/*
|
/*
|
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
|
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
You may obtain a copy of the License at
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
Unless required by applicable law or agreed to in writing, software
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
limitations under the License.
|
|
|
Original Author: Shay Gal-on
|
Original Author: Shay Gal-on
|
*/
|
*/
|
|
|
/* Modified for the NEORV32 Processor - by Stephan Nolting */
|
/* Modified for the NEORV32 Processor - by Stephan Nolting */
|
|
|
#include "coremark.h"
|
#include "coremark.h"
|
#include "core_portme.h"
|
#include "core_portme.h"
|
|
|
#if VALIDATION_RUN
|
#if VALIDATION_RUN
|
volatile ee_s32 seed1_volatile = 0x3415;
|
volatile ee_s32 seed1_volatile = 0x3415;
|
volatile ee_s32 seed2_volatile = 0x3415;
|
volatile ee_s32 seed2_volatile = 0x3415;
|
volatile ee_s32 seed3_volatile = 0x66;
|
volatile ee_s32 seed3_volatile = 0x66;
|
#endif
|
#endif
|
#if PERFORMANCE_RUN
|
#if PERFORMANCE_RUN
|
volatile ee_s32 seed1_volatile = 0x0;
|
volatile ee_s32 seed1_volatile = 0x0;
|
volatile ee_s32 seed2_volatile = 0x0;
|
volatile ee_s32 seed2_volatile = 0x0;
|
volatile ee_s32 seed3_volatile = 0x66;
|
volatile ee_s32 seed3_volatile = 0x66;
|
#endif
|
#endif
|
#if PROFILE_RUN
|
#if PROFILE_RUN
|
volatile ee_s32 seed1_volatile = 0x8;
|
volatile ee_s32 seed1_volatile = 0x8;
|
volatile ee_s32 seed2_volatile = 0x8;
|
volatile ee_s32 seed2_volatile = 0x8;
|
volatile ee_s32 seed3_volatile = 0x8;
|
volatile ee_s32 seed3_volatile = 0x8;
|
#endif
|
#endif
|
volatile ee_s32 seed4_volatile = ITERATIONS;
|
volatile ee_s32 seed4_volatile = ITERATIONS;
|
volatile ee_s32 seed5_volatile = 0;
|
volatile ee_s32 seed5_volatile = 0;
|
/* Porting : Timing functions
|
/* Porting : Timing functions
|
How to capture time and convert to seconds must be ported to whatever is
|
How to capture time and convert to seconds must be ported to whatever is
|
supported by the platform. e.g. Read value from on board RTC, read value from
|
supported by the platform. e.g. Read value from on board RTC, read value from
|
cpu clock cycles performance counter etc. Sample implementation for standard
|
cpu clock cycles performance counter etc. Sample implementation for standard
|
time.h and windows.h definitions included.
|
time.h and windows.h definitions included.
|
*/
|
*/
|
CORETIMETYPE
|
CORETIMETYPE
|
barebones_clock()
|
barebones_clock()
|
{
|
{
|
/*
|
/*
|
#error \
|
#error \
|
"You must implement a method to measure time in barebones_clock()! This function should return current time.\n"
|
"You must implement a method to measure time in barebones_clock()! This function should return current time.\n"
|
*/
|
*/
|
return 1;
|
return 1;
|
}
|
}
|
/* Define : TIMER_RES_DIVIDER
|
/* Define : TIMER_RES_DIVIDER
|
Divider to trade off timer resolution and total time that can be
|
Divider to trade off timer resolution and total time that can be
|
measured.
|
measured.
|
|
|
Use lower values to increase resolution, but make sure that overflow
|
Use lower values to increase resolution, but make sure that overflow
|
does not occur. If there are issues with the return value overflowing,
|
does not occur. If there are issues with the return value overflowing,
|
increase this value.
|
increase this value.
