OpenCores
URL https://opencores.org/ocsvn/i2c/i2c/trunk

Subversion Repositories i2c

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /i2c/trunk/rtl/vhdl
    from Rev 67 to Rev 68
    Reverse comparison

Rev 67 → Rev 68

/i2c_master_bit_ctrl.vhd
0,0 → 1,517
---------------------------------------------------------------------
---- ----
---- WISHBONE revB2 I2C Master Core; bit-controller ----
---- ----
---- ----
---- Author: Richard Herveille ----
---- richard@asics.ws ----
---- www.asics.ws ----
---- ----
---- Downloaded from: http://www.opencores.org/projects/i2c/ ----
---- ----
---------------------------------------------------------------------
---- ----
---- Copyright (C) 2000 Richard Herveille ----
---- richard@asics.ws ----
---- ----
---- This source file may be used and distributed without ----
---- restriction provided that this copyright statement is not ----
---- removed from the file and that any derivative work contains ----
---- the original copyright notice and the associated disclaimer.----
---- ----
---- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ----
---- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ----
---- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ----
---- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ----
---- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ----
---- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ----
---- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ----
---- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ----
---- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ----
---- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ----
---- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ----
---- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ----
---- POSSIBILITY OF SUCH DAMAGE. ----
---- ----
---------------------------------------------------------------------
 
-- CVS Log
--
-- $Id: i2c_master_bit_ctrl.vhd,v 1.17 2009-02-04 20:17:34 rherveille Exp $
--
-- $Date: 2009-02-04 20:17:34 $
-- $Revision: 1.17 $
-- $Author: rherveille $
-- $Locker: $
-- $State: Exp $
--
-- Change History:
-- $Log: not supported by cvs2svn $
-- Revision 1.16 2009/01/20 20:40:36 rherveille
-- Fixed type iscl_oen instead of scl_oen
--
-- Revision 1.15 2009/01/20 10:34:51 rherveille
-- Added SCL clock synchronization logic
-- Fixed slave_wait signal generation
--
-- Revision 1.14 2006/10/11 12:10:13 rherveille
-- Added missing semicolons ';' on endif
--
-- Revision 1.13 2006/10/06 10:48:24 rherveille
-- fixed short scl high pulse after clock stretch
--
-- Revision 1.12 2004/05/07 11:53:31 rherveille
-- Fixed previous fix :) Made a variable vs signal mistake.
--
-- Revision 1.11 2004/05/07 11:04:00 rherveille
-- Fixed a bug where the core would signal an arbitration lost (AL bit set), when another master controls the bus and the other master generates a STOP bit.
--
-- Revision 1.10 2004/02/27 07:49:43 rherveille
-- Fixed a bug in the arbitration-lost signal generation. VHDL version only.
--
-- Revision 1.9 2003/08/12 14:48:37 rherveille
-- Forgot an 'end if' :-/
--
-- Revision 1.8 2003/08/09 07:01:13 rherveille
-- Fixed a bug in the Arbitration Lost generation caused by delay on the (external) sda line.
-- Fixed a potential bug in the byte controller's host-acknowledge generation.
--
-- Revision 1.7 2003/02/05 00:06:02 rherveille
-- Fixed a bug where the core would trigger an erroneous 'arbitration lost' interrupt after being reset, when the reset pulse width < 3 clk cycles.
--
-- Revision 1.6 2003/02/01 02:03:06 rherveille
-- Fixed a few 'arbitration lost' bugs. VHDL version only.
--
-- Revision 1.5 2002/12/26 16:05:47 rherveille
-- Core is now a Multimaster I2C controller.
--
-- Revision 1.4 2002/11/30 22:24:37 rherveille
-- Cleaned up code
--
-- Revision 1.3 2002/10/30 18:09:53 rherveille
-- Fixed some reported minor start/stop generation timing issuess.
--
-- Revision 1.2 2002/06/15 07:37:04 rherveille
-- Fixed a small timing bug in the bit controller.\nAdded verilog simulation environment.
--
-- Revision 1.1 2001/11/05 12:02:33 rherveille
-- Split i2c_master_core.vhd into separate files for each entity; same layout as verilog version.
-- Code updated, is now up-to-date to doc. rev.0.4.
-- Added headers.
--
 
 
--
-------------------------------------
-- Bit controller section
------------------------------------
--
-- Translate simple commands into SCL/SDA transitions
-- Each command has 5 states, A/B/C/D/idle
--
-- start: SCL ~~~~~~~~~~~~~~\____
-- SDA XX/~~~~~~~\______
-- x | A | B | C | D | i
--
-- repstart SCL ______/~~~~~~~\___
-- SDA __/~~~~~~~\______
-- x | A | B | C | D | i
--
-- stop SCL _______/~~~~~~~~~~~
-- SDA ==\___________/~~~~~
-- x | A | B | C | D | i
--
--- write SCL ______/~~~~~~~\____
-- SDA XXX===============XX
-- x | A | B | C | D | i
--
--- read SCL ______/~~~~~~~\____
-- SDA XXXXXXX=XXXXXXXXXXX
-- x | A | B | C | D | i
--
 
-- Timing: Normal mode Fast mode
-----------------------------------------------------------------
-- Fscl 100KHz 400KHz
-- Th_scl 4.0us 0.6us High period of SCL
-- Tl_scl 4.7us 1.3us Low period of SCL
-- Tsu:sta 4.7us 0.6us setup time for a repeated start condition
-- Tsu:sto 4.0us 0.6us setup time for a stop conditon
-- Tbuf 4.7us 1.3us Bus free time between a stop and start condition
--
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
 
entity i2c_master_bit_ctrl is
port (
clk : in std_logic;
rst : in std_logic;
nReset : in std_logic;
ena : in std_logic; -- core enable signal
 
clk_cnt : in unsigned(15 downto 0); -- clock prescale value
 
cmd : in std_logic_vector(3 downto 0);
cmd_ack : out std_logic; -- command completed
busy : out std_logic; -- i2c bus busy
al : out std_logic; -- arbitration lost
 
din : in std_logic;
dout : out std_logic;
 
-- i2c lines
scl_i : in std_logic; -- i2c clock line input
scl_o : out std_logic; -- i2c clock line output
scl_oen : out std_logic; -- i2c clock line output enable, active low
sda_i : in std_logic; -- i2c data line input
sda_o : out std_logic; -- i2c data line output
sda_oen : out std_logic -- i2c data line output enable, active low
);
end entity i2c_master_bit_ctrl;
 
architecture structural of i2c_master_bit_ctrl is
constant I2C_CMD_NOP : std_logic_vector(3 downto 0) := "0000";
constant I2C_CMD_START : std_logic_vector(3 downto 0) := "0001";
constant I2C_CMD_STOP : std_logic_vector(3 downto 0) := "0010";
constant I2C_CMD_READ : std_logic_vector(3 downto 0) := "0100";
constant I2C_CMD_WRITE : std_logic_vector(3 downto 0) := "1000";
 
type states is (idle, start_a, start_b, start_c, start_d, start_e,
stop_a, stop_b, stop_c, stop_d, rd_a, rd_b, rd_c, rd_d, wr_a, wr_b, wr_c, wr_d);
signal c_state : states;
 
signal iscl_oen, isda_oen : std_logic; -- internal I2C lines
signal sda_chk : std_logic; -- check SDA status (multi-master arbitration)
signal dscl_oen : std_logic; -- delayed scl_oen signals
signal sSCL, sSDA : std_logic; -- synchronized SCL and SDA inputs
signal dSCL, dSDA : std_logic; -- delayed versions ofsSCL and sSDA
signal clk_en : std_logic; -- statemachine clock enable
signal scl_sync, slave_wait : std_logic; -- clock generation signals
signal ial : std_logic; -- internal arbitration lost signal
-- signal cnt : unsigned(15 downto 0) := clk_cnt; -- clock divider counter (simulation)
signal cnt : unsigned(15 downto 0); -- clock divider counter (synthesis)
 
begin
-- whenever the slave is not ready it can delay the cycle by pulling SCL low
-- delay scl_oen
process (clk)
begin
if (clk'event and clk = '1') then
dscl_oen <= iscl_oen;
end if;
end process;
 
