OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elf32-arm.c] - Diff between revs 161 and 163

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 161 Rev 163
/* 32-bit ELF support for ARM
/* 32-bit ELF support for ARM
   Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
   Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
   2008, 2009, 2010, 2011  Free Software Foundation, Inc.
   2008, 2009, 2010, 2011  Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include <limits.h>
#include <limits.h>
 
 
#include "bfd.h"
#include "bfd.h"
#include "libiberty.h"
#include "libiberty.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf-vxworks.h"
#include "elf-vxworks.h"
#include "elf/arm.h"
#include "elf/arm.h"
 
 
/* Return the relocation section associated with NAME.  HTAB is the
/* Return the relocation section associated with NAME.  HTAB is the
   bfd's elf32_arm_link_hash_entry.  */
   bfd's elf32_arm_link_hash_entry.  */
#define RELOC_SECTION(HTAB, NAME) \
#define RELOC_SECTION(HTAB, NAME) \
  ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
  ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
 
 
/* Return size of a relocation entry.  HTAB is the bfd's
/* Return size of a relocation entry.  HTAB is the bfd's
   elf32_arm_link_hash_entry.  */
   elf32_arm_link_hash_entry.  */
#define RELOC_SIZE(HTAB) \
#define RELOC_SIZE(HTAB) \
  ((HTAB)->use_rel \
  ((HTAB)->use_rel \
   ? sizeof (Elf32_External_Rel) \
   ? sizeof (Elf32_External_Rel) \
   : sizeof (Elf32_External_Rela))
   : sizeof (Elf32_External_Rela))
 
 
/* Return function to swap relocations in.  HTAB is the bfd's
/* Return function to swap relocations in.  HTAB is the bfd's
   elf32_arm_link_hash_entry.  */
   elf32_arm_link_hash_entry.  */
#define SWAP_RELOC_IN(HTAB) \
#define SWAP_RELOC_IN(HTAB) \
  ((HTAB)->use_rel \
  ((HTAB)->use_rel \
   ? bfd_elf32_swap_reloc_in \
   ? bfd_elf32_swap_reloc_in \
   : bfd_elf32_swap_reloca_in)
   : bfd_elf32_swap_reloca_in)
 
 
/* Return function to swap relocations out.  HTAB is the bfd's
/* Return function to swap relocations out.  HTAB is the bfd's
   elf32_arm_link_hash_entry.  */
   elf32_arm_link_hash_entry.  */
#define SWAP_RELOC_OUT(HTAB) \
#define SWAP_RELOC_OUT(HTAB) \
  ((HTAB)->use_rel \
  ((HTAB)->use_rel \
   ? bfd_elf32_swap_reloc_out \
   ? bfd_elf32_swap_reloc_out \
   : bfd_elf32_swap_reloca_out)
   : bfd_elf32_swap_reloca_out)
 
 
#define elf_info_to_howto               0
#define elf_info_to_howto               0
#define elf_info_to_howto_rel           elf32_arm_info_to_howto
#define elf_info_to_howto_rel           elf32_arm_info_to_howto
 
 
#define ARM_ELF_ABI_VERSION             0
#define ARM_ELF_ABI_VERSION             0
#define ARM_ELF_OS_ABI_VERSION          ELFOSABI_ARM
#define ARM_ELF_OS_ABI_VERSION          ELFOSABI_ARM
 
 
static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
                                            struct bfd_link_info *link_info,
                                            struct bfd_link_info *link_info,
                                            asection *sec,
                                            asection *sec,
                                            bfd_byte *contents);
                                            bfd_byte *contents);
 
 
/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
   R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
   R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
   in that slot.  */
   in that slot.  */
 
 
static reloc_howto_type elf32_arm_howto_table_1[] =
static reloc_howto_type elf32_arm_howto_table_1[] =
{
{
  /* No relocation.  */
  /* No relocation.  */
  HOWTO (R_ARM_NONE,            /* type */
  HOWTO (R_ARM_NONE,            /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* bitsize */
         0,                      /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_NONE",          /* name */
         "R_ARM_NONE",          /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0,                      /* src_mask */
         0,                      /* src_mask */
         0,                      /* dst_mask */
         0,                      /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_PC24,            /* type */
  HOWTO (R_ARM_PC24,            /* type */
         2,                     /* rightshift */
         2,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_PC24",          /* name */
         "R_ARM_PC24",          /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* dst_mask */
         0x00ffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  /* 32 bit absolute */
  /* 32 bit absolute */
  HOWTO (R_ARM_ABS32,           /* type */
  HOWTO (R_ARM_ABS32,           /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ABS32",         /* name */
         "R_ARM_ABS32",         /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  /* standard 32bit pc-relative reloc */
  /* standard 32bit pc-relative reloc */
  HOWTO (R_ARM_REL32,           /* type */
  HOWTO (R_ARM_REL32,           /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_REL32",         /* name */
         "R_ARM_REL32",         /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
  /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
  HOWTO (R_ARM_LDR_PC_G0,       /* type */
  HOWTO (R_ARM_LDR_PC_G0,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDR_PC_G0",     /* name */
         "R_ARM_LDR_PC_G0",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
   /* 16 bit absolute */
   /* 16 bit absolute */
  HOWTO (R_ARM_ABS16,           /* type */
  HOWTO (R_ARM_ABS16,           /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ABS16",         /* name */
         "R_ARM_ABS16",         /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x0000ffff,            /* src_mask */
         0x0000ffff,            /* src_mask */
         0x0000ffff,            /* dst_mask */
         0x0000ffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  /* 12 bit absolute */
  /* 12 bit absolute */
  HOWTO (R_ARM_ABS12,           /* type */
  HOWTO (R_ARM_ABS12,           /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ABS12",         /* name */
         "R_ARM_ABS12",         /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_ABS5,        /* type */
  HOWTO (R_ARM_THM_ABS5,        /* type */
         6,                     /* rightshift */
         6,                     /* rightshift */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         5,                     /* bitsize */
         5,                     /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_ABS5",      /* name */
         "R_ARM_THM_ABS5",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000007e0,            /* src_mask */
         0x000007e0,            /* src_mask */
         0x000007e0,            /* dst_mask */
         0x000007e0,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  /* 8 bit absolute */
  /* 8 bit absolute */
  HOWTO (R_ARM_ABS8,            /* type */
  HOWTO (R_ARM_ABS8,            /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         8,                     /* bitsize */
         8,                     /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ABS8",          /* name */
         "R_ARM_ABS8",          /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000000ff,            /* src_mask */
         0x000000ff,            /* src_mask */
         0x000000ff,            /* dst_mask */
         0x000000ff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_SBREL32,         /* type */
  HOWTO (R_ARM_SBREL32,         /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_SBREL32",       /* name */
         "R_ARM_SBREL32",       /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_CALL,        /* type */
  HOWTO (R_ARM_THM_CALL,        /* type */
         1,                     /* rightshift */
         1,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_CALL",      /* name */
         "R_ARM_THM_CALL",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x07ff2fff,            /* src_mask */
         0x07ff2fff,            /* src_mask */
         0x07ff2fff,            /* dst_mask */
         0x07ff2fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_PC8,         /* type */
  HOWTO (R_ARM_THM_PC8,         /* type */
         1,                     /* rightshift */
         1,                     /* rightshift */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         8,                     /* bitsize */
         8,                     /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_PC8",       /* name */
         "R_ARM_THM_PC8",       /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000000ff,            /* src_mask */
         0x000000ff,            /* src_mask */
         0x000000ff,            /* dst_mask */
         0x000000ff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_BREL_ADJ,        /* type */
  HOWTO (R_ARM_BREL_ADJ,        /* type */
         1,                     /* rightshift */
         1,                     /* rightshift */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_BREL_ADJ",      /* name */
         "R_ARM_BREL_ADJ",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_DESC,        /* type */
  HOWTO (R_ARM_TLS_DESC,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_DESC",      /* name */
         "R_ARM_TLS_DESC",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_SWI8,        /* type */
  HOWTO (R_ARM_THM_SWI8,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* bitsize */
         0,                      /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_SWI8",          /* name */
         "R_ARM_SWI8",          /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000000,            /* src_mask */
         0x00000000,            /* src_mask */
         0x00000000,            /* dst_mask */
         0x00000000,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  /* BLX instruction for the ARM.  */
  /* BLX instruction for the ARM.  */
  HOWTO (R_ARM_XPC25,           /* type */
  HOWTO (R_ARM_XPC25,           /* type */
         2,                     /* rightshift */
         2,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_XPC25",         /* name */
         "R_ARM_XPC25",         /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* dst_mask */
         0x00ffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  /* BLX instruction for the Thumb.  */
  /* BLX instruction for the Thumb.  */
  HOWTO (R_ARM_THM_XPC22,       /* type */
  HOWTO (R_ARM_THM_XPC22,       /* type */
         2,                     /* rightshift */
         2,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_XPC22",     /* name */
         "R_ARM_THM_XPC22",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x07ff2fff,            /* src_mask */
         0x07ff2fff,            /* src_mask */
         0x07ff2fff,            /* dst_mask */
         0x07ff2fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  /* Dynamic TLS relocations.  */
  /* Dynamic TLS relocations.  */
 
 
  HOWTO (R_ARM_TLS_DTPMOD32,    /* type */
  HOWTO (R_ARM_TLS_DTPMOD32,    /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_DTPMOD32",  /* name */
         "R_ARM_TLS_DTPMOD32",  /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_DTPOFF32,    /* type */
  HOWTO (R_ARM_TLS_DTPOFF32,    /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_DTPOFF32",  /* name */
         "R_ARM_TLS_DTPOFF32",  /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_TPOFF32,     /* type */
  HOWTO (R_ARM_TLS_TPOFF32,     /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_TPOFF32",   /* name */
         "R_ARM_TLS_TPOFF32",   /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  /* Relocs used in ARM Linux */
  /* Relocs used in ARM Linux */
 
 
  HOWTO (R_ARM_COPY,            /* type */
  HOWTO (R_ARM_COPY,            /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_COPY",          /* name */
         "R_ARM_COPY",          /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_GLOB_DAT,        /* type */
  HOWTO (R_ARM_GLOB_DAT,        /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_GLOB_DAT",      /* name */
         "R_ARM_GLOB_DAT",      /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_JUMP_SLOT,       /* type */
  HOWTO (R_ARM_JUMP_SLOT,       /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_JUMP_SLOT",     /* name */
         "R_ARM_JUMP_SLOT",     /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_RELATIVE,        /* type */
  HOWTO (R_ARM_RELATIVE,        /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_RELATIVE",      /* name */
         "R_ARM_RELATIVE",      /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_GOTOFF32,        /* type */
  HOWTO (R_ARM_GOTOFF32,        /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_GOTOFF32",      /* name */
         "R_ARM_GOTOFF32",      /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_GOTPC,           /* type */
  HOWTO (R_ARM_GOTPC,           /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_GOTPC",         /* name */
         "R_ARM_GOTPC",         /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_GOT32,           /* type */
  HOWTO (R_ARM_GOT32,           /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_GOT32",         /* name */
         "R_ARM_GOT32",         /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_PLT32,           /* type */
  HOWTO (R_ARM_PLT32,           /* type */
         2,                     /* rightshift */
         2,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_PLT32",         /* name */
         "R_ARM_PLT32",         /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* dst_mask */
         0x00ffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_CALL,            /* type */
  HOWTO (R_ARM_CALL,            /* type */
         2,                     /* rightshift */
         2,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_CALL",          /* name */
         "R_ARM_CALL",          /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* dst_mask */
         0x00ffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_JUMP24,          /* type */
  HOWTO (R_ARM_JUMP24,          /* type */
         2,                     /* rightshift */
         2,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_JUMP24",        /* name */
         "R_ARM_JUMP24",        /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* dst_mask */
         0x00ffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_JUMP24,      /* type */
  HOWTO (R_ARM_THM_JUMP24,      /* type */
         1,                     /* rightshift */
         1,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_JUMP24",    /* name */
         "R_ARM_THM_JUMP24",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x07ff2fff,            /* src_mask */
         0x07ff2fff,            /* src_mask */
         0x07ff2fff,            /* dst_mask */
         0x07ff2fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_BASE_ABS,        /* type */
  HOWTO (R_ARM_BASE_ABS,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_BASE_ABS",      /* name */
         "R_ARM_BASE_ABS",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_PCREL7_0,    /* type */
  HOWTO (R_ARM_ALU_PCREL7_0,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_PCREL_7_0", /* name */
         "R_ARM_ALU_PCREL_7_0", /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_PCREL15_8,   /* type */
  HOWTO (R_ARM_ALU_PCREL15_8,   /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         8,                     /* bitpos */
         8,                     /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_PCREL_15_8",/* name */
         "R_ARM_ALU_PCREL_15_8",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_PCREL23_15,  /* type */
  HOWTO (R_ARM_ALU_PCREL23_15,  /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         16,                    /* bitpos */
         16,                    /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_PCREL_23_15",/* name */
         "R_ARM_ALU_PCREL_23_15",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDR_SBREL_11_0,  /* type */
  HOWTO (R_ARM_LDR_SBREL_11_0,  /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDR_SBREL_11_0",/* name */
         "R_ARM_LDR_SBREL_11_0",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
  HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         8,                     /* bitsize */
         8,                     /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         12,                    /* bitpos */
         12,                    /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_SBREL_19_12",/* name */
         "R_ARM_ALU_SBREL_19_12",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000ff000,            /* src_mask */
         0x000ff000,            /* src_mask */
         0x000ff000,            /* dst_mask */
         0x000ff000,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
  HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         8,                     /* bitsize */
         8,                     /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         20,                    /* bitpos */
         20,                    /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_SBREL_27_20",/* name */
         "R_ARM_ALU_SBREL_27_20",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x0ff00000,            /* src_mask */
         0x0ff00000,            /* src_mask */
         0x0ff00000,            /* dst_mask */
         0x0ff00000,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TARGET1,         /* type */
  HOWTO (R_ARM_TARGET1,         /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TARGET1",       /* name */
         "R_ARM_TARGET1",       /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_ROSEGREL32,      /* type */
  HOWTO (R_ARM_ROSEGREL32,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ROSEGREL32",    /* name */
         "R_ARM_ROSEGREL32",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_V4BX,            /* type */
  HOWTO (R_ARM_V4BX,            /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_V4BX",          /* name */
         "R_ARM_V4BX",          /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TARGET2,         /* type */
  HOWTO (R_ARM_TARGET2,         /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TARGET2",       /* name */
         "R_ARM_TARGET2",       /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_PREL31,          /* type */
  HOWTO (R_ARM_PREL31,          /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         31,                    /* bitsize */
         31,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_PREL31",        /* name */
         "R_ARM_PREL31",        /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x7fffffff,            /* src_mask */
         0x7fffffff,            /* src_mask */
         0x7fffffff,            /* dst_mask */
         0x7fffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_MOVW_ABS_NC,     /* type */
  HOWTO (R_ARM_MOVW_ABS_NC,     /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_MOVW_ABS_NC",   /* name */
         "R_ARM_MOVW_ABS_NC",   /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000f0fff,            /* src_mask */
         0x000f0fff,            /* src_mask */
         0x000f0fff,            /* dst_mask */
         0x000f0fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_MOVT_ABS,        /* type */
  HOWTO (R_ARM_MOVT_ABS,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_MOVT_ABS",      /* name */
         "R_ARM_MOVT_ABS",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000f0fff,            /* src_mask */
         0x000f0fff,            /* src_mask */
         0x000f0fff,            /* dst_mask */
         0x000f0fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_MOVW_PREL_NC,    /* type */
  HOWTO (R_ARM_MOVW_PREL_NC,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_MOVW_PREL_NC",  /* name */
         "R_ARM_MOVW_PREL_NC",  /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000f0fff,            /* src_mask */
         0x000f0fff,            /* src_mask */
         0x000f0fff,            /* dst_mask */
         0x000f0fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_MOVT_PREL,       /* type */
  HOWTO (R_ARM_MOVT_PREL,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_MOVT_PREL",     /* name */
         "R_ARM_MOVT_PREL",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000f0fff,            /* src_mask */
         0x000f0fff,            /* src_mask */
         0x000f0fff,            /* dst_mask */
         0x000f0fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
  HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_MOVW_ABS_NC",/* name */
         "R_ARM_THM_MOVW_ABS_NC",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* dst_mask */
         0x040f70ff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_MOVT_ABS,    /* type */
  HOWTO (R_ARM_THM_MOVT_ABS,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_MOVT_ABS",  /* name */
         "R_ARM_THM_MOVT_ABS",  /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* dst_mask */
         0x040f70ff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
  HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_MOVW_PREL_NC",/* name */
         "R_ARM_THM_MOVW_PREL_NC",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* dst_mask */
         0x040f70ff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_MOVT_PREL,   /* type */
  HOWTO (R_ARM_THM_MOVT_PREL,   /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_MOVT_PREL", /* name */
         "R_ARM_THM_MOVT_PREL", /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* dst_mask */
         0x040f70ff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_JUMP19,      /* type */
  HOWTO (R_ARM_THM_JUMP19,      /* type */
         1,                     /* rightshift */
         1,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         19,                    /* bitsize */
         19,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,/* complain_on_overflow */
         complain_overflow_signed,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_JUMP19",    /* name */
         "R_ARM_THM_JUMP19",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x043f2fff,            /* src_mask */
         0x043f2fff,            /* src_mask */
         0x043f2fff,            /* dst_mask */
         0x043f2fff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_JUMP6,       /* type */
  HOWTO (R_ARM_THM_JUMP6,       /* type */
         1,                     /* rightshift */
         1,                     /* rightshift */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         6,                     /* bitsize */
         6,                     /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_unsigned,/* complain_on_overflow */
         complain_overflow_unsigned,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_JUMP6",     /* name */
         "R_ARM_THM_JUMP6",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x02f8,                /* src_mask */
         0x02f8,                /* src_mask */
         0x02f8,                /* dst_mask */
         0x02f8,                /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  /* These are declared as 13-bit signed relocations because we can
  /* These are declared as 13-bit signed relocations because we can
     address -4095 .. 4095(base) by altering ADDW to SUBW or vice
     address -4095 .. 4095(base) by altering ADDW to SUBW or vice
     versa.  */
     versa.  */
  HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
  HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         13,                    /* bitsize */
         13,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_ALU_PREL_11_0",/* name */
         "R_ARM_THM_ALU_PREL_11_0",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_PC12,        /* type */
  HOWTO (R_ARM_THM_PC12,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         13,                    /* bitsize */
         13,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_PC12",      /* name */
         "R_ARM_THM_PC12",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ABS32_NOI,       /* type */
  HOWTO (R_ARM_ABS32_NOI,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ABS32_NOI",     /* name */
         "R_ARM_ABS32_NOI",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_REL32_NOI,       /* type */
  HOWTO (R_ARM_REL32_NOI,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_REL32_NOI",     /* name */
         "R_ARM_REL32_NOI",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  /* Group relocations.  */
  /* Group relocations.  */
 
 
  HOWTO (R_ARM_ALU_PC_G0_NC,    /* type */
  HOWTO (R_ARM_ALU_PC_G0_NC,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_PC_G0_NC",  /* name */
         "R_ARM_ALU_PC_G0_NC",  /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_PC_G0,       /* type */
  HOWTO (R_ARM_ALU_PC_G0,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_PC_G0",     /* name */
         "R_ARM_ALU_PC_G0",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_PC_G1_NC,    /* type */
  HOWTO (R_ARM_ALU_PC_G1_NC,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_PC_G1_NC",  /* name */
         "R_ARM_ALU_PC_G1_NC",  /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_PC_G1,       /* type */
  HOWTO (R_ARM_ALU_PC_G1,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_PC_G1",     /* name */
         "R_ARM_ALU_PC_G1",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_PC_G2,       /* type */
  HOWTO (R_ARM_ALU_PC_G2,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_PC_G2",     /* name */
         "R_ARM_ALU_PC_G2",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDR_PC_G1,       /* type */
  HOWTO (R_ARM_LDR_PC_G1,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDR_PC_G1",     /* name */
         "R_ARM_LDR_PC_G1",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDR_PC_G2,       /* type */
  HOWTO (R_ARM_LDR_PC_G2,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDR_PC_G2",     /* name */
         "R_ARM_LDR_PC_G2",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDRS_PC_G0,      /* type */
  HOWTO (R_ARM_LDRS_PC_G0,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDRS_PC_G0",    /* name */
         "R_ARM_LDRS_PC_G0",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDRS_PC_G1,      /* type */
  HOWTO (R_ARM_LDRS_PC_G1,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDRS_PC_G1",    /* name */
         "R_ARM_LDRS_PC_G1",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDRS_PC_G2,      /* type */
  HOWTO (R_ARM_LDRS_PC_G2,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDRS_PC_G2",    /* name */
         "R_ARM_LDRS_PC_G2",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDC_PC_G0,       /* type */
  HOWTO (R_ARM_LDC_PC_G0,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDC_PC_G0",     /* name */
         "R_ARM_LDC_PC_G0",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDC_PC_G1,       /* type */
  HOWTO (R_ARM_LDC_PC_G1,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDC_PC_G1",     /* name */
         "R_ARM_LDC_PC_G1",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDC_PC_G2,       /* type */
  HOWTO (R_ARM_LDC_PC_G2,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDC_PC_G2",     /* name */
         "R_ARM_LDC_PC_G2",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_SB_G0_NC,    /* type */
  HOWTO (R_ARM_ALU_SB_G0_NC,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_SB_G0_NC",  /* name */
         "R_ARM_ALU_SB_G0_NC",  /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_SB_G0,       /* type */
  HOWTO (R_ARM_ALU_SB_G0,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_SB_G0",     /* name */
         "R_ARM_ALU_SB_G0",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_SB_G1_NC,    /* type */
  HOWTO (R_ARM_ALU_SB_G1_NC,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_SB_G1_NC",  /* name */
         "R_ARM_ALU_SB_G1_NC",  /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_SB_G1,       /* type */
  HOWTO (R_ARM_ALU_SB_G1,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_SB_G1",     /* name */
         "R_ARM_ALU_SB_G1",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_ALU_SB_G2,       /* type */
  HOWTO (R_ARM_ALU_SB_G2,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_ALU_SB_G2",     /* name */
         "R_ARM_ALU_SB_G2",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDR_SB_G0,       /* type */
  HOWTO (R_ARM_LDR_SB_G0,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDR_SB_G0",     /* name */
         "R_ARM_LDR_SB_G0",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDR_SB_G1,       /* type */
  HOWTO (R_ARM_LDR_SB_G1,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDR_SB_G1",     /* name */
         "R_ARM_LDR_SB_G1",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDR_SB_G2,       /* type */
  HOWTO (R_ARM_LDR_SB_G2,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDR_SB_G2",     /* name */
         "R_ARM_LDR_SB_G2",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDRS_SB_G0,      /* type */
  HOWTO (R_ARM_LDRS_SB_G0,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDRS_SB_G0",    /* name */
         "R_ARM_LDRS_SB_G0",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDRS_SB_G1,      /* type */
  HOWTO (R_ARM_LDRS_SB_G1,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDRS_SB_G1",    /* name */
         "R_ARM_LDRS_SB_G1",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDRS_SB_G2,      /* type */
  HOWTO (R_ARM_LDRS_SB_G2,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDRS_SB_G2",    /* name */
         "R_ARM_LDRS_SB_G2",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDC_SB_G0,       /* type */
  HOWTO (R_ARM_LDC_SB_G0,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDC_SB_G0",     /* name */
         "R_ARM_LDC_SB_G0",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDC_SB_G1,       /* type */
  HOWTO (R_ARM_LDC_SB_G1,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDC_SB_G1",     /* name */
         "R_ARM_LDC_SB_G1",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_LDC_SB_G2,       /* type */
  HOWTO (R_ARM_LDC_SB_G2,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_LDC_SB_G2",     /* name */
         "R_ARM_LDC_SB_G2",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  /* End of group relocations.  */
  /* End of group relocations.  */
 
 
  HOWTO (R_ARM_MOVW_BREL_NC,    /* type */
  HOWTO (R_ARM_MOVW_BREL_NC,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_MOVW_BREL_NC",  /* name */
         "R_ARM_MOVW_BREL_NC",  /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x0000ffff,            /* src_mask */
         0x0000ffff,            /* src_mask */
         0x0000ffff,            /* dst_mask */
         0x0000ffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_MOVT_BREL,       /* type */
  HOWTO (R_ARM_MOVT_BREL,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_MOVT_BREL",     /* name */
         "R_ARM_MOVT_BREL",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x0000ffff,            /* src_mask */
         0x0000ffff,            /* src_mask */
         0x0000ffff,            /* dst_mask */
         0x0000ffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_MOVW_BREL,       /* type */
  HOWTO (R_ARM_MOVW_BREL,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_MOVW_BREL",     /* name */
         "R_ARM_MOVW_BREL",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x0000ffff,            /* src_mask */
         0x0000ffff,            /* src_mask */
         0x0000ffff,            /* dst_mask */
         0x0000ffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
  HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_MOVW_BREL_NC",/* name */
         "R_ARM_THM_MOVW_BREL_NC",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* dst_mask */
         0x040f70ff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_MOVT_BREL,   /* type */
  HOWTO (R_ARM_THM_MOVT_BREL,   /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_MOVT_BREL", /* name */
         "R_ARM_THM_MOVT_BREL", /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* dst_mask */
         0x040f70ff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_MOVW_BREL,   /* type */
  HOWTO (R_ARM_THM_MOVW_BREL,   /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         16,                    /* bitsize */
         16,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_MOVW_BREL", /* name */
         "R_ARM_THM_MOVW_BREL", /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* src_mask */
         0x040f70ff,            /* dst_mask */
         0x040f70ff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_GOTDESC,     /* type */
  HOWTO (R_ARM_TLS_GOTDESC,     /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         NULL,                  /* special_function */
         NULL,                  /* special_function */
         "R_ARM_TLS_GOTDESC",   /* name */
         "R_ARM_TLS_GOTDESC",   /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_CALL,        /* type */
  HOWTO (R_ARM_TLS_CALL,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_CALL",      /* name */
         "R_ARM_TLS_CALL",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* src_mask */
         0x00ffffff,            /* dst_mask */
         0x00ffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_DESCSEQ,     /* type */
  HOWTO (R_ARM_TLS_DESCSEQ,     /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* bitsize */
         0,                      /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_DESCSEQ",   /* name */
         "R_ARM_TLS_DESCSEQ",   /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000000,            /* src_mask */
         0x00000000,            /* src_mask */
         0x00000000,            /* dst_mask */
         0x00000000,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_TLS_CALL,    /* type */
  HOWTO (R_ARM_THM_TLS_CALL,    /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         24,                    /* bitsize */
         24,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_TLS_CALL",  /* name */
         "R_ARM_THM_TLS_CALL",  /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x07ff07ff,            /* src_mask */
         0x07ff07ff,            /* src_mask */
         0x07ff07ff,            /* dst_mask */
         0x07ff07ff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_PLT32_ABS,       /* type */
  HOWTO (R_ARM_PLT32_ABS,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_PLT32_ABS",     /* name */
         "R_ARM_PLT32_ABS",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_GOT_ABS,         /* type */
  HOWTO (R_ARM_GOT_ABS,         /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_GOT_ABS",       /* name */
         "R_ARM_GOT_ABS",       /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                        /* pcrel_offset */
         FALSE),                        /* pcrel_offset */
 
 
  HOWTO (R_ARM_GOT_PREL,        /* type */
  HOWTO (R_ARM_GOT_PREL,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,        /* complain_on_overflow */
         complain_overflow_dont,        /* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_GOT_PREL",      /* name */
         "R_ARM_GOT_PREL",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_GOT_BREL12,      /* type */
  HOWTO (R_ARM_GOT_BREL12,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_GOT_BREL12",    /* name */
         "R_ARM_GOT_BREL12",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_GOTOFF12,        /* type */
  HOWTO (R_ARM_GOTOFF12,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_GOTOFF12",      /* name */
         "R_ARM_GOTOFF12",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
  EMPTY_HOWTO (R_ARM_GOTRELAX),  /* reserved for future GOT-load optimizations */
 
 
  /* GNU extension to record C++ vtable member usage */
  /* GNU extension to record C++ vtable member usage */
  HOWTO (R_ARM_GNU_VTENTRY,     /* type */
  HOWTO (R_ARM_GNU_VTENTRY,     /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         0,                     /* bitsize */
         0,                     /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_dont, /* complain_on_overflow */
         complain_overflow_dont, /* complain_on_overflow */
         _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
         _bfd_elf_rel_vtable_reloc_fn,  /* special_function */
         "R_ARM_GNU_VTENTRY",   /* name */
         "R_ARM_GNU_VTENTRY",   /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0,                     /* src_mask */
         0,                     /* src_mask */
         0,                     /* dst_mask */
         0,                     /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  /* GNU extension to record C++ vtable hierarchy */
  /* GNU extension to record C++ vtable hierarchy */
  HOWTO (R_ARM_GNU_VTINHERIT, /* type */
  HOWTO (R_ARM_GNU_VTINHERIT, /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         0,                     /* bitsize */
         0,                     /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_dont, /* complain_on_overflow */
         complain_overflow_dont, /* complain_on_overflow */
         NULL,                  /* special_function */
         NULL,                  /* special_function */
         "R_ARM_GNU_VTINHERIT", /* name */
         "R_ARM_GNU_VTINHERIT", /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0,                     /* src_mask */
         0,                     /* src_mask */
         0,                     /* dst_mask */
         0,                     /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_JUMP11,      /* type */
  HOWTO (R_ARM_THM_JUMP11,      /* type */
         1,                     /* rightshift */
         1,                     /* rightshift */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         11,                    /* bitsize */
         11,                    /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,      /* complain_on_overflow */
         complain_overflow_signed,      /* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_JUMP11",    /* name */
         "R_ARM_THM_JUMP11",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000007ff,            /* src_mask */
         0x000007ff,            /* src_mask */
         0x000007ff,            /* dst_mask */
         0x000007ff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  HOWTO (R_ARM_THM_JUMP8,       /* type */
  HOWTO (R_ARM_THM_JUMP8,       /* type */
         1,                     /* rightshift */
         1,                     /* rightshift */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         8,                     /* bitsize */
         8,                     /* bitsize */
         TRUE,                  /* pc_relative */
         TRUE,                  /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_signed,      /* complain_on_overflow */
         complain_overflow_signed,      /* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_JUMP8",     /* name */
         "R_ARM_THM_JUMP8",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x000000ff,            /* src_mask */
         0x000000ff,            /* src_mask */
         0x000000ff,            /* dst_mask */
         0x000000ff,            /* dst_mask */
         TRUE),                 /* pcrel_offset */
         TRUE),                 /* pcrel_offset */
 
 
  /* TLS relocations */
  /* TLS relocations */
  HOWTO (R_ARM_TLS_GD32,        /* type */
  HOWTO (R_ARM_TLS_GD32,        /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         NULL,                  /* special_function */
         NULL,                  /* special_function */
         "R_ARM_TLS_GD32",      /* name */
         "R_ARM_TLS_GD32",      /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_LDM32,       /* type */
  HOWTO (R_ARM_TLS_LDM32,       /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_LDM32",     /* name */
         "R_ARM_TLS_LDM32",     /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_LDO32,       /* type */
  HOWTO (R_ARM_TLS_LDO32,       /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_LDO32",     /* name */
         "R_ARM_TLS_LDO32",     /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_IE32,        /* type */
  HOWTO (R_ARM_TLS_IE32,        /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                  /* pc_relative */
         FALSE,                  /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         NULL,                  /* special_function */
         NULL,                  /* special_function */
         "R_ARM_TLS_IE32",      /* name */
         "R_ARM_TLS_IE32",      /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_LE32,        /* type */
  HOWTO (R_ARM_TLS_LE32,        /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_LE32",      /* name */
         "R_ARM_TLS_LE32",      /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_LDO12,       /* type */
  HOWTO (R_ARM_TLS_LDO12,       /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_LDO12",     /* name */
         "R_ARM_TLS_LDO12",     /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_LE12,        /* type */
  HOWTO (R_ARM_TLS_LE12,        /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_LE12",      /* name */
         "R_ARM_TLS_LE12",      /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_TLS_IE12GP,      /* type */
  HOWTO (R_ARM_TLS_IE12GP,      /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         12,                    /* bitsize */
         12,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_TLS_IE12GP",    /* name */
         "R_ARM_TLS_IE12GP",    /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* src_mask */
         0x00000fff,            /* dst_mask */
         0x00000fff,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  /* 112-127 private relocations.  */
  /* 112-127 private relocations.  */
  EMPTY_HOWTO (112),
  EMPTY_HOWTO (112),
  EMPTY_HOWTO (113),
  EMPTY_HOWTO (113),
  EMPTY_HOWTO (114),
  EMPTY_HOWTO (114),
  EMPTY_HOWTO (115),
  EMPTY_HOWTO (115),
  EMPTY_HOWTO (116),
  EMPTY_HOWTO (116),
  EMPTY_HOWTO (117),
  EMPTY_HOWTO (117),
  EMPTY_HOWTO (118),
  EMPTY_HOWTO (118),
  EMPTY_HOWTO (119),
  EMPTY_HOWTO (119),
  EMPTY_HOWTO (120),
  EMPTY_HOWTO (120),
  EMPTY_HOWTO (121),
  EMPTY_HOWTO (121),
  EMPTY_HOWTO (122),
  EMPTY_HOWTO (122),
  EMPTY_HOWTO (123),
  EMPTY_HOWTO (123),
  EMPTY_HOWTO (124),
  EMPTY_HOWTO (124),
  EMPTY_HOWTO (125),
  EMPTY_HOWTO (125),
  EMPTY_HOWTO (126),
  EMPTY_HOWTO (126),
  EMPTY_HOWTO (127),
  EMPTY_HOWTO (127),
 
 
  /* R_ARM_ME_TOO, obsolete.  */
  /* R_ARM_ME_TOO, obsolete.  */
  EMPTY_HOWTO (128),
  EMPTY_HOWTO (128),
 
 
  HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
  HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* bitsize */
         0,                      /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_THM_TLS_DESCSEQ",/* name */
         "R_ARM_THM_TLS_DESCSEQ",/* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0x00000000,            /* src_mask */
         0x00000000,            /* src_mask */
         0x00000000,            /* dst_mask */
         0x00000000,            /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
};
};
 
 
/* 160 onwards: */
/* 160 onwards: */
static reloc_howto_type elf32_arm_howto_table_2[1] =
static reloc_howto_type elf32_arm_howto_table_2[1] =
{
{
  HOWTO (R_ARM_IRELATIVE,       /* type */
  HOWTO (R_ARM_IRELATIVE,       /* type */
         0,                     /* rightshift */
         0,                     /* rightshift */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
         32,                    /* bitsize */
         32,                    /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                     /* bitpos */
         0,                     /* bitpos */
         complain_overflow_bitfield,/* complain_on_overflow */
         complain_overflow_bitfield,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_IRELATIVE",     /* name */
         "R_ARM_IRELATIVE",     /* name */
         TRUE,                  /* partial_inplace */
         TRUE,                  /* partial_inplace */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* src_mask */
         0xffffffff,            /* dst_mask */
         0xffffffff,            /* dst_mask */
         FALSE)                 /* pcrel_offset */
         FALSE)                 /* pcrel_offset */
};
};
 
 
/* 249-255 extended, currently unused, relocations:  */
/* 249-255 extended, currently unused, relocations:  */
static reloc_howto_type elf32_arm_howto_table_3[4] =
static reloc_howto_type elf32_arm_howto_table_3[4] =
{
{
  HOWTO (R_ARM_RREL32,          /* type */
  HOWTO (R_ARM_RREL32,          /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* bitsize */
         0,                      /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_RREL32",        /* name */
         "R_ARM_RREL32",        /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0,                      /* src_mask */
         0,                      /* src_mask */
         0,                      /* dst_mask */
         0,                      /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_RABS32,          /* type */
  HOWTO (R_ARM_RABS32,          /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* bitsize */
         0,                      /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_RABS32",        /* name */
         "R_ARM_RABS32",        /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0,                      /* src_mask */
         0,                      /* src_mask */
         0,                      /* dst_mask */
         0,                      /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_RPC24,           /* type */
  HOWTO (R_ARM_RPC24,           /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* bitsize */
         0,                      /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_RPC24",         /* name */
         "R_ARM_RPC24",         /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0,                      /* src_mask */
         0,                      /* src_mask */
         0,                      /* dst_mask */
         0,                      /* dst_mask */
         FALSE),                /* pcrel_offset */
         FALSE),                /* pcrel_offset */
 
 
  HOWTO (R_ARM_RBASE,           /* type */
  HOWTO (R_ARM_RBASE,           /* type */
         0,                      /* rightshift */
         0,                      /* rightshift */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
         0,                      /* bitsize */
         0,                      /* bitsize */
         FALSE,                 /* pc_relative */
         FALSE,                 /* pc_relative */
         0,                      /* bitpos */
         0,                      /* bitpos */
         complain_overflow_dont,/* complain_on_overflow */
         complain_overflow_dont,/* complain_on_overflow */
         bfd_elf_generic_reloc, /* special_function */
         bfd_elf_generic_reloc, /* special_function */
         "R_ARM_RBASE",         /* name */
         "R_ARM_RBASE",         /* name */
         FALSE,                 /* partial_inplace */
         FALSE,                 /* partial_inplace */
         0,                      /* src_mask */
         0,                      /* src_mask */
         0,                      /* dst_mask */
         0,                      /* dst_mask */
         FALSE)                 /* pcrel_offset */
         FALSE)                 /* pcrel_offset */
};
};
 
 
static reloc_howto_type *
static reloc_howto_type *
elf32_arm_howto_from_type (unsigned int r_type)
elf32_arm_howto_from_type (unsigned int r_type)
{
{
  if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
  if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
    return &elf32_arm_howto_table_1[r_type];
    return &elf32_arm_howto_table_1[r_type];
 
 
  if (r_type == R_ARM_IRELATIVE)
  if (r_type == R_ARM_IRELATIVE)
    return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
    return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
 
 
  if (r_type >= R_ARM_RREL32
  if (r_type >= R_ARM_RREL32
      && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
      && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
    return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
    return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
 
 
  return NULL;
  return NULL;
}
}
 
 
static void
static void
elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
                         Elf_Internal_Rela * elf_reloc)
                         Elf_Internal_Rela * elf_reloc)
{
{
  unsigned int r_type;
  unsigned int r_type;
 
 
  r_type = ELF32_R_TYPE (elf_reloc->r_info);
  r_type = ELF32_R_TYPE (elf_reloc->r_info);
  bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
  bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
}
}
 
 
struct elf32_arm_reloc_map
struct elf32_arm_reloc_map
  {
  {
    bfd_reloc_code_real_type  bfd_reloc_val;
    bfd_reloc_code_real_type  bfd_reloc_val;
    unsigned char             elf_reloc_val;
    unsigned char             elf_reloc_val;
  };
  };
 
 
/* All entries in this list must also be present in elf32_arm_howto_table.  */
/* All entries in this list must also be present in elf32_arm_howto_table.  */
static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
  {
  {
    {BFD_RELOC_NONE,                 R_ARM_NONE},
    {BFD_RELOC_NONE,                 R_ARM_NONE},
    {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
    {BFD_RELOC_ARM_PCREL_BRANCH,     R_ARM_PC24},
    {BFD_RELOC_ARM_PCREL_CALL,       R_ARM_CALL},
    {BFD_RELOC_ARM_PCREL_CALL,       R_ARM_CALL},
    {BFD_RELOC_ARM_PCREL_JUMP,       R_ARM_JUMP24},
    {BFD_RELOC_ARM_PCREL_JUMP,       R_ARM_JUMP24},
    {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
    {BFD_RELOC_ARM_PCREL_BLX,        R_ARM_XPC25},
    {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
    {BFD_RELOC_THUMB_PCREL_BLX,      R_ARM_THM_XPC22},
    {BFD_RELOC_32,                   R_ARM_ABS32},
    {BFD_RELOC_32,                   R_ARM_ABS32},
    {BFD_RELOC_32_PCREL,             R_ARM_REL32},
    {BFD_RELOC_32_PCREL,             R_ARM_REL32},
    {BFD_RELOC_8,                    R_ARM_ABS8},
    {BFD_RELOC_8,                    R_ARM_ABS8},
    {BFD_RELOC_16,                   R_ARM_ABS16},
    {BFD_RELOC_16,                   R_ARM_ABS16},
    {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
    {BFD_RELOC_ARM_OFFSET_IMM,       R_ARM_ABS12},
    {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
    {BFD_RELOC_ARM_THUMB_OFFSET,     R_ARM_THM_ABS5},
    {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
    {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
    {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
    {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
    {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
    {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
    {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
    {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
    {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
    {BFD_RELOC_THUMB_PCREL_BRANCH9,  R_ARM_THM_JUMP8},
    {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
    {BFD_RELOC_THUMB_PCREL_BRANCH7,  R_ARM_THM_JUMP6},
    {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
    {BFD_RELOC_ARM_GLOB_DAT,         R_ARM_GLOB_DAT},
    {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
    {BFD_RELOC_ARM_JUMP_SLOT,        R_ARM_JUMP_SLOT},
    {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
    {BFD_RELOC_ARM_RELATIVE,         R_ARM_RELATIVE},
    {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
    {BFD_RELOC_ARM_GOTOFF,           R_ARM_GOTOFF32},
    {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
    {BFD_RELOC_ARM_GOTPC,            R_ARM_GOTPC},
    {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
    {BFD_RELOC_ARM_GOT_PREL,         R_ARM_GOT_PREL},
    {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
    {BFD_RELOC_ARM_GOT32,            R_ARM_GOT32},
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
    {BFD_RELOC_ARM_TARGET1,          R_ARM_TARGET1},
    {BFD_RELOC_ARM_TARGET1,          R_ARM_TARGET1},
    {BFD_RELOC_ARM_ROSEGREL32,       R_ARM_ROSEGREL32},
    {BFD_RELOC_ARM_ROSEGREL32,       R_ARM_ROSEGREL32},
    {BFD_RELOC_ARM_SBREL32,          R_ARM_SBREL32},
    {BFD_RELOC_ARM_SBREL32,          R_ARM_SBREL32},
    {BFD_RELOC_ARM_PREL31,           R_ARM_PREL31},
    {BFD_RELOC_ARM_PREL31,           R_ARM_PREL31},
    {BFD_RELOC_ARM_TARGET2,          R_ARM_TARGET2},
    {BFD_RELOC_ARM_TARGET2,          R_ARM_TARGET2},
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
    {BFD_RELOC_ARM_PLT32,            R_ARM_PLT32},
    {BFD_RELOC_ARM_TLS_GOTDESC,      R_ARM_TLS_GOTDESC},
    {BFD_RELOC_ARM_TLS_GOTDESC,      R_ARM_TLS_GOTDESC},
    {BFD_RELOC_ARM_TLS_CALL,         R_ARM_TLS_CALL},
    {BFD_RELOC_ARM_TLS_CALL,         R_ARM_TLS_CALL},
    {BFD_RELOC_ARM_THM_TLS_CALL,     R_ARM_THM_TLS_CALL},
    {BFD_RELOC_ARM_THM_TLS_CALL,     R_ARM_THM_TLS_CALL},
    {BFD_RELOC_ARM_TLS_DESCSEQ,      R_ARM_TLS_DESCSEQ},
    {BFD_RELOC_ARM_TLS_DESCSEQ,      R_ARM_TLS_DESCSEQ},
    {BFD_RELOC_ARM_THM_TLS_DESCSEQ,  R_ARM_THM_TLS_DESCSEQ},
    {BFD_RELOC_ARM_THM_TLS_DESCSEQ,  R_ARM_THM_TLS_DESCSEQ},
    {BFD_RELOC_ARM_TLS_DESC,         R_ARM_TLS_DESC},
    {BFD_RELOC_ARM_TLS_DESC,         R_ARM_TLS_DESC},
    {BFD_RELOC_ARM_TLS_GD32,         R_ARM_TLS_GD32},
    {BFD_RELOC_ARM_TLS_GD32,         R_ARM_TLS_GD32},
    {BFD_RELOC_ARM_TLS_LDO32,        R_ARM_TLS_LDO32},
    {BFD_RELOC_ARM_TLS_LDO32,        R_ARM_TLS_LDO32},
    {BFD_RELOC_ARM_TLS_LDM32,        R_ARM_TLS_LDM32},
    {BFD_RELOC_ARM_TLS_LDM32,        R_ARM_TLS_LDM32},
    {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
    {BFD_RELOC_ARM_TLS_DTPMOD32,     R_ARM_TLS_DTPMOD32},
    {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
    {BFD_RELOC_ARM_TLS_DTPOFF32,     R_ARM_TLS_DTPOFF32},
    {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
    {BFD_RELOC_ARM_TLS_TPOFF32,      R_ARM_TLS_TPOFF32},
    {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
    {BFD_RELOC_ARM_TLS_IE32,         R_ARM_TLS_IE32},
    {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
    {BFD_RELOC_ARM_TLS_LE32,         R_ARM_TLS_LE32},
    {BFD_RELOC_ARM_IRELATIVE,        R_ARM_IRELATIVE},
    {BFD_RELOC_ARM_IRELATIVE,        R_ARM_IRELATIVE},
    {BFD_RELOC_VTABLE_INHERIT,       R_ARM_GNU_VTINHERIT},
    {BFD_RELOC_VTABLE_INHERIT,       R_ARM_GNU_VTINHERIT},
    {BFD_RELOC_VTABLE_ENTRY,         R_ARM_GNU_VTENTRY},
    {BFD_RELOC_VTABLE_ENTRY,         R_ARM_GNU_VTENTRY},
    {BFD_RELOC_ARM_MOVW,             R_ARM_MOVW_ABS_NC},
    {BFD_RELOC_ARM_MOVW,             R_ARM_MOVW_ABS_NC},
    {BFD_RELOC_ARM_MOVT,             R_ARM_MOVT_ABS},
    {BFD_RELOC_ARM_MOVT,             R_ARM_MOVT_ABS},
    {BFD_RELOC_ARM_MOVW_PCREL,       R_ARM_MOVW_PREL_NC},
    {BFD_RELOC_ARM_MOVW_PCREL,       R_ARM_MOVW_PREL_NC},
    {BFD_RELOC_ARM_MOVT_PCREL,       R_ARM_MOVT_PREL},
    {BFD_RELOC_ARM_MOVT_PCREL,       R_ARM_MOVT_PREL},
    {BFD_RELOC_ARM_THUMB_MOVW,       R_ARM_THM_MOVW_ABS_NC},
    {BFD_RELOC_ARM_THUMB_MOVW,       R_ARM_THM_MOVW_ABS_NC},
    {BFD_RELOC_ARM_THUMB_MOVT,       R_ARM_THM_MOVT_ABS},
    {BFD_RELOC_ARM_THUMB_MOVT,       R_ARM_THM_MOVT_ABS},
    {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
    {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
    {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
    {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
    {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
    {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
    {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
    {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
    {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
    {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
    {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
    {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
    {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
    {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
    {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
    {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
    {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
    {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
    {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
    {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
    {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
    {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
    {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
    {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
    {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
    {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
    {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
    {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
    {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
    {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
    {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
    {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
    {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
    {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
    {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
    {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
    {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
    {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
    {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
    {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
    {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
    {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
    {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
    {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
    {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
    {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
    {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
    {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
    {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
    {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
    {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
    {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
    {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
    {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
    {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
    {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
    {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
    {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
    {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
    {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
    {BFD_RELOC_ARM_V4BX,             R_ARM_V4BX}
    {BFD_RELOC_ARM_V4BX,             R_ARM_V4BX}
  };
  };
 
 
static reloc_howto_type *
static reloc_howto_type *
elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
                             bfd_reloc_code_real_type code)
                             bfd_reloc_code_real_type code)
{
{
  unsigned int i;
  unsigned int i;
 
 
  for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
  for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
    if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
    if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
      return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
      return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
 
 
  return NULL;
  return NULL;
}
}
 
 
static reloc_howto_type *
static reloc_howto_type *
elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
                             const char *r_name)
                             const char *r_name)
{
{
  unsigned int i;
  unsigned int i;
 
 
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
    if (elf32_arm_howto_table_1[i].name != NULL
    if (elf32_arm_howto_table_1[i].name != NULL
        && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
        && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
      return &elf32_arm_howto_table_1[i];
      return &elf32_arm_howto_table_1[i];
 
 
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
    if (elf32_arm_howto_table_2[i].name != NULL
    if (elf32_arm_howto_table_2[i].name != NULL
        && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
        && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
      return &elf32_arm_howto_table_2[i];
      return &elf32_arm_howto_table_2[i];
 
 
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
  for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
    if (elf32_arm_howto_table_3[i].name != NULL
    if (elf32_arm_howto_table_3[i].name != NULL
        && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
        && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
      return &elf32_arm_howto_table_3[i];
      return &elf32_arm_howto_table_3[i];
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Support for core dump NOTE sections.  */
/* Support for core dump NOTE sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
{
  int offset;
  int offset;
  size_t size;
  size_t size;
 
 
  switch (note->descsz)
  switch (note->descsz)
    {
    {
      default:
      default:
        return FALSE;
        return FALSE;
 
 
      case 148:         /* Linux/ARM 32-bit.  */
      case 148:         /* Linux/ARM 32-bit.  */
        /* pr_cursig */
        /* pr_cursig */
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
 
 
        /* pr_pid */
        /* pr_pid */
        elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
        elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
 
 
        /* pr_reg */
        /* pr_reg */
        offset = 72;
        offset = 72;
        size = 72;
        size = 72;
 
 
        break;
        break;
    }
    }
 
 
  /* Make a ".reg/999" section.  */
  /* Make a ".reg/999" section.  */
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
                                          size, note->descpos + offset);
                                          size, note->descpos + offset);
}
}
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
{
  switch (note->descsz)
  switch (note->descsz)
    {
    {
      default:
      default:
        return FALSE;
        return FALSE;
 
 
      case 124:         /* Linux/ARM elf_prpsinfo.  */
      case 124:         /* Linux/ARM elf_prpsinfo.  */
        elf_tdata (abfd)->core_program
        elf_tdata (abfd)->core_program
         = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
         = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
        elf_tdata (abfd)->core_command
        elf_tdata (abfd)->core_command
         = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
         = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
    }
    }
 
 
  /* Note that for some reason, a spurious space is tacked
  /* Note that for some reason, a spurious space is tacked
     onto the end of the args in some (at least one anyway)
     onto the end of the args in some (at least one anyway)
     implementations, so strip it off if it exists.  */
     implementations, so strip it off if it exists.  */
  {
  {
    char *command = elf_tdata (abfd)->core_command;
    char *command = elf_tdata (abfd)->core_command;
    int n = strlen (command);
    int n = strlen (command);
 
 
    if (0 < n && command[n - 1] == ' ')
    if (0 < n && command[n - 1] == ' ')
      command[n - 1] = '\0';
      command[n - 1] = '\0';
  }
  }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vec
#define TARGET_LITTLE_NAME              "elf32-littlearm"
#define TARGET_LITTLE_NAME              "elf32-littlearm"
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vec
#define TARGET_BIG_NAME                 "elf32-bigarm"
#define TARGET_BIG_NAME                 "elf32-bigarm"
 
 
#define elf_backend_grok_prstatus       elf32_arm_nabi_grok_prstatus
#define elf_backend_grok_prstatus       elf32_arm_nabi_grok_prstatus
#define elf_backend_grok_psinfo         elf32_arm_nabi_grok_psinfo
#define elf_backend_grok_psinfo         elf32_arm_nabi_grok_psinfo
 
 
typedef unsigned long int insn32;
typedef unsigned long int insn32;
typedef unsigned short int insn16;
typedef unsigned short int insn16;
 
 
/* In lieu of proper flags, assume all EABIv4 or later objects are
/* In lieu of proper flags, assume all EABIv4 or later objects are
   interworkable.  */
   interworkable.  */
#define INTERWORK_FLAG(abfd)  \
#define INTERWORK_FLAG(abfd)  \
  (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
  (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
  || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
  || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
  || ((abfd)->flags & BFD_LINKER_CREATED))
  || ((abfd)->flags & BFD_LINKER_CREATED))
 
 
/* The linker script knows the section names for placement.
/* The linker script knows the section names for placement.
   The entry_names are used to do simple name mangling on the stubs.
   The entry_names are used to do simple name mangling on the stubs.
   Given a function name, and its type, the stub can be found. The
   Given a function name, and its type, the stub can be found. The
   name can be changed. The only requirement is the %s be present.  */
   name can be changed. The only requirement is the %s be present.  */
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
 
 
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
 
 
#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
#define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
#define VFP11_ERRATUM_VENEER_ENTRY_NAME   "__vfp11_veneer_%x"
 
 
#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
#define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
#define ARM_BX_GLUE_ENTRY_NAME   "__bx_r%d"
 
 
#define STUB_ENTRY_NAME   "__%s_veneer"
#define STUB_ENTRY_NAME   "__%s_veneer"
 
 
/* The name of the dynamic interpreter.  This is put in the .interp
/* The name of the dynamic interpreter.  This is put in the .interp
   section.  */
   section.  */
#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
 
 
static const unsigned long tls_trampoline [] =
static const unsigned long tls_trampoline [] =
  {
  {
    0xe08e0000,         /* add r0, lr, r0 */
    0xe08e0000,         /* add r0, lr, r0 */
    0xe5901004,         /* ldr r1, [r0,#4] */
    0xe5901004,         /* ldr r1, [r0,#4] */
    0xe12fff11,         /* bx  r1 */
    0xe12fff11,         /* bx  r1 */
  };
  };
 
 
static const unsigned long dl_tlsdesc_lazy_trampoline [] =
static const unsigned long dl_tlsdesc_lazy_trampoline [] =
  {
  {
    0xe52d2004, /*      push    {r2}                    */
    0xe52d2004, /*      push    {r2}                    */
    0xe59f200c, /*      ldr     r2, [pc, #3f - . - 8]   */
    0xe59f200c, /*      ldr     r2, [pc, #3f - . - 8]   */
    0xe59f100c, /*      ldr     r1, [pc, #4f - . - 8]   */
    0xe59f100c, /*      ldr     r1, [pc, #4f - . - 8]   */
    0xe79f2002, /* 1:   ldr     r2, [pc, r2]            */
    0xe79f2002, /* 1:   ldr     r2, [pc, r2]            */
    0xe081100f, /* 2:   add     r1, pc                  */
    0xe081100f, /* 2:   add     r1, pc                  */
    0xe12fff12, /*      bx      r2                      */
    0xe12fff12, /*      bx      r2                      */
    0x00000014, /* 3:   .word  _GLOBAL_OFFSET_TABLE_ - 1b - 8
    0x00000014, /* 3:   .word  _GLOBAL_OFFSET_TABLE_ - 1b - 8
                                + dl_tlsdesc_lazy_resolver(GOT)   */
                                + dl_tlsdesc_lazy_resolver(GOT)   */
    0x00000018, /* 4:   .word  _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
    0x00000018, /* 4:   .word  _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
  };
  };
 
 
#ifdef FOUR_WORD_PLT
#ifdef FOUR_WORD_PLT
 
 
/* The first entry in a procedure linkage table looks like
/* The first entry in a procedure linkage table looks like
   this.  It is set up so that any shared library function that is
   this.  It is set up so that any shared library function that is
   called before the relocation has been set up calls the dynamic
   called before the relocation has been set up calls the dynamic
   linker first.  */
   linker first.  */
static const bfd_vma elf32_arm_plt0_entry [] =
static const bfd_vma elf32_arm_plt0_entry [] =
  {
  {
    0xe52de004,         /* str   lr, [sp, #-4]! */
    0xe52de004,         /* str   lr, [sp, #-4]! */
    0xe59fe010,         /* ldr   lr, [pc, #16]  */
    0xe59fe010,         /* ldr   lr, [pc, #16]  */
    0xe08fe00e,         /* add   lr, pc, lr     */
    0xe08fe00e,         /* add   lr, pc, lr     */
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
  };
  };
 
 
/* Subsequent entries in a procedure linkage table look like
/* Subsequent entries in a procedure linkage table look like
   this.  */
   this.  */
static const bfd_vma elf32_arm_plt_entry [] =
static const bfd_vma elf32_arm_plt_entry [] =
  {
  {
    0xe28fc600,         /* add   ip, pc, #NN    */
    0xe28fc600,         /* add   ip, pc, #NN    */
    0xe28cca00,         /* add   ip, ip, #NN    */
    0xe28cca00,         /* add   ip, ip, #NN    */
    0xe5bcf000,         /* ldr   pc, [ip, #NN]! */
    0xe5bcf000,         /* ldr   pc, [ip, #NN]! */
    0x00000000,         /* unused               */
    0x00000000,         /* unused               */
  };
  };
 
 
#else
#else
 
 
/* The first entry in a procedure linkage table looks like
/* The first entry in a procedure linkage table looks like
   this.  It is set up so that any shared library function that is
   this.  It is set up so that any shared library function that is
   called before the relocation has been set up calls the dynamic
   called before the relocation has been set up calls the dynamic
   linker first.  */
   linker first.  */
static const bfd_vma elf32_arm_plt0_entry [] =
static const bfd_vma elf32_arm_plt0_entry [] =
  {
  {
    0xe52de004,         /* str   lr, [sp, #-4]! */
    0xe52de004,         /* str   lr, [sp, #-4]! */
    0xe59fe004,         /* ldr   lr, [pc, #4]   */
    0xe59fe004,         /* ldr   lr, [pc, #4]   */
    0xe08fe00e,         /* add   lr, pc, lr     */
    0xe08fe00e,         /* add   lr, pc, lr     */
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
    0xe5bef008,         /* ldr   pc, [lr, #8]!  */
    0x00000000,         /* &GOT[0] - .          */
    0x00000000,         /* &GOT[0] - .          */
  };
  };
 
 
/* Subsequent entries in a procedure linkage table look like
/* Subsequent entries in a procedure linkage table look like
   this.  */
   this.  */
static const bfd_vma elf32_arm_plt_entry [] =
static const bfd_vma elf32_arm_plt_entry [] =
  {
  {
    0xe28fc600,         /* add   ip, pc, #0xNN00000 */
    0xe28fc600,         /* add   ip, pc, #0xNN00000 */
    0xe28cca00,         /* add   ip, ip, #0xNN000   */
    0xe28cca00,         /* add   ip, ip, #0xNN000   */
    0xe5bcf000,         /* ldr   pc, [ip, #0xNNN]!  */
    0xe5bcf000,         /* ldr   pc, [ip, #0xNNN]!  */
  };
  };
 
 
#endif
#endif
 
 
/* The format of the first entry in the procedure linkage table
/* The format of the first entry in the procedure linkage table
   for a VxWorks executable.  */
   for a VxWorks executable.  */
static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
  {
  {
    0xe52dc008,         /* str    ip,[sp,#-8]!                  */
    0xe52dc008,         /* str    ip,[sp,#-8]!                  */
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe59cf008,         /* ldr    pc,[ip,#8]                    */
    0xe59cf008,         /* ldr    pc,[ip,#8]                    */
    0x00000000,         /* .long  _GLOBAL_OFFSET_TABLE_         */
    0x00000000,         /* .long  _GLOBAL_OFFSET_TABLE_         */
  };
  };
 
 
/* The format of subsequent entries in a VxWorks executable.  */
/* The format of subsequent entries in a VxWorks executable.  */
static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
  {
  {
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe59cf000,         /* ldr    pc,[ip]                       */
    0xe59cf000,         /* ldr    pc,[ip]                       */
    0x00000000,         /* .long  @got                          */
    0x00000000,         /* .long  @got                          */
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xea000000,         /* b      _PLT                          */
    0xea000000,         /* b      _PLT                          */
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
  };
  };
 
 
/* The format of entries in a VxWorks shared library.  */
/* The format of entries in a VxWorks shared library.  */
static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
  {
  {
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe79cf009,         /* ldr    pc,[ip,r9]                    */
    0xe79cf009,         /* ldr    pc,[ip,r9]                    */
    0x00000000,         /* .long  @got                          */
    0x00000000,         /* .long  @got                          */
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe59fc000,         /* ldr    ip,[pc]                       */
    0xe599f008,         /* ldr    pc,[r9,#8]                    */
    0xe599f008,         /* ldr    pc,[r9,#8]                    */
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
    0x00000000,         /* .long  @pltindex*sizeof(Elf32_Rela)  */
  };
  };
 
 
/* An initial stub used if the PLT entry is referenced from Thumb code.  */
/* An initial stub used if the PLT entry is referenced from Thumb code.  */
#define PLT_THUMB_STUB_SIZE 4
#define PLT_THUMB_STUB_SIZE 4
static const bfd_vma elf32_arm_plt_thumb_stub [] =
static const bfd_vma elf32_arm_plt_thumb_stub [] =
  {
  {
    0x4778,             /* bx pc */
    0x4778,             /* bx pc */
    0x46c0              /* nop   */
    0x46c0              /* nop   */
  };
  };
 
 
/* The entries in a PLT when using a DLL-based target with multiple
/* The entries in a PLT when using a DLL-based target with multiple
   address spaces.  */
   address spaces.  */
static const bfd_vma elf32_arm_symbian_plt_entry [] =
static const bfd_vma elf32_arm_symbian_plt_entry [] =
  {
  {
    0xe51ff004,         /* ldr   pc, [pc, #-4] */
    0xe51ff004,         /* ldr   pc, [pc, #-4] */
    0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
    0x00000000,         /* dcd   R_ARM_GLOB_DAT(X) */
  };
  };
 
 
#define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
#define ARM_MAX_FWD_BRANCH_OFFSET  ((((1 << 23) - 1) << 2) + 8)
#define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
#define ARM_MAX_BWD_BRANCH_OFFSET  ((-((1 << 23) << 2)) + 8)
#define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
#define THM_MAX_FWD_BRANCH_OFFSET  ((1 << 22) -2 + 4)
#define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
#define THM_MAX_BWD_BRANCH_OFFSET  (-(1 << 22) + 4)
#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
 
 
enum stub_insn_type
enum stub_insn_type
  {
  {
    THUMB16_TYPE = 1,
    THUMB16_TYPE = 1,
    THUMB32_TYPE,
    THUMB32_TYPE,
    ARM_TYPE,
    ARM_TYPE,
    DATA_TYPE
    DATA_TYPE
  };
  };
 
 
#define THUMB16_INSN(X)         {(X), THUMB16_TYPE, R_ARM_NONE, 0}
#define THUMB16_INSN(X)         {(X), THUMB16_TYPE, R_ARM_NONE, 0}
/* A bit of a hack.  A Thumb conditional branch, in which the proper condition
/* A bit of a hack.  A Thumb conditional branch, in which the proper condition
   is inserted in arm_build_one_stub().  */
   is inserted in arm_build_one_stub().  */
#define THUMB16_BCOND_INSN(X)   {(X), THUMB16_TYPE, R_ARM_NONE, 1}
#define THUMB16_BCOND_INSN(X)   {(X), THUMB16_TYPE, R_ARM_NONE, 1}
#define THUMB32_INSN(X)         {(X), THUMB32_TYPE, R_ARM_NONE, 0}
#define THUMB32_INSN(X)         {(X), THUMB32_TYPE, R_ARM_NONE, 0}
#define THUMB32_B_INSN(X, Z)    {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
#define THUMB32_B_INSN(X, Z)    {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
#define ARM_INSN(X)             {(X), ARM_TYPE, R_ARM_NONE, 0}
#define ARM_INSN(X)             {(X), ARM_TYPE, R_ARM_NONE, 0}
#define ARM_REL_INSN(X, Z)      {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
#define ARM_REL_INSN(X, Z)      {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
#define DATA_WORD(X,Y,Z)        {(X), DATA_TYPE, (Y), (Z)}
#define DATA_WORD(X,Y,Z)        {(X), DATA_TYPE, (Y), (Z)}
 
 
typedef struct
typedef struct
{
{
  bfd_vma data;
  bfd_vma data;
  enum stub_insn_type type;
  enum stub_insn_type type;
  unsigned int r_type;
  unsigned int r_type;
  int reloc_addend;
  int reloc_addend;
}  insn_sequence;
}  insn_sequence;
 
 
/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
   to reach the stub if necessary.  */
   to reach the stub if necessary.  */
static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
  {
  {
    ARM_INSN(0xe51ff004),            /* ldr   pc, [pc, #-4] */
    ARM_INSN(0xe51ff004),            /* ldr   pc, [pc, #-4] */
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
  };
  };
 
 
/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
   available.  */
   available.  */
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
  {
  {
    ARM_INSN(0xe59fc000),            /* ldr   ip, [pc, #0] */
    ARM_INSN(0xe59fc000),            /* ldr   ip, [pc, #0] */
    ARM_INSN(0xe12fff1c),            /* bx    ip */
    ARM_INSN(0xe12fff1c),            /* bx    ip */
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
    DATA_WORD(0, R_ARM_ABS32, 0),    /* dcd   R_ARM_ABS32(X) */
  };
  };
 
 
/* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
/* Thumb -> Thumb long branch stub. Used on M-profile architectures.  */
static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
  {
  {
    THUMB16_INSN(0xb401),             /* push {r0} */
    THUMB16_INSN(0xb401),             /* push {r0} */
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
    THUMB16_INSN(0x4684),             /* mov  ip, r0 */
    THUMB16_INSN(0x4684),             /* mov  ip, r0 */
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
    THUMB16_INSN(0x4760),             /* bx   ip */
    THUMB16_INSN(0x4760),             /* bx   ip */
    THUMB16_INSN(0xbf00),             /* nop */
    THUMB16_INSN(0xbf00),             /* nop */
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
  };
  };
 
 
/* V4T Thumb -> Thumb long branch stub. Using the stack is not
/* V4T Thumb -> Thumb long branch stub. Using the stack is not
   allowed.  */
   allowed.  */
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
  {
  {
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x46c0),             /* nop */
    THUMB16_INSN(0x46c0),             /* nop */
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
    ARM_INSN(0xe12fff1c),             /* bx   ip */
    ARM_INSN(0xe12fff1c),             /* bx   ip */
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd  R_ARM_ABS32(X) */
  };
  };
 
 
/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
   available.  */
   available.  */
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
  {
  {
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x46c0),             /* nop   */
    THUMB16_INSN(0x46c0),             /* nop   */
    ARM_INSN(0xe51ff004),             /* ldr   pc, [pc, #-4] */
    ARM_INSN(0xe51ff004),             /* ldr   pc, [pc, #-4] */
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
    DATA_WORD(0, R_ARM_ABS32, 0),     /* dcd   R_ARM_ABS32(X) */
  };
  };
 
 
/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
   one, when the destination is close enough.  */
   one, when the destination is close enough.  */
static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
  {
  {
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x46c0),             /* nop   */
    THUMB16_INSN(0x46c0),             /* nop   */
    ARM_REL_INSN(0xea000000, -8),     /* b    (X-8) */
    ARM_REL_INSN(0xea000000, -8),     /* b    (X-8) */
  };
  };
 
 
/* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
/* ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
   blx to reach the stub if necessary.  */
   blx to reach the stub if necessary.  */
static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
  {
  {
    ARM_INSN(0xe59fc000),             /* ldr   ip, [pc] */
    ARM_INSN(0xe59fc000),             /* ldr   ip, [pc] */
    ARM_INSN(0xe08ff00c),             /* add   pc, pc, ip */
    ARM_INSN(0xe08ff00c),             /* add   pc, pc, ip */
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
  };
  };
 
 
/* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
/* ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
   blx to reach the stub if necessary.  We can not add into pc;
   blx to reach the stub if necessary.  We can not add into pc;
   it is not guaranteed to mode switch (different in ARMv6 and
   it is not guaranteed to mode switch (different in ARMv6 and
   ARMv7).  */
   ARMv7).  */
static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
  {
  {
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
    ARM_INSN(0xe12fff1c),             /* bx    ip */
    ARM_INSN(0xe12fff1c),             /* bx    ip */
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
  };
  };
 
 
/* V4T ARM -> ARM long branch stub, PIC.  */
/* V4T ARM -> ARM long branch stub, PIC.  */
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
  {
  {
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
    ARM_INSN(0xe59fc004),             /* ldr   ip, [pc, #4] */
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
    ARM_INSN(0xe12fff1c),             /* bx    ip */
    ARM_INSN(0xe12fff1c),             /* bx    ip */
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd   R_ARM_REL32(X) */
  };
  };
 
 
/* V4T Thumb -> ARM long branch stub, PIC.  */
/* V4T Thumb -> ARM long branch stub, PIC.  */
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
  {
  {
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x46c0),             /* nop  */
    THUMB16_INSN(0x46c0),             /* nop  */
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
    ARM_INSN(0xe59fc000),             /* ldr  ip, [pc, #0] */
    ARM_INSN(0xe08cf00f),             /* add  pc, ip, pc */
    ARM_INSN(0xe08cf00f),             /* add  pc, ip, pc */
    DATA_WORD(0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
    DATA_WORD(0, R_ARM_REL32, -4),     /* dcd  R_ARM_REL32(X) */
  };
  };
 
 
/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
   architectures.  */
   architectures.  */
static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
  {
  {
    THUMB16_INSN(0xb401),             /* push {r0} */
    THUMB16_INSN(0xb401),             /* push {r0} */
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
    THUMB16_INSN(0x4802),             /* ldr  r0, [pc, #8] */
    THUMB16_INSN(0x46fc),             /* mov  ip, pc */
    THUMB16_INSN(0x46fc),             /* mov  ip, pc */
    THUMB16_INSN(0x4484),             /* add  ip, r0 */
    THUMB16_INSN(0x4484),             /* add  ip, r0 */
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
    THUMB16_INSN(0xbc01),             /* pop  {r0} */
    THUMB16_INSN(0x4760),             /* bx   ip */
    THUMB16_INSN(0x4760),             /* bx   ip */
    DATA_WORD(0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
    DATA_WORD(0, R_ARM_REL32, 4),     /* dcd  R_ARM_REL32(X) */
  };
  };
 
 
/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
   allowed.  */
   allowed.  */
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
  {
  {
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x46c0),             /* nop */
    THUMB16_INSN(0x46c0),             /* nop */
    ARM_INSN(0xe59fc004),             /* ldr  ip, [pc, #4] */
    ARM_INSN(0xe59fc004),             /* ldr  ip, [pc, #4] */
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
    ARM_INSN(0xe08fc00c),             /* add   ip, pc, ip */
    ARM_INSN(0xe12fff1c),             /* bx   ip */
    ARM_INSN(0xe12fff1c),             /* bx   ip */
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
    DATA_WORD(0, R_ARM_REL32, 0),     /* dcd  R_ARM_REL32(X) */
  };
  };
 
 
/* Thumb2/ARM -> TLS trampoline.  Lowest common denominator, which is a
/* Thumb2/ARM -> TLS trampoline.  Lowest common denominator, which is a
   long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
   long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
{
{
    ARM_INSN(0xe59f1000),             /* ldr   r1, [pc] */
    ARM_INSN(0xe59f1000),             /* ldr   r1, [pc] */
    ARM_INSN(0xe08ff001),             /* add   pc, pc, r1 */
    ARM_INSN(0xe08ff001),             /* add   pc, pc, r1 */
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd   R_ARM_REL32(X-4) */
};
};
 
 
/* V4T Thumb -> TLS trampoline.  lowest common denominator, which is a
/* V4T Thumb -> TLS trampoline.  lowest common denominator, which is a
   long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
   long PIC stub.  We can use r1 as a scratch -- and cannot use ip.  */
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
{
{
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x4778),             /* bx   pc */
    THUMB16_INSN(0x46c0),             /* nop */
    THUMB16_INSN(0x46c0),             /* nop */
    ARM_INSN(0xe59f1000),             /* ldr  r1, [pc, #0] */
    ARM_INSN(0xe59f1000),             /* ldr  r1, [pc, #0] */
    ARM_INSN(0xe081f00f),             /* add  pc, r1, pc */
    ARM_INSN(0xe081f00f),             /* add  pc, r1, pc */
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd  R_ARM_REL32(X) */
    DATA_WORD(0, R_ARM_REL32, -4),    /* dcd  R_ARM_REL32(X) */
};
};
 
 
/* Cortex-A8 erratum-workaround stubs.  */
/* Cortex-A8 erratum-workaround stubs.  */
 
 
/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
   can't use a conditional branch to reach this stub).  */
   can't use a conditional branch to reach this stub).  */
 
 
static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
  {
  {
    THUMB16_BCOND_INSN(0xd001),         /* b<cond>.n true.  */
    THUMB16_BCOND_INSN(0xd001),         /* b<cond>.n true.  */
    THUMB32_B_INSN(0xf000b800, -4),     /* b.w insn_after_original_branch.  */
    THUMB32_B_INSN(0xf000b800, -4),     /* b.w insn_after_original_branch.  */
    THUMB32_B_INSN(0xf000b800, -4)      /* true: b.w original_branch_dest.  */
    THUMB32_B_INSN(0xf000b800, -4)      /* true: b.w original_branch_dest.  */
  };
  };
 
 
/* Stub used for b.w and bl.w instructions.  */
/* Stub used for b.w and bl.w instructions.  */
 
 
static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
  {
  {
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
  };
  };
 
 
static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
  {
  {
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
    THUMB32_B_INSN(0xf000b800, -4)      /* b.w original_branch_dest.  */
  };
  };
 
 
/* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
/* Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
   instruction (which switches to ARM mode) to point to this stub.  Jump to the
   instruction (which switches to ARM mode) to point to this stub.  Jump to the
   real destination using an ARM-mode branch.  */
   real destination using an ARM-mode branch.  */
 
 
static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
  {
  {
    ARM_REL_INSN(0xea000000, -8)        /* b original_branch_dest.  */
    ARM_REL_INSN(0xea000000, -8)        /* b original_branch_dest.  */
  };
  };
 
 
/* Section name for stubs is the associated section name plus this
/* For each section group there can be a specially created linker section
   string.  */
   to hold the stubs for that group.  The name of the stub section is based
#define STUB_SUFFIX ".stub"
   upon the name of another section within that group with the suffix below
 
   applied.
 
