-- Copyright (c)2013 Jeremy Seth Henry
|
-- Copyright (c)2013 Jeremy Seth Henry
|
-- All rights reserved.
|
-- All rights reserved.
|
--
|
--
|
-- Redistribution and use in source and binary forms, with or without
|
-- Redistribution and use in source and binary forms, with or without
|
-- modification, are permitted provided that the following conditions are met:
|
-- modification, are permitted provided that the following conditions are met:
|
-- * Redistributions of source code must retain the above copyright
|
-- * Redistributions of source code must retain the above copyright
|
-- notice, this list of conditions and the following disclaimer.
|
-- notice, this list of conditions and the following disclaimer.
|
-- * Redistributions in binary form must reproduce the above copyright
|
-- * Redistributions in binary form must reproduce the above copyright
|
-- notice, this list of conditions and the following disclaimer in the
|
-- notice, this list of conditions and the following disclaimer in the
|
-- documentation and/or other materials provided with the distribution,
|
-- documentation and/or other materials provided with the distribution,
|
-- where applicable (as part of a user interface, debugging port, etc.)
|
-- where applicable (as part of a user interface, debugging port, etc.)
|
--
|
--
|
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
|
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
|
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
|
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
|
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
--
|
--
|
-- VHDL Units : o8_vdsm8
|
-- VHDL Units : o8_vdsm8
|
-- Description: 8-bit variable delta-sigma modulator. Requires Open8_pkg.vhd
|
-- Description: 8-bit variable delta-sigma modulator. Requires Open8_pkg.vhd
|
|
|
library ieee;
|
library ieee;
|
use ieee.std_logic_1164.all;
|
use ieee.std_logic_1164.all;
|
use ieee.std_logic_unsigned.all;
|
use ieee.std_logic_unsigned.all;
|
use ieee.std_logic_arith.all;
|
use ieee.std_logic_arith.all;
|
|
|
library work;
|
library work;
|
use work.open8_pkg.all;
|
use work.open8_pkg.all;
|
|
|
entity o8_vdsm8 is
|
entity o8_vdsm8 is
|
generic(
|
generic(
|
Reset_Level : std_logic;
|
Reset_Level : std_logic;
|
Address : ADDRESS_TYPE
|
Address : ADDRESS_TYPE
|
);
|
);
|
port(
|
port(
|
Clock : in std_logic;
|
Clock : in std_logic;
|
Reset : in std_logic;
|
Reset : in std_logic;
|
--
|
--
|
Bus_Address : in ADDRESS_TYPE;
|
Bus_Address : in ADDRESS_TYPE;
|
Wr_Enable : in std_logic;
|
Wr_Enable : in std_logic;
|
Wr_Data : in DATA_TYPE;
|
Wr_Data : in DATA_TYPE;
|
Rd_Enable : in std_logic;
|
Rd_Enable : in std_logic;
|
Rd_Data : out DATA_TYPE;
|
Rd_Data : out DATA_TYPE;
|
--
|
--
|
DACout : out std_logic
|
DACout : out std_logic
|
);
|
);
|
end entity;
|
end entity;
|
|
|
architecture behave of o8_vdsm8 is
|
architecture behave of o8_vdsm8 is
|
|
|
function ceil_log2 (x : in natural) return natural is
|
function ceil_log2 (x : in natural) return natural is
|
variable retval : natural;
|
variable retval : natural;
|
begin
|
begin
|
retval := 1;
|
retval := 1;
|
while ((2**retval) - 1) < x loop
|
while ((2**retval) - 1) < x loop
|
retval := retval + 1;
|
retval := retval + 1;
|
end loop;
|
end loop;
|
return retval;
|
return retval;
|
end function;
|
end function;
|
|
|
constant User_Addr : std_logic_vector(15 downto 0) := Address;
|
constant User_Addr : std_logic_vector(15 downto 0) := Address;
|
alias Comp_Addr is Bus_Address(15 downto 0);
|
alias Comp_Addr is Bus_Address(15 downto 0);
|
signal Addr_Match : std_logic;
|
