OpenCores
URL https://opencores.org/ocsvn/neorv32/neorv32/trunk

Subversion Repositories neorv32

[/] [neorv32/] [trunk/] [sw/] [example/] [coremark/] [core_portme.c] - Diff between revs 12 and 14

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 12 Rev 14
/*
/*
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
 
 
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
You may obtain a copy of the License at
 
 
    http://www.apache.org/licenses/LICENSE-2.0
    http://www.apache.org/licenses/LICENSE-2.0
 
 
Unless required by applicable law or agreed to in writing, software
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License.
limitations under the License.
 
 
Original Author: Shay Gal-on
Original Author: Shay Gal-on
 
 
Modified for NEORV32 by Stephan Nolting
Modified for NEORV32 by Stephan Nolting
*/
*/
 
 
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include "coremark.h"
#include "coremark.h"
#include "core_portme.h"
#include "core_portme.h"
 
 
#if VALIDATION_RUN
#if VALIDATION_RUN
        volatile ee_s32 seed1_volatile=0x3415;
        volatile ee_s32 seed1_volatile=0x3415;
        volatile ee_s32 seed2_volatile=0x3415;
        volatile ee_s32 seed2_volatile=0x3415;
        volatile ee_s32 seed3_volatile=0x66;
        volatile ee_s32 seed3_volatile=0x66;
#endif
#endif
#if PERFORMANCE_RUN
#if PERFORMANCE_RUN
        volatile ee_s32 seed1_volatile=0x0;
        volatile ee_s32 seed1_volatile=0x0;
        volatile ee_s32 seed2_volatile=0x0;
        volatile ee_s32 seed2_volatile=0x0;
        volatile ee_s32 seed3_volatile=0x66;
        volatile ee_s32 seed3_volatile=0x66;
#endif
#endif
#if PROFILE_RUN
#if PROFILE_RUN
        volatile ee_s32 seed1_volatile=0x8;
        volatile ee_s32 seed1_volatile=0x8;
        volatile ee_s32 seed2_volatile=0x8;
        volatile ee_s32 seed2_volatile=0x8;
        volatile ee_s32 seed3_volatile=0x8;
        volatile ee_s32 seed3_volatile=0x8;
#endif
#endif
        volatile ee_s32 seed4_volatile=ITERATIONS;
        volatile ee_s32 seed4_volatile=ITERATIONS;
        volatile ee_s32 seed5_volatile=0;
        volatile ee_s32 seed5_volatile=0;
/* Porting : Timing functions
/* Porting : Timing functions
        How to capture time and convert to seconds must be ported to whatever is supported by the platform.
        How to capture time and convert to seconds must be ported to whatever is supported by the platform.
        e.g. Read value from on board RTC, read value from cpu clock cycles performance counter etc.
        e.g. Read value from on board RTC, read value from cpu clock cycles performance counter etc.
        Sample implementation for standard time.h and windows.h definitions included.
        Sample implementation for standard time.h and windows.h definitions included.
*/
*/
/* Define : TIMER_RES_DIVIDER
/* Define : TIMER_RES_DIVIDER
        Divider to trade off timer resolution and total time that can be measured.
        Divider to trade off timer resolution and total time that can be measured.
 
 
        Use lower values to increase resolution, but make sure that overflow does not occur.
        Use lower values to increase resolution, but make sure that overflow does not occur.
        If there are issues with the return value overflowing, increase this value.
        If there are issues with the return value overflowing, increase this value.
        */
        */
#define NSECS_PER_SEC 20000000
#define NSECS_PER_SEC 20000000
#define CORETIMETYPE clock_t 
#define CORETIMETYPE clock_t 
#define GETMYTIME(_t) (*_t=clock())
#define GETMYTIME(_t) (*_t=clock())
#define MYTIMEDIFF(fin,ini) ((fin)-(ini))
#define MYTIMEDIFF(fin,ini) ((fin)-(ini))
#define TIMER_RES_DIVIDER 1
#define TIMER_RES_DIVIDER 1
#define SAMPLE_TIME_IMPLEMENTATION 1
#define SAMPLE_TIME_IMPLEMENTATION 1
#define EE_TICKS_PER_SEC (NSECS_PER_SEC / TIMER_RES_DIVIDER)
#define EE_TICKS_PER_SEC (NSECS_PER_SEC / TIMER_RES_DIVIDER)
 
 
CORE_TICKS elapsed_cycles; // NEORV32 specific
CORE_TICKS elapsed_cycles; // NEORV32 specific
 
 
/** Define Host specific (POSIX), or target specific global time variables. */
/** Define Host specific (POSIX), or target specific global time variables. */
//static CORETIMETYPE start_time_val, stop_time_val;
//static CORETIMETYPE start_time_val, stop_time_val;
 
 
/* Function : start_time
/* Function : start_time
        This function will be called right before starting the timed portion of the benchmark.
        This function will be called right before starting the timed portion of the benchmark.
 