 
 
   PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
 
   create what appeared to be a linker stub section when it actually
 
   contained user code/data.  For example, consider this fragment:
 
 
 
     const char * stubborn_problems[] = { "np" };
 
 
 
   If this is compiled with "-fPIC -fdata-sections" then gcc produces a
 
   section called:
 
 
 
     .data.rel.local.stubborn_problems
 
 
 
   This then causes problems in arm32_arm_build_stubs() as it triggers:
 
 
 
      // Ignore non-stub sections.
 
      if (!strstr (stub_sec->name, STUB_SUFFIX))
 
        continue;
 
 
 
   And so the section would be ignored instead of being processed.  Hence
 
   the change in definition of STUB_SUFFIX to a name that cannot be a valid
 
   C identifier.  */
 
#define STUB_SUFFIX ".__stub"
 
 
/* One entry per long/short branch stub defined above.  */
/* One entry per long/short branch stub defined above.  */
#define DEF_STUBS \
#define DEF_STUBS \
  DEF_STUB(long_branch_any_any) \
  DEF_STUB(long_branch_any_any) \
  DEF_STUB(long_branch_v4t_arm_thumb) \
  DEF_STUB(long_branch_v4t_arm_thumb) \
  DEF_STUB(long_branch_thumb_only) \
  DEF_STUB(long_branch_thumb_only) \
  DEF_STUB(long_branch_v4t_thumb_thumb) \
  DEF_STUB(long_branch_v4t_thumb_thumb) \
  DEF_STUB(long_branch_v4t_thumb_arm) \
  DEF_STUB(long_branch_v4t_thumb_arm) \
  DEF_STUB(short_branch_v4t_thumb_arm) \
  DEF_STUB(short_branch_v4t_thumb_arm) \
  DEF_STUB(long_branch_any_arm_pic) \
  DEF_STUB(long_branch_any_arm_pic) \
  DEF_STUB(long_branch_any_thumb_pic) \
  DEF_STUB(long_branch_any_thumb_pic) \
  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
  DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
  DEF_STUB(long_branch_v4t_arm_thumb_pic) \
  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
  DEF_STUB(long_branch_v4t_thumb_arm_pic) \
  DEF_STUB(long_branch_thumb_only_pic) \
  DEF_STUB(long_branch_thumb_only_pic) \
  DEF_STUB(long_branch_any_tls_pic) \
  DEF_STUB(long_branch_any_tls_pic) \
  DEF_STUB(long_branch_v4t_thumb_tls_pic) \
  DEF_STUB(long_branch_v4t_thumb_tls_pic) \
  DEF_STUB(a8_veneer_b_cond) \
  DEF_STUB(a8_veneer_b_cond) \
  DEF_STUB(a8_veneer_b) \
  DEF_STUB(a8_veneer_b) \
  DEF_STUB(a8_veneer_bl) \
  DEF_STUB(a8_veneer_bl) \
  DEF_STUB(a8_veneer_blx)
  DEF_STUB(a8_veneer_blx)
 
 
#define DEF_STUB(x) arm_stub_##x,
#define DEF_STUB(x) arm_stub_##x,
enum elf32_arm_stub_type {
enum elf32_arm_stub_type {
  arm_stub_none,
  arm_stub_none,
  DEF_STUBS
  DEF_STUBS
  /* Note the first a8_veneer type */
  /* Note the first a8_veneer type */
  arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
  arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
};
};
#undef DEF_STUB
#undef DEF_STUB
 
 
typedef struct
typedef struct
{
{
  const insn_sequence* template_sequence;
  const insn_sequence* template_sequence;
  int template_size;
  int template_size;
} stub_def;
} stub_def;
 
 
#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
static const stub_def stub_definitions[] = {
static const stub_def stub_definitions[] = {
  {NULL, 0},
  {NULL, 0},
  DEF_STUBS
  DEF_STUBS
};
};
 
 
struct elf32_arm_stub_hash_entry
struct elf32_arm_stub_hash_entry
{
{
  /* Base hash table entry structure.  */
  /* Base hash table entry structure.  */
  struct bfd_hash_entry root;
  struct bfd_hash_entry root;
 
 
  /* The stub section.  */
  /* The stub section.  */
  asection *stub_sec;
  asection *stub_sec;
 
 
  /* Offset within stub_sec of the beginning of this stub.  */
  /* Offset within stub_sec of the beginning of this stub.  */
  bfd_vma stub_offset;
  bfd_vma stub_offset;
 
 
  /* Given the symbol's value and its section we can determine its final
  /* Given the symbol's value and its section we can determine its final
     value when building the stubs (so the stub knows where to jump).  */
     value when building the stubs (so the stub knows where to jump).  */
  bfd_vma target_value;
  bfd_vma target_value;
  asection *target_section;
  asection *target_section;
 
 
  /* Offset to apply to relocation referencing target_value.  */
  /* Offset to apply to relocation referencing target_value.  */
  bfd_vma target_addend;
  bfd_vma target_addend;
 
 
  /* The instruction which caused this stub to be generated (only valid for
  /* The instruction which caused this stub to be generated (only valid for
     Cortex-A8 erratum workaround stubs at present).  */
     Cortex-A8 erratum workaround stubs at present).  */
  unsigned long orig_insn;
  unsigned long orig_insn;
 
 
  /* The stub type.  */
  /* The stub type.  */
  enum elf32_arm_stub_type stub_type;
  enum elf32_arm_stub_type stub_type;
  /* Its encoding size in bytes.  */
  /* Its encoding size in bytes.  */
  int stub_size;
  int stub_size;
  /* Its template.  */
  /* Its template.  */
  const insn_sequence *stub_template;
  const insn_sequence *stub_template;
  /* The size of the template (number of entries).  */
  /* The size of the template (number of entries).  */
  int stub_template_size;
  int stub_template_size;
 
 
  /* The symbol table entry, if any, that this was derived from.  */
  /* The symbol table entry, if any, that this was derived from.  */
  struct elf32_arm_link_hash_entry *h;
  struct elf32_arm_link_hash_entry *h;
 
 
  /* Type of branch.  */
  /* Type of branch.  */
  enum arm_st_branch_type branch_type;
  enum arm_st_branch_type branch_type;
 
 
  /* Where this stub is being called from, or, in the case of combined
  /* Where this stub is being called from, or, in the case of combined
     stub sections, the first input section in the group.  */
     stub sections, the first input section in the group.  */
  asection *id_sec;
  asection *id_sec;
 
 
  /* The name for the local symbol at the start of this stub.  The
  /* The name for the local symbol at the start of this stub.  The
     stub name in the hash table has to be unique; this does not, so
     stub name in the hash table has to be unique; this does not, so
     it can be friendlier.  */
     it can be friendlier.  */
  char *output_name;
  char *output_name;
};
};
 
 
/* Used to build a map of a section.  This is required for mixed-endian
/* Used to build a map of a section.  This is required for mixed-endian
   code/data.  */
   code/data.  */
 
 
typedef struct elf32_elf_section_map
typedef struct elf32_elf_section_map
{
{
  bfd_vma vma;
  bfd_vma vma;
  char type;
  char type;
}
}
elf32_arm_section_map;
elf32_arm_section_map;
 
 
/* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
/* Information about a VFP11 erratum veneer, or a branch to such a veneer.  */
 
 
typedef enum
typedef enum
{
{
  VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
  VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
  VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
  VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
  VFP11_ERRATUM_ARM_VENEER,
  VFP11_ERRATUM_ARM_VENEER,
  VFP11_ERRATUM_THUMB_VENEER
  VFP11_ERRATUM_THUMB_VENEER
}
}
elf32_vfp11_erratum_type;
elf32_vfp11_erratum_type;
 
 
typedef struct elf32_vfp11_erratum_list
typedef struct elf32_vfp11_erratum_list
{
{
  struct elf32_vfp11_erratum_list *next;
  struct elf32_vfp11_erratum_list *next;
  bfd_vma vma;
  bfd_vma vma;
  union
  union
  {
  {
    struct
    struct
    {
    {
      struct elf32_vfp11_erratum_list *veneer;
      struct elf32_vfp11_erratum_list *veneer;
      unsigned int vfp_insn;
      unsigned int vfp_insn;
    } b;
    } b;
    struct
    struct
    {
    {
      struct elf32_vfp11_erratum_list *branch;
      struct elf32_vfp11_erratum_list *branch;
      unsigned int id;
      unsigned int id;
    } v;
    } v;
  } u;
  } u;
  elf32_vfp11_erratum_type type;
  elf32_vfp11_erratum_type type;
}
}
elf32_vfp11_erratum_list;
elf32_vfp11_erratum_list;
 
 
typedef enum
typedef enum
{
{
  DELETE_EXIDX_ENTRY,
  DELETE_EXIDX_ENTRY,
  INSERT_EXIDX_CANTUNWIND_AT_END
  INSERT_EXIDX_CANTUNWIND_AT_END
}
}
arm_unwind_edit_type;
arm_unwind_edit_type;
 
 
/* A (sorted) list of edits to apply to an unwind table.  */
/* A (sorted) list of edits to apply to an unwind table.  */
typedef struct arm_unwind_table_edit
typedef struct arm_unwind_table_edit
{
{
  arm_unwind_edit_type type;
  arm_unwind_edit_type type;
  /* Note: we sometimes want to insert an unwind entry corresponding to a
  /* Note: we sometimes want to insert an unwind entry corresponding to a
     section different from the one we're currently writing out, so record the
     section different from the one we're currently writing out, so record the
     (text) section this edit relates to here.  */
     (text) section this edit relates to here.  */
  asection *linked_section;
  asection *linked_section;
  unsigned int index;
  unsigned int index;
  struct arm_unwind_table_edit *next;
  struct arm_unwind_table_edit *next;
}
}
arm_unwind_table_edit;
arm_unwind_table_edit;
 
 
typedef struct _arm_elf_section_data
typedef struct _arm_elf_section_data
{
{
  /* Information about mapping symbols.  */
  /* Information about mapping symbols.  */
  struct bfd_elf_section_data elf;
  struct bfd_elf_section_data elf;
  unsigned int mapcount;
  unsigned int mapcount;
  unsigned int mapsize;
  unsigned int mapsize;
  elf32_arm_section_map *map;
  elf32_arm_section_map *map;
  /* Information about CPU errata.  */
  /* Information about CPU errata.  */
  unsigned int erratumcount;
  unsigned int erratumcount;
  elf32_vfp11_erratum_list *erratumlist;
  elf32_vfp11_erratum_list *erratumlist;
  /* Information about unwind tables.  */
  /* Information about unwind tables.  */
  union
  union
  {
  {
    /* Unwind info attached to a text section.  */
    /* Unwind info attached to a text section.  */
    struct
    struct
    {
    {
      asection *arm_exidx_sec;
      asection *arm_exidx_sec;
    } text;
    } text;
 
 
    /* Unwind info attached to an .ARM.exidx section.  */
    /* Unwind info attached to an .ARM.exidx section.  */
    struct
    struct
    {
    {
      arm_unwind_table_edit *unwind_edit_list;
      arm_unwind_table_edit *unwind_edit_list;
      arm_unwind_table_edit *unwind_edit_tail;
      arm_unwind_table_edit *unwind_edit_tail;
    } exidx;
    } exidx;
  } u;
  } u;
}
}
_arm_elf_section_data;
_arm_elf_section_data;
 
 
#define elf32_arm_section_data(sec) \
#define elf32_arm_section_data(sec) \
  ((_arm_elf_section_data *) elf_section_data (sec))
  ((_arm_elf_section_data *) elf_section_data (sec))
 
 
/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
   These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
   These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
   so may be created multiple times: we use an array of these entries whilst
   so may be created multiple times: we use an array of these entries whilst
   relaxing which we can refresh easily, then create stubs for each potentially
   relaxing which we can refresh easily, then create stubs for each potentially
   erratum-triggering instruction once we've settled on a solution.  */
   erratum-triggering instruction once we've settled on a solution.  */
 
 
struct a8_erratum_fix {
struct a8_erratum_fix {
  bfd *input_bfd;
  bfd *input_bfd;
  asection *section;
  asection *section;
  bfd_vma offset;
  bfd_vma offset;
  bfd_vma addend;
  bfd_vma addend;
  unsigned long orig_insn;
  unsigned long orig_insn;
  char *stub_name;
  char *stub_name;
  enum elf32_arm_stub_type stub_type;
  enum elf32_arm_stub_type stub_type;
  enum arm_st_branch_type branch_type;
  enum arm_st_branch_type branch_type;
};
};
 
 
/* A table of relocs applied to branches which might trigger Cortex-A8
/* A table of relocs applied to branches which might trigger Cortex-A8
   erratum.  */
   erratum.  */
 
 
struct a8_erratum_reloc {
struct a8_erratum_reloc {
  bfd_vma from;
  bfd_vma from;
  bfd_vma destination;
  bfd_vma destination;
  struct elf32_arm_link_hash_entry *hash;
  struct elf32_arm_link_hash_entry *hash;
  const char *sym_name;
  const char *sym_name;
  unsigned int r_type;
  unsigned int r_type;
  enum arm_st_branch_type branch_type;
  enum arm_st_branch_type branch_type;
  bfd_boolean non_a8_stub;
  bfd_boolean non_a8_stub;
};
};
 
 
/* The size of the thread control block.  */
/* The size of the thread control block.  */
#define TCB_SIZE        8
#define TCB_SIZE        8
 
 
/* ARM-specific information about a PLT entry, over and above the usual
/* ARM-specific information about a PLT entry, over and above the usual
   gotplt_union.  */
   gotplt_union.  */
struct arm_plt_info {
struct arm_plt_info {
  /* We reference count Thumb references to a PLT entry separately,
  /* We reference count Thumb references to a PLT entry separately,
     so that we can emit the Thumb trampoline only if needed.  */
     so that we can emit the Thumb trampoline only if needed.  */
  bfd_signed_vma thumb_refcount;
  bfd_signed_vma thumb_refcount;
 
 
  /* Some references from Thumb code may be eliminated by BL->BLX
  /* Some references from Thumb code may be eliminated by BL->BLX
     conversion, so record them separately.  */
     conversion, so record them separately.  */
  bfd_signed_vma maybe_thumb_refcount;
  bfd_signed_vma maybe_thumb_refcount;
 
 
  /* How many of the recorded PLT accesses were from non-call relocations.
  /* How many of the recorded PLT accesses were from non-call relocations.
     This information is useful when deciding whether anything takes the
     This information is useful when deciding whether anything takes the
     address of an STT_GNU_IFUNC PLT.  A value of 0 means that all
     address of an STT_GNU_IFUNC PLT.  A value of 0 means that all
     non-call references to the function should resolve directly to the
     non-call references to the function should resolve directly to the
     real runtime target.  */
     real runtime target.  */
  unsigned int noncall_refcount;
  unsigned int noncall_refcount;
 
 
  /* Since PLT entries have variable size if the Thumb prologue is
  /* Since PLT entries have variable size if the Thumb prologue is
     used, we need to record the index into .got.plt instead of
     used, we need to record the index into .got.plt instead of
     recomputing it from the PLT offset.  */
     recomputing it from the PLT offset.  */
  bfd_signed_vma got_offset;
  bfd_signed_vma got_offset;
};
};
 
 
/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol.  */
/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol.  */
struct arm_local_iplt_info {
struct arm_local_iplt_info {
  /* The information that is usually found in the generic ELF part of
  /* The information that is usually found in the generic ELF part of
     the hash table entry.  */
     the hash table entry.  */
  union gotplt_union root;
  union gotplt_union root;
 
 
  /* The information that is usually found in the ARM-specific part of
  /* The information that is usually found in the ARM-specific part of
     the hash table entry.  */
     the hash table entry.  */
  struct arm_plt_info arm;
  struct arm_plt_info arm;
 
 
  /* A list of all potential dynamic relocations against this symbol.  */
  /* A list of all potential dynamic relocations against this symbol.  */
  struct elf_dyn_relocs *dyn_relocs;
  struct elf_dyn_relocs *dyn_relocs;
};
};
 
 
struct elf_arm_obj_tdata
struct elf_arm_obj_tdata
{
{
  struct elf_obj_tdata root;
  struct elf_obj_tdata root;
 
 
  /* tls_type for each local got entry.  */
  /* tls_type for each local got entry.  */
  char *local_got_tls_type;
  char *local_got_tls_type;
 
 
  /* GOTPLT entries for TLS descriptors.  */
  /* GOTPLT entries for TLS descriptors.  */
  bfd_vma *local_tlsdesc_gotent;
  bfd_vma *local_tlsdesc_gotent;
 
 
  /* Information for local symbols that need entries in .iplt.  */
  /* Information for local symbols that need entries in .iplt.  */
  struct arm_local_iplt_info **local_iplt;
  struct arm_local_iplt_info **local_iplt;
 
 
  /* Zero to warn when linking objects with incompatible enum sizes.  */
  /* Zero to warn when linking objects with incompatible enum sizes.  */
  int no_enum_size_warning;
  int no_enum_size_warning;
 
 
  /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
  /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
  int no_wchar_size_warning;
  int no_wchar_size_warning;
};
};
 
 
#define elf_arm_tdata(bfd) \
#define elf_arm_tdata(bfd) \
  ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
  ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
 
 
#define elf32_arm_local_got_tls_type(bfd) \
#define elf32_arm_local_got_tls_type(bfd) \
  (elf_arm_tdata (bfd)->local_got_tls_type)
  (elf_arm_tdata (bfd)->local_got_tls_type)
 
 
#define elf32_arm_local_tlsdesc_gotent(bfd) \
#define elf32_arm_local_tlsdesc_gotent(bfd) \
  (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
  (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
 
 
#define elf32_arm_local_iplt(bfd) \
#define elf32_arm_local_iplt(bfd) \
  (elf_arm_tdata (bfd)->local_iplt)
  (elf_arm_tdata (bfd)->local_iplt)
 
 
#define is_arm_elf(bfd) \
#define is_arm_elf(bfd) \
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
   && elf_tdata (bfd) != NULL \
   && elf_tdata (bfd) != NULL \
   && elf_object_id (bfd) == ARM_ELF_DATA)
   && elf_object_id (bfd) == ARM_ELF_DATA)
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_mkobject (bfd *abfd)
elf32_arm_mkobject (bfd *abfd)
{
{
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
                                  ARM_ELF_DATA);
                                  ARM_ELF_DATA);
}
}
 
 
#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
 
 
/* Arm ELF linker hash entry.  */
/* Arm ELF linker hash entry.  */
struct elf32_arm_link_hash_entry
struct elf32_arm_link_hash_entry
  {
  {
    struct elf_link_hash_entry root;
    struct elf_link_hash_entry root;
 
 
    /* Track dynamic relocs copied for this symbol.  */
    /* Track dynamic relocs copied for this symbol.  */
    struct elf_dyn_relocs *dyn_relocs;
    struct elf_dyn_relocs *dyn_relocs;
 
 
    /* ARM-specific PLT information.  */
    /* ARM-specific PLT information.  */
    struct arm_plt_info plt;
    struct arm_plt_info plt;
 
 
#define GOT_UNKNOWN     0
#define GOT_UNKNOWN     0
#define GOT_NORMAL      1
#define GOT_NORMAL      1
#define GOT_TLS_GD      2
#define GOT_TLS_GD      2
#define GOT_TLS_IE      4
#define GOT_TLS_IE      4
#define GOT_TLS_GDESC   8
#define GOT_TLS_GDESC   8
#define GOT_TLS_GD_ANY_P(type)  ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
#define GOT_TLS_GD_ANY_P(type)  ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
    unsigned int tls_type : 8;
    unsigned int tls_type : 8;
 
 
    /* True if the symbol's PLT entry is in .iplt rather than .plt.  */
    /* True if the symbol's PLT entry is in .iplt rather than .plt.  */
    unsigned int is_iplt : 1;
    unsigned int is_iplt : 1;
 
 
    unsigned int unused : 23;
    unsigned int unused : 23;
 
 
    /* Offset of the GOTPLT entry reserved for the TLS descriptor,
    /* Offset of the GOTPLT entry reserved for the TLS descriptor,
       starting at the end of the jump table.  */
       starting at the end of the jump table.  */
    bfd_vma tlsdesc_got;
    bfd_vma tlsdesc_got;
 
 
    /* The symbol marking the real symbol location for exported thumb
    /* The symbol marking the real symbol location for exported thumb
       symbols with Arm stubs.  */
       symbols with Arm stubs.  */
    struct elf_link_hash_entry *export_glue;
    struct elf_link_hash_entry *export_glue;
 
 
   /* A pointer to the most recently used stub hash entry against this
   /* A pointer to the most recently used stub hash entry against this
     symbol.  */
     symbol.  */
    struct elf32_arm_stub_hash_entry *stub_cache;
    struct elf32_arm_stub_hash_entry *stub_cache;
  };
  };
 
 
/* Traverse an arm ELF linker hash table.  */
/* Traverse an arm ELF linker hash table.  */
#define elf32_arm_link_hash_traverse(table, func, info)                 \
#define elf32_arm_link_hash_traverse(table, func, info)                 \
  (elf_link_hash_traverse                                               \
  (elf_link_hash_traverse                                               \
   (&(table)->root,                                                     \
   (&(table)->root,                                                     \
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
    (info)))
    (info)))
 
 
/* Get the ARM elf linker hash table from a link_info structure.  */
/* Get the ARM elf linker hash table from a link_info structure.  */
#define elf32_arm_hash_table(info) \
#define elf32_arm_hash_table(info) \
  (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
  (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
  == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
  == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
 
 
#define arm_stub_hash_lookup(table, string, create, copy) \
#define arm_stub_hash_lookup(table, string, create, copy) \
  ((struct elf32_arm_stub_hash_entry *) \
  ((struct elf32_arm_stub_hash_entry *) \
   bfd_hash_lookup ((table), (string), (create), (copy)))
   bfd_hash_lookup ((table), (string), (create), (copy)))
 
 
/* Array to keep track of which stub sections have been created, and
/* Array to keep track of which stub sections have been created, and
   information on stub grouping.  */
   information on stub grouping.  */
struct map_stub
struct map_stub
{
{
  /* This is the section to which stubs in the group will be
  /* This is the section to which stubs in the group will be
     attached.  */
     attached.  */
  asection *link_sec;
  asection *link_sec;
  /* The stub section.  */
  /* The stub section.  */
  asection *stub_sec;
  asection *stub_sec;
};
};
 
 
#define elf32_arm_compute_jump_table_size(htab) \
#define elf32_arm_compute_jump_table_size(htab) \
  ((htab)->next_tls_desc_index * 4)
  ((htab)->next_tls_desc_index * 4)
 
 
/* ARM ELF linker hash table.  */
/* ARM ELF linker hash table.  */
struct elf32_arm_link_hash_table
struct elf32_arm_link_hash_table
{
{
  /* The main hash table.  */
  /* The main hash table.  */
  struct elf_link_hash_table root;
  struct elf_link_hash_table root;
 
 
  /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
  /* The size in bytes of the section containing the Thumb-to-ARM glue.  */
  bfd_size_type thumb_glue_size;
  bfd_size_type thumb_glue_size;
 
 
  /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
  /* The size in bytes of the section containing the ARM-to-Thumb glue.  */
  bfd_size_type arm_glue_size;
  bfd_size_type arm_glue_size;
 
 
  /* The size in bytes of section containing the ARMv4 BX veneers.  */
  /* The size in bytes of section containing the ARMv4 BX veneers.  */
  bfd_size_type bx_glue_size;
  bfd_size_type bx_glue_size;
 
 
  /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
  /* Offsets of ARMv4 BX veneers.  Bit1 set if present, and Bit0 set when
     veneer has been populated.  */
     veneer has been populated.  */
  bfd_vma bx_glue_offset[15];
  bfd_vma bx_glue_offset[15];
 
 
  /* The size in bytes of the section containing glue for VFP11 erratum
  /* The size in bytes of the section containing glue for VFP11 erratum
     veneers.  */
     veneers.  */
  bfd_size_type vfp11_erratum_glue_size;
  bfd_size_type vfp11_erratum_glue_size;
 
 
  /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
  /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum.  This
     holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
     holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
     elf32_arm_write_section().  */
     elf32_arm_write_section().  */
  struct a8_erratum_fix *a8_erratum_fixes;
  struct a8_erratum_fix *a8_erratum_fixes;
  unsigned int num_a8_erratum_fixes;
  unsigned int num_a8_erratum_fixes;
 
 
  /* An arbitrary input BFD chosen to hold the glue sections.  */
  /* An arbitrary input BFD chosen to hold the glue sections.  */
  bfd * bfd_of_glue_owner;
  bfd * bfd_of_glue_owner;
 
 
  /* Nonzero to output a BE8 image.  */
  /* Nonzero to output a BE8 image.  */
  int byteswap_code;
  int byteswap_code;
 
 
  /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
  /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
     Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
     Nonzero if R_ARM_TARGET1 means R_ARM_REL32.  */
  int target1_is_rel;
  int target1_is_rel;
 
 
  /* The relocation to use for R_ARM_TARGET2 relocations.  */
  /* The relocation to use for R_ARM_TARGET2 relocations.  */
  int target2_reloc;
  int target2_reloc;
 
 
  /* 0 = Ignore R_ARM_V4BX.
  /* 0 = Ignore R_ARM_V4BX.
     1 = Convert BX to MOV PC.
     1 = Convert BX to MOV PC.
     2 = Generate v4 interworing stubs.  */
     2 = Generate v4 interworing stubs.  */
  int fix_v4bx;
  int fix_v4bx;
 
 
  /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
  /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum.  */
  int fix_cortex_a8;
  int fix_cortex_a8;
 
 
  /* Whether we should fix the ARM1176 BLX immediate issue.  */
  /* Whether we should fix the ARM1176 BLX immediate issue.  */
  int fix_arm1176;
  int fix_arm1176;
 
 
  /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
  /* Nonzero if the ARM/Thumb BLX instructions are available for use.  */
  int use_blx;
  int use_blx;
 
 
  /* What sort of code sequences we should look for which may trigger the
  /* What sort of code sequences we should look for which may trigger the
     VFP11 denorm erratum.  */
     VFP11 denorm erratum.  */
  bfd_arm_vfp11_fix vfp11_fix;
  bfd_arm_vfp11_fix vfp11_fix;
 
 
  /* Global counter for the number of fixes we have emitted.  */
  /* Global counter for the number of fixes we have emitted.  */
  int num_vfp11_fixes;
  int num_vfp11_fixes;
 
 
  /* Nonzero to force PIC branch veneers.  */
  /* Nonzero to force PIC branch veneers.  */
  int pic_veneer;
  int pic_veneer;
 
 
  /* The number of bytes in the initial entry in the PLT.  */
  /* The number of bytes in the initial entry in the PLT.  */
  bfd_size_type plt_header_size;
  bfd_size_type plt_header_size;
 
 
  /* The number of bytes in the subsequent PLT etries.  */
  /* The number of bytes in the subsequent PLT etries.  */
  bfd_size_type plt_entry_size;
  bfd_size_type plt_entry_size;
 
 
  /* True if the target system is VxWorks.  */
  /* True if the target system is VxWorks.  */
  int vxworks_p;
  int vxworks_p;
 
 
  /* True if the target system is Symbian OS.  */
  /* True if the target system is Symbian OS.  */
  int symbian_p;
  int symbian_p;
 
 
  /* True if the target uses REL relocations.  */
  /* True if the target uses REL relocations.  */
  int use_rel;
  int use_rel;
 
 
  /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt.  */
  /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt.  */
  bfd_vma next_tls_desc_index;
  bfd_vma next_tls_desc_index;
 
 
  /* How many R_ARM_TLS_DESC relocations were generated so far.  */
  /* How many R_ARM_TLS_DESC relocations were generated so far.  */
  bfd_vma num_tls_desc;
  bfd_vma num_tls_desc;
 
 
  /* Short-cuts to get to dynamic linker sections.  */
  /* Short-cuts to get to dynamic linker sections.  */
  asection *sdynbss;
  asection *sdynbss;
  asection *srelbss;
  asection *srelbss;
 
 
  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
  /* The (unloaded but important) VxWorks .rela.plt.unloaded section.  */
  asection *srelplt2;
  asection *srelplt2;
 
 
  /* The offset into splt of the PLT entry for the TLS descriptor
  /* The offset into splt of the PLT entry for the TLS descriptor
     resolver.  Special values are 0, if not necessary (or not found
     resolver.  Special values are 0, if not necessary (or not found
     to be necessary yet), and -1 if needed but not determined
     to be necessary yet), and -1 if needed but not determined
     yet.  */
     yet.  */
  bfd_vma dt_tlsdesc_plt;
  bfd_vma dt_tlsdesc_plt;
 
 
  /* The offset into sgot of the GOT entry used by the PLT entry
  /* The offset into sgot of the GOT entry used by the PLT entry
     above.  */
     above.  */
  bfd_vma dt_tlsdesc_got;
  bfd_vma dt_tlsdesc_got;
 
 
  /* Offset in .plt section of tls_arm_trampoline.  */
  /* Offset in .plt section of tls_arm_trampoline.  */
  bfd_vma tls_trampoline;
  bfd_vma tls_trampoline;
 
 
  /* Data for R_ARM_TLS_LDM32 relocations.  */
  /* Data for R_ARM_TLS_LDM32 relocations.  */
  union
  union
  {
  {
    bfd_signed_vma refcount;
    bfd_signed_vma refcount;
    bfd_vma offset;
    bfd_vma offset;
  } tls_ldm_got;
  } tls_ldm_got;
 
 
  /* Small local sym cache.  */
  /* Small local sym cache.  */
  struct sym_cache sym_cache;
  struct sym_cache sym_cache;
 
 
  /* For convenience in allocate_dynrelocs.  */
  /* For convenience in allocate_dynrelocs.  */
  bfd * obfd;
  bfd * obfd;
 
 
  /* The amount of space used by the reserved portion of the sgotplt
  /* The amount of space used by the reserved portion of the sgotplt
     section, plus whatever space is used by the jump slots.  */
     section, plus whatever space is used by the jump slots.  */
  bfd_vma sgotplt_jump_table_size;
  bfd_vma sgotplt_jump_table_size;
 
 
  /* The stub hash table.  */
  /* The stub hash table.  */
  struct bfd_hash_table stub_hash_table;
  struct bfd_hash_table stub_hash_table;
 
 
  /* Linker stub bfd.  */
  /* Linker stub bfd.  */
  bfd *stub_bfd;
  bfd *stub_bfd;
 
 
  /* Linker call-backs.  */
  /* Linker call-backs.  */
  asection * (*add_stub_section) (const char *, asection *);
  asection * (*add_stub_section) (const char *, asection *);
  void (*layout_sections_again) (void);
  void (*layout_sections_again) (void);
 
 
  /* Array to keep track of which stub sections have been created, and
  /* Array to keep track of which stub sections have been created, and
     information on stub grouping.  */
     information on stub grouping.  */
  struct map_stub *stub_group;
  struct map_stub *stub_group;
 
 
  /* Number of elements in stub_group.  */
  /* Number of elements in stub_group.  */
  int top_id;
  int top_id;
 
 
  /* Assorted information used by elf32_arm_size_stubs.  */
  /* Assorted information used by elf32_arm_size_stubs.  */
  unsigned int bfd_count;
  unsigned int bfd_count;
  int top_index;
  int top_index;
  asection **input_list;
  asection **input_list;
};
};
 
 
/* Create an entry in an ARM ELF linker hash table.  */
/* Create an entry in an ARM ELF linker hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
                             struct bfd_hash_table * table,
                             struct bfd_hash_table * table,
                             const char * string)
                             const char * string)
{
{
  struct elf32_arm_link_hash_entry * ret =
  struct elf32_arm_link_hash_entry * ret =
    (struct elf32_arm_link_hash_entry *) entry;
    (struct elf32_arm_link_hash_entry *) entry;
 
 
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (ret == NULL)
  if (ret == NULL)
    ret = (struct elf32_arm_link_hash_entry *)
    ret = (struct elf32_arm_link_hash_entry *)
        bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
        bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
  if (ret == NULL)
  if (ret == NULL)
    return (struct bfd_hash_entry *) ret;
    return (struct bfd_hash_entry *) ret;
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  ret = ((struct elf32_arm_link_hash_entry *)
  ret = ((struct elf32_arm_link_hash_entry *)
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
                                     table, string));
                                     table, string));
  if (ret != NULL)
  if (ret != NULL)
    {
    {
      ret->dyn_relocs = NULL;
      ret->dyn_relocs = NULL;
      ret->tls_type = GOT_UNKNOWN;
      ret->tls_type = GOT_UNKNOWN;
      ret->tlsdesc_got = (bfd_vma) -1;
      ret->tlsdesc_got = (bfd_vma) -1;
      ret->plt.thumb_refcount = 0;
      ret->plt.thumb_refcount = 0;
      ret->plt.maybe_thumb_refcount = 0;
      ret->plt.maybe_thumb_refcount = 0;
      ret->plt.noncall_refcount = 0;
      ret->plt.noncall_refcount = 0;
      ret->plt.got_offset = -1;
      ret->plt.got_offset = -1;
      ret->is_iplt = FALSE;
      ret->is_iplt = FALSE;
      ret->export_glue = NULL;
      ret->export_glue = NULL;
 
 
      ret->stub_cache = NULL;
      ret->stub_cache = NULL;
    }
    }
 
 
  return (struct bfd_hash_entry *) ret;
  return (struct bfd_hash_entry *) ret;
}
}
 
 
/* Ensure that we have allocated bookkeeping structures for ABFD's local
/* Ensure that we have allocated bookkeeping structures for ABFD's local
   symbols.  */
   symbols.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_allocate_local_sym_info (bfd *abfd)
elf32_arm_allocate_local_sym_info (bfd *abfd)
{
{
  if (elf_local_got_refcounts (abfd) == NULL)
  if (elf_local_got_refcounts (abfd) == NULL)
    {
    {
      bfd_size_type num_syms;
      bfd_size_type num_syms;
      bfd_size_type size;
      bfd_size_type size;
      char *data;
      char *data;
 
 
      num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
      num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
      size = num_syms * (sizeof (bfd_signed_vma)
      size = num_syms * (sizeof (bfd_signed_vma)
                         + sizeof (struct arm_local_iplt_info *)
                         + sizeof (struct arm_local_iplt_info *)
                         + sizeof (bfd_vma)
                         + sizeof (bfd_vma)
                         + sizeof (char));
                         + sizeof (char));
      data = bfd_zalloc (abfd, size);
      data = bfd_zalloc (abfd, size);
      if (data == NULL)
      if (data == NULL)
        return FALSE;
        return FALSE;
 
 
      elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
      elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
      data += num_syms * sizeof (bfd_signed_vma);
      data += num_syms * sizeof (bfd_signed_vma);
 
 
      elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
      elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
      data += num_syms * sizeof (struct arm_local_iplt_info *);
      data += num_syms * sizeof (struct arm_local_iplt_info *);
 
 
      elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
      elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
      data += num_syms * sizeof (bfd_vma);
      data += num_syms * sizeof (bfd_vma);
 
 
      elf32_arm_local_got_tls_type (abfd) = data;
      elf32_arm_local_got_tls_type (abfd) = data;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the .iplt information for local symbol R_SYMNDX, which belongs
/* Return the .iplt information for local symbol R_SYMNDX, which belongs
   to input bfd ABFD.  Create the information if it doesn't already exist.
   to input bfd ABFD.  Create the information if it doesn't already exist.
   Return null if an allocation fails.  */
   Return null if an allocation fails.  */
 
 
static struct arm_local_iplt_info *
static struct arm_local_iplt_info *
elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
{
{
  struct arm_local_iplt_info **ptr;
  struct arm_local_iplt_info **ptr;
 
 
  if (!elf32_arm_allocate_local_sym_info (abfd))
  if (!elf32_arm_allocate_local_sym_info (abfd))
    return NULL;
    return NULL;
 
 
  BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
  BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
  ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
  ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
  if (*ptr == NULL)
  if (*ptr == NULL)
    *ptr = bfd_zalloc (abfd, sizeof (**ptr));
    *ptr = bfd_zalloc (abfd, sizeof (**ptr));
  return *ptr;
  return *ptr;
}
}
 
 
/* Try to obtain PLT information for the symbol with index R_SYMNDX
/* Try to obtain PLT information for the symbol with index R_SYMNDX
   in ABFD's symbol table.  If the symbol is global, H points to its
   in ABFD's symbol table.  If the symbol is global, H points to its
   hash table entry, otherwise H is null.
   hash table entry, otherwise H is null.
 
 
   Return true if the symbol does have PLT information.  When returning
   Return true if the symbol does have PLT information.  When returning
   true, point *ROOT_PLT at the target-independent reference count/offset
   true, point *ROOT_PLT at the target-independent reference count/offset
   union and *ARM_PLT at the ARM-specific information.  */
   union and *ARM_PLT at the ARM-specific information.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
                        unsigned long r_symndx, union gotplt_union **root_plt,
                        unsigned long r_symndx, union gotplt_union **root_plt,
                        struct arm_plt_info **arm_plt)
                        struct arm_plt_info **arm_plt)
{
{
  struct arm_local_iplt_info *local_iplt;
  struct arm_local_iplt_info *local_iplt;
 
 
  if (h != NULL)
  if (h != NULL)
    {
    {
      *root_plt = &h->root.plt;
      *root_plt = &h->root.plt;
      *arm_plt = &h->plt;
      *arm_plt = &h->plt;
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (elf32_arm_local_iplt (abfd) == NULL)
  if (elf32_arm_local_iplt (abfd) == NULL)
    return FALSE;
    return FALSE;
 
 
  local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
  local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
  if (local_iplt == NULL)
  if (local_iplt == NULL)
    return FALSE;
    return FALSE;
 
 
  *root_plt = &local_iplt->root;
  *root_plt = &local_iplt->root;
  *arm_plt = &local_iplt->arm;
  *arm_plt = &local_iplt->arm;
  return TRUE;
  return TRUE;
}
}
 
 
/* Return true if the PLT described by ARM_PLT requires a Thumb stub
/* Return true if the PLT described by ARM_PLT requires a Thumb stub
   before it.  */
   before it.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
                                  struct arm_plt_info *arm_plt)
                                  struct arm_plt_info *arm_plt)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  return (arm_plt->thumb_refcount != 0
  return (arm_plt->thumb_refcount != 0
          || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
          || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
}
}
 
 
/* Return a pointer to the head of the dynamic reloc list that should
/* Return a pointer to the head of the dynamic reloc list that should
   be used for local symbol ISYM, which is symbol number R_SYMNDX in
   be used for local symbol ISYM, which is symbol number R_SYMNDX in
   ABFD's symbol table.  Return null if an error occurs.  */
   ABFD's symbol table.  Return null if an error occurs.  */
 
 
static struct elf_dyn_relocs **
static struct elf_dyn_relocs **
elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
                                   Elf_Internal_Sym *isym)
                                   Elf_Internal_Sym *isym)
{
{
  if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
  if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
    {
    {
      struct arm_local_iplt_info *local_iplt;
      struct arm_local_iplt_info *local_iplt;
 
 
      local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
      local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
      if (local_iplt == NULL)
      if (local_iplt == NULL)
        return NULL;
        return NULL;
      return &local_iplt->dyn_relocs;
      return &local_iplt->dyn_relocs;
    }
    }
  else
  else
    {
    {
      /* Track dynamic relocs needed for local syms too.
      /* Track dynamic relocs needed for local syms too.
         We really need local syms available to do this
         We really need local syms available to do this
         easily.  Oh well.  */
         easily.  Oh well.  */
      asection *s;
      asection *s;
      void *vpp;
      void *vpp;
 
 
      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
      if (s == NULL)
      if (s == NULL)
        abort ();
        abort ();
 
 
      vpp = &elf_section_data (s)->local_dynrel;
      vpp = &elf_section_data (s)->local_dynrel;
      return (struct elf_dyn_relocs **) vpp;
      return (struct elf_dyn_relocs **) vpp;
    }
    }
}
}
 
 
/* Initialize an entry in the stub hash table.  */
/* Initialize an entry in the stub hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry,
stub_hash_newfunc (struct bfd_hash_entry *entry,
                   struct bfd_hash_table *table,
                   struct bfd_hash_table *table,
                   const char *string)
                   const char *string)
{
{
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (entry == NULL)
  if (entry == NULL)
    {
    {
      entry = (struct bfd_hash_entry *)
      entry = (struct bfd_hash_entry *)
          bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
          bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
      if (entry == NULL)
      if (entry == NULL)
        return entry;
        return entry;
    }
    }
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  entry = bfd_hash_newfunc (entry, table, string);
  entry = bfd_hash_newfunc (entry, table, string);
  if (entry != NULL)
  if (entry != NULL)
    {
    {
      struct elf32_arm_stub_hash_entry *eh;
      struct elf32_arm_stub_hash_entry *eh;
 
 
      /* Initialize the local fields.  */
      /* Initialize the local fields.  */
      eh = (struct elf32_arm_stub_hash_entry *) entry;
      eh = (struct elf32_arm_stub_hash_entry *) entry;
      eh->stub_sec = NULL;
      eh->stub_sec = NULL;
      eh->stub_offset = 0;
      eh->stub_offset = 0;
      eh->target_value = 0;
      eh->target_value = 0;
      eh->target_section = NULL;
      eh->target_section = NULL;
      eh->target_addend = 0;
      eh->target_addend = 0;
      eh->orig_insn = 0;
      eh->orig_insn = 0;
      eh->stub_type = arm_stub_none;
      eh->stub_type = arm_stub_none;
      eh->stub_size = 0;
      eh->stub_size = 0;
      eh->stub_template = NULL;
      eh->stub_template = NULL;
      eh->stub_template_size = 0;
      eh->stub_template_size = 0;
      eh->h = NULL;
      eh->h = NULL;
      eh->id_sec = NULL;
      eh->id_sec = NULL;
      eh->output_name = NULL;
      eh->output_name = NULL;
    }
    }
 
 
  return entry;
  return entry;
}
}
 
 
/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
   shortcuts to them in our hash table.  */
   shortcuts to them in our hash table.  */
 
 
static bfd_boolean
static bfd_boolean
create_got_section (bfd *dynobj, struct bfd_link_info *info)
create_got_section (bfd *dynobj, struct bfd_link_info *info)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  /* BPABI objects never have a GOT, or associated sections.  */
  /* BPABI objects never have a GOT, or associated sections.  */
  if (htab->symbian_p)
  if (htab->symbian_p)
    return TRUE;
    return TRUE;
 
 
  if (! _bfd_elf_create_got_section (dynobj, info))
  if (! _bfd_elf_create_got_section (dynobj, info))
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Create the .iplt, .rel(a).iplt and .igot.plt sections.  */
/* Create the .iplt, .rel(a).iplt and .igot.plt sections.  */
 
 
static bfd_boolean
static bfd_boolean
create_ifunc_sections (struct bfd_link_info *info)
create_ifunc_sections (struct bfd_link_info *info)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
  bfd *dynobj;
  bfd *dynobj;
  asection *s;
  asection *s;
  flagword flags;
  flagword flags;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  dynobj = htab->root.dynobj;
  dynobj = htab->root.dynobj;
  bed = get_elf_backend_data (dynobj);
  bed = get_elf_backend_data (dynobj);
  flags = bed->dynamic_sec_flags;
  flags = bed->dynamic_sec_flags;
 
 
  if (htab->root.iplt == NULL)
  if (htab->root.iplt == NULL)
    {
    {
      s = bfd_make_section_with_flags (dynobj, ".iplt",
      s = bfd_make_section_with_flags (dynobj, ".iplt",
                                       flags | SEC_READONLY | SEC_CODE);
                                       flags | SEC_READONLY | SEC_CODE);
      if (s == NULL
      if (s == NULL
          || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
          || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
        return FALSE;
        return FALSE;
      htab->root.iplt = s;
      htab->root.iplt = s;
    }
    }
 
 
  if (htab->root.irelplt == NULL)
  if (htab->root.irelplt == NULL)
    {
    {
      s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
      s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
                                       flags | SEC_READONLY);
                                       flags | SEC_READONLY);
      if (s == NULL
      if (s == NULL
          || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
          || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
        return FALSE;
        return FALSE;
      htab->root.irelplt = s;
      htab->root.irelplt = s;
    }
    }
 
 
  if (htab->root.igotplt == NULL)
  if (htab->root.igotplt == NULL)
    {
    {
      s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
      s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
      if (s == NULL
      if (s == NULL
          || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
          || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
        return FALSE;
        return FALSE;
      htab->root.igotplt = s;
      htab->root.igotplt = s;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
   .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
   .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
   hash table.  */
   hash table.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  if (!htab->root.sgot && !create_got_section (dynobj, info))
  if (!htab->root.sgot && !create_got_section (dynobj, info))
    return FALSE;
    return FALSE;
 
 
  if (!_bfd_elf_create_dynamic_sections (dynobj, info))
  if (!_bfd_elf_create_dynamic_sections (dynobj, info))
    return FALSE;
    return FALSE;
 
 
  htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
  htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
  if (!info->shared)
  if (!info->shared)
    htab->srelbss = bfd_get_section_by_name (dynobj,
    htab->srelbss = bfd_get_section_by_name (dynobj,
                                             RELOC_SECTION (htab, ".bss"));
                                             RELOC_SECTION (htab, ".bss"));
 
 
  if (htab->vxworks_p)
  if (htab->vxworks_p)
    {
    {
      if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
      if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
        return FALSE;
        return FALSE;
 
 
      if (info->shared)
      if (info->shared)
        {
        {
          htab->plt_header_size = 0;
          htab->plt_header_size = 0;
          htab->plt_entry_size
          htab->plt_entry_size
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
        }
        }
      else
      else
        {
        {
          htab->plt_header_size
          htab->plt_header_size
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
          htab->plt_entry_size
          htab->plt_entry_size
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
            = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
        }
        }
    }
    }
 
 
  if (!htab->root.splt
  if (!htab->root.splt
      || !htab->root.srelplt
      || !htab->root.srelplt
      || !htab->sdynbss
      || !htab->sdynbss
      || (!info->shared && !htab->srelbss))
      || (!info->shared && !htab->srelbss))
    abort ();
    abort ();
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
/* Copy the extra info we tack onto an elf_link_hash_entry.  */
 
 
static void
static void
elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
                                struct elf_link_hash_entry *dir,
                                struct elf_link_hash_entry *dir,
                                struct elf_link_hash_entry *ind)
                                struct elf_link_hash_entry *ind)
{
{
  struct elf32_arm_link_hash_entry *edir, *eind;
  struct elf32_arm_link_hash_entry *edir, *eind;
 
 
  edir = (struct elf32_arm_link_hash_entry *) dir;
  edir = (struct elf32_arm_link_hash_entry *) dir;
  eind = (struct elf32_arm_link_hash_entry *) ind;
  eind = (struct elf32_arm_link_hash_entry *) ind;
 
 
  if (eind->dyn_relocs != NULL)
  if (eind->dyn_relocs != NULL)
    {
    {
      if (edir->dyn_relocs != NULL)
      if (edir->dyn_relocs != NULL)
        {
        {
          struct elf_dyn_relocs **pp;
          struct elf_dyn_relocs **pp;
          struct elf_dyn_relocs *p;
          struct elf_dyn_relocs *p;
 
 
          /* Add reloc counts against the indirect sym to the direct sym
          /* Add reloc counts against the indirect sym to the direct sym
             list.  Merge any entries against the same section.  */
             list.  Merge any entries against the same section.  */
          for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
          for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
            {
            {
              struct elf_dyn_relocs *q;
              struct elf_dyn_relocs *q;
 
 
              for (q = edir->dyn_relocs; q != NULL; q = q->next)
              for (q = edir->dyn_relocs; q != NULL; q = q->next)
                if (q->sec == p->sec)
                if (q->sec == p->sec)
                  {
                  {
                    q->pc_count += p->pc_count;
                    q->pc_count += p->pc_count;
                    q->count += p->count;
                    q->count += p->count;
                    *pp = p->next;
                    *pp = p->next;
                    break;
                    break;
                  }
                  }
              if (q == NULL)
              if (q == NULL)
                pp = &p->next;
                pp = &p->next;
            }
            }
          *pp = edir->dyn_relocs;
          *pp = edir->dyn_relocs;
        }
        }
 
 
      edir->dyn_relocs = eind->dyn_relocs;
      edir->dyn_relocs = eind->dyn_relocs;
      eind->dyn_relocs = NULL;
      eind->dyn_relocs = NULL;
    }
    }
 
 
  if (ind->root.type == bfd_link_hash_indirect)
  if (ind->root.type == bfd_link_hash_indirect)
    {
    {
      /* Copy over PLT info.  */
      /* Copy over PLT info.  */
      edir->plt.thumb_refcount += eind->plt.thumb_refcount;
      edir->plt.thumb_refcount += eind->plt.thumb_refcount;
      eind->plt.thumb_refcount = 0;
      eind->plt.thumb_refcount = 0;
      edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
      edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
      eind->plt.maybe_thumb_refcount = 0;
      eind->plt.maybe_thumb_refcount = 0;
      edir->plt.noncall_refcount += eind->plt.noncall_refcount;
      edir->plt.noncall_refcount += eind->plt.noncall_refcount;
      eind->plt.noncall_refcount = 0;
      eind->plt.noncall_refcount = 0;
 
 
      /* We should only allocate a function to .iplt once the final
      /* We should only allocate a function to .iplt once the final
         symbol information is known.  */
         symbol information is known.  */
      BFD_ASSERT (!eind->is_iplt);
      BFD_ASSERT (!eind->is_iplt);
 
 
      if (dir->got.refcount <= 0)
      if (dir->got.refcount <= 0)
        {
        {
          edir->tls_type = eind->tls_type;
          edir->tls_type = eind->tls_type;
          eind->tls_type = GOT_UNKNOWN;
          eind->tls_type = GOT_UNKNOWN;
        }
        }
    }
    }
 
 
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
}
}
 
 
/* Create an ARM elf linker hash table.  */
/* Create an ARM elf linker hash table.  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
elf32_arm_link_hash_table_create (bfd *abfd)
elf32_arm_link_hash_table_create (bfd *abfd)
{
{
  struct elf32_arm_link_hash_table *ret;
  struct elf32_arm_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
 
 
  ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
  ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
  if (ret == NULL)
  if (ret == NULL)
    return NULL;
    return NULL;
 
 
  if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
  if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
                                      elf32_arm_link_hash_newfunc,
                                      elf32_arm_link_hash_newfunc,
                                      sizeof (struct elf32_arm_link_hash_entry),
                                      sizeof (struct elf32_arm_link_hash_entry),
                                      ARM_ELF_DATA))
                                      ARM_ELF_DATA))
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
  ret->sdynbss = NULL;
  ret->sdynbss = NULL;
  ret->srelbss = NULL;
  ret->srelbss = NULL;
  ret->srelplt2 = NULL;
  ret->srelplt2 = NULL;
  ret->dt_tlsdesc_plt = 0;
  ret->dt_tlsdesc_plt = 0;
  ret->dt_tlsdesc_got = 0;
  ret->dt_tlsdesc_got = 0;
  ret->tls_trampoline = 0;
  ret->tls_trampoline = 0;
  ret->next_tls_desc_index = 0;
  ret->next_tls_desc_index = 0;
  ret->num_tls_desc = 0;
  ret->num_tls_desc = 0;
  ret->thumb_glue_size = 0;
  ret->thumb_glue_size = 0;
  ret->arm_glue_size = 0;
  ret->arm_glue_size = 0;
  ret->bx_glue_size = 0;
  ret->bx_glue_size = 0;
  memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
  memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
  ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
  ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
  ret->vfp11_erratum_glue_size = 0;
  ret->vfp11_erratum_glue_size = 0;
  ret->num_vfp11_fixes = 0;
  ret->num_vfp11_fixes = 0;
  ret->fix_cortex_a8 = 0;
  ret->fix_cortex_a8 = 0;
  ret->fix_arm1176 = 0;
  ret->fix_arm1176 = 0;
  ret->bfd_of_glue_owner = NULL;
  ret->bfd_of_glue_owner = NULL;
  ret->byteswap_code = 0;
  ret->byteswap_code = 0;
  ret->target1_is_rel = 0;
  ret->target1_is_rel = 0;
  ret->target2_reloc = R_ARM_NONE;
  ret->target2_reloc = R_ARM_NONE;
#ifdef FOUR_WORD_PLT
#ifdef FOUR_WORD_PLT
  ret->plt_header_size = 16;
  ret->plt_header_size = 16;
  ret->plt_entry_size = 16;
  ret->plt_entry_size = 16;
#else
#else
  ret->plt_header_size = 20;
  ret->plt_header_size = 20;
  ret->plt_entry_size = 12;
  ret->plt_entry_size = 12;
#endif
#endif
  ret->fix_v4bx = 0;
  ret->fix_v4bx = 0;
  ret->use_blx = 0;
  ret->use_blx = 0;
  ret->vxworks_p = 0;
  ret->vxworks_p = 0;
  ret->symbian_p = 0;
  ret->symbian_p = 0;
  ret->use_rel = 1;
  ret->use_rel = 1;
  ret->sym_cache.abfd = NULL;
  ret->sym_cache.abfd = NULL;
  ret->obfd = abfd;
  ret->obfd = abfd;
  ret->tls_ldm_got.refcount = 0;
  ret->tls_ldm_got.refcount = 0;
  ret->stub_bfd = NULL;
  ret->stub_bfd = NULL;
  ret->add_stub_section = NULL;
  ret->add_stub_section = NULL;
  ret->layout_sections_again = NULL;
  ret->layout_sections_again = NULL;
  ret->stub_group = NULL;
  ret->stub_group = NULL;
  ret->top_id = 0;
  ret->top_id = 0;
  ret->bfd_count = 0;
  ret->bfd_count = 0;
  ret->top_index = 0;
  ret->top_index = 0;
  ret->input_list = NULL;
  ret->input_list = NULL;
 
 
  if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
  if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
                            sizeof (struct elf32_arm_stub_hash_entry)))
                            sizeof (struct elf32_arm_stub_hash_entry)))
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
  return &ret->root.root;
  return &ret->root.root;
}
}
 
 
/* Free the derived linker hash table.  */
/* Free the derived linker hash table.  */
 
 
static void
static void
elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
{
{
  struct elf32_arm_link_hash_table *ret
  struct elf32_arm_link_hash_table *ret
    = (struct elf32_arm_link_hash_table *) hash;
    = (struct elf32_arm_link_hash_table *) hash;
 
 
  bfd_hash_table_free (&ret->stub_hash_table);
  bfd_hash_table_free (&ret->stub_hash_table);
  _bfd_generic_link_hash_table_free (hash);
  _bfd_generic_link_hash_table_free (hash);
}
}
 
 
/* Determine if we're dealing with a Thumb only architecture.  */
/* Determine if we're dealing with a Thumb only architecture.  */
 
 
static bfd_boolean
static bfd_boolean
using_thumb_only (struct elf32_arm_link_hash_table *globals)
using_thumb_only (struct elf32_arm_link_hash_table *globals)
{
{
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
                                       Tag_CPU_arch);
                                       Tag_CPU_arch);
  int profile;
  int profile;
 
 
  if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
  if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
    return TRUE;
    return TRUE;
 
 
  if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
  if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
    return FALSE;
    return FALSE;
 
 
  profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
  profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
                                      Tag_CPU_arch_profile);
                                      Tag_CPU_arch_profile);
 
 
  return profile == 'M';
  return profile == 'M';
}
}
 
 
/* Determine if we're dealing with a Thumb-2 object.  */
/* Determine if we're dealing with a Thumb-2 object.  */
 
 
static bfd_boolean
static bfd_boolean
using_thumb2 (struct elf32_arm_link_hash_table *globals)
using_thumb2 (struct elf32_arm_link_hash_table *globals)
{
{
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
  int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
                                       Tag_CPU_arch);
                                       Tag_CPU_arch);
  return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
  return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
}
}
 
 
/* Determine what kind of NOPs are available.  */
/* Determine what kind of NOPs are available.  */
 
 
static bfd_boolean
static bfd_boolean
arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
{
{
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
                                             Tag_CPU_arch);
                                             Tag_CPU_arch);
  return arch == TAG_CPU_ARCH_V6T2
  return arch == TAG_CPU_ARCH_V6T2
         || arch == TAG_CPU_ARCH_V6K
         || arch == TAG_CPU_ARCH_V6K
         || arch == TAG_CPU_ARCH_V7
         || arch == TAG_CPU_ARCH_V7
         || arch == TAG_CPU_ARCH_V7E_M;
         || arch == TAG_CPU_ARCH_V7E_M;
}
}
 
 
static bfd_boolean
static bfd_boolean
arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
{
{
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
  const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
                                             Tag_CPU_arch);
                                             Tag_CPU_arch);
  return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
  return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
          || arch == TAG_CPU_ARCH_V7E_M);
          || arch == TAG_CPU_ARCH_V7E_M);
}
}
 
 
static bfd_boolean
static bfd_boolean
arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
{
{
  switch (stub_type)
  switch (stub_type)
    {
    {
    case arm_stub_long_branch_thumb_only:
    case arm_stub_long_branch_thumb_only:
    case arm_stub_long_branch_v4t_thumb_arm:
    case arm_stub_long_branch_v4t_thumb_arm:
    case arm_stub_short_branch_v4t_thumb_arm:
    case arm_stub_short_branch_v4t_thumb_arm:
    case arm_stub_long_branch_v4t_thumb_arm_pic:
    case arm_stub_long_branch_v4t_thumb_arm_pic:
    case arm_stub_long_branch_v4t_thumb_tls_pic:
    case arm_stub_long_branch_v4t_thumb_tls_pic:
    case arm_stub_long_branch_thumb_only_pic:
    case arm_stub_long_branch_thumb_only_pic:
      return TRUE;
      return TRUE;
    case arm_stub_none:
    case arm_stub_none:
      BFD_FAIL ();
      BFD_FAIL ();
      return FALSE;
      return FALSE;
      break;
      break;
    default:
    default:
      return FALSE;
      return FALSE;
    }
    }
}
}
 
 
/* Determine the type of stub needed, if any, for a call.  */
/* Determine the type of stub needed, if any, for a call.  */
 
 
static enum elf32_arm_stub_type
static enum elf32_arm_stub_type
arm_type_of_stub (struct bfd_link_info *info,
arm_type_of_stub (struct bfd_link_info *info,
                  asection *input_sec,
                  asection *input_sec,
                  const Elf_Internal_Rela *rel,
                  const Elf_Internal_Rela *rel,
                  unsigned char st_type,
                  unsigned char st_type,
                  enum arm_st_branch_type *actual_branch_type,
                  enum arm_st_branch_type *actual_branch_type,
                  struct elf32_arm_link_hash_entry *hash,
                  struct elf32_arm_link_hash_entry *hash,
                  bfd_vma destination,
                  bfd_vma destination,
                  asection *sym_sec,
                  asection *sym_sec,
                  bfd *input_bfd,
                  bfd *input_bfd,
                  const char *name)
                  const char *name)
{
{
  bfd_vma location;
  bfd_vma location;
  bfd_signed_vma branch_offset;
  bfd_signed_vma branch_offset;
  unsigned int r_type;
  unsigned int r_type;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
  int thumb2;
  int thumb2;
  int thumb_only;
  int thumb_only;
  enum elf32_arm_stub_type stub_type = arm_stub_none;
  enum elf32_arm_stub_type stub_type = arm_stub_none;
  int use_plt = 0;
  int use_plt = 0;
  enum arm_st_branch_type branch_type = *actual_branch_type;
  enum arm_st_branch_type branch_type = *actual_branch_type;
  union gotplt_union *root_plt;
  union gotplt_union *root_plt;
  struct arm_plt_info *arm_plt;
  struct arm_plt_info *arm_plt;
 
 
  if (branch_type == ST_BRANCH_LONG)
  if (branch_type == ST_BRANCH_LONG)
    return stub_type;
    return stub_type;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  if (globals == NULL)
  if (globals == NULL)
    return stub_type;
    return stub_type;
 
 
  thumb_only = using_thumb_only (globals);
  thumb_only = using_thumb_only (globals);
 
 
  thumb2 = using_thumb2 (globals);
  thumb2 = using_thumb2 (globals);
 
 
  /* Determine where the call point is.  */
  /* Determine where the call point is.  */
  location = (input_sec->output_offset
  location = (input_sec->output_offset
              + input_sec->output_section->vma
              + input_sec->output_section->vma
              + rel->r_offset);
              + rel->r_offset);
 
 
  r_type = ELF32_R_TYPE (rel->r_info);
  r_type = ELF32_R_TYPE (rel->r_info);
 
 
  /* For TLS call relocs, it is the caller's responsibility to provide
  /* For TLS call relocs, it is the caller's responsibility to provide
     the address of the appropriate trampoline.  */
     the address of the appropriate trampoline.  */
  if (r_type != R_ARM_TLS_CALL
  if (r_type != R_ARM_TLS_CALL
      && r_type != R_ARM_THM_TLS_CALL
      && r_type != R_ARM_THM_TLS_CALL
      && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
      && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
                                 &root_plt, &arm_plt)
                                 &root_plt, &arm_plt)
      && root_plt->offset != (bfd_vma) -1)
      && root_plt->offset != (bfd_vma) -1)
    {
    {
      asection *splt;
      asection *splt;
 
 
      if (hash == NULL || hash->is_iplt)
      if (hash == NULL || hash->is_iplt)
        splt = globals->root.iplt;
        splt = globals->root.iplt;
      else
      else
        splt = globals->root.splt;
        splt = globals->root.splt;
      if (splt != NULL)
      if (splt != NULL)
        {
        {
          use_plt = 1;
          use_plt = 1;
 
 
          /* Note when dealing with PLT entries: the main PLT stub is in
          /* Note when dealing with PLT entries: the main PLT stub is in
             ARM mode, so if the branch is in Thumb mode, another
             ARM mode, so if the branch is in Thumb mode, another
             Thumb->ARM stub will be inserted later just before the ARM
             Thumb->ARM stub will be inserted later just before the ARM
             PLT stub. We don't take this extra distance into account
             PLT stub. We don't take this extra distance into account
             here, because if a long branch stub is needed, we'll add a
             here, because if a long branch stub is needed, we'll add a
             Thumb->Arm one and branch directly to the ARM PLT entry
             Thumb->Arm one and branch directly to the ARM PLT entry
             because it avoids spreading offset corrections in several
             because it avoids spreading offset corrections in several
             places.  */
             places.  */
 
 
          destination = (splt->output_section->vma
          destination = (splt->output_section->vma
                         + splt->output_offset
                         + splt->output_offset
                         + root_plt->offset);
                         + root_plt->offset);
          st_type = STT_FUNC;
          st_type = STT_FUNC;
          branch_type = ST_BRANCH_TO_ARM;
          branch_type = ST_BRANCH_TO_ARM;
        }
        }
    }
    }
  /* Calls to STT_GNU_IFUNC symbols should go through a PLT.  */
  /* Calls to STT_GNU_IFUNC symbols should go through a PLT.  */
  BFD_ASSERT (st_type != STT_GNU_IFUNC);
  BFD_ASSERT (st_type != STT_GNU_IFUNC);
 
 
  branch_offset = (bfd_signed_vma)(destination - location);
  branch_offset = (bfd_signed_vma)(destination - location);
 
 
  if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
  if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
      || r_type == R_ARM_THM_TLS_CALL)
      || r_type == R_ARM_THM_TLS_CALL)
    {
    {
      /* Handle cases where:
      /* Handle cases where:
         - this call goes too far (different Thumb/Thumb2 max
         - this call goes too far (different Thumb/Thumb2 max
           distance)
           distance)
         - it's a Thumb->Arm call and blx is not available, or it's a
         - it's a Thumb->Arm call and blx is not available, or it's a
           Thumb->Arm branch (not bl). A stub is needed in this case,
           Thumb->Arm branch (not bl). A stub is needed in this case,
           but only if this call is not through a PLT entry. Indeed,
           but only if this call is not through a PLT entry. Indeed,
           PLT stubs handle mode switching already.
           PLT stubs handle mode switching already.
      */
      */
      if ((!thumb2
      if ((!thumb2
            && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
            && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
                || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
                || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
          || (thumb2
          || (thumb2
              && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
              && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
                  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
                  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
          || (branch_type == ST_BRANCH_TO_ARM
          || (branch_type == ST_BRANCH_TO_ARM
              && (((r_type == R_ARM_THM_CALL
              && (((r_type == R_ARM_THM_CALL
                    || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
                    || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
                  || (r_type == R_ARM_THM_JUMP24))
                  || (r_type == R_ARM_THM_JUMP24))
              && !use_plt))
              && !use_plt))
        {
        {
          if (branch_type == ST_BRANCH_TO_THUMB)
          if (branch_type == ST_BRANCH_TO_THUMB)
            {
            {
              /* Thumb to thumb.  */
              /* Thumb to thumb.  */
              if (!thumb_only)
              if (!thumb_only)
                {
                {
                  stub_type = (info->shared | globals->pic_veneer)
                  stub_type = (info->shared | globals->pic_veneer)
                    /* PIC stubs.  */
                    /* PIC stubs.  */
                    ? ((globals->use_blx
                    ? ((globals->use_blx
                        && (r_type ==R_ARM_THM_CALL))
                        && (r_type == R_ARM_THM_CALL))
                       /* V5T and above. Stub starts with ARM code, so
                       /* V5T and above. Stub starts with ARM code, so
                          we must be able to switch mode before
                          we must be able to switch mode before
                          reaching it, which is only possible for 'bl'
                          reaching it, which is only possible for 'bl'
                          (ie R_ARM_THM_CALL relocation).  */
                          (ie R_ARM_THM_CALL relocation).  */
                       ? arm_stub_long_branch_any_thumb_pic
                       ? arm_stub_long_branch_any_thumb_pic
                       /* On V4T, use Thumb code only.  */
                       /* On V4T, use Thumb code only.  */
                       : arm_stub_long_branch_v4t_thumb_thumb_pic)
                       : arm_stub_long_branch_v4t_thumb_thumb_pic)
 
 
                    /* non-PIC stubs.  */
                    /* non-PIC stubs.  */
                    : ((globals->use_blx
                    : ((globals->use_blx
                        && (r_type ==R_ARM_THM_CALL))
                        && (r_type == R_ARM_THM_CALL))
                       /* V5T and above.  */
                       /* V5T and above.  */
                       ? arm_stub_long_branch_any_any
                       ? arm_stub_long_branch_any_any
                       /* V4T.  */
                       /* V4T.  */
                       : arm_stub_long_branch_v4t_thumb_thumb);
                       : arm_stub_long_branch_v4t_thumb_thumb);
                }
                }
              else
              else
                {
                {
                  stub_type = (info->shared | globals->pic_veneer)
                  stub_type = (info->shared | globals->pic_veneer)
                    /* PIC stub.  */
                    /* PIC stub.  */
                    ? arm_stub_long_branch_thumb_only_pic
                    ? arm_stub_long_branch_thumb_only_pic
                    /* non-PIC stub.  */
                    /* non-PIC stub.  */
                    : arm_stub_long_branch_thumb_only;
                    : arm_stub_long_branch_thumb_only;
                }
                }
            }
            }
          else
          else
            {
            {
              /* Thumb to arm.  */
              /* Thumb to arm.  */
              if (sym_sec != NULL
              if (sym_sec != NULL
                  && sym_sec->owner != NULL
                  && sym_sec->owner != NULL
                  && !INTERWORK_FLAG (sym_sec->owner))
                  && !INTERWORK_FLAG (sym_sec->owner))
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%B(%s): warning: interworking not enabled.\n"
                    (_("%B(%s): warning: interworking not enabled.\n"
                       "  first occurrence: %B: Thumb call to ARM"),
                       "  first occurrence: %B: Thumb call to ARM"),
                     sym_sec->owner, input_bfd, name);
                     sym_sec->owner, input_bfd, name);
                }
                }
 
 
              stub_type =
              stub_type =
                (info->shared | globals->pic_veneer)
                (info->shared | globals->pic_veneer)
                /* PIC stubs.  */
                /* PIC stubs.  */
                ? (r_type == R_ARM_THM_TLS_CALL
                ? (r_type == R_ARM_THM_TLS_CALL
                   /* TLS PIC stubs */
                   /* TLS PIC stubs */
                   ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
                   ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
                      : arm_stub_long_branch_v4t_thumb_tls_pic)
                      : arm_stub_long_branch_v4t_thumb_tls_pic)
                   : ((globals->use_blx && r_type == R_ARM_THM_CALL)
                   : ((globals->use_blx && r_type == R_ARM_THM_CALL)
                      /* V5T PIC and above.  */
                      /* V5T PIC and above.  */
                      ? arm_stub_long_branch_any_arm_pic
                      ? arm_stub_long_branch_any_arm_pic
                      /* V4T PIC stub.  */
                      /* V4T PIC stub.  */
                      : arm_stub_long_branch_v4t_thumb_arm_pic))
                      : arm_stub_long_branch_v4t_thumb_arm_pic))
 
 
                /* non-PIC stubs.  */
                /* non-PIC stubs.  */
                : ((globals->use_blx && r_type == R_ARM_THM_CALL)
                : ((globals->use_blx && r_type == R_ARM_THM_CALL)
                   /* V5T and above.  */
                   /* V5T and above.  */
                   ? arm_stub_long_branch_any_any
                   ? arm_stub_long_branch_any_any
                   /* V4T.  */
                   /* V4T.  */
                   : arm_stub_long_branch_v4t_thumb_arm);
                   : arm_stub_long_branch_v4t_thumb_arm);
 
 
              /* Handle v4t short branches.  */
              /* Handle v4t short branches.  */
              if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
              if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
                  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
                  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
                  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
                  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
                stub_type = arm_stub_short_branch_v4t_thumb_arm;
                stub_type = arm_stub_short_branch_v4t_thumb_arm;
            }
            }
        }
        }
    }
    }
  else if (r_type == R_ARM_CALL
  else if (r_type == R_ARM_CALL
           || r_type == R_ARM_JUMP24
           || r_type == R_ARM_JUMP24
           || r_type == R_ARM_PLT32
           || r_type == R_ARM_PLT32
           || r_type == R_ARM_TLS_CALL)
           || r_type == R_ARM_TLS_CALL)
    {
    {
      if (branch_type == ST_BRANCH_TO_THUMB)
      if (branch_type == ST_BRANCH_TO_THUMB)
        {
        {
          /* Arm to thumb.  */
          /* Arm to thumb.  */
 
 
          if (sym_sec != NULL
          if (sym_sec != NULL
              && sym_sec->owner != NULL
              && sym_sec->owner != NULL
              && !INTERWORK_FLAG (sym_sec->owner))
              && !INTERWORK_FLAG (sym_sec->owner))
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B(%s): warning: interworking not enabled.\n"
                (_("%B(%s): warning: interworking not enabled.\n"
                   "  first occurrence: %B: ARM call to Thumb"),
                   "  first occurrence: %B: ARM call to Thumb"),
                 sym_sec->owner, input_bfd, name);
                 sym_sec->owner, input_bfd, name);
            }
            }
 