signal Addr_Match : std_logic;
|
signal Wr_En : std_logic;
|
signal Wr_En : std_logic;
|
signal Wr_Data_q : DATA_TYPE;
|
signal Wr_Data_q : DATA_TYPE;
|
signal Rd_En : std_logic;
|
signal Rd_En : std_logic;
|
signal DACin : DATA_TYPE;
|
signal DACin : DATA_TYPE;
|
|
|
-- DAC WIDTH = 8 is fixed, with all constants normalized
|
-- DAC WIDTH = 8 is fixed, with all constants normalized
|
-- against 256 (the MAX PERIOD)
|
-- against 256 (the MAX PERIOD)
|
|
|
constant DAC_WIDTH : integer := 8;
|
constant DAC_WIDTH : integer := 8;
|
|
|
constant DELTA_1_I : integer := 1;
|
constant DELTA_1_I : integer := 1;
|
constant DELTA_2_I : integer := 5;
|
constant DELTA_2_I : integer := 5;
|
constant DELTA_3_I : integer := 25;
|
constant DELTA_3_I : integer := 25;
|
constant DELTA_4_I : integer := 75;
|
constant DELTA_4_I : integer := 75;
|
constant DELTA_5_I : integer := 125;
|
constant DELTA_5_I : integer := 125;
|
constant DELTA_6_I : integer := 195;
|
constant DELTA_6_I : integer := 195;
|
|
|
constant DELTA_1 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
constant DELTA_1 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
conv_std_logic_vector(DELTA_1_I, DAC_WIDTH);
|
conv_std_logic_vector(DELTA_1_I, DAC_WIDTH);
|
constant DELTA_2 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
constant DELTA_2 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
conv_std_logic_vector(DELTA_2_I, DAC_WIDTH);
|
conv_std_logic_vector(DELTA_2_I, DAC_WIDTH);
|
constant DELTA_3 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
constant DELTA_3 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
conv_std_logic_vector(DELTA_3_I, DAC_WIDTH);
|
conv_std_logic_vector(DELTA_3_I, DAC_WIDTH);
|
constant DELTA_4 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
constant DELTA_4 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
conv_std_logic_vector(DELTA_4_I, DAC_WIDTH);
|
conv_std_logic_vector(DELTA_4_I, DAC_WIDTH);
|
constant DELTA_5 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
constant DELTA_5 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
conv_std_logic_vector(DELTA_5_I, DAC_WIDTH);
|
conv_std_logic_vector(DELTA_5_I, DAC_WIDTH);
|
constant DELTA_6 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
constant DELTA_6 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
conv_std_logic_vector(DELTA_6_I, DAC_WIDTH);
|
conv_std_logic_vector(DELTA_6_I, DAC_WIDTH);
|
|
|
constant MAX_PERIOD : integer := 2**DAC_WIDTH;
|
constant MAX_PERIOD : integer := 2**DAC_WIDTH;
|
constant DIV_WIDTH : integer := 2 * DAC_WIDTH;
|
constant DIV_WIDTH : integer := 2 * DAC_WIDTH;
|
|
|
constant PADJ_1_I : integer := DELTA_1_I * MAX_PERIOD;
|
constant PADJ_1_I : integer := DELTA_1_I * MAX_PERIOD;
|
constant PADJ_2_I : integer := DELTA_2_I * MAX_PERIOD;
|
constant PADJ_2_I : integer := DELTA_2_I * MAX_PERIOD;
|
constant PADJ_3_I : integer := DELTA_3_I * MAX_PERIOD;
|
constant PADJ_3_I : integer := DELTA_3_I * MAX_PERIOD;
|
constant PADJ_4_I : integer := DELTA_4_I * MAX_PERIOD;
|
constant PADJ_4_I : integer := DELTA_4_I * MAX_PERIOD;
|
constant PADJ_5_I : integer := DELTA_5_I * MAX_PERIOD;
|
constant PADJ_5_I : integer := DELTA_5_I * MAX_PERIOD;
|
constant PADJ_6_I : integer := DELTA_6_I * MAX_PERIOD;
|
constant PADJ_6_I : integer := DELTA_6_I * MAX_PERIOD;
|
|
|
constant PADJ_1 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
constant PADJ_1 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
conv_std_logic_vector(PADJ_1_I,DIV_WIDTH);
|
conv_std_logic_vector(PADJ_1_I,DIV_WIDTH);
|
constant PADJ_2 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