-- slave_wait is asserted when master wants to drive SCL high, but the slave (another master) pulls it low
-- slave_wait remains asserted until the slave (other master) releases SCL
process (clk, nReset)
begin
if (nReset = '0') then
slave_wait <= '0';
elsif (clk'event and clk = '1') then
slave_wait <= (iscl_oen and not dscl_oen and not sSCL) or (slave_wait and not sSCL);
end if;
end process;
 
-- master drives SCL high, but another master pulls it low
-- master start counting down its low cycle now (clock synchronization)
scl_sync <= dSCL and not sSCL and iscl_oen;
 
-- generate clk enable signal
gen_clken: process(clk, nReset)
begin
if (nReset = '0') then
cnt <= (others => '0');
clk_en <= '1';
elsif (clk'event and clk = '1') then
if (rst = '1') then
cnt <= (others => '0');
clk_en <= '1';
elsif ( (cnt = 0) or (ena = '0') or (scl_sync = '1') ) then
cnt <= clk_cnt;
clk_en <= '1';
elsif (slave_wait = '1') then
cnt <= cnt;
clk_en <= '0';
else
cnt <= cnt -1;
clk_en <= '0';
end if;
end if;
end process gen_clken;
 
 
-- generate bus status controller
bus_status_ctrl: block
signal sta_condition : std_logic; -- start detected
signal sto_condition : std_logic; -- stop detected
signal cmd_stop : std_logic; -- STOP command
signal ibusy : std_logic; -- internal busy signal
begin
-- synchronize SCL and SDA inputs
synch_scl_sda: process(clk, nReset)
begin
if (nReset = '0') then
sSCL <= '1';
sSDA <= '1';
 
dSCL <= '1';
dSDA <= '1';
elsif (clk'event and clk = '1') then
if (rst = '1') then
sSCL <= '1';
sSDA <= '1';
 
dSCL <= '1';
dSDA <= '1';
else
sSCL <= scl_i;
sSDA <= sda_i;
 
dSCL <= sSCL;
dSDA <= sSDA;
end if;
end if;
end process synch_SCL_SDA;
 
-- detect start condition => detect falling edge on SDA while SCL is high
-- detect stop condition => detect rising edge on SDA while SCL is high
detect_sta_sto: process(clk, nReset)
begin
if (nReset = '0') then
sta_condition <= '0';
sto_condition <= '0';
elsif (clk'event and clk = '1') then
if (rst = '1') then
sta_condition <= '0';
sto_condition <= '0';
else
sta_condition <= (not sSDA and dSDA) and sSCL;
sto_condition <= (sSDA and not dSDA) and sSCL;
end if;
end if;
end process detect_sta_sto;
 
-- generate i2c-bus busy signal
gen_busy: process(clk, nReset)
begin
if (nReset = '0') then
ibusy <= '0';
elsif (clk'event and clk = '1') then
if (rst = '1') then
ibusy <= '0';
else
ibusy <= (sta_condition or ibusy) and not sto_condition;
end if;
end if;
end process gen_busy;
busy <= ibusy;
 
 
-- generate arbitration lost signal
-- aribitration lost when:
-- 1) master drives SDA high, but the i2c bus is low
-- 2) stop detected while not requested (detect during 'idle' state)
gen_al: process(clk, nReset)
begin
if (nReset = '0') then
cmd_stop <= '0';
ial <= '0';
elsif (clk'event and clk = '1') then
if (rst = '1') then
cmd_stop <= '0';
ial <= '0';
else
if (clk_en = '1') then
if (cmd = I2C_CMD_STOP) then
cmd_stop <= '1';
else
cmd_stop <= '0';
end if;
end if;
 
if (c_state = idle) then
ial <= (sda_chk and not sSDA and isda_oen);
else
ial <= (sda_chk and not sSDA and isda_oen) or (sto_condition and not cmd_stop);
end if;
 
end if;
end if;
end process gen_al;
al <= ial;
 
-- generate dout signal, store dout on rising edge of SCL
gen_dout: process(clk)
begin
if (clk'event and clk = '1') then
if (sSCL = '1' and dSCL = '0') then
dout <= sSDA;
end if;
end if;
end process gen_dout;
end block bus_status_ctrl;
 
 
-- generate statemachine
nxt_state_decoder : process (clk, nReset, c_state, cmd)
begin
if (nReset = '0') then
c_state <= idle;
cmd_ack <= '0';
iscl_oen <= '1';
isda_oen <= '1';
sda_chk <= '0';
elsif (clk'event and clk = '1') then
if (rst = '1' or ial = '1') then
c_state <= idle;
cmd_ack <= '0';
iscl_oen <= '1';
isda_oen <= '1';
sda_chk <= '0';
else
cmd_ack <= '0'; -- default no acknowledge
 
if (clk_en = '1') then
case (c_state) is
-- idle
when idle =>
case cmd is
when I2C_CMD_START => c_state <= start_a;
when I2C_CMD_STOP => c_state <= stop_a;
when I2C_CMD_WRITE => c_state <= wr_a;
when I2C_CMD_READ => c_state <= rd_a;
when others => c_state <= idle; -- NOP command
end case;
 
iscl_oen <= iscl_oen; -- keep SCL in same state
isda_oen <= isda_oen; -- keep SDA in same state
sda_chk <= '0'; -- don't check SDA
 
-- start
when start_a =>
c_state <= start_b;
iscl_oen <= iscl_oen; -- keep SCL in same state (for repeated start)
isda_oen <= '1'; -- set SDA high
sda_chk <= '0'; -- don't check SDA
 
when start_b =>
c_state <= start_c;
iscl_oen <= '1'; -- set SCL high
isda_oen <= '1'; -- keep SDA high
sda_chk <= '0'; -- don't check SDA
 
when start_c =>
c_state <= start_d;
iscl_oen <= '1'; -- keep SCL high
isda_oen <= '0'; -- set SDA low
sda_chk <= '0'; -- don't check SDA
 
when start_d =>
c_state <= start_e;
iscl_oen <= '1'; -- keep SCL high
isda_oen <= '0'; -- keep SDA low
sda_chk <= '0'; -- don't check SDA
 
when start_e =>
c_state <= idle;
cmd_ack <= '1'; -- command completed
iscl_oen <= '0'; -- set SCL low
isda_oen <= '0'; -- keep SDA low
sda_chk <= '0'; -- don't check SDA
 
-- stop
when stop_a =>
c_state <= stop_b;
iscl_oen <= '0'; -- keep SCL low
isda_oen <= '0'; -- set SDA low
sda_chk <= '0'; -- don't check SDA
 
when stop_b =>
c_state <= stop_c;
iscl_oen <= '1'; -- set SCL high
isda_oen <= '0'; -- keep SDA low
sda_chk <= '0'; -- don't check SDA
 
when stop_c =>
c_state <= stop_d;
iscl_oen <= '1'; -- keep SCL high
isda_oen <= '0'; -- keep SDA low
sda_chk <= '0'; -- don't check SDA
 
when stop_d =>
c_state <= idle;
cmd_ack <= '1'; -- command completed
iscl_oen <= '1'; -- keep SCL high
isda_oen <= '1'; -- set SDA high
sda_chk <= '0'; -- don't check SDA
 