 
          /* We have an extra 2-bytes reach because of
          /* We have an extra 2-bytes reach because of
             the mode change (bit 24 (H) of BLX encoding).  */
             the mode change (bit 24 (H) of BLX encoding).  */
          if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
          if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
              || (r_type == R_ARM_CALL && !globals->use_blx)
              || (r_type == R_ARM_CALL && !globals->use_blx)
              || (r_type == R_ARM_JUMP24)
              || (r_type == R_ARM_JUMP24)
              || (r_type == R_ARM_PLT32))
              || (r_type == R_ARM_PLT32))
            {
            {
              stub_type = (info->shared | globals->pic_veneer)
              stub_type = (info->shared | globals->pic_veneer)
                /* PIC stubs.  */
                /* PIC stubs.  */
                ? ((globals->use_blx)
                ? ((globals->use_blx)
                   /* V5T and above.  */
                   /* V5T and above.  */
                   ? arm_stub_long_branch_any_thumb_pic
                   ? arm_stub_long_branch_any_thumb_pic
                   /* V4T stub.  */
                   /* V4T stub.  */
                   : arm_stub_long_branch_v4t_arm_thumb_pic)
                   : arm_stub_long_branch_v4t_arm_thumb_pic)
 
 
                /* non-PIC stubs.  */
                /* non-PIC stubs.  */
                : ((globals->use_blx)
                : ((globals->use_blx)
                   /* V5T and above.  */
                   /* V5T and above.  */
                   ? arm_stub_long_branch_any_any
                   ? arm_stub_long_branch_any_any
                   /* V4T.  */
                   /* V4T.  */
                   : arm_stub_long_branch_v4t_arm_thumb);
                   : arm_stub_long_branch_v4t_arm_thumb);
            }
            }
        }
        }
      else
      else
        {
        {
          /* Arm to arm.  */
          /* Arm to arm.  */
          if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
          if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
              || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
            {
            {
              stub_type =
              stub_type =
                (info->shared | globals->pic_veneer)
                (info->shared | globals->pic_veneer)
                /* PIC stubs.  */
                /* PIC stubs.  */
                ? (r_type == R_ARM_TLS_CALL
                ? (r_type == R_ARM_TLS_CALL
                   /* TLS PIC Stub */
                   /* TLS PIC Stub */
                   ? arm_stub_long_branch_any_tls_pic
                   ? arm_stub_long_branch_any_tls_pic
                   : arm_stub_long_branch_any_arm_pic)
                   : arm_stub_long_branch_any_arm_pic)
                /* non-PIC stubs.  */
                /* non-PIC stubs.  */
                : arm_stub_long_branch_any_any;
                : arm_stub_long_branch_any_any;
            }
            }
        }
        }
    }
    }
 
 
  /* If a stub is needed, record the actual destination type.  */
  /* If a stub is needed, record the actual destination type.  */
  if (stub_type != arm_stub_none)
  if (stub_type != arm_stub_none)
    *actual_branch_type = branch_type;
    *actual_branch_type = branch_type;
 
 
  return stub_type;
  return stub_type;
}
}
 
 
/* Build a name for an entry in the stub hash table.  */
/* Build a name for an entry in the stub hash table.  */
 
 
static char *
static char *
elf32_arm_stub_name (const asection *input_section,
elf32_arm_stub_name (const asection *input_section,
                     const asection *sym_sec,
                     const asection *sym_sec,
                     const struct elf32_arm_link_hash_entry *hash,
                     const struct elf32_arm_link_hash_entry *hash,
                     const Elf_Internal_Rela *rel,
                     const Elf_Internal_Rela *rel,
                     enum elf32_arm_stub_type stub_type)
                     enum elf32_arm_stub_type stub_type)
{
{
  char *stub_name;
  char *stub_name;
  bfd_size_type len;
  bfd_size_type len;
 
 
  if (hash)
  if (hash)
    {
    {
      len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
      len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
      stub_name = (char *) bfd_malloc (len);
      stub_name = (char *) bfd_malloc (len);
      if (stub_name != NULL)
      if (stub_name != NULL)
        sprintf (stub_name, "%08x_%s+%x_%d",
        sprintf (stub_name, "%08x_%s+%x_%d",
                 input_section->id & 0xffffffff,
                 input_section->id & 0xffffffff,
                 hash->root.root.root.string,
                 hash->root.root.root.string,
                 (int) rel->r_addend & 0xffffffff,
                 (int) rel->r_addend & 0xffffffff,
                 (int) stub_type);
                 (int) stub_type);
    }
    }
  else
  else
    {
    {
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
      len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
      stub_name = (char *) bfd_malloc (len);
      stub_name = (char *) bfd_malloc (len);
      if (stub_name != NULL)
      if (stub_name != NULL)
        sprintf (stub_name, "%08x_%x:%x+%x_%d",
        sprintf (stub_name, "%08x_%x:%x+%x_%d",
                 input_section->id & 0xffffffff,
                 input_section->id & 0xffffffff,
                 sym_sec->id & 0xffffffff,
                 sym_sec->id & 0xffffffff,
                 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
                 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
                 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
                 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
                 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
                 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
                 (int) rel->r_addend & 0xffffffff,
                 (int) rel->r_addend & 0xffffffff,
                 (int) stub_type);
                 (int) stub_type);
    }
    }
 
 
  return stub_name;
  return stub_name;
}
}
 
 
/* Look up an entry in the stub hash.  Stub entries are cached because
/* Look up an entry in the stub hash.  Stub entries are cached because
   creating the stub name takes a bit of time.  */
   creating the stub name takes a bit of time.  */
 
 
static struct elf32_arm_stub_hash_entry *
static struct elf32_arm_stub_hash_entry *
elf32_arm_get_stub_entry (const asection *input_section,
elf32_arm_get_stub_entry (const asection *input_section,
                          const asection *sym_sec,
                          const asection *sym_sec,
                          struct elf_link_hash_entry *hash,
                          struct elf_link_hash_entry *hash,
                          const Elf_Internal_Rela *rel,
                          const Elf_Internal_Rela *rel,
                          struct elf32_arm_link_hash_table *htab,
                          struct elf32_arm_link_hash_table *htab,
                          enum elf32_arm_stub_type stub_type)
                          enum elf32_arm_stub_type stub_type)
{
{
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
  struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
  const asection *id_sec;
  const asection *id_sec;
 
 
  if ((input_section->flags & SEC_CODE) == 0)
  if ((input_section->flags & SEC_CODE) == 0)
    return NULL;
    return NULL;
 
 
  /* If this input section is part of a group of sections sharing one
  /* If this input section is part of a group of sections sharing one
     stub section, then use the id of the first section in the group.
     stub section, then use the id of the first section in the group.
     Stub names need to include a section id, as there may well be
     Stub names need to include a section id, as there may well be
     more than one stub used to reach say, printf, and we need to
     more than one stub used to reach say, printf, and we need to
     distinguish between them.  */
     distinguish between them.  */
  id_sec = htab->stub_group[input_section->id].link_sec;
  id_sec = htab->stub_group[input_section->id].link_sec;
 
 
  if (h != NULL && h->stub_cache != NULL
  if (h != NULL && h->stub_cache != NULL
      && h->stub_cache->h == h
      && h->stub_cache->h == h
      && h->stub_cache->id_sec == id_sec
      && h->stub_cache->id_sec == id_sec
      && h->stub_cache->stub_type == stub_type)
      && h->stub_cache->stub_type == stub_type)
    {
    {
      stub_entry = h->stub_cache;
      stub_entry = h->stub_cache;
    }
    }
  else
  else
    {
    {
      char *stub_name;
      char *stub_name;
 
 
      stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
      stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
      if (stub_name == NULL)
      if (stub_name == NULL)
        return NULL;
        return NULL;
 
 
      stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
      stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
                                        stub_name, FALSE, FALSE);
                                        stub_name, FALSE, FALSE);
      if (h != NULL)
      if (h != NULL)
        h->stub_cache = stub_entry;
        h->stub_cache = stub_entry;
 
 
      free (stub_name);
      free (stub_name);
    }
    }
 
 
  return stub_entry;
  return stub_entry;
}
}
 
 
/* Find or create a stub section.  Returns a pointer to the stub section, and
/* Find or create a stub section.  Returns a pointer to the stub section, and
   the section to which the stub section will be attached (in *LINK_SEC_P).
   the section to which the stub section will be attached (in *LINK_SEC_P).
   LINK_SEC_P may be NULL.  */
   LINK_SEC_P may be NULL.  */
 
 
static asection *
static asection *
elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
                                   struct elf32_arm_link_hash_table *htab)
                                   struct elf32_arm_link_hash_table *htab)
{
{
  asection *link_sec;
  asection *link_sec;
  asection *stub_sec;
  asection *stub_sec;
 
 
  link_sec = htab->stub_group[section->id].link_sec;
  link_sec = htab->stub_group[section->id].link_sec;
 
  BFD_ASSERT (link_sec != NULL);
  stub_sec = htab->stub_group[section->id].stub_sec;
  stub_sec = htab->stub_group[section->id].stub_sec;
 
 
  if (stub_sec == NULL)
  if (stub_sec == NULL)
    {
    {
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
      stub_sec = htab->stub_group[link_sec->id].stub_sec;
      if (stub_sec == NULL)
      if (stub_sec == NULL)
        {
        {
          size_t namelen;
          size_t namelen;
          bfd_size_type len;
          bfd_size_type len;
          char *s_name;
          char *s_name;
 
 
          namelen = strlen (link_sec->name);
          namelen = strlen (link_sec->name);
          len = namelen + sizeof (STUB_SUFFIX);
          len = namelen + sizeof (STUB_SUFFIX);
          s_name = (char *) bfd_alloc (htab->stub_bfd, len);
          s_name = (char *) bfd_alloc (htab->stub_bfd, len);
          if (s_name == NULL)
          if (s_name == NULL)
            return NULL;
            return NULL;
 
 
          memcpy (s_name, link_sec->name, namelen);
          memcpy (s_name, link_sec->name, namelen);
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
          memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
          stub_sec = (*htab->add_stub_section) (s_name, link_sec);
          if (stub_sec == NULL)
          if (stub_sec == NULL)
            return NULL;
            return NULL;
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
          htab->stub_group[link_sec->id].stub_sec = stub_sec;
        }
        }
      htab->stub_group[section->id].stub_sec = stub_sec;
      htab->stub_group[section->id].stub_sec = stub_sec;
    }
    }
 
 
  if (link_sec_p)
  if (link_sec_p)
    *link_sec_p = link_sec;
    *link_sec_p = link_sec;
 
 
  return stub_sec;
  return stub_sec;
}
}
 
 
/* Add a new stub entry to the stub hash.  Not all fields of the new
/* Add a new stub entry to the stub hash.  Not all fields of the new
   stub entry are initialised.  */
   stub entry are initialised.  */
 
 
static struct elf32_arm_stub_hash_entry *
static struct elf32_arm_stub_hash_entry *
elf32_arm_add_stub (const char *stub_name,
elf32_arm_add_stub (const char *stub_name,
                    asection *section,
                    asection *section,
                    struct elf32_arm_link_hash_table *htab)
                    struct elf32_arm_link_hash_table *htab)
{
{
  asection *link_sec;
  asection *link_sec;
  asection *stub_sec;
  asection *stub_sec;
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct elf32_arm_stub_hash_entry *stub_entry;
 
 
  stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
  stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
  if (stub_sec == NULL)
  if (stub_sec == NULL)
    return NULL;
    return NULL;
 
 
  /* Enter this entry into the linker stub hash table.  */
  /* Enter this entry into the linker stub hash table.  */
  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
  stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
                                     TRUE, FALSE);
                                     TRUE, FALSE);
  if (stub_entry == NULL)
  if (stub_entry == NULL)
    {
    {
      (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
      (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
                             section->owner,
                             section->owner,
                             stub_name);
                             stub_name);
      return NULL;
      return NULL;
    }
    }
 
 
  stub_entry->stub_sec = stub_sec;
  stub_entry->stub_sec = stub_sec;
  stub_entry->stub_offset = 0;
  stub_entry->stub_offset = 0;
  stub_entry->id_sec = link_sec;
  stub_entry->id_sec = link_sec;
 
 
  return stub_entry;
  return stub_entry;
}
}
 
 
/* Store an Arm insn into an output section not processed by
/* Store an Arm insn into an output section not processed by
   elf32_arm_write_section.  */
   elf32_arm_write_section.  */
 
 
static void
static void
put_arm_insn (struct elf32_arm_link_hash_table * htab,
put_arm_insn (struct elf32_arm_link_hash_table * htab,
              bfd * output_bfd, bfd_vma val, void * ptr)
              bfd * output_bfd, bfd_vma val, void * ptr)
{
{
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
    bfd_putl32 (val, ptr);
    bfd_putl32 (val, ptr);
  else
  else
    bfd_putb32 (val, ptr);
    bfd_putb32 (val, ptr);
}
}
 
 
/* Store a 16-bit Thumb insn into an output section not processed by
/* Store a 16-bit Thumb insn into an output section not processed by
   elf32_arm_write_section.  */
   elf32_arm_write_section.  */
 
 
static void
static void
put_thumb_insn (struct elf32_arm_link_hash_table * htab,
put_thumb_insn (struct elf32_arm_link_hash_table * htab,
                bfd * output_bfd, bfd_vma val, void * ptr)
                bfd * output_bfd, bfd_vma val, void * ptr)
{
{
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
  if (htab->byteswap_code != bfd_little_endian (output_bfd))
    bfd_putl16 (val, ptr);
    bfd_putl16 (val, ptr);
  else
  else
    bfd_putb16 (val, ptr);
    bfd_putb16 (val, ptr);
}
}
 
 
/* If it's possible to change R_TYPE to a more efficient access
/* If it's possible to change R_TYPE to a more efficient access
   model, return the new reloc type.  */
   model, return the new reloc type.  */
 
 
static unsigned
static unsigned
elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
                          struct elf_link_hash_entry *h)
                          struct elf_link_hash_entry *h)
{
{
  int is_local = (h == NULL);
  int is_local = (h == NULL);
 
 
  if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
  if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
    return r_type;
    return r_type;
 
 
  /* We do not support relaxations for Old TLS models.  */
  /* We do not support relaxations for Old TLS models.  */
  switch (r_type)
  switch (r_type)
    {
    {
    case R_ARM_TLS_GOTDESC:
    case R_ARM_TLS_GOTDESC:
    case R_ARM_TLS_CALL:
    case R_ARM_TLS_CALL:
    case R_ARM_THM_TLS_CALL:
    case R_ARM_THM_TLS_CALL:
    case R_ARM_TLS_DESCSEQ:
    case R_ARM_TLS_DESCSEQ:
    case R_ARM_THM_TLS_DESCSEQ:
    case R_ARM_THM_TLS_DESCSEQ:
      return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
      return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
    }
    }
 
 
  return r_type;
  return r_type;
}
}
 
 
static bfd_reloc_status_type elf32_arm_final_link_relocate
static bfd_reloc_status_type elf32_arm_final_link_relocate
  (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
  (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
   Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
   Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
   const char *, unsigned char, enum arm_st_branch_type,
   const char *, unsigned char, enum arm_st_branch_type,
   struct elf_link_hash_entry *, bfd_boolean *, char **);
   struct elf_link_hash_entry *, bfd_boolean *, char **);
 
 
static unsigned int
static unsigned int
arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
{
{
  switch (stub_type)
  switch (stub_type)
    {
    {
    case arm_stub_a8_veneer_b_cond:
    case arm_stub_a8_veneer_b_cond:
    case arm_stub_a8_veneer_b:
    case arm_stub_a8_veneer_b:
    case arm_stub_a8_veneer_bl:
    case arm_stub_a8_veneer_bl:
      return 2;
      return 2;
 
 
    case arm_stub_long_branch_any_any:
    case arm_stub_long_branch_any_any:
    case arm_stub_long_branch_v4t_arm_thumb:
    case arm_stub_long_branch_v4t_arm_thumb:
    case arm_stub_long_branch_thumb_only:
    case arm_stub_long_branch_thumb_only:
    case arm_stub_long_branch_v4t_thumb_thumb:
    case arm_stub_long_branch_v4t_thumb_thumb:
    case arm_stub_long_branch_v4t_thumb_arm:
    case arm_stub_long_branch_v4t_thumb_arm:
    case arm_stub_short_branch_v4t_thumb_arm:
    case arm_stub_short_branch_v4t_thumb_arm:
    case arm_stub_long_branch_any_arm_pic:
    case arm_stub_long_branch_any_arm_pic:
    case arm_stub_long_branch_any_thumb_pic:
    case arm_stub_long_branch_any_thumb_pic:
    case arm_stub_long_branch_v4t_thumb_thumb_pic:
    case arm_stub_long_branch_v4t_thumb_thumb_pic:
    case arm_stub_long_branch_v4t_arm_thumb_pic:
    case arm_stub_long_branch_v4t_arm_thumb_pic:
    case arm_stub_long_branch_v4t_thumb_arm_pic:
    case arm_stub_long_branch_v4t_thumb_arm_pic:
    case arm_stub_long_branch_thumb_only_pic:
    case arm_stub_long_branch_thumb_only_pic:
    case arm_stub_long_branch_any_tls_pic:
    case arm_stub_long_branch_any_tls_pic:
    case arm_stub_long_branch_v4t_thumb_tls_pic:
    case arm_stub_long_branch_v4t_thumb_tls_pic:
    case arm_stub_a8_veneer_blx:
    case arm_stub_a8_veneer_blx:
      return 4;
      return 4;
 
 
    default:
    default:
      abort ();  /* Should be unreachable.  */
      abort ();  /* Should be unreachable.  */
    }
    }
}
}
 
 
static bfd_boolean
static bfd_boolean
arm_build_one_stub (struct bfd_hash_entry *gen_entry,
arm_build_one_stub (struct bfd_hash_entry *gen_entry,
                    void * in_arg)
                    void * in_arg)
{
{
#define MAXRELOCS 2
#define MAXRELOCS 2
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  asection *stub_sec;
  asection *stub_sec;
  bfd *stub_bfd;
  bfd *stub_bfd;
  bfd_byte *loc;
  bfd_byte *loc;
  bfd_vma sym_value;
  bfd_vma sym_value;
  int template_size;
  int template_size;
  int size;
  int size;
  const insn_sequence *template_sequence;
  const insn_sequence *template_sequence;
  int i;
  int i;
  int stub_reloc_idx[MAXRELOCS] = {-1, -1};
  int stub_reloc_idx[MAXRELOCS] = {-1, -1};
  int stub_reloc_offset[MAXRELOCS] = {0, 0};
  int stub_reloc_offset[MAXRELOCS] = {0, 0};
  int nrelocs = 0;
  int nrelocs = 0;
 
 
  /* Massage our args to the form they really have.  */
  /* Massage our args to the form they really have.  */
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
  info = (struct bfd_link_info *) in_arg;
  info = (struct bfd_link_info *) in_arg;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  if (globals == NULL)
  if (globals == NULL)
    return FALSE;
    return FALSE;
 
 
  stub_sec = stub_entry->stub_sec;
  stub_sec = stub_entry->stub_sec;
 
 
  if ((globals->fix_cortex_a8 < 0)
  if ((globals->fix_cortex_a8 < 0)
      != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
      != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
    /* We have to do less-strictly-aligned fixes last.  */
    /* We have to do less-strictly-aligned fixes last.  */
    return TRUE;
    return TRUE;
 
 
  /* Make a note of the offset within the stubs for this entry.  */
  /* Make a note of the offset within the stubs for this entry.  */
  stub_entry->stub_offset = stub_sec->size;
  stub_entry->stub_offset = stub_sec->size;
  loc = stub_sec->contents + stub_entry->stub_offset;
  loc = stub_sec->contents + stub_entry->stub_offset;
 
 
  stub_bfd = stub_sec->owner;
  stub_bfd = stub_sec->owner;
 
 
  /* This is the address of the stub destination.  */
  /* This is the address of the stub destination.  */
  sym_value = (stub_entry->target_value
  sym_value = (stub_entry->target_value
               + stub_entry->target_section->output_offset
               + stub_entry->target_section->output_offset
               + stub_entry->target_section->output_section->vma);
               + stub_entry->target_section->output_section->vma);
 
 
  template_sequence = stub_entry->stub_template;
  template_sequence = stub_entry->stub_template;
  template_size = stub_entry->stub_template_size;
  template_size = stub_entry->stub_template_size;
 
 
  size = 0;
  size = 0;
  for (i = 0; i < template_size; i++)
  for (i = 0; i < template_size; i++)
    {
    {
      switch (template_sequence[i].type)
      switch (template_sequence[i].type)
        {
        {
        case THUMB16_TYPE:
        case THUMB16_TYPE:
          {
          {
            bfd_vma data = (bfd_vma) template_sequence[i].data;
            bfd_vma data = (bfd_vma) template_sequence[i].data;
            if (template_sequence[i].reloc_addend != 0)
            if (template_sequence[i].reloc_addend != 0)
              {
              {
                /* We've borrowed the reloc_addend field to mean we should
                /* We've borrowed the reloc_addend field to mean we should
                   insert a condition code into this (Thumb-1 branch)
                   insert a condition code into this (Thumb-1 branch)
                   instruction.  See THUMB16_BCOND_INSN.  */
                   instruction.  See THUMB16_BCOND_INSN.  */
                BFD_ASSERT ((data & 0xff00) == 0xd000);
                BFD_ASSERT ((data & 0xff00) == 0xd000);
                data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
                data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
              }
              }
            bfd_put_16 (stub_bfd, data, loc + size);
            bfd_put_16 (stub_bfd, data, loc + size);
            size += 2;
            size += 2;
          }
          }
          break;
          break;
 
 
        case THUMB32_TYPE:
        case THUMB32_TYPE:
          bfd_put_16 (stub_bfd,
          bfd_put_16 (stub_bfd,
                      (template_sequence[i].data >> 16) & 0xffff,
                      (template_sequence[i].data >> 16) & 0xffff,
                      loc + size);
                      loc + size);
          bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
          bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
                      loc + size + 2);
                      loc + size + 2);
          if (template_sequence[i].r_type != R_ARM_NONE)
          if (template_sequence[i].r_type != R_ARM_NONE)
            {
            {
              stub_reloc_idx[nrelocs] = i;
              stub_reloc_idx[nrelocs] = i;
              stub_reloc_offset[nrelocs++] = size;
              stub_reloc_offset[nrelocs++] = size;
            }
            }
          size += 4;
          size += 4;
          break;
          break;
 
 
        case ARM_TYPE:
        case ARM_TYPE:
          bfd_put_32 (stub_bfd, template_sequence[i].data,
          bfd_put_32 (stub_bfd, template_sequence[i].data,
                      loc + size);
                      loc + size);
          /* Handle cases where the target is encoded within the
          /* Handle cases where the target is encoded within the
             instruction.  */
             instruction.  */
          if (template_sequence[i].r_type == R_ARM_JUMP24)
          if (template_sequence[i].r_type == R_ARM_JUMP24)
            {
            {
              stub_reloc_idx[nrelocs] = i;
              stub_reloc_idx[nrelocs] = i;
              stub_reloc_offset[nrelocs++] = size;
              stub_reloc_offset[nrelocs++] = size;
            }
            }
          size += 4;
          size += 4;
          break;
          break;
 
 
        case DATA_TYPE:
        case DATA_TYPE:
          bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
          bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
          stub_reloc_idx[nrelocs] = i;
          stub_reloc_idx[nrelocs] = i;
          stub_reloc_offset[nrelocs++] = size;
          stub_reloc_offset[nrelocs++] = size;
          size += 4;
          size += 4;
          break;
          break;
 
 
        default:
        default:
          BFD_FAIL ();
          BFD_FAIL ();
          return FALSE;
          return FALSE;
        }
        }
    }
    }
 
 
  stub_sec->size += size;
  stub_sec->size += size;
 
 
  /* Stub size has already been computed in arm_size_one_stub. Check
  /* Stub size has already been computed in arm_size_one_stub. Check
     consistency.  */
     consistency.  */
  BFD_ASSERT (size == stub_entry->stub_size);
  BFD_ASSERT (size == stub_entry->stub_size);
 
 
  /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
  /* Destination is Thumb. Force bit 0 to 1 to reflect this.  */
  if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
  if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
    sym_value |= 1;
    sym_value |= 1;
 
 
  /* Assume there is at least one and at most MAXRELOCS entries to relocate
  /* Assume there is at least one and at most MAXRELOCS entries to relocate
     in each stub.  */
     in each stub.  */
  BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
  BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
 
 
  for (i = 0; i < nrelocs; i++)
  for (i = 0; i < nrelocs; i++)
    if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
    if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
        || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
      {
      {
        Elf_Internal_Rela rel;
        Elf_Internal_Rela rel;
        bfd_boolean unresolved_reloc;
        bfd_boolean unresolved_reloc;
        char *error_message;
        char *error_message;
        enum arm_st_branch_type branch_type
        enum arm_st_branch_type branch_type
          = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
          = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
             ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
             ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
        bfd_vma points_to = sym_value + stub_entry->target_addend;
        bfd_vma points_to = sym_value + stub_entry->target_addend;
 
 
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
        rel.r_info = ELF32_R_INFO (0,
        rel.r_info = ELF32_R_INFO (0,
                                   template_sequence[stub_reloc_idx[i]].r_type);
                                   template_sequence[stub_reloc_idx[i]].r_type);
        rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
        rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
 
 
        if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
        if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
          /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
          /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
             template should refer back to the instruction after the original
             template should refer back to the instruction after the original
             branch.  */
             branch.  */
          points_to = sym_value;
          points_to = sym_value;
 
 
        /* There may be unintended consequences if this is not true.  */
        /* There may be unintended consequences if this is not true.  */
        BFD_ASSERT (stub_entry->h == NULL);
        BFD_ASSERT (stub_entry->h == NULL);
 
 
        /* Note: _bfd_final_link_relocate doesn't handle these relocations
        /* Note: _bfd_final_link_relocate doesn't handle these relocations
           properly.  We should probably use this function unconditionally,
           properly.  We should probably use this function unconditionally,
           rather than only for certain relocations listed in the enclosing
           rather than only for certain relocations listed in the enclosing
           conditional, for the sake of consistency.  */
           conditional, for the sake of consistency.  */
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
            (template_sequence[stub_reloc_idx[i]].r_type),
            (template_sequence[stub_reloc_idx[i]].r_type),
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
          points_to, info, stub_entry->target_section, "", STT_FUNC,
          points_to, info, stub_entry->target_section, "", STT_FUNC,
          branch_type, (struct elf_link_hash_entry *) stub_entry->h,
          branch_type, (struct elf_link_hash_entry *) stub_entry->h,
          &unresolved_reloc, &error_message);
          &unresolved_reloc, &error_message);
      }
      }
    else
    else
      {
      {
        Elf_Internal_Rela rel;
        Elf_Internal_Rela rel;
        bfd_boolean unresolved_reloc;
        bfd_boolean unresolved_reloc;
        char *error_message;
        char *error_message;
        bfd_vma points_to = sym_value + stub_entry->target_addend
        bfd_vma points_to = sym_value + stub_entry->target_addend
          + template_sequence[stub_reloc_idx[i]].reloc_addend;
          + template_sequence[stub_reloc_idx[i]].reloc_addend;
 
 
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
        rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
        rel.r_info = ELF32_R_INFO (0,
        rel.r_info = ELF32_R_INFO (0,
                                   template_sequence[stub_reloc_idx[i]].r_type);
                                   template_sequence[stub_reloc_idx[i]].r_type);
        rel.r_addend = 0;
        rel.r_addend = 0;
 
 
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
        elf32_arm_final_link_relocate (elf32_arm_howto_from_type
            (template_sequence[stub_reloc_idx[i]].r_type),
            (template_sequence[stub_reloc_idx[i]].r_type),
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
          stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
          points_to, info, stub_entry->target_section, "", STT_FUNC,
          points_to, info, stub_entry->target_section, "", STT_FUNC,
          stub_entry->branch_type,
          stub_entry->branch_type,
          (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
          (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
          &error_message);
          &error_message);
      }
      }
 
 
  return TRUE;
  return TRUE;
#undef MAXRELOCS
#undef MAXRELOCS
}
}
 
 
/* Calculate the template, template size and instruction size for a stub.
/* Calculate the template, template size and instruction size for a stub.
   Return value is the instruction size.  */
   Return value is the instruction size.  */
 
 
static unsigned int
static unsigned int
find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
                             const insn_sequence **stub_template,
                             const insn_sequence **stub_template,
                             int *stub_template_size)
                             int *stub_template_size)
{
{
  const insn_sequence *template_sequence = NULL;
  const insn_sequence *template_sequence = NULL;
  int template_size = 0, i;
  int template_size = 0, i;
  unsigned int size;
  unsigned int size;
 
 
  template_sequence = stub_definitions[stub_type].template_sequence;
  template_sequence = stub_definitions[stub_type].template_sequence;
  if (stub_template)
  if (stub_template)
    *stub_template = template_sequence;
    *stub_template = template_sequence;
 
 
  template_size = stub_definitions[stub_type].template_size;
  template_size = stub_definitions[stub_type].template_size;
  if (stub_template_size)
  if (stub_template_size)
    *stub_template_size = template_size;
    *stub_template_size = template_size;
 
 
  size = 0;
  size = 0;
  for (i = 0; i < template_size; i++)
  for (i = 0; i < template_size; i++)
    {
    {
      switch (template_sequence[i].type)
      switch (template_sequence[i].type)
        {
        {
        case THUMB16_TYPE:
        case THUMB16_TYPE:
          size += 2;
          size += 2;
          break;
          break;
 
 
        case ARM_TYPE:
        case ARM_TYPE:
        case THUMB32_TYPE:
        case THUMB32_TYPE:
        case DATA_TYPE:
        case DATA_TYPE:
          size += 4;
          size += 4;
          break;
          break;
 
 
        default:
        default:
          BFD_FAIL ();
          BFD_FAIL ();
          return 0;
          return 0;
        }
        }
    }
    }
 
 
  return size;
  return size;
}
}
 
 
/* As above, but don't actually build the stub.  Just bump offset so
/* As above, but don't actually build the stub.  Just bump offset so
   we know stub section sizes.  */
   we know stub section sizes.  */
 
 
static bfd_boolean
static bfd_boolean
arm_size_one_stub (struct bfd_hash_entry *gen_entry,
arm_size_one_stub (struct bfd_hash_entry *gen_entry,
                   void *in_arg ATTRIBUTE_UNUSED)
                   void *in_arg ATTRIBUTE_UNUSED)
{
{
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct elf32_arm_stub_hash_entry *stub_entry;
  const insn_sequence *template_sequence;
  const insn_sequence *template_sequence;
  int template_size, size;
  int template_size, size;
 
 
  /* Massage our args to the form they really have.  */
  /* Massage our args to the form they really have.  */
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
 
 
  BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
  BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
             && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
             && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
 
 
  size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
  size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
                                      &template_size);
                                      &template_size);
 
 
  stub_entry->stub_size = size;
  stub_entry->stub_size = size;
  stub_entry->stub_template = template_sequence;
  stub_entry->stub_template = template_sequence;
  stub_entry->stub_template_size = template_size;
  stub_entry->stub_template_size = template_size;
 
 
  size = (size + 7) & ~7;
  size = (size + 7) & ~7;
  stub_entry->stub_sec->size += size;
  stub_entry->stub_sec->size += size;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* External entry points for sizing and building linker stubs.  */
/* External entry points for sizing and building linker stubs.  */
 
 
/* Set up various things so that we can make a list of input sections
/* Set up various things so that we can make a list of input sections
   for each output section included in the link.  Returns -1 on error,
   for each output section included in the link.  Returns -1 on error,
   0 when no stubs will be needed, and 1 on success.  */
   0 when no stubs will be needed, and 1 on success.  */
 
 
int
int
elf32_arm_setup_section_lists (bfd *output_bfd,
elf32_arm_setup_section_lists (bfd *output_bfd,
                               struct bfd_link_info *info)
                               struct bfd_link_info *info)
{
{
  bfd *input_bfd;
  bfd *input_bfd;
  unsigned int bfd_count;
  unsigned int bfd_count;
  int top_id, top_index;
  int top_id, top_index;
  asection *section;
  asection *section;
  asection **input_list, **list;
  asection **input_list, **list;
  bfd_size_type amt;
  bfd_size_type amt;
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
 
 
  if (htab == NULL)
  if (htab == NULL)
    return 0;
    return 0;
  if (! is_elf_hash_table (htab))
  if (! is_elf_hash_table (htab))
    return 0;
    return 0;
 
 
  /* Count the number of input BFDs and find the top input section id.  */
  /* Count the number of input BFDs and find the top input section id.  */
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
       input_bfd != NULL;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next)
       input_bfd = input_bfd->link_next)
    {
    {
      bfd_count += 1;
      bfd_count += 1;
      for (section = input_bfd->sections;
      for (section = input_bfd->sections;
           section != NULL;
           section != NULL;
           section = section->next)
           section = section->next)
        {
        {
          if (top_id < section->id)
          if (top_id < section->id)
            top_id = section->id;
            top_id = section->id;
        }
        }
    }
    }
  htab->bfd_count = bfd_count;
  htab->bfd_count = bfd_count;
 
 
  amt = sizeof (struct map_stub) * (top_id + 1);
  amt = sizeof (struct map_stub) * (top_id + 1);
  htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
  htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
  if (htab->stub_group == NULL)
  if (htab->stub_group == NULL)
    return -1;
    return -1;
  htab->top_id = top_id;
  htab->top_id = top_id;
 
 
  /* We can't use output_bfd->section_count here to find the top output
  /* We can't use output_bfd->section_count here to find the top output
     section index as some sections may have been removed, and
     section index as some sections may have been removed, and
     _bfd_strip_section_from_output doesn't renumber the indices.  */
     _bfd_strip_section_from_output doesn't renumber the indices.  */
  for (section = output_bfd->sections, top_index = 0;
  for (section = output_bfd->sections, top_index = 0;
       section != NULL;
       section != NULL;
       section = section->next)
       section = section->next)
    {
    {
      if (top_index < section->index)
      if (top_index < section->index)
        top_index = section->index;
        top_index = section->index;
    }
    }
 
 
  htab->top_index = top_index;
  htab->top_index = top_index;
  amt = sizeof (asection *) * (top_index + 1);
  amt = sizeof (asection *) * (top_index + 1);
  input_list = (asection **) bfd_malloc (amt);
  input_list = (asection **) bfd_malloc (amt);
  htab->input_list = input_list;
  htab->input_list = input_list;
  if (input_list == NULL)
  if (input_list == NULL)
    return -1;
    return -1;
 
 
  /* For sections we aren't interested in, mark their entries with a
  /* For sections we aren't interested in, mark their entries with a
     value we can check later.  */
     value we can check later.  */
  list = input_list + top_index;
  list = input_list + top_index;
  do
  do
    *list = bfd_abs_section_ptr;
    *list = bfd_abs_section_ptr;
  while (list-- != input_list);
  while (list-- != input_list);
 
 
  for (section = output_bfd->sections;
  for (section = output_bfd->sections;
       section != NULL;
       section != NULL;
       section = section->next)
       section = section->next)
    {
    {
      if ((section->flags & SEC_CODE) != 0)
      if ((section->flags & SEC_CODE) != 0)
        input_list[section->index] = NULL;
        input_list[section->index] = NULL;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* The linker repeatedly calls this function for each input section,
/* The linker repeatedly calls this function for each input section,
   in the order that input sections are linked into output sections.
   in the order that input sections are linked into output sections.
   Build lists of input sections to determine groupings between which
   Build lists of input sections to determine groupings between which
   we may insert linker stubs.  */
   we may insert linker stubs.  */
 
 
void
void
elf32_arm_next_input_section (struct bfd_link_info *info,
elf32_arm_next_input_section (struct bfd_link_info *info,
                              asection *isec)
                              asection *isec)
{
{
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
 
 
  if (htab == NULL)
  if (htab == NULL)
    return;
    return;
 
 
  if (isec->output_section->index <= htab->top_index)
  if (isec->output_section->index <= htab->top_index)
    {
    {
      asection **list = htab->input_list + isec->output_section->index;
      asection **list = htab->input_list + isec->output_section->index;
 
 
      if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
      if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
        {
        {
          /* Steal the link_sec pointer for our list.  */
          /* Steal the link_sec pointer for our list.  */
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
          /* This happens to make the list in reverse order,
          /* This happens to make the list in reverse order,
             which we reverse later.  */
             which we reverse later.  */
          PREV_SEC (isec) = *list;
          PREV_SEC (isec) = *list;
          *list = isec;
          *list = isec;
        }
        }
    }
    }
}
}
 
 
/* See whether we can group stub sections together.  Grouping stub
/* See whether we can group stub sections together.  Grouping stub
   sections may result in fewer stubs.  More importantly, we need to
   sections may result in fewer stubs.  More importantly, we need to
   put all .init* and .fini* stubs at the end of the .init or
   put all .init* and .fini* stubs at the end of the .init or
   .fini output sections respectively, because glibc splits the
   .fini output sections respectively, because glibc splits the
   _init and _fini functions into multiple parts.  Putting a stub in
   _init and _fini functions into multiple parts.  Putting a stub in
   the middle of a function is not a good idea.  */
   the middle of a function is not a good idea.  */
 
 
static void
static void
group_sections (struct elf32_arm_link_hash_table *htab,
group_sections (struct elf32_arm_link_hash_table *htab,
                bfd_size_type stub_group_size,
                bfd_size_type stub_group_size,
                bfd_boolean stubs_always_after_branch)
                bfd_boolean stubs_always_after_branch)
{
{
  asection **list = htab->input_list;
  asection **list = htab->input_list;
 
 
  do
  do
    {
    {
      asection *tail = *list;
      asection *tail = *list;
      asection *head;
      asection *head;
 
 
      if (tail == bfd_abs_section_ptr)
      if (tail == bfd_abs_section_ptr)
        continue;
        continue;
 
 
      /* Reverse the list: we must avoid placing stubs at the
      /* Reverse the list: we must avoid placing stubs at the
         beginning of the section because the beginning of the text
         beginning of the section because the beginning of the text
         section may be required for an interrupt vector in bare metal
         section may be required for an interrupt vector in bare metal
         code.  */
         code.  */
#define NEXT_SEC PREV_SEC
#define NEXT_SEC PREV_SEC
      head = NULL;
      head = NULL;
      while (tail != NULL)
      while (tail != NULL)
        {
        {
          /* Pop from tail.  */
          /* Pop from tail.  */
          asection *item = tail;
          asection *item = tail;
          tail = PREV_SEC (item);
          tail = PREV_SEC (item);
 
 
          /* Push on head.  */
          /* Push on head.  */
          NEXT_SEC (item) = head;
          NEXT_SEC (item) = head;
          head = item;
          head = item;
        }
        }
 
 
      while (head != NULL)
      while (head != NULL)
        {
        {
          asection *curr;
          asection *curr;
          asection *next;
          asection *next;
          bfd_vma stub_group_start = head->output_offset;
          bfd_vma stub_group_start = head->output_offset;
          bfd_vma end_of_next;
          bfd_vma end_of_next;
 
 
          curr = head;
          curr = head;
          while (NEXT_SEC (curr) != NULL)
          while (NEXT_SEC (curr) != NULL)
            {
            {
              next = NEXT_SEC (curr);
              next = NEXT_SEC (curr);
              end_of_next = next->output_offset + next->size;
              end_of_next = next->output_offset + next->size;
              if (end_of_next - stub_group_start >= stub_group_size)
              if (end_of_next - stub_group_start >= stub_group_size)
                /* End of NEXT is too far from start, so stop.  */
                /* End of NEXT is too far from start, so stop.  */
                break;
                break;
              /* Add NEXT to the group.  */
              /* Add NEXT to the group.  */
              curr = next;
              curr = next;
            }
            }
 
 
          /* OK, the size from the start to the start of CURR is less
          /* OK, the size from the start to the start of CURR is less
             than stub_group_size and thus can be handled by one stub
             than stub_group_size and thus can be handled by one stub
             section.  (Or the head section is itself larger than
             section.  (Or the head section is itself larger than
             stub_group_size, in which case we may be toast.)
             stub_group_size, in which case we may be toast.)
             We should really be keeping track of the total size of
             We should really be keeping track of the total size of
             stubs added here, as stubs contribute to the final output
             stubs added here, as stubs contribute to the final output
             section size.  */
             section size.  */
          do
          do
            {
            {
              next = NEXT_SEC (head);
              next = NEXT_SEC (head);
              /* Set up this stub group.  */
              /* Set up this stub group.  */
              htab->stub_group[head->id].link_sec = curr;
              htab->stub_group[head->id].link_sec = curr;
            }
            }
          while (head != curr && (head = next) != NULL);
          while (head != curr && (head = next) != NULL);
 
 
          /* But wait, there's more!  Input sections up to stub_group_size
          /* But wait, there's more!  Input sections up to stub_group_size
             bytes after the stub section can be handled by it too.  */
             bytes after the stub section can be handled by it too.  */
          if (!stubs_always_after_branch)
          if (!stubs_always_after_branch)
            {
            {
              stub_group_start = curr->output_offset + curr->size;
              stub_group_start = curr->output_offset + curr->size;
 
 
              while (next != NULL)
              while (next != NULL)
                {
                {
                  end_of_next = next->output_offset + next->size;
                  end_of_next = next->output_offset + next->size;
                  if (end_of_next - stub_group_start >= stub_group_size)
                  if (end_of_next - stub_group_start >= stub_group_size)
                    /* End of NEXT is too far from stubs, so stop.  */
                    /* End of NEXT is too far from stubs, so stop.  */
                    break;
                    break;
                  /* Add NEXT to the stub group.  */
                  /* Add NEXT to the stub group.  */
                  head = next;
                  head = next;
                  next = NEXT_SEC (head);
                  next = NEXT_SEC (head);
                  htab->stub_group[head->id].link_sec = curr;
                  htab->stub_group[head->id].link_sec = curr;
                }
                }
            }
            }
          head = next;
          head = next;
        }
        }
    }
    }
  while (list++ != htab->input_list + htab->top_index);
  while (list++ != htab->input_list + htab->top_index);
 
 
  free (htab->input_list);
  free (htab->input_list);
#undef PREV_SEC
#undef PREV_SEC
#undef NEXT_SEC
#undef NEXT_SEC
}
}
 
 
/* Comparison function for sorting/searching relocations relating to Cortex-A8
/* Comparison function for sorting/searching relocations relating to Cortex-A8
   erratum fix.  */
   erratum fix.  */
 
 
static int
static int
a8_reloc_compare (const void *a, const void *b)
a8_reloc_compare (const void *a, const void *b)
{
{
  const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
  const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
  const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
  const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
 
 
  if (ra->from < rb->from)
  if (ra->from < rb->from)
    return -1;
    return -1;
  else if (ra->from > rb->from)
  else if (ra->from > rb->from)
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
                                                    const char *, char **);
                                                    const char *, char **);
 
 
/* Helper function to scan code for sequences which might trigger the Cortex-A8
/* Helper function to scan code for sequences which might trigger the Cortex-A8
   branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
   branch/TLB erratum.  Fill in the table described by A8_FIXES_P,
   NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
   NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P.  Returns true if an error occurs, false
   otherwise.  */
   otherwise.  */
 
 
static bfd_boolean
static bfd_boolean
cortex_a8_erratum_scan (bfd *input_bfd,
cortex_a8_erratum_scan (bfd *input_bfd,
                        struct bfd_link_info *info,
                        struct bfd_link_info *info,
                        struct a8_erratum_fix **a8_fixes_p,
                        struct a8_erratum_fix **a8_fixes_p,
                        unsigned int *num_a8_fixes_p,
                        unsigned int *num_a8_fixes_p,
                        unsigned int *a8_fix_table_size_p,
                        unsigned int *a8_fix_table_size_p,
                        struct a8_erratum_reloc *a8_relocs,
                        struct a8_erratum_reloc *a8_relocs,
                        unsigned int num_a8_relocs,
                        unsigned int num_a8_relocs,
                        unsigned prev_num_a8_fixes,
                        unsigned prev_num_a8_fixes,
                        bfd_boolean *stub_changed_p)
                        bfd_boolean *stub_changed_p)
{
{
  asection *section;
  asection *section;
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
  struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
  struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
  unsigned int num_a8_fixes = *num_a8_fixes_p;
  unsigned int num_a8_fixes = *num_a8_fixes_p;
  unsigned int a8_fix_table_size = *a8_fix_table_size_p;
  unsigned int a8_fix_table_size = *a8_fix_table_size_p;
 
 
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  for (section = input_bfd->sections;
  for (section = input_bfd->sections;
       section != NULL;
       section != NULL;
       section = section->next)
       section = section->next)
    {
    {
      bfd_byte *contents = NULL;
      bfd_byte *contents = NULL;
      struct _arm_elf_section_data *sec_data;
      struct _arm_elf_section_data *sec_data;
      unsigned int span;
      unsigned int span;
      bfd_vma base_vma;
      bfd_vma base_vma;
 
 
      if (elf_section_type (section) != SHT_PROGBITS
      if (elf_section_type (section) != SHT_PROGBITS
          || (elf_section_flags (section) & SHF_EXECINSTR) == 0
          || (elf_section_flags (section) & SHF_EXECINSTR) == 0
          || (section->flags & SEC_EXCLUDE) != 0
          || (section->flags & SEC_EXCLUDE) != 0
          || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
          || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
          || (section->output_section == bfd_abs_section_ptr))
          || (section->output_section == bfd_abs_section_ptr))
        continue;
        continue;
 
 
      base_vma = section->output_section->vma + section->output_offset;
      base_vma = section->output_section->vma + section->output_offset;
 
 
      if (elf_section_data (section)->this_hdr.contents != NULL)
      if (elf_section_data (section)->this_hdr.contents != NULL)
        contents = elf_section_data (section)->this_hdr.contents;
        contents = elf_section_data (section)->this_hdr.contents;
      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
        return TRUE;
        return TRUE;
 
 
      sec_data = elf32_arm_section_data (section);
      sec_data = elf32_arm_section_data (section);
 
 
      for (span = 0; span < sec_data->mapcount; span++)
      for (span = 0; span < sec_data->mapcount; span++)
        {
        {
          unsigned int span_start = sec_data->map[span].vma;
          unsigned int span_start = sec_data->map[span].vma;
          unsigned int span_end = (span == sec_data->mapcount - 1)
          unsigned int span_end = (span == sec_data->mapcount - 1)
            ? section->size : sec_data->map[span + 1].vma;
            ? section->size : sec_data->map[span + 1].vma;
          unsigned int i;
          unsigned int i;
          char span_type = sec_data->map[span].type;
          char span_type = sec_data->map[span].type;
          bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
          bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
 
 
          if (span_type != 't')
          if (span_type != 't')
            continue;
            continue;
 
 
          /* Span is entirely within a single 4KB region: skip scanning.  */
          /* Span is entirely within a single 4KB region: skip scanning.  */
          if (((base_vma + span_start) & ~0xfff)
          if (((base_vma + span_start) & ~0xfff)
              == ((base_vma + span_end) & ~0xfff))
              == ((base_vma + span_end) & ~0xfff))
            continue;
            continue;
 
 
          /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
          /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
 
 
               * The opcode is BLX.W, BL.W, B.W, Bcc.W
               * The opcode is BLX.W, BL.W, B.W, Bcc.W
               * The branch target is in the same 4KB region as the
               * The branch target is in the same 4KB region as the
                 first half of the branch.
                 first half of the branch.
               * The instruction before the branch is a 32-bit
               * The instruction before the branch is a 32-bit
                 length non-branch instruction.  */
                 length non-branch instruction.  */
          for (i = span_start; i < span_end;)
          for (i = span_start; i < span_end;)
            {
            {
              unsigned int insn = bfd_getl16 (&contents[i]);
              unsigned int insn = bfd_getl16 (&contents[i]);
              bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
              bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
              bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
              bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
 
 
              if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
              if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
                insn_32bit = TRUE;
                insn_32bit = TRUE;
 
 
              if (insn_32bit)
              if (insn_32bit)
                {
                {
                  /* Load the rest of the insn (in manual-friendly order).  */
                  /* Load the rest of the insn (in manual-friendly order).  */
                  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
                  insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
 
 
                  /* Encoding T4: B<c>.W.  */
                  /* Encoding T4: B<c>.W.  */
                  is_b = (insn & 0xf800d000) == 0xf0009000;
                  is_b = (insn & 0xf800d000) == 0xf0009000;
                  /* Encoding T1: BL<c>.W.  */
                  /* Encoding T1: BL<c>.W.  */
                  is_bl = (insn & 0xf800d000) == 0xf000d000;
                  is_bl = (insn & 0xf800d000) == 0xf000d000;
                  /* Encoding T2: BLX<c>.W.  */
                  /* Encoding T2: BLX<c>.W.  */
                  is_blx = (insn & 0xf800d000) == 0xf000c000;
                  is_blx = (insn & 0xf800d000) == 0xf000c000;
                  /* Encoding T3: B<c>.W (not permitted in IT block).  */
                  /* Encoding T3: B<c>.W (not permitted in IT block).  */
                  is_bcc = (insn & 0xf800d000) == 0xf0008000
                  is_bcc = (insn & 0xf800d000) == 0xf0008000
                           && (insn & 0x07f00000) != 0x03800000;
                           && (insn & 0x07f00000) != 0x03800000;
                }
                }
 
 
              is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
              is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
 
 
              if (((base_vma + i) & 0xfff) == 0xffe
              if (((base_vma + i) & 0xfff) == 0xffe
                  && insn_32bit
                  && insn_32bit
                  && is_32bit_branch
                  && is_32bit_branch
                  && last_was_32bit
                  && last_was_32bit
                  && ! last_was_branch)
                  && ! last_was_branch)
                {
                {
                  bfd_signed_vma offset = 0;
                  bfd_signed_vma offset = 0;
                  bfd_boolean force_target_arm = FALSE;
                  bfd_boolean force_target_arm = FALSE;
                  bfd_boolean force_target_thumb = FALSE;
                  bfd_boolean force_target_thumb = FALSE;
                  bfd_vma target;
                  bfd_vma target;
                  enum elf32_arm_stub_type stub_type = arm_stub_none;
                  enum elf32_arm_stub_type stub_type = arm_stub_none;
                  struct a8_erratum_reloc key, *found;
                  struct a8_erratum_reloc key, *found;
                  bfd_boolean use_plt = FALSE;
                  bfd_boolean use_plt = FALSE;
 
 
                  key.from = base_vma + i;
                  key.from = base_vma + i;
                  found = (struct a8_erratum_reloc *)
                  found = (struct a8_erratum_reloc *)
                      bsearch (&key, a8_relocs, num_a8_relocs,
                      bsearch (&key, a8_relocs, num_a8_relocs,
                               sizeof (struct a8_erratum_reloc),
                               sizeof (struct a8_erratum_reloc),
                               &a8_reloc_compare);
                               &a8_reloc_compare);
 
 
                  if (found)
                  if (found)
                    {
                    {
                      char *error_message = NULL;
                      char *error_message = NULL;
                      struct elf_link_hash_entry *entry;
                      struct elf_link_hash_entry *entry;
 
 
                      /* We don't care about the error returned from this
                      /* We don't care about the error returned from this
                         function, only if there is glue or not.  */
                         function, only if there is glue or not.  */
                      entry = find_thumb_glue (info, found->sym_name,
                      entry = find_thumb_glue (info, found->sym_name,
                                               &error_message);
                                               &error_message);
 
 
                      if (entry)
                      if (entry)
                        found->non_a8_stub = TRUE;
                        found->non_a8_stub = TRUE;
 
 
                      /* Keep a simpler condition, for the sake of clarity.  */
                      /* Keep a simpler condition, for the sake of clarity.  */
                      if (htab->root.splt != NULL && found->hash != NULL
                      if (htab->root.splt != NULL && found->hash != NULL
                          && found->hash->root.plt.offset != (bfd_vma) -1)
                          && found->hash->root.plt.offset != (bfd_vma) -1)
                        use_plt = TRUE;
                        use_plt = TRUE;
 
 
                      if (found->r_type == R_ARM_THM_CALL)
                      if (found->r_type == R_ARM_THM_CALL)
                        {
                        {
                          if (found->branch_type == ST_BRANCH_TO_ARM
                          if (found->branch_type == ST_BRANCH_TO_ARM
                              || use_plt)
                              || use_plt)
                            force_target_arm = TRUE;
                            force_target_arm = TRUE;
                          else
                          else
                            force_target_thumb = TRUE;
                            force_target_thumb = TRUE;
                        }
                        }
                    }
                    }
 
 
                  /* Check if we have an offending branch instruction.  */
                  /* Check if we have an offending branch instruction.  */
 
 
                  if (found && found->non_a8_stub)
                  if (found && found->non_a8_stub)
                    /* We've already made a stub for this instruction, e.g.
                    /* We've already made a stub for this instruction, e.g.
                       it's a long branch or a Thumb->ARM stub.  Assume that
                       it's a long branch or a Thumb->ARM stub.  Assume that
                       stub will suffice to work around the A8 erratum (see
                       stub will suffice to work around the A8 erratum (see
                       setting of always_after_branch above).  */
                       setting of always_after_branch above).  */
                    ;
                    ;
                  else if (is_bcc)
                  else if (is_bcc)
                    {
                    {
                      offset = (insn & 0x7ff) << 1;
                      offset = (insn & 0x7ff) << 1;
                      offset |= (insn & 0x3f0000) >> 4;
                      offset |= (insn & 0x3f0000) >> 4;
                      offset |= (insn & 0x2000) ? 0x40000 : 0;
                      offset |= (insn & 0x2000) ? 0x40000 : 0;
                      offset |= (insn & 0x800) ? 0x80000 : 0;
                      offset |= (insn & 0x800) ? 0x80000 : 0;
                      offset |= (insn & 0x4000000) ? 0x100000 : 0;
                      offset |= (insn & 0x4000000) ? 0x100000 : 0;
                      if (offset & 0x100000)
                      if (offset & 0x100000)
                        offset |= ~ ((bfd_signed_vma) 0xfffff);
                        offset |= ~ ((bfd_signed_vma) 0xfffff);
                      stub_type = arm_stub_a8_veneer_b_cond;
                      stub_type = arm_stub_a8_veneer_b_cond;
                    }
                    }
                  else if (is_b || is_bl || is_blx)
                  else if (is_b || is_bl || is_blx)
                    {
                    {
                      int s = (insn & 0x4000000) != 0;
                      int s = (insn & 0x4000000) != 0;
                      int j1 = (insn & 0x2000) != 0;
                      int j1 = (insn & 0x2000) != 0;
                      int j2 = (insn & 0x800) != 0;
                      int j2 = (insn & 0x800) != 0;
                      int i1 = !(j1 ^ s);
                      int i1 = !(j1 ^ s);
                      int i2 = !(j2 ^ s);
                      int i2 = !(j2 ^ s);
 
 
                      offset = (insn & 0x7ff) << 1;
                      offset = (insn & 0x7ff) << 1;
                      offset |= (insn & 0x3ff0000) >> 4;
                      offset |= (insn & 0x3ff0000) >> 4;
                      offset |= i2 << 22;
                      offset |= i2 << 22;
                      offset |= i1 << 23;
                      offset |= i1 << 23;
                      offset |= s << 24;
                      offset |= s << 24;
                      if (offset & 0x1000000)
                      if (offset & 0x1000000)
                        offset |= ~ ((bfd_signed_vma) 0xffffff);
                        offset |= ~ ((bfd_signed_vma) 0xffffff);
 
 
                      if (is_blx)
                      if (is_blx)
                        offset &= ~ ((bfd_signed_vma) 3);
                        offset &= ~ ((bfd_signed_vma) 3);
 
 
                      stub_type = is_blx ? arm_stub_a8_veneer_blx :
                      stub_type = is_blx ? arm_stub_a8_veneer_blx :
                        is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
                        is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
                    }
                    }
 
 
                  if (stub_type != arm_stub_none)
                  if (stub_type != arm_stub_none)
                    {
                    {
                      bfd_vma pc_for_insn = base_vma + i + 4;
                      bfd_vma pc_for_insn = base_vma + i + 4;
 
 
                      /* The original instruction is a BL, but the target is
                      /* The original instruction is a BL, but the target is
                         an ARM instruction.  If we were not making a stub,
                         an ARM instruction.  If we were not making a stub,
                         the BL would have been converted to a BLX.  Use the
                         the BL would have been converted to a BLX.  Use the
                         BLX stub instead in that case.  */
                         BLX stub instead in that case.  */
                      if (htab->use_blx && force_target_arm
                      if (htab->use_blx && force_target_arm
                          && stub_type == arm_stub_a8_veneer_bl)
                          && stub_type == arm_stub_a8_veneer_bl)
                        {
                        {
                          stub_type = arm_stub_a8_veneer_blx;
                          stub_type = arm_stub_a8_veneer_blx;
                          is_blx = TRUE;
                          is_blx = TRUE;
                          is_bl = FALSE;
                          is_bl = FALSE;
                        }
                        }
                      /* Conversely, if the original instruction was
                      /* Conversely, if the original instruction was
                         BLX but the target is Thumb mode, use the BL
                         BLX but the target is Thumb mode, use the BL
                         stub.  */
                         stub.  */
                      else if (force_target_thumb
                      else if (force_target_thumb
                               && stub_type == arm_stub_a8_veneer_blx)
                               && stub_type == arm_stub_a8_veneer_blx)
                        {
                        {
                          stub_type = arm_stub_a8_veneer_bl;
                          stub_type = arm_stub_a8_veneer_bl;
                          is_blx = FALSE;
                          is_blx = FALSE;
                          is_bl = TRUE;
                          is_bl = TRUE;
                        }
                        }
 
 
                      if (is_blx)
                      if (is_blx)
                        pc_for_insn &= ~ ((bfd_vma) 3);
                        pc_for_insn &= ~ ((bfd_vma) 3);
 
 
                      /* If we found a relocation, use the proper destination,
                      /* If we found a relocation, use the proper destination,
                         not the offset in the (unrelocated) instruction.
                         not the offset in the (unrelocated) instruction.
                         Note this is always done if we switched the stub type
                         Note this is always done if we switched the stub type
                         above.  */
                         above.  */
                      if (found)
                      if (found)
                        offset =
                        offset =
                          (bfd_signed_vma) (found->destination - pc_for_insn);
                          (bfd_signed_vma) (found->destination - pc_for_insn);
 
 
                      /* If the stub will use a Thumb-mode branch to a
                      /* If the stub will use a Thumb-mode branch to a
                         PLT target, redirect it to the preceding Thumb
                         PLT target, redirect it to the preceding Thumb
                         entry point.  */
                         entry point.  */
                      if (stub_type != arm_stub_a8_veneer_blx && use_plt)
                      if (stub_type != arm_stub_a8_veneer_blx && use_plt)
                        offset -= PLT_THUMB_STUB_SIZE;
                        offset -= PLT_THUMB_STUB_SIZE;
 
 
                      target = pc_for_insn + offset;
                      target = pc_for_insn + offset;
 
 
                      /* The BLX stub is ARM-mode code.  Adjust the offset to
                      /* The BLX stub is ARM-mode code.  Adjust the offset to
                         take the different PC value (+8 instead of +4) into
                         take the different PC value (+8 instead of +4) into
                         account.  */
                         account.  */
                      if (stub_type == arm_stub_a8_veneer_blx)
                      if (stub_type == arm_stub_a8_veneer_blx)
                        offset += 4;
                        offset += 4;
 
 
                      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
                      if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
                        {
                        {
                          char *stub_name = NULL;
                          char *stub_name = NULL;
 
 
                          if (num_a8_fixes == a8_fix_table_size)
                          if (num_a8_fixes == a8_fix_table_size)
                            {
                            {
                              a8_fix_table_size *= 2;
                              a8_fix_table_size *= 2;
                              a8_fixes = (struct a8_erratum_fix *)
                              a8_fixes = (struct a8_erratum_fix *)
                                  bfd_realloc (a8_fixes,
                                  bfd_realloc (a8_fixes,
                                               sizeof (struct a8_erratum_fix)
                                               sizeof (struct a8_erratum_fix)
                                               * a8_fix_table_size);
                                               * a8_fix_table_size);
                            }
                            }
 
 
                          if (num_a8_fixes < prev_num_a8_fixes)
                          if (num_a8_fixes < prev_num_a8_fixes)
                            {
                            {
                              /* If we're doing a subsequent scan,
                              /* If we're doing a subsequent scan,
                                 check if we've found the same fix as
                                 check if we've found the same fix as
                                 before, and try and reuse the stub
                                 before, and try and reuse the stub
                                 name.  */
                                 name.  */
                              stub_name = a8_fixes[num_a8_fixes].stub_name;
                              stub_name = a8_fixes[num_a8_fixes].stub_name;
                              if ((a8_fixes[num_a8_fixes].section != section)
                              if ((a8_fixes[num_a8_fixes].section != section)
                                  || (a8_fixes[num_a8_fixes].offset != i))
                                  || (a8_fixes[num_a8_fixes].offset != i))
                                {
                                {
                                  free (stub_name);
                                  free (stub_name);
                                  stub_name = NULL;
                                  stub_name = NULL;
                                  *stub_changed_p = TRUE;
                                  *stub_changed_p = TRUE;
                                }
                                }
                            }
                            }
 
 
                          if (!stub_name)
                          if (!stub_name)
                            {
                            {
                              stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
                              stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
                              if (stub_name != NULL)
                              if (stub_name != NULL)
                                sprintf (stub_name, "%x:%x", section->id, i);
                                sprintf (stub_name, "%x:%x", section->id, i);
                            }
                            }
 
 
                          a8_fixes[num_a8_fixes].input_bfd = input_bfd;
                          a8_fixes[num_a8_fixes].input_bfd = input_bfd;
                          a8_fixes[num_a8_fixes].section = section;
                          a8_fixes[num_a8_fixes].section = section;
                          a8_fixes[num_a8_fixes].offset = i;
                          a8_fixes[num_a8_fixes].offset = i;
                          a8_fixes[num_a8_fixes].addend = offset;
                          a8_fixes[num_a8_fixes].addend = offset;
                          a8_fixes[num_a8_fixes].orig_insn = insn;
                          a8_fixes[num_a8_fixes].orig_insn = insn;
                          a8_fixes[num_a8_fixes].stub_name = stub_name;
                          a8_fixes[num_a8_fixes].stub_name = stub_name;
                          a8_fixes[num_a8_fixes].stub_type = stub_type;
                          a8_fixes[num_a8_fixes].stub_type = stub_type;
                          a8_fixes[num_a8_fixes].branch_type =
                          a8_fixes[num_a8_fixes].branch_type =
                            is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
                            is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
 
 
                          num_a8_fixes++;
                          num_a8_fixes++;
                        }
                        }
                    }
                    }
                }
                }
 
 
              i += insn_32bit ? 4 : 2;
              i += insn_32bit ? 4 : 2;
              last_was_32bit = insn_32bit;
              last_was_32bit = insn_32bit;
              last_was_branch = is_32bit_branch;
              last_was_branch = is_32bit_branch;
            }
            }
        }
        }
 
 
      if (elf_section_data (section)->this_hdr.contents == NULL)
      if (elf_section_data (section)->this_hdr.contents == NULL)
        free (contents);
        free (contents);
    }
    }
 
 
  *a8_fixes_p = a8_fixes;
  *a8_fixes_p = a8_fixes;
  *num_a8_fixes_p = num_a8_fixes;
  *num_a8_fixes_p = num_a8_fixes;
  *a8_fix_table_size_p = a8_fix_table_size;
  *a8_fix_table_size_p = a8_fix_table_size;
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Determine and set the size of the stub section for a final link.
/* Determine and set the size of the stub section for a final link.
 
 
   The basic idea here is to examine all the relocations looking for
   The basic idea here is to examine all the relocations looking for
   PC-relative calls to a target that is unreachable with a "bl"
   PC-relative calls to a target that is unreachable with a "bl"
   instruction.  */
   instruction.  */
 
 
bfd_boolean
bfd_boolean
elf32_arm_size_stubs (bfd *output_bfd,
elf32_arm_size_stubs (bfd *output_bfd,
                      bfd *stub_bfd,
                      bfd *stub_bfd,
                      struct bfd_link_info *info,
                      struct bfd_link_info *info,
                      bfd_signed_vma group_size,
                      bfd_signed_vma group_size,
                      asection * (*add_stub_section) (const char *, asection *),
                      asection * (*add_stub_section) (const char *, asection *),
                      void (*layout_sections_again) (void))
                      void (*layout_sections_again) (void))
{
{
  bfd_size_type stub_group_size;
  bfd_size_type stub_group_size;
  bfd_boolean stubs_always_after_branch;
  bfd_boolean stubs_always_after_branch;
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
  struct a8_erratum_fix *a8_fixes = NULL;
  struct a8_erratum_fix *a8_fixes = NULL;
  unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
  unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
  struct a8_erratum_reloc *a8_relocs = NULL;
  struct a8_erratum_reloc *a8_relocs = NULL;
  unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
  unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
 
 
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  if (htab->fix_cortex_a8)
  if (htab->fix_cortex_a8)
    {
    {
      a8_fixes = (struct a8_erratum_fix *)
      a8_fixes = (struct a8_erratum_fix *)
          bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
          bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
      a8_relocs = (struct a8_erratum_reloc *)
      a8_relocs = (struct a8_erratum_reloc *)
          bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
          bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
    }
    }
 
 
  /* Propagate mach to stub bfd, because it may not have been
  /* Propagate mach to stub bfd, because it may not have been
     finalized when we created stub_bfd.  */
     finalized when we created stub_bfd.  */
  bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
  bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
                     bfd_get_mach (output_bfd));
                     bfd_get_mach (output_bfd));
 
 
  /* Stash our params away.  */
  /* Stash our params away.  */
  htab->stub_bfd = stub_bfd;
  htab->stub_bfd = stub_bfd;
  htab->add_stub_section = add_stub_section;
  htab->add_stub_section = add_stub_section;
  htab->layout_sections_again = layout_sections_again;
  htab->layout_sections_again = layout_sections_again;
  stubs_always_after_branch = group_size < 0;
  stubs_always_after_branch = group_size < 0;
 
 
  /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
  /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
     as the first half of a 32-bit branch straddling two 4K pages.  This is a
     as the first half of a 32-bit branch straddling two 4K pages.  This is a
     crude way of enforcing that.  */
     crude way of enforcing that.  */
  if (htab->fix_cortex_a8)
  if (htab->fix_cortex_a8)
    stubs_always_after_branch = 1;
    stubs_always_after_branch = 1;
 
 
  if (group_size < 0)
  if (group_size < 0)
    stub_group_size = -group_size;
    stub_group_size = -group_size;
  else
  else
    stub_group_size = group_size;
    stub_group_size = group_size;
 
 
  if (stub_group_size == 1)
  if (stub_group_size == 1)
    {
    {
      /* Default values.  */
      /* Default values.  */
      /* Thumb branch range is +-4MB has to be used as the default
      /* Thumb branch range is +-4MB has to be used as the default
         maximum size (a given section can contain both ARM and Thumb
         maximum size (a given section can contain both ARM and Thumb
         code, so the worst case has to be taken into account).
         code, so the worst case has to be taken into account).
 