|
*/
|
*/
|
#define GETMYTIME(_t) (*_t = (CORETIMETYPE)neorv32_cpu_get_cycle())
|
#define GETMYTIME(_t) (*_t = (CORETIMETYPE)neorv32_cpu_get_cycle())
|
#define MYTIMEDIFF(fin, ini) ((fin) - (ini))
|
#define MYTIMEDIFF(fin, ini) ((fin) - (ini))
|
#define TIMER_RES_DIVIDER 1
|
#define TIMER_RES_DIVIDER 1
|
#define SAMPLE_TIME_IMPLEMENTATION 1
|
#define SAMPLE_TIME_IMPLEMENTATION 1
|
#define EE_TICKS_PER_SEC (CLOCKS_PER_SEC / TIMER_RES_DIVIDER)
|
#define EE_TICKS_PER_SEC (CLOCKS_PER_SEC / TIMER_RES_DIVIDER)
|
|
|
/** Define Host specific (POSIX), or target specific global time variables. */
|
/** Define Host specific (POSIX), or target specific global time variables. */
|
static CORETIMETYPE start_time_val, stop_time_val;
|
static CORETIMETYPE start_time_val, stop_time_val;
|
|
|
/* Function : start_time
|
/* Function : start_time
|
This function will be called right before starting the timed portion of
|
This function will be called right before starting the timed portion of
|
the benchmark.
|
the benchmark.
|
|
|
Implementation may be capturing a system timer (as implemented in the
|
Implementation may be capturing a system timer (as implemented in the
|
example code) or zeroing some system parameters - e.g. setting the cpu clocks
|
example code) or zeroing some system parameters - e.g. setting the cpu clocks
|
cycles to 0.
|
cycles to 0.
|
*/
|
*/
|
void
|
void
|
start_time(void)
|
start_time(void)
|
{
|
{
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, 0); // start all counters
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, 0); // start all counters
|
GETMYTIME(&start_time_val);
|
GETMYTIME(&start_time_val);
|
}
|
}
|
/* Function : stop_time
|
/* Function : stop_time
|
This function will be called right after ending the timed portion of the
|
This function will be called right after ending the timed portion of the
|
benchmark.
|
benchmark.
|
|
|
Implementation may be capturing a system timer (as implemented in the
|
Implementation may be capturing a system timer (as implemented in the
|
example code) or other system parameters - e.g. reading the current value of
|
example code) or other system parameters - e.g. reading the current value of
|
cpu cycles counter.
|
cpu cycles counter.
|
*/
|
*/
|
void
|
void
|
stop_time(void)
|
stop_time(void)
|
{
|
{
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, -1); // stop all counters
|
neorv32_cpu_csr_write(CSR_MCOUNTINHIBIT, -1); // stop all counters
|
GETMYTIME(&stop_time_val);
|
GETMYTIME(&stop_time_val);
|
}
|
}
|
/* Function : get_time
|
/* Function : get_time
|
Return an abstract "ticks" number that signifies time on the system.
|
Return an abstract "ticks" number that signifies time on the system.
|
|
|
Actual value returned may be cpu cycles, milliseconds or any other
|
Actual value returned may be cpu cycles, milliseconds or any other
|
value, as long as it can be converted to seconds by <time_in_secs>. This
|
value, as long as it can be converted to seconds by <time_in_secs>. This
|
methodology is taken to accomodate any hardware or simulated platform. The
|
methodology is taken to accomodate any hardware or simulated platform. The
|
sample implementation returns millisecs by default, and the resolution is
|
sample implementation returns millisecs by default, and the resolution is
|
controlled by <TIMER_RES_DIVIDER>
|
controlled by <TIMER_RES_DIVIDER>
|
*/
|
*/
|
CORE_TICKS
|
CORE_TICKS
|
get_time(void)
|
get_time(void)
|
{
|
{
|
CORE_TICKS elapsed
|
CORE_TICKS elapsed
|
= (CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
|
= (CORE_TICKS)(MYTIMEDIFF(stop_time_val, start_time_val));
|
return elapsed;
|
return elapsed;
|
}
|
}
|
/* Function : time_in_secs
|
/* Function : time_in_secs
|
Convert the value returned by get_time to seconds.
|
Convert the value returned by get_time to seconds.
|
|
|
The <secs_ret> type is used to accomodate systems with no support for
|
The <secs_ret> type is used to accomodate systems with no support for
|
floating point. Default implementation implemented by the EE_TICKS_PER_SEC
|
floating point. Default implementation implemented by the EE_TICKS_PER_SEC
|
macro above.
|
macro above.
|
*/
|
*/
|
secs_ret
|
secs_ret
|
time_in_secs(CORE_TICKS ticks)
|
time_in_secs(CORE_TICKS ticks)
|
{
|
{
|
/* NEORV32-specific */
|
/* NEORV32-specific */
|
secs_ret retval = (secs_ret)(((CORE_TICKS)ticks) / ((CORE_TICKS)NEORV32_SYSINFO.CLK));
|
secs_ret retval = (secs_ret)(((CORE_TICKS)ticks) / ((CORE_TICKS)NEORV32_SYSINFO.CLK));
|
return retval;
|
return retval;
|
}
|
}
|
|
|
ee_u32 default_num_contexts = 1;
|
ee_u32 default_num_contexts = 1;
|
|
|
/* Number of available hardware performance monitors */
|
/* Number of available hardware performance monitors */
|
uint32_t num_hpm_cnts_global = 0;
|
uint32_t num_hpm_cnts_global = 0;
|
|
|
|
|
/* Function : portable_init
|
/* Function : portable_init
|
Target specific initialization code
|
Target specific initialization code
|
Test for some common mistakes.