-- read
when rd_a =>
c_state <= rd_b;
iscl_oen <= '0'; -- keep SCL low
isda_oen <= '1'; -- tri-state SDA
sda_chk <= '0'; -- don't check SDA
 
when rd_b =>
c_state <= rd_c;
iscl_oen <= '1'; -- set SCL high
isda_oen <= '1'; -- tri-state SDA
sda_chk <= '0'; -- don't check SDA
 
when rd_c =>
c_state <= rd_d;
iscl_oen <= '1'; -- keep SCL high
isda_oen <= '1'; -- tri-state SDA
sda_chk <= '0'; -- don't check SDA
 
when rd_d =>
c_state <= idle;
cmd_ack <= '1'; -- command completed
iscl_oen <= '0'; -- set SCL low
isda_oen <= '1'; -- tri-state SDA
sda_chk <= '0'; -- don't check SDA
 
-- write
when wr_a =>
c_state <= wr_b;
iscl_oen <= '0'; -- keep SCL low
isda_oen <= din; -- set SDA
sda_chk <= '0'; -- don't check SDA (SCL low)
 
when wr_b =>
c_state <= wr_c;
iscl_oen <= '1'; -- set SCL high
isda_oen <= din; -- keep SDA
sda_chk <= '1'; -- check SDA
 
when wr_c =>
c_state <= wr_d;
iscl_oen <= '1'; -- keep SCL high
isda_oen <= din; -- keep SDA
sda_chk <= '1'; -- check SDA
 
when wr_d =>
c_state <= idle;
cmd_ack <= '1'; -- command completed
iscl_oen <= '0'; -- set SCL low
isda_oen <= din; -- keep SDA
sda_chk <= '0'; -- don't check SDA (SCL low)
 
when others =>
 
end case;
end if;
end if;
end if;
end process nxt_state_decoder;
 
 
-- assign outputs
scl_o <= '0';
scl_oen <= iscl_oen;
sda_o <= '0';
sda_oen <= isda_oen;
end architecture structural;
 
/i2c_master_top.vhd
0,0 → 1,359
---------------------------------------------------------------------
---- ----
---- WISHBONE revB2 compl. I2C Master Core; top level ----
---- ----
---- ----
---- Author: Richard Herveille ----
---- richard@asics.ws ----
---- www.asics.ws ----
---- ----
---- Downloaded from: http://www.opencores.org/projects/i2c/ ----
---- ----
---------------------------------------------------------------------
---- ----
---- Copyright (C) 2000 Richard Herveille ----
---- richard@asics.ws ----
---- ----
---- This source file may be used and distributed without ----
---- restriction provided that this copyright statement is not ----
---- removed from the file and that any derivative work contains ----
---- the original copyright notice and the associated disclaimer.----
---- ----
---- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ----
---- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ----
---- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ----
---- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ----
---- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ----
---- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ----
---- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ----
---- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ----
---- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ----
---- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ----
---- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ----
---- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ----
---- POSSIBILITY OF SUCH DAMAGE. ----
---- ----
---------------------------------------------------------------------
 
-- CVS Log
--
-- $Id: i2c_master_top.vhd,v 1.8 2009-01-20 10:38:45 rherveille Exp $
--
-- $Date: 2009-01-20 10:38:45 $
-- $Revision: 1.8 $
-- $Author: rherveille $
-- $Locker: $
-- $State: Exp $
--
-- Change History:
-- $Log: not supported by cvs2svn $
-- Revision 1.7 2004/03/14 10:17:03 rherveille
-- Fixed simulation issue when writing to CR register
--
-- Revision 1.6 2003/08/09 07:01:13 rherveille
-- Fixed a bug in the Arbitration Lost generation caused by delay on the (external) sda line.
-- Fixed a potential bug in the byte controller's host-acknowledge generation.
--
-- Revision 1.5 2003/02/01 02:03:06 rherveille
-- Fixed a few 'arbitration lost' bugs. VHDL version only.
--
-- Revision 1.4 2002/12/26 16:05:47 rherveille
-- Core is now a Multimaster I2C controller.
--
-- Revision 1.3 2002/11/30 22:24:37 rherveille
-- Cleaned up code
--
-- Revision 1.2 2001/11/10 10:52:44 rherveille
-- Changed PRER reset value from 0x0000 to 0xffff, conform specs.
--
 
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
 
entity i2c_master_top is
generic(
ARST_LVL : std_logic := '0' -- asynchronous reset level
);
port (
-- wishbone signals
wb_clk_i : in std_logic; -- master clock input
wb_rst_i : in std_logic := '0'; -- synchronous active high reset
arst_i : in std_logic := not ARST_LVL; -- asynchronous reset
wb_adr_i : in std_logic_vector(2 downto 0); -- lower address bits
wb_dat_i : in std_logic_vector(7 downto 0); -- Databus input
wb_dat_o : out std_logic_vector(7 downto 0); -- Databus output
wb_we_i : in std_logic; -- Write enable input
wb_stb_i : in std_logic; -- Strobe signals / core select signal
wb_cyc_i : in std_logic; -- Valid bus cycle input
wb_ack_o : out std_logic; -- Bus cycle acknowledge output
wb_inta_o : out std_logic; -- interrupt request output signal
 
-- i2c lines
scl_pad_i : in std_logic; -- i2c clock line input
scl_pad_o : out std_logic; -- i2c clock line output
scl_padoen_o : out std_logic; -- i2c clock line output enable, active low
sda_pad_i : in std_logic; -- i2c data line input
sda_pad_o : out std_logic; -- i2c data line output
sda_padoen_o : out std_logic -- i2c data line output enable, active low
);
end entity i2c_master_top;
 
architecture structural of i2c_master_top is
component i2c_master_byte_ctrl is
port (
clk : in std_logic;
rst : in std_logic; -- synchronous active high reset (WISHBONE compatible)
nReset : in std_logic; -- asynchornous active low reset (FPGA compatible)
ena : in std_logic; -- core enable signal
 
clk_cnt : in unsigned(15 downto 0); -- 4x SCL
 
-- input signals
start,
stop,
read,
write,
ack_in : std_logic;
din : in std_logic_vector(7 downto 0);
 
-- output signals
cmd_ack : out std_logic;
ack_out : out std_logic;
i2c_busy : out std_logic;
i2c_al : out std_logic;
dout : out std_logic_vector(7 downto 0);
 
-- i2c lines
scl_i : in std_logic; -- i2c clock line input
scl_o : out std_logic; -- i2c clock line output
scl_oen : out std_logic; -- i2c clock line output enable, active low
sda_i : in std_logic; -- i2c data line input
sda_o : out std_logic; -- i2c data line output
sda_oen : out std_logic -- i2c data line output enable, active low
);
end component i2c_master_byte_ctrl;
 
-- registers
signal prer : unsigned(15 downto 0); -- clock prescale register
signal ctr : std_logic_vector(7 downto 0); -- control register
signal txr : std_logic_vector(7 downto 0); -- transmit register
signal rxr : std_logic_vector(7 downto 0); -- receive register
signal cr : std_logic_vector(7 downto 0); -- command register
signal sr : std_logic_vector(7 downto 0); -- status register
 
-- internal reset signal
signal rst_i : std_logic;
 
-- wishbone write access
signal wb_wacc : std_logic;
 
-- internal acknowledge signal
signal iack_o : std_logic;
 
-- done signal: command completed, clear command register
signal done : std_logic;
 
-- command register signals
signal sta, sto, rd, wr, ack, iack : std_logic;
 
signal core_en : std_logic; -- core enable signal
signal ien : std_logic; -- interrupt enable signal
 
-- status register signals
signal irxack, rxack : std_logic; -- received aknowledge from slave
signal tip : std_logic; -- transfer in progress
signal irq_flag : std_logic; -- interrupt pending flag
signal i2c_busy : std_logic; -- i2c bus busy (start signal detected)
signal i2c_al, al : std_logic; -- arbitration lost
 
begin
-- generate internal reset signal
rst_i <= arst_i xor ARST_LVL;
 