 
         This value is 24K less than that, which allows for 2025
         This value is 24K less than that, which allows for 2025
         12-byte stubs.  If we exceed that, then we will fail to link.
         12-byte stubs.  If we exceed that, then we will fail to link.
         The user will have to relink with an explicit group size
         The user will have to relink with an explicit group size
         option.  */
         option.  */
      stub_group_size = 4170000;
      stub_group_size = 4170000;
    }
    }
 
 
  group_sections (htab, stub_group_size, stubs_always_after_branch);
  group_sections (htab, stub_group_size, stubs_always_after_branch);
 
 
  /* If we're applying the cortex A8 fix, we need to determine the
  /* If we're applying the cortex A8 fix, we need to determine the
     program header size now, because we cannot change it later --
     program header size now, because we cannot change it later --
     that could alter section placements.  Notice the A8 erratum fix
     that could alter section placements.  Notice the A8 erratum fix
     ends up requiring the section addresses to remain unchanged
     ends up requiring the section addresses to remain unchanged
     modulo the page size.  That's something we cannot represent
     modulo the page size.  That's something we cannot represent
     inside BFD, and we don't want to force the section alignment to
     inside BFD, and we don't want to force the section alignment to
     be the page size.  */
     be the page size.  */
  if (htab->fix_cortex_a8)
  if (htab->fix_cortex_a8)
    (*htab->layout_sections_again) ();
    (*htab->layout_sections_again) ();
 
 
  while (1)
  while (1)
    {
    {
      bfd *input_bfd;
      bfd *input_bfd;
      unsigned int bfd_indx;
      unsigned int bfd_indx;
      asection *stub_sec;
      asection *stub_sec;
      bfd_boolean stub_changed = FALSE;
      bfd_boolean stub_changed = FALSE;
      unsigned prev_num_a8_fixes = num_a8_fixes;
      unsigned prev_num_a8_fixes = num_a8_fixes;
 
 
      num_a8_fixes = 0;
      num_a8_fixes = 0;
      for (input_bfd = info->input_bfds, bfd_indx = 0;
      for (input_bfd = info->input_bfds, bfd_indx = 0;
           input_bfd != NULL;
           input_bfd != NULL;
           input_bfd = input_bfd->link_next, bfd_indx++)
           input_bfd = input_bfd->link_next, bfd_indx++)
        {
        {
          Elf_Internal_Shdr *symtab_hdr;
          Elf_Internal_Shdr *symtab_hdr;
          asection *section;
          asection *section;
          Elf_Internal_Sym *local_syms = NULL;
          Elf_Internal_Sym *local_syms = NULL;
 
 
          num_a8_relocs = 0;
          num_a8_relocs = 0;
 
 
          /* We'll need the symbol table in a second.  */
          /* We'll need the symbol table in a second.  */
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
          symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
          if (symtab_hdr->sh_info == 0)
          if (symtab_hdr->sh_info == 0)
            continue;
            continue;
 
 
          /* Walk over each section attached to the input bfd.  */
          /* Walk over each section attached to the input bfd.  */
          for (section = input_bfd->sections;
          for (section = input_bfd->sections;
               section != NULL;
               section != NULL;
               section = section->next)
               section = section->next)
            {
            {
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
              Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
 
 
              /* If there aren't any relocs, then there's nothing more
              /* If there aren't any relocs, then there's nothing more
                 to do.  */
                 to do.  */
              if ((section->flags & SEC_RELOC) == 0
              if ((section->flags & SEC_RELOC) == 0
                  || section->reloc_count == 0
                  || section->reloc_count == 0
                  || (section->flags & SEC_CODE) == 0)
                  || (section->flags & SEC_CODE) == 0)
                continue;
                continue;
 
 
              /* If this section is a link-once section that will be
              /* If this section is a link-once section that will be
                 discarded, then don't create any stubs.  */
                 discarded, then don't create any stubs.  */
              if (section->output_section == NULL
              if (section->output_section == NULL
                  || section->output_section->owner != output_bfd)
                  || section->output_section->owner != output_bfd)
                continue;
                continue;
 
 
              /* Get the relocs.  */
              /* Get the relocs.  */
              internal_relocs
              internal_relocs
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
                = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
                                             NULL, info->keep_memory);
                                             NULL, info->keep_memory);
              if (internal_relocs == NULL)
              if (internal_relocs == NULL)
                goto error_ret_free_local;
                goto error_ret_free_local;
 
 
              /* Now examine each relocation.  */
              /* Now examine each relocation.  */
              irela = internal_relocs;
              irela = internal_relocs;
              irelaend = irela + section->reloc_count;
              irelaend = irela + section->reloc_count;
              for (; irela < irelaend; irela++)
              for (; irela < irelaend; irela++)
                {
                {
                  unsigned int r_type, r_indx;
                  unsigned int r_type, r_indx;
                  enum elf32_arm_stub_type stub_type;
                  enum elf32_arm_stub_type stub_type;
                  struct elf32_arm_stub_hash_entry *stub_entry;
                  struct elf32_arm_stub_hash_entry *stub_entry;
                  asection *sym_sec;
                  asection *sym_sec;
                  bfd_vma sym_value;
                  bfd_vma sym_value;
                  bfd_vma destination;
                  bfd_vma destination;
                  struct elf32_arm_link_hash_entry *hash;
                  struct elf32_arm_link_hash_entry *hash;
                  const char *sym_name;
                  const char *sym_name;
                  char *stub_name;
                  char *stub_name;
                  const asection *id_sec;
                  const asection *id_sec;
                  unsigned char st_type;
                  unsigned char st_type;
                  enum arm_st_branch_type branch_type;
                  enum arm_st_branch_type branch_type;
                  bfd_boolean created_stub = FALSE;
                  bfd_boolean created_stub = FALSE;
 
 
                  r_type = ELF32_R_TYPE (irela->r_info);
                  r_type = ELF32_R_TYPE (irela->r_info);
                  r_indx = ELF32_R_SYM (irela->r_info);
                  r_indx = ELF32_R_SYM (irela->r_info);
 
 
                  if (r_type >= (unsigned int) R_ARM_max)
                  if (r_type >= (unsigned int) R_ARM_max)
                    {
                    {
                      bfd_set_error (bfd_error_bad_value);
                      bfd_set_error (bfd_error_bad_value);
                    error_ret_free_internal:
                    error_ret_free_internal:
                      if (elf_section_data (section)->relocs == NULL)
                      if (elf_section_data (section)->relocs == NULL)
                        free (internal_relocs);
                        free (internal_relocs);
                      goto error_ret_free_local;
                      goto error_ret_free_local;
                    }
                    }
 
 
                  hash = NULL;
                  hash = NULL;
                  if (r_indx >= symtab_hdr->sh_info)
                  if (r_indx >= symtab_hdr->sh_info)
                    hash = elf32_arm_hash_entry
                    hash = elf32_arm_hash_entry
                      (elf_sym_hashes (input_bfd)
                      (elf_sym_hashes (input_bfd)
                       [r_indx - symtab_hdr->sh_info]);
                       [r_indx - symtab_hdr->sh_info]);
 
 
                  /* Only look for stubs on branch instructions, or
                  /* Only look for stubs on branch instructions, or
                     non-relaxed TLSCALL  */
                     non-relaxed TLSCALL  */
                  if ((r_type != (unsigned int) R_ARM_CALL)
                  if ((r_type != (unsigned int) R_ARM_CALL)
                      && (r_type != (unsigned int) R_ARM_THM_CALL)
                      && (r_type != (unsigned int) R_ARM_THM_CALL)
                      && (r_type != (unsigned int) R_ARM_JUMP24)
                      && (r_type != (unsigned int) R_ARM_JUMP24)
                      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
                      && (r_type != (unsigned int) R_ARM_THM_JUMP19)
                      && (r_type != (unsigned int) R_ARM_THM_XPC22)
                      && (r_type != (unsigned int) R_ARM_THM_XPC22)
                      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
                      && (r_type != (unsigned int) R_ARM_THM_JUMP24)
                      && (r_type != (unsigned int) R_ARM_PLT32)
                      && (r_type != (unsigned int) R_ARM_PLT32)
                      && !((r_type == (unsigned int) R_ARM_TLS_CALL
                      && !((r_type == (unsigned int) R_ARM_TLS_CALL
                            || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
                            || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
                           && r_type == elf32_arm_tls_transition
                           && r_type == elf32_arm_tls_transition
                               (info, r_type, &hash->root)
                               (info, r_type, &hash->root)
                           && ((hash ? hash->tls_type
                           && ((hash ? hash->tls_type
                                : (elf32_arm_local_got_tls_type
                                : (elf32_arm_local_got_tls_type
                                   (input_bfd)[r_indx]))
                                   (input_bfd)[r_indx]))
                               & GOT_TLS_GDESC) != 0))
                               & GOT_TLS_GDESC) != 0))
                    continue;
                    continue;
 
 
                  /* Now determine the call target, its name, value,
                  /* Now determine the call target, its name, value,
                     section.  */
                     section.  */
                  sym_sec = NULL;
                  sym_sec = NULL;
                  sym_value = 0;
                  sym_value = 0;
                  destination = 0;
                  destination = 0;
                  sym_name = NULL;
                  sym_name = NULL;
 
 
                  if (r_type == (unsigned int) R_ARM_TLS_CALL
                  if (r_type == (unsigned int) R_ARM_TLS_CALL
                      || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
                      || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
                    {
                    {
                      /* A non-relaxed TLS call.  The target is the
                      /* A non-relaxed TLS call.  The target is the
                         plt-resident trampoline and nothing to do
                         plt-resident trampoline and nothing to do
                         with the symbol.  */
                         with the symbol.  */
                      BFD_ASSERT (htab->tls_trampoline > 0);
                      BFD_ASSERT (htab->tls_trampoline > 0);
                      sym_sec = htab->root.splt;
                      sym_sec = htab->root.splt;
                      sym_value = htab->tls_trampoline;
                      sym_value = htab->tls_trampoline;
                      hash = 0;
                      hash = 0;
                      st_type = STT_FUNC;
                      st_type = STT_FUNC;
                      branch_type = ST_BRANCH_TO_ARM;
                      branch_type = ST_BRANCH_TO_ARM;
                    }
                    }
                  else if (!hash)
                  else if (!hash)
                    {
                    {
                      /* It's a local symbol.  */
                      /* It's a local symbol.  */
                      Elf_Internal_Sym *sym;
                      Elf_Internal_Sym *sym;
 
 
                      if (local_syms == NULL)
                      if (local_syms == NULL)
                        {
                        {
                          local_syms
                          local_syms
                            = (Elf_Internal_Sym *) symtab_hdr->contents;
                            = (Elf_Internal_Sym *) symtab_hdr->contents;
                          if (local_syms == NULL)
                          if (local_syms == NULL)
                            local_syms
                            local_syms
                              = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
                              = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
                                                      symtab_hdr->sh_info, 0,
                                                      symtab_hdr->sh_info, 0,
                                                      NULL, NULL, NULL);
                                                      NULL, NULL, NULL);
                          if (local_syms == NULL)
                          if (local_syms == NULL)
                            goto error_ret_free_internal;
                            goto error_ret_free_internal;
                        }
                        }
 
 
                      sym = local_syms + r_indx;
                      sym = local_syms + r_indx;
                      if (sym->st_shndx == SHN_UNDEF)
                      if (sym->st_shndx == SHN_UNDEF)
                        sym_sec = bfd_und_section_ptr;
                        sym_sec = bfd_und_section_ptr;
                      else if (sym->st_shndx == SHN_ABS)
                      else if (sym->st_shndx == SHN_ABS)
                        sym_sec = bfd_abs_section_ptr;
                        sym_sec = bfd_abs_section_ptr;
                      else if (sym->st_shndx == SHN_COMMON)
                      else if (sym->st_shndx == SHN_COMMON)
                        sym_sec = bfd_com_section_ptr;
                        sym_sec = bfd_com_section_ptr;
                      else
                      else
                        sym_sec =
                        sym_sec =
                          bfd_section_from_elf_index (input_bfd, sym->st_shndx);
                          bfd_section_from_elf_index (input_bfd, sym->st_shndx);
 
 
                      if (!sym_sec)
                      if (!sym_sec)
                        /* This is an undefined symbol.  It can never
                        /* This is an undefined symbol.  It can never
                           be resolved. */
                           be resolved. */
                        continue;
                        continue;
 
 
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
                      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
                        sym_value = sym->st_value;
                        sym_value = sym->st_value;
                      destination = (sym_value + irela->r_addend
                      destination = (sym_value + irela->r_addend
                                     + sym_sec->output_offset
                                     + sym_sec->output_offset
                                     + sym_sec->output_section->vma);
                                     + sym_sec->output_section->vma);
                      st_type = ELF_ST_TYPE (sym->st_info);
                      st_type = ELF_ST_TYPE (sym->st_info);
                      branch_type = ARM_SYM_BRANCH_TYPE (sym);
                      branch_type = ARM_SYM_BRANCH_TYPE (sym);
                      sym_name
                      sym_name
                        = bfd_elf_string_from_elf_section (input_bfd,
                        = bfd_elf_string_from_elf_section (input_bfd,
                                                           symtab_hdr->sh_link,
                                                           symtab_hdr->sh_link,
                                                           sym->st_name);
                                                           sym->st_name);
                    }
                    }
                  else
                  else
                    {
                    {
                      /* It's an external symbol.  */
                      /* It's an external symbol.  */
                      while (hash->root.root.type == bfd_link_hash_indirect
                      while (hash->root.root.type == bfd_link_hash_indirect
                             || hash->root.root.type == bfd_link_hash_warning)
                             || hash->root.root.type == bfd_link_hash_warning)
                        hash = ((struct elf32_arm_link_hash_entry *)
                        hash = ((struct elf32_arm_link_hash_entry *)
                                hash->root.root.u.i.link);
                                hash->root.root.u.i.link);
 
 
                      if (hash->root.root.type == bfd_link_hash_defined
                      if (hash->root.root.type == bfd_link_hash_defined
                          || hash->root.root.type == bfd_link_hash_defweak)
                          || hash->root.root.type == bfd_link_hash_defweak)
                        {
                        {
                          sym_sec = hash->root.root.u.def.section;
                          sym_sec = hash->root.root.u.def.section;
                          sym_value = hash->root.root.u.def.value;
                          sym_value = hash->root.root.u.def.value;
 
 
                          struct elf32_arm_link_hash_table *globals =
                          struct elf32_arm_link_hash_table *globals =
                                                  elf32_arm_hash_table (info);
                                                  elf32_arm_hash_table (info);
 
 
                          /* For a destination in a shared library,
                          /* For a destination in a shared library,
                             use the PLT stub as target address to
                             use the PLT stub as target address to
                             decide whether a branch stub is
                             decide whether a branch stub is
                             needed.  */
                             needed.  */
                          if (globals != NULL
                          if (globals != NULL
                              && globals->root.splt != NULL
                              && globals->root.splt != NULL
                              && hash != NULL
                              && hash != NULL
                              && hash->root.plt.offset != (bfd_vma) -1)
                              && hash->root.plt.offset != (bfd_vma) -1)
                            {
                            {
                              sym_sec = globals->root.splt;
                              sym_sec = globals->root.splt;
                              sym_value = hash->root.plt.offset;
                              sym_value = hash->root.plt.offset;
                              if (sym_sec->output_section != NULL)
                              if (sym_sec->output_section != NULL)
                                destination = (sym_value
                                destination = (sym_value
                                               + sym_sec->output_offset
                                               + sym_sec->output_offset
                                               + sym_sec->output_section->vma);
                                               + sym_sec->output_section->vma);
                            }
                            }
                          else if (sym_sec->output_section != NULL)
                          else if (sym_sec->output_section != NULL)
                            destination = (sym_value + irela->r_addend
                            destination = (sym_value + irela->r_addend
                                           + sym_sec->output_offset
                                           + sym_sec->output_offset
                                           + sym_sec->output_section->vma);
                                           + sym_sec->output_section->vma);
                        }
                        }
                      else if ((hash->root.root.type == bfd_link_hash_undefined)
                      else if ((hash->root.root.type == bfd_link_hash_undefined)
                               || (hash->root.root.type == bfd_link_hash_undefweak))
                               || (hash->root.root.type == bfd_link_hash_undefweak))
                        {
                        {
                          /* For a shared library, use the PLT stub as
                          /* For a shared library, use the PLT stub as
                             target address to decide whether a long
                             target address to decide whether a long
                             branch stub is needed.
                             branch stub is needed.
                             For absolute code, they cannot be handled.  */
                             For absolute code, they cannot be handled.  */
                          struct elf32_arm_link_hash_table *globals =
                          struct elf32_arm_link_hash_table *globals =
                            elf32_arm_hash_table (info);
                            elf32_arm_hash_table (info);
 
 
                          if (globals != NULL
                          if (globals != NULL
                              && globals->root.splt != NULL
                              && globals->root.splt != NULL
                              && hash != NULL
                              && hash != NULL
                              && hash->root.plt.offset != (bfd_vma) -1)
                              && hash->root.plt.offset != (bfd_vma) -1)
                            {
                            {
                              sym_sec = globals->root.splt;
                              sym_sec = globals->root.splt;
                              sym_value = hash->root.plt.offset;
                              sym_value = hash->root.plt.offset;
                              if (sym_sec->output_section != NULL)
                              if (sym_sec->output_section != NULL)
                                destination = (sym_value
                                destination = (sym_value
                                               + sym_sec->output_offset
                                               + sym_sec->output_offset
                                               + sym_sec->output_section->vma);
                                               + sym_sec->output_section->vma);
                            }
                            }
                          else
                          else
                            continue;
                            continue;
                        }
                        }
                      else
                      else
                        {
                        {
                          bfd_set_error (bfd_error_bad_value);
                          bfd_set_error (bfd_error_bad_value);
                          goto error_ret_free_internal;
                          goto error_ret_free_internal;
                        }
                        }
                      st_type = hash->root.type;
                      st_type = hash->root.type;
                      branch_type = hash->root.target_internal;
                      branch_type = hash->root.target_internal;
                      sym_name = hash->root.root.root.string;
                      sym_name = hash->root.root.root.string;
                    }
                    }
 
 
                  do
                  do
                    {
                    {
                      /* Determine what (if any) linker stub is needed.  */
                      /* Determine what (if any) linker stub is needed.  */
                      stub_type = arm_type_of_stub (info, section, irela,
                      stub_type = arm_type_of_stub (info, section, irela,
                                                    st_type, &branch_type,
                                                    st_type, &branch_type,
                                                    hash, destination, sym_sec,
                                                    hash, destination, sym_sec,
                                                    input_bfd, sym_name);
                                                    input_bfd, sym_name);
                      if (stub_type == arm_stub_none)
                      if (stub_type == arm_stub_none)
                        break;
                        break;
 
 
                      /* Support for grouping stub sections.  */
                      /* Support for grouping stub sections.  */
                      id_sec = htab->stub_group[section->id].link_sec;
                      id_sec = htab->stub_group[section->id].link_sec;
 
 
                      /* Get the name of this stub.  */
                      /* Get the name of this stub.  */
                      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
                      stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
                                                       irela, stub_type);
                                                       irela, stub_type);
                      if (!stub_name)
                      if (!stub_name)
                        goto error_ret_free_internal;
                        goto error_ret_free_internal;
 
 
                      /* We've either created a stub for this reloc already,
                      /* We've either created a stub for this reloc already,
                         or we are about to.  */
                         or we are about to.  */
                      created_stub = TRUE;
                      created_stub = TRUE;
 
 
                      stub_entry = arm_stub_hash_lookup
                      stub_entry = arm_stub_hash_lookup
                                     (&htab->stub_hash_table, stub_name,
                                     (&htab->stub_hash_table, stub_name,
                                      FALSE, FALSE);
                                      FALSE, FALSE);
                      if (stub_entry != NULL)
                      if (stub_entry != NULL)
                        {
                        {
                          /* The proper stub has already been created.  */
                          /* The proper stub has already been created.  */
                          free (stub_name);
                          free (stub_name);
                          stub_entry->target_value = sym_value;
                          stub_entry->target_value = sym_value;
                          break;
                          break;
                        }
                        }
 
 
                      stub_entry = elf32_arm_add_stub (stub_name, section,
                      stub_entry = elf32_arm_add_stub (stub_name, section,
                                                       htab);
                                                       htab);
                      if (stub_entry == NULL)
                      if (stub_entry == NULL)
                        {
                        {
                          free (stub_name);
                          free (stub_name);
                          goto error_ret_free_internal;
                          goto error_ret_free_internal;
                        }
                        }
 
 
                      stub_entry->target_value = sym_value;
                      stub_entry->target_value = sym_value;
                      stub_entry->target_section = sym_sec;
                      stub_entry->target_section = sym_sec;
                      stub_entry->stub_type = stub_type;
                      stub_entry->stub_type = stub_type;
                      stub_entry->h = hash;
                      stub_entry->h = hash;
                      stub_entry->branch_type = branch_type;
                      stub_entry->branch_type = branch_type;
 
 
                      if (sym_name == NULL)
                      if (sym_name == NULL)
                        sym_name = "unnamed";
                        sym_name = "unnamed";
                      stub_entry->output_name = (char *)
                      stub_entry->output_name = (char *)
                          bfd_alloc (htab->stub_bfd,
                          bfd_alloc (htab->stub_bfd,
                                     sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
                                     sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
                                     + strlen (sym_name));
                                     + strlen (sym_name));
                      if (stub_entry->output_name == NULL)
                      if (stub_entry->output_name == NULL)
                        {
                        {
                          free (stub_name);
                          free (stub_name);
                          goto error_ret_free_internal;
                          goto error_ret_free_internal;
                        }
                        }
 
 
                      /* For historical reasons, use the existing names for
                      /* For historical reasons, use the existing names for
                         ARM-to-Thumb and Thumb-to-ARM stubs.  */
                         ARM-to-Thumb and Thumb-to-ARM stubs.  */
                      if ((r_type == (unsigned int) R_ARM_THM_CALL
                      if ((r_type == (unsigned int) R_ARM_THM_CALL
                           || r_type == (unsigned int) R_ARM_THM_JUMP24)
                           || r_type == (unsigned int) R_ARM_THM_JUMP24)
                          && branch_type == ST_BRANCH_TO_ARM)
                          && branch_type == ST_BRANCH_TO_ARM)
                        sprintf (stub_entry->output_name,
                        sprintf (stub_entry->output_name,
                                 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
                                 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
                      else if ((r_type == (unsigned int) R_ARM_CALL
                      else if ((r_type == (unsigned int) R_ARM_CALL
                               || r_type == (unsigned int) R_ARM_JUMP24)
                               || r_type == (unsigned int) R_ARM_JUMP24)
                               && branch_type == ST_BRANCH_TO_THUMB)
                               && branch_type == ST_BRANCH_TO_THUMB)
                        sprintf (stub_entry->output_name,
                        sprintf (stub_entry->output_name,
                                 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
                                 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
                      else
                      else
                        sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
                        sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
                                 sym_name);
                                 sym_name);
 
 
                      stub_changed = TRUE;
                      stub_changed = TRUE;
                    }
                    }
                  while (0);
                  while (0);
 
 
                  /* Look for relocations which might trigger Cortex-A8
                  /* Look for relocations which might trigger Cortex-A8
                     erratum.  */
                     erratum.  */
                  if (htab->fix_cortex_a8
                  if (htab->fix_cortex_a8
                      && (r_type == (unsigned int) R_ARM_THM_JUMP24
                      && (r_type == (unsigned int) R_ARM_THM_JUMP24
                          || r_type == (unsigned int) R_ARM_THM_JUMP19
                          || r_type == (unsigned int) R_ARM_THM_JUMP19
                          || r_type == (unsigned int) R_ARM_THM_CALL
                          || r_type == (unsigned int) R_ARM_THM_CALL
                          || r_type == (unsigned int) R_ARM_THM_XPC22))
                          || r_type == (unsigned int) R_ARM_THM_XPC22))
                    {
                    {
                      bfd_vma from = section->output_section->vma
                      bfd_vma from = section->output_section->vma
                                     + section->output_offset
                                     + section->output_offset
                                     + irela->r_offset;
                                     + irela->r_offset;
 
 
                      if ((from & 0xfff) == 0xffe)
                      if ((from & 0xfff) == 0xffe)
                        {
                        {
                          /* Found a candidate.  Note we haven't checked the
                          /* Found a candidate.  Note we haven't checked the
                             destination is within 4K here: if we do so (and
                             destination is within 4K here: if we do so (and
                             don't create an entry in a8_relocs) we can't tell
                             don't create an entry in a8_relocs) we can't tell
                             that a branch should have been relocated when
                             that a branch should have been relocated when
                             scanning later.  */
                             scanning later.  */
                          if (num_a8_relocs == a8_reloc_table_size)
                          if (num_a8_relocs == a8_reloc_table_size)
                            {
                            {
                              a8_reloc_table_size *= 2;
                              a8_reloc_table_size *= 2;
                              a8_relocs = (struct a8_erratum_reloc *)
                              a8_relocs = (struct a8_erratum_reloc *)
                                  bfd_realloc (a8_relocs,
                                  bfd_realloc (a8_relocs,
                                               sizeof (struct a8_erratum_reloc)
                                               sizeof (struct a8_erratum_reloc)
                                               * a8_reloc_table_size);
                                               * a8_reloc_table_size);
                            }
                            }
 
 
                          a8_relocs[num_a8_relocs].from = from;
                          a8_relocs[num_a8_relocs].from = from;
                          a8_relocs[num_a8_relocs].destination = destination;
                          a8_relocs[num_a8_relocs].destination = destination;
                          a8_relocs[num_a8_relocs].r_type = r_type;
                          a8_relocs[num_a8_relocs].r_type = r_type;
                          a8_relocs[num_a8_relocs].branch_type = branch_type;
                          a8_relocs[num_a8_relocs].branch_type = branch_type;
                          a8_relocs[num_a8_relocs].sym_name = sym_name;
                          a8_relocs[num_a8_relocs].sym_name = sym_name;
                          a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
                          a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
                          a8_relocs[num_a8_relocs].hash = hash;
                          a8_relocs[num_a8_relocs].hash = hash;
 
 
                          num_a8_relocs++;
                          num_a8_relocs++;
                        }
                        }
                    }
                    }
                }
                }
 
 
              /* We're done with the internal relocs, free them.  */
              /* We're done with the internal relocs, free them.  */
              if (elf_section_data (section)->relocs == NULL)
              if (elf_section_data (section)->relocs == NULL)
                free (internal_relocs);
                free (internal_relocs);
            }
            }
 
 
          if (htab->fix_cortex_a8)
          if (htab->fix_cortex_a8)
            {
            {
              /* Sort relocs which might apply to Cortex-A8 erratum.  */
              /* Sort relocs which might apply to Cortex-A8 erratum.  */
              qsort (a8_relocs, num_a8_relocs,
              qsort (a8_relocs, num_a8_relocs,
                     sizeof (struct a8_erratum_reloc),
                     sizeof (struct a8_erratum_reloc),
                     &a8_reloc_compare);
                     &a8_reloc_compare);
 
 
              /* Scan for branches which might trigger Cortex-A8 erratum.  */
              /* Scan for branches which might trigger Cortex-A8 erratum.  */
              if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
              if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
                                          &num_a8_fixes, &a8_fix_table_size,
                                          &num_a8_fixes, &a8_fix_table_size,
                                          a8_relocs, num_a8_relocs,
                                          a8_relocs, num_a8_relocs,
                                          prev_num_a8_fixes, &stub_changed)
                                          prev_num_a8_fixes, &stub_changed)
                  != 0)
                  != 0)
                goto error_ret_free_local;
                goto error_ret_free_local;
            }
            }
        }
        }
 
 
      if (prev_num_a8_fixes != num_a8_fixes)
      if (prev_num_a8_fixes != num_a8_fixes)
        stub_changed = TRUE;
        stub_changed = TRUE;
 
 
      if (!stub_changed)
      if (!stub_changed)
        break;
        break;
 
 
      /* OK, we've added some stubs.  Find out the new size of the
      /* OK, we've added some stubs.  Find out the new size of the
         stub sections.  */
         stub sections.  */
      for (stub_sec = htab->stub_bfd->sections;
      for (stub_sec = htab->stub_bfd->sections;
           stub_sec != NULL;
           stub_sec != NULL;
           stub_sec = stub_sec->next)
           stub_sec = stub_sec->next)
        {
        {
          /* Ignore non-stub sections.  */
          /* Ignore non-stub sections.  */
          if (!strstr (stub_sec->name, STUB_SUFFIX))
          if (!strstr (stub_sec->name, STUB_SUFFIX))
            continue;
            continue;
 
 
          stub_sec->size = 0;
          stub_sec->size = 0;
        }
        }
 
 
      bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
      bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
 
 
      /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
      /* Add Cortex-A8 erratum veneers to stub section sizes too.  */
      if (htab->fix_cortex_a8)
      if (htab->fix_cortex_a8)
        for (i = 0; i < num_a8_fixes; i++)
        for (i = 0; i < num_a8_fixes; i++)
          {
          {
            stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
            stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
                         a8_fixes[i].section, htab);
                         a8_fixes[i].section, htab);
 
 
            if (stub_sec == NULL)
            if (stub_sec == NULL)
              goto error_ret_free_local;
              goto error_ret_free_local;
 
 
            stub_sec->size
            stub_sec->size
              += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
              += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
                                              NULL);
                                              NULL);
          }
          }
 
 
 
 
      /* Ask the linker to do its stuff.  */
      /* Ask the linker to do its stuff.  */
      (*htab->layout_sections_again) ();
      (*htab->layout_sections_again) ();
    }
    }
 
 
  /* Add stubs for Cortex-A8 erratum fixes now.  */
  /* Add stubs for Cortex-A8 erratum fixes now.  */
  if (htab->fix_cortex_a8)
  if (htab->fix_cortex_a8)
    {
    {
      for (i = 0; i < num_a8_fixes; i++)
      for (i = 0; i < num_a8_fixes; i++)
        {
        {
          struct elf32_arm_stub_hash_entry *stub_entry;
          struct elf32_arm_stub_hash_entry *stub_entry;
          char *stub_name = a8_fixes[i].stub_name;
          char *stub_name = a8_fixes[i].stub_name;
          asection *section = a8_fixes[i].section;
          asection *section = a8_fixes[i].section;
          unsigned int section_id = a8_fixes[i].section->id;
          unsigned int section_id = a8_fixes[i].section->id;
          asection *link_sec = htab->stub_group[section_id].link_sec;
          asection *link_sec = htab->stub_group[section_id].link_sec;
          asection *stub_sec = htab->stub_group[section_id].stub_sec;
          asection *stub_sec = htab->stub_group[section_id].stub_sec;
          const insn_sequence *template_sequence;
          const insn_sequence *template_sequence;
          int template_size, size = 0;
          int template_size, size = 0;
 
 
          stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
          stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
                                             TRUE, FALSE);
                                             TRUE, FALSE);
          if (stub_entry == NULL)
          if (stub_entry == NULL)
            {
            {
              (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
              (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
                                     section->owner,
                                     section->owner,
                                     stub_name);
                                     stub_name);
              return FALSE;
              return FALSE;
            }
            }
 
 
          stub_entry->stub_sec = stub_sec;
          stub_entry->stub_sec = stub_sec;
          stub_entry->stub_offset = 0;
          stub_entry->stub_offset = 0;
          stub_entry->id_sec = link_sec;
          stub_entry->id_sec = link_sec;
          stub_entry->stub_type = a8_fixes[i].stub_type;
          stub_entry->stub_type = a8_fixes[i].stub_type;
          stub_entry->target_section = a8_fixes[i].section;
          stub_entry->target_section = a8_fixes[i].section;
          stub_entry->target_value = a8_fixes[i].offset;
          stub_entry->target_value = a8_fixes[i].offset;
          stub_entry->target_addend = a8_fixes[i].addend;
          stub_entry->target_addend = a8_fixes[i].addend;
          stub_entry->orig_insn = a8_fixes[i].orig_insn;
          stub_entry->orig_insn = a8_fixes[i].orig_insn;
          stub_entry->branch_type = a8_fixes[i].branch_type;
          stub_entry->branch_type = a8_fixes[i].branch_type;
 
 
          size = find_stub_size_and_template (a8_fixes[i].stub_type,
          size = find_stub_size_and_template (a8_fixes[i].stub_type,
                                              &template_sequence,
                                              &template_sequence,
                                              &template_size);
                                              &template_size);
 
 
          stub_entry->stub_size = size;
          stub_entry->stub_size = size;
          stub_entry->stub_template = template_sequence;
          stub_entry->stub_template = template_sequence;
          stub_entry->stub_template_size = template_size;
          stub_entry->stub_template_size = template_size;
        }
        }
 
 
      /* Stash the Cortex-A8 erratum fix array for use later in
      /* Stash the Cortex-A8 erratum fix array for use later in
         elf32_arm_write_section().  */
         elf32_arm_write_section().  */
      htab->a8_erratum_fixes = a8_fixes;
      htab->a8_erratum_fixes = a8_fixes;
      htab->num_a8_erratum_fixes = num_a8_fixes;
      htab->num_a8_erratum_fixes = num_a8_fixes;
    }
    }
  else
  else
    {
    {
      htab->a8_erratum_fixes = NULL;
      htab->a8_erratum_fixes = NULL;
      htab->num_a8_erratum_fixes = 0;
      htab->num_a8_erratum_fixes = 0;
    }
    }
  return TRUE;
  return TRUE;
 
 
 error_ret_free_local:
 error_ret_free_local:
  return FALSE;
  return FALSE;
}
}
 
 
/* Build all the stubs associated with the current output file.  The
/* Build all the stubs associated with the current output file.  The
   stubs are kept in a hash table attached to the main linker hash
   stubs are kept in a hash table attached to the main linker hash
   table.  We also set up the .plt entries for statically linked PIC
   table.  We also set up the .plt entries for statically linked PIC
   functions here.  This function is called via arm_elf_finish in the
   functions here.  This function is called via arm_elf_finish in the
   linker.  */
   linker.  */
 
 
bfd_boolean
bfd_boolean
elf32_arm_build_stubs (struct bfd_link_info *info)
elf32_arm_build_stubs (struct bfd_link_info *info)
{
{
  asection *stub_sec;
  asection *stub_sec;
  struct bfd_hash_table *table;
  struct bfd_hash_table *table;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  for (stub_sec = htab->stub_bfd->sections;
  for (stub_sec = htab->stub_bfd->sections;
       stub_sec != NULL;
       stub_sec != NULL;
       stub_sec = stub_sec->next)
       stub_sec = stub_sec->next)
    {
    {
      bfd_size_type size;
      bfd_size_type size;
 
 
      /* Ignore non-stub sections.  */
      /* Ignore non-stub sections.  */
      if (!strstr (stub_sec->name, STUB_SUFFIX))
      if (!strstr (stub_sec->name, STUB_SUFFIX))
        continue;
        continue;
 
 
      /* Allocate memory to hold the linker stubs.  */
      /* Allocate memory to hold the linker stubs.  */
      size = stub_sec->size;
      size = stub_sec->size;
      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
      stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
      if (stub_sec->contents == NULL && size != 0)
      if (stub_sec->contents == NULL && size != 0)
        return FALSE;
        return FALSE;
      stub_sec->size = 0;
      stub_sec->size = 0;
    }
    }
 
 
  /* Build the stubs as directed by the stub hash table.  */
  /* Build the stubs as directed by the stub hash table.  */
  table = &htab->stub_hash_table;
  table = &htab->stub_hash_table;
  bfd_hash_traverse (table, arm_build_one_stub, info);
  bfd_hash_traverse (table, arm_build_one_stub, info);
  if (htab->fix_cortex_a8)
  if (htab->fix_cortex_a8)
    {
    {
      /* Place the cortex a8 stubs last.  */
      /* Place the cortex a8 stubs last.  */
      htab->fix_cortex_a8 = -1;
      htab->fix_cortex_a8 = -1;
      bfd_hash_traverse (table, arm_build_one_stub, info);
      bfd_hash_traverse (table, arm_build_one_stub, info);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Locate the Thumb encoded calling stub for NAME.  */
/* Locate the Thumb encoded calling stub for NAME.  */
 
 
static struct elf_link_hash_entry *
static struct elf_link_hash_entry *
find_thumb_glue (struct bfd_link_info *link_info,
find_thumb_glue (struct bfd_link_info *link_info,
                 const char *name,
                 const char *name,
                 char **error_message)
                 char **error_message)
{
{
  char *tmp_name;
  char *tmp_name;
  struct elf_link_hash_entry *hash;
  struct elf_link_hash_entry *hash;
  struct elf32_arm_link_hash_table *hash_table;
  struct elf32_arm_link_hash_table *hash_table;
 
 
  /* We need a pointer to the armelf specific hash table.  */
  /* We need a pointer to the armelf specific hash table.  */
  hash_table = elf32_arm_hash_table (link_info);
  hash_table = elf32_arm_hash_table (link_info);
  if (hash_table == NULL)
  if (hash_table == NULL)
    return NULL;
    return NULL;
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
 
 
  hash = elf_link_hash_lookup
  hash = elf_link_hash_lookup
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
 
 
  if (hash == NULL
  if (hash == NULL
      && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
      && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
                   tmp_name, name) == -1)
                   tmp_name, name) == -1)
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
 
 
  free (tmp_name);
  free (tmp_name);
 
 
  return hash;
  return hash;
}
}
 
 
/* Locate the ARM encoded calling stub for NAME.  */
/* Locate the ARM encoded calling stub for NAME.  */
 
 
static struct elf_link_hash_entry *
static struct elf_link_hash_entry *
find_arm_glue (struct bfd_link_info *link_info,
find_arm_glue (struct bfd_link_info *link_info,
               const char *name,
               const char *name,
               char **error_message)
               char **error_message)
{
{
  char *tmp_name;
  char *tmp_name;
  struct elf_link_hash_entry *myh;
  struct elf_link_hash_entry *myh;
  struct elf32_arm_link_hash_table *hash_table;
  struct elf32_arm_link_hash_table *hash_table;
 
 
  /* We need a pointer to the elfarm specific hash table.  */
  /* We need a pointer to the elfarm specific hash table.  */
  hash_table = elf32_arm_hash_table (link_info);
  hash_table = elf32_arm_hash_table (link_info);
  if (hash_table == NULL)
  if (hash_table == NULL)
    return NULL;
    return NULL;
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
 
 
  myh = elf_link_hash_lookup
  myh = elf_link_hash_lookup
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
    (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
 
 
  if (myh == NULL
  if (myh == NULL
      && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
      && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
                   tmp_name, name) == -1)
                   tmp_name, name) == -1)
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
    *error_message = (char *) bfd_errmsg (bfd_error_system_call);
 
 
  free (tmp_name);
  free (tmp_name);
 
 
  return myh;
  return myh;
}
}
 
 
/* ARM->Thumb glue (static images):
/* ARM->Thumb glue (static images):
 
 
   .arm
   .arm
   __func_from_arm:
   __func_from_arm:
   ldr r12, __func_addr
   ldr r12, __func_addr
   bx  r12
   bx  r12
   __func_addr:
   __func_addr:
   .word func    @ behave as if you saw a ARM_32 reloc.
   .word func    @ behave as if you saw a ARM_32 reloc.
 
 
   (v5t static images)
   (v5t static images)
   .arm
   .arm
   __func_from_arm:
   __func_from_arm:
   ldr pc, __func_addr
   ldr pc, __func_addr
   __func_addr:
   __func_addr:
   .word func    @ behave as if you saw a ARM_32 reloc.
   .word func    @ behave as if you saw a ARM_32 reloc.
 
 
   (relocatable images)
   (relocatable images)
   .arm
   .arm
   __func_from_arm:
   __func_from_arm:
   ldr r12, __func_offset
   ldr r12, __func_offset
   add r12, r12, pc
   add r12, r12, pc
   bx  r12
   bx  r12
   __func_offset:
   __func_offset:
   .word func - .   */
   .word func - .   */
 
 
#define ARM2THUMB_STATIC_GLUE_SIZE 12
#define ARM2THUMB_STATIC_GLUE_SIZE 12
static const insn32 a2t1_ldr_insn = 0xe59fc000;
static const insn32 a2t1_ldr_insn = 0xe59fc000;
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
static const insn32 a2t3_func_addr_insn = 0x00000001;
static const insn32 a2t3_func_addr_insn = 0x00000001;
 
 
#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
static const insn32 a2t2v5_func_addr_insn = 0x00000001;
static const insn32 a2t2v5_func_addr_insn = 0x00000001;
 
 
#define ARM2THUMB_PIC_GLUE_SIZE 16
#define ARM2THUMB_PIC_GLUE_SIZE 16
static const insn32 a2t1p_ldr_insn = 0xe59fc004;
static const insn32 a2t1p_ldr_insn = 0xe59fc004;
static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
 
 
/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
 
 
     .thumb                             .thumb
     .thumb                             .thumb
     .align 2                           .align 2
     .align 2                           .align 2
 __func_from_thumb:                 __func_from_thumb:
 __func_from_thumb:                 __func_from_thumb:
     bx pc                              push {r6, lr}
     bx pc                              push {r6, lr}
     nop                                ldr  r6, __func_addr
     nop                                ldr  r6, __func_addr
     .arm                               mov  lr, pc
     .arm                               mov  lr, pc
     b func                             bx   r6
     b func                             bx   r6
                                        .arm
                                        .arm
                                    ;; back_to_thumb
                                    ;; back_to_thumb
                                        ldmia r13! {r6, lr}
                                        ldmia r13! {r6, lr}
                                        bx    lr
                                        bx    lr
                                    __func_addr:
                                    __func_addr:
                                        .word        func  */
                                        .word        func  */
 
 
#define THUMB2ARM_GLUE_SIZE 8
#define THUMB2ARM_GLUE_SIZE 8
static const insn16 t2a1_bx_pc_insn = 0x4778;
static const insn16 t2a1_bx_pc_insn = 0x4778;
static const insn16 t2a2_noop_insn = 0x46c0;
static const insn16 t2a2_noop_insn = 0x46c0;
static const insn32 t2a3_b_insn = 0xea000000;
static const insn32 t2a3_b_insn = 0xea000000;
 
 
#define VFP11_ERRATUM_VENEER_SIZE 8
#define VFP11_ERRATUM_VENEER_SIZE 8
 
 
#define ARM_BX_VENEER_SIZE 12
#define ARM_BX_VENEER_SIZE 12
static const insn32 armbx1_tst_insn = 0xe3100001;
static const insn32 armbx1_tst_insn = 0xe3100001;
static const insn32 armbx2_moveq_insn = 0x01a0f000;
static const insn32 armbx2_moveq_insn = 0x01a0f000;
static const insn32 armbx3_bx_insn = 0xe12fff10;
static const insn32 armbx3_bx_insn = 0xe12fff10;
 
 
#ifndef ELFARM_NABI_C_INCLUDED
#ifndef ELFARM_NABI_C_INCLUDED
static void
static void
arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
{
{
  asection * s;
  asection * s;
  bfd_byte * contents;
  bfd_byte * contents;
 
 
  if (size == 0)
  if (size == 0)
    {
    {
      /* Do not include empty glue sections in the output.  */
      /* Do not include empty glue sections in the output.  */
      if (abfd != NULL)
      if (abfd != NULL)
        {
        {
          s = bfd_get_section_by_name (abfd, name);
          s = bfd_get_section_by_name (abfd, name);
          if (s != NULL)
          if (s != NULL)
            s->flags |= SEC_EXCLUDE;
            s->flags |= SEC_EXCLUDE;
        }
        }
      return;
      return;
    }
    }
 
 
  BFD_ASSERT (abfd != NULL);
  BFD_ASSERT (abfd != NULL);
 
 
  s = bfd_get_section_by_name (abfd, name);
  s = bfd_get_section_by_name (abfd, name);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  contents = (bfd_byte *) bfd_alloc (abfd, size);
  contents = (bfd_byte *) bfd_alloc (abfd, size);
 
 
  BFD_ASSERT (s->size == size);
  BFD_ASSERT (s->size == size);
  s->contents = contents;
  s->contents = contents;
}
}
 
 
bfd_boolean
bfd_boolean
bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
{
{
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
 
 
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
                                   globals->arm_glue_size,
                                   globals->arm_glue_size,
                                   ARM2THUMB_GLUE_SECTION_NAME);
                                   ARM2THUMB_GLUE_SECTION_NAME);
 
 
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
                                   globals->thumb_glue_size,
                                   globals->thumb_glue_size,
                                   THUMB2ARM_GLUE_SECTION_NAME);
                                   THUMB2ARM_GLUE_SECTION_NAME);
 
 
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
                                   globals->vfp11_erratum_glue_size,
                                   globals->vfp11_erratum_glue_size,
                                   VFP11_ERRATUM_VENEER_SECTION_NAME);
                                   VFP11_ERRATUM_VENEER_SECTION_NAME);
 
 
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
  arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
                                   globals->bx_glue_size,
                                   globals->bx_glue_size,
                                   ARM_BX_GLUE_SECTION_NAME);
                                   ARM_BX_GLUE_SECTION_NAME);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space and symbols for calling a Thumb function from Arm mode.
/* Allocate space and symbols for calling a Thumb function from Arm mode.
   returns the symbol identifying the stub.  */
   returns the symbol identifying the stub.  */
 
 
static struct elf_link_hash_entry *
static struct elf_link_hash_entry *
record_arm_to_thumb_glue (struct bfd_link_info * link_info,
record_arm_to_thumb_glue (struct bfd_link_info * link_info,
                          struct elf_link_hash_entry * h)
                          struct elf_link_hash_entry * h)
{
{
  const char * name = h->root.root.string;
  const char * name = h->root.root.string;
  asection * s;
  asection * s;
  char * tmp_name;
  char * tmp_name;
  struct elf_link_hash_entry * myh;
  struct elf_link_hash_entry * myh;
  struct bfd_link_hash_entry * bh;
  struct bfd_link_hash_entry * bh;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
  bfd_vma val;
  bfd_vma val;
  bfd_size_type size;
  bfd_size_type size;
 
 
  globals = elf32_arm_hash_table (link_info);
  globals = elf32_arm_hash_table (link_info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  s = bfd_get_section_by_name
  s = bfd_get_section_by_name
    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
 
 
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
 
 
  myh = elf_link_hash_lookup
  myh = elf_link_hash_lookup
    (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
    (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
 
 
  if (myh != NULL)
  if (myh != NULL)
    {
    {
      /* We've already seen this guy.  */
      /* We've already seen this guy.  */
      free (tmp_name);
      free (tmp_name);
      return myh;
      return myh;
    }
    }
 
 
  /* The only trick here is using hash_table->arm_glue_size as the value.
  /* The only trick here is using hash_table->arm_glue_size as the value.
     Even though the section isn't allocated yet, this is where we will be
     Even though the section isn't allocated yet, this is where we will be
     putting it.  The +1 on the value marks that the stub has not been
     putting it.  The +1 on the value marks that the stub has not been
     output yet - not that it is a Thumb function.  */
     output yet - not that it is a Thumb function.  */
  bh = NULL;
  bh = NULL;
  val = globals->arm_glue_size + 1;
  val = globals->arm_glue_size + 1;
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
                                    tmp_name, BSF_GLOBAL, s, val,
                                    tmp_name, BSF_GLOBAL, s, val,
                                    NULL, TRUE, FALSE, &bh);
                                    NULL, TRUE, FALSE, &bh);
 
 
  myh = (struct elf_link_hash_entry *) bh;
  myh = (struct elf_link_hash_entry *) bh;
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  myh->forced_local = 1;
  myh->forced_local = 1;
 
 
  free (tmp_name);
  free (tmp_name);
 
 
  if (link_info->shared || globals->root.is_relocatable_executable
  if (link_info->shared || globals->root.is_relocatable_executable
      || globals->pic_veneer)
      || globals->pic_veneer)
    size = ARM2THUMB_PIC_GLUE_SIZE;
    size = ARM2THUMB_PIC_GLUE_SIZE;
  else if (globals->use_blx)
  else if (globals->use_blx)
    size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
    size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
  else
  else
    size = ARM2THUMB_STATIC_GLUE_SIZE;
    size = ARM2THUMB_STATIC_GLUE_SIZE;
 
 
  s->size += size;
  s->size += size;
  globals->arm_glue_size += size;
  globals->arm_glue_size += size;
 
 
  return myh;
  return myh;
}
}
 
 
/* Allocate space for ARMv4 BX veneers.  */
/* Allocate space for ARMv4 BX veneers.  */
 
 
static void
static void
record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
{
{
  asection * s;
  asection * s;
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
  char *tmp_name;
  char *tmp_name;
  struct elf_link_hash_entry *myh;
  struct elf_link_hash_entry *myh;
  struct bfd_link_hash_entry *bh;
  struct bfd_link_hash_entry *bh;
  bfd_vma val;
  bfd_vma val;
 
 
  /* BX PC does not need a veneer.  */
  /* BX PC does not need a veneer.  */
  if (reg == 15)
  if (reg == 15)
    return;
    return;
 
 
  globals = elf32_arm_hash_table (link_info);
  globals = elf32_arm_hash_table (link_info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  /* Check if this veneer has already been allocated.  */
  /* Check if this veneer has already been allocated.  */
  if (globals->bx_glue_offset[reg])
  if (globals->bx_glue_offset[reg])
    return;
    return;
 
 
  s = bfd_get_section_by_name
  s = bfd_get_section_by_name
    (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
    (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
 
 
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  /* Add symbol for veneer.  */
  /* Add symbol for veneer.  */
  tmp_name = (char *)
  tmp_name = (char *)
      bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
      bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
  sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
 
 
  myh = elf_link_hash_lookup
  myh = elf_link_hash_lookup
    (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
    (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
 
 
  BFD_ASSERT (myh == NULL);
  BFD_ASSERT (myh == NULL);
 
 
  bh = NULL;
  bh = NULL;
  val = globals->bx_glue_size;
  val = globals->bx_glue_size;
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
                                    NULL, TRUE, FALSE, &bh);
                                    NULL, TRUE, FALSE, &bh);
 
 
  myh = (struct elf_link_hash_entry *) bh;
  myh = (struct elf_link_hash_entry *) bh;
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  myh->forced_local = 1;
  myh->forced_local = 1;
 
 
  s->size += ARM_BX_VENEER_SIZE;
  s->size += ARM_BX_VENEER_SIZE;
  globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
  globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
  globals->bx_glue_size += ARM_BX_VENEER_SIZE;
  globals->bx_glue_size += ARM_BX_VENEER_SIZE;
}
}
 
 
 
 
/* Add an entry to the code/data map for section SEC.  */
/* Add an entry to the code/data map for section SEC.  */
 
 
static void
static void
elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
{
{
  struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
  struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
  unsigned int newidx;
  unsigned int newidx;
 
 
  if (sec_data->map == NULL)
  if (sec_data->map == NULL)
    {
    {
      sec_data->map = (elf32_arm_section_map *)
      sec_data->map = (elf32_arm_section_map *)
          bfd_malloc (sizeof (elf32_arm_section_map));
          bfd_malloc (sizeof (elf32_arm_section_map));
      sec_data->mapcount = 0;
      sec_data->mapcount = 0;
      sec_data->mapsize = 1;
      sec_data->mapsize = 1;
    }
    }
 
 
  newidx = sec_data->mapcount++;
  newidx = sec_data->mapcount++;
 
 
  if (sec_data->mapcount > sec_data->mapsize)
  if (sec_data->mapcount > sec_data->mapsize)
    {
    {
      sec_data->mapsize *= 2;
      sec_data->mapsize *= 2;
      sec_data->map = (elf32_arm_section_map *)
      sec_data->map = (elf32_arm_section_map *)
          bfd_realloc_or_free (sec_data->map, sec_data->mapsize
          bfd_realloc_or_free (sec_data->map, sec_data->mapsize
                               * sizeof (elf32_arm_section_map));
                               * sizeof (elf32_arm_section_map));
    }
    }
 
 
  if (sec_data->map)
  if (sec_data->map)
    {
    {
      sec_data->map[newidx].vma = vma;
      sec_data->map[newidx].vma = vma;
      sec_data->map[newidx].type = type;
      sec_data->map[newidx].type = type;
    }
    }
}
}
 
 
 
 
/* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
/* Record information about a VFP11 denorm-erratum veneer.  Only ARM-mode
   veneers are handled for now.  */
   veneers are handled for now.  */
 
 
static bfd_vma
static bfd_vma
record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
                             elf32_vfp11_erratum_list *branch,
                             elf32_vfp11_erratum_list *branch,
                             bfd *branch_bfd,
                             bfd *branch_bfd,
                             asection *branch_sec,
                             asection *branch_sec,
                             unsigned int offset)
                             unsigned int offset)
{
{
  asection *s;
  asection *s;
  struct elf32_arm_link_hash_table *hash_table;
  struct elf32_arm_link_hash_table *hash_table;
  char *tmp_name;
  char *tmp_name;
  struct elf_link_hash_entry *myh;
  struct elf_link_hash_entry *myh;
  struct bfd_link_hash_entry *bh;
  struct bfd_link_hash_entry *bh;
  bfd_vma val;
  bfd_vma val;
  struct _arm_elf_section_data *sec_data;
  struct _arm_elf_section_data *sec_data;
  elf32_vfp11_erratum_list *newerr;
  elf32_vfp11_erratum_list *newerr;
 
 
  hash_table = elf32_arm_hash_table (link_info);
  hash_table = elf32_arm_hash_table (link_info);
  BFD_ASSERT (hash_table != NULL);
  BFD_ASSERT (hash_table != NULL);
  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
 
 
  s = bfd_get_section_by_name
  s = bfd_get_section_by_name
    (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
    (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
 
 
  sec_data = elf32_arm_section_data (s);
  sec_data = elf32_arm_section_data (s);
 
 
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
           hash_table->num_vfp11_fixes);
           hash_table->num_vfp11_fixes);
 
 
  myh = elf_link_hash_lookup
  myh = elf_link_hash_lookup
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
 
 
  BFD_ASSERT (myh == NULL);
  BFD_ASSERT (myh == NULL);
 
 
  bh = NULL;
  bh = NULL;
  val = hash_table->vfp11_erratum_glue_size;
  val = hash_table->vfp11_erratum_glue_size;
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
                                    tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
                                    NULL, TRUE, FALSE, &bh);
                                    NULL, TRUE, FALSE, &bh);
 
 
  myh = (struct elf_link_hash_entry *) bh;
  myh = (struct elf_link_hash_entry *) bh;
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  myh->forced_local = 1;
  myh->forced_local = 1;
 
 
  /* Link veneer back to calling location.  */
  /* Link veneer back to calling location.  */
  sec_data->erratumcount += 1;
  sec_data->erratumcount += 1;
  newerr = (elf32_vfp11_erratum_list *)
  newerr = (elf32_vfp11_erratum_list *)
      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
 
 
  newerr->type = VFP11_ERRATUM_ARM_VENEER;
  newerr->type = VFP11_ERRATUM_ARM_VENEER;
  newerr->vma = -1;
  newerr->vma = -1;
  newerr->u.v.branch = branch;
  newerr->u.v.branch = branch;
  newerr->u.v.id = hash_table->num_vfp11_fixes;
  newerr->u.v.id = hash_table->num_vfp11_fixes;
  branch->u.b.veneer = newerr;
  branch->u.b.veneer = newerr;
 
 
  newerr->next = sec_data->erratumlist;
  newerr->next = sec_data->erratumlist;
  sec_data->erratumlist = newerr;
  sec_data->erratumlist = newerr;
 
 
  /* A symbol for the return from the veneer.  */
  /* A symbol for the return from the veneer.  */
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
  sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
           hash_table->num_vfp11_fixes);
           hash_table->num_vfp11_fixes);
 
 
  myh = elf_link_hash_lookup
  myh = elf_link_hash_lookup
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
    (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
 
 
  if (myh != NULL)
  if (myh != NULL)
    abort ();
    abort ();
 
 
  bh = NULL;
  bh = NULL;
  val = offset + 4;
  val = offset + 4;
  _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
  _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
                                    branch_sec, val, NULL, TRUE, FALSE, &bh);
                                    branch_sec, val, NULL, TRUE, FALSE, &bh);
 
 
  myh = (struct elf_link_hash_entry *) bh;
  myh = (struct elf_link_hash_entry *) bh;
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  myh->forced_local = 1;
  myh->forced_local = 1;
 
 
  free (tmp_name);
  free (tmp_name);
 
 
  /* Generate a mapping symbol for the veneer section, and explicitly add an
  /* Generate a mapping symbol for the veneer section, and explicitly add an
     entry for that symbol to the code/data map for the section.  */
     entry for that symbol to the code/data map for the section.  */
  if (hash_table->vfp11_erratum_glue_size == 0)
  if (hash_table->vfp11_erratum_glue_size == 0)
    {
    {
      bh = NULL;
      bh = NULL;
      /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
      /* FIXME: Creates an ARM symbol.  Thumb mode will need attention if it
         ever requires this erratum fix.  */
         ever requires this erratum fix.  */
      _bfd_generic_link_add_one_symbol (link_info,
      _bfd_generic_link_add_one_symbol (link_info,
                                        hash_table->bfd_of_glue_owner, "$a",
                                        hash_table->bfd_of_glue_owner, "$a",
                                        BSF_LOCAL, s, 0, NULL,
                                        BSF_LOCAL, s, 0, NULL,
                                        TRUE, FALSE, &bh);
                                        TRUE, FALSE, &bh);
 
 
      myh = (struct elf_link_hash_entry *) bh;
      myh = (struct elf_link_hash_entry *) bh;
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
      myh->forced_local = 1;
      myh->forced_local = 1;
 
 
      /* The elf32_arm_init_maps function only cares about symbols from input
      /* The elf32_arm_init_maps function only cares about symbols from input
         BFDs.  We must make a note of this generated mapping symbol
         BFDs.  We must make a note of this generated mapping symbol
         ourselves so that code byteswapping works properly in
         ourselves so that code byteswapping works properly in
         elf32_arm_write_section.  */
         elf32_arm_write_section.  */
      elf32_arm_section_map_add (s, 'a', 0);
      elf32_arm_section_map_add (s, 'a', 0);
    }
    }
 
 
  s->size += VFP11_ERRATUM_VENEER_SIZE;
  s->size += VFP11_ERRATUM_VENEER_SIZE;
  hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
  hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
  hash_table->num_vfp11_fixes++;
  hash_table->num_vfp11_fixes++;
 
 
  /* The offset of the veneer.  */
  /* The offset of the veneer.  */
  return val;
  return val;
}
}
 
 
#define ARM_GLUE_SECTION_FLAGS \
#define ARM_GLUE_SECTION_FLAGS \
  (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
  (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
   | SEC_READONLY | SEC_LINKER_CREATED)
   | SEC_READONLY | SEC_LINKER_CREATED)
 
 
/* Create a fake section for use by the ARM backend of the linker.  */
/* Create a fake section for use by the ARM backend of the linker.  */
 
 
static bfd_boolean
static bfd_boolean
arm_make_glue_section (bfd * abfd, const char * name)
arm_make_glue_section (bfd * abfd, const char * name)
{
{
  asection * sec;
  asection * sec;
 
 
  sec = bfd_get_section_by_name (abfd, name);
  sec = bfd_get_section_by_name (abfd, name);
  if (sec != NULL)
  if (sec != NULL)
    /* Already made.  */
    /* Already made.  */
    return TRUE;
    return TRUE;
 
 
  sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
  sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
 
 
  if (sec == NULL
  if (sec == NULL
      || !bfd_set_section_alignment (abfd, sec, 2))
      || !bfd_set_section_alignment (abfd, sec, 2))
    return FALSE;
    return FALSE;
 
 
  /* Set the gc mark to prevent the section from being removed by garbage
  /* Set the gc mark to prevent the section from being removed by garbage
     collection, despite the fact that no relocs refer to this section.  */
     collection, despite the fact that no relocs refer to this section.  */
  sec->gc_mark = 1;
  sec->gc_mark = 1;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Add the glue sections to ABFD.  This function is called from the
/* Add the glue sections to ABFD.  This function is called from the
   linker scripts in ld/emultempl/{armelf}.em.  */
   linker scripts in ld/emultempl/{armelf}.em.  */
 
 
bfd_boolean
bfd_boolean
bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
                                        struct bfd_link_info *info)
                                        struct bfd_link_info *info)
{
{
  /* If we are only performing a partial
  /* If we are only performing a partial
     link do not bother adding the glue.  */
     link do not bother adding the glue.  */
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
  return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
    && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
    && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
    && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
    && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
    && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
    && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
}
}
 
 
/* Select a BFD to be used to hold the sections used by the glue code.
/* Select a BFD to be used to hold the sections used by the glue code.
   This function is called from the linker scripts in ld/emultempl/
   This function is called from the linker scripts in ld/emultempl/
   {armelf/pe}.em.  */
   {armelf/pe}.em.  */
 
 
bfd_boolean
bfd_boolean
bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
{
{
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  /* If we are only performing a partial link
  /* If we are only performing a partial link
     do not bother getting a bfd to hold the glue.  */
     do not bother getting a bfd to hold the glue.  */
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  /* Make sure we don't attach the glue sections to a dynamic object.  */
  /* Make sure we don't attach the glue sections to a dynamic object.  */
  BFD_ASSERT (!(abfd->flags & DYNAMIC));
  BFD_ASSERT (!(abfd->flags & DYNAMIC));
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
 
 
  if (globals->bfd_of_glue_owner != NULL)
  if (globals->bfd_of_glue_owner != NULL)
    return TRUE;
    return TRUE;
 
 
  /* Save the bfd for later use.  */
  /* Save the bfd for later use.  */
  globals->bfd_of_glue_owner = abfd;
  globals->bfd_of_glue_owner = abfd;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static void
static void
check_use_blx (struct elf32_arm_link_hash_table *globals)
check_use_blx (struct elf32_arm_link_hash_table *globals)
{
{
  int cpu_arch;
  int cpu_arch;
 
 
  cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
  cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
                                       Tag_CPU_arch);
                                       Tag_CPU_arch);
 
 
  if (globals->fix_arm1176)
  if (globals->fix_arm1176)
    {
    {
      if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
      if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
        globals->use_blx = 1;
        globals->use_blx = 1;
    }
    }
  else
  else
    {
    {
      if (cpu_arch > TAG_CPU_ARCH_V4T)
      if (cpu_arch > TAG_CPU_ARCH_V4T)
        globals->use_blx = 1;
        globals->use_blx = 1;
    }
    }
}
}
 
 
bfd_boolean
bfd_boolean
bfd_elf32_arm_process_before_allocation (bfd *abfd,
bfd_elf32_arm_process_before_allocation (bfd *abfd,
                                         struct bfd_link_info *link_info)
                                         struct bfd_link_info *link_info)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *internal_relocs = NULL;
  Elf_Internal_Rela *internal_relocs = NULL;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
  bfd_byte *contents = NULL;
  bfd_byte *contents = NULL;
 
 
  asection *sec;
  asection *sec;
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  /* If we are only performing a partial link do not bother
  /* If we are only performing a partial link do not bother
     to construct any glue.  */
     to construct any glue.  */
  if (link_info->relocatable)
  if (link_info->relocatable)
    return TRUE;
    return TRUE;
 
 
  /* Here we have a bfd that is to be included on the link.  We have a
  /* Here we have a bfd that is to be included on the link.  We have a
     hook to do reloc rummaging, before section sizes are nailed down.  */
     hook to do reloc rummaging, before section sizes are nailed down.  */
  globals = elf32_arm_hash_table (link_info);
  globals = elf32_arm_hash_table (link_info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
 
 
  check_use_blx (globals);
  check_use_blx (globals);
 
 
  if (globals->byteswap_code && !bfd_big_endian (abfd))
  if (globals->byteswap_code && !bfd_big_endian (abfd))
    {
    {
      _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
      _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
                          abfd);
                          abfd);
      return FALSE;
      return FALSE;
    }
    }
 
 
  /* PR 5398: If we have not decided to include any loadable sections in
  /* PR 5398: If we have not decided to include any loadable sections in
     the output then we will not have a glue owner bfd.  This is OK, it
     the output then we will not have a glue owner bfd.  This is OK, it
     just means that there is nothing else for us to do here.  */
     just means that there is nothing else for us to do here.  */
  if (globals->bfd_of_glue_owner == NULL)
  if (globals->bfd_of_glue_owner == NULL)
    return TRUE;
    return TRUE;
 
 
  /* Rummage around all the relocs and map the glue vectors.  */
  /* Rummage around all the relocs and map the glue vectors.  */
  sec = abfd->sections;
  sec = abfd->sections;
 
 
  if (sec == NULL)
  if (sec == NULL)
    return TRUE;
    return TRUE;
 
 
  for (; sec != NULL; sec = sec->next)
  for (; sec != NULL; sec = sec->next)
    {
    {
      if (sec->reloc_count == 0)
      if (sec->reloc_count == 0)
        continue;
        continue;
 
 
      if ((sec->flags & SEC_EXCLUDE) != 0)
      if ((sec->flags & SEC_EXCLUDE) != 0)
        continue;
        continue;
 
 
      symtab_hdr = & elf_symtab_hdr (abfd);
      symtab_hdr = & elf_symtab_hdr (abfd);
 
 
      /* Load the relocs.  */
      /* Load the relocs.  */
      internal_relocs
      internal_relocs
        = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
        = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
 
 
      if (internal_relocs == NULL)
      if (internal_relocs == NULL)
        goto error_return;
        goto error_return;
 
 
      irelend = internal_relocs + sec->reloc_count;
      irelend = internal_relocs + sec->reloc_count;
      for (irel = internal_relocs; irel < irelend; irel++)
      for (irel = internal_relocs; irel < irelend; irel++)
        {
        {
          long r_type;
          long r_type;
          unsigned long r_index;
          unsigned long r_index;
 
 
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          r_type = ELF32_R_TYPE (irel->r_info);
          r_type = ELF32_R_TYPE (irel->r_info);
          r_index = ELF32_R_SYM (irel->r_info);
          r_index = ELF32_R_SYM (irel->r_info);
 
 
          /* These are the only relocation types we care about.  */
          /* These are the only relocation types we care about.  */
          if (   r_type != R_ARM_PC24
          if (   r_type != R_ARM_PC24
              && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
              && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
            continue;
            continue;
 
 
          /* Get the section contents if we haven't done so already.  */
          /* Get the section contents if we haven't done so already.  */
          if (contents == NULL)
          if (contents == NULL)
            {
            {
              /* Get cached copy if it exists.  */
              /* Get cached copy if it exists.  */
              if (elf_section_data (sec)->this_hdr.contents != NULL)
              if (elf_section_data (sec)->this_hdr.contents != NULL)
                contents = elf_section_data (sec)->this_hdr.contents;
                contents = elf_section_data (sec)->this_hdr.contents;
              else
              else
                {
                {
                  /* Go get them off disk.  */
                  /* Go get them off disk.  */
                  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
                  if (! bfd_malloc_and_get_section (abfd, sec, &contents))
                    goto error_return;
                    goto error_return;
                }
                }
            }
            }
 
 
          if (r_type == R_ARM_V4BX)
          if (r_type == R_ARM_V4BX)
            {
            {
              int reg;
              int reg;
 
 
              reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
              reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
              record_arm_bx_glue (link_info, reg);
              record_arm_bx_glue (link_info, reg);
              continue;
              continue;
            }
            }
 
 
          /* If the relocation is not against a symbol it cannot concern us.  */
          /* If the relocation is not against a symbol it cannot concern us.  */
          h = NULL;
          h = NULL;
 
 
          /* We don't care about local symbols.  */
          /* We don't care about local symbols.  */
          if (r_index < symtab_hdr->sh_info)
          if (r_index < symtab_hdr->sh_info)
            continue;
            continue;
 
 
          /* This is an external symbol.  */
          /* This is an external symbol.  */
          r_index -= symtab_hdr->sh_info;
          r_index -= symtab_hdr->sh_info;
          h = (struct elf_link_hash_entry *)
          h = (struct elf_link_hash_entry *)
            elf_sym_hashes (abfd)[r_index];
            elf_sym_hashes (abfd)[r_index];
 
 
          /* If the relocation is against a static symbol it must be within
          /* If the relocation is against a static symbol it must be within
             the current section and so cannot be a cross ARM/Thumb relocation.  */
             the current section and so cannot be a cross ARM/Thumb relocation.  */
          if (h == NULL)
          if (h == NULL)
            continue;
            continue;
 
 
          /* If the call will go through a PLT entry then we do not need
          /* If the call will go through a PLT entry then we do not need
             glue.  */
             glue.  */
          if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
          if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
            continue;
            continue;
 
 
          switch (r_type)
          switch (r_type)
            {
            {
            case R_ARM_PC24:
            case R_ARM_PC24:
              /* This one is a call from arm code.  We need to look up
              /* This one is a call from arm code.  We need to look up
                 the target of the call.  If it is a thumb target, we
                 the target of the call.  If it is a thumb target, we
                 insert glue.  */
                 insert glue.  */
              if (h->target_internal == ST_BRANCH_TO_THUMB)
              if (h->target_internal == ST_BRANCH_TO_THUMB)
                record_arm_to_thumb_glue (link_info, h);
                record_arm_to_thumb_glue (link_info, h);
              break;
              break;
 
 
            default:
            default:
              abort ();
              abort ();
            }
            }
        }
        }
 
 
      if (contents != NULL
      if (contents != NULL
          && elf_section_data (sec)->this_hdr.contents != contents)
          && elf_section_data (sec)->this_hdr.contents != contents)
        free (contents);
        free (contents);
      contents = NULL;
      contents = NULL;
 
 
      if (internal_relocs != NULL
      if (internal_relocs != NULL
          && elf_section_data (sec)->relocs != internal_relocs)
          && elf_section_data (sec)->relocs != internal_relocs)
        free (internal_relocs);
        free (internal_relocs);
      internal_relocs = NULL;
      internal_relocs = NULL;
    }
    }
 
 
  return TRUE;
  return TRUE;
 
 
error_return:
error_return:
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    free (contents);
    free (contents);
  if (internal_relocs != NULL
  if (internal_relocs != NULL
      && elf_section_data (sec)->relocs != internal_relocs)
      && elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
    free (internal_relocs);
 
 
  return FALSE;
  return FALSE;
}
}
#endif
#endif
 
 
 
 
/* Initialise maps of ARM/Thumb/data for input BFDs.  */
/* Initialise maps of ARM/Thumb/data for input BFDs.  */
 
 
void
void
bfd_elf32_arm_init_maps (bfd *abfd)
bfd_elf32_arm_init_maps (bfd *abfd)
{
{
  Elf_Internal_Sym *isymbuf;
  Elf_Internal_Sym *isymbuf;
  Elf_Internal_Shdr *hdr;
  Elf_Internal_Shdr *hdr;
  unsigned int i, localsyms;
  unsigned int i, localsyms;
 
 
  /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
  /* PR 7093: Make sure that we are dealing with an arm elf binary.  */
  if (! is_arm_elf (abfd))
  if (! is_arm_elf (abfd))
    return;
    return;
 
 
  if ((abfd->flags & DYNAMIC) != 0)
  if ((abfd->flags & DYNAMIC) != 0)
    return;
    return;
 
 
  hdr = & elf_symtab_hdr (abfd);
  hdr = & elf_symtab_hdr (abfd);
  localsyms = hdr->sh_info;
  localsyms = hdr->sh_info;
 
 
  /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
  /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
     should contain the number of local symbols, which should come before any
     should contain the number of local symbols, which should come before any
     global symbols.  Mapping symbols are always local.  */
     global symbols.  Mapping symbols are always local.  */
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
                                  NULL);
                                  NULL);
 
 
  /* No internal symbols read?  Skip this BFD.  */
  /* No internal symbols read?  Skip this BFD.  */
  if (isymbuf == NULL)
  if (isymbuf == NULL)
    return;
    return;
 
 
  for (i = 0; i < localsyms; i++)
  for (i = 0; i < localsyms; i++)
    {
    {
      Elf_Internal_Sym *isym = &isymbuf[i];
      Elf_Internal_Sym *isym = &isymbuf[i];
      asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
      asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
      const char *name;
      const char *name;
 
 
      if (sec != NULL
      if (sec != NULL
          && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
          && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
        {
        {
          name = bfd_elf_string_from_elf_section (abfd,
          name = bfd_elf_string_from_elf_section (abfd,
            hdr->sh_link, isym->st_name);
            hdr->sh_link, isym->st_name);
 
 
          if (bfd_is_arm_special_symbol_name (name,
          if (bfd_is_arm_special_symbol_name (name,
                                              BFD_ARM_SPECIAL_SYM_TYPE_MAP))
                                              BFD_ARM_SPECIAL_SYM_TYPE_MAP))
            elf32_arm_section_map_add (sec, name[1], isym->st_value);
            elf32_arm_section_map_add (sec, name[1], isym->st_value);
        }
        }
    }
    }
}
}
 
 
 
 
/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
   say what they wanted.  */
   say what they wanted.  */
 
 
void
void
bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
{
{
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
 
 
  if (globals == NULL)
  if (globals == NULL)
    return;
    return;
 
 
  if (globals->fix_cortex_a8 == -1)
  if (globals->fix_cortex_a8 == -1)
    {
    {
      /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
      /* Turn on Cortex-A8 erratum workaround for ARMv7-A.  */
      if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
      if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
          && (out_attr[Tag_CPU_arch_profile].i == 'A'
          && (out_attr[Tag_CPU_arch_profile].i == 'A'
              || out_attr[Tag_CPU_arch_profile].i == 0))
              || out_attr[Tag_CPU_arch_profile].i == 0))
        globals->fix_cortex_a8 = 1;
        globals->fix_cortex_a8 = 1;
      else
      else
        globals->fix_cortex_a8 = 0;
        globals->fix_cortex_a8 = 0;
    }
    }
}
}
 
 
 
 
void
void
bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
{
{
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
  obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
 
 
  if (globals == NULL)
  if (globals == NULL)
    return;
    return;
  /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
  /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix.  */
  if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
  if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
    {
    {
      switch (globals->vfp11_fix)
      switch (globals->vfp11_fix)
        {
        {
        case BFD_ARM_VFP11_FIX_DEFAULT:
        case BFD_ARM_VFP11_FIX_DEFAULT:
        case BFD_ARM_VFP11_FIX_NONE:
        case BFD_ARM_VFP11_FIX_NONE:
          globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
          globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
          break;
          break;
 
 
        default:
        default:
          /* Give a warning, but do as the user requests anyway.  */
          /* Give a warning, but do as the user requests anyway.  */
          (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
          (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
            "workaround is not necessary for target architecture"), obfd);
            "workaround is not necessary for target architecture"), obfd);
        }
        }
    }
    }
  else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
  else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
    /* For earlier architectures, we might need the workaround, but do not
    /* For earlier architectures, we might need the workaround, but do not
       enable it by default.  If users is running with broken hardware, they
       enable it by default.  If users is running with broken hardware, they
       must enable the erratum fix explicitly.  */
       must enable the erratum fix explicitly.  */
    globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
    globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
}
}
 
 
 
 
enum bfd_arm_vfp11_pipe
enum bfd_arm_vfp11_pipe
{
{
  VFP11_FMAC,
  VFP11_FMAC,
  VFP11_LS,
  VFP11_LS,
  VFP11_DS,
  VFP11_DS,
  VFP11_BAD
  VFP11_BAD
};
};
 
 
/* Return a VFP register number.  This is encoded as RX:X for single-precision
/* Return a VFP register number.  This is encoded as RX:X for single-precision
   registers, or X:RX for double-precision registers, where RX is the group of
   registers, or X:RX for double-precision registers, where RX is the group of
   four bits in the instruction encoding and X is the single extension bit.
   four bits in the instruction encoding and X is the single extension bit.
   RX and X fields are specified using their lowest (starting) bit.  The return
   RX and X fields are specified using their lowest (starting) bit.  The return
   value is:
   value is:
 
 
     0...31: single-precision registers s0...s31
     0...31: single-precision registers s0...s31
     32...63: double-precision registers d0...d31.
     32...63: double-precision registers d0...d31.
 
