 3'b001
// dmatch is set on the next clock, pmatch = 3'b011
pmatch <= { pmatch[0], 1'b1 };
 
reg match;
reg [9:0] matchaddr;
always @(posedge i_clk)
206,17 → 235,20
else if (~match)
begin
// To be a match, the table must not be empty,
match <= (({1'b0, caddr } < {tbl_filled, tbl_addr}))
// the word we are matching to must be
// in the form of a read command
&&(r_word[35:33] == 3'b111)
// And the word in the table must be
// identical to the word we are about
// to send.
&&(cword == { r_word[32:31], r_word[29:0] });
matchaddr <= tbl_addr-caddr;
match <= (vaddr)&&(dmatch)&&(r_word[35:33]==3'b111)
&&(pmatch == 2'b11);
end
 
reg zmatch, hmatch, fmatch;
always @(posedge i_clk)
if (~match)
begin
matchaddr <= maddr;
fmatch <= (maddr < 10'h521);
zmatch <= (maddr == 10'h1);
hmatch <= (maddr < 10'd10);
end
 
// Did we find something?
wire [(TBITS-1):0] adr_diff;
wire [9:0] adr_dbld;
224,24 → 256,22
assign adr_diff = matchaddr;
assign adr_hlfd = matchaddr[2:0]- 3'd2;
assign adr_dbld = matchaddr- 10'd10;
initial r_compressed = 1'b0;
reg [(CW-1):0] r_cword; // Record our result
always @(posedge i_clk)
begin
if ((~a_stb)||(~r_stb)||(w_accepted))//Reset whenever word gets written
r_compressed <= 1'b0; // to our output
else if (r_compressed)//Already compressed, wait 'til sent
;
else if ((match)&&(matchaddr < 10'd521)) // &&(r_word == a_addrword))
begin
if (matchaddr == 10'h1)
r_cword <= r_word;
end else if ((match)&&(fmatch)) // &&(r_word == a_addrword))
begin
r_cword <= r_word;
if (zmatch) // matchaddr == 1
r_cword[35:30] <= { 5'h3, r_word[30] };
else if (adr_diff < 10'd10)
else if (hmatch) // 2 <= matchaddr <= 9
r_cword[35:30] <= { 2'b10, adr_hlfd, r_word[30] };
else // if (adr_diff < 10'd521)
r_cword[35:24] <= { 2'b01, adr_dbld[8:6],
r_word[30], adr_dbld[5:0] };
r_compressed <= 1'b1;
end else
r_cword <= r_word;
end
248,6 → 278,6
 
// Can we do this without a clock delay?
assign o_stb = a_stb;
assign o_cword = (r_compressed)?(r_cword):(a_addrword);
assign o_cword = (r_stb)?(r_cword):(a_addrword);
endmodule
 
/trunk/sw/ttybus.cpp
68,14 → 68,14
const unsigned TTYBUS::MAXRDLEN = 1024;
const unsigned TTYBUS::MAXWRLEN = 32;
 
// #define DBGPRINTF printf
#define DBGPRINTF filedump
#ifndef DBGPRINTF
#define DBGPRINTF null
// #define DBGPRINTF printf
// #define DBGPRINTF filedump
#endif
 
void null(...) {}
#include <stdarg.h>
// #include <varargs.h>
/*
#include <stdarg.h> // replaces the (defunct) varargs.h include file
void filedump(const char *fmt, ...) {
static FILE *dbgfp = NULL;
va_list args;
86,8 → 86,13
vfprintf(dbgfp, fmt, args);
va_end(args);
fflush(dbgfp);
 
// If you want the debug output to go to stderr as well, you can
// uncomment the next couple of lines
// va_start(args, fmt);
// vfprintf(stderr, fmt, args);
// va_end(args);
}
*/
 
char TTYBUS::charenc(const int sixbitval) const {
if (sixbitval < 10)
124,6 → 129,7
int TTYBUS::lclreadcode(char *buf, int len) {
char *sp, *dp;
int nr, ret;
static int lastskip = 0;
 
nr = m_dev->read(buf, len);
m_total_nread += nr;
130,10 → 136,18
ret = nr; sp = buf; dp = buf;
for(int i=0; i<nr; i++) {
if (chardec(*sp)&(~0x3f)) {
int uv = (*sp)&0x0ff;
ret--; // Skip this value, not a valid codeword
if ((false)&&((!lastskip)||(uv != lastskip))) {
DBGPRINTF("lclreadcode: Skipping %02x\n", uv);
lastskip = uv;
}
sp++;
} else {
*sp++ = *dp++;
lastskip = 0;
// DBGPRINTF("lclreadcode: Read %c (%02x -> %02x)\n",
// *sp, *sp, chardec(*sp));
*dp++ = *sp++;
}
} return ret;
}
188,6 → 202,7
 
void TTYBUS::writev(const BUSW a, const int p, const int len, const BUSW *buf) {
char *ptr;
int nw = 0;
 