-- generate acknowledge output signal
gen_ack_o : process(wb_clk_i)
begin
if (wb_clk_i'event and wb_clk_i = '1') then
iack_o <= wb_cyc_i and wb_stb_i and not iack_o; -- because timing is always honored
end if;
end process gen_ack_o;
wb_ack_o <= iack_o;
-- generate wishbone write access signal
wb_wacc <= wb_cyc_i and wb_stb_i and wb_we_i;
 
-- assign wb_dat_o
assign_dato : process(wb_clk_i)
begin
if (wb_clk_i'event and wb_clk_i = '1') then
case wb_adr_i is
when "000" => wb_dat_o <= std_logic_vector(prer( 7 downto 0));
when "001" => wb_dat_o <= std_logic_vector(prer(15 downto 8));
when "010" => wb_dat_o <= ctr;
when "011" => wb_dat_o <= rxr; -- write is transmit register TxR
when "100" => wb_dat_o <= sr; -- write is command register CR
 
-- Debugging registers:
-- These registers are not documented.
-- Functionality could change in future releases
when "101" => wb_dat_o <= txr;
when "110" => wb_dat_o <= cr;
when "111" => wb_dat_o <= (others => '0');
when others => wb_dat_o <= (others => 'X'); -- for simulation only
end case;
end if;
end process assign_dato;
 
 
-- generate registers (CR, SR see below)
gen_regs: process(rst_i, wb_clk_i)
begin
if (rst_i = '0') then
prer <= (others => '1');
ctr <= (others => '0');
txr <= (others => '0');
elsif (wb_clk_i'event and wb_clk_i = '1') then
if (wb_rst_i = '1') then
prer <= (others => '1');
ctr <= (others => '0');
txr <= (others => '0');
elsif (wb_wacc = '1') then
case wb_adr_i is
when "000" => prer( 7 downto 0) <= unsigned(wb_dat_i);
when "001" => prer(15 downto 8) <= unsigned(wb_dat_i);
when "010" => ctr <= wb_dat_i;
when "011" => txr <= wb_dat_i;
when "100" => null; --write to CR, avoid executing the others clause
 
-- illegal cases, for simulation only
when others =>
report ("Illegal write address, setting all registers to unknown.");
prer <= (others => 'X');
ctr <= (others => 'X');
txr <= (others => 'X');
end case;
end if;
end if;
end process gen_regs;
 
 
-- generate command register
gen_cr: process(rst_i, wb_clk_i)
begin
if (rst_i = '0') then
cr <= (others => '0');
elsif (wb_clk_i'event and wb_clk_i = '1') then
if (wb_rst_i = '1') then
cr <= (others => '0');
elsif (wb_wacc = '1') then
if ( (core_en = '1') and (wb_adr_i = "100") ) then
-- only take new commands when i2c core enabled
-- pending commands are finished
cr <= wb_dat_i;
end if;
else
if (done = '1' or i2c_al = '1') then
cr(7 downto 4) <= (others => '0'); -- clear command bits when command done or arbitration lost
end if;
 
cr(2 downto 1) <= (others => '0'); -- reserved bits, always '0'
cr(0) <= '0'; -- clear IRQ_ACK bit
end if;
end if;
end process gen_cr;
 
-- decode command register
sta <= cr(7);
sto <= cr(6);
rd <= cr(5);
wr <= cr(4);
ack <= cr(3);
iack <= cr(0);
 
-- decode control register
core_en <= ctr(7);
ien <= ctr(6);
 
-- hookup byte controller block
byte_ctrl: i2c_master_byte_ctrl port map (
clk => wb_clk_i,
rst => wb_rst_i,
nReset => rst_i,
ena => core_en,
clk_cnt => prer,
start => sta,
stop => sto,
read => rd,
write => wr,
ack_in => ack,
i2c_busy => i2c_busy,
i2c_al => i2c_al,
din => txr,
cmd_ack => done,
ack_out => irxack,
dout => rxr,
scl_i => scl_pad_i,
scl_o => scl_pad_o,
scl_oen => scl_padoen_o,
sda_i => sda_pad_i,
sda_o => sda_pad_o,
sda_oen => sda_padoen_o
);
 
 
-- status register block + interrupt request signal
st_irq_block : block
begin
-- generate status register bits
gen_sr_bits: process (wb_clk_i, rst_i)
begin
if (rst_i = '0') then
al <= '0';
rxack <= '0';
tip <= '0';
irq_flag <= '0';
elsif (wb_clk_i'event and wb_clk_i = '1') then
if (wb_rst_i = '1') then
al <= '0';
rxack <= '0';
tip <= '0';
irq_flag <= '0';
else
al <= i2c_al or (al and not sta);
rxack <= irxack;
tip <= (rd or wr);
 
-- interrupt request flag is always generated
irq_flag <= (done or i2c_al or irq_flag) and not iack;
end if;
end if;
end process gen_sr_bits;
 
-- generate interrupt request signals
gen_irq: process (wb_clk_i, rst_i)
begin
if (rst_i = '0') then
wb_inta_o <= '0';
elsif (wb_clk_i'event and wb_clk_i = '1') then
if (wb_rst_i = '1') then
wb_inta_o <= '0';
else
-- interrupt signal is only generated when IEN (interrupt enable bit) is set
wb_inta_o <= irq_flag and ien;
end if;
end if;
end process gen_irq;
 
-- assign status register bits
sr(7) <= rxack;
sr(6) <= i2c_busy;
sr(5) <= al;
sr(4 downto 2) <= (others => '0'); -- reserved
sr(1) <= tip;
sr(0) <= irq_flag;
end block;
 
end architecture structural;
/i2c_master_byte_ctrl.vhd
0,0 → 1,367
---------------------------------------------------------------------
---- ----
---- WISHBONE revB2 compl. I2C Master Core; byte-controller ----
---- ----
---- ----
---- Author: Richard Herveille ----
---- richard@asics.ws ----
---- www.asics.ws ----
---- ----
---- Downloaded from: http://www.opencores.org/projects/i2c/ ----
---- ----
---------------------------------------------------------------------
---- ----
---- Copyright (C) 2000 Richard Herveille ----
---- richard@asics.ws ----
---- ----
---- This source file may be used and distributed without ----
---- restriction provided that this copyright statement is not ----
---- removed from the file and that any derivative work contains ----
---- the original copyright notice and the associated disclaimer.----
---- ----
---- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ----
---- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ----
---- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ----
---- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ----
---- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ----
---- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ----
---- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ----
---- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ----
---- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ----
---- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ----
---- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ----
---- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ----
---- POSSIBILITY OF SUCH DAMAGE. ----
---- ----
---------------------------------------------------------------------
 
-- CVS Log
--
-- $Id: i2c_master_byte_ctrl.vhd,v 1.5 2004-02-18 11:41:48 rherveille Exp $
--
-- $Date: 2004-02-18 11:41:48 $
-- $Revision: 1.5 $
-- $Author: rherveille $
-- $Locker: $
-- $State: Exp $
--
-- Change History:
-- $Log: not supported by cvs2svn $
-- Revision 1.4 2003/08/09 07:01:13 rherveille
-- Fixed a bug in the Arbitration Lost generation caused by delay on the (external) sda line.
-- Fixed a potential bug in the byte controller's host-acknowledge generation.
--
-- Revision 1.3 2002/12/26 16:05:47 rherveille
-- Core is now a Multimaster I2C controller.
--
-- Revision 1.2 2002/11/30 22:24:37 rherveille
-- Cleaned up code
--
-- Revision 1.1 2001/11/05 12:02:33 rherveille
-- Split i2c_master_core.vhd into separate files for each entity; same layout as verilog version.
-- Code updated, is now up-to-date to doc. rev.0.4.
-- Added headers.
--
 
 
 