 
        Implementation may be capturing a system timer (as implemented in the example code)
        Implementation may be capturing a system timer (as implemented in the example code)
        or zeroing some system parameters - e.g. setting the cpu clocks cycles to 0.
        or zeroing some system parameters - e.g. setting the cpu clocks cycles to 0.
*/
*/
void start_time(void) {
void start_time(void) {
  elapsed_cycles = 0; // this is time zero
  elapsed_cycles = 0; // this is time zero
  neorv32_cpu_set_mcycle(0);
  neorv32_cpu_set_mcycle(0);
  neorv32_cpu_set_minstret(0);
  neorv32_cpu_set_minstret(0);
        //GETMYTIME(&start_time_val );      
        //GETMYTIME(&start_time_val );      
}
}
/* Function : stop_time
/* Function : stop_time
        This function will be called right after ending the timed portion of the benchmark.
        This function will be called right after ending the timed portion of the benchmark.
 
 
        Implementation may be capturing a system timer (as implemented in the example code)
        Implementation may be capturing a system timer (as implemented in the example code)
        or other system parameters - e.g. reading the current value of cpu cycles counter.
        or other system parameters - e.g. reading the current value of cpu cycles counter.
*/
*/
void stop_time(void) {
void stop_time(void) {
        //GETMYTIME(&stop_time_val );      
        //GETMYTIME(&stop_time_val );      
}
}
/* Function : get_time
/* Function : get_time
        Return an abstract "ticks" number that signifies time on the system.
        Return an abstract "ticks" number that signifies time on the system.
 
 
        Actual value returned may be cpu cycles, milliseconds or any other value,
        Actual value returned may be cpu cycles, milliseconds or any other value,
        as long as it can be converted to seconds by <time_in_secs>.
        as long as it can be converted to seconds by <time_in_secs>.
        This methodology is taken to accomodate any hardware or simulated platform.
        This methodology is taken to accomodate any hardware or simulated platform.
        The sample implementation returns millisecs by default,
        The sample implementation returns millisecs by default,
        and the resolution is controlled by <TIMER_RES_DIVIDER>
        and the resolution is controlled by <TIMER_RES_DIVIDER>
*/
*/
CORE_TICKS get_time(void) {
CORE_TICKS get_time(void) {
        CORE_TICKS elapsed = ((CORE_TICKS)neorv32_cpu_get_cycle()) - elapsed_cycles;
        CORE_TICKS elapsed = ((CORE_TICKS)neorv32_cpu_get_cycle()) - elapsed_cycles;
  elapsed_cycles = elapsed;
  elapsed_cycles = elapsed;
  //CORE_TICKS elapsed=(CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
  //CORE_TICKS elapsed=(CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
        return elapsed;
        return elapsed;
}
}
/* Function : time_in_secs
/* Function : time_in_secs
        Convert the value returned by get_time to seconds.
        Convert the value returned by get_time to seconds.
 
 
        The <secs_ret> type is used to accomodate systems with no support for floating point.
        The <secs_ret> type is used to accomodate systems with no support for floating point.
        Default implementation implemented by the EE_TICKS_PER_SEC macro above.
        Default implementation implemented by the EE_TICKS_PER_SEC macro above.
*/
*/
secs_ret time_in_secs(CORE_TICKS ticks) {
secs_ret time_in_secs(CORE_TICKS ticks) {
        //secs_ret retval=((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC;
        //secs_ret retval=((secs_ret)ticks) / (secs_ret)EE_TICKS_PER_SEC;
        secs_ret retval=(secs_ret)(ticks / SYSINFO_CLK);
        secs_ret retval=(secs_ret)(ticks / SYSINFO_CLK);
        return retval;
        return retval;
}
}
 
 
ee_u32 default_num_contexts=1;
ee_u32 default_num_contexts=1;
 