 
   Although X should be zero for VFP11 (encoding d0...d15 only), we might
   Although X should be zero for VFP11 (encoding d0...d15 only), we might
   encounter VFP3 instructions, so we allow the full range for DP registers.  */
   encounter VFP3 instructions, so we allow the full range for DP registers.  */
 
 
static unsigned int
static unsigned int
bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
                     unsigned int x)
                     unsigned int x)
{
{
  if (is_double)
  if (is_double)
    return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
    return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
  else
  else
    return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
    return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
}
}
 
 
/* Set bits in *WMASK according to a register number REG as encoded by
/* Set bits in *WMASK according to a register number REG as encoded by
   bfd_arm_vfp11_regno().  Ignore d16-d31.  */
   bfd_arm_vfp11_regno().  Ignore d16-d31.  */
 
 
static void
static void
bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
{
{
  if (reg < 32)
  if (reg < 32)
    *wmask |= 1 << reg;
    *wmask |= 1 << reg;
  else if (reg < 48)
  else if (reg < 48)
    *wmask |= 3 << ((reg - 32) * 2);
    *wmask |= 3 << ((reg - 32) * 2);
}
}
 
 
/* Return TRUE if WMASK overwrites anything in REGS.  */
/* Return TRUE if WMASK overwrites anything in REGS.  */
 
 
static bfd_boolean
static bfd_boolean
bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < numregs; i++)
  for (i = 0; i < numregs; i++)
    {
    {
      unsigned int reg = regs[i];
      unsigned int reg = regs[i];
 
 
      if (reg < 32 && (wmask & (1 << reg)) != 0)
      if (reg < 32 && (wmask & (1 << reg)) != 0)
        return TRUE;
        return TRUE;
 
 
      reg -= 32;
      reg -= 32;
 
 
      if (reg >= 16)
      if (reg >= 16)
        continue;
        continue;
 
 
      if ((wmask & (3 << (reg * 2))) != 0)
      if ((wmask & (3 << (reg * 2))) != 0)
        return TRUE;
        return TRUE;
    }
    }
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* In this function, we're interested in two things: finding input registers
/* In this function, we're interested in two things: finding input registers
   for VFP data-processing instructions, and finding the set of registers which
   for VFP data-processing instructions, and finding the set of registers which
   arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
   arbitrary VFP instructions may write to.  We use a 32-bit unsigned int to
   hold the written set, so FLDM etc. are easy to deal with (we're only
   hold the written set, so FLDM etc. are easy to deal with (we're only
   interested in 32 SP registers or 16 dp registers, due to the VFP version
   interested in 32 SP registers or 16 dp registers, due to the VFP version
   implemented by the chip in question).  DP registers are marked by setting
   implemented by the chip in question).  DP registers are marked by setting
   both SP registers in the write mask).  */
   both SP registers in the write mask).  */
 
 
static enum bfd_arm_vfp11_pipe
static enum bfd_arm_vfp11_pipe
bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
                           int *numregs)
                           int *numregs)
{
{
  enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
  enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
  bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
  bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
 
 
  if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
  if ((insn & 0x0f000e10) == 0x0e000a00)  /* A data-processing insn.  */
    {
    {
      unsigned int pqrs;
      unsigned int pqrs;
      unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
      unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
 
 
      pqrs = ((insn & 0x00800000) >> 20)
      pqrs = ((insn & 0x00800000) >> 20)
           | ((insn & 0x00300000) >> 19)
           | ((insn & 0x00300000) >> 19)
           | ((insn & 0x00000040) >> 6);
           | ((insn & 0x00000040) >> 6);
 
 
      switch (pqrs)
      switch (pqrs)
        {
        {
        case 0: /* fmac[sd].  */
        case 0: /* fmac[sd].  */
        case 1: /* fnmac[sd].  */
        case 1: /* fnmac[sd].  */
        case 2: /* fmsc[sd].  */
        case 2: /* fmsc[sd].  */
        case 3: /* fnmsc[sd].  */
        case 3: /* fnmsc[sd].  */
          vpipe = VFP11_FMAC;
          vpipe = VFP11_FMAC;
          bfd_arm_vfp11_write_mask (destmask, fd);
          bfd_arm_vfp11_write_mask (destmask, fd);
          regs[0] = fd;
          regs[0] = fd;
          regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
          regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);  /* Fn.  */
          regs[2] = fm;
          regs[2] = fm;
          *numregs = 3;
          *numregs = 3;
          break;
          break;
 
 
        case 4: /* fmul[sd].  */
        case 4: /* fmul[sd].  */
        case 5: /* fnmul[sd].  */
        case 5: /* fnmul[sd].  */
        case 6: /* fadd[sd].  */
        case 6: /* fadd[sd].  */
        case 7: /* fsub[sd].  */
        case 7: /* fsub[sd].  */
          vpipe = VFP11_FMAC;
          vpipe = VFP11_FMAC;
          goto vfp_binop;
          goto vfp_binop;
 
 
        case 8: /* fdiv[sd].  */
        case 8: /* fdiv[sd].  */
          vpipe = VFP11_DS;
          vpipe = VFP11_DS;
          vfp_binop:
          vfp_binop:
          bfd_arm_vfp11_write_mask (destmask, fd);
          bfd_arm_vfp11_write_mask (destmask, fd);
          regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
          regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7);   /* Fn.  */
          regs[1] = fm;
          regs[1] = fm;
          *numregs = 2;
          *numregs = 2;
          break;
          break;
 
 
        case 15: /* extended opcode.  */
        case 15: /* extended opcode.  */
          {
          {
            unsigned int extn = ((insn >> 15) & 0x1e)
            unsigned int extn = ((insn >> 15) & 0x1e)
                              | ((insn >> 7) & 1);
                              | ((insn >> 7) & 1);
 
 
            switch (extn)
            switch (extn)
              {
              {
              case 0: /* fcpy[sd].  */
              case 0: /* fcpy[sd].  */
              case 1: /* fabs[sd].  */
              case 1: /* fabs[sd].  */
              case 2: /* fneg[sd].  */
              case 2: /* fneg[sd].  */
              case 8: /* fcmp[sd].  */
              case 8: /* fcmp[sd].  */
              case 9: /* fcmpe[sd].  */
              case 9: /* fcmpe[sd].  */
              case 10: /* fcmpz[sd].  */
              case 10: /* fcmpz[sd].  */
              case 11: /* fcmpez[sd].  */
              case 11: /* fcmpez[sd].  */
              case 16: /* fuito[sd].  */
              case 16: /* fuito[sd].  */
              case 17: /* fsito[sd].  */
              case 17: /* fsito[sd].  */
              case 24: /* ftoui[sd].  */
              case 24: /* ftoui[sd].  */
              case 25: /* ftouiz[sd].  */
              case 25: /* ftouiz[sd].  */
              case 26: /* ftosi[sd].  */
              case 26: /* ftosi[sd].  */
              case 27: /* ftosiz[sd].  */
              case 27: /* ftosiz[sd].  */
                /* These instructions will not bounce due to underflow.  */
                /* These instructions will not bounce due to underflow.  */
                *numregs = 0;
                *numregs = 0;
                vpipe = VFP11_FMAC;
                vpipe = VFP11_FMAC;
                break;
                break;
 
 
              case 3: /* fsqrt[sd].  */
              case 3: /* fsqrt[sd].  */
                /* fsqrt cannot underflow, but it can (perhaps) overwrite
                /* fsqrt cannot underflow, but it can (perhaps) overwrite
                   registers to cause the erratum in previous instructions.  */
                   registers to cause the erratum in previous instructions.  */
                bfd_arm_vfp11_write_mask (destmask, fd);
                bfd_arm_vfp11_write_mask (destmask, fd);
                vpipe = VFP11_DS;
                vpipe = VFP11_DS;
                break;
                break;
 
 
              case 15: /* fcvt{ds,sd}.  */
              case 15: /* fcvt{ds,sd}.  */
                {
                {
                  int rnum = 0;
                  int rnum = 0;
 
 
                  bfd_arm_vfp11_write_mask (destmask, fd);
                  bfd_arm_vfp11_write_mask (destmask, fd);
 
 
                  /* Only FCVTSD can underflow.  */
                  /* Only FCVTSD can underflow.  */
                  if ((insn & 0x100) != 0)
                  if ((insn & 0x100) != 0)
                    regs[rnum++] = fm;
                    regs[rnum++] = fm;
 
 
                  *numregs = rnum;
                  *numregs = rnum;
 
 
                  vpipe = VFP11_FMAC;
                  vpipe = VFP11_FMAC;
                }
                }
                break;
                break;
 
 
              default:
              default:
                return VFP11_BAD;
                return VFP11_BAD;
              }
              }
          }
          }
          break;
          break;
 
 
        default:
        default:
          return VFP11_BAD;
          return VFP11_BAD;
        }
        }
    }
    }
  /* Two-register transfer.  */
  /* Two-register transfer.  */
  else if ((insn & 0x0fe00ed0) == 0x0c400a10)
  else if ((insn & 0x0fe00ed0) == 0x0c400a10)
    {
    {
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
      unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
 
 
      if ((insn & 0x100000) == 0)
      if ((insn & 0x100000) == 0)
        {
        {
          if (is_double)
          if (is_double)
            bfd_arm_vfp11_write_mask (destmask, fm);
            bfd_arm_vfp11_write_mask (destmask, fm);
          else
          else
            {
            {
              bfd_arm_vfp11_write_mask (destmask, fm);
              bfd_arm_vfp11_write_mask (destmask, fm);
              bfd_arm_vfp11_write_mask (destmask, fm + 1);
              bfd_arm_vfp11_write_mask (destmask, fm + 1);
            }
            }
        }
        }
 
 
      vpipe = VFP11_LS;
      vpipe = VFP11_LS;
    }
    }
  else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
  else if ((insn & 0x0e100e00) == 0x0c100a00)  /* A load insn.  */
    {
    {
      int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
      int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
      unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
      unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
 
 
      switch (puw)
      switch (puw)
        {
        {
        case 0: /* Two-reg transfer.  We should catch these above.  */
        case 0: /* Two-reg transfer.  We should catch these above.  */
          abort ();
          abort ();
 
 
        case 2: /* fldm[sdx].  */
        case 2: /* fldm[sdx].  */
        case 3:
        case 3:
        case 5:
        case 5:
          {
          {
            unsigned int i, offset = insn & 0xff;
            unsigned int i, offset = insn & 0xff;
 
 
            if (is_double)
            if (is_double)
              offset >>= 1;
              offset >>= 1;
 
 
            for (i = fd; i < fd + offset; i++)
            for (i = fd; i < fd + offset; i++)
              bfd_arm_vfp11_write_mask (destmask, i);
              bfd_arm_vfp11_write_mask (destmask, i);
          }
          }
          break;
          break;
 
 
        case 4: /* fld[sd].  */
        case 4: /* fld[sd].  */
        case 6:
        case 6:
          bfd_arm_vfp11_write_mask (destmask, fd);
          bfd_arm_vfp11_write_mask (destmask, fd);
          break;
          break;
 
 
        default:
        default:
          return VFP11_BAD;
          return VFP11_BAD;
        }
        }
 
 
      vpipe = VFP11_LS;
      vpipe = VFP11_LS;
    }
    }
  /* Single-register transfer. Note L==0.  */
  /* Single-register transfer. Note L==0.  */
  else if ((insn & 0x0f100e10) == 0x0e000a10)
  else if ((insn & 0x0f100e10) == 0x0e000a10)
    {
    {
      unsigned int opcode = (insn >> 21) & 7;
      unsigned int opcode = (insn >> 21) & 7;
      unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
      unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
 
 
      switch (opcode)
      switch (opcode)
        {
        {
        case 0: /* fmsr/fmdlr.  */
        case 0: /* fmsr/fmdlr.  */
        case 1: /* fmdhr.  */
        case 1: /* fmdhr.  */
          /* Mark fmdhr and fmdlr as writing to the whole of the DP
          /* Mark fmdhr and fmdlr as writing to the whole of the DP
             destination register.  I don't know if this is exactly right,
             destination register.  I don't know if this is exactly right,
             but it is the conservative choice.  */
             but it is the conservative choice.  */
          bfd_arm_vfp11_write_mask (destmask, fn);
          bfd_arm_vfp11_write_mask (destmask, fn);
          break;
          break;
 
 
        case 7: /* fmxr.  */
        case 7: /* fmxr.  */
          break;
          break;
        }
        }
 
 
      vpipe = VFP11_LS;
      vpipe = VFP11_LS;
    }
    }
 
 
  return vpipe;
  return vpipe;
}
}
 
 
 
 
static int elf32_arm_compare_mapping (const void * a, const void * b);
static int elf32_arm_compare_mapping (const void * a, const void * b);
 
 
 
 
/* Look for potentially-troublesome code sequences which might trigger the
/* Look for potentially-troublesome code sequences which might trigger the
   VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
   VFP11 denormal/antidependency erratum.  See, e.g., the ARM1136 errata sheet
   (available from ARM) for details of the erratum.  A short version is
   (available from ARM) for details of the erratum.  A short version is
   described in ld.texinfo.  */
   described in ld.texinfo.  */
 
 
bfd_boolean
bfd_boolean
bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
{
{
  asection *sec;
  asection *sec;
  bfd_byte *contents = NULL;
  bfd_byte *contents = NULL;
  int state = 0;
  int state = 0;
  int regs[3], numregs = 0;
  int regs[3], numregs = 0;
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
  int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
  int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
 
 
  if (globals == NULL)
  if (globals == NULL)
    return FALSE;
    return FALSE;
 
 
  /* We use a simple FSM to match troublesome VFP11 instruction sequences.
  /* We use a simple FSM to match troublesome VFP11 instruction sequences.
     The states transition as follows:
     The states transition as follows:
 
 
       0 -> 1 (vector) or 0 -> 2 (scalar)
       0 -> 1 (vector) or 0 -> 2 (scalar)
           A VFP FMAC-pipeline instruction has been seen. Fill
           A VFP FMAC-pipeline instruction has been seen. Fill
           regs[0]..regs[numregs-1] with its input operands. Remember this
           regs[0]..regs[numregs-1] with its input operands. Remember this
           instruction in 'first_fmac'.
           instruction in 'first_fmac'.
 
 
       1 -> 2
       1 -> 2
           Any instruction, except for a VFP instruction which overwrites
           Any instruction, except for a VFP instruction which overwrites
           regs[*].
           regs[*].
 
 
       1 -> 3 [ -> 0 ]  or
       1 -> 3 [ -> 0 ]  or
       2 -> 3 [ -> 0 ]
       2 -> 3 [ -> 0 ]
           A VFP instruction has been seen which overwrites any of regs[*].
           A VFP instruction has been seen which overwrites any of regs[*].
           We must make a veneer!  Reset state to 0 before examining next
           We must make a veneer!  Reset state to 0 before examining next
           instruction.
           instruction.
 
 
       2 -> 0
       2 -> 0
           If we fail to match anything in state 2, reset to state 0 and reset
           If we fail to match anything in state 2, reset to state 0 and reset
           the instruction pointer to the instruction after 'first_fmac'.
           the instruction pointer to the instruction after 'first_fmac'.
 
 
     If the VFP11 vector mode is in use, there must be at least two unrelated
     If the VFP11 vector mode is in use, there must be at least two unrelated
     instructions between anti-dependent VFP11 instructions to properly avoid
     instructions between anti-dependent VFP11 instructions to properly avoid
     triggering the erratum, hence the use of the extra state 1.  */
     triggering the erratum, hence the use of the extra state 1.  */
 
 
  /* If we are only performing a partial link do not bother
  /* If we are only performing a partial link do not bother
     to construct any glue.  */
     to construct any glue.  */
  if (link_info->relocatable)
  if (link_info->relocatable)
    return TRUE;
    return TRUE;
 
 
  /* Skip if this bfd does not correspond to an ELF image.  */
  /* Skip if this bfd does not correspond to an ELF image.  */
  if (! is_arm_elf (abfd))
  if (! is_arm_elf (abfd))
    return TRUE;
    return TRUE;
 
 
  /* We should have chosen a fix type by the time we get here.  */
  /* We should have chosen a fix type by the time we get here.  */
  BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
  BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
 
 
  if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
  if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
    return TRUE;
    return TRUE;
 
 
  /* Skip this BFD if it corresponds to an executable or dynamic object.  */
  /* Skip this BFD if it corresponds to an executable or dynamic object.  */
  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
  if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
    return TRUE;
    return TRUE;
 
 
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
    {
    {
      unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
      unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
      struct _arm_elf_section_data *sec_data;
      struct _arm_elf_section_data *sec_data;
 
 
      /* If we don't have executable progbits, we're not interested in this
      /* If we don't have executable progbits, we're not interested in this
         section.  Also skip if section is to be excluded.  */
         section.  Also skip if section is to be excluded.  */
      if (elf_section_type (sec) != SHT_PROGBITS
      if (elf_section_type (sec) != SHT_PROGBITS
          || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
          || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
          || (sec->flags & SEC_EXCLUDE) != 0
          || (sec->flags & SEC_EXCLUDE) != 0
          || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
          || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
          || sec->output_section == bfd_abs_section_ptr
          || sec->output_section == bfd_abs_section_ptr
          || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
          || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
        continue;
        continue;
 
 
      sec_data = elf32_arm_section_data (sec);
      sec_data = elf32_arm_section_data (sec);
 
 
      if (sec_data->mapcount == 0)
      if (sec_data->mapcount == 0)
        continue;
        continue;
 
 
      if (elf_section_data (sec)->this_hdr.contents != NULL)
      if (elf_section_data (sec)->this_hdr.contents != NULL)
        contents = elf_section_data (sec)->this_hdr.contents;
        contents = elf_section_data (sec)->this_hdr.contents;
      else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
      else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
        goto error_return;
        goto error_return;
 
 
      qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
      qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
             elf32_arm_compare_mapping);
             elf32_arm_compare_mapping);
 
 
      for (span = 0; span < sec_data->mapcount; span++)
      for (span = 0; span < sec_data->mapcount; span++)
        {
        {
          unsigned int span_start = sec_data->map[span].vma;
          unsigned int span_start = sec_data->map[span].vma;
          unsigned int span_end = (span == sec_data->mapcount - 1)
          unsigned int span_end = (span == sec_data->mapcount - 1)
                                  ? sec->size : sec_data->map[span + 1].vma;
                                  ? sec->size : sec_data->map[span + 1].vma;
          char span_type = sec_data->map[span].type;
          char span_type = sec_data->map[span].type;
 
 
          /* FIXME: Only ARM mode is supported at present.  We may need to
          /* FIXME: Only ARM mode is supported at present.  We may need to
             support Thumb-2 mode also at some point.  */
             support Thumb-2 mode also at some point.  */
          if (span_type != 'a')
          if (span_type != 'a')
            continue;
            continue;
 
 
          for (i = span_start; i < span_end;)
          for (i = span_start; i < span_end;)
            {
            {
              unsigned int next_i = i + 4;
              unsigned int next_i = i + 4;
              unsigned int insn = bfd_big_endian (abfd)
              unsigned int insn = bfd_big_endian (abfd)
                ? (contents[i] << 24)
                ? (contents[i] << 24)
                  | (contents[i + 1] << 16)
                  | (contents[i + 1] << 16)
                  | (contents[i + 2] << 8)
                  | (contents[i + 2] << 8)
                  | contents[i + 3]
                  | contents[i + 3]
                : (contents[i + 3] << 24)
                : (contents[i + 3] << 24)
                  | (contents[i + 2] << 16)
                  | (contents[i + 2] << 16)
                  | (contents[i + 1] << 8)
                  | (contents[i + 1] << 8)
                  | contents[i];
                  | contents[i];
              unsigned int writemask = 0;
              unsigned int writemask = 0;
              enum bfd_arm_vfp11_pipe vpipe;
              enum bfd_arm_vfp11_pipe vpipe;
 
 
              switch (state)
              switch (state)
                {
                {
                case 0:
                case 0:
                  vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
                  vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
                                                    &numregs);
                                                    &numregs);
                  /* I'm assuming the VFP11 erratum can trigger with denorm
                  /* I'm assuming the VFP11 erratum can trigger with denorm
                     operands on either the FMAC or the DS pipeline. This might
                     operands on either the FMAC or the DS pipeline. This might
                     lead to slightly overenthusiastic veneer insertion.  */
                     lead to slightly overenthusiastic veneer insertion.  */
                  if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
                  if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
                    {
                    {
                      state = use_vector ? 1 : 2;
                      state = use_vector ? 1 : 2;
                      first_fmac = i;
                      first_fmac = i;
                      veneer_of_insn = insn;
                      veneer_of_insn = insn;
                    }
                    }
                  break;
                  break;
 
 
                case 1:
                case 1:
                  {
                  {
                    int other_regs[3], other_numregs;
                    int other_regs[3], other_numregs;
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
                                                      other_regs,
                                                      other_regs,
                                                      &other_numregs);
                                                      &other_numregs);
                    if (vpipe != VFP11_BAD
                    if (vpipe != VFP11_BAD
                        && bfd_arm_vfp11_antidependency (writemask, regs,
                        && bfd_arm_vfp11_antidependency (writemask, regs,
                                                         numregs))
                                                         numregs))
                      state = 3;
                      state = 3;
                    else
                    else
                      state = 2;
                      state = 2;
                  }
                  }
                  break;
                  break;
 
 
                case 2:
                case 2:
                  {
                  {
                    int other_regs[3], other_numregs;
                    int other_regs[3], other_numregs;
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
                    vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
                                                      other_regs,
                                                      other_regs,
                                                      &other_numregs);
                                                      &other_numregs);
                    if (vpipe != VFP11_BAD
                    if (vpipe != VFP11_BAD
                        && bfd_arm_vfp11_antidependency (writemask, regs,
                        && bfd_arm_vfp11_antidependency (writemask, regs,
                                                         numregs))
                                                         numregs))
                      state = 3;
                      state = 3;
                    else
                    else
                      {
                      {
                        state = 0;
                        state = 0;
                        next_i = first_fmac + 4;
                        next_i = first_fmac + 4;
                      }
                      }
                  }
                  }
                  break;
                  break;
 
 
                case 3:
                case 3:
                  abort ();  /* Should be unreachable.  */
                  abort ();  /* Should be unreachable.  */
                }
                }
 
 
              if (state == 3)
              if (state == 3)
                {
                {
                  elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
                  elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
                      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
                      bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
 
 
                  elf32_arm_section_data (sec)->erratumcount += 1;
                  elf32_arm_section_data (sec)->erratumcount += 1;
 
 
                  newerr->u.b.vfp_insn = veneer_of_insn;
                  newerr->u.b.vfp_insn = veneer_of_insn;
 
 
                  switch (span_type)
                  switch (span_type)
                    {
                    {
                    case 'a':
                    case 'a':
                      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
                      newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
                      break;
                      break;
 
 
                    default:
                    default:
                      abort ();
                      abort ();
                    }
                    }
 
 
                  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
                  record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
                                               first_fmac);
                                               first_fmac);
 
 
                  newerr->vma = -1;
                  newerr->vma = -1;
 
 
                  newerr->next = sec_data->erratumlist;
                  newerr->next = sec_data->erratumlist;
                  sec_data->erratumlist = newerr;
                  sec_data->erratumlist = newerr;
 
 
                  state = 0;
                  state = 0;
                }
                }
 
 
              i = next_i;
              i = next_i;
            }
            }
        }
        }
 
 
      if (contents != NULL
      if (contents != NULL
          && elf_section_data (sec)->this_hdr.contents != contents)
          && elf_section_data (sec)->this_hdr.contents != contents)
        free (contents);
        free (contents);
      contents = NULL;
      contents = NULL;
    }
    }
 
 
  return TRUE;
  return TRUE;
 
 
error_return:
error_return:
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    free (contents);
    free (contents);
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
   after sections have been laid out, using specially-named symbols.  */
   after sections have been laid out, using specially-named symbols.  */
 
 
void
void
bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
                                          struct bfd_link_info *link_info)
                                          struct bfd_link_info *link_info)
{
{
  asection *sec;
  asection *sec;
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
  char *tmp_name;
  char *tmp_name;
 
 
  if (link_info->relocatable)
  if (link_info->relocatable)
    return;
    return;
 
 
  /* Skip if this bfd does not correspond to an ELF image.  */
  /* Skip if this bfd does not correspond to an ELF image.  */
  if (! is_arm_elf (abfd))
  if (! is_arm_elf (abfd))
    return;
    return;
 
 
  globals = elf32_arm_hash_table (link_info);
  globals = elf32_arm_hash_table (link_info);
  if (globals == NULL)
  if (globals == NULL)
    return;
    return;
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
                                  (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
 
 
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
  for (sec = abfd->sections; sec != NULL; sec = sec->next)
    {
    {
      struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
      struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
      elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
      elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
 
 
      for (; errnode != NULL; errnode = errnode->next)
      for (; errnode != NULL; errnode = errnode->next)
        {
        {
          struct elf_link_hash_entry *myh;
          struct elf_link_hash_entry *myh;
          bfd_vma vma;
          bfd_vma vma;
 
 
          switch (errnode->type)
          switch (errnode->type)
            {
            {
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
            case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
            case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
              /* Find veneer symbol.  */
              /* Find veneer symbol.  */
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
                       errnode->u.b.veneer->u.v.id);
                       errnode->u.b.veneer->u.v.id);
 
 
              myh = elf_link_hash_lookup
              myh = elf_link_hash_lookup
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
 
 
              if (myh == NULL)
              if (myh == NULL)
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
                                         "`%s'"), abfd, tmp_name);
                                         "`%s'"), abfd, tmp_name);
 
 
              vma = myh->root.u.def.section->output_section->vma
              vma = myh->root.u.def.section->output_section->vma
                    + myh->root.u.def.section->output_offset
                    + myh->root.u.def.section->output_offset
                    + myh->root.u.def.value;
                    + myh->root.u.def.value;
 
 
              errnode->u.b.veneer->vma = vma;
              errnode->u.b.veneer->vma = vma;
              break;
              break;
 
 
            case VFP11_ERRATUM_ARM_VENEER:
            case VFP11_ERRATUM_ARM_VENEER:
            case VFP11_ERRATUM_THUMB_VENEER:
            case VFP11_ERRATUM_THUMB_VENEER:
              /* Find return location.  */
              /* Find return location.  */
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
              sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
                       errnode->u.v.id);
                       errnode->u.v.id);
 
 
              myh = elf_link_hash_lookup
              myh = elf_link_hash_lookup
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
                (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
 
 
              if (myh == NULL)
              if (myh == NULL)
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
                (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
                                         "`%s'"), abfd, tmp_name);
                                         "`%s'"), abfd, tmp_name);
 
 
              vma = myh->root.u.def.section->output_section->vma
              vma = myh->root.u.def.section->output_section->vma
                    + myh->root.u.def.section->output_offset
                    + myh->root.u.def.section->output_offset
                    + myh->root.u.def.value;
                    + myh->root.u.def.value;
 
 
              errnode->u.v.branch->vma = vma;
              errnode->u.v.branch->vma = vma;
              break;
              break;
 
 
            default:
            default:
              abort ();
              abort ();
            }
            }
        }
        }
    }
    }
 
 
  free (tmp_name);
  free (tmp_name);
}
}
 
 
 
 
/* Set target relocation values needed during linking.  */
/* Set target relocation values needed during linking.  */
 
 
void
void
bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
                                 struct bfd_link_info *link_info,
                                 struct bfd_link_info *link_info,
                                 int target1_is_rel,
                                 int target1_is_rel,
                                 char * target2_type,
                                 char * target2_type,
                                 int fix_v4bx,
                                 int fix_v4bx,
                                 int use_blx,
                                 int use_blx,
                                 bfd_arm_vfp11_fix vfp11_fix,
                                 bfd_arm_vfp11_fix vfp11_fix,
                                 int no_enum_warn, int no_wchar_warn,
                                 int no_enum_warn, int no_wchar_warn,
                                 int pic_veneer, int fix_cortex_a8,
                                 int pic_veneer, int fix_cortex_a8,
                                 int fix_arm1176)
                                 int fix_arm1176)
{
{
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  globals = elf32_arm_hash_table (link_info);
  globals = elf32_arm_hash_table (link_info);
  if (globals == NULL)
  if (globals == NULL)
    return;
    return;
 
 
  globals->target1_is_rel = target1_is_rel;
  globals->target1_is_rel = target1_is_rel;
  if (strcmp (target2_type, "rel") == 0)
  if (strcmp (target2_type, "rel") == 0)
    globals->target2_reloc = R_ARM_REL32;
    globals->target2_reloc = R_ARM_REL32;
  else if (strcmp (target2_type, "abs") == 0)
  else if (strcmp (target2_type, "abs") == 0)
    globals->target2_reloc = R_ARM_ABS32;
    globals->target2_reloc = R_ARM_ABS32;
  else if (strcmp (target2_type, "got-rel") == 0)
  else if (strcmp (target2_type, "got-rel") == 0)
    globals->target2_reloc = R_ARM_GOT_PREL;
    globals->target2_reloc = R_ARM_GOT_PREL;
  else
  else
    {
    {
      _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
      _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
                          target2_type);
                          target2_type);
    }
    }
  globals->fix_v4bx = fix_v4bx;
  globals->fix_v4bx = fix_v4bx;
  globals->use_blx |= use_blx;
  globals->use_blx |= use_blx;
  globals->vfp11_fix = vfp11_fix;
  globals->vfp11_fix = vfp11_fix;
  globals->pic_veneer = pic_veneer;
  globals->pic_veneer = pic_veneer;
  globals->fix_cortex_a8 = fix_cortex_a8;
  globals->fix_cortex_a8 = fix_cortex_a8;
  globals->fix_arm1176 = fix_arm1176;
  globals->fix_arm1176 = fix_arm1176;
 
 
  BFD_ASSERT (is_arm_elf (output_bfd));
  BFD_ASSERT (is_arm_elf (output_bfd));
  elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
  elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
  elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
  elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
}
}
 
 
/* Replace the target offset of a Thumb bl or b.w instruction.  */
/* Replace the target offset of a Thumb bl or b.w instruction.  */
 
 
static void
static void
insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
{
{
  bfd_vma upper;
  bfd_vma upper;
  bfd_vma lower;
  bfd_vma lower;
  int reloc_sign;
  int reloc_sign;
 
 
  BFD_ASSERT ((offset & 1) == 0);
  BFD_ASSERT ((offset & 1) == 0);
 
 
  upper = bfd_get_16 (abfd, insn);
  upper = bfd_get_16 (abfd, insn);
  lower = bfd_get_16 (abfd, insn + 2);
  lower = bfd_get_16 (abfd, insn + 2);
  reloc_sign = (offset < 0) ? 1 : 0;
  reloc_sign = (offset < 0) ? 1 : 0;
  upper = (upper & ~(bfd_vma) 0x7ff)
  upper = (upper & ~(bfd_vma) 0x7ff)
          | ((offset >> 12) & 0x3ff)
          | ((offset >> 12) & 0x3ff)
          | (reloc_sign << 10);
          | (reloc_sign << 10);
  lower = (lower & ~(bfd_vma) 0x2fff)
  lower = (lower & ~(bfd_vma) 0x2fff)
          | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
          | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
          | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
          | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
          | ((offset >> 1) & 0x7ff);
          | ((offset >> 1) & 0x7ff);
  bfd_put_16 (abfd, upper, insn);
  bfd_put_16 (abfd, upper, insn);
  bfd_put_16 (abfd, lower, insn + 2);
  bfd_put_16 (abfd, lower, insn + 2);
}
}
 
 
/* Thumb code calling an ARM function.  */
/* Thumb code calling an ARM function.  */
 
 
static int
static int
elf32_thumb_to_arm_stub (struct bfd_link_info * info,
elf32_thumb_to_arm_stub (struct bfd_link_info * info,
                         const char *           name,
                         const char *           name,
                         bfd *                  input_bfd,
                         bfd *                  input_bfd,
                         bfd *                  output_bfd,
                         bfd *                  output_bfd,
                         asection *             input_section,
                         asection *             input_section,
                         bfd_byte *             hit_data,
                         bfd_byte *             hit_data,
                         asection *             sym_sec,
                         asection *             sym_sec,
                         bfd_vma                offset,
                         bfd_vma                offset,
                         bfd_signed_vma         addend,
                         bfd_signed_vma         addend,
                         bfd_vma                val,
                         bfd_vma                val,
                         char **error_message)
                         char **error_message)
{
{
  asection * s = 0;
  asection * s = 0;
  bfd_vma my_offset;
  bfd_vma my_offset;
  long int ret_offset;
  long int ret_offset;
  struct elf_link_hash_entry * myh;
  struct elf_link_hash_entry * myh;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  myh = find_thumb_glue (info, name, error_message);
  myh = find_thumb_glue (info, name, error_message);
  if (myh == NULL)
  if (myh == NULL)
    return FALSE;
    return FALSE;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  my_offset = myh->root.u.def.value;
  my_offset = myh->root.u.def.value;
 
 
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
                               THUMB2ARM_GLUE_SECTION_NAME);
                               THUMB2ARM_GLUE_SECTION_NAME);
 
 
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->output_section != NULL);
  BFD_ASSERT (s->output_section != NULL);
 
 
  if ((my_offset & 0x01) == 0x01)
  if ((my_offset & 0x01) == 0x01)
    {
    {
      if (sym_sec != NULL
      if (sym_sec != NULL
          && sym_sec->owner != NULL
          && sym_sec->owner != NULL
          && !INTERWORK_FLAG (sym_sec->owner))
          && !INTERWORK_FLAG (sym_sec->owner))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B(%s): warning: interworking not enabled.\n"
            (_("%B(%s): warning: interworking not enabled.\n"
               "  first occurrence: %B: thumb call to arm"),
               "  first occurrence: %B: thumb call to arm"),
             sym_sec->owner, input_bfd, name);
             sym_sec->owner, input_bfd, name);
 
 
          return FALSE;
          return FALSE;
        }
        }
 
 
      --my_offset;
      --my_offset;
      myh->root.u.def.value = my_offset;
      myh->root.u.def.value = my_offset;
 
 
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
                      s->contents + my_offset);
                      s->contents + my_offset);
 
 
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
      put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
                      s->contents + my_offset + 2);
                      s->contents + my_offset + 2);
 
 
      ret_offset =
      ret_offset =
        /* Address of destination of the stub.  */
        /* Address of destination of the stub.  */
        ((bfd_signed_vma) val)
        ((bfd_signed_vma) val)
        - ((bfd_signed_vma)
        - ((bfd_signed_vma)
           /* Offset from the start of the current section
           /* Offset from the start of the current section
              to the start of the stubs.  */
              to the start of the stubs.  */
           (s->output_offset
           (s->output_offset
            /* Offset of the start of this stub from the start of the stubs.  */
            /* Offset of the start of this stub from the start of the stubs.  */
            + my_offset
            + my_offset
            /* Address of the start of the current section.  */
            /* Address of the start of the current section.  */
            + s->output_section->vma)
            + s->output_section->vma)
           /* The branch instruction is 4 bytes into the stub.  */
           /* The branch instruction is 4 bytes into the stub.  */
           + 4
           + 4
           /* ARM branches work from the pc of the instruction + 8.  */
           /* ARM branches work from the pc of the instruction + 8.  */
           + 8);
           + 8);
 
 
      put_arm_insn (globals, output_bfd,
      put_arm_insn (globals, output_bfd,
                    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
                    (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
                    s->contents + my_offset + 4);
                    s->contents + my_offset + 4);
    }
    }
 
 
  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
 
 
  /* Now go back and fix up the original BL insn to point to here.  */
  /* Now go back and fix up the original BL insn to point to here.  */
  ret_offset =
  ret_offset =
    /* Address of where the stub is located.  */
    /* Address of where the stub is located.  */
    (s->output_section->vma + s->output_offset + my_offset)
    (s->output_section->vma + s->output_offset + my_offset)
     /* Address of where the BL is located.  */
     /* Address of where the BL is located.  */
    - (input_section->output_section->vma + input_section->output_offset
    - (input_section->output_section->vma + input_section->output_offset
       + offset)
       + offset)
    /* Addend in the relocation.  */
    /* Addend in the relocation.  */
    - addend
    - addend
    /* Biassing for PC-relative addressing.  */
    /* Biassing for PC-relative addressing.  */
    - 8;
    - 8;
 
 
  insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
  insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
/* Populate an Arm to Thumb stub.  Returns the stub symbol.  */
 
 
static struct elf_link_hash_entry *
static struct elf_link_hash_entry *
elf32_arm_create_thumb_stub (struct bfd_link_info * info,
elf32_arm_create_thumb_stub (struct bfd_link_info * info,
                             const char *           name,
                             const char *           name,
                             bfd *                  input_bfd,
                             bfd *                  input_bfd,
                             bfd *                  output_bfd,
                             bfd *                  output_bfd,
                             asection *             sym_sec,
                             asection *             sym_sec,
                             bfd_vma                val,
                             bfd_vma                val,
                             asection *             s,
                             asection *             s,
                             char **                error_message)
                             char **                error_message)
{
{
  bfd_vma my_offset;
  bfd_vma my_offset;
  long int ret_offset;
  long int ret_offset;
  struct elf_link_hash_entry * myh;
  struct elf_link_hash_entry * myh;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  myh = find_arm_glue (info, name, error_message);
  myh = find_arm_glue (info, name, error_message);
  if (myh == NULL)
  if (myh == NULL)
    return NULL;
    return NULL;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  my_offset = myh->root.u.def.value;
  my_offset = myh->root.u.def.value;
 
 
  if ((my_offset & 0x01) == 0x01)
  if ((my_offset & 0x01) == 0x01)
    {
    {
      if (sym_sec != NULL
      if (sym_sec != NULL
          && sym_sec->owner != NULL
          && sym_sec->owner != NULL
          && !INTERWORK_FLAG (sym_sec->owner))
          && !INTERWORK_FLAG (sym_sec->owner))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B(%s): warning: interworking not enabled.\n"
            (_("%B(%s): warning: interworking not enabled.\n"
               "  first occurrence: %B: arm call to thumb"),
               "  first occurrence: %B: arm call to thumb"),
             sym_sec->owner, input_bfd, name);
             sym_sec->owner, input_bfd, name);
        }
        }
 
 
      --my_offset;
      --my_offset;
      myh->root.u.def.value = my_offset;
      myh->root.u.def.value = my_offset;
 
 
      if (info->shared || globals->root.is_relocatable_executable
      if (info->shared || globals->root.is_relocatable_executable
          || globals->pic_veneer)
          || globals->pic_veneer)
        {
        {
          /* For relocatable objects we can't use absolute addresses,
          /* For relocatable objects we can't use absolute addresses,
             so construct the address from a relative offset.  */
             so construct the address from a relative offset.  */
          /* TODO: If the offset is small it's probably worth
          /* TODO: If the offset is small it's probably worth
             constructing the address with adds.  */
             constructing the address with adds.  */
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
                        s->contents + my_offset);
                        s->contents + my_offset);
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
                        s->contents + my_offset + 4);
                        s->contents + my_offset + 4);
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
                        s->contents + my_offset + 8);
                        s->contents + my_offset + 8);
          /* Adjust the offset by 4 for the position of the add,
          /* Adjust the offset by 4 for the position of the add,
             and 8 for the pipeline offset.  */
             and 8 for the pipeline offset.  */
          ret_offset = (val - (s->output_offset
          ret_offset = (val - (s->output_offset
                               + s->output_section->vma
                               + s->output_section->vma
                               + my_offset + 12))
                               + my_offset + 12))
                       | 1;
                       | 1;
          bfd_put_32 (output_bfd, ret_offset,
          bfd_put_32 (output_bfd, ret_offset,
                      s->contents + my_offset + 12);
                      s->contents + my_offset + 12);
        }
        }
      else if (globals->use_blx)
      else if (globals->use_blx)
        {
        {
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
                        s->contents + my_offset);
                        s->contents + my_offset);
 
 
          /* It's a thumb address.  Add the low order bit.  */
          /* It's a thumb address.  Add the low order bit.  */
          bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
          bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
                      s->contents + my_offset + 4);
                      s->contents + my_offset + 4);
        }
        }
      else
      else
        {
        {
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
                        s->contents + my_offset);
                        s->contents + my_offset);
 
 
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
          put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
                        s->contents + my_offset + 4);
                        s->contents + my_offset + 4);
 
 
          /* It's a thumb address.  Add the low order bit.  */
          /* It's a thumb address.  Add the low order bit.  */
          bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
          bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
                      s->contents + my_offset + 8);
                      s->contents + my_offset + 8);
 
 
          my_offset += 12;
          my_offset += 12;
        }
        }
    }
    }
 
 
  BFD_ASSERT (my_offset <= globals->arm_glue_size);
  BFD_ASSERT (my_offset <= globals->arm_glue_size);
 
 
  return myh;
  return myh;
}
}
 
 
/* Arm code calling a Thumb function.  */
/* Arm code calling a Thumb function.  */
 
 
static int
static int
elf32_arm_to_thumb_stub (struct bfd_link_info * info,
elf32_arm_to_thumb_stub (struct bfd_link_info * info,
                         const char *           name,
                         const char *           name,
                         bfd *                  input_bfd,
                         bfd *                  input_bfd,
                         bfd *                  output_bfd,
                         bfd *                  output_bfd,
                         asection *             input_section,
                         asection *             input_section,
                         bfd_byte *             hit_data,
                         bfd_byte *             hit_data,
                         asection *             sym_sec,
                         asection *             sym_sec,
                         bfd_vma                offset,
                         bfd_vma                offset,
                         bfd_signed_vma         addend,
                         bfd_signed_vma         addend,
                         bfd_vma                val,
                         bfd_vma                val,
                         char **error_message)
                         char **error_message)
{
{
  unsigned long int tmp;
  unsigned long int tmp;
  bfd_vma my_offset;
  bfd_vma my_offset;
  asection * s;
  asection * s;
  long int ret_offset;
  long int ret_offset;
  struct elf_link_hash_entry * myh;
  struct elf_link_hash_entry * myh;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
                               ARM2THUMB_GLUE_SECTION_NAME);
                               ARM2THUMB_GLUE_SECTION_NAME);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->output_section != NULL);
  BFD_ASSERT (s->output_section != NULL);
 
 
  myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
  myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
                                     sym_sec, val, s, error_message);
                                     sym_sec, val, s, error_message);
  if (!myh)
  if (!myh)
    return FALSE;
    return FALSE;
 
 
  my_offset = myh->root.u.def.value;
  my_offset = myh->root.u.def.value;
  tmp = bfd_get_32 (input_bfd, hit_data);
  tmp = bfd_get_32 (input_bfd, hit_data);
  tmp = tmp & 0xFF000000;
  tmp = tmp & 0xFF000000;
 
 
  /* Somehow these are both 4 too far, so subtract 8.  */
  /* Somehow these are both 4 too far, so subtract 8.  */
  ret_offset = (s->output_offset
  ret_offset = (s->output_offset
                + my_offset
                + my_offset
                + s->output_section->vma
                + s->output_section->vma
                - (input_section->output_offset
                - (input_section->output_offset
                   + input_section->output_section->vma
                   + input_section->output_section->vma
                   + offset + addend)
                   + offset + addend)
                - 8);
                - 8);
 
 
  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
 
 
  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Populate Arm stub for an exported Thumb function.  */
/* Populate Arm stub for an exported Thumb function.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
{
{
  struct bfd_link_info * info = (struct bfd_link_info *) inf;
  struct bfd_link_info * info = (struct bfd_link_info *) inf;
  asection * s;
  asection * s;
  struct elf_link_hash_entry * myh;
  struct elf_link_hash_entry * myh;
  struct elf32_arm_link_hash_entry *eh;
  struct elf32_arm_link_hash_entry *eh;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
  asection *sec;
  asection *sec;
  bfd_vma val;
  bfd_vma val;
  char *error_message;
  char *error_message;
 
 
  eh = elf32_arm_hash_entry (h);
  eh = elf32_arm_hash_entry (h);
  /* Allocate stubs for exported Thumb functions on v4t.  */
  /* Allocate stubs for exported Thumb functions on v4t.  */
  if (eh->export_glue == NULL)
  if (eh->export_glue == NULL)
    return TRUE;
    return TRUE;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
                               ARM2THUMB_GLUE_SECTION_NAME);
                               ARM2THUMB_GLUE_SECTION_NAME);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->output_section != NULL);
  BFD_ASSERT (s->output_section != NULL);
 
 
  sec = eh->export_glue->root.u.def.section;
  sec = eh->export_glue->root.u.def.section;
 
 
  BFD_ASSERT (sec->output_section != NULL);
  BFD_ASSERT (sec->output_section != NULL);
 
 
  val = eh->export_glue->root.u.def.value + sec->output_offset
  val = eh->export_glue->root.u.def.value + sec->output_offset
        + sec->output_section->vma;
        + sec->output_section->vma;
 
 
  myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
  myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
                                     h->root.u.def.section->owner,
                                     h->root.u.def.section->owner,
                                     globals->obfd, sec, val, s,
                                     globals->obfd, sec, val, s,
                                     &error_message);
                                     &error_message);
  BFD_ASSERT (myh);
  BFD_ASSERT (myh);
  return TRUE;
  return TRUE;
}
}
 
 
/* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
/* Populate ARMv4 BX veneers.  Returns the absolute adress of the veneer.  */
 
 
static bfd_vma
static bfd_vma
elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
{
{
  bfd_byte *p;
  bfd_byte *p;
  bfd_vma glue_addr;
  bfd_vma glue_addr;
  asection *s;
  asection *s;
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
                               ARM_BX_GLUE_SECTION_NAME);
                               ARM_BX_GLUE_SECTION_NAME);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->output_section != NULL);
  BFD_ASSERT (s->output_section != NULL);
 
 
  BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
  BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
 
 
  glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
  glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
 
 
  if ((globals->bx_glue_offset[reg] & 1) == 0)
  if ((globals->bx_glue_offset[reg] & 1) == 0)
    {
    {
      p = s->contents + glue_addr;
      p = s->contents + glue_addr;
      bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
      bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
      bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
      bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
      bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
      bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
      globals->bx_glue_offset[reg] |= 1;
      globals->bx_glue_offset[reg] |= 1;
    }
    }
 
 
  return glue_addr + s->output_section->vma + s->output_offset;
  return glue_addr + s->output_section->vma + s->output_offset;
}
}
 
 
/* Generate Arm stubs for exported Thumb symbols.  */
/* Generate Arm stubs for exported Thumb symbols.  */
static void
static void
elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
                                  struct bfd_link_info *link_info)
                                  struct bfd_link_info *link_info)
{
{
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  if (link_info == NULL)
  if (link_info == NULL)
    /* Ignore this if we are not called by the ELF backend linker.  */
    /* Ignore this if we are not called by the ELF backend linker.  */
    return;
    return;
 
 
  globals = elf32_arm_hash_table (link_info);
  globals = elf32_arm_hash_table (link_info);
  if (globals == NULL)
  if (globals == NULL)
    return;
    return;
 
 
  /* If blx is available then exported Thumb symbols are OK and there is
  /* If blx is available then exported Thumb symbols are OK and there is
     nothing to do.  */
     nothing to do.  */
  if (globals->use_blx)
  if (globals->use_blx)
    return;
    return;
 
 
  elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
  elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
                          link_info);
                          link_info);
}
}
 
 
/* Reserve space for COUNT dynamic relocations in relocation selection
/* Reserve space for COUNT dynamic relocations in relocation selection
   SRELOC.  */
   SRELOC.  */
 
 
static void
static void
elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
                              bfd_size_type count)
                              bfd_size_type count)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  BFD_ASSERT (htab->root.dynamic_sections_created);
  BFD_ASSERT (htab->root.dynamic_sections_created);
  if (sreloc == NULL)
  if (sreloc == NULL)
    abort ();
    abort ();
  sreloc->size += RELOC_SIZE (htab) * count;
  sreloc->size += RELOC_SIZE (htab) * count;
}
}
 
 
/* Reserve space for COUNT R_ARM_IRELATIVE relocations.  If the link is
/* Reserve space for COUNT R_ARM_IRELATIVE relocations.  If the link is
   dynamic, the relocations should go in SRELOC, otherwise they should
   dynamic, the relocations should go in SRELOC, otherwise they should
   go in the special .rel.iplt section.  */
   go in the special .rel.iplt section.  */
 
 
static void
static void
elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
                            bfd_size_type count)
                            bfd_size_type count)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (!htab->root.dynamic_sections_created)
  if (!htab->root.dynamic_sections_created)
    htab->root.irelplt->size += RELOC_SIZE (htab) * count;
    htab->root.irelplt->size += RELOC_SIZE (htab) * count;
  else
  else
    {
    {
      BFD_ASSERT (sreloc != NULL);
      BFD_ASSERT (sreloc != NULL);
      sreloc->size += RELOC_SIZE (htab) * count;
      sreloc->size += RELOC_SIZE (htab) * count;
    }
    }
}
}
 
 
/* Add relocation REL to the end of relocation section SRELOC.  */
/* Add relocation REL to the end of relocation section SRELOC.  */
 
 
static void
static void
elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
                        asection *sreloc, Elf_Internal_Rela *rel)
                        asection *sreloc, Elf_Internal_Rela *rel)
{
{
  bfd_byte *loc;
  bfd_byte *loc;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (!htab->root.dynamic_sections_created
  if (!htab->root.dynamic_sections_created
      && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
      && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
    sreloc = htab->root.irelplt;
    sreloc = htab->root.irelplt;
  if (sreloc == NULL)
  if (sreloc == NULL)
    abort ();
    abort ();
  loc = sreloc->contents;
  loc = sreloc->contents;
  loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
  loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
  if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
  if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
    abort ();
    abort ();
  SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
  SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
}
}
 
 
/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
   IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
   IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
   to .plt.  */
   to .plt.  */
 
 
static void
static void
elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
                              bfd_boolean is_iplt_entry,
                              bfd_boolean is_iplt_entry,
                              union gotplt_union *root_plt,
                              union gotplt_union *root_plt,
                              struct arm_plt_info *arm_plt)
                              struct arm_plt_info *arm_plt)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
  asection *splt;
  asection *splt;
  asection *sgotplt;
  asection *sgotplt;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
 
 
  if (is_iplt_entry)
  if (is_iplt_entry)
    {
    {
      splt = htab->root.iplt;
      splt = htab->root.iplt;
      sgotplt = htab->root.igotplt;
      sgotplt = htab->root.igotplt;
 
 
      /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt.  */
      /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt.  */
      elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
      elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
    }
    }
  else
  else
    {
    {
      splt = htab->root.splt;
      splt = htab->root.splt;
      sgotplt = htab->root.sgotplt;
      sgotplt = htab->root.sgotplt;
 
 
      /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt.  */
      /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt.  */
      elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
      elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
 
 
      /* If this is the first .plt entry, make room for the special
      /* If this is the first .plt entry, make room for the special
         first entry.  */
         first entry.  */
      if (splt->size == 0)
      if (splt->size == 0)
        splt->size += htab->plt_header_size;
        splt->size += htab->plt_header_size;
    }
    }
 
 
  /* Allocate the PLT entry itself, including any leading Thumb stub.  */
  /* Allocate the PLT entry itself, including any leading Thumb stub.  */
  if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
  if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
    splt->size += PLT_THUMB_STUB_SIZE;
    splt->size += PLT_THUMB_STUB_SIZE;
  root_plt->offset = splt->size;
  root_plt->offset = splt->size;
  splt->size += htab->plt_entry_size;
  splt->size += htab->plt_entry_size;
 
 
  if (!htab->symbian_p)
  if (!htab->symbian_p)
    {
    {
      /* We also need to make an entry in the .got.plt section, which
      /* We also need to make an entry in the .got.plt section, which
         will be placed in the .got section by the linker script.  */
         will be placed in the .got section by the linker script.  */
      arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
      arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
      sgotplt->size += 4;
      sgotplt->size += 4;
    }
    }
}
}
 
 
/* Fill in a PLT entry and its associated GOT slot.  If DYNINDX == -1,
/* Fill in a PLT entry and its associated GOT slot.  If DYNINDX == -1,
   the entry lives in .iplt and resolves to (*SYM_VALUE)().
   the entry lives in .iplt and resolves to (*SYM_VALUE)().
   Otherwise, DYNINDX is the index of the symbol in the dynamic
   Otherwise, DYNINDX is the index of the symbol in the dynamic
   symbol table and SYM_VALUE is undefined.
   symbol table and SYM_VALUE is undefined.
 
 
   ROOT_PLT points to the offset of the PLT entry from the start of its
   ROOT_PLT points to the offset of the PLT entry from the start of its
   section (.iplt or .plt).  ARM_PLT points to the symbol's ARM-specific
   section (.iplt or .plt).  ARM_PLT points to the symbol's ARM-specific
   bookkeeping information.  */
   bookkeeping information.  */
 
 
static void
static void
elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
                              union gotplt_union *root_plt,
                              union gotplt_union *root_plt,
                              struct arm_plt_info *arm_plt,
                              struct arm_plt_info *arm_plt,
                              int dynindx, bfd_vma sym_value)
                              int dynindx, bfd_vma sym_value)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
  asection *sgot;
  asection *sgot;
  asection *splt;
  asection *splt;
  asection *srel;
  asection *srel;
  bfd_byte *loc;
  bfd_byte *loc;
  bfd_vma plt_index;
  bfd_vma plt_index;
  Elf_Internal_Rela rel;
  Elf_Internal_Rela rel;
  bfd_vma plt_header_size;
  bfd_vma plt_header_size;
  bfd_vma got_header_size;
  bfd_vma got_header_size;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
 
 
  /* Pick the appropriate sections and sizes.  */
  /* Pick the appropriate sections and sizes.  */
  if (dynindx == -1)
  if (dynindx == -1)
    {
    {
      splt = htab->root.iplt;
      splt = htab->root.iplt;
      sgot = htab->root.igotplt;
      sgot = htab->root.igotplt;
      srel = htab->root.irelplt;
      srel = htab->root.irelplt;
 
 
      /* There are no reserved entries in .igot.plt, and no special
      /* There are no reserved entries in .igot.plt, and no special
         first entry in .iplt.  */
         first entry in .iplt.  */
      got_header_size = 0;
      got_header_size = 0;
      plt_header_size = 0;
      plt_header_size = 0;
    }
    }
  else
  else
    {
    {
      splt = htab->root.splt;
      splt = htab->root.splt;
      sgot = htab->root.sgotplt;
      sgot = htab->root.sgotplt;
      srel = htab->root.srelplt;
      srel = htab->root.srelplt;
 
 
      got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
      got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
      plt_header_size = htab->plt_header_size;
      plt_header_size = htab->plt_header_size;
    }
    }
  BFD_ASSERT (splt != NULL && srel != NULL);
  BFD_ASSERT (splt != NULL && srel != NULL);
 
 
  /* Fill in the entry in the procedure linkage table.  */
  /* Fill in the entry in the procedure linkage table.  */
  if (htab->symbian_p)
  if (htab->symbian_p)
    {
    {
      BFD_ASSERT (dynindx >= 0);
      BFD_ASSERT (dynindx >= 0);
      put_arm_insn (htab, output_bfd,
      put_arm_insn (htab, output_bfd,
                    elf32_arm_symbian_plt_entry[0],
                    elf32_arm_symbian_plt_entry[0],
                    splt->contents + root_plt->offset);
                    splt->contents + root_plt->offset);
      bfd_put_32 (output_bfd,
      bfd_put_32 (output_bfd,
                  elf32_arm_symbian_plt_entry[1],
                  elf32_arm_symbian_plt_entry[1],
                  splt->contents + root_plt->offset + 4);
                  splt->contents + root_plt->offset + 4);
 
 
      /* Fill in the entry in the .rel.plt section.  */
      /* Fill in the entry in the .rel.plt section.  */
      rel.r_offset = (splt->output_section->vma
      rel.r_offset = (splt->output_section->vma
                      + splt->output_offset
                      + splt->output_offset
                      + root_plt->offset + 4);
                      + root_plt->offset + 4);
      rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
      rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
 
 
      /* Get the index in the procedure linkage table which
      /* Get the index in the procedure linkage table which
         corresponds to this symbol.  This is the index of this symbol
         corresponds to this symbol.  This is the index of this symbol
         in all the symbols for which we are making plt entries.  The
         in all the symbols for which we are making plt entries.  The
         first entry in the procedure linkage table is reserved.  */
         first entry in the procedure linkage table is reserved.  */
      plt_index = ((root_plt->offset - plt_header_size)
      plt_index = ((root_plt->offset - plt_header_size)
                   / htab->plt_entry_size);
                   / htab->plt_entry_size);
    }
    }
  else
  else
    {
    {
      bfd_vma got_offset, got_address, plt_address;
      bfd_vma got_offset, got_address, plt_address;
      bfd_vma got_displacement, initial_got_entry;
      bfd_vma got_displacement, initial_got_entry;
      bfd_byte * ptr;
      bfd_byte * ptr;
 
 
      BFD_ASSERT (sgot != NULL);
      BFD_ASSERT (sgot != NULL);
 
 
      /* Get the offset into the .(i)got.plt table of the entry that
      /* Get the offset into the .(i)got.plt table of the entry that
         corresponds to this function.  */
         corresponds to this function.  */
      got_offset = (arm_plt->got_offset & -2);
      got_offset = (arm_plt->got_offset & -2);
 
 
      /* Get the index in the procedure linkage table which
      /* Get the index in the procedure linkage table which
         corresponds to this symbol.  This is the index of this symbol
         corresponds to this symbol.  This is the index of this symbol
         in all the symbols for which we are making plt entries.
         in all the symbols for which we are making plt entries.
         After the reserved .got.plt entries, all symbols appear in
         After the reserved .got.plt entries, all symbols appear in
         the same order as in .plt.  */
         the same order as in .plt.  */
      plt_index = (got_offset - got_header_size) / 4;
      plt_index = (got_offset - got_header_size) / 4;
 
 
      /* Calculate the address of the GOT entry.  */
      /* Calculate the address of the GOT entry.  */
      got_address = (sgot->output_section->vma
      got_address = (sgot->output_section->vma
                     + sgot->output_offset
                     + sgot->output_offset
                     + got_offset);
                     + got_offset);
 
 
      /* ...and the address of the PLT entry.  */
      /* ...and the address of the PLT entry.  */
      plt_address = (splt->output_section->vma
      plt_address = (splt->output_section->vma
                     + splt->output_offset
                     + splt->output_offset
                     + root_plt->offset);
                     + root_plt->offset);
 
 
      ptr = splt->contents + root_plt->offset;
      ptr = splt->contents + root_plt->offset;
      if (htab->vxworks_p && info->shared)
      if (htab->vxworks_p && info->shared)
        {
        {
          unsigned int i;
          unsigned int i;
          bfd_vma val;
          bfd_vma val;
 
 
          for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
          for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
            {
            {
              val = elf32_arm_vxworks_shared_plt_entry[i];
              val = elf32_arm_vxworks_shared_plt_entry[i];
              if (i == 2)
              if (i == 2)
                val |= got_address - sgot->output_section->vma;
                val |= got_address - sgot->output_section->vma;
              if (i == 5)
              if (i == 5)
                val |= plt_index * RELOC_SIZE (htab);
                val |= plt_index * RELOC_SIZE (htab);
              if (i == 2 || i == 5)
              if (i == 2 || i == 5)
                bfd_put_32 (output_bfd, val, ptr);
                bfd_put_32 (output_bfd, val, ptr);
              else
              else
                put_arm_insn (htab, output_bfd, val, ptr);
                put_arm_insn (htab, output_bfd, val, ptr);
            }
            }
        }
        }
      else if (htab->vxworks_p)
      else if (htab->vxworks_p)
        {
        {
          unsigned int i;
          unsigned int i;
          bfd_vma val;
          bfd_vma val;
 
 
          for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
          for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
            {
            {
              val = elf32_arm_vxworks_exec_plt_entry[i];
              val = elf32_arm_vxworks_exec_plt_entry[i];
              if (i == 2)
              if (i == 2)
                val |= got_address;
                val |= got_address;
              if (i == 4)
              if (i == 4)
                val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
                val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
              if (i == 5)
              if (i == 5)
                val |= plt_index * RELOC_SIZE (htab);
                val |= plt_index * RELOC_SIZE (htab);
              if (i == 2 || i == 5)
              if (i == 2 || i == 5)
                bfd_put_32 (output_bfd, val, ptr);
                bfd_put_32 (output_bfd, val, ptr);
              else
              else
                put_arm_insn (htab, output_bfd, val, ptr);
                put_arm_insn (htab, output_bfd, val, ptr);
            }
            }
 
 
          loc = (htab->srelplt2->contents
          loc = (htab->srelplt2->contents
                 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
                 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
 
 
          /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
          /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
             referencing the GOT for this PLT entry.  */
             referencing the GOT for this PLT entry.  */
          rel.r_offset = plt_address + 8;
          rel.r_offset = plt_address + 8;
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
          rel.r_addend = got_offset;
          rel.r_addend = got_offset;
          SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
          SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
          loc += RELOC_SIZE (htab);
          loc += RELOC_SIZE (htab);
 
 
          /* Create the R_ARM_ABS32 relocation referencing the
          /* Create the R_ARM_ABS32 relocation referencing the
             beginning of the PLT for this GOT entry.  */
             beginning of the PLT for this GOT entry.  */
          rel.r_offset = got_address;
          rel.r_offset = got_address;
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
          rel.r_addend = 0;
          rel.r_addend = 0;
          SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
          SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
        }
        }
      else
      else
        {
        {
          /* Calculate the displacement between the PLT slot and the
          /* Calculate the displacement between the PLT slot and the
             entry in the GOT.  The eight-byte offset accounts for the
             entry in the GOT.  The eight-byte offset accounts for the
             value produced by adding to pc in the first instruction
             value produced by adding to pc in the first instruction
             of the PLT stub.  */
             of the PLT stub.  */
          got_displacement = got_address - (plt_address + 8);
          got_displacement = got_address - (plt_address + 8);
 
 
          BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
          BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
 
 
          if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
          if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
            {
            {
              put_thumb_insn (htab, output_bfd,
              put_thumb_insn (htab, output_bfd,
                              elf32_arm_plt_thumb_stub[0], ptr - 4);
                              elf32_arm_plt_thumb_stub[0], ptr - 4);
              put_thumb_insn (htab, output_bfd,
              put_thumb_insn (htab, output_bfd,
                              elf32_arm_plt_thumb_stub[1], ptr - 2);
                              elf32_arm_plt_thumb_stub[1], ptr - 2);
            }
            }
 
 
          put_arm_insn (htab, output_bfd,
          put_arm_insn (htab, output_bfd,
                        elf32_arm_plt_entry[0]
                        elf32_arm_plt_entry[0]
                        | ((got_displacement & 0x0ff00000) >> 20),
                        | ((got_displacement & 0x0ff00000) >> 20),
                        ptr + 0);
                        ptr + 0);
          put_arm_insn (htab, output_bfd,
          put_arm_insn (htab, output_bfd,
                        elf32_arm_plt_entry[1]
                        elf32_arm_plt_entry[1]
                        | ((got_displacement & 0x000ff000) >> 12),
                        | ((got_displacement & 0x000ff000) >> 12),
                        ptr+ 4);
                        ptr+ 4);
          put_arm_insn (htab, output_bfd,
          put_arm_insn (htab, output_bfd,
                        elf32_arm_plt_entry[2]
                        elf32_arm_plt_entry[2]
                        | (got_displacement & 0x00000fff),
                        | (got_displacement & 0x00000fff),
                        ptr + 8);
                        ptr + 8);
#ifdef FOUR_WORD_PLT
#ifdef FOUR_WORD_PLT
          bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
          bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
#endif
#endif
        }
        }
 
 
      /* Fill in the entry in the .rel(a).(i)plt section.  */
      /* Fill in the entry in the .rel(a).(i)plt section.  */
      rel.r_offset = got_address;
      rel.r_offset = got_address;
      rel.r_addend = 0;
      rel.r_addend = 0;
      if (dynindx == -1)
      if (dynindx == -1)
        {
        {
          /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
          /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
             The dynamic linker or static executable then calls SYM_VALUE
             The dynamic linker or static executable then calls SYM_VALUE
             to determine the correct run-time value of the .igot.plt entry.  */
             to determine the correct run-time value of the .igot.plt entry.  */
          rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
          rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
          initial_got_entry = sym_value;
          initial_got_entry = sym_value;
        }
        }
      else
      else
        {
        {
          rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
          rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
          initial_got_entry = (splt->output_section->vma
          initial_got_entry = (splt->output_section->vma
                               + splt->output_offset);
                               + splt->output_offset);
        }
        }
 
 
      /* Fill in the entry in the global offset table.  */
      /* Fill in the entry in the global offset table.  */
      bfd_put_32 (output_bfd, initial_got_entry,
      bfd_put_32 (output_bfd, initial_got_entry,
                  sgot->contents + got_offset);
                  sgot->contents + got_offset);
    }
    }
 
 
  loc = srel->contents + plt_index * RELOC_SIZE (htab);
  loc = srel->contents + plt_index * RELOC_SIZE (htab);
  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
  SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
}
}
 
 
/* Some relocations map to different relocations depending on the
/* Some relocations map to different relocations depending on the
   target.  Return the real relocation.  */
   target.  Return the real relocation.  */
 
 
static int
static int
arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
                     int r_type)
                     int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case R_ARM_TARGET1:
    case R_ARM_TARGET1:
      if (globals->target1_is_rel)
      if (globals->target1_is_rel)
        return R_ARM_REL32;
        return R_ARM_REL32;
      else
      else
        return R_ARM_ABS32;
        return R_ARM_ABS32;
 
 
    case R_ARM_TARGET2:
    case R_ARM_TARGET2:
      return globals->target2_reloc;
      return globals->target2_reloc;
 
 
    default:
    default:
      return r_type;
      return r_type;
    }
    }
}
}
 
 
/* Return the base VMA address which should be subtracted from real addresses
/* Return the base VMA address which should be subtracted from real addresses
   when resolving @dtpoff relocation.
   when resolving @dtpoff relocation.
   This is PT_TLS segment p_vaddr.  */
   This is PT_TLS segment p_vaddr.  */
 
 
static bfd_vma
static bfd_vma
dtpoff_base (struct bfd_link_info *info)
dtpoff_base (struct bfd_link_info *info)
{
{
  /* If tls_sec is NULL, we should have signalled an error already.  */
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (elf_hash_table (info)->tls_sec == NULL)
  if (elf_hash_table (info)->tls_sec == NULL)
    return 0;
    return 0;
  return elf_hash_table (info)->tls_sec->vma;
  return elf_hash_table (info)->tls_sec->vma;
}
}
 
 
/* Return the relocation value for @tpoff relocation
/* Return the relocation value for @tpoff relocation
   if STT_TLS virtual address is ADDRESS.  */
   if STT_TLS virtual address is ADDRESS.  */
 
 
static bfd_vma
static bfd_vma
tpoff (struct bfd_link_info *info, bfd_vma address)
tpoff (struct bfd_link_info *info, bfd_vma address)
{
{
  struct elf_link_hash_table *htab = elf_hash_table (info);
  struct elf_link_hash_table *htab = elf_hash_table (info);
  bfd_vma base;
  bfd_vma base;
 
 
  /* If tls_sec is NULL, we should have signalled an error already.  */
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (htab->tls_sec == NULL)
  if (htab->tls_sec == NULL)
    return 0;
    return 0;
  base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
  base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
  return address - htab->tls_sec->vma + base;
  return address - htab->tls_sec->vma + base;
}
}
 
 
/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
   VALUE is the relocation value.  */
   VALUE is the relocation value.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
{
{
  if (value > 0xfff)
  if (value > 0xfff)
    return bfd_reloc_overflow;
    return bfd_reloc_overflow;
 
 
  value |= bfd_get_32 (abfd, data) & 0xfffff000;
  value |= bfd_get_32 (abfd, data) & 0xfffff000;
  bfd_put_32 (abfd, value, data);
  bfd_put_32 (abfd, value, data);
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* Handle TLS relaxations.  Relaxing is possible for symbols that use
/* Handle TLS relaxations.  Relaxing is possible for symbols that use
   R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
   R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
   R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
   R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
 
 
   Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
   Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
   is to then call final_link_relocate.  Return other values in the
   is to then call final_link_relocate.  Return other values in the
   case of error.
   case of error.
 