constant PADJ_2 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
conv_std_logic_vector(PADJ_2_I,DIV_WIDTH);
|
conv_std_logic_vector(PADJ_2_I,DIV_WIDTH);
|
constant PADJ_3 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
constant PADJ_3 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
conv_std_logic_vector(PADJ_3_I,DIV_WIDTH);
|
conv_std_logic_vector(PADJ_3_I,DIV_WIDTH);
|
constant PADJ_4 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
constant PADJ_4 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
conv_std_logic_vector(PADJ_4_I,DIV_WIDTH);
|
conv_std_logic_vector(PADJ_4_I,DIV_WIDTH);
|
constant PADJ_5 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
constant PADJ_5 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
conv_std_logic_vector(PADJ_5_I,DIV_WIDTH);
|
conv_std_logic_vector(PADJ_5_I,DIV_WIDTH);
|
constant PADJ_6 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
constant PADJ_6 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
conv_std_logic_vector(PADJ_6_I,DIV_WIDTH);
|
conv_std_logic_vector(PADJ_6_I,DIV_WIDTH);
|
|
|
signal DACin_q : DATA_TYPE;
|
signal DACin_q : DATA_TYPE;
|
|
|
signal Divisor : std_logic_vector(DIV_WIDTH-1 downto 0);
|
signal Divisor : std_logic_vector(DIV_WIDTH-1 downto 0);
|
signal Dividend : std_logic_vector(DIV_WIDTH-1 downto 0);
|
signal Dividend : std_logic_vector(DIV_WIDTH-1 downto 0);
|
|
|
signal q : std_logic_vector(DIV_WIDTH*2-1 downto 0);
|
signal q : std_logic_vector(DIV_WIDTH*2-1 downto 0);
|
signal diff : std_logic_vector(DIV_WIDTH downto 0);
|
signal diff : std_logic_vector(DIV_WIDTH downto 0);
|
|
|
constant CB : integer := ceil_log2(DIV_WIDTH);
|
constant CB : integer := ceil_log2(DIV_WIDTH);
|
signal count : std_logic_vector(CB-1 downto 0);
|
signal count : std_logic_vector(CB-1 downto 0);
|
|
|
signal Next_Width : DATA_TYPE;
|
signal Next_Width : DATA_TYPE;
|
signal Next_Period : DATA_TYPE;
|
signal Next_Period : DATA_TYPE;
|
|
|
signal PWM_Width : DATA_TYPE;
|
signal PWM_Width : DATA_TYPE;
|
signal PWM_Period : DATA_TYPE;
|
signal PWM_Period : DATA_TYPE;
|
|
|
signal Width_Ctr : DATA_TYPE;
|
signal Width_Ctr : DATA_TYPE;
|
signal Period_Ctr : DATA_TYPE;
|
signal Period_Ctr : DATA_TYPE;
|
|
|
begin
|
begin
|
|
|
Addr_Match <= '1' when Comp_Addr = User_Addr else '0';
|
Addr_Match <= '1' when Comp_Addr = User_Addr else '0';
|
|
|
io_reg: process( Clock, Reset )
|
io_reg: process( Clock, Reset )
|
begin
|
begin
|
if( Reset = Reset_Level )then
|
if( Reset = Reset_Level )then
|
Wr_En <= '0';
|
Wr_En <= '0';
|
Wr_Data_q <= x"00";
|
Wr_Data_q <= x"00";
|
Rd_En <= '0';
|
Rd_En <= '0';
|
Rd_Data <= x"00";
|
Rd_Data <= x"00";
|
DACin <= x"00";
|
DACin <= x"00";
|
elsif( rising_edge( Clock ) )then
|
elsif( rising_edge( Clock ) )then
|
Wr_En <= Addr_Match and Wr_Enable;
|
Wr_En <= Addr_Match and Wr_Enable;
|
Wr_Data_q <= Wr_Data;
|
Wr_Data_q <= Wr_Data;
|
if( Wr_En = '1' )then
|
if( Wr_En = '1' )then
|
DACin <= Wr_Data_q;
|
DACin <= Wr_Data_q;
|
end if;
|
end if;
|
|
|
Rd_Data <= (others => '0');
|
Rd_Data <= (others => '0');
|
Rd_En <= Addr_Match and Rd_Enable;
|
Rd_En <= Addr_Match and Rd_Enable;
|
if( Rd_En = '1' )then
|
if( Rd_En = '1' )then
|
Rd_Data <= DACin;
|
Rd_Data <= DACin;
|
end if;
|
end if;
|
end if;
|
end if;
|
end process;
|
end process;
|
|
|
diff <= ('0' & q(DIV_WIDTH*2-2 downto DIV_WIDTH-1)) -
|
diff <= ('0' & q(DIV_WIDTH*2-2 downto DIV_WIDTH-1)) -
|
('0' & Divisor);
|
('0' & Divisor);
|
|
|
Dividend <= PADJ_2 when DACin_q >= DELTA_2_I and DACin_q < DELTA_3_I else
|
Dividend <= PADJ_2 when DACin_q >= DELTA_2_I and DACin_q < DELTA_3_I else
|
