OpenCores
URL https://opencores.org/ocsvn/lxp32/lxp32/trunk

Subversion Repositories lxp32

[/] [lxp32/] [trunk/] [rtl/] [lxp32_fetch.vhd] - Diff between revs 2 and 6

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 2 Rev 6
---------------------------------------------------------------------
---------------------------------------------------------------------
-- Instruction fetch
-- Instruction fetch
--
--
-- Part of the LXP32 CPU
-- Part of the LXP32 CPU
--
--
-- Copyright (c) 2016 by Alex I. Kuznetsov
-- Copyright (c) 2016 by Alex I. Kuznetsov
--
--
-- The first stage of the LXP32 pipeline.
-- The first stage of the LXP32 pipeline.
---------------------------------------------------------------------
---------------------------------------------------------------------
 
 
library ieee;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.numeric_std.all;
 
 
entity lxp32_fetch is
entity lxp32_fetch is
        generic(
        generic(
                START_ADDR: std_logic_vector(29 downto 0)
                START_ADDR: std_logic_vector(31 downto 0)
        );
        );
        port(
        port(
                clk_i: in std_logic;
                clk_i: in std_logic;
                rst_i: in std_logic;
                rst_i: in std_logic;
 
 
                lli_re_o: out std_logic;
                lli_re_o: out std_logic;
                lli_adr_o: out std_logic_vector(29 downto 0);
                lli_adr_o: out std_logic_vector(29 downto 0);
                lli_dat_i: in std_logic_vector(31 downto 0);
                lli_dat_i: in std_logic_vector(31 downto 0);
                lli_busy_i: in std_logic;
                lli_busy_i: in std_logic;
 
 
                word_o: out std_logic_vector(31 downto 0);
                word_o: out std_logic_vector(31 downto 0);
 
                current_ip_o: out std_logic_vector(29 downto 0);
                next_ip_o: out std_logic_vector(29 downto 0);
                next_ip_o: out std_logic_vector(29 downto 0);
                valid_o: out std_logic;
                valid_o: out std_logic;
                ready_i: in std_logic;
                ready_i: in std_logic;
 
 
                jump_valid_i: in std_logic;
                jump_valid_i: in std_logic;
                jump_dst_i: in std_logic_vector(29 downto 0);
                jump_dst_i: in std_logic_vector(29 downto 0);
                jump_ready_o: out std_logic
                jump_ready_o: out std_logic
        );
        );
end entity;
end entity;
 
 
architecture rtl of lxp32_fetch is
architecture rtl of lxp32_fetch is
 
 
signal init: std_logic:='1';
signal init: std_logic:='1';
signal init_cnt: unsigned(7 downto 0):=(others=>'0');
signal init_cnt: unsigned(7 downto 0):=(others=>'0');
 
 
signal fetch_addr: std_logic_vector(29 downto 0):=START_ADDR;
signal fetch_addr: std_logic_vector(29 downto 0):=START_ADDR(31 downto 2);
 
 
signal next_word: std_logic;
signal next_word: std_logic;
signal suppress_re: std_logic:='0';
signal suppress_re: std_logic:='0';
signal re: std_logic;
signal re: std_logic;
signal requested: std_logic:='0';
signal requested: std_logic:='0';
 
 
signal fifo_rst: std_logic;
signal fifo_rst: std_logic;
signal fifo_we: std_logic;
signal fifo_we: std_logic;
signal fifo_din: std_logic_vector(61 downto 0);
signal fifo_din: std_logic_vector(31 downto 0);
signal fifo_re: std_logic;
signal fifo_re: std_logic;
signal fifo_dout: std_logic_vector(61 downto 0);
signal fifo_dout: std_logic_vector(31 downto 0);
signal fifo_empty: std_logic;
signal fifo_empty: std_logic;
signal fifo_full: std_logic;
signal fifo_full: std_logic;
 
 
signal jr: std_logic:='0';
signal jr: std_logic:='0';
 
 
 
signal next_ip: std_logic_vector(fetch_addr'range);
 
signal current_ip: std_logic_vector(fetch_addr'range);
 
 
begin
begin
 
 
-- INIT state machine (to initialize all registers)
-- INIT state machine (to initialize all registers)
 