// We'll never be called with more than MAXWRLEN words to write at once.
// This is a configurable option length, set at the top of this file.
206,21 → 221,26
ptr = encode_address(a);
m_lastaddr = a; m_addr_set = true;
 
for(int i=0; i<len; i++) {
BUSW val = buf[i];
while(nw < len) {
int ln = len-nw;
if ((unsigned)ln > MAXWRLEN)
ln = MAXWRLEN;
 
int caddr = 0;
// Let's try compression
for(int i=1; i<256; i++) {
unsigned tstaddr;
tstaddr = (m_wraddr - i) & 0x0ff;
if ((!m_wrloaded)&&(tstaddr > (unsigned)m_wraddr))
break;
if (m_writetbl[tstaddr] == val) {
caddr = ( m_wraddr- tstaddr ) & 0x0ff;
break;
for(int i=0; i<ln; i++) {
BUSW val = buf[nw+i];
 
int caddr = 0;
// Let's try compression
for(int i=1; i<256; i++) {
unsigned tstaddr;
tstaddr = (m_wraddr - i) & 0x0ff;
if ((!m_wrloaded)&&(tstaddr > (unsigned)m_wraddr))
break;
if (m_writetbl[tstaddr] == val) {
caddr = ( m_wraddr- tstaddr ) & 0x0ff;
break;
}
}
}
 
/*
if (caddr != 0)
229,33 → 249,40
DBGPRINTF("WR[%08x] = %08x\n", m_lastaddr, val);
*/
 
if (caddr != 0) {
*ptr++ = charenc( (((caddr>>6)&0x03)<<1) + (p?1:0) + 0x010);
*ptr++ = charenc( caddr &0x3f );
if (caddr != 0) {
*ptr++ = charenc( (((caddr>>6)&0x03)<<1) + (p?1:0) + 0x010);
*ptr++ = charenc( caddr &0x3f );
} else {
// For testing, let's start just doing this the hard way
*ptr++ = charenc( (((val>>30)&0x03)<<1) + (p?1:0) + 0x018);
*ptr++ = charenc( (val>>24)&0x3f);
*ptr++ = charenc( (val>>18)&0x3f);
*ptr++ = charenc( (val>>12)&0x3f);
*ptr++ = charenc( (val>> 6)&0x3f);
*ptr++ = charenc( (val )&0x3f);
} else {
// For testing, let's start just doing this the hard way
*ptr++ = charenc( (((val>>30)&0x03)<<1) + (p?1:0) + 0x018);
*ptr++ = charenc( (val>>24)&0x3f);
*ptr++ = charenc( (val>>18)&0x3f);
*ptr++ = charenc( (val>>12)&0x3f);
*ptr++ = charenc( (val>> 6)&0x3f);
*ptr++ = charenc( (val )&0x3f);
 
m_writetbl[m_wraddr++] = val;
m_wraddr &= 0x0ff;
if (m_wraddr == 0) {
m_wrloaded = true;
m_writetbl[m_wraddr++] = val;
m_wraddr &= 0x0ff;
if (m_wraddr == 0) {
m_wrloaded = true;
}
}
 
if (p == 1) m_lastaddr++;
}
// *ptr++ = charenc(0x2e);
if (ln == len-nw)
*ptr++ = '\n';
*ptr = '\0';
m_dev->write(m_buf, ptr-m_buf);
DBGPRINTF(">> %s\n", m_buf);
 
if (p == 1) m_lastaddr++;
readidle();
 
nw += ln;
ptr = m_buf;
}
// *ptr++ = charenc(0x2e);
*ptr++ = '\n'; *ptr = '\0';
m_dev->write(m_buf, ptr-m_buf);
 
DBGPRINTF(">> %s\n", m_buf);
DBGPRINTF("WR: LAST ADDRESS LEFT AT %08x\n", m_lastaddr);
 