|
Test for some common mistakes.
|
*/
|
*/
|
#ifndef RUN_COREMARK
|
#ifndef RUN_COREMARK
|
void
|
void
|
__attribute__((__noreturn__))
|
__attribute__((__noreturn__))
|
portable_init(core_portable *p, int *argc, char *argv[])
|
portable_init(core_portable *p, int *argc, char *argv[])
|
#else
|
#else
|
void
|
void
|
portable_init(core_portable *p, int *argc, char *argv[])
|
portable_init(core_portable *p, int *argc, char *argv[])
|
#endif
|
#endif
|
{
|
{
|
/* NEORV32-specific */
|
/* NEORV32-specific */
|
neorv32_cpu_dint(); // no interrupt, thanks
|
neorv32_cpu_dint(); // no interrupt, thanks
|
neorv32_rte_setup(); // capture all exceptions and give debug information, ho hw flow control
|
neorv32_rte_setup(); // capture all exceptions and give debug information, ho hw flow control
|
neorv32_uart_setup(BAUD_RATE, PARITY_NONE, FLOW_CONTROL_NONE);
|
neorv32_uart0_setup(BAUD_RATE, PARITY_NONE, FLOW_CONTROL_NONE);
|
|
|
|
|
// Disable coremark compilation by default
|
// Disable coremark compilation by default
|
#ifndef RUN_COREMARK
|
#ifndef RUN_COREMARK
|
#warning COREMARK HAS NOT BEEN COMPILED! Use >>make USER_FLAGS+=-DRUN_COREMARK clean_all exe<< to compile it.
|
#warning COREMARK HAS NOT BEEN COMPILED! Use >>make USER_FLAGS+=-DRUN_COREMARK clean_all exe<< to compile it.
|
|
|
// inform the user if you are actually executing this
|
// inform the user if you are actually executing this
|
neorv32_uart_printf("ERROR! CoreMark has not been compiled. Use >>make USER_FLAGS+=-DRUN_COREMARK clean_all exe<< to compile it.\n");
|
neorv32_uart0_printf("ERROR! CoreMark has not been compiled. Use >>make USER_FLAGS+=-DRUN_COREMARK clean_all exe<< to compile it.\n");
|
|
|
while(1);
|
while(1);
|
#endif
|
#endif
|
|
|
// check available hardware extensions and compare with compiler flags
|
// check available hardware extensions and compare with compiler flags
|
neorv32_rte_check_isa(0); // silent = 0 -> show message if isa mismatch
|
neorv32_rte_check_isa(0); // silent = 0 -> show message if isa mismatch
|
|
|
num_hpm_cnts_global = neorv32_cpu_hpm_get_counters();
|
num_hpm_cnts_global = neorv32_cpu_hpm_get_counters();
|
|
|
// try to setup as many HPMs as possible
|
// try to setup as many HPMs as possible
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER3, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT3, 1 << HPMCNT_EVENT_CIR);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER3, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT3, 1 << HPMCNT_EVENT_CIR);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER4, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT4, 1 << HPMCNT_EVENT_WAIT_IF);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER4, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT4, 1 << HPMCNT_EVENT_WAIT_IF);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER5, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT5, 1 << HPMCNT_EVENT_WAIT_II);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER5, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT5, 1 << HPMCNT_EVENT_WAIT_II);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER6, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT6, 1 << HPMCNT_EVENT_WAIT_MC);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER6, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT6, 1 << HPMCNT_EVENT_WAIT_MC);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER7, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT7, 1 << HPMCNT_EVENT_LOAD);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER7, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT7, 1 << HPMCNT_EVENT_LOAD);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER8, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT8, 1 << HPMCNT_EVENT_STORE);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER8, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT8, 1 << HPMCNT_EVENT_STORE);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER9, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT9, 1 << HPMCNT_EVENT_WAIT_LS);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER9, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT9, 1 << HPMCNT_EVENT_WAIT_LS);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER10, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT10, 