 
   FIXME:When --emit-relocs is in effect, we'll emit relocs describing
   FIXME:When --emit-relocs is in effect, we'll emit relocs describing
   the pre-relaxed code.  It would be nice if the relocs were updated
   the pre-relaxed code.  It would be nice if the relocs were updated
   to match the optimization.   */
   to match the optimization.   */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
                     bfd *input_bfd, asection *input_sec, bfd_byte *contents,
                     bfd *input_bfd, asection *input_sec, bfd_byte *contents,
                     Elf_Internal_Rela *rel, unsigned long is_local)
                     Elf_Internal_Rela *rel, unsigned long is_local)
{
{
  unsigned long insn;
  unsigned long insn;
 
 
  switch (ELF32_R_TYPE (rel->r_info))
  switch (ELF32_R_TYPE (rel->r_info))
    {
    {
    default:
    default:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_TLS_GOTDESC:
    case R_ARM_TLS_GOTDESC:
      if (is_local)
      if (is_local)
        insn = 0;
        insn = 0;
      else
      else
        {
        {
          insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
          insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
          if (insn & 1)
          if (insn & 1)
            insn -= 5; /* THUMB */
            insn -= 5; /* THUMB */
          else
          else
            insn -= 8; /* ARM */
            insn -= 8; /* ARM */
        }
        }
      bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
      bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
      return bfd_reloc_continue;
      return bfd_reloc_continue;
 
 
    case R_ARM_THM_TLS_DESCSEQ:
    case R_ARM_THM_TLS_DESCSEQ:
      /* Thumb insn.  */
      /* Thumb insn.  */
      insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
      insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
      if ((insn & 0xff78) == 0x4478)      /* add rx, pc */
      if ((insn & 0xff78) == 0x4478)      /* add rx, pc */
        {
        {
          if (is_local)
          if (is_local)
            /* nop */
            /* nop */
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
        }
        }
      else if ((insn & 0xffc0) == 0x6840)  /* ldr rx,[ry,#4] */
      else if ((insn & 0xffc0) == 0x6840)  /* ldr rx,[ry,#4] */
        {
        {
          if (is_local)
          if (is_local)
            /* nop */
            /* nop */
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
          else
          else
            /* ldr rx,[ry] */
            /* ldr rx,[ry] */
            bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
            bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
        }
        }
      else if ((insn & 0xff87) == 0x4780)  /* blx rx */
      else if ((insn & 0xff87) == 0x4780)  /* blx rx */
        {
        {
          if (is_local)
          if (is_local)
            /* nop */
            /* nop */
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
            bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
          else
          else
            /* mov r0, rx */
            /* mov r0, rx */
            bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
            bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
                        contents + rel->r_offset);
                        contents + rel->r_offset);
        }
        }
      else
      else
        {
        {
          if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
          if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
            /* It's a 32 bit instruction, fetch the rest of it for
            /* It's a 32 bit instruction, fetch the rest of it for
               error generation.  */
               error generation.  */
            insn = (insn << 16)
            insn = (insn << 16)
              | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
              | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
            (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
             input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
             input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
          return bfd_reloc_notsupported;
          return bfd_reloc_notsupported;
        }
        }
      break;
      break;
 
 
    case R_ARM_TLS_DESCSEQ:
    case R_ARM_TLS_DESCSEQ:
      /* arm insn.  */
      /* arm insn.  */
      insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
      insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
      if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
      if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
        {
        {
          if (is_local)
          if (is_local)
            /* mov rx, ry */
            /* mov rx, ry */
            bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
            bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
                        contents + rel->r_offset);
                        contents + rel->r_offset);
        }
        }
      else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
      else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
        {
        {
          if (is_local)
          if (is_local)
            /* nop */
            /* nop */
            bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
            bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
          else
          else
            /* ldr rx,[ry] */
            /* ldr rx,[ry] */
            bfd_put_32 (input_bfd, insn & 0xfffff000,
            bfd_put_32 (input_bfd, insn & 0xfffff000,
                        contents + rel->r_offset);
                        contents + rel->r_offset);
        }
        }
      else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
      else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
        {
        {
          if (is_local)
          if (is_local)
            /* nop */
            /* nop */
            bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
            bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
          else
          else
            /* mov r0, rx */
            /* mov r0, rx */
            bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
            bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
                        contents + rel->r_offset);
                        contents + rel->r_offset);
        }
        }
      else
      else
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
            (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
             input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
             input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
          return bfd_reloc_notsupported;
          return bfd_reloc_notsupported;
        }
        }
      break;
      break;
 
 
    case R_ARM_TLS_CALL:
    case R_ARM_TLS_CALL:
      /* GD->IE relaxation, turn the instruction into 'nop' or
      /* GD->IE relaxation, turn the instruction into 'nop' or
         'ldr r0, [pc,r0]'  */
         'ldr r0, [pc,r0]'  */
      insn = is_local ? 0xe1a00000 : 0xe79f0000;
      insn = is_local ? 0xe1a00000 : 0xe79f0000;
      bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
      bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
      break;
      break;
 
 
    case R_ARM_THM_TLS_CALL:
    case R_ARM_THM_TLS_CALL:
      /* GD->IE relaxation */
      /* GD->IE relaxation */
      if (!is_local)
      if (!is_local)
        /* add r0,pc; ldr r0, [r0]  */
        /* add r0,pc; ldr r0, [r0]  */
        insn = 0x44786800;
        insn = 0x44786800;
      else if (arch_has_thumb2_nop (globals))
      else if (arch_has_thumb2_nop (globals))
        /* nop.w */
        /* nop.w */
        insn = 0xf3af8000;
        insn = 0xf3af8000;
      else
      else
        /* nop; nop */
        /* nop; nop */
        insn = 0xbf00bf00;
        insn = 0xbf00bf00;
 
 
      bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
      bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
      bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
      bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
      break;
      break;
    }
    }
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* For a given value of n, calculate the value of G_n as required to
/* For a given value of n, calculate the value of G_n as required to
   deal with group relocations.  We return it in the form of an
   deal with group relocations.  We return it in the form of an
   encoded constant-and-rotation, together with the final residual.  If n is
   encoded constant-and-rotation, together with the final residual.  If n is
   specified as less than zero, then final_residual is filled with the
   specified as less than zero, then final_residual is filled with the
   input value and no further action is performed.  */
   input value and no further action is performed.  */
 
 
static bfd_vma
static bfd_vma
calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
{
{
  int current_n;
  int current_n;
  bfd_vma g_n;
  bfd_vma g_n;
  bfd_vma encoded_g_n = 0;
  bfd_vma encoded_g_n = 0;
  bfd_vma residual = value; /* Also known as Y_n.  */
  bfd_vma residual = value; /* Also known as Y_n.  */
 
 
  for (current_n = 0; current_n <= n; current_n++)
  for (current_n = 0; current_n <= n; current_n++)
    {
    {
      int shift;
      int shift;
 
 
      /* Calculate which part of the value to mask.  */
      /* Calculate which part of the value to mask.  */
      if (residual == 0)
      if (residual == 0)
        shift = 0;
        shift = 0;
      else
      else
        {
        {
          int msb;
          int msb;
 
 
          /* Determine the most significant bit in the residual and
          /* Determine the most significant bit in the residual and
             align the resulting value to a 2-bit boundary.  */
             align the resulting value to a 2-bit boundary.  */
          for (msb = 30; msb >= 0; msb -= 2)
          for (msb = 30; msb >= 0; msb -= 2)
            if (residual & (3 << msb))
            if (residual & (3 << msb))
              break;
              break;
 
 
          /* The desired shift is now (msb - 6), or zero, whichever
          /* The desired shift is now (msb - 6), or zero, whichever
             is the greater.  */
             is the greater.  */
          shift = msb - 6;
          shift = msb - 6;
          if (shift < 0)
          if (shift < 0)
            shift = 0;
            shift = 0;
        }
        }
 
 
      /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
      /* Calculate g_n in 32-bit as well as encoded constant+rotation form.  */
      g_n = residual & (0xff << shift);
      g_n = residual & (0xff << shift);
      encoded_g_n = (g_n >> shift)
      encoded_g_n = (g_n >> shift)
                    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
                    | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
 
 
      /* Calculate the residual for the next time around.  */
      /* Calculate the residual for the next time around.  */
      residual &= ~g_n;
      residual &= ~g_n;
    }
    }
 
 
  *final_residual = residual;
  *final_residual = residual;
 
 
  return encoded_g_n;
  return encoded_g_n;
}
}
 
 
/* Given an ARM instruction, determine whether it is an ADD or a SUB.
/* Given an ARM instruction, determine whether it is an ADD or a SUB.
   Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
   Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise.  */
 
 
static int
static int
identify_add_or_sub (bfd_vma insn)
identify_add_or_sub (bfd_vma insn)
{
{
  int opcode = insn & 0x1e00000;
  int opcode = insn & 0x1e00000;
 
 
  if (opcode == 1 << 23) /* ADD */
  if (opcode == 1 << 23) /* ADD */
    return 1;
    return 1;
 
 
  if (opcode == 1 << 22) /* SUB */
  if (opcode == 1 << 22) /* SUB */
    return -1;
    return -1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Perform a relocation as part of a final link.  */
/* Perform a relocation as part of a final link.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
elf32_arm_final_link_relocate (reloc_howto_type *           howto,
elf32_arm_final_link_relocate (reloc_howto_type *           howto,
                               bfd *                        input_bfd,
                               bfd *                        input_bfd,
                               bfd *                        output_bfd,
                               bfd *                        output_bfd,
                               asection *                   input_section,
                               asection *                   input_section,
                               bfd_byte *                   contents,
                               bfd_byte *                   contents,
                               Elf_Internal_Rela *          rel,
                               Elf_Internal_Rela *          rel,
                               bfd_vma                      value,
                               bfd_vma                      value,
                               struct bfd_link_info *       info,
                               struct bfd_link_info *       info,
                               asection *                   sym_sec,
                               asection *                   sym_sec,
                               const char *                 sym_name,
                               const char *                 sym_name,
                               unsigned char                st_type,
                               unsigned char                st_type,
                               enum arm_st_branch_type      branch_type,
                               enum arm_st_branch_type      branch_type,
                               struct elf_link_hash_entry * h,
                               struct elf_link_hash_entry * h,
                               bfd_boolean *                unresolved_reloc_p,
                               bfd_boolean *                unresolved_reloc_p,
                               char **                      error_message)
                               char **                      error_message)
{
{
  unsigned long                 r_type = howto->type;
  unsigned long                 r_type = howto->type;
  unsigned long                 r_symndx;
  unsigned long                 r_symndx;
  bfd_byte *                    hit_data = contents + rel->r_offset;
  bfd_byte *                    hit_data = contents + rel->r_offset;
  bfd_vma *                     local_got_offsets;
  bfd_vma *                     local_got_offsets;
  bfd_vma *                     local_tlsdesc_gotents;
  bfd_vma *                     local_tlsdesc_gotents;
  asection *                    sgot;
  asection *                    sgot;
  asection *                    splt;
  asection *                    splt;
  asection *                    sreloc = NULL;
  asection *                    sreloc = NULL;
  asection *                    srelgot;
  asection *                    srelgot;
  bfd_vma                       addend;
  bfd_vma                       addend;
  bfd_signed_vma                signed_addend;
  bfd_signed_vma                signed_addend;
  unsigned char                 dynreloc_st_type;
  unsigned char                 dynreloc_st_type;
  bfd_vma                       dynreloc_value;
  bfd_vma                       dynreloc_value;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_entry *eh;
  struct elf32_arm_link_hash_entry *eh;
  union gotplt_union           *root_plt;
  union gotplt_union           *root_plt;
  struct arm_plt_info          *arm_plt;
  struct arm_plt_info          *arm_plt;
  bfd_vma                       plt_offset;
  bfd_vma                       plt_offset;
  bfd_vma                       gotplt_offset;
  bfd_vma                       gotplt_offset;
  bfd_boolean                   has_iplt_entry;
  bfd_boolean                   has_iplt_entry;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  if (globals == NULL)
  if (globals == NULL)
    return bfd_reloc_notsupported;
    return bfd_reloc_notsupported;
 
 
  BFD_ASSERT (is_arm_elf (input_bfd));
  BFD_ASSERT (is_arm_elf (input_bfd));
 
 
  /* Some relocation types map to different relocations depending on the
  /* Some relocation types map to different relocations depending on the
     target.  We pick the right one here.  */
     target.  We pick the right one here.  */
  r_type = arm_real_reloc_type (globals, r_type);
  r_type = arm_real_reloc_type (globals, r_type);
 
 
  /* It is possible to have linker relaxations on some TLS access
  /* It is possible to have linker relaxations on some TLS access
     models.  Update our information here.  */
     models.  Update our information here.  */
  r_type = elf32_arm_tls_transition (info, r_type, h);
  r_type = elf32_arm_tls_transition (info, r_type, h);
 
 
  if (r_type != howto->type)
  if (r_type != howto->type)
    howto = elf32_arm_howto_from_type (r_type);
    howto = elf32_arm_howto_from_type (r_type);
 
 
  /* If the start address has been set, then set the EF_ARM_HASENTRY
  /* If the start address has been set, then set the EF_ARM_HASENTRY
     flag.  Setting this more than once is redundant, but the cost is
     flag.  Setting this more than once is redundant, but the cost is
     not too high, and it keeps the code simple.
     not too high, and it keeps the code simple.
 
 
     The test is done  here, rather than somewhere else, because the
     The test is done  here, rather than somewhere else, because the
     start address is only set just before the final link commences.
     start address is only set just before the final link commences.
 
 
     Note - if the user deliberately sets a start address of 0, the
     Note - if the user deliberately sets a start address of 0, the
     flag will not be set.  */
     flag will not be set.  */
  if (bfd_get_start_address (output_bfd) != 0)
  if (bfd_get_start_address (output_bfd) != 0)
    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
 
 
  eh = (struct elf32_arm_link_hash_entry *) h;
  eh = (struct elf32_arm_link_hash_entry *) h;
  sgot = globals->root.sgot;
  sgot = globals->root.sgot;
  local_got_offsets = elf_local_got_offsets (input_bfd);
  local_got_offsets = elf_local_got_offsets (input_bfd);
  local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
  local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
 
 
  if (globals->root.dynamic_sections_created)
  if (globals->root.dynamic_sections_created)
    srelgot = globals->root.srelgot;
    srelgot = globals->root.srelgot;
  else
  else
    srelgot = NULL;
    srelgot = NULL;
 
 
  r_symndx = ELF32_R_SYM (rel->r_info);
  r_symndx = ELF32_R_SYM (rel->r_info);
 
 
  if (globals->use_rel)
  if (globals->use_rel)
    {
    {
      addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
      addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
 
 
      if (addend & ((howto->src_mask + 1) >> 1))
      if (addend & ((howto->src_mask + 1) >> 1))
        {
        {
          signed_addend = -1;
          signed_addend = -1;
          signed_addend &= ~ howto->src_mask;
          signed_addend &= ~ howto->src_mask;
          signed_addend |= addend;
          signed_addend |= addend;
        }
        }
      else
      else
        signed_addend = addend;
        signed_addend = addend;
    }
    }
  else
  else
    addend = signed_addend = rel->r_addend;
    addend = signed_addend = rel->r_addend;
 
 
  /* Record the symbol information that should be used in dynamic
  /* Record the symbol information that should be used in dynamic
     relocations.  */
     relocations.  */
  dynreloc_st_type = st_type;
  dynreloc_st_type = st_type;
  dynreloc_value = value;
  dynreloc_value = value;
  if (branch_type == ST_BRANCH_TO_THUMB)
  if (branch_type == ST_BRANCH_TO_THUMB)
    dynreloc_value |= 1;
    dynreloc_value |= 1;
 
 
  /* Find out whether the symbol has a PLT.  Set ST_VALUE, BRANCH_TYPE and
  /* Find out whether the symbol has a PLT.  Set ST_VALUE, BRANCH_TYPE and
     VALUE appropriately for relocations that we resolve at link time.  */
     VALUE appropriately for relocations that we resolve at link time.  */
  has_iplt_entry = FALSE;
  has_iplt_entry = FALSE;
  if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
  if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
      && root_plt->offset != (bfd_vma) -1)
      && root_plt->offset != (bfd_vma) -1)
    {
    {
      plt_offset = root_plt->offset;
      plt_offset = root_plt->offset;
      gotplt_offset = arm_plt->got_offset;
      gotplt_offset = arm_plt->got_offset;
 
 
      if (h == NULL || eh->is_iplt)
      if (h == NULL || eh->is_iplt)
        {
        {
          has_iplt_entry = TRUE;
          has_iplt_entry = TRUE;
          splt = globals->root.iplt;
          splt = globals->root.iplt;
 
 
          /* Populate .iplt entries here, because not all of them will
          /* Populate .iplt entries here, because not all of them will
             be seen by finish_dynamic_symbol.  The lower bit is set if
             be seen by finish_dynamic_symbol.  The lower bit is set if
             we have already populated the entry.  */
             we have already populated the entry.  */
          if (plt_offset & 1)
          if (plt_offset & 1)
            plt_offset--;
            plt_offset--;
          else
          else
            {
            {
              elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
              elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
                                            -1, dynreloc_value);
                                            -1, dynreloc_value);
              root_plt->offset |= 1;
              root_plt->offset |= 1;
            }
            }
 
 
          /* Static relocations always resolve to the .iplt entry.  */
          /* Static relocations always resolve to the .iplt entry.  */
          st_type = STT_FUNC;
          st_type = STT_FUNC;
          value = (splt->output_section->vma
          value = (splt->output_section->vma
                   + splt->output_offset
                   + splt->output_offset
                   + plt_offset);
                   + plt_offset);
          branch_type = ST_BRANCH_TO_ARM;
          branch_type = ST_BRANCH_TO_ARM;
 
 
          /* If there are non-call relocations that resolve to the .iplt
          /* If there are non-call relocations that resolve to the .iplt
             entry, then all dynamic ones must too.  */
             entry, then all dynamic ones must too.  */
          if (arm_plt->noncall_refcount != 0)
          if (arm_plt->noncall_refcount != 0)
            {
            {
              dynreloc_st_type = st_type;
              dynreloc_st_type = st_type;
              dynreloc_value = value;
              dynreloc_value = value;
            }
            }
        }
        }
      else
      else
        /* We populate the .plt entry in finish_dynamic_symbol.  */
        /* We populate the .plt entry in finish_dynamic_symbol.  */
        splt = globals->root.splt;
        splt = globals->root.splt;
    }
    }
  else
  else
    {
    {
      splt = NULL;
      splt = NULL;
      plt_offset = (bfd_vma) -1;
      plt_offset = (bfd_vma) -1;
      gotplt_offset = (bfd_vma) -1;
      gotplt_offset = (bfd_vma) -1;
    }
    }
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_ARM_NONE:
    case R_ARM_NONE:
      /* We don't need to find a value for this symbol.  It's just a
      /* We don't need to find a value for this symbol.  It's just a
         marker.  */
         marker.  */
      *unresolved_reloc_p = FALSE;
      *unresolved_reloc_p = FALSE;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_ABS12:
    case R_ARM_ABS12:
      if (!globals->vxworks_p)
      if (!globals->vxworks_p)
        return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
        return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
 
 
    case R_ARM_PC24:
    case R_ARM_PC24:
    case R_ARM_ABS32:
    case R_ARM_ABS32:
    case R_ARM_ABS32_NOI:
    case R_ARM_ABS32_NOI:
    case R_ARM_REL32:
    case R_ARM_REL32:
    case R_ARM_REL32_NOI:
    case R_ARM_REL32_NOI:
    case R_ARM_CALL:
    case R_ARM_CALL:
    case R_ARM_JUMP24:
    case R_ARM_JUMP24:
    case R_ARM_XPC25:
    case R_ARM_XPC25:
    case R_ARM_PREL31:
    case R_ARM_PREL31:
    case R_ARM_PLT32:
    case R_ARM_PLT32:
      /* Handle relocations which should use the PLT entry.  ABS32/REL32
      /* Handle relocations which should use the PLT entry.  ABS32/REL32
         will use the symbol's value, which may point to a PLT entry, but we
         will use the symbol's value, which may point to a PLT entry, but we
         don't need to handle that here.  If we created a PLT entry, all
         don't need to handle that here.  If we created a PLT entry, all
         branches in this object should go to it, except if the PLT is too
         branches in this object should go to it, except if the PLT is too
         far away, in which case a long branch stub should be inserted.  */
         far away, in which case a long branch stub should be inserted.  */
      if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
      if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
           && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
           && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
           && r_type != R_ARM_CALL
           && r_type != R_ARM_CALL
           && r_type != R_ARM_JUMP24
           && r_type != R_ARM_JUMP24
           && r_type != R_ARM_PLT32)
           && r_type != R_ARM_PLT32)
          && plt_offset != (bfd_vma) -1)
          && plt_offset != (bfd_vma) -1)
        {
        {
          /* If we've created a .plt section, and assigned a PLT entry
          /* If we've created a .plt section, and assigned a PLT entry
             to this function, it must either be a STT_GNU_IFUNC reference
             to this function, it must either be a STT_GNU_IFUNC reference
             or not be known to bind locally.  In other cases, we should
             or not be known to bind locally.  In other cases, we should
             have cleared the PLT entry by now.  */
             have cleared the PLT entry by now.  */
          BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
          BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
 
 
          value = (splt->output_section->vma
          value = (splt->output_section->vma
                   + splt->output_offset
                   + splt->output_offset
                   + plt_offset);
                   + plt_offset);
          *unresolved_reloc_p = FALSE;
          *unresolved_reloc_p = FALSE;
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                           contents, rel->r_offset, value,
                                           contents, rel->r_offset, value,
                                           rel->r_addend);
                                           rel->r_addend);
        }
        }
 
 
      /* When generating a shared object or relocatable executable, these
      /* When generating a shared object or relocatable executable, these
         relocations are copied into the output file to be resolved at
         relocations are copied into the output file to be resolved at
         run time.  */
         run time.  */
      if ((info->shared || globals->root.is_relocatable_executable)
      if ((info->shared || globals->root.is_relocatable_executable)
          && (input_section->flags & SEC_ALLOC)
          && (input_section->flags & SEC_ALLOC)
          && !(globals->vxworks_p
          && !(globals->vxworks_p
               && strcmp (input_section->output_section->name,
               && strcmp (input_section->output_section->name,
                          ".tls_vars") == 0)
                          ".tls_vars") == 0)
          && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
          && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
              || !SYMBOL_CALLS_LOCAL (info, h))
              || !SYMBOL_CALLS_LOCAL (info, h))
          && (!strstr (input_section->name, STUB_SUFFIX))
          && (!strstr (input_section->name, STUB_SUFFIX))
          && (h == NULL
          && (h == NULL
              || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
              || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
              || h->root.type != bfd_link_hash_undefweak)
              || h->root.type != bfd_link_hash_undefweak)
          && r_type != R_ARM_PC24
          && r_type != R_ARM_PC24
          && r_type != R_ARM_CALL
          && r_type != R_ARM_CALL
          && r_type != R_ARM_JUMP24
          && r_type != R_ARM_JUMP24
          && r_type != R_ARM_PREL31
          && r_type != R_ARM_PREL31
          && r_type != R_ARM_PLT32)
          && r_type != R_ARM_PLT32)
        {
        {
          Elf_Internal_Rela outrel;
          Elf_Internal_Rela outrel;
          bfd_boolean skip, relocate;
          bfd_boolean skip, relocate;
 
 
          *unresolved_reloc_p = FALSE;
          *unresolved_reloc_p = FALSE;
 
 
          if (sreloc == NULL && globals->root.dynamic_sections_created)
          if (sreloc == NULL && globals->root.dynamic_sections_created)
            {
            {
              sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
              sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
                                                           ! globals->use_rel);
                                                           ! globals->use_rel);
 
 
              if (sreloc == NULL)
              if (sreloc == NULL)
                return bfd_reloc_notsupported;
                return bfd_reloc_notsupported;
            }
            }
 
 
          skip = FALSE;
          skip = FALSE;
          relocate = FALSE;
          relocate = FALSE;
 
 
          outrel.r_addend = addend;
          outrel.r_addend = addend;
          outrel.r_offset =
          outrel.r_offset =
            _bfd_elf_section_offset (output_bfd, info, input_section,
            _bfd_elf_section_offset (output_bfd, info, input_section,
                                     rel->r_offset);
                                     rel->r_offset);
          if (outrel.r_offset == (bfd_vma) -1)
          if (outrel.r_offset == (bfd_vma) -1)
            skip = TRUE;
            skip = TRUE;
          else if (outrel.r_offset == (bfd_vma) -2)
          else if (outrel.r_offset == (bfd_vma) -2)
            skip = TRUE, relocate = TRUE;
            skip = TRUE, relocate = TRUE;
          outrel.r_offset += (input_section->output_section->vma
          outrel.r_offset += (input_section->output_section->vma
                              + input_section->output_offset);
                              + input_section->output_offset);
 
 
          if (skip)
          if (skip)
            memset (&outrel, 0, sizeof outrel);
            memset (&outrel, 0, sizeof outrel);
          else if (h != NULL
          else if (h != NULL
                   && h->dynindx != -1
                   && h->dynindx != -1
                   && (!info->shared
                   && (!info->shared
                       || !info->symbolic
                       || !info->symbolic
                       || !h->def_regular))
                       || !h->def_regular))
            outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
            outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
          else
          else
            {
            {
              int symbol;
              int symbol;
 
 
              /* This symbol is local, or marked to become local.  */
              /* This symbol is local, or marked to become local.  */
              BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
              BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
              if (globals->symbian_p)
              if (globals->symbian_p)
                {
                {
                  asection *osec;
                  asection *osec;
 
 
                  /* On Symbian OS, the data segment and text segement
                  /* On Symbian OS, the data segment and text segement
                     can be relocated independently.  Therefore, we
                     can be relocated independently.  Therefore, we
                     must indicate the segment to which this
                     must indicate the segment to which this
                     relocation is relative.  The BPABI allows us to
                     relocation is relative.  The BPABI allows us to
                     use any symbol in the right segment; we just use
                     use any symbol in the right segment; we just use
                     the section symbol as it is convenient.  (We
                     the section symbol as it is convenient.  (We
                     cannot use the symbol given by "h" directly as it
                     cannot use the symbol given by "h" directly as it
                     will not appear in the dynamic symbol table.)
                     will not appear in the dynamic symbol table.)
 
 
                     Note that the dynamic linker ignores the section
                     Note that the dynamic linker ignores the section
                     symbol value, so we don't subtract osec->vma
                     symbol value, so we don't subtract osec->vma
                     from the emitted reloc addend.  */
                     from the emitted reloc addend.  */
                  if (sym_sec)
                  if (sym_sec)
                    osec = sym_sec->output_section;
                    osec = sym_sec->output_section;
                  else
                  else
                    osec = input_section->output_section;
                    osec = input_section->output_section;
                  symbol = elf_section_data (osec)->dynindx;
                  symbol = elf_section_data (osec)->dynindx;
                  if (symbol == 0)
                  if (symbol == 0)
                    {
                    {
                      struct elf_link_hash_table *htab = elf_hash_table (info);
                      struct elf_link_hash_table *htab = elf_hash_table (info);
 
 
                      if ((osec->flags & SEC_READONLY) == 0
                      if ((osec->flags & SEC_READONLY) == 0
                          && htab->data_index_section != NULL)
                          && htab->data_index_section != NULL)
                        osec = htab->data_index_section;
                        osec = htab->data_index_section;
                      else
                      else
                        osec = htab->text_index_section;
                        osec = htab->text_index_section;
                      symbol = elf_section_data (osec)->dynindx;
                      symbol = elf_section_data (osec)->dynindx;
                    }
                    }
                  BFD_ASSERT (symbol != 0);
                  BFD_ASSERT (symbol != 0);
                }
                }
              else
              else
                /* On SVR4-ish systems, the dynamic loader cannot
                /* On SVR4-ish systems, the dynamic loader cannot
                   relocate the text and data segments independently,
                   relocate the text and data segments independently,
                   so the symbol does not matter.  */
                   so the symbol does not matter.  */
                symbol = 0;
                symbol = 0;
              if (dynreloc_st_type == STT_GNU_IFUNC)
              if (dynreloc_st_type == STT_GNU_IFUNC)
                /* We have an STT_GNU_IFUNC symbol that doesn't resolve
                /* We have an STT_GNU_IFUNC symbol that doesn't resolve
                   to the .iplt entry.  Instead, every non-call reference
                   to the .iplt entry.  Instead, every non-call reference
                   must use an R_ARM_IRELATIVE relocation to obtain the
                   must use an R_ARM_IRELATIVE relocation to obtain the
                   correct run-time address.  */
                   correct run-time address.  */
                outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
                outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
              else
              else
                outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
                outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
              if (globals->use_rel)
              if (globals->use_rel)
                relocate = TRUE;
                relocate = TRUE;
              else
              else
                outrel.r_addend += dynreloc_value;
                outrel.r_addend += dynreloc_value;
            }
            }
 
 
          elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
          elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
 
 
          /* If this reloc is against an external symbol, we do not want to
          /* If this reloc is against an external symbol, we do not want to
             fiddle with the addend.  Otherwise, we need to include the symbol
             fiddle with the addend.  Otherwise, we need to include the symbol
             value so that it becomes an addend for the dynamic reloc.  */
             value so that it becomes an addend for the dynamic reloc.  */
          if (! relocate)
          if (! relocate)
            return bfd_reloc_ok;
            return bfd_reloc_ok;
 
 
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                           contents, rel->r_offset,
                                           contents, rel->r_offset,
                                           dynreloc_value, (bfd_vma) 0);
                                           dynreloc_value, (bfd_vma) 0);
        }
        }
      else switch (r_type)
      else switch (r_type)
        {
        {
        case R_ARM_ABS12:
        case R_ARM_ABS12:
          return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
          return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
 
 
        case R_ARM_XPC25:         /* Arm BLX instruction.  */
        case R_ARM_XPC25:         /* Arm BLX instruction.  */
        case R_ARM_CALL:
        case R_ARM_CALL:
        case R_ARM_JUMP24:
        case R_ARM_JUMP24:
        case R_ARM_PC24:          /* Arm B/BL instruction.  */
        case R_ARM_PC24:          /* Arm B/BL instruction.  */
        case R_ARM_PLT32:
        case R_ARM_PLT32:
          {
          {
          struct elf32_arm_stub_hash_entry *stub_entry = NULL;
          struct elf32_arm_stub_hash_entry *stub_entry = NULL;
 
 
          if (r_type == R_ARM_XPC25)
          if (r_type == R_ARM_XPC25)
            {
            {
              /* Check for Arm calling Arm function.  */
              /* Check for Arm calling Arm function.  */
              /* FIXME: Should we translate the instruction into a BL
              /* FIXME: Should we translate the instruction into a BL
                 instruction instead ?  */
                 instruction instead ?  */
              if (branch_type != ST_BRANCH_TO_THUMB)
              if (branch_type != ST_BRANCH_TO_THUMB)
                (*_bfd_error_handler)
                (*_bfd_error_handler)
                  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
                  (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
                   input_bfd,
                   input_bfd,
                   h ? h->root.root.string : "(local)");
                   h ? h->root.root.string : "(local)");
            }
            }
          else if (r_type == R_ARM_PC24)
          else if (r_type == R_ARM_PC24)
            {
            {
              /* Check for Arm calling Thumb function.  */
              /* Check for Arm calling Thumb function.  */
              if (branch_type == ST_BRANCH_TO_THUMB)
              if (branch_type == ST_BRANCH_TO_THUMB)
                {
                {
                  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
                  if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
                                               output_bfd, input_section,
                                               output_bfd, input_section,
                                               hit_data, sym_sec, rel->r_offset,
                                               hit_data, sym_sec, rel->r_offset,
                                               signed_addend, value,
                                               signed_addend, value,
                                               error_message))
                                               error_message))
                    return bfd_reloc_ok;
                    return bfd_reloc_ok;
                  else
                  else
                    return bfd_reloc_dangerous;
                    return bfd_reloc_dangerous;
                }
                }
            }
            }
 
 
          /* Check if a stub has to be inserted because the
          /* Check if a stub has to be inserted because the
             destination is too far or we are changing mode.  */
             destination is too far or we are changing mode.  */
          if (   r_type == R_ARM_CALL
          if (   r_type == R_ARM_CALL
              || r_type == R_ARM_JUMP24
              || r_type == R_ARM_JUMP24
              || r_type == R_ARM_PLT32)
              || r_type == R_ARM_PLT32)
            {
            {
              enum elf32_arm_stub_type stub_type = arm_stub_none;
              enum elf32_arm_stub_type stub_type = arm_stub_none;
              struct elf32_arm_link_hash_entry *hash;
              struct elf32_arm_link_hash_entry *hash;
 
 
              hash = (struct elf32_arm_link_hash_entry *) h;
              hash = (struct elf32_arm_link_hash_entry *) h;
              stub_type = arm_type_of_stub (info, input_section, rel,
              stub_type = arm_type_of_stub (info, input_section, rel,
                                            st_type, &branch_type,
                                            st_type, &branch_type,
                                            hash, value, sym_sec,
                                            hash, value, sym_sec,
                                            input_bfd, sym_name);
                                            input_bfd, sym_name);
 
 
              if (stub_type != arm_stub_none)
              if (stub_type != arm_stub_none)
                {
                {
                  /* The target is out of reach, so redirect the
                  /* The target is out of reach, so redirect the
                     branch to the local stub for this function.  */
                     branch to the local stub for this function.  */
 
 
                  stub_entry = elf32_arm_get_stub_entry (input_section,
                  stub_entry = elf32_arm_get_stub_entry (input_section,
                                                         sym_sec, h,
                                                         sym_sec, h,
                                                         rel, globals,
                                                         rel, globals,
                                                         stub_type);
                                                         stub_type);
 
                  {
                  if (stub_entry != NULL)
                  if (stub_entry != NULL)
                    value = (stub_entry->stub_offset
                      value = (stub_entry->stub_offset
                             + stub_entry->stub_sec->output_offset
                               + stub_entry->stub_sec->output_offset
                             + stub_entry->stub_sec->output_section->vma);
                             + stub_entry->stub_sec->output_section->vma);
 
 
 
                    if (plt_offset != (bfd_vma) -1)
 
                      *unresolved_reloc_p = FALSE;
 
                  }
                }
                }
              else
              else
                {
                {
                  /* If the call goes through a PLT entry, make sure to
                  /* If the call goes through a PLT entry, make sure to
                     check distance to the right destination address.  */
                     check distance to the right destination address.  */
                  if (plt_offset != (bfd_vma) -1)
                  if (plt_offset != (bfd_vma) -1)
                    {
                    {
                      value = (splt->output_section->vma
                      value = (splt->output_section->vma
                               + splt->output_offset
                               + splt->output_offset
                               + plt_offset);
                               + plt_offset);
                      *unresolved_reloc_p = FALSE;
                      *unresolved_reloc_p = FALSE;
                      /* The PLT entry is in ARM mode, regardless of the
                      /* The PLT entry is in ARM mode, regardless of the
                         target function.  */
                         target function.  */
                      branch_type = ST_BRANCH_TO_ARM;
                      branch_type = ST_BRANCH_TO_ARM;
                    }
                    }
                }
                }
            }
            }
 
 
          /* The ARM ELF ABI says that this reloc is computed as: S - P + A
          /* The ARM ELF ABI says that this reloc is computed as: S - P + A
             where:
             where:
              S is the address of the symbol in the relocation.
              S is the address of the symbol in the relocation.
              P is address of the instruction being relocated.
              P is address of the instruction being relocated.
              A is the addend (extracted from the instruction) in bytes.
              A is the addend (extracted from the instruction) in bytes.
 
 
             S is held in 'value'.
             S is held in 'value'.
             P is the base address of the section containing the
             P is the base address of the section containing the
               instruction plus the offset of the reloc into that
               instruction plus the offset of the reloc into that
               section, ie:
               section, ie:
                 (input_section->output_section->vma +
                 (input_section->output_section->vma +
                  input_section->output_offset +
                  input_section->output_offset +
                  rel->r_offset).
                  rel->r_offset).
             A is the addend, converted into bytes, ie:
             A is the addend, converted into bytes, ie:
                 (signed_addend * 4)
                 (signed_addend * 4)
 
 
             Note: None of these operations have knowledge of the pipeline
             Note: None of these operations have knowledge of the pipeline
             size of the processor, thus it is up to the assembler to
             size of the processor, thus it is up to the assembler to
             encode this information into the addend.  */
             encode this information into the addend.  */
          value -= (input_section->output_section->vma
          value -= (input_section->output_section->vma
                    + input_section->output_offset);
                    + input_section->output_offset);
          value -= rel->r_offset;
          value -= rel->r_offset;
          if (globals->use_rel)
          if (globals->use_rel)
            value += (signed_addend << howto->size);
            value += (signed_addend << howto->size);
          else
          else
            /* RELA addends do not have to be adjusted by howto->size.  */
            /* RELA addends do not have to be adjusted by howto->size.  */
            value += signed_addend;
            value += signed_addend;
 
 
          signed_addend = value;
          signed_addend = value;
          signed_addend >>= howto->rightshift;
          signed_addend >>= howto->rightshift;
 
 
          /* A branch to an undefined weak symbol is turned into a jump to
          /* A branch to an undefined weak symbol is turned into a jump to
             the next instruction unless a PLT entry will be created.
             the next instruction unless a PLT entry will be created.
             Do the same for local undefined symbols (but not for STN_UNDEF).
             Do the same for local undefined symbols (but not for STN_UNDEF).
             The jump to the next instruction is optimized as a NOP depending
             The jump to the next instruction is optimized as a NOP depending
             on the architecture.  */
             on the architecture.  */
          if (h ? (h->root.type == bfd_link_hash_undefweak
          if (h ? (h->root.type == bfd_link_hash_undefweak
                   && plt_offset == (bfd_vma) -1)
                   && plt_offset == (bfd_vma) -1)
              : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
              : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
            {
            {
              value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
              value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
 
 
              if (arch_has_arm_nop (globals))
              if (arch_has_arm_nop (globals))
                value |= 0x0320f000;
                value |= 0x0320f000;
              else
              else
                value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
                value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0.  */
            }
            }
          else
          else
            {
            {
              /* Perform a signed range check.  */
              /* Perform a signed range check.  */
              if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
              if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
                  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
                  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
                return bfd_reloc_overflow;
                return bfd_reloc_overflow;
 
 
              addend = (value & 2);
              addend = (value & 2);
 
 
              value = (signed_addend & howto->dst_mask)
              value = (signed_addend & howto->dst_mask)
                | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
                | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
 
 
              if (r_type == R_ARM_CALL)
              if (r_type == R_ARM_CALL)
                {
                {
                  /* Set the H bit in the BLX instruction.  */
                  /* Set the H bit in the BLX instruction.  */
                  if (branch_type == ST_BRANCH_TO_THUMB)
                  if (branch_type == ST_BRANCH_TO_THUMB)
                    {
                    {
                      if (addend)
                      if (addend)
                        value |= (1 << 24);
                        value |= (1 << 24);
                      else
                      else
                        value &= ~(bfd_vma)(1 << 24);
                        value &= ~(bfd_vma)(1 << 24);
                    }
                    }
 
 
                  /* Select the correct instruction (BL or BLX).  */
                  /* Select the correct instruction (BL or BLX).  */
                  /* Only if we are not handling a BL to a stub. In this
                  /* Only if we are not handling a BL to a stub. In this
                     case, mode switching is performed by the stub.  */
                     case, mode switching is performed by the stub.  */
                  if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
                  if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
                    value |= (1 << 28);
                    value |= (1 << 28);
                  else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
                  else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
                    {
                    {
                      value &= ~(bfd_vma)(1 << 28);
                      value &= ~(bfd_vma)(1 << 28);
                      value |= (1 << 24);
                      value |= (1 << 24);
                    }
                    }
                }
                }
            }
            }
          }
          }
          break;
          break;
 
 
        case R_ARM_ABS32:
        case R_ARM_ABS32:
          value += addend;
          value += addend;
          if (branch_type == ST_BRANCH_TO_THUMB)
          if (branch_type == ST_BRANCH_TO_THUMB)
            value |= 1;
            value |= 1;
          break;
          break;
 
 
        case R_ARM_ABS32_NOI:
        case R_ARM_ABS32_NOI:
          value += addend;
          value += addend;
          break;
          break;
 
 
        case R_ARM_REL32:
        case R_ARM_REL32:
          value += addend;
          value += addend;
          if (branch_type == ST_BRANCH_TO_THUMB)
          if (branch_type == ST_BRANCH_TO_THUMB)
            value |= 1;
            value |= 1;
          value -= (input_section->output_section->vma
          value -= (input_section->output_section->vma
                    + input_section->output_offset + rel->r_offset);
                    + input_section->output_offset + rel->r_offset);
          break;
          break;
 
 
        case R_ARM_REL32_NOI:
        case R_ARM_REL32_NOI:
          value += addend;
          value += addend;
          value -= (input_section->output_section->vma
          value -= (input_section->output_section->vma
                    + input_section->output_offset + rel->r_offset);
                    + input_section->output_offset + rel->r_offset);
          break;
          break;
 
 
        case R_ARM_PREL31:
        case R_ARM_PREL31:
          value -= (input_section->output_section->vma
          value -= (input_section->output_section->vma
                    + input_section->output_offset + rel->r_offset);
                    + input_section->output_offset + rel->r_offset);
          value += signed_addend;
          value += signed_addend;
          if (! h || h->root.type != bfd_link_hash_undefweak)
          if (! h || h->root.type != bfd_link_hash_undefweak)
            {
            {
              /* Check for overflow.  */
              /* Check for overflow.  */
              if ((value ^ (value >> 1)) & (1 << 30))
              if ((value ^ (value >> 1)) & (1 << 30))
                return bfd_reloc_overflow;
                return bfd_reloc_overflow;
            }
            }
          value &= 0x7fffffff;
          value &= 0x7fffffff;
          value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
          value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
          if (branch_type == ST_BRANCH_TO_THUMB)
          if (branch_type == ST_BRANCH_TO_THUMB)
            value |= 1;
            value |= 1;
          break;
          break;
        }
        }
 
 
      bfd_put_32 (input_bfd, value, hit_data);
      bfd_put_32 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_ABS8:
    case R_ARM_ABS8:
      value += addend;
      value += addend;
 
 
      /* There is no way to tell whether the user intended to use a signed or
      /* There is no way to tell whether the user intended to use a signed or
         unsigned addend.  When checking for overflow we accept either,
         unsigned addend.  When checking for overflow we accept either,
         as specified by the AAELF.  */
         as specified by the AAELF.  */
      if ((long) value > 0xff || (long) value < -0x80)
      if ((long) value > 0xff || (long) value < -0x80)
        return bfd_reloc_overflow;
        return bfd_reloc_overflow;
 
 
      bfd_put_8 (input_bfd, value, hit_data);
      bfd_put_8 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_ABS16:
    case R_ARM_ABS16:
      value += addend;
      value += addend;
 
 
      /* See comment for R_ARM_ABS8.  */
      /* See comment for R_ARM_ABS8.  */
      if ((long) value > 0xffff || (long) value < -0x8000)
      if ((long) value > 0xffff || (long) value < -0x8000)
        return bfd_reloc_overflow;
        return bfd_reloc_overflow;
 
 
      bfd_put_16 (input_bfd, value, hit_data);
      bfd_put_16 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_THM_ABS5:
    case R_ARM_THM_ABS5:
      /* Support ldr and str instructions for the thumb.  */
      /* Support ldr and str instructions for the thumb.  */
      if (globals->use_rel)
      if (globals->use_rel)
        {
        {
          /* Need to refetch addend.  */
          /* Need to refetch addend.  */
          addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
          addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
          /* ??? Need to determine shift amount from operand size.  */
          /* ??? Need to determine shift amount from operand size.  */
          addend >>= howto->rightshift;
          addend >>= howto->rightshift;
        }
        }
      value += addend;
      value += addend;
 
 
      /* ??? Isn't value unsigned?  */
      /* ??? Isn't value unsigned?  */
      if ((long) value > 0x1f || (long) value < -0x10)
      if ((long) value > 0x1f || (long) value < -0x10)
        return bfd_reloc_overflow;
        return bfd_reloc_overflow;
 
 
      /* ??? Value needs to be properly shifted into place first.  */
      /* ??? Value needs to be properly shifted into place first.  */
      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
      bfd_put_16 (input_bfd, value, hit_data);
      bfd_put_16 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_THM_ALU_PREL_11_0:
    case R_ARM_THM_ALU_PREL_11_0:
      /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
      /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw).  */
      {
      {
        bfd_vma insn;
        bfd_vma insn;
        bfd_signed_vma relocation;
        bfd_signed_vma relocation;
 
 
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
             | bfd_get_16 (input_bfd, hit_data + 2);
             | bfd_get_16 (input_bfd, hit_data + 2);
 
 
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
            signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
                          | ((insn & (1 << 26)) >> 15);
                          | ((insn & (1 << 26)) >> 15);
            if (insn & 0xf00000)
            if (insn & 0xf00000)
              signed_addend = -signed_addend;
              signed_addend = -signed_addend;
          }
          }
 
 
        relocation = value + signed_addend;
        relocation = value + signed_addend;
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
 
 
        value = abs (relocation);
        value = abs (relocation);
 
 
        if (value >= 0x1000)
        if (value >= 0x1000)
          return bfd_reloc_overflow;
          return bfd_reloc_overflow;
 
 
        insn = (insn & 0xfb0f8f00) | (value & 0xff)
        insn = (insn & 0xfb0f8f00) | (value & 0xff)
             | ((value & 0x700) << 4)
             | ((value & 0x700) << 4)
             | ((value & 0x800) << 15);
             | ((value & 0x800) << 15);
        if (relocation < 0)
        if (relocation < 0)
          insn |= 0xa00000;
          insn |= 0xa00000;
 
 
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
 
 
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_ARM_THM_PC8:
    case R_ARM_THM_PC8:
      /* PR 10073:  This reloc is not generated by the GNU toolchain,
      /* PR 10073:  This reloc is not generated by the GNU toolchain,
         but it is supported for compatibility with third party libraries
         but it is supported for compatibility with third party libraries
         generated by other compilers, specifically the ARM/IAR.  */
         generated by other compilers, specifically the ARM/IAR.  */
      {
      {
        bfd_vma insn;
        bfd_vma insn;
        bfd_signed_vma relocation;
        bfd_signed_vma relocation;
 
 
        insn = bfd_get_16 (input_bfd, hit_data);
        insn = bfd_get_16 (input_bfd, hit_data);
 
 
        if (globals->use_rel)
        if (globals->use_rel)
          addend = (insn & 0x00ff) << 2;
          addend = (insn & 0x00ff) << 2;
 
 
        relocation = value + addend;
        relocation = value + addend;
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
 
 
        value = abs (relocation);
        value = abs (relocation);
 
 
        /* We do not check for overflow of this reloc.  Although strictly
        /* We do not check for overflow of this reloc.  Although strictly
           speaking this is incorrect, it appears to be necessary in order
           speaking this is incorrect, it appears to be necessary in order
           to work with IAR generated relocs.  Since GCC and GAS do not
           to work with IAR generated relocs.  Since GCC and GAS do not
           generate R_ARM_THM_PC8 relocs, the lack of a check should not be
           generate R_ARM_THM_PC8 relocs, the lack of a check should not be
           a problem for them.  */
           a problem for them.  */
        value &= 0x3fc;
        value &= 0x3fc;
 
 
        insn = (insn & 0xff00) | (value >> 2);
        insn = (insn & 0xff00) | (value >> 2);
 
 
        bfd_put_16 (input_bfd, insn, hit_data);
        bfd_put_16 (input_bfd, insn, hit_data);
 
 
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_ARM_THM_PC12:
    case R_ARM_THM_PC12:
      /* Corresponds to: ldr.w reg, [pc, #offset].  */
      /* Corresponds to: ldr.w reg, [pc, #offset].  */
      {
      {
        bfd_vma insn;
        bfd_vma insn;
        bfd_signed_vma relocation;
        bfd_signed_vma relocation;
 
 
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
        insn = (bfd_get_16 (input_bfd, hit_data) << 16)
             | bfd_get_16 (input_bfd, hit_data + 2);
             | bfd_get_16 (input_bfd, hit_data + 2);
 
 
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            signed_addend = insn & 0xfff;
            signed_addend = insn & 0xfff;
            if (!(insn & (1 << 23)))
            if (!(insn & (1 << 23)))
              signed_addend = -signed_addend;
              signed_addend = -signed_addend;
          }
          }
 
 
        relocation = value + signed_addend;
        relocation = value + signed_addend;
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
 
 
        value = abs (relocation);
        value = abs (relocation);
 
 
        if (value >= 0x1000)
        if (value >= 0x1000)
          return bfd_reloc_overflow;
          return bfd_reloc_overflow;
 
 
        insn = (insn & 0xff7ff000) | value;
        insn = (insn & 0xff7ff000) | value;
        if (relocation >= 0)
        if (relocation >= 0)
          insn |= (1 << 23);
          insn |= (1 << 23);
 
 
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
 
 
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_ARM_THM_XPC22:
    case R_ARM_THM_XPC22:
    case R_ARM_THM_CALL:
    case R_ARM_THM_CALL:
    case R_ARM_THM_JUMP24:
    case R_ARM_THM_JUMP24:
      /* Thumb BL (branch long instruction).  */
      /* Thumb BL (branch long instruction).  */
      {
      {
        bfd_vma relocation;
        bfd_vma relocation;
        bfd_vma reloc_sign;
        bfd_vma reloc_sign;
        bfd_boolean overflow = FALSE;
        bfd_boolean overflow = FALSE;
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
        bfd_signed_vma reloc_signed_max;
        bfd_signed_vma reloc_signed_max;
        bfd_signed_vma reloc_signed_min;
        bfd_signed_vma reloc_signed_min;
        bfd_vma check;
        bfd_vma check;
        bfd_signed_vma signed_check;
        bfd_signed_vma signed_check;
        int bitsize;
        int bitsize;
        const int thumb2 = using_thumb2 (globals);
        const int thumb2 = using_thumb2 (globals);
 
 
        /* A branch to an undefined weak symbol is turned into a jump to
        /* A branch to an undefined weak symbol is turned into a jump to
           the next instruction unless a PLT entry will be created.
           the next instruction unless a PLT entry will be created.
           The jump to the next instruction is optimized as a NOP.W for
           The jump to the next instruction is optimized as a NOP.W for
           Thumb-2 enabled architectures.  */
           Thumb-2 enabled architectures.  */
        if (h && h->root.type == bfd_link_hash_undefweak
        if (h && h->root.type == bfd_link_hash_undefweak
            && plt_offset == (bfd_vma) -1)
            && plt_offset == (bfd_vma) -1)
          {
          {
            if (arch_has_thumb2_nop (globals))
            if (arch_has_thumb2_nop (globals))
              {
              {
                bfd_put_16 (input_bfd, 0xf3af, hit_data);
                bfd_put_16 (input_bfd, 0xf3af, hit_data);
                bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
                bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
              }
              }
            else
            else
              {
              {
                bfd_put_16 (input_bfd, 0xe000, hit_data);
                bfd_put_16 (input_bfd, 0xe000, hit_data);
                bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
                bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
              }
              }
            return bfd_reloc_ok;
            return bfd_reloc_ok;
          }
          }
 
 
        /* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
        /* Fetch the addend.  We use the Thumb-2 encoding (backwards compatible
           with Thumb-1) involving the J1 and J2 bits.  */
           with Thumb-1) involving the J1 and J2 bits.  */
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            bfd_vma s = (upper_insn & (1 << 10)) >> 10;
            bfd_vma s = (upper_insn & (1 << 10)) >> 10;
            bfd_vma upper = upper_insn & 0x3ff;
            bfd_vma upper = upper_insn & 0x3ff;
            bfd_vma lower = lower_insn & 0x7ff;
            bfd_vma lower = lower_insn & 0x7ff;
            bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
            bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
            bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
            bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
            bfd_vma i1 = j1 ^ s ? 0 : 1;
            bfd_vma i1 = j1 ^ s ? 0 : 1;
            bfd_vma i2 = j2 ^ s ? 0 : 1;
            bfd_vma i2 = j2 ^ s ? 0 : 1;
 
 
            addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
            addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
            /* Sign extend.  */
            /* Sign extend.  */
            addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
            addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
 
 
            signed_addend = addend;
            signed_addend = addend;
          }
          }
 
 
        if (r_type == R_ARM_THM_XPC22)
        if (r_type == R_ARM_THM_XPC22)
          {
          {
            /* Check for Thumb to Thumb call.  */
            /* Check for Thumb to Thumb call.  */
            /* FIXME: Should we translate the instruction into a BL
            /* FIXME: Should we translate the instruction into a BL
               instruction instead ?  */
               instruction instead ?  */
            if (branch_type == ST_BRANCH_TO_THUMB)
            if (branch_type == ST_BRANCH_TO_THUMB)
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
                (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
                 input_bfd,
                 input_bfd,
                 h ? h->root.root.string : "(local)");
                 h ? h->root.root.string : "(local)");
          }
          }
        else
        else
          {
          {
            /* If it is not a call to Thumb, assume call to Arm.
            /* If it is not a call to Thumb, assume call to Arm.
               If it is a call relative to a section name, then it is not a
               If it is a call relative to a section name, then it is not a
               function call at all, but rather a long jump.  Calls through
               function call at all, but rather a long jump.  Calls through
               the PLT do not require stubs.  */
               the PLT do not require stubs.  */
            if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
            if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
              {
              {
                if (globals->use_blx && r_type == R_ARM_THM_CALL)
                if (globals->use_blx && r_type == R_ARM_THM_CALL)
                  {
                  {
                    /* Convert BL to BLX.  */
                    /* Convert BL to BLX.  */
                    lower_insn = (lower_insn & ~0x1000) | 0x0800;
                    lower_insn = (lower_insn & ~0x1000) | 0x0800;
                  }
                  }
                else if ((   r_type != R_ARM_THM_CALL)
                else if ((   r_type != R_ARM_THM_CALL)
                         && (r_type != R_ARM_THM_JUMP24))
                         && (r_type != R_ARM_THM_JUMP24))
                  {
                  {
                    if (elf32_thumb_to_arm_stub
                    if (elf32_thumb_to_arm_stub
                        (info, sym_name, input_bfd, output_bfd, input_section,
                        (info, sym_name, input_bfd, output_bfd, input_section,
                         hit_data, sym_sec, rel->r_offset, signed_addend, value,
                         hit_data, sym_sec, rel->r_offset, signed_addend, value,
                         error_message))
                         error_message))
                      return bfd_reloc_ok;
                      return bfd_reloc_ok;
                    else
                    else
                      return bfd_reloc_dangerous;
                      return bfd_reloc_dangerous;
                  }
                  }
              }
              }
            else if (branch_type == ST_BRANCH_TO_THUMB
            else if (branch_type == ST_BRANCH_TO_THUMB
                     && globals->use_blx
                     && globals->use_blx
                     && r_type == R_ARM_THM_CALL)
                     && r_type == R_ARM_THM_CALL)
              {
              {
                /* Make sure this is a BL.  */
                /* Make sure this is a BL.  */
                lower_insn |= 0x1800;
                lower_insn |= 0x1800;
              }
              }
          }
          }
 
 
        enum elf32_arm_stub_type stub_type = arm_stub_none;
        enum elf32_arm_stub_type stub_type = arm_stub_none;
        if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
        if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
          {
          {
            /* Check if a stub has to be inserted because the destination
            /* Check if a stub has to be inserted because the destination
               is too far.  */
               is too far.  */
            struct elf32_arm_stub_hash_entry *stub_entry;
            struct elf32_arm_stub_hash_entry *stub_entry;
            struct elf32_arm_link_hash_entry *hash;
            struct elf32_arm_link_hash_entry *hash;
 
 
            hash = (struct elf32_arm_link_hash_entry *) h;
            hash = (struct elf32_arm_link_hash_entry *) h;
 
 
            stub_type = arm_type_of_stub (info, input_section, rel,
            stub_type = arm_type_of_stub (info, input_section, rel,
                                          st_type, &branch_type,
                                          st_type, &branch_type,
                                          hash, value, sym_sec,
                                          hash, value, sym_sec,
                                          input_bfd, sym_name);
                                          input_bfd, sym_name);
 
 
            if (stub_type != arm_stub_none)
            if (stub_type != arm_stub_none)
              {
              {
                /* The target is out of reach or we are changing modes, so
                /* The target is out of reach or we are changing modes, so
                   redirect the branch to the local stub for this
                   redirect the branch to the local stub for this
                   function.  */
                   function.  */
                stub_entry = elf32_arm_get_stub_entry (input_section,
                stub_entry = elf32_arm_get_stub_entry (input_section,
                                                       sym_sec, h,
                                                       sym_sec, h,
                                                       rel, globals,
                                                       rel, globals,
                                                       stub_type);
                                                       stub_type);
                if (stub_entry != NULL)
                if (stub_entry != NULL)
 
                  {
                  value = (stub_entry->stub_offset
                  value = (stub_entry->stub_offset
                           + stub_entry->stub_sec->output_offset
                             + stub_entry->stub_sec->output_offset
                           + stub_entry->stub_sec->output_section->vma);
                             + stub_entry->stub_sec->output_section->vma);
 
 
 
                    if (plt_offset != (bfd_vma) -1)
 
                      *unresolved_reloc_p = FALSE;
 
                  }
 
 
                /* If this call becomes a call to Arm, force BLX.  */
                /* If this call becomes a call to Arm, force BLX.  */
                if (globals->use_blx && (r_type == R_ARM_THM_CALL))
                if (globals->use_blx && (r_type == R_ARM_THM_CALL))
                  {
                  {
                    if ((stub_entry
                    if ((stub_entry
                         && !arm_stub_is_thumb (stub_entry->stub_type))
                         && !arm_stub_is_thumb (stub_entry->stub_type))
                        || branch_type != ST_BRANCH_TO_THUMB)
                        || branch_type != ST_BRANCH_TO_THUMB)
                      lower_insn = (lower_insn & ~0x1000) | 0x0800;
                      lower_insn = (lower_insn & ~0x1000) | 0x0800;
                  }
                  }
              }
              }
          }
          }
 
 
        /* Handle calls via the PLT.  */
        /* Handle calls via the PLT.  */
        if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
        if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
          {
          {
            value = (splt->output_section->vma
            value = (splt->output_section->vma
                     + splt->output_offset
                     + splt->output_offset
                     + plt_offset);
                     + plt_offset);
 
 
            if (globals->use_blx && r_type == R_ARM_THM_CALL)
            if (globals->use_blx && r_type == R_ARM_THM_CALL)
              {
              {
                /* If the Thumb BLX instruction is available, convert
                /* If the Thumb BLX instruction is available, convert
                   the BL to a BLX instruction to call the ARM-mode
                   the BL to a BLX instruction to call the ARM-mode
                   PLT entry.  */
                   PLT entry.  */
                lower_insn = (lower_insn & ~0x1000) | 0x0800;
                lower_insn = (lower_insn & ~0x1000) | 0x0800;
                branch_type = ST_BRANCH_TO_ARM;
                branch_type = ST_BRANCH_TO_ARM;
              }
              }
            else
            else
              {
              {
                /* Target the Thumb stub before the ARM PLT entry.  */
                /* Target the Thumb stub before the ARM PLT entry.  */
                value -= PLT_THUMB_STUB_SIZE;
                value -= PLT_THUMB_STUB_SIZE;
                branch_type = ST_BRANCH_TO_THUMB;
                branch_type = ST_BRANCH_TO_THUMB;
              }
              }
            *unresolved_reloc_p = FALSE;
            *unresolved_reloc_p = FALSE;
          }
          }
 
 
        relocation = value + signed_addend;
        relocation = value + signed_addend;
 
 
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
 
 
        check = relocation >> howto->rightshift;
        check = relocation >> howto->rightshift;
 
 
        /* If this is a signed value, the rightshift just dropped
        /* If this is a signed value, the rightshift just dropped
           leading 1 bits (assuming twos complement).  */
           leading 1 bits (assuming twos complement).  */
        if ((bfd_signed_vma) relocation >= 0)
        if ((bfd_signed_vma) relocation >= 0)
          signed_check = check;
          signed_check = check;
        else
        else
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
 
 
        /* Calculate the permissable maximum and minimum values for
        /* Calculate the permissable maximum and minimum values for
           this relocation according to whether we're relocating for
           this relocation according to whether we're relocating for
           Thumb-2 or not.  */
           Thumb-2 or not.  */
        bitsize = howto->bitsize;
        bitsize = howto->bitsize;
        if (!thumb2)
        if (!thumb2)
          bitsize -= 2;
          bitsize -= 2;
        reloc_signed_max = (1 << (bitsize - 1)) - 1;
        reloc_signed_max = (1 << (bitsize - 1)) - 1;
        reloc_signed_min = ~reloc_signed_max;
        reloc_signed_min = ~reloc_signed_max;
 
 
        /* Assumes two's complement.  */
        /* Assumes two's complement.  */
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
          overflow = TRUE;
          overflow = TRUE;
 
 
        if ((lower_insn & 0x5000) == 0x4000)
        if ((lower_insn & 0x5000) == 0x4000)
          /* For a BLX instruction, make sure that the relocation is rounded up
          /* For a BLX instruction, make sure that the relocation is rounded up
             to a word boundary.  This follows the semantics of the instruction
             to a word boundary.  This follows the semantics of the instruction
             which specifies that bit 1 of the target address will come from bit
             which specifies that bit 1 of the target address will come from bit
             1 of the base address.  */
             1 of the base address.  */
          relocation = (relocation + 2) & ~ 3;
          relocation = (relocation + 2) & ~ 3;
 
 
        /* Put RELOCATION back into the insn.  Assumes two's complement.
        /* Put RELOCATION back into the insn.  Assumes two's complement.
           We use the Thumb-2 encoding, which is safe even if dealing with
           We use the Thumb-2 encoding, which is safe even if dealing with
           a Thumb-1 instruction by virtue of our overflow check above.  */
           a Thumb-1 instruction by virtue of our overflow check above.  */
        reloc_sign = (signed_check < 0) ? 1 : 0;
        reloc_sign = (signed_check < 0) ? 1 : 0;
        upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
        upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
                     | ((relocation >> 12) & 0x3ff)
                     | ((relocation >> 12) & 0x3ff)
                     | (reloc_sign << 10);
                     | (reloc_sign << 10);
        lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
        lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
                     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
                     | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
                     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
                     | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
                     | ((relocation >> 1) & 0x7ff);
                     | ((relocation >> 1) & 0x7ff);
 
 
        /* Put the relocated value back in the object file:  */
        /* Put the relocated value back in the object file:  */
        bfd_put_16 (input_bfd, upper_insn, hit_data);
        bfd_put_16 (input_bfd, upper_insn, hit_data);
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
 
 
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
      }
      }
      break;
      break;
 
 
    case R_ARM_THM_JUMP19:
    case R_ARM_THM_JUMP19:
      /* Thumb32 conditional branch instruction.  */
      /* Thumb32 conditional branch instruction.  */
      {
      {
        bfd_vma relocation;
        bfd_vma relocation;
        bfd_boolean overflow = FALSE;
        bfd_boolean overflow = FALSE;
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
        bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
        bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
        bfd_signed_vma reloc_signed_max = 0xffffe;
        bfd_signed_vma reloc_signed_max = 0xffffe;
        bfd_signed_vma reloc_signed_min = -0x100000;
        bfd_signed_vma reloc_signed_min = -0x100000;
        bfd_signed_vma signed_check;
        bfd_signed_vma signed_check;
 
 
        /* Need to refetch the addend, reconstruct the top three bits,
        /* Need to refetch the addend, reconstruct the top three bits,
           and squish the two 11 bit pieces together.  */
           and squish the two 11 bit pieces together.  */
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            bfd_vma S     = (upper_insn & 0x0400) >> 10;
            bfd_vma S     = (upper_insn & 0x0400) >> 10;
            bfd_vma upper = (upper_insn & 0x003f);
            bfd_vma upper = (upper_insn & 0x003f);
            bfd_vma J1    = (lower_insn & 0x2000) >> 13;
            bfd_vma J1    = (lower_insn & 0x2000) >> 13;
            bfd_vma J2    = (lower_insn & 0x0800) >> 11;
            bfd_vma J2    = (lower_insn & 0x0800) >> 11;
            bfd_vma lower = (lower_insn & 0x07ff);
            bfd_vma lower = (lower_insn & 0x07ff);
 
 
            upper |= J1 << 6;
            upper |= J1 << 6;
            upper |= J2 << 7;
            upper |= J2 << 7;
            upper |= (!S) << 8;
            upper |= (!S) << 8;
            upper -= 0x0100; /* Sign extend.  */
            upper -= 0x0100; /* Sign extend.  */
 
 
            addend = (upper << 12) | (lower << 1);
            addend = (upper << 12) | (lower << 1);
            signed_addend = addend;
            signed_addend = addend;
          }
          }
 
 
        /* Handle calls via the PLT.  */
        /* Handle calls via the PLT.  */
        if (plt_offset != (bfd_vma) -1)
        if (plt_offset != (bfd_vma) -1)
          {
          {
            value = (splt->output_section->vma
            value = (splt->output_section->vma
                     + splt->output_offset
                     + splt->output_offset
                     + plt_offset);
                     + plt_offset);
            /* Target the Thumb stub before the ARM PLT entry.  */
            /* Target the Thumb stub before the ARM PLT entry.  */
            value -= PLT_THUMB_STUB_SIZE;
            value -= PLT_THUMB_STUB_SIZE;
            *unresolved_reloc_p = FALSE;
            *unresolved_reloc_p = FALSE;
          }
          }
 
 
        /* ??? Should handle interworking?  GCC might someday try to
        /* ??? Should handle interworking?  GCC might someday try to
           use this for tail calls.  */
           use this for tail calls.  */
 
 
        relocation = value + signed_addend;
        relocation = value + signed_addend;
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
        signed_check = (bfd_signed_vma) relocation;
        signed_check = (bfd_signed_vma) relocation;
 
 
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
          overflow = TRUE;
          overflow = TRUE;
 
 
        /* Put RELOCATION back into the insn.  */
        /* Put RELOCATION back into the insn.  */
        {
        {
          bfd_vma S  = (relocation & 0x00100000) >> 20;
          bfd_vma S  = (relocation & 0x00100000) >> 20;
          bfd_vma J2 = (relocation & 0x00080000) >> 19;
          bfd_vma J2 = (relocation & 0x00080000) >> 19;
          bfd_vma J1 = (relocation & 0x00040000) >> 18;
          bfd_vma J1 = (relocation & 0x00040000) >> 18;
          bfd_vma hi = (relocation & 0x0003f000) >> 12;
          bfd_vma hi = (relocation & 0x0003f000) >> 12;
          bfd_vma lo = (relocation & 0x00000ffe) >>  1;
          bfd_vma lo = (relocation & 0x00000ffe) >>  1;
 
 
          upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
          upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
          lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
          lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
        }
        }
 
 
        /* Put the relocated value back in the object file:  */
        /* Put the relocated value back in the object file:  */
        bfd_put_16 (input_bfd, upper_insn, hit_data);
        bfd_put_16 (input_bfd, upper_insn, hit_data);
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
 
 
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
      }
      }
 
 
    case R_ARM_THM_JUMP11:
    case R_ARM_THM_JUMP11:
    case R_ARM_THM_JUMP8:
    case R_ARM_THM_JUMP8:
    case R_ARM_THM_JUMP6:
    case R_ARM_THM_JUMP6:
      /* Thumb B (branch) instruction).  */
      /* Thumb B (branch) instruction).  */
      {
      {
        bfd_signed_vma relocation;
        bfd_signed_vma relocation;
        bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
        bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
        bfd_signed_vma signed_check;
        bfd_signed_vma signed_check;
 
 
        /* CZB cannot jump backward.  */
        /* CZB cannot jump backward.  */
        if (r_type == R_ARM_THM_JUMP6)
        if (r_type == R_ARM_THM_JUMP6)
          reloc_signed_min = 0;
          reloc_signed_min = 0;
 
 
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            /* Need to refetch addend.  */
            /* Need to refetch addend.  */
            addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
            addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
            if (addend & ((howto->src_mask + 1) >> 1))
            if (addend & ((howto->src_mask + 1) >> 1))
              {
              {
                signed_addend = -1;
                signed_addend = -1;
                signed_addend &= ~ howto->src_mask;
                signed_addend &= ~ howto->src_mask;
                signed_addend |= addend;
                signed_addend |= addend;
              }
              }
            else
            else
              signed_addend = addend;
              signed_addend = addend;
            /* The value in the insn has been right shifted.  We need to
            /* The value in the insn has been right shifted.  We need to
               undo this, so that we can perform the address calculation
               undo this, so that we can perform the address calculation
               in terms of bytes.  */
               in terms of bytes.  */
            signed_addend <<= howto->rightshift;
            signed_addend <<= howto->rightshift;
          }
          }
        relocation = value + signed_addend;
        relocation = value + signed_addend;
 
 
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
 
 
        relocation >>= howto->rightshift;
        relocation >>= howto->rightshift;
        signed_check = relocation;
        signed_check = relocation;
 
 
        if (r_type == R_ARM_THM_JUMP6)
        if (r_type == R_ARM_THM_JUMP6)
          relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
          relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
        else
        else
          relocation &= howto->dst_mask;
          relocation &= howto->dst_mask;
        relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
        relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
 
 
        bfd_put_16 (input_bfd, relocation, hit_data);
        bfd_put_16 (input_bfd, relocation, hit_data);
 
 
        /* Assumes two's complement.  */
        /* Assumes two's complement.  */
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
          return bfd_reloc_overflow;
          return bfd_reloc_overflow;
 
 
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_ARM_ALU_PCREL7_0:
    case R_ARM_ALU_PCREL7_0:
    case R_ARM_ALU_PCREL15_8:
    case R_ARM_ALU_PCREL15_8:
    case R_ARM_ALU_PCREL23_15:
    case R_ARM_ALU_PCREL23_15:
      {
      {
        bfd_vma insn;
        bfd_vma insn;
        bfd_vma relocation;
        bfd_vma relocation;
 
 
        insn = bfd_get_32 (input_bfd, hit_data);
        insn = bfd_get_32 (input_bfd, hit_data);
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            /* Extract the addend.  */
            /* Extract the addend.  */
            addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
            addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
            signed_addend = addend;
            signed_addend = addend;
          }
          }
        relocation = value + signed_addend;
        relocation = value + signed_addend;
 
 
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
        insn = (insn & ~0xfff)
        insn = (insn & ~0xfff)
               | ((howto->bitpos << 7) & 0xf00)
               | ((howto->bitpos << 7) & 0xf00)
               | ((relocation >> howto->bitpos) & 0xff);
               | ((relocation >> howto->bitpos) & 0xff);
        bfd_put_32 (input_bfd, value, hit_data);
        bfd_put_32 (input_bfd, value, hit_data);
      }
      }
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_GNU_VTINHERIT:
    case R_ARM_GNU_VTINHERIT:
    case R_ARM_GNU_VTENTRY:
    case R_ARM_GNU_VTENTRY:
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_GOTOFF32:
    case R_ARM_GOTOFF32:
      /* Relocation is relative to the start of the
      /* Relocation is relative to the start of the
         global offset table.  */
         global offset table.  */
 
 
      BFD_ASSERT (sgot != NULL);
      BFD_ASSERT (sgot != NULL);
      if (sgot == NULL)
      if (sgot == NULL)
        return bfd_reloc_notsupported;
        return bfd_reloc_notsupported;
 
 
      /* If we are addressing a Thumb function, we need to adjust the
      /* If we are addressing a Thumb function, we need to adjust the
         address by one, so that attempts to call the function pointer will
         address by one, so that attempts to call the function pointer will
         correctly interpret it as Thumb code.  */
         correctly interpret it as Thumb code.  */
      if (branch_type == ST_BRANCH_TO_THUMB)
      if (branch_type == ST_BRANCH_TO_THUMB)
        value += 1;
        value += 1;
 
 
      /* Note that sgot->output_offset is not involved in this
      /* Note that sgot->output_offset is not involved in this
         calculation.  We always want the start of .got.  If we
         calculation.  We always want the start of .got.  If we
         define _GLOBAL_OFFSET_TABLE in a different way, as is
         define _GLOBAL_OFFSET_TABLE in a different way, as is
         permitted by the ABI, we might have to change this
         permitted by the ABI, we might have to change this
         calculation.  */
         calculation.  */
      value -= sgot->output_section->vma;
      value -= sgot->output_section->vma;
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                       contents, rel->r_offset, value,
                                       contents, rel->r_offset, value,
                                       rel->r_addend);
                                       rel->r_addend);
 
 
    case R_ARM_GOTPC:
    case R_ARM_GOTPC:
      /* Use global offset table as symbol value.  */
      /* Use global offset table as symbol value.  */
      BFD_ASSERT (sgot != NULL);
      BFD_ASSERT (sgot != NULL);
 
 
      if (sgot == NULL)
      if (sgot == NULL)
        return bfd_reloc_notsupported;
        return bfd_reloc_notsupported;
 
 
      *unresolved_reloc_p = FALSE;
      *unresolved_reloc_p = FALSE;
      value = sgot->output_section->vma;
      value = sgot->output_section->vma;
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                       contents, rel->r_offset, value,
                                       contents, rel->r_offset, value,
                                       rel->r_addend);
                                       rel->r_addend);
 
 
    case R_ARM_GOT32:
    case R_ARM_GOT32:
    case R_ARM_GOT_PREL:
    case R_ARM_GOT_PREL:
      /* Relocation is to the entry for this symbol in the
      /* Relocation is to the entry for this symbol in the
         global offset table.  */
         global offset table.  */
      if (sgot == NULL)
      if (sgot == NULL)
        return bfd_reloc_notsupported;
        return bfd_reloc_notsupported;
 
 
      if (dynreloc_st_type == STT_GNU_IFUNC
      if (dynreloc_st_type == STT_GNU_IFUNC
          && plt_offset != (bfd_vma) -1
          && plt_offset != (bfd_vma) -1
          && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
          && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
        {
        {
          /* We have a relocation against a locally-binding STT_GNU_IFUNC
          /* We have a relocation against a locally-binding STT_GNU_IFUNC
             symbol, and the relocation resolves directly to the runtime
             symbol, and the relocation resolves directly to the runtime
             target rather than to the .iplt entry.  This means that any
             target rather than to the .iplt entry.  This means that any
             .got entry would be the same value as the .igot.plt entry,
             .got entry would be the same value as the .igot.plt entry,
             so there's no point creating both.  */
             so there's no point creating both.  */
          sgot = globals->root.igotplt;
          sgot = globals->root.igotplt;
          value = sgot->output_offset + gotplt_offset;
          value = sgot->output_offset + gotplt_offset;
        }
        }
      else if (h != NULL)
      else if (h != NULL)
        {
        {
          bfd_vma off;
          bfd_vma off;
 
 
          off = h->got.offset;
          off = h->got.offset;
          BFD_ASSERT (off != (bfd_vma) -1);
          BFD_ASSERT (off != (bfd_vma) -1);
          if ((off & 1) != 0)
          if ((off & 1) != 0)
            {
            {
              /* We have already processsed one GOT relocation against
              /* We have already processsed one GOT relocation against
                 this symbol.  */
                 this symbol.  */
              off &= ~1;
              off &= ~1;
              if (globals->root.dynamic_sections_created
              if (globals->root.dynamic_sections_created
                  && !SYMBOL_REFERENCES_LOCAL (info, h))
                  && !SYMBOL_REFERENCES_LOCAL (info, h))
                *unresolved_reloc_p = FALSE;
                *unresolved_reloc_p = FALSE;
            }
            }
          else
          else
            {
            {
              Elf_Internal_Rela outrel;
              Elf_Internal_Rela outrel;
 
 
              if (!SYMBOL_REFERENCES_LOCAL (info, h))
              if (!SYMBOL_REFERENCES_LOCAL (info, h))
                {
                {
                  /* If the symbol doesn't resolve locally in a static
                  /* If the symbol doesn't resolve locally in a static
                     object, we have an undefined reference.  If the
                     object, we have an undefined reference.  If the
                     symbol doesn't resolve locally in a dynamic object,
                     symbol doesn't resolve locally in a dynamic object,
                     it should be resolved by the dynamic linker.  */
                     it should be resolved by the dynamic linker.  */
                  if (globals->root.dynamic_sections_created)
                  if (globals->root.dynamic_sections_created)
                    {
                    {
                      outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
                      outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
                      *unresolved_reloc_p = FALSE;
                      *unresolved_reloc_p = FALSE;
                    }
                    }
                  else
                  else
                    outrel.r_info = 0;
                    outrel.r_info = 0;
                  outrel.r_addend = 0;
                  outrel.r_addend = 0;
                }
                }
              else
              else
                {
                {
                  if (dynreloc_st_type == STT_GNU_IFUNC)
                  if (dynreloc_st_type == STT_GNU_IFUNC)
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
                  else if (info->shared)
                  else if (info->shared)
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
                  else
                  else
                    outrel.r_info = 0;
                    outrel.r_info = 0;
                  outrel.r_addend = dynreloc_value;
                  outrel.r_addend = dynreloc_value;
                }
                }
 
 
              /* The GOT entry is initialized to zero by default.
              /* The GOT entry is initialized to zero by default.
                 See if we should install a different value.  */
                 See if we should install a different value.  */
              if (outrel.r_addend != 0
              if (outrel.r_addend != 0
                  && (outrel.r_info == 0 || globals->use_rel))
                  && (outrel.r_info == 0 || globals->use_rel))
                {
                {
                  bfd_put_32 (output_bfd, outrel.r_addend,
                  bfd_put_32 (output_bfd, outrel.r_addend,
                              sgot->contents + off);
                              sgot->contents + off);
                  outrel.r_addend = 0;
                  outrel.r_addend = 0;
                }
                }
 
 
              if (outrel.r_info != 0)
              if (outrel.r_info != 0)
                {
                {
                  outrel.r_offset = (sgot->output_section->vma
                  outrel.r_offset = (sgot->output_section->vma
                                     + sgot->output_offset
                                     + sgot->output_offset
                                     + off);
                                     + off);
                  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
                  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
                }
                }
              h->got.offset |= 1;
              h->got.offset |= 1;
            }
            }
          value = sgot->output_offset + off;
          value = sgot->output_offset + off;
        }
        }
      else
      else
        {
        {
          bfd_vma off;
          bfd_vma off;
 