 
-- All CPU registers are expected to be zero-initialized after reset.
-- All CPU registers are expected to be zero-initialized after reset.
-- Since these registers are implemented as a RAM block, we perform
-- Since these registers are implemented as a RAM block, we perform
-- the initialization sequentially by generating "mov rN, 0" instructions
-- the initialization sequentially by generating "mov rN, 0" instructions
-- for each N from 0 to 255.
-- for each N from 0 to 255.
--
--
-- With SRAM-based FPGAs, flip-flops and RAM blocks have deterministic
-- With SRAM-based FPGAs, flip-flops and RAM blocks have deterministic
-- state after configuration. On these technologies the CPU can operate
-- state after configuration. On these technologies the CPU can operate
-- without reset and the initialization procedure described above is not
-- without reset and the initialization procedure described above is not
-- needed. However, the initialization is still performed as usual when
-- needed. However, the initialization is still performed as usual when
-- external reset signal is asserted.
-- external reset signal is asserted.
 
 
process (clk_i) is
process (clk_i) is
begin
begin
        if rising_edge(clk_i) then
        if rising_edge(clk_i) then
                if rst_i='1' then
                if rst_i='1' then
                        init<='0';
                        init<='0';
                        init_cnt<=(others=>'0');
                        init_cnt<=(others=>'0');
                else
                else
                        if init='0' and ready_i='1' then
                        if init='0' and ready_i='1' then
                                init_cnt<=init_cnt+1;
                                init_cnt<=init_cnt+1;
                                if init_cnt=X"FF" then
                                if init_cnt=X"FF" then
                                        init<='1';
                                        init<='1';
                                end if;
                                end if;
                        end if;
                        end if;
                end if;
                end if;
        end if;
        end if;
end process;
end process;
 
 
-- FETCH state machine
-- FETCH state machine
 
 
process (clk_i) is
process (clk_i) is
begin
begin
        if rising_edge(clk_i) then
        if rising_edge(clk_i) then
                if rst_i='1' then
                if rst_i='1' then
                        fetch_addr<=START_ADDR;
                        fetch_addr<=START_ADDR(31 downto 2);
                        requested<='0';
                        requested<='0';
                        jr<='0';
                        jr<='0';
                        suppress_re<='0';
                        suppress_re<='0';
 
                        next_ip<=(others=>'-');
                else
                else
                        jr<='0';
                        jr<='0';
-- Suppress LLI request if jump signal is active but will not be processed
-- Suppress LLI request if jump signal is active but will not be processed
-- in this cycle. Helps to reduce jump latency with high-latency LLI slaves.
-- in this cycle. Helps to reduce jump latency with high-latency LLI slaves.
-- Note: gating "re" with "jump_valid_i and not jr" asynchronously would
-- Note: gating "re" with "jump_valid_i and not jr" asynchronously would
-- reduce jump latency even more, but we really want to avoid too large
-- reduce jump latency even more, but we really want to avoid too large
-- clock-to-out on LLI outputs.
-- clock-to-out on LLI outputs.
                        suppress_re<=jump_valid_i and not jr and not next_word;
                        suppress_re<=jump_valid_i and not jr and not next_word;
                        if lli_busy_i='0' then
                        if lli_busy_i='0' then
                                requested<=re and not (jump_valid_i and not jr);
                                requested<=re and not (jump_valid_i and not jr);
                        end if;
                        end if;
                        if next_word='1' then
                        if next_word='1' then
 
-- It's not immediately obvious why, but current_ip and next_ip will contain
 
-- the addresses of the current instruction and the next instruction to be
 
-- fetched, respectively, by the time the instruction is passed to the decode
 
-- stage. Basically, this is because when either the decoder or the IBUS
 
-- stalls, the fetch_addr counter will also stop incrementing.
 
                                next_ip<=fetch_addr;
 
                                current_ip<=next_ip;
                                if jump_valid_i='1' and jr='0' then
                                if jump_valid_i='1' and jr='0' then
                                        fetch_addr<=jump_dst_i;
                                        fetch_addr<=jump_dst_i;
                                        jr<='1';
                                        jr<='1';
                                else
                                else
                                        fetch_addr<=std_logic_vector(unsigned(fetch_addr)+1);
                                        fetch_addr<=std_logic_vector(unsigned(fetch_addr)+1);
                                end if;
                                end if;
                        end if;
                        end if;
                end if;
                end if;
        end if;
        end if;
end process;
end process;
 
 
next_word<=(fifo_empty or ready_i) and not lli_busy_i and init;
next_word<=(fifo_empty or ready_i) and not lli_busy_i and init;
re<=(fifo_empty or ready_i) and init and not suppress_re;
re<=(fifo_empty or ready_i) and init and not suppress_re;
lli_re_o<=re;
lli_re_o<=re;
lli_adr_o<=fetch_addr;
lli_adr_o<=fetch_addr;
 
 
jump_ready_o<=jr;
jump_ready_o<=jr;
 