 
--
------------------------------------------
-- Byte controller section
------------------------------------------
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
 
entity i2c_master_byte_ctrl is
port (
clk : in std_logic;
rst : in std_logic; -- synchronous active high reset (WISHBONE compatible)
nReset : in std_logic; -- asynchornous active low reset (FPGA compatible)
ena : in std_logic; -- core enable signal
 
clk_cnt : in unsigned(15 downto 0); -- 4x SCL
 
-- input signals
start,
stop,
read,
write,
ack_in : std_logic;
din : in std_logic_vector(7 downto 0);
 
-- output signals
cmd_ack : out std_logic; -- command done
ack_out : out std_logic;
i2c_busy : out std_logic; -- arbitration lost
i2c_al : out std_logic; -- i2c bus busy
dout : out std_logic_vector(7 downto 0);
 
-- i2c lines
scl_i : in std_logic; -- i2c clock line input
scl_o : out std_logic; -- i2c clock line output
scl_oen : out std_logic; -- i2c clock line output enable, active low
sda_i : in std_logic; -- i2c data line input
sda_o : out std_logic; -- i2c data line output
sda_oen : out std_logic -- i2c data line output enable, active low
);
end entity i2c_master_byte_ctrl;
 
architecture structural of i2c_master_byte_ctrl is
component i2c_master_bit_ctrl is
port (
clk : in std_logic;
rst : in std_logic;
nReset : in std_logic;
ena : in std_logic; -- core enable signal
 
clk_cnt : in unsigned(15 downto 0); -- clock prescale value
 
cmd : in std_logic_vector(3 downto 0);
cmd_ack : out std_logic; -- command done
busy : out std_logic; -- i2c bus busy
al : out std_logic; -- arbitration lost
 
din : in std_logic;
dout : out std_logic;
 
-- i2c lines
scl_i : in std_logic; -- i2c clock line input
scl_o : out std_logic; -- i2c clock line output
scl_oen : out std_logic; -- i2c clock line output enable, active low
sda_i : in std_logic; -- i2c data line input
sda_o : out std_logic; -- i2c data line output
sda_oen : out std_logic -- i2c data line output enable, active low
);
end component i2c_master_bit_ctrl;
 
-- commands for bit_controller block
constant I2C_CMD_NOP : std_logic_vector(3 downto 0) := "0000";
constant I2C_CMD_START : std_logic_vector(3 downto 0) := "0001";
constant I2C_CMD_STOP : std_logic_vector(3 downto 0) := "0010";
constant I2C_CMD_READ : std_logic_vector(3 downto 0) := "0100";
constant I2C_CMD_WRITE : std_logic_vector(3 downto 0) := "1000";
 
-- signals for bit_controller
signal core_cmd : std_logic_vector(3 downto 0);
signal core_ack, core_txd, core_rxd : std_logic;
signal al : std_logic;
 
-- signals for shift register
signal sr : std_logic_vector(7 downto 0); -- 8bit shift register
signal shift, ld : std_logic;
 
-- signals for state machine
signal go, host_ack : std_logic;
signal dcnt : unsigned(2 downto 0); -- data counter
signal cnt_done : std_logic;
 
begin
-- hookup bit_controller
bit_ctrl: i2c_master_bit_ctrl port map(
clk => clk,
rst => rst,
nReset => nReset,
ena => ena,
clk_cnt => clk_cnt,
cmd => core_cmd,
cmd_ack => core_ack,
busy => i2c_busy,
al => al,
din => core_txd,
dout => core_rxd,
scl_i => scl_i,
scl_o => scl_o,
scl_oen => scl_oen,
sda_i => sda_i,
sda_o => sda_o,
sda_oen => sda_oen
);
i2c_al <= al;
 
-- generate host-command-acknowledge
cmd_ack <= host_ack;
 
-- generate go-signal
go <= (read or write or stop) and not host_ack;
 
-- assign Dout output to shift-register
dout <= sr;
 
-- generate shift register
shift_register: process(clk, nReset)
begin
if (nReset = '0') then
sr <= (others => '0');
elsif (clk'event and clk = '1') then
if (rst = '1') then
sr <= (others => '0');
elsif (ld = '1') then
sr <= din;
elsif (shift = '1') then
sr <= (sr(6 downto 0) & core_rxd);
end if;
end if;
end process shift_register;
 
-- generate data-counter
data_cnt: process(clk, nReset)
begin
if (nReset = '0') then
dcnt <= (others => '0');
elsif (clk'event and clk = '1') then
if (rst = '1') then
dcnt <= (others => '0');
elsif (ld = '1') then
dcnt <= (others => '1'); -- load counter with 7
elsif (shift = '1') then
dcnt <= dcnt -1;
end if;
end if;
end process data_cnt;
 
cnt_done <= '1' when (dcnt = 0) else '0';
 
--
-- state machine
--
statemachine : block
type states is (st_idle, st_start, st_read, st_write, st_ack, st_stop);
signal c_state : states;
begin
--
-- command interpreter, translate complex commands into simpler I2C commands
--
nxt_state_decoder: process(clk, nReset)
begin
if (nReset = '0') then
core_cmd <= I2C_CMD_NOP;
core_txd <= '0';
shift <= '0';
ld <= '0';
host_ack <= '0';
c_state <= st_idle;
ack_out <= '0';
elsif (clk'event and clk = '1') then
if (rst = '1' or al = '1') then
core_cmd <= I2C_CMD_NOP;
core_txd <= '0';
shift <= '0';
ld <= '0';
host_ack <= '0';
c_state <= st_idle;
ack_out <= '0';
else
-- initialy reset all signal
core_txd <= sr(7);
shift <= '0';
ld <= '0';
host_ack <= '0';
 
case c_state is
when st_idle =>
if (go = '1') then
if (start = '1') then
c_state <= st_start;
core_cmd <= I2C_CMD_START;
elsif (read = '1') then
c_state <= st_read;
core_cmd <= I2C_CMD_READ;
elsif (write = '1') then
c_state <= st_write;
core_cmd <= I2C_CMD_WRITE;
else -- stop
c_state <= st_stop;
core_cmd <= I2C_CMD_STOP;
end if;
 
ld <= '1';
end if;
 
when st_start =>
if (core_ack = '1') then
if (read = '1') then
c_state <= st_read;
core_cmd <= I2C_CMD_READ;
else
c_state <= st_write;
core_cmd <= I2C_CMD_WRITE;
end if;
 
ld <= '1';
end if;
 
when st_write =>
if (core_ack = '1') then
if (cnt_done = '1') then
c_state <= st_ack;
core_cmd <= I2C_CMD_READ;
else
c_state <= st_write; -- stay in same state
core_cmd <= I2C_CMD_WRITE; -- write next bit
shift <= '1';
end if;
end if;
 
when st_read =>
if (core_ack = '1') then
if (cnt_done = '1') then
c_state <= st_ack;
core_cmd <= I2C_CMD_WRITE;
else
c_state <= st_read; -- stay in same state
core_cmd <= I2C_CMD_READ; -- read next bit
end if;
 
shift <= '1';
core_txd <= ack_in;
end if;
 
when st_ack =>
if (core_ack = '1') then
-- check for stop; Should a STOP command be generated ?
if (stop = '1') then
c_state <= st_stop;
core_cmd <= I2C_CMD_STOP;
else
c_state <= st_idle;
core_cmd <= I2C_CMD_NOP;
 
-- generate command acknowledge signal
host_ack <= '1';
end if;
 
-- assign ack_out output to core_rxd (contains last received bit)
ack_out <= core_rxd;
 
core_txd <= '1';
else
core_txd <= ack_in;
end if;
 
when st_stop =>
if (core_ack = '1') then
c_state <= st_idle;
core_cmd <= I2C_CMD_NOP;
 
-- generate command acknowledge signal
host_ack <= '1';
end if;
 
when others => -- illegal states
c_state <= st_idle;
core_cmd <= I2C_CMD_NOP;
report ("Byte controller entered illegal state.");
 
end case;
 
end if;
end if;
end process nxt_state_decoder;
 
end block statemachine;
 
end architecture structural;
 
/readme
0,0 → 1,25
 
 
-- This code is provided for free and may be used and --
-- distributed without restriction provided that the --
-- copyright statement is not removed from the file and --
-- that any derivative work contains the original --
-- copyright notice and the associated disclaimer. --
 
-- Comments and suggestions are always welcome --
 
The i2c_master core consists of three files:
 
- i2c_master_top -- top level
- i2c_master_byte_ctrl -- byte controller
- i2c_master_bit_ctrl -- bit controller
 
VHDL needs to be compiled in order. The files are listed
above in descending order.
 