 
          BFD_ASSERT (local_got_offsets != NULL &&
          BFD_ASSERT (local_got_offsets != NULL &&
                      local_got_offsets[r_symndx] != (bfd_vma) -1);
                      local_got_offsets[r_symndx] != (bfd_vma) -1);
 
 
          off = local_got_offsets[r_symndx];
          off = local_got_offsets[r_symndx];
 
 
          /* The offset must always be a multiple of 4.  We use the
          /* The offset must always be a multiple of 4.  We use the
             least significant bit to record whether we have already
             least significant bit to record whether we have already
             generated the necessary reloc.  */
             generated the necessary reloc.  */
          if ((off & 1) != 0)
          if ((off & 1) != 0)
            off &= ~1;
            off &= ~1;
          else
          else
            {
            {
              if (globals->use_rel)
              if (globals->use_rel)
                bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
                bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
 
 
              if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
              if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
                {
                {
                  Elf_Internal_Rela outrel;
                  Elf_Internal_Rela outrel;
 
 
                  outrel.r_addend = addend + dynreloc_value;
                  outrel.r_addend = addend + dynreloc_value;
                  outrel.r_offset = (sgot->output_section->vma
                  outrel.r_offset = (sgot->output_section->vma
                                     + sgot->output_offset
                                     + sgot->output_offset
                                     + off);
                                     + off);
                  if (dynreloc_st_type == STT_GNU_IFUNC)
                  if (dynreloc_st_type == STT_GNU_IFUNC)
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
                  else
                  else
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
                    outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
                  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
                  elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
                }
                }
 
 
              local_got_offsets[r_symndx] |= 1;
              local_got_offsets[r_symndx] |= 1;
            }
            }
 
 
          value = sgot->output_offset + off;
          value = sgot->output_offset + off;
        }
        }
      if (r_type != R_ARM_GOT32)
      if (r_type != R_ARM_GOT32)
        value += sgot->output_section->vma;
        value += sgot->output_section->vma;
 
 
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                       contents, rel->r_offset, value,
                                       contents, rel->r_offset, value,
                                       rel->r_addend);
                                       rel->r_addend);
 
 
    case R_ARM_TLS_LDO32:
    case R_ARM_TLS_LDO32:
      value = value - dtpoff_base (info);
      value = value - dtpoff_base (info);
 
 
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                       contents, rel->r_offset, value,
                                       contents, rel->r_offset, value,
                                       rel->r_addend);
                                       rel->r_addend);
 
 
    case R_ARM_TLS_LDM32:
    case R_ARM_TLS_LDM32:
      {
      {
        bfd_vma off;
        bfd_vma off;
 
 
        if (sgot == NULL)
        if (sgot == NULL)
          abort ();
          abort ();
 
 
        off = globals->tls_ldm_got.offset;
        off = globals->tls_ldm_got.offset;
 
 
        if ((off & 1) != 0)
        if ((off & 1) != 0)
          off &= ~1;
          off &= ~1;
        else
        else
          {
          {
            /* If we don't know the module number, create a relocation
            /* If we don't know the module number, create a relocation
               for it.  */
               for it.  */
            if (info->shared)
            if (info->shared)
              {
              {
                Elf_Internal_Rela outrel;
                Elf_Internal_Rela outrel;
 
 
                if (srelgot == NULL)
                if (srelgot == NULL)
                  abort ();
                  abort ();
 
 
                outrel.r_addend = 0;
                outrel.r_addend = 0;
                outrel.r_offset = (sgot->output_section->vma
                outrel.r_offset = (sgot->output_section->vma
                                   + sgot->output_offset + off);
                                   + sgot->output_offset + off);
                outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
                outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
 
 
                if (globals->use_rel)
                if (globals->use_rel)
                  bfd_put_32 (output_bfd, outrel.r_addend,
                  bfd_put_32 (output_bfd, outrel.r_addend,
                              sgot->contents + off);
                              sgot->contents + off);
 
 
                elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
                elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
              }
              }
            else
            else
              bfd_put_32 (output_bfd, 1, sgot->contents + off);
              bfd_put_32 (output_bfd, 1, sgot->contents + off);
 
 
            globals->tls_ldm_got.offset |= 1;
            globals->tls_ldm_got.offset |= 1;
          }
          }
 
 
        value = sgot->output_section->vma + sgot->output_offset + off
        value = sgot->output_section->vma + sgot->output_offset + off
          - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
          - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
 
 
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                         contents, rel->r_offset, value,
                                         contents, rel->r_offset, value,
                                         rel->r_addend);
                                         rel->r_addend);
      }
      }
 
 
    case R_ARM_TLS_CALL:
    case R_ARM_TLS_CALL:
    case R_ARM_THM_TLS_CALL:
    case R_ARM_THM_TLS_CALL:
    case R_ARM_TLS_GD32:
    case R_ARM_TLS_GD32:
    case R_ARM_TLS_IE32:
    case R_ARM_TLS_IE32:
    case R_ARM_TLS_GOTDESC:
    case R_ARM_TLS_GOTDESC:
    case R_ARM_TLS_DESCSEQ:
    case R_ARM_TLS_DESCSEQ:
    case R_ARM_THM_TLS_DESCSEQ:
    case R_ARM_THM_TLS_DESCSEQ:
      {
      {
        bfd_vma off, offplt;
        bfd_vma off, offplt;
        int indx = 0;
        int indx = 0;
        char tls_type;
        char tls_type;
 
 
        BFD_ASSERT (sgot != NULL);
        BFD_ASSERT (sgot != NULL);
 
 
        if (h != NULL)
        if (h != NULL)
          {
          {
            bfd_boolean dyn;
            bfd_boolean dyn;
            dyn = globals->root.dynamic_sections_created;
            dyn = globals->root.dynamic_sections_created;
            if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
            if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
                && (!info->shared
                && (!info->shared
                    || !SYMBOL_REFERENCES_LOCAL (info, h)))
                    || !SYMBOL_REFERENCES_LOCAL (info, h)))
              {
              {
                *unresolved_reloc_p = FALSE;
                *unresolved_reloc_p = FALSE;
                indx = h->dynindx;
                indx = h->dynindx;
              }
              }
            off = h->got.offset;
            off = h->got.offset;
            offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
            offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
            tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
            tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
          }
          }
        else
        else
          {
          {
            BFD_ASSERT (local_got_offsets != NULL);
            BFD_ASSERT (local_got_offsets != NULL);
            off = local_got_offsets[r_symndx];
            off = local_got_offsets[r_symndx];
            offplt = local_tlsdesc_gotents[r_symndx];
            offplt = local_tlsdesc_gotents[r_symndx];
            tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
            tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
          }
          }
 
 
        /* Linker relaxations happens from one of the
        /* Linker relaxations happens from one of the
           R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE.  */
           R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE.  */
        if (ELF32_R_TYPE(rel->r_info) != r_type)
        if (ELF32_R_TYPE(rel->r_info) != r_type)
          tls_type = GOT_TLS_IE;
          tls_type = GOT_TLS_IE;
 
 
        BFD_ASSERT (tls_type != GOT_UNKNOWN);
        BFD_ASSERT (tls_type != GOT_UNKNOWN);
 
 
        if ((off & 1) != 0)
        if ((off & 1) != 0)
          off &= ~1;
          off &= ~1;
        else
        else
          {
          {
            bfd_boolean need_relocs = FALSE;
            bfd_boolean need_relocs = FALSE;
            Elf_Internal_Rela outrel;
            Elf_Internal_Rela outrel;
            int cur_off = off;
            int cur_off = off;
 
 
            /* The GOT entries have not been initialized yet.  Do it
            /* The GOT entries have not been initialized yet.  Do it
               now, and emit any relocations.  If both an IE GOT and a
               now, and emit any relocations.  If both an IE GOT and a
               GD GOT are necessary, we emit the GD first.  */
               GD GOT are necessary, we emit the GD first.  */
 
 
            if ((info->shared || indx != 0)
            if ((info->shared || indx != 0)
                && (h == NULL
                && (h == NULL
                    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
                    || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
                    || h->root.type != bfd_link_hash_undefweak))
                    || h->root.type != bfd_link_hash_undefweak))
              {
              {
                need_relocs = TRUE;
                need_relocs = TRUE;
                BFD_ASSERT (srelgot != NULL);
                BFD_ASSERT (srelgot != NULL);
              }
              }
 
 
            if (tls_type & GOT_TLS_GDESC)
            if (tls_type & GOT_TLS_GDESC)
              {
              {
                bfd_byte *loc;
                bfd_byte *loc;
 
 
                /* We should have relaxed, unless this is an undefined
                /* We should have relaxed, unless this is an undefined
                   weak symbol.  */
                   weak symbol.  */
                BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
                BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
                            || info->shared);
                            || info->shared);
                BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
                BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
                            <= globals->root.sgotplt->size);
                            <= globals->root.sgotplt->size);
 
 
                outrel.r_addend = 0;
                outrel.r_addend = 0;
                outrel.r_offset = (globals->root.sgotplt->output_section->vma
                outrel.r_offset = (globals->root.sgotplt->output_section->vma
                                   + globals->root.sgotplt->output_offset
                                   + globals->root.sgotplt->output_offset
                                   + offplt
                                   + offplt
                                   + globals->sgotplt_jump_table_size);
                                   + globals->sgotplt_jump_table_size);
 
 
                outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
                outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
                sreloc = globals->root.srelplt;
                sreloc = globals->root.srelplt;
                loc = sreloc->contents;
                loc = sreloc->contents;
                loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
                loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
                BFD_ASSERT (loc + RELOC_SIZE (globals)
                BFD_ASSERT (loc + RELOC_SIZE (globals)
                           <= sreloc->contents + sreloc->size);
                           <= sreloc->contents + sreloc->size);
 
 
                SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
                SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
 
 
                /* For globals, the first word in the relocation gets
                /* For globals, the first word in the relocation gets
                   the relocation index and the top bit set, or zero,
                   the relocation index and the top bit set, or zero,
                   if we're binding now.  For locals, it gets the
                   if we're binding now.  For locals, it gets the
                   symbol's offset in the tls section.  */
                   symbol's offset in the tls section.  */
                bfd_put_32 (output_bfd,
                bfd_put_32 (output_bfd,
                            !h ? value - elf_hash_table (info)->tls_sec->vma
                            !h ? value - elf_hash_table (info)->tls_sec->vma
                            : info->flags & DF_BIND_NOW ? 0
                            : info->flags & DF_BIND_NOW ? 0
                            : 0x80000000 | ELF32_R_SYM (outrel.r_info),
                            : 0x80000000 | ELF32_R_SYM (outrel.r_info),
                            globals->root.sgotplt->contents + offplt +
                            globals->root.sgotplt->contents + offplt +
                            globals->sgotplt_jump_table_size);
                            globals->sgotplt_jump_table_size);
 
 
                /* Second word in the relocation is always zero.  */
                /* Second word in the relocation is always zero.  */
                bfd_put_32 (output_bfd, 0,
                bfd_put_32 (output_bfd, 0,
                            globals->root.sgotplt->contents + offplt +
                            globals->root.sgotplt->contents + offplt +
                            globals->sgotplt_jump_table_size + 4);
                            globals->sgotplt_jump_table_size + 4);
              }
              }
            if (tls_type & GOT_TLS_GD)
            if (tls_type & GOT_TLS_GD)
              {
              {
                if (need_relocs)
                if (need_relocs)
                  {
                  {
                    outrel.r_addend = 0;
                    outrel.r_addend = 0;
                    outrel.r_offset = (sgot->output_section->vma
                    outrel.r_offset = (sgot->output_section->vma
                                       + sgot->output_offset
                                       + sgot->output_offset
                                       + cur_off);
                                       + cur_off);
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
 
 
                    if (globals->use_rel)
                    if (globals->use_rel)
                      bfd_put_32 (output_bfd, outrel.r_addend,
                      bfd_put_32 (output_bfd, outrel.r_addend,
                                  sgot->contents + cur_off);
                                  sgot->contents + cur_off);
 
 
                    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
                    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
 
 
                    if (indx == 0)
                    if (indx == 0)
                      bfd_put_32 (output_bfd, value - dtpoff_base (info),
                      bfd_put_32 (output_bfd, value - dtpoff_base (info),
                                  sgot->contents + cur_off + 4);
                                  sgot->contents + cur_off + 4);
                    else
                    else
                      {
                      {
                        outrel.r_addend = 0;
                        outrel.r_addend = 0;
                        outrel.r_info = ELF32_R_INFO (indx,
                        outrel.r_info = ELF32_R_INFO (indx,
                                                      R_ARM_TLS_DTPOFF32);
                                                      R_ARM_TLS_DTPOFF32);
                        outrel.r_offset += 4;
                        outrel.r_offset += 4;
 
 
                        if (globals->use_rel)
                        if (globals->use_rel)
                          bfd_put_32 (output_bfd, outrel.r_addend,
                          bfd_put_32 (output_bfd, outrel.r_addend,
                                      sgot->contents + cur_off + 4);
                                      sgot->contents + cur_off + 4);
 
 
                        elf32_arm_add_dynreloc (output_bfd, info,
                        elf32_arm_add_dynreloc (output_bfd, info,
                                                srelgot, &outrel);
                                                srelgot, &outrel);
                      }
                      }
                  }
                  }
                else
                else
                  {
                  {
                    /* If we are not emitting relocations for a
                    /* If we are not emitting relocations for a
                       general dynamic reference, then we must be in a
                       general dynamic reference, then we must be in a
                       static link or an executable link with the
                       static link or an executable link with the
                       symbol binding locally.  Mark it as belonging
                       symbol binding locally.  Mark it as belonging
                       to module 1, the executable.  */
                       to module 1, the executable.  */
                    bfd_put_32 (output_bfd, 1,
                    bfd_put_32 (output_bfd, 1,
                                sgot->contents + cur_off);
                                sgot->contents + cur_off);
                    bfd_put_32 (output_bfd, value - dtpoff_base (info),
                    bfd_put_32 (output_bfd, value - dtpoff_base (info),
                                sgot->contents + cur_off + 4);
                                sgot->contents + cur_off + 4);
                  }
                  }
 
 
                cur_off += 8;
                cur_off += 8;
              }
              }
 
 
            if (tls_type & GOT_TLS_IE)
            if (tls_type & GOT_TLS_IE)
              {
              {
                if (need_relocs)
                if (need_relocs)
                  {
                  {
                    if (indx == 0)
                    if (indx == 0)
                      outrel.r_addend = value - dtpoff_base (info);
                      outrel.r_addend = value - dtpoff_base (info);
                    else
                    else
                      outrel.r_addend = 0;
                      outrel.r_addend = 0;
                    outrel.r_offset = (sgot->output_section->vma
                    outrel.r_offset = (sgot->output_section->vma
                                       + sgot->output_offset
                                       + sgot->output_offset
                                       + cur_off);
                                       + cur_off);
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
                    outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
 
 
                    if (globals->use_rel)
                    if (globals->use_rel)
                      bfd_put_32 (output_bfd, outrel.r_addend,
                      bfd_put_32 (output_bfd, outrel.r_addend,
                                  sgot->contents + cur_off);
                                  sgot->contents + cur_off);
 
 
                    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
                    elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
                  }
                  }
                else
                else
                  bfd_put_32 (output_bfd, tpoff (info, value),
                  bfd_put_32 (output_bfd, tpoff (info, value),
                              sgot->contents + cur_off);
                              sgot->contents + cur_off);
                cur_off += 4;
                cur_off += 4;
              }
              }
 
 
            if (h != NULL)
            if (h != NULL)
              h->got.offset |= 1;
              h->got.offset |= 1;
            else
            else
              local_got_offsets[r_symndx] |= 1;
              local_got_offsets[r_symndx] |= 1;
          }
          }
 
 
        if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
        if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
          off += 8;
          off += 8;
        else if (tls_type & GOT_TLS_GDESC)
        else if (tls_type & GOT_TLS_GDESC)
          off = offplt;
          off = offplt;
 
 
        if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
        if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
            || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
            || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
          {
          {
            bfd_signed_vma offset;
            bfd_signed_vma offset;
            /* TLS stubs are arm mode.  The original symbol is a
            /* TLS stubs are arm mode.  The original symbol is a
               data object, so branch_type is bogus.  */
               data object, so branch_type is bogus.  */
            branch_type = ST_BRANCH_TO_ARM;
            branch_type = ST_BRANCH_TO_ARM;
            enum elf32_arm_stub_type stub_type
            enum elf32_arm_stub_type stub_type
              = arm_type_of_stub (info, input_section, rel,
              = arm_type_of_stub (info, input_section, rel,
                                  st_type, &branch_type,
                                  st_type, &branch_type,
                                  (struct elf32_arm_link_hash_entry *)h,
                                  (struct elf32_arm_link_hash_entry *)h,
                                  globals->tls_trampoline, globals->root.splt,
                                  globals->tls_trampoline, globals->root.splt,
                                  input_bfd, sym_name);
                                  input_bfd, sym_name);
 
 
            if (stub_type != arm_stub_none)
            if (stub_type != arm_stub_none)
              {
              {
                struct elf32_arm_stub_hash_entry *stub_entry
                struct elf32_arm_stub_hash_entry *stub_entry
                  = elf32_arm_get_stub_entry
                  = elf32_arm_get_stub_entry
                  (input_section, globals->root.splt, 0, rel,
                  (input_section, globals->root.splt, 0, rel,
                   globals, stub_type);
                   globals, stub_type);
                offset = (stub_entry->stub_offset
                offset = (stub_entry->stub_offset
                          + stub_entry->stub_sec->output_offset
                          + stub_entry->stub_sec->output_offset
                          + stub_entry->stub_sec->output_section->vma);
                          + stub_entry->stub_sec->output_section->vma);
              }
              }
            else
            else
              offset = (globals->root.splt->output_section->vma
              offset = (globals->root.splt->output_section->vma
                        + globals->root.splt->output_offset
                        + globals->root.splt->output_offset
                        + globals->tls_trampoline);
                        + globals->tls_trampoline);
 
 
            if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
            if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
              {
              {
                unsigned long inst;
                unsigned long inst;
 
 
                offset -= (input_section->output_section->vma +
                offset -= (input_section->output_section->vma +
                           input_section->output_offset + rel->r_offset + 8);
                           input_section->output_offset + rel->r_offset + 8);
 
 
                inst = offset >> 2;
                inst = offset >> 2;
                inst &= 0x00ffffff;
                inst &= 0x00ffffff;
                value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
                value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
              }
              }
            else
            else
              {
              {
                /* Thumb blx encodes the offset in a complicated
                /* Thumb blx encodes the offset in a complicated
                   fashion.  */
                   fashion.  */
                unsigned upper_insn, lower_insn;
                unsigned upper_insn, lower_insn;
                unsigned neg;
                unsigned neg;
 
 
                offset -= (input_section->output_section->vma +
                offset -= (input_section->output_section->vma +
                           input_section->output_offset
                           input_section->output_offset
                           + rel->r_offset + 4);
                           + rel->r_offset + 4);
 
 
                if (stub_type != arm_stub_none
                if (stub_type != arm_stub_none
                    && arm_stub_is_thumb (stub_type))
                    && arm_stub_is_thumb (stub_type))
                  {
                  {
                    lower_insn = 0xd000;
                    lower_insn = 0xd000;
                  }
                  }
                else
                else
                  {
                  {
                    lower_insn = 0xc000;
                    lower_insn = 0xc000;
                    /* Round up the offset to a word boundary */
                    /* Round up the offset to a word boundary */
                    offset = (offset + 2) & ~2;
                    offset = (offset + 2) & ~2;
                  }
                  }
 
 
                neg = offset < 0;
                neg = offset < 0;
                upper_insn = (0xf000
                upper_insn = (0xf000
                              | ((offset >> 12) & 0x3ff)
                              | ((offset >> 12) & 0x3ff)
                              | (neg << 10));
                              | (neg << 10));
                lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
                lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
                              | (((!((offset >> 22) & 1)) ^ neg) << 11)
                              | (((!((offset >> 22) & 1)) ^ neg) << 11)
                              | ((offset >> 1) & 0x7ff);
                              | ((offset >> 1) & 0x7ff);
                bfd_put_16 (input_bfd, upper_insn, hit_data);
                bfd_put_16 (input_bfd, upper_insn, hit_data);
                bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
                bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
                return bfd_reloc_ok;
                return bfd_reloc_ok;
              }
              }
          }
          }
        /* These relocations needs special care, as besides the fact
        /* These relocations needs special care, as besides the fact
           they point somewhere in .gotplt, the addend must be
           they point somewhere in .gotplt, the addend must be
           adjusted accordingly depending on the type of instruction
           adjusted accordingly depending on the type of instruction
           we refer to */
           we refer to */
        else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
        else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
          {
          {
            unsigned long data, insn;
            unsigned long data, insn;
            unsigned thumb;
            unsigned thumb;
 
 
            data = bfd_get_32 (input_bfd, hit_data);
            data = bfd_get_32 (input_bfd, hit_data);
            thumb = data & 1;
            thumb = data & 1;
            data &= ~1u;
            data &= ~1u;
 
 
            if (thumb)
            if (thumb)
              {
              {
                insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
                insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
                if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
                if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
                  insn = (insn << 16)
                  insn = (insn << 16)
                    | bfd_get_16 (input_bfd,
                    | bfd_get_16 (input_bfd,
                                  contents + rel->r_offset - data + 2);
                                  contents + rel->r_offset - data + 2);
                if ((insn & 0xf800c000) == 0xf000c000)
                if ((insn & 0xf800c000) == 0xf000c000)
                  /* bl/blx */
                  /* bl/blx */
                  value = -6;
                  value = -6;
                else if ((insn & 0xffffff00) == 0x4400)
                else if ((insn & 0xffffff00) == 0x4400)
                  /* add */
                  /* add */
                  value = -5;
                  value = -5;
                else
                else
                  {
                  {
                    (*_bfd_error_handler)
                    (*_bfd_error_handler)
                      (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
                      (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
                       input_bfd, input_section,
                       input_bfd, input_section,
                       (unsigned long)rel->r_offset, insn);
                       (unsigned long)rel->r_offset, insn);
                    return bfd_reloc_notsupported;
                    return bfd_reloc_notsupported;
                  }
                  }
              }
              }
            else
            else
              {
              {
                insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
                insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
 
 
                switch (insn >> 24)
                switch (insn >> 24)
                  {
                  {
                  case 0xeb:  /* bl */
                  case 0xeb:  /* bl */
                  case 0xfa:  /* blx */
                  case 0xfa:  /* blx */
                    value = -4;
                    value = -4;
                    break;
                    break;
 
 
                  case 0xe0:    /* add */
                  case 0xe0:    /* add */
                    value = -8;
                    value = -8;
                    break;
                    break;
 
 
                  default:
                  default:
                    (*_bfd_error_handler)
                    (*_bfd_error_handler)
                      (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
                      (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
                       input_bfd, input_section,
                       input_bfd, input_section,
                       (unsigned long)rel->r_offset, insn);
                       (unsigned long)rel->r_offset, insn);
                    return bfd_reloc_notsupported;
                    return bfd_reloc_notsupported;
                  }
                  }
              }
              }
 
 
            value += ((globals->root.sgotplt->output_section->vma
            value += ((globals->root.sgotplt->output_section->vma
                       + globals->root.sgotplt->output_offset + off)
                       + globals->root.sgotplt->output_offset + off)
                      - (input_section->output_section->vma
                      - (input_section->output_section->vma
                         + input_section->output_offset
                         + input_section->output_offset
                         + rel->r_offset)
                         + rel->r_offset)
                      + globals->sgotplt_jump_table_size);
                      + globals->sgotplt_jump_table_size);
          }
          }
        else
        else
          value = ((globals->root.sgot->output_section->vma
          value = ((globals->root.sgot->output_section->vma
                    + globals->root.sgot->output_offset + off)
                    + globals->root.sgot->output_offset + off)
                   - (input_section->output_section->vma
                   - (input_section->output_section->vma
                      + input_section->output_offset + rel->r_offset));
                      + input_section->output_offset + rel->r_offset));
 
 
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                         contents, rel->r_offset, value,
                                         contents, rel->r_offset, value,
                                         rel->r_addend);
                                         rel->r_addend);
      }
      }
 
 
    case R_ARM_TLS_LE32:
    case R_ARM_TLS_LE32:
      if (info->shared && !info->pie)
      if (info->shared && !info->pie)
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
            (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
             input_bfd, input_section,
             input_bfd, input_section,
             (long) rel->r_offset, howto->name);
             (long) rel->r_offset, howto->name);
          return (bfd_reloc_status_type) FALSE;
          return (bfd_reloc_status_type) FALSE;
        }
        }
      else
      else
        value = tpoff (info, value);
        value = tpoff (info, value);
 
 
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                       contents, rel->r_offset, value,
                                       contents, rel->r_offset, value,
                                       rel->r_addend);
                                       rel->r_addend);
 
 
    case R_ARM_V4BX:
    case R_ARM_V4BX:
      if (globals->fix_v4bx)
      if (globals->fix_v4bx)
        {
        {
          bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
          bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
 
 
          /* Ensure that we have a BX instruction.  */
          /* Ensure that we have a BX instruction.  */
          BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
          BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
 
 
          if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
          if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
            {
            {
              /* Branch to veneer.  */
              /* Branch to veneer.  */
              bfd_vma glue_addr;
              bfd_vma glue_addr;
              glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
              glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
              glue_addr -= input_section->output_section->vma
              glue_addr -= input_section->output_section->vma
                           + input_section->output_offset
                           + input_section->output_offset
                           + rel->r_offset + 8;
                           + rel->r_offset + 8;
              insn = (insn & 0xf0000000) | 0x0a000000
              insn = (insn & 0xf0000000) | 0x0a000000
                     | ((glue_addr >> 2) & 0x00ffffff);
                     | ((glue_addr >> 2) & 0x00ffffff);
            }
            }
          else
          else
            {
            {
              /* Preserve Rm (lowest four bits) and the condition code
              /* Preserve Rm (lowest four bits) and the condition code
                 (highest four bits). Other bits encode MOV PC,Rm.  */
                 (highest four bits). Other bits encode MOV PC,Rm.  */
              insn = (insn & 0xf000000f) | 0x01a0f000;
              insn = (insn & 0xf000000f) | 0x01a0f000;
            }
            }
 
 
          bfd_put_32 (input_bfd, insn, hit_data);
          bfd_put_32 (input_bfd, insn, hit_data);
        }
        }
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_MOVW_ABS_NC:
    case R_ARM_MOVW_ABS_NC:
    case R_ARM_MOVT_ABS:
    case R_ARM_MOVT_ABS:
    case R_ARM_MOVW_PREL_NC:
    case R_ARM_MOVW_PREL_NC:
    case R_ARM_MOVT_PREL:
    case R_ARM_MOVT_PREL:
    /* Until we properly support segment-base-relative addressing then
    /* Until we properly support segment-base-relative addressing then
       we assume the segment base to be zero, as for the group relocations.
       we assume the segment base to be zero, as for the group relocations.
       Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
       Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
       and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
       and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS.  */
    case R_ARM_MOVW_BREL_NC:
    case R_ARM_MOVW_BREL_NC:
    case R_ARM_MOVW_BREL:
    case R_ARM_MOVW_BREL:
    case R_ARM_MOVT_BREL:
    case R_ARM_MOVT_BREL:
      {
      {
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
 
 
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
            addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
            signed_addend = (addend ^ 0x8000) - 0x8000;
            signed_addend = (addend ^ 0x8000) - 0x8000;
          }
          }
 
 
        value += signed_addend;
        value += signed_addend;
 
 
        if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
        if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
          value -= (input_section->output_section->vma
          value -= (input_section->output_section->vma
                    + input_section->output_offset + rel->r_offset);
                    + input_section->output_offset + rel->r_offset);
 
 
        if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
        if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
          return bfd_reloc_overflow;
          return bfd_reloc_overflow;
 
 
        if (branch_type == ST_BRANCH_TO_THUMB)
        if (branch_type == ST_BRANCH_TO_THUMB)
          value |= 1;
          value |= 1;
 
 
        if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
        if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
            || r_type == R_ARM_MOVT_BREL)
            || r_type == R_ARM_MOVT_BREL)
          value >>= 16;
          value >>= 16;
 
 
        insn &= 0xfff0f000;
        insn &= 0xfff0f000;
        insn |= value & 0xfff;
        insn |= value & 0xfff;
        insn |= (value & 0xf000) << 4;
        insn |= (value & 0xf000) << 4;
        bfd_put_32 (input_bfd, insn, hit_data);
        bfd_put_32 (input_bfd, insn, hit_data);
      }
      }
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_THM_MOVW_ABS_NC:
    case R_ARM_THM_MOVW_ABS_NC:
    case R_ARM_THM_MOVT_ABS:
    case R_ARM_THM_MOVT_ABS:
    case R_ARM_THM_MOVW_PREL_NC:
    case R_ARM_THM_MOVW_PREL_NC:
    case R_ARM_THM_MOVT_PREL:
    case R_ARM_THM_MOVT_PREL:
    /* Until we properly support segment-base-relative addressing then
    /* Until we properly support segment-base-relative addressing then
       we assume the segment base to be zero, as for the above relocations.
       we assume the segment base to be zero, as for the above relocations.
       Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
       Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
       R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
       R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
       as R_ARM_THM_MOVT_ABS.  */
       as R_ARM_THM_MOVT_ABS.  */
    case R_ARM_THM_MOVW_BREL_NC:
    case R_ARM_THM_MOVW_BREL_NC:
    case R_ARM_THM_MOVW_BREL:
    case R_ARM_THM_MOVW_BREL:
    case R_ARM_THM_MOVT_BREL:
    case R_ARM_THM_MOVT_BREL:
      {
      {
        bfd_vma insn;
        bfd_vma insn;
 
 
        insn = bfd_get_16 (input_bfd, hit_data) << 16;
        insn = bfd_get_16 (input_bfd, hit_data) << 16;
        insn |= bfd_get_16 (input_bfd, hit_data + 2);
        insn |= bfd_get_16 (input_bfd, hit_data + 2);
 
 
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            addend = ((insn >> 4)  & 0xf000)
            addend = ((insn >> 4)  & 0xf000)
                   | ((insn >> 15) & 0x0800)
                   | ((insn >> 15) & 0x0800)
                   | ((insn >> 4)  & 0x0700)
                   | ((insn >> 4)  & 0x0700)
                   | (insn         & 0x00ff);
                   | (insn         & 0x00ff);
            signed_addend = (addend ^ 0x8000) - 0x8000;
            signed_addend = (addend ^ 0x8000) - 0x8000;
          }
          }
 
 
        value += signed_addend;
        value += signed_addend;
 
 
        if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
        if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
          value -= (input_section->output_section->vma
          value -= (input_section->output_section->vma
                    + input_section->output_offset + rel->r_offset);
                    + input_section->output_offset + rel->r_offset);
 
 
        if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
        if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
          return bfd_reloc_overflow;
          return bfd_reloc_overflow;
 
 
        if (branch_type == ST_BRANCH_TO_THUMB)
        if (branch_type == ST_BRANCH_TO_THUMB)
          value |= 1;
          value |= 1;
 
 
        if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
        if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
            || r_type == R_ARM_THM_MOVT_BREL)
            || r_type == R_ARM_THM_MOVT_BREL)
          value >>= 16;
          value >>= 16;
 
 
        insn &= 0xfbf08f00;
        insn &= 0xfbf08f00;
        insn |= (value & 0xf000) << 4;
        insn |= (value & 0xf000) << 4;
        insn |= (value & 0x0800) << 15;
        insn |= (value & 0x0800) << 15;
        insn |= (value & 0x0700) << 4;
        insn |= (value & 0x0700) << 4;
        insn |= (value & 0x00ff);
        insn |= (value & 0x00ff);
 
 
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
        bfd_put_16 (input_bfd, insn >> 16, hit_data);
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
        bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
      }
      }
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_ALU_PC_G0_NC:
    case R_ARM_ALU_PC_G0_NC:
    case R_ARM_ALU_PC_G1_NC:
    case R_ARM_ALU_PC_G1_NC:
    case R_ARM_ALU_PC_G0:
    case R_ARM_ALU_PC_G0:
    case R_ARM_ALU_PC_G1:
    case R_ARM_ALU_PC_G1:
    case R_ARM_ALU_PC_G2:
    case R_ARM_ALU_PC_G2:
    case R_ARM_ALU_SB_G0_NC:
    case R_ARM_ALU_SB_G0_NC:
    case R_ARM_ALU_SB_G1_NC:
    case R_ARM_ALU_SB_G1_NC:
    case R_ARM_ALU_SB_G0:
    case R_ARM_ALU_SB_G0:
    case R_ARM_ALU_SB_G1:
    case R_ARM_ALU_SB_G1:
    case R_ARM_ALU_SB_G2:
    case R_ARM_ALU_SB_G2:
      {
      {
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma pc = input_section->output_section->vma
        bfd_vma pc = input_section->output_section->vma
                     + input_section->output_offset + rel->r_offset;
                     + input_section->output_offset + rel->r_offset;
        /* sb should be the origin of the *segment* containing the symbol.
        /* sb should be the origin of the *segment* containing the symbol.
           It is not clear how to obtain this OS-dependent value, so we
           It is not clear how to obtain this OS-dependent value, so we
           make an arbitrary choice of zero.  */
           make an arbitrary choice of zero.  */
        bfd_vma sb = 0;
        bfd_vma sb = 0;
        bfd_vma residual;
        bfd_vma residual;
        bfd_vma g_n;
        bfd_vma g_n;
        bfd_signed_vma signed_value;
        bfd_signed_vma signed_value;
        int group = 0;
        int group = 0;
 
 
        /* Determine which group of bits to select.  */
        /* Determine which group of bits to select.  */
        switch (r_type)
        switch (r_type)
          {
          {
          case R_ARM_ALU_PC_G0_NC:
          case R_ARM_ALU_PC_G0_NC:
          case R_ARM_ALU_PC_G0:
          case R_ARM_ALU_PC_G0:
          case R_ARM_ALU_SB_G0_NC:
          case R_ARM_ALU_SB_G0_NC:
          case R_ARM_ALU_SB_G0:
          case R_ARM_ALU_SB_G0:
            group = 0;
            group = 0;
            break;
            break;
 
 
          case R_ARM_ALU_PC_G1_NC:
          case R_ARM_ALU_PC_G1_NC:
          case R_ARM_ALU_PC_G1:
          case R_ARM_ALU_PC_G1:
          case R_ARM_ALU_SB_G1_NC:
          case R_ARM_ALU_SB_G1_NC:
          case R_ARM_ALU_SB_G1:
          case R_ARM_ALU_SB_G1:
            group = 1;
            group = 1;
            break;
            break;
 
 
          case R_ARM_ALU_PC_G2:
          case R_ARM_ALU_PC_G2:
          case R_ARM_ALU_SB_G2:
          case R_ARM_ALU_SB_G2:
            group = 2;
            group = 2;
            break;
            break;
 
 
          default:
          default:
            abort ();
            abort ();
          }
          }
 
 
        /* If REL, extract the addend from the insn.  If RELA, it will
        /* If REL, extract the addend from the insn.  If RELA, it will
           have already been fetched for us.  */
           have already been fetched for us.  */
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            int negative;
            int negative;
            bfd_vma constant = insn & 0xff;
            bfd_vma constant = insn & 0xff;
            bfd_vma rotation = (insn & 0xf00) >> 8;
            bfd_vma rotation = (insn & 0xf00) >> 8;
 
 
            if (rotation == 0)
            if (rotation == 0)
              signed_addend = constant;
              signed_addend = constant;
            else
            else
              {
              {
                /* Compensate for the fact that in the instruction, the
                /* Compensate for the fact that in the instruction, the
                   rotation is stored in multiples of 2 bits.  */
                   rotation is stored in multiples of 2 bits.  */
                rotation *= 2;
                rotation *= 2;
 
 
                /* Rotate "constant" right by "rotation" bits.  */
                /* Rotate "constant" right by "rotation" bits.  */
                signed_addend = (constant >> rotation) |
                signed_addend = (constant >> rotation) |
                                (constant << (8 * sizeof (bfd_vma) - rotation));
                                (constant << (8 * sizeof (bfd_vma) - rotation));
              }
              }
 
 
            /* Determine if the instruction is an ADD or a SUB.
            /* Determine if the instruction is an ADD or a SUB.
               (For REL, this determines the sign of the addend.)  */
               (For REL, this determines the sign of the addend.)  */
            negative = identify_add_or_sub (insn);
            negative = identify_add_or_sub (insn);
            if (negative == 0)
            if (negative == 0)
              {
              {
                (*_bfd_error_handler)
                (*_bfd_error_handler)
                  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
                  (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
                  input_bfd, input_section,
                  input_bfd, input_section,
                  (long) rel->r_offset, howto->name);
                  (long) rel->r_offset, howto->name);
                return bfd_reloc_overflow;
                return bfd_reloc_overflow;
              }
              }
 
 
            signed_addend *= negative;
            signed_addend *= negative;
          }
          }
 
 
        /* Compute the value (X) to go in the place.  */
        /* Compute the value (X) to go in the place.  */
        if (r_type == R_ARM_ALU_PC_G0_NC
        if (r_type == R_ARM_ALU_PC_G0_NC
            || r_type == R_ARM_ALU_PC_G1_NC
            || r_type == R_ARM_ALU_PC_G1_NC
            || r_type == R_ARM_ALU_PC_G0
            || r_type == R_ARM_ALU_PC_G0
            || r_type == R_ARM_ALU_PC_G1
            || r_type == R_ARM_ALU_PC_G1
            || r_type == R_ARM_ALU_PC_G2)
            || r_type == R_ARM_ALU_PC_G2)
          /* PC relative.  */
          /* PC relative.  */
          signed_value = value - pc + signed_addend;
          signed_value = value - pc + signed_addend;
        else
        else
          /* Section base relative.  */
          /* Section base relative.  */
          signed_value = value - sb + signed_addend;
          signed_value = value - sb + signed_addend;
 
 
        /* If the target symbol is a Thumb function, then set the
        /* If the target symbol is a Thumb function, then set the
           Thumb bit in the address.  */
           Thumb bit in the address.  */
        if (branch_type == ST_BRANCH_TO_THUMB)
        if (branch_type == ST_BRANCH_TO_THUMB)
          signed_value |= 1;
          signed_value |= 1;
 
 
        /* Calculate the value of the relevant G_n, in encoded
        /* Calculate the value of the relevant G_n, in encoded
           constant-with-rotation format.  */
           constant-with-rotation format.  */
        g_n = calculate_group_reloc_mask (abs (signed_value), group,
        g_n = calculate_group_reloc_mask (abs (signed_value), group,
                                          &residual);
                                          &residual);
 
 
        /* Check for overflow if required.  */
        /* Check for overflow if required.  */
        if ((r_type == R_ARM_ALU_PC_G0
        if ((r_type == R_ARM_ALU_PC_G0
             || r_type == R_ARM_ALU_PC_G1
             || r_type == R_ARM_ALU_PC_G1
             || r_type == R_ARM_ALU_PC_G2
             || r_type == R_ARM_ALU_PC_G2
             || r_type == R_ARM_ALU_SB_G0
             || r_type == R_ARM_ALU_SB_G0
             || r_type == R_ARM_ALU_SB_G1
             || r_type == R_ARM_ALU_SB_G1
             || r_type == R_ARM_ALU_SB_G2) && residual != 0)
             || r_type == R_ARM_ALU_SB_G2) && residual != 0)
          {
          {
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
              input_bfd, input_section,
              input_bfd, input_section,
              (long) rel->r_offset, abs (signed_value), howto->name);
              (long) rel->r_offset, abs (signed_value), howto->name);
            return bfd_reloc_overflow;
            return bfd_reloc_overflow;
          }
          }
 
 
        /* Mask out the value and the ADD/SUB part of the opcode; take care
        /* Mask out the value and the ADD/SUB part of the opcode; take care
           not to destroy the S bit.  */
           not to destroy the S bit.  */
        insn &= 0xff1ff000;
        insn &= 0xff1ff000;
 
 
        /* Set the opcode according to whether the value to go in the
        /* Set the opcode according to whether the value to go in the
           place is negative.  */
           place is negative.  */
        if (signed_value < 0)
        if (signed_value < 0)
          insn |= 1 << 22;
          insn |= 1 << 22;
        else
        else
          insn |= 1 << 23;
          insn |= 1 << 23;
 
 
        /* Encode the offset.  */
        /* Encode the offset.  */
        insn |= g_n;
        insn |= g_n;
 
 
        bfd_put_32 (input_bfd, insn, hit_data);
        bfd_put_32 (input_bfd, insn, hit_data);
      }
      }
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_LDR_PC_G0:
    case R_ARM_LDR_PC_G0:
    case R_ARM_LDR_PC_G1:
    case R_ARM_LDR_PC_G1:
    case R_ARM_LDR_PC_G2:
    case R_ARM_LDR_PC_G2:
    case R_ARM_LDR_SB_G0:
    case R_ARM_LDR_SB_G0:
    case R_ARM_LDR_SB_G1:
    case R_ARM_LDR_SB_G1:
    case R_ARM_LDR_SB_G2:
    case R_ARM_LDR_SB_G2:
      {
      {
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma pc = input_section->output_section->vma
        bfd_vma pc = input_section->output_section->vma
                     + input_section->output_offset + rel->r_offset;
                     + input_section->output_offset + rel->r_offset;
        bfd_vma sb = 0; /* See note above.  */
        bfd_vma sb = 0; /* See note above.  */
        bfd_vma residual;
        bfd_vma residual;
        bfd_signed_vma signed_value;
        bfd_signed_vma signed_value;
        int group = 0;
        int group = 0;
 
 
        /* Determine which groups of bits to calculate.  */
        /* Determine which groups of bits to calculate.  */
        switch (r_type)
        switch (r_type)
          {
          {
          case R_ARM_LDR_PC_G0:
          case R_ARM_LDR_PC_G0:
          case R_ARM_LDR_SB_G0:
          case R_ARM_LDR_SB_G0:
            group = 0;
            group = 0;
            break;
            break;
 
 
          case R_ARM_LDR_PC_G1:
          case R_ARM_LDR_PC_G1:
          case R_ARM_LDR_SB_G1:
          case R_ARM_LDR_SB_G1:
            group = 1;
            group = 1;
            break;
            break;
 
 
          case R_ARM_LDR_PC_G2:
          case R_ARM_LDR_PC_G2:
          case R_ARM_LDR_SB_G2:
          case R_ARM_LDR_SB_G2:
            group = 2;
            group = 2;
            break;
            break;
 
 
          default:
          default:
            abort ();
            abort ();
          }
          }
 
 
        /* If REL, extract the addend from the insn.  If RELA, it will
        /* If REL, extract the addend from the insn.  If RELA, it will
           have already been fetched for us.  */
           have already been fetched for us.  */
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            int negative = (insn & (1 << 23)) ? 1 : -1;
            int negative = (insn & (1 << 23)) ? 1 : -1;
            signed_addend = negative * (insn & 0xfff);
            signed_addend = negative * (insn & 0xfff);
          }
          }
 
 
        /* Compute the value (X) to go in the place.  */
        /* Compute the value (X) to go in the place.  */
        if (r_type == R_ARM_LDR_PC_G0
        if (r_type == R_ARM_LDR_PC_G0
            || r_type == R_ARM_LDR_PC_G1
            || r_type == R_ARM_LDR_PC_G1
            || r_type == R_ARM_LDR_PC_G2)
            || r_type == R_ARM_LDR_PC_G2)
          /* PC relative.  */
          /* PC relative.  */
          signed_value = value - pc + signed_addend;
          signed_value = value - pc + signed_addend;
        else
        else
          /* Section base relative.  */
          /* Section base relative.  */
          signed_value = value - sb + signed_addend;
          signed_value = value - sb + signed_addend;
 
 
        /* Calculate the value of the relevant G_{n-1} to obtain
        /* Calculate the value of the relevant G_{n-1} to obtain
           the residual at that stage.  */
           the residual at that stage.  */
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
 
 
        /* Check for overflow.  */
        /* Check for overflow.  */
        if (residual >= 0x1000)
        if (residual >= 0x1000)
          {
          {
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
              input_bfd, input_section,
              input_bfd, input_section,
              (long) rel->r_offset, abs (signed_value), howto->name);
              (long) rel->r_offset, abs (signed_value), howto->name);
            return bfd_reloc_overflow;
            return bfd_reloc_overflow;
          }
          }
 
 
        /* Mask out the value and U bit.  */
        /* Mask out the value and U bit.  */
        insn &= 0xff7ff000;
        insn &= 0xff7ff000;
 
 
        /* Set the U bit if the value to go in the place is non-negative.  */
        /* Set the U bit if the value to go in the place is non-negative.  */
        if (signed_value >= 0)
        if (signed_value >= 0)
          insn |= 1 << 23;
          insn |= 1 << 23;
 
 
        /* Encode the offset.  */
        /* Encode the offset.  */
        insn |= residual;
        insn |= residual;
 
 
        bfd_put_32 (input_bfd, insn, hit_data);
        bfd_put_32 (input_bfd, insn, hit_data);
      }
      }
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_LDRS_PC_G0:
    case R_ARM_LDRS_PC_G0:
    case R_ARM_LDRS_PC_G1:
    case R_ARM_LDRS_PC_G1:
    case R_ARM_LDRS_PC_G2:
    case R_ARM_LDRS_PC_G2:
    case R_ARM_LDRS_SB_G0:
    case R_ARM_LDRS_SB_G0:
    case R_ARM_LDRS_SB_G1:
    case R_ARM_LDRS_SB_G1:
    case R_ARM_LDRS_SB_G2:
    case R_ARM_LDRS_SB_G2:
      {
      {
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma pc = input_section->output_section->vma
        bfd_vma pc = input_section->output_section->vma
                     + input_section->output_offset + rel->r_offset;
                     + input_section->output_offset + rel->r_offset;
        bfd_vma sb = 0; /* See note above.  */
        bfd_vma sb = 0; /* See note above.  */
        bfd_vma residual;
        bfd_vma residual;
        bfd_signed_vma signed_value;
        bfd_signed_vma signed_value;
        int group = 0;
        int group = 0;
 
 
        /* Determine which groups of bits to calculate.  */
        /* Determine which groups of bits to calculate.  */
        switch (r_type)
        switch (r_type)
          {
          {
          case R_ARM_LDRS_PC_G0:
          case R_ARM_LDRS_PC_G0:
          case R_ARM_LDRS_SB_G0:
          case R_ARM_LDRS_SB_G0:
            group = 0;
            group = 0;
            break;
            break;
 
 
          case R_ARM_LDRS_PC_G1:
          case R_ARM_LDRS_PC_G1:
          case R_ARM_LDRS_SB_G1:
          case R_ARM_LDRS_SB_G1:
            group = 1;
            group = 1;
            break;
            break;
 
 
          case R_ARM_LDRS_PC_G2:
          case R_ARM_LDRS_PC_G2:
          case R_ARM_LDRS_SB_G2:
          case R_ARM_LDRS_SB_G2:
            group = 2;
            group = 2;
            break;
            break;
 
 
          default:
          default:
            abort ();
            abort ();
          }
          }
 
 
        /* If REL, extract the addend from the insn.  If RELA, it will
        /* If REL, extract the addend from the insn.  If RELA, it will
           have already been fetched for us.  */
           have already been fetched for us.  */
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            int negative = (insn & (1 << 23)) ? 1 : -1;
            int negative = (insn & (1 << 23)) ? 1 : -1;
            signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
            signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
          }
          }
 
 
        /* Compute the value (X) to go in the place.  */
        /* Compute the value (X) to go in the place.  */
        if (r_type == R_ARM_LDRS_PC_G0
        if (r_type == R_ARM_LDRS_PC_G0
            || r_type == R_ARM_LDRS_PC_G1
            || r_type == R_ARM_LDRS_PC_G1
            || r_type == R_ARM_LDRS_PC_G2)
            || r_type == R_ARM_LDRS_PC_G2)
          /* PC relative.  */
          /* PC relative.  */
          signed_value = value - pc + signed_addend;
          signed_value = value - pc + signed_addend;
        else
        else
          /* Section base relative.  */
          /* Section base relative.  */
          signed_value = value - sb + signed_addend;
          signed_value = value - sb + signed_addend;
 
 
        /* Calculate the value of the relevant G_{n-1} to obtain
        /* Calculate the value of the relevant G_{n-1} to obtain
           the residual at that stage.  */
           the residual at that stage.  */
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
 
 
        /* Check for overflow.  */
        /* Check for overflow.  */
        if (residual >= 0x100)
        if (residual >= 0x100)
          {
          {
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
              input_bfd, input_section,
              input_bfd, input_section,
              (long) rel->r_offset, abs (signed_value), howto->name);
              (long) rel->r_offset, abs (signed_value), howto->name);
            return bfd_reloc_overflow;
            return bfd_reloc_overflow;
          }
          }
 
 
        /* Mask out the value and U bit.  */
        /* Mask out the value and U bit.  */
        insn &= 0xff7ff0f0;
        insn &= 0xff7ff0f0;
 
 
        /* Set the U bit if the value to go in the place is non-negative.  */
        /* Set the U bit if the value to go in the place is non-negative.  */
        if (signed_value >= 0)
        if (signed_value >= 0)
          insn |= 1 << 23;
          insn |= 1 << 23;
 
 
        /* Encode the offset.  */
        /* Encode the offset.  */
        insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
        insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
 
 
        bfd_put_32 (input_bfd, insn, hit_data);
        bfd_put_32 (input_bfd, insn, hit_data);
      }
      }
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_LDC_PC_G0:
    case R_ARM_LDC_PC_G0:
    case R_ARM_LDC_PC_G1:
    case R_ARM_LDC_PC_G1:
    case R_ARM_LDC_PC_G2:
    case R_ARM_LDC_PC_G2:
    case R_ARM_LDC_SB_G0:
    case R_ARM_LDC_SB_G0:
    case R_ARM_LDC_SB_G1:
    case R_ARM_LDC_SB_G1:
    case R_ARM_LDC_SB_G2:
    case R_ARM_LDC_SB_G2:
      {
      {
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
        bfd_vma pc = input_section->output_section->vma
        bfd_vma pc = input_section->output_section->vma
                     + input_section->output_offset + rel->r_offset;
                     + input_section->output_offset + rel->r_offset;
        bfd_vma sb = 0; /* See note above.  */
        bfd_vma sb = 0; /* See note above.  */
        bfd_vma residual;
        bfd_vma residual;
        bfd_signed_vma signed_value;
        bfd_signed_vma signed_value;
        int group = 0;
        int group = 0;
 
 
        /* Determine which groups of bits to calculate.  */
        /* Determine which groups of bits to calculate.  */
        switch (r_type)
        switch (r_type)
          {
          {
          case R_ARM_LDC_PC_G0:
          case R_ARM_LDC_PC_G0:
          case R_ARM_LDC_SB_G0:
          case R_ARM_LDC_SB_G0:
            group = 0;
            group = 0;
            break;
            break;
 
 
          case R_ARM_LDC_PC_G1:
          case R_ARM_LDC_PC_G1:
          case R_ARM_LDC_SB_G1:
          case R_ARM_LDC_SB_G1:
            group = 1;
            group = 1;
            break;
            break;
 
 
          case R_ARM_LDC_PC_G2:
          case R_ARM_LDC_PC_G2:
          case R_ARM_LDC_SB_G2:
          case R_ARM_LDC_SB_G2:
            group = 2;
            group = 2;
            break;
            break;
 
 
          default:
          default:
            abort ();
            abort ();
          }
          }
 
 
        /* If REL, extract the addend from the insn.  If RELA, it will
        /* If REL, extract the addend from the insn.  If RELA, it will
           have already been fetched for us.  */
           have already been fetched for us.  */
        if (globals->use_rel)
        if (globals->use_rel)
          {
          {
            int negative = (insn & (1 << 23)) ? 1 : -1;
            int negative = (insn & (1 << 23)) ? 1 : -1;
            signed_addend = negative * ((insn & 0xff) << 2);
            signed_addend = negative * ((insn & 0xff) << 2);
          }
          }
 
 
        /* Compute the value (X) to go in the place.  */
        /* Compute the value (X) to go in the place.  */
        if (r_type == R_ARM_LDC_PC_G0
        if (r_type == R_ARM_LDC_PC_G0
            || r_type == R_ARM_LDC_PC_G1
            || r_type == R_ARM_LDC_PC_G1
            || r_type == R_ARM_LDC_PC_G2)
            || r_type == R_ARM_LDC_PC_G2)
          /* PC relative.  */
          /* PC relative.  */
          signed_value = value - pc + signed_addend;
          signed_value = value - pc + signed_addend;
        else
        else
          /* Section base relative.  */
          /* Section base relative.  */
          signed_value = value - sb + signed_addend;
          signed_value = value - sb + signed_addend;
 
 
        /* Calculate the value of the relevant G_{n-1} to obtain
        /* Calculate the value of the relevant G_{n-1} to obtain
           the residual at that stage.  */
           the residual at that stage.  */
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
        calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
 
 
        /* Check for overflow.  (The absolute value to go in the place must be
        /* Check for overflow.  (The absolute value to go in the place must be
           divisible by four and, after having been divided by four, must
           divisible by four and, after having been divided by four, must
           fit in eight bits.)  */
           fit in eight bits.)  */
        if ((residual & 0x3) != 0 || residual >= 0x400)
        if ((residual & 0x3) != 0 || residual >= 0x400)
          {
          {
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
              (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
              input_bfd, input_section,
              input_bfd, input_section,
              (long) rel->r_offset, abs (signed_value), howto->name);
              (long) rel->r_offset, abs (signed_value), howto->name);
            return bfd_reloc_overflow;
            return bfd_reloc_overflow;
          }
          }
 
 
        /* Mask out the value and U bit.  */
        /* Mask out the value and U bit.  */
        insn &= 0xff7fff00;
        insn &= 0xff7fff00;
 
 
        /* Set the U bit if the value to go in the place is non-negative.  */
        /* Set the U bit if the value to go in the place is non-negative.  */
        if (signed_value >= 0)
        if (signed_value >= 0)
          insn |= 1 << 23;
          insn |= 1 << 23;
 
 
        /* Encode the offset.  */
        /* Encode the offset.  */
        insn |= residual >> 2;
        insn |= residual >> 2;
 
 
        bfd_put_32 (input_bfd, insn, hit_data);
        bfd_put_32 (input_bfd, insn, hit_data);
      }
      }
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    default:
    default:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
    }
    }
}
}
 
 
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
static void
static void
arm_add_to_rel (bfd *              abfd,
arm_add_to_rel (bfd *              abfd,
                bfd_byte *         address,
                bfd_byte *         address,
                reloc_howto_type * howto,
                reloc_howto_type * howto,
                bfd_signed_vma     increment)
                bfd_signed_vma     increment)
{
{
  bfd_signed_vma addend;
  bfd_signed_vma addend;
 
 
  if (howto->type == R_ARM_THM_CALL
  if (howto->type == R_ARM_THM_CALL
      || howto->type == R_ARM_THM_JUMP24)
      || howto->type == R_ARM_THM_JUMP24)
    {
    {
      int upper_insn, lower_insn;
      int upper_insn, lower_insn;
      int upper, lower;
      int upper, lower;
 
 
      upper_insn = bfd_get_16 (abfd, address);
      upper_insn = bfd_get_16 (abfd, address);
      lower_insn = bfd_get_16 (abfd, address + 2);
      lower_insn = bfd_get_16 (abfd, address + 2);
      upper = upper_insn & 0x7ff;
      upper = upper_insn & 0x7ff;
      lower = lower_insn & 0x7ff;
      lower = lower_insn & 0x7ff;
 
 
      addend = (upper << 12) | (lower << 1);
      addend = (upper << 12) | (lower << 1);
      addend += increment;
      addend += increment;
      addend >>= 1;
      addend >>= 1;
 
 
      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
 
 
      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
    }
    }
  else
  else
    {
    {
      bfd_vma        contents;
      bfd_vma        contents;
 
 
      contents = bfd_get_32 (abfd, address);
      contents = bfd_get_32 (abfd, address);
 
 
      /* Get the (signed) value from the instruction.  */
      /* Get the (signed) value from the instruction.  */
      addend = contents & howto->src_mask;
      addend = contents & howto->src_mask;
      if (addend & ((howto->src_mask + 1) >> 1))
      if (addend & ((howto->src_mask + 1) >> 1))
        {
        {
          bfd_signed_vma mask;
          bfd_signed_vma mask;
 
 
          mask = -1;
          mask = -1;
          mask &= ~ howto->src_mask;
          mask &= ~ howto->src_mask;
          addend |= mask;
          addend |= mask;
        }
        }
 
 
      /* Add in the increment, (which is a byte value).  */
      /* Add in the increment, (which is a byte value).  */
      switch (howto->type)
      switch (howto->type)
        {
        {
        default:
        default:
          addend += increment;
          addend += increment;
          break;
          break;
 
 
        case R_ARM_PC24:
        case R_ARM_PC24:
        case R_ARM_PLT32:
        case R_ARM_PLT32:
        case R_ARM_CALL:
        case R_ARM_CALL:
        case R_ARM_JUMP24:
        case R_ARM_JUMP24:
          addend <<= howto->size;
          addend <<= howto->size;
          addend += increment;
          addend += increment;
 
 
          /* Should we check for overflow here ?  */
          /* Should we check for overflow here ?  */
 
 
          /* Drop any undesired bits.  */
          /* Drop any undesired bits.  */
          addend >>= howto->rightshift;
          addend >>= howto->rightshift;
          break;
          break;
        }
        }
 
 
      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
 
 
      bfd_put_32 (abfd, contents, address);
      bfd_put_32 (abfd, contents, address);
    }
    }
}
}
 
 
#define IS_ARM_TLS_RELOC(R_TYPE)        \
#define IS_ARM_TLS_RELOC(R_TYPE)        \
  ((R_TYPE) == R_ARM_TLS_GD32           \
  ((R_TYPE) == R_ARM_TLS_GD32           \
   || (R_TYPE) == R_ARM_TLS_LDO32       \
   || (R_TYPE) == R_ARM_TLS_LDO32       \
   || (R_TYPE) == R_ARM_TLS_LDM32       \
   || (R_TYPE) == R_ARM_TLS_LDM32       \
   || (R_TYPE) == R_ARM_TLS_DTPOFF32    \
   || (R_TYPE) == R_ARM_TLS_DTPOFF32    \
   || (R_TYPE) == R_ARM_TLS_DTPMOD32    \
   || (R_TYPE) == R_ARM_TLS_DTPMOD32    \
   || (R_TYPE) == R_ARM_TLS_TPOFF32     \
   || (R_TYPE) == R_ARM_TLS_TPOFF32     \
   || (R_TYPE) == R_ARM_TLS_LE32        \
   || (R_TYPE) == R_ARM_TLS_LE32        \
   || (R_TYPE) == R_ARM_TLS_IE32        \
   || (R_TYPE) == R_ARM_TLS_IE32        \
   || IS_ARM_TLS_GNU_RELOC (R_TYPE))
   || IS_ARM_TLS_GNU_RELOC (R_TYPE))
 
 
/* Specific set of relocations for the gnu tls dialect.  */
/* Specific set of relocations for the gnu tls dialect.  */
#define IS_ARM_TLS_GNU_RELOC(R_TYPE)    \
#define IS_ARM_TLS_GNU_RELOC(R_TYPE)    \
  ((R_TYPE) == R_ARM_TLS_GOTDESC        \
  ((R_TYPE) == R_ARM_TLS_GOTDESC        \
   || (R_TYPE) == R_ARM_TLS_CALL        \
   || (R_TYPE) == R_ARM_TLS_CALL        \
   || (R_TYPE) == R_ARM_THM_TLS_CALL    \
   || (R_TYPE) == R_ARM_THM_TLS_CALL    \
   || (R_TYPE) == R_ARM_TLS_DESCSEQ     \
   || (R_TYPE) == R_ARM_TLS_DESCSEQ     \
   || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
   || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
 
 
/* Relocate an ARM ELF section.  */
/* Relocate an ARM ELF section.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_relocate_section (bfd *                  output_bfd,
elf32_arm_relocate_section (bfd *                  output_bfd,
                            struct bfd_link_info * info,
                            struct bfd_link_info * info,
                            bfd *                  input_bfd,
                            bfd *                  input_bfd,
                            asection *             input_section,
                            asection *             input_section,
                            bfd_byte *             contents,
                            bfd_byte *             contents,
                            Elf_Internal_Rela *    relocs,
                            Elf_Internal_Rela *    relocs,
                            Elf_Internal_Sym *     local_syms,
                            Elf_Internal_Sym *     local_syms,
                            asection **            local_sections)
                            asection **            local_sections)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *relend;
  Elf_Internal_Rela *relend;
  const char *name;
  const char *name;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  if (globals == NULL)
  if (globals == NULL)
    return FALSE;
    return FALSE;
 
 
  symtab_hdr = & elf_symtab_hdr (input_bfd);
  symtab_hdr = & elf_symtab_hdr (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
 
 
  rel = relocs;
  rel = relocs;
  relend = relocs + input_section->reloc_count;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
  for (; rel < relend; rel++)
    {
    {
      int                          r_type;
      int                          r_type;
      reloc_howto_type *           howto;
      reloc_howto_type *           howto;
      unsigned long                r_symndx;
      unsigned long                r_symndx;
      Elf_Internal_Sym *           sym;
      Elf_Internal_Sym *           sym;
      asection *                   sec;
      asection *                   sec;
      struct elf_link_hash_entry * h;
      struct elf_link_hash_entry * h;
      bfd_vma                      relocation;
      bfd_vma                      relocation;
      bfd_reloc_status_type        r;
      bfd_reloc_status_type        r;
      arelent                      bfd_reloc;
      arelent                      bfd_reloc;
      char                         sym_type;
      char                         sym_type;
      bfd_boolean                  unresolved_reloc = FALSE;
      bfd_boolean                  unresolved_reloc = FALSE;
      char *error_message = NULL;
      char *error_message = NULL;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_type   = ELF32_R_TYPE (rel->r_info);
      r_type   = ELF32_R_TYPE (rel->r_info);
      r_type   = arm_real_reloc_type (globals, r_type);
      r_type   = arm_real_reloc_type (globals, r_type);
 
 
      if (   r_type == R_ARM_GNU_VTENTRY
      if (   r_type == R_ARM_GNU_VTENTRY
          || r_type == R_ARM_GNU_VTINHERIT)
          || r_type == R_ARM_GNU_VTINHERIT)
        continue;
        continue;
 
 
      bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
      bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
      howto = bfd_reloc.howto;
      howto = bfd_reloc.howto;
 
 
      h = NULL;
      h = NULL;
      sym = NULL;
      sym = NULL;
      sec = NULL;
      sec = NULL;
 
 
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          sym = local_syms + r_symndx;
          sym = local_syms + r_symndx;
          sym_type = ELF32_ST_TYPE (sym->st_info);
          sym_type = ELF32_ST_TYPE (sym->st_info);
          sec = local_sections[r_symndx];
          sec = local_sections[r_symndx];
 
 
          /* An object file might have a reference to a local
          /* An object file might have a reference to a local
             undefined symbol.  This is a daft object file, but we
             undefined symbol.  This is a daft object file, but we
             should at least do something about it.  V4BX & NONE
             should at least do something about it.  V4BX & NONE
             relocations do not use the symbol and are explicitly
             relocations do not use the symbol and are explicitly
             allowed to use the undefined symbol, so allow those.
             allowed to use the undefined symbol, so allow those.
             Likewise for relocations against STN_UNDEF.  */
             Likewise for relocations against STN_UNDEF.  */
          if (r_type != R_ARM_V4BX
          if (r_type != R_ARM_V4BX
              && r_type != R_ARM_NONE
              && r_type != R_ARM_NONE
              && r_symndx != STN_UNDEF
              && r_symndx != STN_UNDEF
              && bfd_is_und_section (sec)
              && bfd_is_und_section (sec)
              && ELF_ST_BIND (sym->st_info) != STB_WEAK)
              && ELF_ST_BIND (sym->st_info) != STB_WEAK)
            {
            {
              if (!info->callbacks->undefined_symbol
              if (!info->callbacks->undefined_symbol
                  (info, bfd_elf_string_from_elf_section
                  (info, bfd_elf_string_from_elf_section
                   (input_bfd, symtab_hdr->sh_link, sym->st_name),
                   (input_bfd, symtab_hdr->sh_link, sym->st_name),
                   input_bfd, input_section,
                   input_bfd, input_section,
                   rel->r_offset, TRUE))
                   rel->r_offset, TRUE))
                return FALSE;
                return FALSE;
            }
            }
 
 
          if (globals->use_rel)
          if (globals->use_rel)
            {
            {
              relocation = (sec->output_section->vma
              relocation = (sec->output_section->vma
                            + sec->output_offset
                            + sec->output_offset
                            + sym->st_value);
                            + sym->st_value);
              if (!info->relocatable
              if (!info->relocatable
                  && (sec->flags & SEC_MERGE)
                  && (sec->flags & SEC_MERGE)
                  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
                  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
                {
                {
                  asection *msec;
                  asection *msec;
                  bfd_vma addend, value;
                  bfd_vma addend, value;
 
 
                  switch (r_type)
                  switch (r_type)
                    {
                    {
                    case R_ARM_MOVW_ABS_NC:
                    case R_ARM_MOVW_ABS_NC:
                    case R_ARM_MOVT_ABS:
                    case R_ARM_MOVT_ABS:
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
                      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
                      addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
                      addend = (addend ^ 0x8000) - 0x8000;
                      addend = (addend ^ 0x8000) - 0x8000;
                      break;
                      break;
 
 
                    case R_ARM_THM_MOVW_ABS_NC:
                    case R_ARM_THM_MOVW_ABS_NC:
                    case R_ARM_THM_MOVT_ABS:
                    case R_ARM_THM_MOVT_ABS:
                      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
                      value = bfd_get_16 (input_bfd, contents + rel->r_offset)
                              << 16;
                              << 16;
                      value |= bfd_get_16 (input_bfd,
                      value |= bfd_get_16 (input_bfd,
                                           contents + rel->r_offset + 2);
                                           contents + rel->r_offset + 2);
                      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
                      addend = ((value & 0xf7000) >> 4) | (value & 0xff)
                               | ((value & 0x04000000) >> 15);
                               | ((value & 0x04000000) >> 15);
                      addend = (addend ^ 0x8000) - 0x8000;
                      addend = (addend ^ 0x8000) - 0x8000;
                      break;
                      break;
 
 
                    default:
                    default:
                      if (howto->rightshift
                      if (howto->rightshift
                          || (howto->src_mask & (howto->src_mask + 1)))
                          || (howto->src_mask & (howto->src_mask + 1)))
                        {
                        {
                          (*_bfd_error_handler)
                          (*_bfd_error_handler)
                            (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
                            (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
                             input_bfd, input_section,
                             input_bfd, input_section,
                             (long) rel->r_offset, howto->name);
                             (long) rel->r_offset, howto->name);
                          return FALSE;
                          return FALSE;
                        }
                        }
 
 
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
                      value = bfd_get_32 (input_bfd, contents + rel->r_offset);
 
 
                      /* Get the (signed) value from the instruction.  */
                      /* Get the (signed) value from the instruction.  */
                      addend = value & howto->src_mask;
                      addend = value & howto->src_mask;
                      if (addend & ((howto->src_mask + 1) >> 1))
                      if (addend & ((howto->src_mask + 1) >> 1))
                        {
                        {
                          bfd_signed_vma mask;
                          bfd_signed_vma mask;
 
 
                          mask = -1;
                          mask = -1;
                          mask &= ~ howto->src_mask;
                          mask &= ~ howto->src_mask;
                          addend |= mask;
                          addend |= mask;
                        }
                        }
                      break;
                      break;
                    }
                    }
 
 
                  msec = sec;
                  msec = sec;
                  addend =
                  addend =
                    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
                    _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
                    - relocation;
                    - relocation;
                  addend += msec->output_section->vma + msec->output_offset;
                  addend += msec->output_section->vma + msec->output_offset;
 
 
                  /* Cases here must match those in the preceding
                  /* Cases here must match those in the preceding
                     switch statement.  */
                     switch statement.  */
                  switch (r_type)
                  switch (r_type)
                    {
                    {
                    case R_ARM_MOVW_ABS_NC:
                    case R_ARM_MOVW_ABS_NC:
                    case R_ARM_MOVT_ABS:
                    case R_ARM_MOVT_ABS:
                      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
                      value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
                              | (addend & 0xfff);
                              | (addend & 0xfff);
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
                      break;
                      break;
 
 
                    case R_ARM_THM_MOVW_ABS_NC:
                    case R_ARM_THM_MOVW_ABS_NC:
                    case R_ARM_THM_MOVT_ABS:
                    case R_ARM_THM_MOVT_ABS:
                      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
                      value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
                              | (addend & 0xff) | ((addend & 0x0800) << 15);
                              | (addend & 0xff) | ((addend & 0x0800) << 15);
                      bfd_put_16 (input_bfd, value >> 16,
                      bfd_put_16 (input_bfd, value >> 16,
                                  contents + rel->r_offset);
                                  contents + rel->r_offset);
                      bfd_put_16 (input_bfd, value,
                      bfd_put_16 (input_bfd, value,
                                  contents + rel->r_offset + 2);
                                  contents + rel->r_offset + 2);
                      break;
                      break;
 
 
                    default:
                    default:
                      value = (value & ~ howto->dst_mask)
                      value = (value & ~ howto->dst_mask)
                              | (addend & howto->dst_mask);
                              | (addend & howto->dst_mask);
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
                      bfd_put_32 (input_bfd, value, contents + rel->r_offset);
                      break;
                      break;
                    }
                    }
                }
                }
            }
            }
          else
          else
            relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
            relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
        }
        }
      else
      else
        {
        {
          bfd_boolean warned;
          bfd_boolean warned;
 
 
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
                                   r_symndx, symtab_hdr, sym_hashes,
                                   r_symndx, symtab_hdr, sym_hashes,
                                   h, sec, relocation,
                                   h, sec, relocation,
                                   unresolved_reloc, warned);
                                   unresolved_reloc, warned);
 
 
          sym_type = h->type;
          sym_type = h->type;
        }
        }
 
 
      if (sec != NULL && elf_discarded_section (sec))
      if (sec != NULL && elf_discarded_section (sec))
        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
                                         rel, relend, howto, contents);
                                         rel, relend, howto, contents);
 
 
      if (info->relocatable)
      if (info->relocatable)
        {
        {
          /* This is a relocatable link.  We don't have to change
          /* This is a relocatable link.  We don't have to change
             anything, unless the reloc is against a section symbol,
             anything, unless the reloc is against a section symbol,
             in which case we have to adjust according to where the
             in which case we have to adjust according to where the
             section symbol winds up in the output section.  */
             section symbol winds up in the output section.  */
          if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
          if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
            {
            {
              if (globals->use_rel)
              if (globals->use_rel)
                arm_add_to_rel (input_bfd, contents + rel->r_offset,
                arm_add_to_rel (input_bfd, contents + rel->r_offset,
                                howto, (bfd_signed_vma) sec->output_offset);
                                howto, (bfd_signed_vma) sec->output_offset);
              else
              else
                rel->r_addend += sec->output_offset;
                rel->r_addend += sec->output_offset;
            }
            }
          continue;
          continue;
        }
        }
 
 
      if (h != NULL)
      if (h != NULL)
        name = h->root.root.string;
        name = h->root.root.string;
      else
      else
        {
        {
          name = (bfd_elf_string_from_elf_section
          name = (bfd_elf_string_from_elf_section
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
          if (name == NULL || *name == '\0')
          if (name == NULL || *name == '\0')
            name = bfd_section_name (input_bfd, sec);
            name = bfd_section_name (input_bfd, sec);
        }
        }
 
 
      if (r_symndx != STN_UNDEF
      if (r_symndx != STN_UNDEF
          && r_type != R_ARM_NONE
          && r_type != R_ARM_NONE
          && (h == NULL
          && (h == NULL
              || h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak)
              || h->root.type == bfd_link_hash_defweak)
          && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
          && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            ((sym_type == STT_TLS
            ((sym_type == STT_TLS
              ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
              ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
              : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
              : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
             input_bfd,
             input_bfd,
             input_section,
             input_section,
             (long) rel->r_offset,
             (long) rel->r_offset,
             howto->name,
             howto->name,
             name);
             name);
        }
        }
 
 
      /* We call elf32_arm_final_link_relocate unless we're completely
      /* We call elf32_arm_final_link_relocate unless we're completely
         done, i.e., the relaxation produced the final output we want,
         done, i.e., the relaxation produced the final output we want,
         and we won't let anybody mess with it. Also, we have to do
         and we won't let anybody mess with it. Also, we have to do
         addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
         addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
         both in relaxed and non-relaxed cases */
         both in relaxed and non-relaxed cases */
     if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
     if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
         || (IS_ARM_TLS_GNU_RELOC (r_type)
         || (IS_ARM_TLS_GNU_RELOC (r_type)
             && !((h ? elf32_arm_hash_entry (h)->tls_type :
             && !((h ? elf32_arm_hash_entry (h)->tls_type :
                   elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
                   elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
                  & GOT_TLS_GDESC)))
                  & GOT_TLS_GDESC)))
       {
       {
         r = elf32_arm_tls_relax (globals, input_bfd, input_section,
         r = elf32_arm_tls_relax (globals, input_bfd, input_section,
                                  contents, rel, h == NULL);
                                  contents, rel, h == NULL);
         /* This may have been marked unresolved because it came from
         /* This may have been marked unresolved because it came from
            a shared library.  But we've just dealt with that.  */
            a shared library.  But we've just dealt with that.  */
         unresolved_reloc = 0;
         unresolved_reloc = 0;
       }
       }
     else
     else
       r = bfd_reloc_continue;
       r = bfd_reloc_continue;
 
 
     if (r == bfd_reloc_continue)
     if (r == bfd_reloc_continue)
       r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
       r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
                                          input_section, contents, rel,
                                          input_section, contents, rel,
                                          relocation, info, sec, name, sym_type,
                                          relocation, info, sec, name, sym_type,
                                          (h ? h->target_internal
                                          (h ? h->target_internal
                                           : ARM_SYM_BRANCH_TYPE (sym)), h,
                                           : ARM_SYM_BRANCH_TYPE (sym)), h,
                                          &unresolved_reloc, &error_message);
                                          &unresolved_reloc, &error_message);
 
 
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
         because such sections are not SEC_ALLOC and thus ld.so will
         because such sections are not SEC_ALLOC and thus ld.so will
         not process them.  */
         not process them.  */
      if (unresolved_reloc
      if (unresolved_reloc
          && !((input_section->flags & SEC_DEBUGGING) != 0
          && !((input_section->flags & SEC_DEBUGGING) != 0
               && h->def_dynamic))
               && h->def_dynamic)
 
          && _bfd_elf_section_offset (output_bfd, info, input_section,
 
                                      rel->r_offset) != (bfd_vma) -1)
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
            (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
             input_bfd,
             input_bfd,
             input_section,
             input_section,
             (long) rel->r_offset,
             (long) rel->r_offset,
             howto->name,
             howto->name,
             h->root.root.string);
             h->root.root.string);
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (r != bfd_reloc_ok)
      if (r != bfd_reloc_ok)
        {
        {
          switch (r)
          switch (r)
            {
            {
            case bfd_reloc_overflow:
            case bfd_reloc_overflow:
              /* If the overflowing reloc was to an undefined symbol,
              /* If the overflowing reloc was to an undefined symbol,
                 we have already printed one error message and there
                 we have already printed one error message and there
                 is no point complaining again.  */
                 is no point complaining again.  */
              if ((! h ||
              if ((! h ||
                   h->root.type != bfd_link_hash_undefined)
                   h->root.type != bfd_link_hash_undefined)
                  && (!((*info->callbacks->reloc_overflow)
                  && (!((*info->callbacks->reloc_overflow)
                        (info, (h ? &h->root : NULL), name, howto->name,
                        (info, (h ? &h->root : NULL), name, howto->name,
                         (bfd_vma) 0, input_bfd, input_section,
                         (bfd_vma) 0, input_bfd, input_section,
                         rel->r_offset))))
                         rel->r_offset))))
                  return FALSE;
                  return FALSE;
              break;
              break;
 
 
            case bfd_reloc_undefined:
            case bfd_reloc_undefined:
              if (!((*info->callbacks->undefined_symbol)
              if (!((*info->callbacks->undefined_symbol)
                    (info, name, input_bfd, input_section,
                    (info, name, input_bfd, input_section,
                     rel->r_offset, TRUE)))
                     rel->r_offset, TRUE)))
                return FALSE;
                return FALSE;
              break;
              break;
 
 
            case bfd_reloc_outofrange:
            case bfd_reloc_outofrange:
              error_message = _("out of range");
              error_message = _("out of range");
              goto common_error;
              goto common_error;
 
 
            case bfd_reloc_notsupported:
            case bfd_reloc_notsupported:
              error_message = _("unsupported relocation");
              error_message = _("unsupported relocation");
              goto common_error;
              goto common_error;
 
 
            case bfd_reloc_dangerous:
            case bfd_reloc_dangerous:
              /* error_message should already be set.  */
              /* error_message should already be set.  */
              goto common_error;
              goto common_error;
 
 
            default:
            default:
              error_message = _("unknown error");
              error_message = _("unknown error");
              /* Fall through.  */
              /* Fall through.  */
 
 
            common_error:
            common_error:
              BFD_ASSERT (error_message != NULL);
              BFD_ASSERT (error_message != NULL);
              if (!((*info->callbacks->reloc_dangerous)
              if (!((*info->callbacks->reloc_dangerous)
                    (info, error_message, input_bfd, input_section,
                    (info, error_message, input_bfd, input_section,
                     rel->r_offset)))
                     rel->r_offset)))
                return FALSE;
                return FALSE;
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
/* Add a new unwind edit to the list described by HEAD, TAIL.  If TINDEX is zero,
   adds the edit to the start of the list.  (The list must be built in order of
   adds the edit to the start of the list.  (The list must be built in order of
   ascending TINDEX: the function's callers are primarily responsible for
   ascending TINDEX: the function's callers are primarily responsible for
   maintaining that condition).  */
   maintaining that condition).  */
 
 
static void
static void
add_unwind_table_edit (arm_unwind_table_edit **head,
add_unwind_table_edit (arm_unwind_table_edit **head,
                       arm_unwind_table_edit **tail,
                       arm_unwind_table_edit **tail,
                       arm_unwind_edit_type type,
                       arm_unwind_edit_type type,
                       asection *linked_section,
                       asection *linked_section,
                       unsigned int tindex)
                       unsigned int tindex)
{
{
  arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
  arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
      xmalloc (sizeof (arm_unwind_table_edit));
      xmalloc (sizeof (arm_unwind_table_edit));
 
 
  new_edit->type = type;
  new_edit->type = type;
  new_edit->linked_section = linked_section;
  new_edit->linked_section = linked_section;
  new_edit->index = tindex;
  new_edit->index = tindex;
 
 
  if (tindex > 0)
  if (tindex > 0)
    {
    {
      new_edit->next = NULL;
      new_edit->next = NULL;
 
 
      if (*tail)
      if (*tail)
        (*tail)->next = new_edit;
        (*tail)->next = new_edit;
 
 
      (*tail) = new_edit;
      (*tail) = new_edit;
 
 
      if (!*head)
      if (!*head)
        (*head) = new_edit;
        (*head) = new_edit;
    }
    }
  else
  else
    {
    {
      new_edit->next = *head;
      new_edit->next = *head;
 
 
      if (!*tail)
      if (!*tail)
        *tail = new_edit;
        *tail = new_edit;
 
 
      *head = new_edit;
      *head = new_edit;
    }
    }
}
}
 
 
static _arm_elf_section_data *get_arm_elf_section_data (asection *);
static _arm_elf_section_data *get_arm_elf_section_data (asection *);
 
 
/* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
/* Increase the size of EXIDX_SEC by ADJUST bytes.  ADJUST mau be negative.  */
static void
static void
adjust_exidx_size(asection *exidx_sec, int adjust)
adjust_exidx_size(asection *exidx_sec, int adjust)
{
{
  asection *out_sec;
  asection *out_sec;
 
 
  if (!exidx_sec->rawsize)
  if (!exidx_sec->rawsize)
    exidx_sec->rawsize = exidx_sec->size;
    exidx_sec->rawsize = exidx_sec->size;
 
 
  bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
  bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
  out_sec = exidx_sec->output_section;
  out_sec = exidx_sec->output_section;
  /* Adjust size of output section.  */
  /* Adjust size of output section.  */
  bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
  bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
}
}
 
 
/* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
/* Insert an EXIDX_CANTUNWIND marker at the end of a section.  */
static void
static void
insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
{
{
  struct _arm_elf_section_data *exidx_arm_data;
  struct _arm_elf_section_data *exidx_arm_data;
 
 
  exidx_arm_data = get_arm_elf_section_data (exidx_sec);
  exidx_arm_data = get_arm_elf_section_data (exidx_sec);
  add_unwind_table_edit (
  add_unwind_table_edit (
    &exidx_arm_data->u.exidx.unwind_edit_list,
    &exidx_arm_data->u.exidx.unwind_edit_list,
    &exidx_arm_data->u.exidx.unwind_edit_tail,
    &exidx_arm_data->u.exidx.unwind_edit_tail,
    INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
    INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
 
 
  adjust_exidx_size(exidx_sec, 8);
  adjust_exidx_size(exidx_sec, 8);
}
}
 
 
/* Scan .ARM.exidx tables, and create a list describing edits which should be
/* Scan .ARM.exidx tables, and create a list describing edits which should be
   made to those tables, such that:
   made to those tables, such that:
 
 
     1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
     1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
     2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
     2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
        codes which have been inlined into the index).
        codes which have been inlined into the index).
 