 
-- Small instruction buffer
-- Small instruction buffer
 
 
fifo_rst<=rst_i or (jump_valid_i and not jr);
fifo_rst<=rst_i or (jump_valid_i and not jr);
fifo_we<=requested and not lli_busy_i;
fifo_we<=requested and not lli_busy_i;
fifo_din<=fetch_addr&lli_dat_i;
fifo_din<=lli_dat_i;
fifo_re<=ready_i and not fifo_empty;
fifo_re<=ready_i and not fifo_empty;
 
 
ubuf_inst: entity work.lxp32_ubuf(rtl)
ubuf_inst: entity work.lxp32_ubuf(rtl)
        generic map(
        generic map(
                DATA_WIDTH=>62
                DATA_WIDTH=>32
        )
        )
        port map(
        port map(
                clk_i=>clk_i,
                clk_i=>clk_i,
                rst_i=>fifo_rst,
                rst_i=>fifo_rst,
 
 
                we_i=>fifo_we,
                we_i=>fifo_we,
                d_i=>fifo_din,
                d_i=>fifo_din,
                re_i=>fifo_re,
                re_i=>fifo_re,
                d_o=>fifo_dout,
                d_o=>fifo_dout,
 
 
                empty_o=>fifo_empty,
                empty_o=>fifo_empty,
                full_o=>fifo_full
                full_o=>fifo_full
        );
        );
 
 
next_ip_o<=fifo_dout(61 downto 32);
next_ip_o<=next_ip;
 
current_ip_o<=current_ip;
word_o<=fifo_dout(31 downto 0) when init='1' else X"40"&std_logic_vector(init_cnt)&X"0000";
word_o<=fifo_dout when init='1' else X"40"&std_logic_vector(init_cnt)&X"0000";
valid_o<=not fifo_empty or not init;
valid_o<=not fifo_empty or not init;
 
 
 
-- Note: the following code contains a few simulation-only assertions
 
-- to check that current_ip and next_ip signals, used in procedure calls
 
-- and interrupts, are correct. 
 
-- This code should be ignored by a synthesizer since it doesn't drive
 
-- any signals, but we also surround it by metacomments, just in case.
 
 
 
-- synthesis translate_off
 
 
 
process (clk_i) is
 
        type Pair is record
 
                addr: std_logic_vector(fetch_addr'range);
 
                data: std_logic_vector(31 downto 0);
 
        end record;
 
        type Pairs is array (7 downto 0) of Pair;
 
        variable buf: Pairs;
 
        variable count: integer range buf'range:=0;
 
        variable current_pair: Pair;
 
begin
 
        if rising_edge(clk_i) then
 
                if fifo_rst='1' then -- jump
 
                        count:=0;
 
                elsif fifo_we='1' then -- LLI returned data
 
                        current_pair.data:=fifo_din;
 
                        buf(count):=current_pair;
 
                        count:=count+1;
 
                end if;
 
                if re='1' and lli_busy_i='0' then -- data requested
 
                        current_pair.addr:=fetch_addr;
 
                end if;
 
                if fifo_empty='0' and fifo_rst='0' then -- fetch output is valid
 
                        assert count>0
 
                                report "Fetch: buffer should be empty"
 
                                severity failure;
 
                        assert buf(0).data=fifo_dout
 
                                report "Fetch: incorrect data"
 
                                severity failure;
 
                        assert buf(0).addr=current_ip
 
                                report "Fetch: incorrect current_ip"
 
                                severity failure;
 
                        assert std_logic_vector(unsigned(buf(0).addr)+1)=next_ip
 
                                report "Fetch: incorrect next_ip"
 
                                severity failure;
 
                        if ready_i='1' then
 
                                buf(buf'high-1 downto 0):=buf(buf'high downto 1); -- we don't care about the highest item
 
                                count:=count-1;
 
                        end if;
 
                end if;
 
        end if;
 
end process;
 
 
 
-- synthesis translate_on
 
 
end architecture;
end architecture;
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.