I2C.VHD and tst_ds1621.vhd are not supported anymore.
They remain mostly for historical purposes, altough they
might prove usefull.
 
Richard Herveille
rherveille@opencores.org
/tst_ds1621.vhd
0,0 → 1,283
--
--
-- State machine for reading data from Dallas 1621
--
-- Testsystem for i2c controller
--
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
 
use work.i2c.all;
 
entity DS1621_interface is
port (
clk : in std_logic;
nReset : in std_logic;
 
Dout : out std_logic_vector(7 downto 0); -- data read from ds1621
 
error : out std_logic; -- no correct ack received
 
SCL : inout std_logic;
SDA : inout std_logic
);
end entity DS1621_interface;
 
architecture structural of DS1621_interface is
constant SLAVE_ADDR : std_logic_vector(6 downto 0) := "1001000";
constant CLK_CNT : unsigned(7 downto 0) := conv_unsigned(20, 8);
 
signal cmd_ack : std_logic;
signal D : std_logic_vector(7 downto 0);
signal lack, store_dout : std_logic;
 
signal start, read, write, ack, stop : std_logic;
signal i2c_dout : std_logic_vector(7 downto 0);
 
begin
-- hookup I2C controller
u1: simple_i2c port map (clk => clk, ena => '1', clk_cnt => clk_cnt, nReset => nReset,
read => read, write => write, start => start, stop => stop, ack_in => ack, cmd_ack => cmd_ack,
Din => D, Dout => i2c_dout, ack_out => lack, SCL => SCL, SDA => SDA);
 
init_statemachine : block
type states is (i1, i2, i3, i4, i5, t1, t2, t3, t4, t5);
signal state : states;
begin
nxt_state_decoder: process(clk, nReset, state)
variable nxt_state : states;
variable iD : std_logic_vector(7 downto 0);
variable ierr : std_logic;
variable istart, iread, iwrite, iack, istop : std_logic;
variable istore_dout : std_logic;
begin
nxt_state := state;
ierr := '0';
istore_dout := '0';
 
istart := start;
iread := read;
iwrite := write;
iack := ack;
istop := stop;
iD := D;
 
case (state) is
-- init DS1621
-- 1) send start condition
-- 2) send slave address + write
-- 3) check ack
-- 4) send "access config" command (0xAC)
-- 5) check ack
-- 6) send config register data (0x00)
-- 7) check ack
-- 8) send stop condition
-- 9) send start condition
-- 10) send slave address + write
-- 11) check ack
-- 12) send "start conversion" command (0xEE)
-- 13) check ack
-- 14) send stop condition
 
when i1 => -- send start condition, sent slave address + write
nxt_state := i2;
istart := '1';
iread := '0';
iwrite := '1';
iack := '0';
istop := '0';
iD := (slave_addr & '0'); -- write to slave (R/W = '0')
 
when i2 => -- send "access config" command
if (cmd_ack = '1') then
nxt_state := i3;
-- check aknowledge bit
if (lack = '1') then
ierr := '1'; -- no acknowledge received from last command, expected ACK
end if;
 
istart := '0';
iread := '0';
iwrite := '1';
iack := '0';
istop := '0';
iD := x"AC";
end if;
 
when i3 => -- send config register data, sent stop condition
if (cmd_ack = '1') then
nxt_state := i4;
-- check aknowledge bit
if (lack = '1') then
ierr := '1'; -- no acknowledge received from last command, expected ACK
end if;
 
istart := '0';
iread := '0';
iwrite := '1';
iack := '0';
istop := '1';
iD := x"00";
end if;
 
when i4 => -- send start condition, sent slave address + write
if (cmd_ack = '1') then
nxt_state := i5;
istart := '1';
iread := '0';
iwrite := '1';
iack := '0';
istop := '0';
iD := (slave_addr & '0'); -- write to slave (R/W = '0')
end if;
 
when i5 => -- send "start conversion" command + stop condition
if (cmd_ack = '1') then
nxt_state := t1;
-- check aknowledge bit
if (lack = '1') then
ierr := '1'; -- no acknowledge received from last command, expected ACK
end if;
 
istart := '0';
iread := '0';
iwrite := '1';
iack := '0';
istop := '1';
iD := x"EE";
end if;
-- read temperature
-- 1) sent start condition
-- 2) sent slave address + write
-- 3) check ack
-- 4) sent "read temperature" command (0xAA)
-- 5) check ack
-- 6) sent start condition
-- 7) sent slave address + read
-- 8) check ack
-- 9) read msb
-- 10) send ack
-- 11) read lsb
-- 12) send nack
-- 13) send stop condition
 
when t1 => -- send start condition, sent slave address + write
if (cmd_ack = '1') then
nxt_state := t2;
-- check aknowledge bit
if (lack = '1') then
ierr := '1'; -- no acknowledge received from last command, expected ACK
end if;
 
istart := '1';
iread := '0';
iwrite := '1';
iack := '0';
istop := '0';
iD := (slave_addr & '0'); -- write to slave (R/W = '0')
end if;
 
when t2 => -- send read temperature command
if (cmd_ack = '1') then
nxt_state := t3;
-- check aknowledge bit
if (lack = '1') then
ierr := '1'; -- no acknowledge received from last command, expected ACK
end if;
 
istart := '0';
iread := '0';
iwrite := '1';
iack := '0';
istop := '0';
iD := x"AA";
end if;
 
when t3 => -- send (repeated) start condition, send slave address + read
if (cmd_ack = '1') then
nxt_state := t4;
-- check aknowledge bit
if (lack = '1') then
ierr := '1'; -- no acknowledge received, expected ACK
end if;
 
istart := '1';
iread := '0';
iwrite := '1';
iack := '0';
istop := '0';
iD := (slave_addr & '1'); -- read from slave (R/W = '1')
end if;
 
when t4 => -- read MSB (hi-byte), send acknowledge
if (cmd_ack = '1') then
nxt_state := t5;
-- check aknowledge bit
if (lack = '1') then
ierr := '1'; -- no acknowledge received from last command, expected ACK
end if;
 
istart := '0';
iread := '1';
iwrite := '0';
iack := '0'; --ACK
istop := '0';
end if;
 
when t5 => -- read LSB (lo-byte), send acknowledge, sent stop
if (cmd_ack = '1') then
nxt_state := t1;
 
istart := '0';
iread := '1';
iwrite := '0';
iack := '1'; --NACK
istop := '1';
 
istore_dout := '1';
end if;
end case;
 
-- genregs
if (nReset = '0') then
state <= i1;
error <= '0';
store_dout <= '0';
 
start <= '0';
read <= '0';
write <= '0';
ack <= '0';
stop <= '0';
D <= (others => '0');
elsif (clk'event and clk = '1') then
state <= nxt_state;
error <= ierr;
store_dout <= istore_dout;
 
start <= istart;
read <= iread;
write <= iwrite;
ack <= iack;
stop <= istop;
D <= iD;
end if;
end process nxt_state_decoder;
end block init_statemachine;
 