1 << HPMCNT_EVENT_JUMP);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER10, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT10, 1 << HPMCNT_EVENT_JUMP);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER11, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT11, 1 << HPMCNT_EVENT_BRANCH);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER11, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT11, 1 << HPMCNT_EVENT_BRANCH);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER12, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT12, 1 << HPMCNT_EVENT_TBRANCH);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER12, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT12, 1 << HPMCNT_EVENT_TBRANCH);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER13, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT13, 1 << HPMCNT_EVENT_TRAP);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER13, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT13, 1 << HPMCNT_EVENT_TRAP);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER14, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT14, 1 << HPMCNT_EVENT_ILLEGAL);
|
neorv32_cpu_csr_write(CSR_MHPMCOUNTER14, 0); neorv32_cpu_csr_write(CSR_MHPMEVENT14, 1 << HPMCNT_EVENT_ILLEGAL);
|
|
|
neorv32_uart_printf("NEORV32: Processor running at %u Hz\n", (uint32_t)NEORV32_SYSINFO.CLK);
|
neorv32_uart0_printf("NEORV32: Processor running at %u Hz\n", (uint32_t)NEORV32_SYSINFO.CLK);
|
neorv32_uart_printf("NEORV32: Executing coremark (%u iterations). This may take some time...\n\n", (uint32_t)ITERATIONS);
|
neorv32_uart0_printf("NEORV32: Executing coremark (%u iterations). This may take some time...\n\n", (uint32_t)ITERATIONS);
|
|
|
// clear cycle counter
|
// clear cycle counter
|
neorv32_cpu_set_mcycle(0);
|
neorv32_cpu_set_mcycle(0);
|
neorv32_cpu_csr_write(CSR_MCOUNTEREN, -1); // enable access to all counters
|
neorv32_cpu_csr_write(CSR_MCOUNTEREN, -1); // enable access to all counters
|
|
|
/*
|
/*
|
#error \
|
#error \
|
"Call board initialization routines in portable init (if needed), in particular initialize UART!\n"
|
"Call board initialization routines in portable init (if needed), in particular initialize UART!\n"
|
*/
|
*/
|
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *))
|
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *))
|
{
|
{
|
ee_printf(
|
ee_printf(
|
"ERROR! Please define ee_ptr_int to a type that holds a "
|
"ERROR! Please define ee_ptr_int to a type that holds a "
|
"pointer!\n");
|
"pointer!\n");
|
}
|
}
|
if (sizeof(ee_u32) != 4)
|
if (sizeof(ee_u32) != 4)
|
{
|
{
|
ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
|
ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
|
}
|
}
|
p->portable_id = 1;
|
p->portable_id = 1;
|
|
|
#ifndef RUN_COREMARK
|
#ifndef RUN_COREMARK
|
while(1);
|
while(1);
|
#endif
|
#endif
|
}
|
}
|
|
|
|
|
/* Function : portable_fini
|
/* Function : portable_fini
|
Target specific final code
|
Target specific final code
|
*/
|
*/
|
void
|
void
|
portable_fini(core_portable *p)
|
portable_fini(core_portable *p)
|
{
|
{
|
p->portable_id = 0;
|
p->portable_id = 0;
|
|
|
/* NEORV32-specific */
|
/* NEORV32-specific */
|
|
|
// show executed instructions, required cycles and resulting average CPI
|
// show executed instructions, required cycles and resulting average CPI
|
union {
|
union {
|
uint64_t uint64;
|
uint64_t uint64;
|
uint32_t uint32[sizeof(uint64_t)/2];
|
uint32_t uint32[sizeof(uint64_t)/2];
|
} exe_instructions, exe_time;
|
} exe_instructions, exe_time;
|
|
|
exe_time.uint64 = (uint64_t)get_time();
|
exe_time.uint64 = (uint64_t)get_time();
|
exe_instructions.uint64 = neorv32_cpu_get_instret();
|
exe_instructions.uint64 = neorv32_cpu_get_instret();
|
|
|
neorv32_uart_printf("\nNEORV32: All reported numbers only show the integer part.\n\n");
|
neorv32_uart0_printf("\nNEORV32: All reported numbers only show the integer part.\n\n");
|
|
|
neorv32_uart_printf("NEORV32: HPM results\n");
|
neorv32_uart0_printf("NEORV32: HPM results\n");
|
if (num_hpm_cnts_global == 0) {neorv32_uart_printf("no HPMs available\n"); }
|
if (num_hpm_cnts_global == 0) {neorv32_uart0_printf("no HPMs available\n"); }
|