 
/* Function : portable_init
/* Function : portable_init
        Target specific initialization code
        Target specific initialization code
        Test for some common mistakes.
        Test for some common mistakes.
*/
*/
void portable_init(core_portable *p, int *argc, char *argv[])
void portable_init(core_portable *p, int *argc, char *argv[])
{
{
  // no interrupts, thanks
  // no interrupts, thanks
  neorv32_cpu_dint();
  neorv32_cpu_dint();
 
 
  // capture all exceptions and give debug information
  // capture all exceptions and give debug information
  neorv32_rte_enable_debug_mode();
  neorv32_rte_setup();
 
 
  // setup neorv32 UART
  // setup neorv32 UART
  neorv32_uart_setup(BAUD_RATE, 0, 0);
  neorv32_uart_setup(BAUD_RATE, 0, 0);
 
 
  neorv32_uart_printf("NEORV32: Processor running at %u Hz\n", (uint32_t)SYSINFO_CLK);
  neorv32_uart_printf("NEORV32: Processor running at %u Hz\n", (uint32_t)SYSINFO_CLK);
  neorv32_uart_printf("NEORV32: Executing coremark (%u iterations). This may take some time...\n\n", (uint32_t)ITERATIONS);
  neorv32_uart_printf("NEORV32: Executing coremark (%u iterations). This may take some time...\n\n", (uint32_t)ITERATIONS);
 
 
        if (sizeof(ee_ptr_int) != sizeof(ee_u8 *)) {
        if (sizeof(ee_ptr_int) != sizeof(ee_u8 *)) {
                ee_printf("ERROR! Please define ee_ptr_int to a type that holds a pointer!\n");
                ee_printf("ERROR! Please define ee_ptr_int to a type that holds a pointer!\n");
        }
        }
        if (sizeof(ee_u32) != 4) {
        if (sizeof(ee_u32) != 4) {
                ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
                ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
        }
        }
        p->portable_id=1;
        p->portable_id=1;
}
}
/* Function : portable_fini
/* Function : portable_fini
        Target specific final code
        Target specific final code
*/
*/
void portable_fini(core_portable *p)
void portable_fini(core_portable *p)
{
{
        p->portable_id=0;
        p->portable_id=0;
 
 
  // show executed instructions, required cycles and resulting average CPI
  // show executed instructions, required cycles and resulting average CPI
  union {
  union {
    uint64_t uint64;
    uint64_t uint64;
    uint32_t  uint32[sizeof(uint64_t)/2];
    uint32_t  uint32[sizeof(uint64_t)/2];
  } exe_instructions, exe_time;
  } exe_instructions, exe_time;
 
 
  exe_time.uint64 = (uint64_t)elapsed_cycles;
  exe_time.uint64 = (uint64_t)elapsed_cycles;
  exe_instructions.uint64 = neorv32_cpu_get_instret();
  exe_instructions.uint64 = neorv32_cpu_get_instret();
 
 
  neorv32_uart_printf("\nNEORV32: Executed instructions      0x%x_%x\n", (uint32_t)exe_instructions.uint32[1], (uint32_t)exe_instructions.uint32[0]);
  neorv32_uart_printf("\nNEORV32: Executed instructions      0x%x_%x\n", (uint32_t)exe_instructions.uint32[1], (uint32_t)exe_instructions.uint32[0]);
  neorv32_uart_printf("NEORV32: CoreMark core clock cycles 0x%x_%x\n", (uint32_t)exe_time.uint32[1], (uint32_t)exe_time.uint32[0]);
  neorv32_uart_printf("NEORV32: CoreMark core clock cycles 0x%x_%x\n", (uint32_t)exe_time.uint32[1], (uint32_t)exe_time.uint32[0]);
 
 
  uint64_t average_cpi = exe_time.uint64 / exe_instructions.uint64;
  uint64_t average_cpi = exe_time.uint64 / exe_instructions.uint64;
  neorv32_uart_printf("NEORV32: Average CPI (integer part only): %u cycles/instruction\n", (uint32_t)average_cpi);
  neorv32_uart_printf("NEORV32: Average CPI (integer part only): %u cycles/instruction\n", (uint32_t)average_cpi);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.