-- store temp
gen_dout : process(clk)
begin
if (clk'event and clk = '1') then
if (store_dout = '1') then
Dout <= i2c_dout;
end if;
end if;
end process gen_dout;
 
end architecture structural;
 
 
/I2C.VHD
0,0 → 1,620
--
-- Simple I2C controller
--
-- 1) No multimaster
-- 2) No slave mode
-- 3) No fifo's
--
-- notes:
-- Every command is acknowledged. Do not set a new command before previous is acknowledged.
-- Dout is available 1 clock cycle later as cmd_ack
--
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
 
package I2C is
component simple_i2c is
port (
clk : in std_logic;
ena : in std_logic;
nReset : in std_logic;
 
clk_cnt : in unsigned(7 downto 0); -- 4x SCL
 
-- input signals
start,
stop,
read,
write,
ack_in : std_logic;
Din : in std_logic_vector(7 downto 0);
 
-- output signals
cmd_ack : out std_logic;
ack_out : out std_logic;
Dout : out std_logic_vector(7 downto 0);
 
-- i2c signals
SCL : inout std_logic;
SDA : inout std_logic
);
end component simple_i2c;
end package I2C;
 
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
 
entity simple_i2c is
port (
clk : in std_logic;
ena : in std_logic;
nReset : in std_logic;
 
clk_cnt : in unsigned(7 downto 0); -- 4x SCL
 
-- input signals
start,
stop,
read,
write,
ack_in : std_logic;
Din : in std_logic_vector(7 downto 0);
 
-- output signals
cmd_ack : out std_logic;
ack_out : out std_logic;
Dout : out std_logic_vector(7 downto 0);
 
-- i2c signals
SCL : inout std_logic;
SDA : inout std_logic
);
end entity simple_i2c;
 
architecture structural of simple_i2c is
component i2c_core is
port (
clk : in std_logic;
nReset : in std_logic;
 
clk_cnt : in unsigned(7 downto 0);
 
cmd : in std_logic_vector(2 downto 0);
cmd_ack : out std_logic;
busy : out std_logic;
 
Din : in std_logic;
Dout : out std_logic;
 
SCL : inout std_logic;
SDA : inout std_logic
);
end component i2c_core;
 
-- commands for i2c_core
constant CMD_NOP : std_logic_vector(2 downto 0) := "000";
constant CMD_START : std_logic_vector(2 downto 0) := "010";
constant CMD_STOP : std_logic_vector(2 downto 0) := "011";
constant CMD_READ : std_logic_vector(2 downto 0) := "100";
constant CMD_WRITE : std_logic_vector(2 downto 0) := "101";
 
-- signals for i2c_core
signal core_cmd : std_logic_vector(2 downto 0);
signal core_ack, core_busy, core_txd, core_rxd : std_logic;
 
-- signals for shift register
signal sr : std_logic_vector(7 downto 0); -- 8bit shift register
signal shift, ld : std_logic;
 
-- signals for state machine
signal go, host_ack : std_logic;
begin
-- hookup i2c core
u1: i2c_core port map (clk, nReset, clk_cnt, core_cmd, core_ack, core_busy, core_txd, core_rxd, SCL, SDA);
 
-- generate host-command-acknowledge
cmd_ack <= host_ack;
-- generate go-signal
go <= (read or write) and not host_ack;
 
-- assign Dout output to shift-register
Dout <= sr;
 
-- assign ack_out output to core_rxd (contains last received bit)
ack_out <= core_rxd;
 
-- generate shift register
shift_register: process(clk)
begin
if (clk'event and clk = '1') then
if (ld = '1') then
sr <= din;
elsif (shift = '1') then
sr <= (sr(6 downto 0) & core_rxd);
end if;
end if;
end process shift_register;
 
--
-- state machine
--
statemachine : block
type states is (st_idle, st_start, st_read, st_write, st_ack, st_stop);
signal state : states;
signal dcnt : unsigned(2 downto 0);
begin
--
-- command interpreter, translate complex commands into simpler I2C commands
--
nxt_state_decoder: process(clk, nReset, state)
variable nxt_state : states;
variable idcnt : unsigned(2 downto 0);
variable ihost_ack : std_logic;
variable icore_cmd : std_logic_vector(2 downto 0);
variable icore_txd : std_logic;
variable ishift, iload : std_logic;
begin
-- 8 databits (1byte) of data to shift-in/out
idcnt := dcnt;
 
-- no acknowledge (until command complete)
ihost_ack := '0';
 
icore_txd := core_txd;
 
-- keep current command to i2c_core
icore_cmd := core_cmd;
 
-- no shifting or loading of shift-register
ishift := '0';
iload := '0';
 
-- keep current state;
nxt_state := state;
case state is
when st_idle =>
if (go = '1') then
if (start = '1') then
nxt_state := st_start;
icore_cmd := CMD_START;
elsif (read = '1') then
nxt_state := st_read;
icore_cmd := CMD_READ;
idcnt := "111";
else
nxt_state := st_write;
icore_cmd := CMD_WRITE;
idcnt := "111";
iload := '1';
end if;
end if;
 
when st_start =>
if (core_ack = '1') then
if (read = '1') then
nxt_state := st_read;
icore_cmd := CMD_READ;
idcnt := "111";
else
nxt_state := st_write;
icore_cmd := CMD_WRITE;
idcnt := "111";
iload := '1';
end if;
end if;
 
when st_write =>
if (core_ack = '1') then
idcnt := dcnt -1; -- count down Data_counter
icore_txd := sr(7);
if (dcnt = 0) then
nxt_state := st_ack;
icore_cmd := CMD_READ;
else
ishift := '1';
-- icore_txd := sr(7);
end if;
end if;
 
when st_read =>
if (core_ack = '1') then
idcnt := dcnt -1; -- count down Data_counter
ishift := '1';
if (dcnt = 0) then
nxt_state := st_ack;
icore_cmd := CMD_WRITE;
icore_txd := ack_in;
end if;
end if;
 
when st_ack =>
if (core_ack = '1') then
-- generate command acknowledge signal
ihost_ack := '1';
 
-- Perform an additional shift, needed for 'read' (store last received bit in shift register)
ishift := '1';
 
-- check for stop; Should a STOP command be generated ?
if (stop = '1') then
nxt_state := st_stop;
icore_cmd := CMD_STOP;
else
nxt_state := st_idle;
icore_cmd := CMD_NOP;
end if;
end if;
 
when st_stop =>
if (core_ack = '1') then
nxt_state := st_idle;
icore_cmd := CMD_NOP;
end if;
 
when others => -- illegal states
nxt_state := st_idle;
icore_cmd := CMD_NOP;
end case;
 
-- generate registers
if (nReset = '0') then
core_cmd <= CMD_NOP;
core_txd <= '0';
shift <= '0';
ld <= '0';
 
dcnt <= "111";
host_ack <= '0';
 
state <= st_idle;
elsif (clk'event and clk = '1') then
if (ena = '1') then
state <= nxt_state;
 
dcnt <= idcnt;
shift <= ishift;
ld <= iload;
 
core_cmd <= icore_cmd;
core_txd <= icore_txd;
 
host_ack <= ihost_ack;
end if;
end if;
end process nxt_state_decoder;
 
end block statemachine;
 
end architecture structural;
 
 
--
--
-- I2C Core
--
-- Translate simple commands into SCL/SDA transitions
-- Each command has 5 states, A/B/C/D/idle
--
-- start: SCL ~~~~~~~~~~\____
-- SDA ~~~~~~~~\______
-- x | A | B | C | D | i
--
-- repstart SCL ____/~~~~\___
-- SDA __/~~~\______
-- x | A | B | C | D | i
--
-- stop SCL ____/~~~~~~~~
-- SDA ==\____/~~~~~
-- x | A | B | C | D | i
--
--- write SCL ____/~~~~\____
-- SDA ==X=========X=
-- x | A | B | C | D | i
--
--- read SCL ____/~~~~\____
-- SDA XXXX=====XXXX
-- x | A | B | C | D | i
--
 