// Need to clear the incoming queue ... if there's anything there.
272,6 → 299,7
}
 
void TTYBUS::writez(const BUSW a, const int len, const BUSW *buf) {
/*
int ln = len;
const TTYBUS::BUSW *bptr = buf;
TTYBUS::BUSW addr = a;
283,9 → 311,12
// addr += MAXWRLEN;
} if ((unsigned)ln > 0)
writev(addr, 0, ln, bptr);
*/
writev(a, 0, len, buf);
}
 
void TTYBUS::writei(const BUSW a, const int len, const BUSW *buf) {
/*
int ln = len;
const TTYBUS::BUSW *bptr = buf;
TTYBUS::BUSW addr = a;
297,6 → 328,8
addr += MAXWRLEN;
} if ((unsigned)ln > 0)
writev(addr, 1, ln, bptr);
*/
writev(a, 1, len, buf);
}
 
TTYBUS::BUSW TTYBUS::readio(const TTYBUS::BUSW a) {
308,6 → 341,7
try {
readv(a, 0, 1, &v);
} catch(BUSERR b) {
DBGPRINTF("BUSERR trying to read %08x\n", a);
throw BUSERR(a);
}
 
325,10 → 359,6
TTYBUS::BUSW addr = a;
char *ptr = m_buf;
 
// #warning DEBUG_APPROACH
// encode(0, addr, ptr);
// return ptr+6;
 
if ((m_addr_set)&&(a == m_lastaddr))
return ptr;
356,7 → 386,10
*ptr++ = charenc( diffaddr & 0x03f);
}
*ptr = '\0';
DBGPRINTF("DIF-ADDR: (%ld) \'%s\'\n", ptr-m_buf, m_buf);
DBGPRINTF("DIF-ADDR: (%ld) \'%s\' encodes last_addr(0x%08x) %c %d(0x%08x)\n",
ptr-m_buf, m_buf,
m_lastaddr, (diffaddr<0)?'-':'+',
diffaddr, diffaddr&0x0ffffffff);
}
 
{
369,13 → 402,13
*ptr++ = charenc(0x08);
*ptr++ = charenc(addr);
} else if((addr <= 0x0fff)&&((ptr == m_buf)||(ptr >= &m_buf[3]))) {
DBGPRINTF("Setting ADDR.3 to %08x\n", addr);
// DBGPRINTF("Setting ADDR.3 to %08x\n", addr);
ptr = m_buf;
*ptr++ = charenc(0x0a);
*ptr++ = charenc((addr>> 6) & 0x03f);
*ptr++ = charenc( addr & 0x03f);
} else if((addr <= 0x03ffff)&&((ptr == m_buf)||(ptr >= &m_buf[4]))) {
DBGPRINTF("Setting ADDR.4 to %08x\n", addr);
// DBGPRINTF("Setting ADDR.4 to %08x\n", addr);
ptr = m_buf;
*ptr++ = charenc(0x0c);
*ptr++ = charenc((addr>>12) & 0x03f);
382,7 → 415,7
*ptr++ = charenc((addr>> 6) & 0x03f);
*ptr++ = charenc( addr & 0x03f);
} else if((addr <= 0x0ffffff)&&((ptr == m_buf)||(ptr >= &m_buf[5]))) {
DBGPRINTF("Setting ADDR.5 to %08x\n", addr);
// DBGPRINTF("Setting ADDR.5 to %08x\n", addr);
ptr = m_buf;
*ptr++ = charenc(0x0e);
*ptr++ = charenc((addr>>18) & 0x03f);
397,7 → 430,7
}
 
*ptr = '\0';
DBGPRINTF("ADDR-CMD: (%ld) \'%s\'\n", ptr-m_buf, m_buf);
// DBGPRINTF("ADDR-CMD: (%ld) \'%s\'\n", ptr-m_buf, m_buf);
m_rdaddr = 0;
 
return ptr;
406,15 → 439,17
char *TTYBUS::readcmd(const int inc, const int len, char *buf) {
char *ptr = buf;
 