PADJ_3 when DACin_q >= DELTA_3_I and DACin_q < DELTA_4_I else
|
PADJ_3 when DACin_q >= DELTA_3_I and DACin_q < DELTA_4_I else
|
PADJ_4 when DACin_q >= DELTA_4_I and DACin_q < DELTA_5_I else
|
PADJ_4 when DACin_q >= DELTA_4_I and DACin_q < DELTA_5_I else
|
PADJ_5 when DACin_q >= DELTA_5_I and DACin_q < DELTA_6_I else
|
PADJ_5 when DACin_q >= DELTA_5_I and DACin_q < DELTA_6_I else
|
PADJ_6 when DACin_q >= DELTA_6_I else
|
PADJ_6 when DACin_q >= DELTA_6_I else
|
PADJ_1;
|
PADJ_1;
|
|
|
Next_Width <= DELTA_1 when DACin_q >= DELTA_1_I and DACin_q < DELTA_2_I else
|
Next_Width <= DELTA_1 when DACin_q >= DELTA_1_I and DACin_q < DELTA_2_I else
|
DELTA_2 when DACin_q >= DELTA_2_I and DACin_q < DELTA_3_I else
|
DELTA_2 when DACin_q >= DELTA_2_I and DACin_q < DELTA_3_I else
|
DELTA_3 when DACin_q >= DELTA_3_I and DACin_q < DELTA_4_I else
|
DELTA_3 when DACin_q >= DELTA_3_I and DACin_q < DELTA_4_I else
|
DELTA_4 when DACin_q >= DELTA_4_I and DACin_q < DELTA_5_I else
|
DELTA_4 when DACin_q >= DELTA_4_I and DACin_q < DELTA_5_I else
|
DELTA_5 when DACin_q >= DELTA_5_I and DACin_q < DELTA_6_I else
|
DELTA_5 when DACin_q >= DELTA_5_I and DACin_q < DELTA_6_I else
|
DELTA_6 when DACin_q >= DELTA_6_I else
|
DELTA_6 when DACin_q >= DELTA_6_I else
|
(others => '0');
|
(others => '0');
|
|
|
Next_Period <= q(7 downto 0) - 1;
|
Next_Period <= q(7 downto 0) - 1;
|
|
|
vDSM_proc: process( Clock, Reset )
|
vDSM_proc: process( Clock, Reset )
|
begin
|
begin
|
if( Reset = Reset_Level )then
|
if( Reset = Reset_Level )then
|
q <= (others => '0');
|
q <= (others => '0');
|
count <= (others => '1');
|
count <= (others => '1');
|
Divisor <= (others => '0');
|
Divisor <= (others => '0');
|
DACin_q <= (others => '0');
|
DACin_q <= (others => '0');
|
PWM_Width <= (others => '0');
|
PWM_Width <= (others => '0');
|
PWM_Period <= (others => '0');
|
PWM_Period <= (others => '0');
|
Period_Ctr <= (others => '0');
|
Period_Ctr <= (others => '0');
|
Width_Ctr <= (others => '0');
|
Width_Ctr <= (others => '0');
|
DACout <= '0';
|
DACout <= '0';
|
elsif( rising_edge(Clock) )then
|
elsif( rising_edge(Clock) )then
|
q <= diff(DIV_WIDTH-1 downto 0) &
|
q <= diff(DIV_WIDTH-1 downto 0) &
|
q(DIV_WIDTH-2 downto 0) & '1';
|
q(DIV_WIDTH-2 downto 0) & '1';
|
if( diff(DIV_WIDTH) = '1' )then
|
if( diff(DIV_WIDTH) = '1' )then
|
q <= q(DIV_WIDTH*2-2 downto 0) & '0';
|
q <= q(DIV_WIDTH*2-2 downto 0) & '0';
|
end if;
|
end if;
|
|
|
count <= count + 1;
|
count <= count + 1;
|
if( count = DIV_WIDTH )then
|
if( count = DIV_WIDTH )then
|
PWM_Width <= Next_Width;
|
PWM_Width <= Next_Width;
|
PWM_Period <= Next_Period;
|
PWM_Period <= Next_Period;
|
DACin_q <= DACin;
|
DACin_q <= DACin;
|
Divisor <= (others => '0');
|
Divisor <= (others => '0');
|
Divisor(7 downto 0) <= DACin_q;
|
Divisor(7 downto 0) <= DACin_q;
|
q <= conv_std_logic_vector(0,DIV_WIDTH) & Dividend;
|
q <= conv_std_logic_vector(0,DIV_WIDTH) & Dividend;
|
count <= (others => '0');
|
count <= (others => '0');
|
end if;
|
end if;
|
|
|
Period_Ctr <= Period_Ctr - 1;
|
Period_Ctr <= Period_Ctr - 1;
|
Width_Ctr <= Width_Ctr - 1;
|
Width_Ctr <= Width_Ctr - 1;
|
|
|
DACout <= '1';
|
DACout <= '1';
|
if( Width_Ctr = 0 )then
|
if( Width_Ctr = 0 )then
|
DACout <= '0';
|
DACout <= '0';
|
Width_Ctr <= (others => '0');
|
Width_Ctr <= (others => '0');
|
end if;
|
end if;
|
|
|
if( Period_Ctr = 0 )then
|
if( Period_Ctr = 0 )then
|
Period_Ctr <= PWM_Period;
|
Period_Ctr <= PWM_Period;
|
Width_Ctr <= PWM_Width;
|
Width_Ctr <= PWM_Width;
|
end if;
|
end if;
|
|
|
end if;
|
end if;
|
end process;
|
end process;
|
|
|
end architecture;
|
end architecture;
|
|
|