-- Timing: Normal mode Fast mode
-----------------------------------------------------------------
-- Fscl 100KHz 400KHz
-- Th_scl 4.0us 0.6us High period of SCL
-- Tl_scl 4.7us 1.3us Low period of SCL
-- Tsu:sta 4.7us 0.6us setup time for a repeated start condition
-- Tsu:sto 4.0us 0.6us setup time for a stop conditon
-- Tbuf 4.7us 1.3us Bus free time between a stop and start condition
--
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
 
entity i2c_core is
port (
clk : in std_logic;
nReset : in std_logic;
 
clk_cnt : in unsigned(7 downto 0);
 
cmd : in std_logic_vector(2 downto 0);
cmd_ack : out std_logic;
busy : out std_logic;
 
Din : in std_logic;
Dout : out std_logic;
 
SCL : inout std_logic;
SDA : inout std_logic
);
end entity i2c_core;
 
architecture structural of i2c_core is
constant CMD_NOP : std_logic_vector(2 downto 0) := "000";
constant CMD_START : std_logic_vector(2 downto 0) := "010";
constant CMD_STOP : std_logic_vector(2 downto 0) := "011";
constant CMD_READ : std_logic_vector(2 downto 0) := "100";
constant CMD_WRITE : std_logic_vector(2 downto 0) := "101";
 
type cmds is (idle, start_a, start_b, start_c, start_d, stop_a, stop_b, stop_c, rd_a, rd_b, rd_c, rd_d, wr_a, wr_b, wr_c, wr_d);
signal state : cmds;
signal SDAo, SCLo : std_logic;
signal txd : std_logic;
signal clk_en, slave_wait :std_logic;
signal cnt : unsigned(7 downto 0) := clk_cnt;
begin
-- whenever the slave is not ready it can delay the cycle by pulling SCL low
slave_wait <= '1' when ((SCLo = '1') and (SCL = '0')) else '0';
 
-- generate clk enable signal
gen_clken: process(clk, nReset)
begin
if (nReset = '0') then
cnt <= (others => '0');
clk_en <= '1'; --'0';
elsif (clk'event and clk = '1') then
if (cnt = 0) then
clk_en <= '1';
cnt <= clk_cnt;
else
if (slave_wait = '0') then
cnt <= cnt -1;
end if;
clk_en <= '0';
end if;
end if;
end process gen_clken;
 
-- generate statemachine
nxt_state_decoder : process (clk, nReset, state, cmd, SDA)
variable nxt_state : cmds;
variable icmd_ack, ibusy, store_sda : std_logic;
variable itxd : std_logic;
begin
 
nxt_state := state;
 
icmd_ack := '0'; -- default no acknowledge
ibusy := '1'; -- default busy
 
store_sda := '0';
 
itxd := txd;
 
case (state) is
-- idle
when idle =>
case cmd is
when CMD_START =>
nxt_state := start_a;
icmd_ack := '1'; -- command completed
 
when CMD_STOP =>
nxt_state := stop_a;
icmd_ack := '1'; -- command completed
 
when CMD_WRITE =>
nxt_state := wr_a;
icmd_ack := '1'; -- command completed
itxd := Din;
 
when CMD_READ =>
nxt_state := rd_a;
icmd_ack := '1'; -- command completed
 
when others =>
nxt_state := idle;
-- don't acknowledge NOP command icmd_ack := '1'; -- command completed
ibusy := '0';
end case;
 
-- start
when start_a =>
nxt_state := start_b;
 
when start_b =>
nxt_state := start_c;
 
when start_c =>
nxt_state := start_d;
 
when start_d =>
nxt_state := idle;
ibusy := '0'; -- not busy when idle
 
 
-- stop
when stop_a =>
nxt_state := stop_b;
 
when stop_b =>
nxt_state := stop_c;
 
when stop_c =>
-- nxt_state := stop_d;
 
-- when stop_d =>
nxt_state := idle;
ibusy := '0'; -- not busy when idle
 
-- read
when rd_a =>
nxt_state := rd_b;
 
when rd_b =>
nxt_state := rd_c;
 
when rd_c =>
nxt_state := rd_d;
store_sda := '1';
 
when rd_d =>
nxt_state := idle;
ibusy := '0'; -- not busy when idle
 
-- write
when wr_a =>
nxt_state := wr_b;
 
when wr_b =>
nxt_state := wr_c;
 
when wr_c =>
nxt_state := wr_d;
 
when wr_d =>
nxt_state := idle;
ibusy := '0'; -- not busy when idle
 
end case;
 
-- generate regs
if (nReset = '0') then
state <= idle;
cmd_ack <= '0';
busy <= '0';
txd <= '0';
Dout <= '0';
elsif (clk'event and clk = '1') then
if (clk_en = '1') then
state <= nxt_state;
busy <= ibusy;
 
txd <= itxd;
if (store_sda = '1') then
Dout <= SDA;
end if;
end if;
 
cmd_ack <= icmd_ack and clk_en;
end if;
end process nxt_state_decoder;
 
--
-- convert states to SCL and SDA signals
--
output_decoder: process (clk, nReset, state)
variable iscl, isda : std_logic;
begin
case (state) is
when idle =>
iscl := SCLo; -- keep SCL in same state
isda := SDA; -- keep SDA in same state
 
-- start
when start_a =>
iscl := SCLo; -- keep SCL in same state (for repeated start)
isda := '1'; -- set SDA high
 
when start_b =>
iscl := '1'; -- set SCL high
isda := '1'; -- keep SDA high
 
when start_c =>
iscl := '1'; -- keep SCL high
isda := '0'; -- sel SDA low
 
when start_d =>
iscl := '0'; -- set SCL low
isda := '0'; -- keep SDA low
 
-- stop
when stop_a =>
iscl := '0'; -- keep SCL disabled
isda := '0'; -- set SDA low
 
when stop_b =>
iscl := '1'; -- set SCL high
isda := '0'; -- keep SDA low
 
when stop_c =>
iscl := '1'; -- keep SCL high
isda := '1'; -- set SDA high
 
-- write
when wr_a =>
iscl := '0'; -- keep SCL low
-- isda := txd; -- set SDA
isda := Din;
 
when wr_b =>
iscl := '1'; -- set SCL high
-- isda := txd; -- set SDA
isda := Din;
 
when wr_c =>
iscl := '1'; -- keep SCL high
-- isda := txd; -- set SDA
isda := Din;
 
when wr_d =>
iscl := '0'; -- set SCL low
-- isda := txd; -- set SDA
isda := Din;
 
-- read
when rd_a =>
iscl := '0'; -- keep SCL low
isda := '1'; -- tri-state SDA
 
when rd_b =>
iscl := '1'; -- set SCL high
isda := '1'; -- tri-state SDA
 
when rd_c =>
iscl := '1'; -- keep SCL high
isda := '1'; -- tri-state SDA
 
when rd_d =>
iscl := '0'; -- set SCL low
isda := '1'; -- tri-state SDA
end case;
 
-- generate registers
if (nReset = '0') then
SCLo <= '1';
SDAo <= '1';
elsif (clk'event and clk = '1') then
if (clk_en = '1') then
SCLo <= iscl;
SDAo <= isda;
end if;
end if;
end process output_decoder;
 
SCL <= '0' when (SCLo = '0') else 'Z'; -- since SCL is externally pulled-up convert a '1' to a 'Z'(tri-state)
SDA <= '0' when (SDAo = '0') else 'Z'; -- since SDA is externally pulled-up convert a '1' to a 'Z'(tri-state)
-- SCL <= SCLo;
-- SDA <= SDAo;
 
end architecture structural;
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.