DBGPRINTF("READCMD: LEN = %d\n", len);
DBGPRINTF("READCMD: LEN = %d: ", len);
assert(len < 520);
assert(len > 0);
 
if ((len < 8)||((len == 8)&&(inc))) {
if (len <= 8) {
*ptr++ = charenc(0x20 + (((len-1)&0x07)<<1) + (inc?1:0));
DBGPRINTF("%c\n", ptr[-1]);
} else {
*ptr++ = charenc(0x30 + (((len-8)>>5)&0x0e) + (inc?1:0));
*ptr++ = charenc( (len-8) & 0x03f);
*ptr++ = charenc(0x30 + (((len-9)>>5)&0x0e) + (inc?1:0));
*ptr++ = charenc( (len-9) & 0x03f);
DBGPRINTF("%c%c\n", ptr[-2], ptr[-1]);
}
 
return ptr;
421,7 → 456,7
}
 
void TTYBUS::readv(const TTYBUS::BUSW a, const int inc, const int len, TTYBUS::BUSW *buf) {
const int READAHEAD = MAXRDLEN/2, READBLOCK=MAXRDLEN/2;
const int READAHEAD = 0, READBLOCK=(MAXRDLEN/2>512)?512:MAXRDLEN/2;
int cmdrd = 0, nread = 0;
// TTYBUS::BUSW addr = a;
char *ptr = m_buf;
428,9 → 463,8
 
if (len <= 0)
return;
DBGPRINTF("READV(%08x,%d,#%4d)\n", a, inc, len);
// DBGPRINTF("READV(%08x,%d,#%4d)\n", a, inc, len);
 
// m_addr_set = false;
ptr = encode_address(a);
try {
while(cmdrd < len) {
451,10 → 485,12
while(nread<(cmdrd-READAHEAD)) {
buf[nread++] = readword();
} ptr = m_buf;
} while(nread<len) {
} // DBGPRINTF("Reading %d words, to end the read\n", len-nread);
while(nread<len) {
buf[nread++] = readword();
}
} catch(BUSERR b) {
DBGPRINTF("READV::BUSERR trying to read %08x\n", a+((inc)?nread:0));
throw BUSERR(a+((inc)?nread:0));
}
465,6 → 501,8
assert((int)m_lastaddr == (a+(inc)?(len):0));
exit(-3);
}
 
DBGPRINTF("READV::COMPLETE\n");
}
 
void TTYBUS::readi(const TTYBUS::BUSW a, const int len, TTYBUS::BUSW *buf) {
578,12 → 616,14
m_lastaddr += (sixbits&1);
DBGPRINTF("READ-WORD() -- long table value[%3d], %08x, A=%08x\n", idx, val, m_lastaddr);
} else if (0x20 == (sixbits & 0x030)) { // Tbl read, 2-9 into past
rdaddr = (m_rdaddr - (((sixbits>>1)&0x07)+2)) & 0x03ff;
int idx;
idx = (((sixbits>>1)&0x07)+2);
rdaddr = (m_rdaddr - idx) & 0x03ff;
val = m_readtbl[rdaddr];
m_lastaddr += (sixbits&1);
DBGPRINTF("READ-WORD() -- short table value[%3d], %08x, A=%08x\n", rdaddr, val, m_lastaddr);
DBGPRINTF("READ-WORD() -- short table value[%3d], %08x, A=%08x\n", idx, val, m_lastaddr);
} else if (0x38 == (sixbits & 0x038)) { // Raw read
DBGPRINTF("READ-WORD() -- RAW-READ, nr = %d\n", nr);
// DBGPRINTF("READ-WORD() -- RAW-READ, nr = %d\n", nr);
do {
nr += lclreadcode(&m_buf[nr], 6-nr);
} while (nr < 6);
627,7 → 667,11
switch(sixbits) {
case 0: break; // Idle -- ignore
case 1: break; // Idle, but the bus is busy
case 2: break; // Write acknowledgement, ignore it here
case 2:
// Write acknowledgement, ignore it here
// This is one of the big reasons why we are
// doing this.
break;
case 3:
m_bus_err = true;
DBGPRINTF("READ-IDLE() - BUSERR\n");
696,7 → 740,7
// But ... we did. So, just read it off and ignore it.
int rdaddr;
 
// DBGPRINTF("READ-WORD() -- sixbits = %02x\n", sixbits);
DBGPRINTF("READ-IDLE() PANIC! -- sixbits = %02x\n", sixbits);
if (0x06 == (sixbits & 0x03e)) { // Tbl read, last value
rdaddr = (m_rdaddr-1)&0x03ff;
val = m_readtbl[rdaddr];
720,7 → 764,6
m_lastaddr += (sixbits&1);
DBGPRINTF("READ-IDLE() -- short table value[%3d], %08x\n", rdaddr, val);
} else if (0x38 == (sixbits & 0x038)) { // Raw read
DBGPRINTF("READ-IDLE() -- RAW-READ, nr = %d\n", nr);
do {
nr += lclreadcode(&m_buf[nr], 6-nr);
} while (nr < 6);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.