if (num_hpm_cnts_global > 0) {neorv32_uart_printf("# Retired compr. instructions: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER3)); }
|
if (num_hpm_cnts_global > 0) {neorv32_uart0_printf("# Retired compr. instructions: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER3)); }
|
if (num_hpm_cnts_global > 1) {neorv32_uart_printf("# I-fetch wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER4)); }
|
if (num_hpm_cnts_global > 1) {neorv32_uart0_printf("# I-fetch wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER4)); }
|
if (num_hpm_cnts_global > 2) {neorv32_uart_printf("# I-issue wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER5)); }
|
if (num_hpm_cnts_global > 2) {neorv32_uart0_printf("# I-issue wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER5)); }
|
if (num_hpm_cnts_global > 3) {neorv32_uart_printf("# Multi-cycle ALU wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER6)); }
|
if (num_hpm_cnts_global > 3) {neorv32_uart0_printf("# Multi-cycle ALU wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER6)); }
|
if (num_hpm_cnts_global > 4) {neorv32_uart_printf("# Load operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER7)); }
|
if (num_hpm_cnts_global > 4) {neorv32_uart0_printf("# Load operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER7)); }
|
if (num_hpm_cnts_global > 5) {neorv32_uart_printf("# Store operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER8)); }
|
if (num_hpm_cnts_global > 5) {neorv32_uart0_printf("# Store operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER8)); }
|
if (num_hpm_cnts_global > 6) {neorv32_uart_printf("# Load/store wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER9)); }
|
if (num_hpm_cnts_global > 6) {neorv32_uart0_printf("# Load/store wait cycles: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER9)); }
|
if (num_hpm_cnts_global > 7) {neorv32_uart_printf("# Unconditional jumps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER10)); }
|
if (num_hpm_cnts_global > 7) {neorv32_uart0_printf("# Unconditional jumps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER10)); }
|
if (num_hpm_cnts_global > 8) {neorv32_uart_printf("# Conditional branches (all): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER11)); }
|
if (num_hpm_cnts_global > 8) {neorv32_uart0_printf("# Conditional branches (all): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER11)); }
|
if (num_hpm_cnts_global > 9) {neorv32_uart_printf("# Conditional branches (taken): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER12)); }
|
if (num_hpm_cnts_global > 9) {neorv32_uart0_printf("# Conditional branches (taken): %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER12)); }
|
if (num_hpm_cnts_global > 10) {neorv32_uart_printf("# Entered traps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER13)); }
|
if (num_hpm_cnts_global > 10) {neorv32_uart0_printf("# Entered traps: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER13)); }
|
if (num_hpm_cnts_global > 11) {neorv32_uart_printf("# Illegal operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER14)); }
|
if (num_hpm_cnts_global > 11) {neorv32_uart0_printf("# Illegal operations: %u\n", (uint32_t)neorv32_cpu_csr_read(CSR_MHPMCOUNTER14)); }
|
neorv32_uart_printf("\n");
|
neorv32_uart0_printf("\n");
|
|
|
neorv32_uart_printf("NEORV32: Executed instructions 0x%x_%x\n", (uint32_t)exe_instructions.uint32[1], (uint32_t)exe_instructions.uint32[0]);
|
neorv32_uart0_printf("NEORV32: Executed instructions 0x%x_%x\n", (uint32_t)exe_instructions.uint32[1], (uint32_t)exe_instructions.uint32[0]);
|
neorv32_uart_printf("NEORV32: CoreMark core clock cycles 0x%x_%x\n", (uint32_t)exe_time.uint32[1], (uint32_t)exe_time.uint32[0]);
|
neorv32_uart0_printf("NEORV32: CoreMark core clock cycles 0x%x_%x\n", (uint32_t)exe_time.uint32[1], (uint32_t)exe_time.uint32[0]);
|
|
|
uint64_t average_cpi_int = exe_time.uint64 / exe_instructions.uint64;
|
uint64_t average_cpi_int = exe_time.uint64 / exe_instructions.uint64;
|
neorv32_uart_printf("NEORV32: Average CPI (integer part only): %u cycles/instruction\n", (uint32_t)average_cpi_int);
|
neorv32_uart0_printf("NEORV32: Average CPI (integer part only): %u cycles/instruction\n", (uint32_t)average_cpi_int);
|
|
|
}
|
}
|
|
|