 
   If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
   If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
 
 
   The edits are applied when the tables are written
   The edits are applied when the tables are written
   (in elf32_arm_write_section).
   (in elf32_arm_write_section).
*/
*/
 
 
bfd_boolean
bfd_boolean
elf32_arm_fix_exidx_coverage (asection **text_section_order,
elf32_arm_fix_exidx_coverage (asection **text_section_order,
                              unsigned int num_text_sections,
                              unsigned int num_text_sections,
                              struct bfd_link_info *info,
                              struct bfd_link_info *info,
                              bfd_boolean merge_exidx_entries)
                              bfd_boolean merge_exidx_entries)
{
{
  bfd *inp;
  bfd *inp;
  unsigned int last_second_word = 0, i;
  unsigned int last_second_word = 0, i;
  asection *last_exidx_sec = NULL;
  asection *last_exidx_sec = NULL;
  asection *last_text_sec = NULL;
  asection *last_text_sec = NULL;
  int last_unwind_type = -1;
  int last_unwind_type = -1;
 
 
  /* Walk over all EXIDX sections, and create backlinks from the corrsponding
  /* Walk over all EXIDX sections, and create backlinks from the corrsponding
     text sections.  */
     text sections.  */
  for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
  for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
    {
    {
      asection *sec;
      asection *sec;
 
 
      for (sec = inp->sections; sec != NULL; sec = sec->next)
      for (sec = inp->sections; sec != NULL; sec = sec->next)
        {
        {
          struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
          struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
          Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
          Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
 
 
          if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
          if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
            continue;
            continue;
 
 
          if (elf_sec->linked_to)
          if (elf_sec->linked_to)
            {
            {
              Elf_Internal_Shdr *linked_hdr
              Elf_Internal_Shdr *linked_hdr
                = &elf_section_data (elf_sec->linked_to)->this_hdr;
                = &elf_section_data (elf_sec->linked_to)->this_hdr;
              struct _arm_elf_section_data *linked_sec_arm_data
              struct _arm_elf_section_data *linked_sec_arm_data
                = get_arm_elf_section_data (linked_hdr->bfd_section);
                = get_arm_elf_section_data (linked_hdr->bfd_section);
 
 
              if (linked_sec_arm_data == NULL)
              if (linked_sec_arm_data == NULL)
                continue;
                continue;
 
 
              /* Link this .ARM.exidx section back from the text section it
              /* Link this .ARM.exidx section back from the text section it
                 describes.  */
                 describes.  */
              linked_sec_arm_data->u.text.arm_exidx_sec = sec;
              linked_sec_arm_data->u.text.arm_exidx_sec = sec;
            }
            }
        }
        }
    }
    }
 
 
  /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
  /* Walk all text sections in order of increasing VMA.  Eilminate duplicate
     index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
     index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
     and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
     and add EXIDX_CANTUNWIND entries for sections with no unwind table data.  */
 
 
  for (i = 0; i < num_text_sections; i++)
  for (i = 0; i < num_text_sections; i++)
    {
    {
      asection *sec = text_section_order[i];
      asection *sec = text_section_order[i];
      asection *exidx_sec;
      asection *exidx_sec;
      struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
      struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
      struct _arm_elf_section_data *exidx_arm_data;
      struct _arm_elf_section_data *exidx_arm_data;
      bfd_byte *contents = NULL;
      bfd_byte *contents = NULL;
      int deleted_exidx_bytes = 0;
      int deleted_exidx_bytes = 0;
      bfd_vma j;
      bfd_vma j;
      arm_unwind_table_edit *unwind_edit_head = NULL;
      arm_unwind_table_edit *unwind_edit_head = NULL;
      arm_unwind_table_edit *unwind_edit_tail = NULL;
      arm_unwind_table_edit *unwind_edit_tail = NULL;
      Elf_Internal_Shdr *hdr;
      Elf_Internal_Shdr *hdr;
      bfd *ibfd;
      bfd *ibfd;
 
 
      if (arm_data == NULL)
      if (arm_data == NULL)
        continue;
        continue;
 
 
      exidx_sec = arm_data->u.text.arm_exidx_sec;
      exidx_sec = arm_data->u.text.arm_exidx_sec;
      if (exidx_sec == NULL)
      if (exidx_sec == NULL)
        {
        {
          /* Section has no unwind data.  */
          /* Section has no unwind data.  */
          if (last_unwind_type == 0 || !last_exidx_sec)
          if (last_unwind_type == 0 || !last_exidx_sec)
            continue;
            continue;
 
 
          /* Ignore zero sized sections.  */
          /* Ignore zero sized sections.  */
          if (sec->size == 0)
          if (sec->size == 0)
            continue;
            continue;
 
 
          insert_cantunwind_after(last_text_sec, last_exidx_sec);
          insert_cantunwind_after(last_text_sec, last_exidx_sec);
          last_unwind_type = 0;
          last_unwind_type = 0;
          continue;
          continue;
        }
        }
 
 
      /* Skip /DISCARD/ sections.  */
      /* Skip /DISCARD/ sections.  */
      if (bfd_is_abs_section (exidx_sec->output_section))
      if (bfd_is_abs_section (exidx_sec->output_section))
        continue;
        continue;
 
 
      hdr = &elf_section_data (exidx_sec)->this_hdr;
      hdr = &elf_section_data (exidx_sec)->this_hdr;
      if (hdr->sh_type != SHT_ARM_EXIDX)
      if (hdr->sh_type != SHT_ARM_EXIDX)
        continue;
        continue;
 
 
      exidx_arm_data = get_arm_elf_section_data (exidx_sec);
      exidx_arm_data = get_arm_elf_section_data (exidx_sec);
      if (exidx_arm_data == NULL)
      if (exidx_arm_data == NULL)
        continue;
        continue;
 
 
      ibfd = exidx_sec->owner;
      ibfd = exidx_sec->owner;
 
 
      if (hdr->contents != NULL)
      if (hdr->contents != NULL)
        contents = hdr->contents;
        contents = hdr->contents;
      else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
      else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
        /* An error?  */
        /* An error?  */
        continue;
        continue;
 
 
      for (j = 0; j < hdr->sh_size; j += 8)
      for (j = 0; j < hdr->sh_size; j += 8)
        {
        {
          unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
          unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
          int unwind_type;
          int unwind_type;
          int elide = 0;
          int elide = 0;
 
 
          /* An EXIDX_CANTUNWIND entry.  */
          /* An EXIDX_CANTUNWIND entry.  */
          if (second_word == 1)
          if (second_word == 1)
            {
            {
              if (last_unwind_type == 0)
              if (last_unwind_type == 0)
                elide = 1;
                elide = 1;
              unwind_type = 0;
              unwind_type = 0;
            }
            }
          /* Inlined unwinding data.  Merge if equal to previous.  */
          /* Inlined unwinding data.  Merge if equal to previous.  */
          else if ((second_word & 0x80000000) != 0)
          else if ((second_word & 0x80000000) != 0)
            {
            {
              if (merge_exidx_entries
              if (merge_exidx_entries
                   && last_second_word == second_word && last_unwind_type == 1)
                   && last_second_word == second_word && last_unwind_type == 1)
                elide = 1;
                elide = 1;
              unwind_type = 1;
              unwind_type = 1;
              last_second_word = second_word;
              last_second_word = second_word;
            }
            }
          /* Normal table entry.  In theory we could merge these too,
          /* Normal table entry.  In theory we could merge these too,
             but duplicate entries are likely to be much less common.  */
             but duplicate entries are likely to be much less common.  */
          else
          else
            unwind_type = 2;
            unwind_type = 2;
 
 
          if (elide)
          if (elide)
            {
            {
              add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
              add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
                                     DELETE_EXIDX_ENTRY, NULL, j / 8);
                                     DELETE_EXIDX_ENTRY, NULL, j / 8);
 
 
              deleted_exidx_bytes += 8;
              deleted_exidx_bytes += 8;
            }
            }
 
 
          last_unwind_type = unwind_type;
          last_unwind_type = unwind_type;
        }
        }
 
 
      /* Free contents if we allocated it ourselves.  */
      /* Free contents if we allocated it ourselves.  */
      if (contents != hdr->contents)
      if (contents != hdr->contents)
        free (contents);
        free (contents);
 
 
      /* Record edits to be applied later (in elf32_arm_write_section).  */
      /* Record edits to be applied later (in elf32_arm_write_section).  */
      exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
      exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
      exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
      exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
 
 
      if (deleted_exidx_bytes > 0)
      if (deleted_exidx_bytes > 0)
        adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
        adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
 
 
      last_exidx_sec = exidx_sec;
      last_exidx_sec = exidx_sec;
      last_text_sec = sec;
      last_text_sec = sec;
    }
    }
 
 
  /* Add terminating CANTUNWIND entry.  */
  /* Add terminating CANTUNWIND entry.  */
  if (last_exidx_sec && last_unwind_type != 0)
  if (last_exidx_sec && last_unwind_type != 0)
    insert_cantunwind_after(last_text_sec, last_exidx_sec);
    insert_cantunwind_after(last_text_sec, last_exidx_sec);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
                               bfd *ibfd, const char *name)
                               bfd *ibfd, const char *name)
{
{
  asection *sec, *osec;
  asection *sec, *osec;
 
 
  sec = bfd_get_section_by_name (ibfd, name);
  sec = bfd_get_section_by_name (ibfd, name);
  if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
  if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
    return TRUE;
    return TRUE;
 
 
  osec = sec->output_section;
  osec = sec->output_section;
  if (elf32_arm_write_section (obfd, info, sec, sec->contents))
  if (elf32_arm_write_section (obfd, info, sec, sec->contents))
    return TRUE;
    return TRUE;
 
 
  if (! bfd_set_section_contents (obfd, osec, sec->contents,
  if (! bfd_set_section_contents (obfd, osec, sec->contents,
                                  sec->output_offset, sec->size))
                                  sec->output_offset, sec->size))
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
{
{
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
  asection *sec, *osec;
  asection *sec, *osec;
 
 
  if (globals == NULL)
  if (globals == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Invoke the regular ELF backend linker to do all the work.  */
  /* Invoke the regular ELF backend linker to do all the work.  */
  if (!bfd_elf_final_link (abfd, info))
  if (!bfd_elf_final_link (abfd, info))
    return FALSE;
    return FALSE;
 
 
  /* Process stub sections (eg BE8 encoding, ...).  */
  /* Process stub sections (eg BE8 encoding, ...).  */
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
  struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
  int i;
  int i;
  for (i=0; i<htab->top_id; i++)
  for (i=0; i<htab->top_id; i++)
    {
    {
      sec = htab->stub_group[i].stub_sec;
      sec = htab->stub_group[i].stub_sec;
      /* Only process it once, in its link_sec slot.  */
      /* Only process it once, in its link_sec slot.  */
      if (sec && i == htab->stub_group[i].link_sec->id)
      if (sec && i == htab->stub_group[i].link_sec->id)
        {
        {
          osec = sec->output_section;
          osec = sec->output_section;
          elf32_arm_write_section (abfd, info, sec, sec->contents);
          elf32_arm_write_section (abfd, info, sec, sec->contents);
          if (! bfd_set_section_contents (abfd, osec, sec->contents,
          if (! bfd_set_section_contents (abfd, osec, sec->contents,
                                          sec->output_offset, sec->size))
                                          sec->output_offset, sec->size))
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  /* Write out any glue sections now that we have created all the
  /* Write out any glue sections now that we have created all the
     stubs.  */
     stubs.  */
  if (globals->bfd_of_glue_owner != NULL)
  if (globals->bfd_of_glue_owner != NULL)
    {
    {
      if (! elf32_arm_output_glue_section (info, abfd,
      if (! elf32_arm_output_glue_section (info, abfd,
                                           globals->bfd_of_glue_owner,
                                           globals->bfd_of_glue_owner,
                                           ARM2THUMB_GLUE_SECTION_NAME))
                                           ARM2THUMB_GLUE_SECTION_NAME))
        return FALSE;
        return FALSE;
 
 
      if (! elf32_arm_output_glue_section (info, abfd,
      if (! elf32_arm_output_glue_section (info, abfd,
                                           globals->bfd_of_glue_owner,
                                           globals->bfd_of_glue_owner,
                                           THUMB2ARM_GLUE_SECTION_NAME))
                                           THUMB2ARM_GLUE_SECTION_NAME))
        return FALSE;
        return FALSE;
 
 
      if (! elf32_arm_output_glue_section (info, abfd,
      if (! elf32_arm_output_glue_section (info, abfd,
                                           globals->bfd_of_glue_owner,
                                           globals->bfd_of_glue_owner,
                                           VFP11_ERRATUM_VENEER_SECTION_NAME))
                                           VFP11_ERRATUM_VENEER_SECTION_NAME))
        return FALSE;
        return FALSE;
 
 
      if (! elf32_arm_output_glue_section (info, abfd,
      if (! elf32_arm_output_glue_section (info, abfd,
                                           globals->bfd_of_glue_owner,
                                           globals->bfd_of_glue_owner,
                                           ARM_BX_GLUE_SECTION_NAME))
                                           ARM_BX_GLUE_SECTION_NAME))
        return FALSE;
        return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Set the right machine number.  */
/* Set the right machine number.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_object_p (bfd *abfd)
elf32_arm_object_p (bfd *abfd)
{
{
  unsigned int mach;
  unsigned int mach;
 
 
  mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
  mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
 
 
  if (mach != bfd_mach_arm_unknown)
  if (mach != bfd_mach_arm_unknown)
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
 
 
  else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
  else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
 
 
  else
  else
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
    bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Function to keep ARM specific flags in the ELF header.  */
/* Function to keep ARM specific flags in the ELF header.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_set_private_flags (bfd *abfd, flagword flags)
elf32_arm_set_private_flags (bfd *abfd, flagword flags)
{
{
  if (elf_flags_init (abfd)
  if (elf_flags_init (abfd)
      && elf_elfheader (abfd)->e_flags != flags)
      && elf_elfheader (abfd)->e_flags != flags)
    {
    {
      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
        {
        {
          if (flags & EF_ARM_INTERWORK)
          if (flags & EF_ARM_INTERWORK)
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
              (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
               abfd);
               abfd);
          else
          else
            _bfd_error_handler
            _bfd_error_handler
              (_("Warning: Clearing the interworking flag of %B due to outside request"),
              (_("Warning: Clearing the interworking flag of %B due to outside request"),
               abfd);
               abfd);
        }
        }
    }
    }
  else
  else
    {
    {
      elf_elfheader (abfd)->e_flags = flags;
      elf_elfheader (abfd)->e_flags = flags;
      elf_flags_init (abfd) = TRUE;
      elf_flags_init (abfd) = TRUE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy backend specific data from one object module to another.  */
/* Copy backend specific data from one object module to another.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
{
  flagword in_flags;
  flagword in_flags;
  flagword out_flags;
  flagword out_flags;
 
 
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
    return TRUE;
    return TRUE;
 
 
  in_flags  = elf_elfheader (ibfd)->e_flags;
  in_flags  = elf_elfheader (ibfd)->e_flags;
  out_flags = elf_elfheader (obfd)->e_flags;
  out_flags = elf_elfheader (obfd)->e_flags;
 
 
  if (elf_flags_init (obfd)
  if (elf_flags_init (obfd)
      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
      && in_flags != out_flags)
      && in_flags != out_flags)
    {
    {
      /* Cannot mix APCS26 and APCS32 code.  */
      /* Cannot mix APCS26 and APCS32 code.  */
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
        return FALSE;
        return FALSE;
 
 
      /* Cannot mix float APCS and non-float APCS code.  */
      /* Cannot mix float APCS and non-float APCS code.  */
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
        return FALSE;
        return FALSE;
 
 
      /* If the src and dest have different interworking flags
      /* If the src and dest have different interworking flags
         then turn off the interworking bit.  */
         then turn off the interworking bit.  */
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
        {
        {
          if (out_flags & EF_ARM_INTERWORK)
          if (out_flags & EF_ARM_INTERWORK)
            _bfd_error_handler
            _bfd_error_handler
              (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
              (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
               obfd, ibfd);
               obfd, ibfd);
 
 
          in_flags &= ~EF_ARM_INTERWORK;
          in_flags &= ~EF_ARM_INTERWORK;
        }
        }
 
 
      /* Likewise for PIC, though don't warn for this case.  */
      /* Likewise for PIC, though don't warn for this case.  */
      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
        in_flags &= ~EF_ARM_PIC;
        in_flags &= ~EF_ARM_PIC;
    }
    }
 
 
  elf_elfheader (obfd)->e_flags = in_flags;
  elf_elfheader (obfd)->e_flags = in_flags;
  elf_flags_init (obfd) = TRUE;
  elf_flags_init (obfd) = TRUE;
 
 
  /* Also copy the EI_OSABI field.  */
  /* Also copy the EI_OSABI field.  */
  elf_elfheader (obfd)->e_ident[EI_OSABI] =
  elf_elfheader (obfd)->e_ident[EI_OSABI] =
    elf_elfheader (ibfd)->e_ident[EI_OSABI];
    elf_elfheader (ibfd)->e_ident[EI_OSABI];
 
 
  /* Copy object attributes.  */
  /* Copy object attributes.  */
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
  _bfd_elf_copy_obj_attributes (ibfd, obfd);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Values for Tag_ABI_PCS_R9_use.  */
/* Values for Tag_ABI_PCS_R9_use.  */
enum
enum
{
{
  AEABI_R9_V6,
  AEABI_R9_V6,
  AEABI_R9_SB,
  AEABI_R9_SB,
  AEABI_R9_TLS,
  AEABI_R9_TLS,
  AEABI_R9_unused
  AEABI_R9_unused
};
};
 
 
/* Values for Tag_ABI_PCS_RW_data.  */
/* Values for Tag_ABI_PCS_RW_data.  */
enum
enum
{
{
  AEABI_PCS_RW_data_absolute,
  AEABI_PCS_RW_data_absolute,
  AEABI_PCS_RW_data_PCrel,
  AEABI_PCS_RW_data_PCrel,
  AEABI_PCS_RW_data_SBrel,
  AEABI_PCS_RW_data_SBrel,
  AEABI_PCS_RW_data_unused
  AEABI_PCS_RW_data_unused
};
};
 
 
/* Values for Tag_ABI_enum_size.  */
/* Values for Tag_ABI_enum_size.  */
enum
enum
{
{
  AEABI_enum_unused,
  AEABI_enum_unused,
  AEABI_enum_short,
  AEABI_enum_short,
  AEABI_enum_wide,
  AEABI_enum_wide,
  AEABI_enum_forced_wide
  AEABI_enum_forced_wide
};
};
 
 
/* Determine whether an object attribute tag takes an integer, a
/* Determine whether an object attribute tag takes an integer, a
   string or both.  */
   string or both.  */
 
 
static int
static int
elf32_arm_obj_attrs_arg_type (int tag)
elf32_arm_obj_attrs_arg_type (int tag)
{
{
  if (tag == Tag_compatibility)
  if (tag == Tag_compatibility)
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
  else if (tag == Tag_nodefaults)
  else if (tag == Tag_nodefaults)
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
    return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
  else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
  else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
    return ATTR_TYPE_FLAG_STR_VAL;
    return ATTR_TYPE_FLAG_STR_VAL;
  else if (tag < 32)
  else if (tag < 32)
    return ATTR_TYPE_FLAG_INT_VAL;
    return ATTR_TYPE_FLAG_INT_VAL;
  else
  else
    return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
    return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
}
}
 
 
/* The ABI defines that Tag_conformance should be emitted first, and that
/* The ABI defines that Tag_conformance should be emitted first, and that
   Tag_nodefaults should be second (if either is defined).  This sets those
   Tag_nodefaults should be second (if either is defined).  This sets those
   two positions, and bumps up the position of all the remaining tags to
   two positions, and bumps up the position of all the remaining tags to
   compensate.  */
   compensate.  */
static int
static int
elf32_arm_obj_attrs_order (int num)
elf32_arm_obj_attrs_order (int num)
{
{
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
    return Tag_conformance;
    return Tag_conformance;
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
  if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
    return Tag_nodefaults;
    return Tag_nodefaults;
  if ((num - 2) < Tag_nodefaults)
  if ((num - 2) < Tag_nodefaults)
    return num - 2;
    return num - 2;
  if ((num - 1) < Tag_conformance)
  if ((num - 1) < Tag_conformance)
    return num - 1;
    return num - 1;
  return num;
  return num;
}
}
 
 
/* Attribute numbers >=64 (mod 128) can be safely ignored.  */
/* Attribute numbers >=64 (mod 128) can be safely ignored.  */
static bfd_boolean
static bfd_boolean
elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
{
{
  if ((tag & 127) < 64)
  if ((tag & 127) < 64)
    {
    {
      _bfd_error_handler
      _bfd_error_handler
        (_("%B: Unknown mandatory EABI object attribute %d"),
        (_("%B: Unknown mandatory EABI object attribute %d"),
         abfd, tag);
         abfd, tag);
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
      return FALSE;
    }
    }
  else
  else
    {
    {
      _bfd_error_handler
      _bfd_error_handler
        (_("Warning: %B: Unknown EABI object attribute %d"),
        (_("Warning: %B: Unknown EABI object attribute %d"),
         abfd, tag);
         abfd, tag);
      return TRUE;
      return TRUE;
    }
    }
}
}
 
 
/* Read the architecture from the Tag_also_compatible_with attribute, if any.
/* Read the architecture from the Tag_also_compatible_with attribute, if any.
   Returns -1 if no architecture could be read.  */
   Returns -1 if no architecture could be read.  */
 
 
static int
static int
get_secondary_compatible_arch (bfd *abfd)
get_secondary_compatible_arch (bfd *abfd)
{
{
  obj_attribute *attr =
  obj_attribute *attr =
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
 
 
  /* Note: the tag and its argument below are uleb128 values, though
  /* Note: the tag and its argument below are uleb128 values, though
     currently-defined values fit in one byte for each.  */
     currently-defined values fit in one byte for each.  */
  if (attr->s
  if (attr->s
      && attr->s[0] == Tag_CPU_arch
      && attr->s[0] == Tag_CPU_arch
      && (attr->s[1] & 128) != 128
      && (attr->s[1] & 128) != 128
      && attr->s[2] == 0)
      && attr->s[2] == 0)
   return attr->s[1];
   return attr->s[1];
 
 
  /* This tag is "safely ignorable", so don't complain if it looks funny.  */
  /* This tag is "safely ignorable", so don't complain if it looks funny.  */
  return -1;
  return -1;
}
}
 
 
/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
   The tag is removed if ARCH is -1.  */
   The tag is removed if ARCH is -1.  */
 
 
static void
static void
set_secondary_compatible_arch (bfd *abfd, int arch)
set_secondary_compatible_arch (bfd *abfd, int arch)
{
{
  obj_attribute *attr =
  obj_attribute *attr =
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
    &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
 
 
  if (arch == -1)
  if (arch == -1)
    {
    {
      attr->s = NULL;
      attr->s = NULL;
      return;
      return;
    }
    }
 
 
  /* Note: the tag and its argument below are uleb128 values, though
  /* Note: the tag and its argument below are uleb128 values, though
     currently-defined values fit in one byte for each.  */
     currently-defined values fit in one byte for each.  */
  if (!attr->s)
  if (!attr->s)
    attr->s = (char *) bfd_alloc (abfd, 3);
    attr->s = (char *) bfd_alloc (abfd, 3);
  attr->s[0] = Tag_CPU_arch;
  attr->s[0] = Tag_CPU_arch;
  attr->s[1] = arch;
  attr->s[1] = arch;
  attr->s[2] = '\0';
  attr->s[2] = '\0';
}
}
 
 
/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
   into account.  */
   into account.  */
 
 
static int
static int
tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
                      int newtag, int secondary_compat)
                      int newtag, int secondary_compat)
{
{
#define T(X) TAG_CPU_ARCH_##X
#define T(X) TAG_CPU_ARCH_##X
  int tagl, tagh, result;
  int tagl, tagh, result;
  const int v6t2[] =
  const int v6t2[] =
    {
    {
      T(V6T2),   /* PRE_V4.  */
      T(V6T2),   /* PRE_V4.  */
      T(V6T2),   /* V4.  */
      T(V6T2),   /* V4.  */
      T(V6T2),   /* V4T.  */
      T(V6T2),   /* V4T.  */
      T(V6T2),   /* V5T.  */
      T(V6T2),   /* V5T.  */
      T(V6T2),   /* V5TE.  */
      T(V6T2),   /* V5TE.  */
      T(V6T2),   /* V5TEJ.  */
      T(V6T2),   /* V5TEJ.  */
      T(V6T2),   /* V6.  */
      T(V6T2),   /* V6.  */
      T(V7),     /* V6KZ.  */
      T(V7),     /* V6KZ.  */
      T(V6T2)    /* V6T2.  */
      T(V6T2)    /* V6T2.  */
    };
    };
  const int v6k[] =
  const int v6k[] =
    {
    {
      T(V6K),    /* PRE_V4.  */
      T(V6K),    /* PRE_V4.  */
      T(V6K),    /* V4.  */
      T(V6K),    /* V4.  */
      T(V6K),    /* V4T.  */
      T(V6K),    /* V4T.  */
      T(V6K),    /* V5T.  */
      T(V6K),    /* V5T.  */
      T(V6K),    /* V5TE.  */
      T(V6K),    /* V5TE.  */
      T(V6K),    /* V5TEJ.  */
      T(V6K),    /* V5TEJ.  */
      T(V6K),    /* V6.  */
      T(V6K),    /* V6.  */
      T(V6KZ),   /* V6KZ.  */
      T(V6KZ),   /* V6KZ.  */
      T(V7),     /* V6T2.  */
      T(V7),     /* V6T2.  */
      T(V6K)     /* V6K.  */
      T(V6K)     /* V6K.  */
    };
    };
  const int v7[] =
  const int v7[] =
    {
    {
      T(V7),     /* PRE_V4.  */
      T(V7),     /* PRE_V4.  */
      T(V7),     /* V4.  */
      T(V7),     /* V4.  */
      T(V7),     /* V4T.  */
      T(V7),     /* V4T.  */
      T(V7),     /* V5T.  */
      T(V7),     /* V5T.  */
      T(V7),     /* V5TE.  */
      T(V7),     /* V5TE.  */
      T(V7),     /* V5TEJ.  */
      T(V7),     /* V5TEJ.  */
      T(V7),     /* V6.  */
      T(V7),     /* V6.  */
      T(V7),     /* V6KZ.  */
      T(V7),     /* V6KZ.  */
      T(V7),     /* V6T2.  */
      T(V7),     /* V6T2.  */
      T(V7),     /* V6K.  */
      T(V7),     /* V6K.  */
      T(V7)      /* V7.  */
      T(V7)      /* V7.  */
    };
    };
  const int v6_m[] =
  const int v6_m[] =
    {
    {
      -1,        /* PRE_V4.  */
      -1,        /* PRE_V4.  */
      -1,        /* V4.  */
      -1,        /* V4.  */
      T(V6K),    /* V4T.  */
      T(V6K),    /* V4T.  */
      T(V6K),    /* V5T.  */
      T(V6K),    /* V5T.  */
      T(V6K),    /* V5TE.  */
      T(V6K),    /* V5TE.  */
      T(V6K),    /* V5TEJ.  */
      T(V6K),    /* V5TEJ.  */
      T(V6K),    /* V6.  */
      T(V6K),    /* V6.  */
      T(V6KZ),   /* V6KZ.  */
      T(V6KZ),   /* V6KZ.  */
      T(V7),     /* V6T2.  */
      T(V7),     /* V6T2.  */
      T(V6K),    /* V6K.  */
      T(V6K),    /* V6K.  */
      T(V7),     /* V7.  */
      T(V7),     /* V7.  */
      T(V6_M)    /* V6_M.  */
      T(V6_M)    /* V6_M.  */
    };
    };
  const int v6s_m[] =
  const int v6s_m[] =
    {
    {
      -1,        /* PRE_V4.  */
      -1,        /* PRE_V4.  */
      -1,        /* V4.  */
      -1,        /* V4.  */
      T(V6K),    /* V4T.  */
      T(V6K),    /* V4T.  */
      T(V6K),    /* V5T.  */
      T(V6K),    /* V5T.  */
      T(V6K),    /* V5TE.  */
      T(V6K),    /* V5TE.  */
      T(V6K),    /* V5TEJ.  */
      T(V6K),    /* V5TEJ.  */
      T(V6K),    /* V6.  */
      T(V6K),    /* V6.  */
      T(V6KZ),   /* V6KZ.  */
      T(V6KZ),   /* V6KZ.  */
      T(V7),     /* V6T2.  */
      T(V7),     /* V6T2.  */
      T(V6K),    /* V6K.  */
      T(V6K),    /* V6K.  */
      T(V7),     /* V7.  */
      T(V7),     /* V7.  */
      T(V6S_M),  /* V6_M.  */
      T(V6S_M),  /* V6_M.  */
      T(V6S_M)   /* V6S_M.  */
      T(V6S_M)   /* V6S_M.  */
    };
    };
  const int v7e_m[] =
  const int v7e_m[] =
    {
    {
      -1,        /* PRE_V4.  */
      -1,        /* PRE_V4.  */
      -1,        /* V4.  */
      -1,        /* V4.  */
      T(V7E_M),  /* V4T.  */
      T(V7E_M),  /* V4T.  */
      T(V7E_M),  /* V5T.  */
      T(V7E_M),  /* V5T.  */
      T(V7E_M),  /* V5TE.  */
      T(V7E_M),  /* V5TE.  */
      T(V7E_M),  /* V5TEJ.  */
      T(V7E_M),  /* V5TEJ.  */
      T(V7E_M),  /* V6.  */
      T(V7E_M),  /* V6.  */
      T(V7E_M),  /* V6KZ.  */
      T(V7E_M),  /* V6KZ.  */
      T(V7E_M),  /* V6T2.  */
      T(V7E_M),  /* V6T2.  */
      T(V7E_M),  /* V6K.  */
      T(V7E_M),  /* V6K.  */
      T(V7E_M),  /* V7.  */
      T(V7E_M),  /* V7.  */
      T(V7E_M),  /* V6_M.  */
      T(V7E_M),  /* V6_M.  */
      T(V7E_M),  /* V6S_M.  */
      T(V7E_M),  /* V6S_M.  */
      T(V7E_M)   /* V7E_M.  */
      T(V7E_M)   /* V7E_M.  */
    };
    };
  const int v4t_plus_v6_m[] =
  const int v4t_plus_v6_m[] =
    {
    {
      -1,               /* PRE_V4.  */
      -1,               /* PRE_V4.  */
      -1,               /* V4.  */
      -1,               /* V4.  */
      T(V4T),           /* V4T.  */
      T(V4T),           /* V4T.  */
      T(V5T),           /* V5T.  */
      T(V5T),           /* V5T.  */
      T(V5TE),          /* V5TE.  */
      T(V5TE),          /* V5TE.  */
      T(V5TEJ),         /* V5TEJ.  */
      T(V5TEJ),         /* V5TEJ.  */
      T(V6),            /* V6.  */
      T(V6),            /* V6.  */
      T(V6KZ),          /* V6KZ.  */
      T(V6KZ),          /* V6KZ.  */
      T(V6T2),          /* V6T2.  */
      T(V6T2),          /* V6T2.  */
      T(V6K),           /* V6K.  */
      T(V6K),           /* V6K.  */
      T(V7),            /* V7.  */
      T(V7),            /* V7.  */
      T(V6_M),          /* V6_M.  */
      T(V6_M),          /* V6_M.  */
      T(V6S_M),         /* V6S_M.  */
      T(V6S_M),         /* V6S_M.  */
      T(V7E_M),         /* V7E_M.  */
      T(V7E_M),         /* V7E_M.  */
      T(V4T_PLUS_V6_M)  /* V4T plus V6_M.  */
      T(V4T_PLUS_V6_M)  /* V4T plus V6_M.  */
    };
    };
  const int *comb[] =
  const int *comb[] =
    {
    {
      v6t2,
      v6t2,
      v6k,
      v6k,
      v7,
      v7,
      v6_m,
      v6_m,
      v6s_m,
      v6s_m,
      v7e_m,
      v7e_m,
      /* Pseudo-architecture.  */
      /* Pseudo-architecture.  */
      v4t_plus_v6_m
      v4t_plus_v6_m
    };
    };
 
 
  /* Check we've not got a higher architecture than we know about.  */
  /* Check we've not got a higher architecture than we know about.  */
 
 
  if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
  if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
    {
    {
      _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
      _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
      return -1;
      return -1;
    }
    }
 
 
  /* Override old tag if we have a Tag_also_compatible_with on the output.  */
  /* Override old tag if we have a Tag_also_compatible_with on the output.  */
 
 
  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
    oldtag = T(V4T_PLUS_V6_M);
    oldtag = T(V4T_PLUS_V6_M);
 
 
  /* And override the new tag if we have a Tag_also_compatible_with on the
  /* And override the new tag if we have a Tag_also_compatible_with on the
     input.  */
     input.  */
 
 
  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
    newtag = T(V4T_PLUS_V6_M);
    newtag = T(V4T_PLUS_V6_M);
 
 
  tagl = (oldtag < newtag) ? oldtag : newtag;
  tagl = (oldtag < newtag) ? oldtag : newtag;
  result = tagh = (oldtag > newtag) ? oldtag : newtag;
  result = tagh = (oldtag > newtag) ? oldtag : newtag;
 
 
  /* Architectures before V6KZ add features monotonically.  */
  /* Architectures before V6KZ add features monotonically.  */
  if (tagh <= TAG_CPU_ARCH_V6KZ)
  if (tagh <= TAG_CPU_ARCH_V6KZ)
    return result;
    return result;
 
 
  result = comb[tagh - T(V6T2)][tagl];
  result = comb[tagh - T(V6T2)][tagl];
 
 
  /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
  /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
     as the canonical version.  */
     as the canonical version.  */
  if (result == T(V4T_PLUS_V6_M))
  if (result == T(V4T_PLUS_V6_M))
    {
    {
      result = T(V4T);
      result = T(V4T);
      *secondary_compat_out = T(V6_M);
      *secondary_compat_out = T(V6_M);
    }
    }
  else
  else
    *secondary_compat_out = -1;
    *secondary_compat_out = -1;
 
 
  if (result == -1)
  if (result == -1)
    {
    {
      _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
      _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
                          ibfd, oldtag, newtag);
                          ibfd, oldtag, newtag);
      return -1;
      return -1;
    }
    }
 
 
  return result;
  return result;
#undef T
#undef T
}
}
 
 
/* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
/* Merge EABI object attributes from IBFD into OBFD.  Raise an error if there
   are conflicting attributes.  */
   are conflicting attributes.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
{
{
  obj_attribute *in_attr;
  obj_attribute *in_attr;
  obj_attribute *out_attr;
  obj_attribute *out_attr;
  /* Some tags have 0 = don't care, 1 = strong requirement,
  /* Some tags have 0 = don't care, 1 = strong requirement,
     2 = weak requirement.  */
     2 = weak requirement.  */
  static const int order_021[3] = {0, 2, 1};
  static const int order_021[3] = {0, 2, 1};
  int i;
  int i;
  bfd_boolean result = TRUE;
  bfd_boolean result = TRUE;
 
 
  /* Skip the linker stubs file.  This preserves previous behavior
  /* Skip the linker stubs file.  This preserves previous behavior
     of accepting unknown attributes in the first input file - but
     of accepting unknown attributes in the first input file - but
     is that a bug?  */
     is that a bug?  */
  if (ibfd->flags & BFD_LINKER_CREATED)
  if (ibfd->flags & BFD_LINKER_CREATED)
    return TRUE;
    return TRUE;
 
 
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
    {
    {
      /* This is the first object.  Copy the attributes.  */
      /* This is the first object.  Copy the attributes.  */
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
 
 
      out_attr = elf_known_obj_attributes_proc (obfd);
      out_attr = elf_known_obj_attributes_proc (obfd);
 
 
      /* Use the Tag_null value to indicate the attributes have been
      /* Use the Tag_null value to indicate the attributes have been
         initialized.  */
         initialized.  */
      out_attr[0].i = 1;
      out_attr[0].i = 1;
 
 
      /* We do not output objects with Tag_MPextension_use_legacy - we move
      /* We do not output objects with Tag_MPextension_use_legacy - we move
         the attribute's value to Tag_MPextension_use.  */
         the attribute's value to Tag_MPextension_use.  */
      if (out_attr[Tag_MPextension_use_legacy].i != 0)
      if (out_attr[Tag_MPextension_use_legacy].i != 0)
        {
        {
          if (out_attr[Tag_MPextension_use].i != 0
          if (out_attr[Tag_MPextension_use].i != 0
              && out_attr[Tag_MPextension_use_legacy].i
              && out_attr[Tag_MPextension_use_legacy].i
                != out_attr[Tag_MPextension_use].i)
                != out_attr[Tag_MPextension_use].i)
            {
            {
              _bfd_error_handler
              _bfd_error_handler
                (_("Error: %B has both the current and legacy "
                (_("Error: %B has both the current and legacy "
                   "Tag_MPextension_use attributes"), ibfd);
                   "Tag_MPextension_use attributes"), ibfd);
              result = FALSE;
              result = FALSE;
            }
            }
 
 
          out_attr[Tag_MPextension_use] =
          out_attr[Tag_MPextension_use] =
            out_attr[Tag_MPextension_use_legacy];
            out_attr[Tag_MPextension_use_legacy];
          out_attr[Tag_MPextension_use_legacy].type = 0;
          out_attr[Tag_MPextension_use_legacy].type = 0;
          out_attr[Tag_MPextension_use_legacy].i = 0;
          out_attr[Tag_MPextension_use_legacy].i = 0;
        }
        }
 
 
      return result;
      return result;
    }
    }
 
 
  in_attr = elf_known_obj_attributes_proc (ibfd);
  in_attr = elf_known_obj_attributes_proc (ibfd);
  out_attr = elf_known_obj_attributes_proc (obfd);
  out_attr = elf_known_obj_attributes_proc (obfd);
  /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
  /* This needs to happen before Tag_ABI_FP_number_model is merged.  */
  if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
  if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
    {
    {
      /* Ignore mismatches if the object doesn't use floating point.  */
      /* Ignore mismatches if the object doesn't use floating point.  */
      if (out_attr[Tag_ABI_FP_number_model].i == 0)
      if (out_attr[Tag_ABI_FP_number_model].i == 0)
        out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
        out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
      else if (in_attr[Tag_ABI_FP_number_model].i != 0)
      else if (in_attr[Tag_ABI_FP_number_model].i != 0)
        {
        {
          _bfd_error_handler
          _bfd_error_handler
            (_("error: %B uses VFP register arguments, %B does not"),
            (_("error: %B uses VFP register arguments, %B does not"),
             in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
             in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
             in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
             in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
          result = FALSE;
          result = FALSE;
        }
        }
    }
    }
 
 
  for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
  for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
    {
    {
      /* Merge this attribute with existing attributes.  */
      /* Merge this attribute with existing attributes.  */
      switch (i)
      switch (i)
        {
        {
        case Tag_CPU_raw_name:
        case Tag_CPU_raw_name:
        case Tag_CPU_name:
        case Tag_CPU_name:
          /* These are merged after Tag_CPU_arch. */
          /* These are merged after Tag_CPU_arch. */
          break;
          break;
 
 
        case Tag_ABI_optimization_goals:
        case Tag_ABI_optimization_goals:
        case Tag_ABI_FP_optimization_goals:
        case Tag_ABI_FP_optimization_goals:
          /* Use the first value seen.  */
          /* Use the first value seen.  */
          break;
          break;
 
 
        case Tag_CPU_arch:
        case Tag_CPU_arch:
          {
          {
            int secondary_compat = -1, secondary_compat_out = -1;
            int secondary_compat = -1, secondary_compat_out = -1;
            unsigned int saved_out_attr = out_attr[i].i;
            unsigned int saved_out_attr = out_attr[i].i;
            static const char *name_table[] = {
            static const char *name_table[] = {
                /* These aren't real CPU names, but we can't guess
                /* These aren't real CPU names, but we can't guess
                   that from the architecture version alone.  */
                   that from the architecture version alone.  */
                "Pre v4",
                "Pre v4",
                "ARM v4",
                "ARM v4",
                "ARM v4T",
                "ARM v4T",
                "ARM v5T",
                "ARM v5T",
                "ARM v5TE",
                "ARM v5TE",
                "ARM v5TEJ",
                "ARM v5TEJ",
                "ARM v6",
                "ARM v6",
                "ARM v6KZ",
                "ARM v6KZ",
                "ARM v6T2",
                "ARM v6T2",
                "ARM v6K",
                "ARM v6K",
                "ARM v7",
                "ARM v7",
                "ARM v6-M",
                "ARM v6-M",
                "ARM v6S-M"
                "ARM v6S-M"
            };
            };
 
 
            /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
            /* Merge Tag_CPU_arch and Tag_also_compatible_with.  */
            secondary_compat = get_secondary_compatible_arch (ibfd);
            secondary_compat = get_secondary_compatible_arch (ibfd);
            secondary_compat_out = get_secondary_compatible_arch (obfd);
            secondary_compat_out = get_secondary_compatible_arch (obfd);
            out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
            out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
                                                  &secondary_compat_out,
                                                  &secondary_compat_out,
                                                  in_attr[i].i,
                                                  in_attr[i].i,
                                                  secondary_compat);
                                                  secondary_compat);
            set_secondary_compatible_arch (obfd, secondary_compat_out);
            set_secondary_compatible_arch (obfd, secondary_compat_out);
 
 
            /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
            /* Merge Tag_CPU_name and Tag_CPU_raw_name.  */
            if (out_attr[i].i == saved_out_attr)
            if (out_attr[i].i == saved_out_attr)
              ; /* Leave the names alone.  */
              ; /* Leave the names alone.  */
            else if (out_attr[i].i == in_attr[i].i)
            else if (out_attr[i].i == in_attr[i].i)
              {
              {
                /* The output architecture has been changed to match the
                /* The output architecture has been changed to match the
                   input architecture.  Use the input names.  */
                   input architecture.  Use the input names.  */
                out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
                out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
                  : NULL;
                  : NULL;
                out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
                out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
                  ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
                  : NULL;
                  : NULL;
              }
              }
            else
            else
              {
              {
                out_attr[Tag_CPU_name].s = NULL;
                out_attr[Tag_CPU_name].s = NULL;
                out_attr[Tag_CPU_raw_name].s = NULL;
                out_attr[Tag_CPU_raw_name].s = NULL;
              }
              }
 
 
            /* If we still don't have a value for Tag_CPU_name,
            /* If we still don't have a value for Tag_CPU_name,
               make one up now.  Tag_CPU_raw_name remains blank.  */
               make one up now.  Tag_CPU_raw_name remains blank.  */
            if (out_attr[Tag_CPU_name].s == NULL
            if (out_attr[Tag_CPU_name].s == NULL
                && out_attr[i].i < ARRAY_SIZE (name_table))
                && out_attr[i].i < ARRAY_SIZE (name_table))
              out_attr[Tag_CPU_name].s =
              out_attr[Tag_CPU_name].s =
                _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
                _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
          }
          }
          break;
          break;
 
 
        case Tag_ARM_ISA_use:
        case Tag_ARM_ISA_use:
        case Tag_THUMB_ISA_use:
        case Tag_THUMB_ISA_use:
        case Tag_WMMX_arch:
        case Tag_WMMX_arch:
        case Tag_Advanced_SIMD_arch:
        case Tag_Advanced_SIMD_arch:
          /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
          /* ??? Do Advanced_SIMD (NEON) and WMMX conflict?  */
        case Tag_ABI_FP_rounding:
        case Tag_ABI_FP_rounding:
        case Tag_ABI_FP_exceptions:
        case Tag_ABI_FP_exceptions:
        case Tag_ABI_FP_user_exceptions:
        case Tag_ABI_FP_user_exceptions:
        case Tag_ABI_FP_number_model:
        case Tag_ABI_FP_number_model:
        case Tag_FP_HP_extension:
        case Tag_FP_HP_extension:
        case Tag_CPU_unaligned_access:
        case Tag_CPU_unaligned_access:
        case Tag_T2EE_use:
        case Tag_T2EE_use:
        case Tag_MPextension_use:
        case Tag_MPextension_use:
          /* Use the largest value specified.  */
          /* Use the largest value specified.  */
          if (in_attr[i].i > out_attr[i].i)
          if (in_attr[i].i > out_attr[i].i)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          break;
          break;
 
 
        case Tag_ABI_align_preserved:
        case Tag_ABI_align_preserved:
        case Tag_ABI_PCS_RO_data:
        case Tag_ABI_PCS_RO_data:
          /* Use the smallest value specified.  */
          /* Use the smallest value specified.  */
          if (in_attr[i].i < out_attr[i].i)
          if (in_attr[i].i < out_attr[i].i)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          break;
          break;
 
 
        case Tag_ABI_align_needed:
        case Tag_ABI_align_needed:
          if ((in_attr[i].i > 0 || out_attr[i].i > 0)
          if ((in_attr[i].i > 0 || out_attr[i].i > 0)
              && (in_attr[Tag_ABI_align_preserved].i == 0
              && (in_attr[Tag_ABI_align_preserved].i == 0
                  || out_attr[Tag_ABI_align_preserved].i == 0))
                  || out_attr[Tag_ABI_align_preserved].i == 0))
            {
            {
              /* This error message should be enabled once all non-conformant
              /* This error message should be enabled once all non-conformant
                 binaries in the toolchain have had the attributes set
                 binaries in the toolchain have had the attributes set
                 properly.
                 properly.
              _bfd_error_handler
              _bfd_error_handler
                (_("error: %B: 8-byte data alignment conflicts with %B"),
                (_("error: %B: 8-byte data alignment conflicts with %B"),
                 obfd, ibfd);
                 obfd, ibfd);
              result = FALSE; */
              result = FALSE; */
            }
            }
          /* Fall through.  */
          /* Fall through.  */
        case Tag_ABI_FP_denormal:
        case Tag_ABI_FP_denormal:
        case Tag_ABI_PCS_GOT_use:
        case Tag_ABI_PCS_GOT_use:
          /* Use the "greatest" from the sequence 0, 2, 1, or the largest
          /* Use the "greatest" from the sequence 0, 2, 1, or the largest
             value if greater than 2 (for future-proofing).  */
             value if greater than 2 (for future-proofing).  */
          if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
          if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
              || (in_attr[i].i <= 2 && out_attr[i].i <= 2
              || (in_attr[i].i <= 2 && out_attr[i].i <= 2
                  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
                  && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          break;
          break;
 
 
        case Tag_Virtualization_use:
        case Tag_Virtualization_use:
          /* The virtualization tag effectively stores two bits of
          /* The virtualization tag effectively stores two bits of
             information: the intended use of TrustZone (in bit 0), and the
             information: the intended use of TrustZone (in bit 0), and the
             intended use of Virtualization (in bit 1).  */
             intended use of Virtualization (in bit 1).  */
          if (out_attr[i].i == 0)
          if (out_attr[i].i == 0)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          else if (in_attr[i].i != 0
          else if (in_attr[i].i != 0
                   && in_attr[i].i != out_attr[i].i)
                   && in_attr[i].i != out_attr[i].i)
            {
            {
              if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
              if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
                out_attr[i].i = 3;
                out_attr[i].i = 3;
              else
              else
                {
                {
                  _bfd_error_handler
                  _bfd_error_handler
                    (_("error: %B: unable to merge virtualization attributes "
                    (_("error: %B: unable to merge virtualization attributes "
                       "with %B"),
                       "with %B"),
                     obfd, ibfd);
                     obfd, ibfd);
                  result = FALSE;
                  result = FALSE;
                }
                }
            }
            }
          break;
          break;
 
 
        case Tag_CPU_arch_profile:
        case Tag_CPU_arch_profile:
          if (out_attr[i].i != in_attr[i].i)
          if (out_attr[i].i != in_attr[i].i)
            {
            {
              /* 0 will merge with anything.
              /* 0 will merge with anything.
                 'A' and 'S' merge to 'A'.
                 'A' and 'S' merge to 'A'.
                 'R' and 'S' merge to 'R'.
                 'R' and 'S' merge to 'R'.
                 'M' and 'A|R|S' is an error.  */
                 'M' and 'A|R|S' is an error.  */
              if (out_attr[i].i == 0
              if (out_attr[i].i == 0
                  || (out_attr[i].i == 'S'
                  || (out_attr[i].i == 'S'
                      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
                      && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
                out_attr[i].i = in_attr[i].i;
                out_attr[i].i = in_attr[i].i;
              else if (in_attr[i].i == 0
              else if (in_attr[i].i == 0
                       || (in_attr[i].i == 'S'
                       || (in_attr[i].i == 'S'
                           && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
                           && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
                ; /* Do nothing. */
                ; /* Do nothing. */
              else
              else
                {
                {
                  _bfd_error_handler
                  _bfd_error_handler
                    (_("error: %B: Conflicting architecture profiles %c/%c"),
                    (_("error: %B: Conflicting architecture profiles %c/%c"),
                     ibfd,
                     ibfd,
                     in_attr[i].i ? in_attr[i].i : '0',
                     in_attr[i].i ? in_attr[i].i : '0',
                     out_attr[i].i ? out_attr[i].i : '0');
                     out_attr[i].i ? out_attr[i].i : '0');
                  result = FALSE;
                  result = FALSE;
                }
                }
            }
            }
          break;
          break;
        case Tag_FP_arch:
        case Tag_FP_arch:
            {
            {
              /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
              /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
                 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
                 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
                 when it's 0.  It might mean absence of FP hardware if
                 when it's 0.  It might mean absence of FP hardware if
                 Tag_FP_arch is zero, otherwise it is effectively SP + DP.  */
                 Tag_FP_arch is zero, otherwise it is effectively SP + DP.  */
 
 
              static const struct
              static const struct
              {
              {
                  int ver;
                  int ver;
                  int regs;
                  int regs;
              } vfp_versions[7] =
              } vfp_versions[7] =
                {
                {
                  {0, 0},
                  {0, 0},
                  {1, 16},
                  {1, 16},
                  {2, 16},
                  {2, 16},
                  {3, 32},
                  {3, 32},
                  {3, 16},
                  {3, 16},
                  {4, 32},
                  {4, 32},
                  {4, 16}
                  {4, 16}
                };
                };
              int ver;
              int ver;
              int regs;
              int regs;
              int newval;
              int newval;
 
 
              /* If the output has no requirement about FP hardware,
              /* If the output has no requirement about FP hardware,
                 follow the requirement of the input.  */
                 follow the requirement of the input.  */
              if (out_attr[i].i == 0)
              if (out_attr[i].i == 0)
                {
                {
                  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
                  BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
                  out_attr[i].i = in_attr[i].i;
                  out_attr[i].i = in_attr[i].i;
                  out_attr[Tag_ABI_HardFP_use].i
                  out_attr[Tag_ABI_HardFP_use].i
                    = in_attr[Tag_ABI_HardFP_use].i;
                    = in_attr[Tag_ABI_HardFP_use].i;
                  break;
                  break;
                }
                }
              /* If the input has no requirement about FP hardware, do
              /* If the input has no requirement about FP hardware, do
                 nothing.  */
                 nothing.  */
              else if (in_attr[i].i == 0)
              else if (in_attr[i].i == 0)
                {
                {
                  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
                  BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
                  break;
                  break;
                }
                }
 
 
              /* Both the input and the output have nonzero Tag_FP_arch.
              /* Both the input and the output have nonzero Tag_FP_arch.
                 So Tag_ABI_HardFP_use is (SP & DP) when it's zero.  */
                 So Tag_ABI_HardFP_use is (SP & DP) when it's zero.  */
 
 
              /* If both the input and the output have zero Tag_ABI_HardFP_use,
              /* If both the input and the output have zero Tag_ABI_HardFP_use,
                 do nothing.  */
                 do nothing.  */
              if (in_attr[Tag_ABI_HardFP_use].i == 0
              if (in_attr[Tag_ABI_HardFP_use].i == 0
                  && out_attr[Tag_ABI_HardFP_use].i == 0)
                  && out_attr[Tag_ABI_HardFP_use].i == 0)
                ;
                ;
              /* If the input and the output have different Tag_ABI_HardFP_use,
              /* If the input and the output have different Tag_ABI_HardFP_use,
                 the combination of them is 3 (SP & DP).  */
                 the combination of them is 3 (SP & DP).  */
              else if (in_attr[Tag_ABI_HardFP_use].i
              else if (in_attr[Tag_ABI_HardFP_use].i
                       != out_attr[Tag_ABI_HardFP_use].i)
                       != out_attr[Tag_ABI_HardFP_use].i)
                out_attr[Tag_ABI_HardFP_use].i = 3;
                out_attr[Tag_ABI_HardFP_use].i = 3;
 
 
              /* Now we can handle Tag_FP_arch.  */
              /* Now we can handle Tag_FP_arch.  */
 
 
              /* Values greater than 6 aren't defined, so just pick the
              /* Values greater than 6 aren't defined, so just pick the
                 biggest */
                 biggest */
              if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
              if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
                {
                {
                  out_attr[i] = in_attr[i];
                  out_attr[i] = in_attr[i];
                  break;
                  break;
                }
                }
              /* The output uses the superset of input features
              /* The output uses the superset of input features
                 (ISA version) and registers.  */
                 (ISA version) and registers.  */
              ver = vfp_versions[in_attr[i].i].ver;
              ver = vfp_versions[in_attr[i].i].ver;
              if (ver < vfp_versions[out_attr[i].i].ver)
              if (ver < vfp_versions[out_attr[i].i].ver)
                ver = vfp_versions[out_attr[i].i].ver;
                ver = vfp_versions[out_attr[i].i].ver;
              regs = vfp_versions[in_attr[i].i].regs;
              regs = vfp_versions[in_attr[i].i].regs;
              if (regs < vfp_versions[out_attr[i].i].regs)
              if (regs < vfp_versions[out_attr[i].i].regs)
                regs = vfp_versions[out_attr[i].i].regs;
                regs = vfp_versions[out_attr[i].i].regs;
              /* This assumes all possible supersets are also a valid
              /* This assumes all possible supersets are also a valid
                 options.  */
                 options.  */
              for (newval = 6; newval > 0; newval--)
              for (newval = 6; newval > 0; newval--)
                {
                {
                  if (regs == vfp_versions[newval].regs
                  if (regs == vfp_versions[newval].regs
                      && ver == vfp_versions[newval].ver)
                      && ver == vfp_versions[newval].ver)
                    break;
                    break;
                }
                }
              out_attr[i].i = newval;
              out_attr[i].i = newval;
            }
            }
          break;
          break;
        case Tag_PCS_config:
        case Tag_PCS_config:
          if (out_attr[i].i == 0)
          if (out_attr[i].i == 0)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          else if (in_attr[i].i != 0 && out_attr[i].i != 0)
          else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
            {
            {
              /* It's sometimes ok to mix different configs, so this is only
              /* It's sometimes ok to mix different configs, so this is only
                 a warning.  */
                 a warning.  */
              _bfd_error_handler
              _bfd_error_handler
                (_("Warning: %B: Conflicting platform configuration"), ibfd);
                (_("Warning: %B: Conflicting platform configuration"), ibfd);
            }
            }
          break;
          break;
        case Tag_ABI_PCS_R9_use:
        case Tag_ABI_PCS_R9_use:
          if (in_attr[i].i != out_attr[i].i
          if (in_attr[i].i != out_attr[i].i
              && out_attr[i].i != AEABI_R9_unused
              && out_attr[i].i != AEABI_R9_unused
              && in_attr[i].i != AEABI_R9_unused)
              && in_attr[i].i != AEABI_R9_unused)
            {
            {
              _bfd_error_handler
              _bfd_error_handler
                (_("error: %B: Conflicting use of R9"), ibfd);
                (_("error: %B: Conflicting use of R9"), ibfd);
              result = FALSE;
              result = FALSE;
            }
            }
          if (out_attr[i].i == AEABI_R9_unused)
          if (out_attr[i].i == AEABI_R9_unused)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          break;
          break;
        case Tag_ABI_PCS_RW_data:
        case Tag_ABI_PCS_RW_data:
          if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
          if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
              && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
            {
            {
              _bfd_error_handler
              _bfd_error_handler
                (_("error: %B: SB relative addressing conflicts with use of R9"),
                (_("error: %B: SB relative addressing conflicts with use of R9"),
                 ibfd);
                 ibfd);
              result = FALSE;
              result = FALSE;
            }
            }
          /* Use the smallest value specified.  */
          /* Use the smallest value specified.  */
          if (in_attr[i].i < out_attr[i].i)
          if (in_attr[i].i < out_attr[i].i)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          break;
          break;
        case Tag_ABI_PCS_wchar_t:
        case Tag_ABI_PCS_wchar_t:
          if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
          if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
              && !elf_arm_tdata (obfd)->no_wchar_size_warning)
              && !elf_arm_tdata (obfd)->no_wchar_size_warning)
            {
            {
              _bfd_error_handler
              _bfd_error_handler
                (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
                (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
                 ibfd, in_attr[i].i, out_attr[i].i);
                 ibfd, in_attr[i].i, out_attr[i].i);
            }
            }
          else if (in_attr[i].i && !out_attr[i].i)
          else if (in_attr[i].i && !out_attr[i].i)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          break;
          break;
        case Tag_ABI_enum_size:
        case Tag_ABI_enum_size:
          if (in_attr[i].i != AEABI_enum_unused)
          if (in_attr[i].i != AEABI_enum_unused)
            {
            {
              if (out_attr[i].i == AEABI_enum_unused
              if (out_attr[i].i == AEABI_enum_unused
                  || out_attr[i].i == AEABI_enum_forced_wide)
                  || out_attr[i].i == AEABI_enum_forced_wide)
                {
                {
                  /* The existing object is compatible with anything.
                  /* The existing object is compatible with anything.
                     Use whatever requirements the new object has.  */
                     Use whatever requirements the new object has.  */
                  out_attr[i].i = in_attr[i].i;
                  out_attr[i].i = in_attr[i].i;
                }
                }
              else if (in_attr[i].i != AEABI_enum_forced_wide
              else if (in_attr[i].i != AEABI_enum_forced_wide
                       && out_attr[i].i != in_attr[i].i
                       && out_attr[i].i != in_attr[i].i
                       && !elf_arm_tdata (obfd)->no_enum_size_warning)
                       && !elf_arm_tdata (obfd)->no_enum_size_warning)
                {
                {
                  static const char *aeabi_enum_names[] =
                  static const char *aeabi_enum_names[] =
                    { "", "variable-size", "32-bit", "" };
                    { "", "variable-size", "32-bit", "" };
                  const char *in_name =
                  const char *in_name =
                    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
                    in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
                    ? aeabi_enum_names[in_attr[i].i]
                    ? aeabi_enum_names[in_attr[i].i]
                    : "<unknown>";
                    : "<unknown>";
                  const char *out_name =
                  const char *out_name =
                    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
                    out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
                    ? aeabi_enum_names[out_attr[i].i]
                    ? aeabi_enum_names[out_attr[i].i]
                    : "<unknown>";
                    : "<unknown>";
                  _bfd_error_handler
                  _bfd_error_handler
                    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
                    (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
                     ibfd, in_name, out_name);
                     ibfd, in_name, out_name);
                }
                }
            }
            }
          break;
          break;
        case Tag_ABI_VFP_args:
        case Tag_ABI_VFP_args:
          /* Aready done.  */
          /* Aready done.  */
          break;
          break;
        case Tag_ABI_WMMX_args:
        case Tag_ABI_WMMX_args:
          if (in_attr[i].i != out_attr[i].i)
          if (in_attr[i].i != out_attr[i].i)
            {
            {
              _bfd_error_handler
              _bfd_error_handler
                (_("error: %B uses iWMMXt register arguments, %B does not"),
                (_("error: %B uses iWMMXt register arguments, %B does not"),
                 ibfd, obfd);
                 ibfd, obfd);
              result = FALSE;
              result = FALSE;
            }
            }
          break;
          break;
        case Tag_compatibility:
        case Tag_compatibility:
          /* Merged in target-independent code.  */
          /* Merged in target-independent code.  */
          break;
          break;
        case Tag_ABI_HardFP_use:
        case Tag_ABI_HardFP_use:
          /* This is handled along with Tag_FP_arch.  */
          /* This is handled along with Tag_FP_arch.  */
          break;
          break;
        case Tag_ABI_FP_16bit_format:
        case Tag_ABI_FP_16bit_format:
          if (in_attr[i].i != 0 && out_attr[i].i != 0)
          if (in_attr[i].i != 0 && out_attr[i].i != 0)
            {
            {
              if (in_attr[i].i != out_attr[i].i)
              if (in_attr[i].i != out_attr[i].i)
                {
                {
                  _bfd_error_handler
                  _bfd_error_handler
                    (_("error: fp16 format mismatch between %B and %B"),
                    (_("error: fp16 format mismatch between %B and %B"),
                     ibfd, obfd);
                     ibfd, obfd);
                  result = FALSE;
                  result = FALSE;
                }
                }
            }
            }
          if (in_attr[i].i != 0)
          if (in_attr[i].i != 0)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
          break;
          break;
 
 
        case Tag_DIV_use:
        case Tag_DIV_use:
          /* This tag is set to zero if we can use UDIV and SDIV in Thumb
          /* This tag is set to zero if we can use UDIV and SDIV in Thumb
             mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
             mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
             SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
             SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
             CPU.  We will merge as follows: If the input attribute's value
             CPU.  We will merge as follows: If the input attribute's value
             is one then the output attribute's value remains unchanged.  If
             is one then the output attribute's value remains unchanged.  If
             the input attribute's value is zero or two then if the output
             the input attribute's value is zero or two then if the output
             attribute's value is one the output value is set to the input
             attribute's value is one the output value is set to the input
             value, otherwise the output value must be the same as the
             value, otherwise the output value must be the same as the
             inputs.  */
             inputs.  */
          if (in_attr[i].i != 1 && out_attr[i].i != 1)
          if (in_attr[i].i != 1 && out_attr[i].i != 1)
            {
            {
              if (in_attr[i].i != out_attr[i].i)
              if (in_attr[i].i != out_attr[i].i)
                {
                {
                  _bfd_error_handler
                  _bfd_error_handler
                    (_("DIV usage mismatch between %B and %B"),
                    (_("DIV usage mismatch between %B and %B"),
                     ibfd, obfd);
                     ibfd, obfd);
                  result = FALSE;
                  result = FALSE;
                }
                }
            }
            }
 
 
          if (in_attr[i].i != 1)
          if (in_attr[i].i != 1)
            out_attr[i].i = in_attr[i].i;
            out_attr[i].i = in_attr[i].i;
 
 
          break;
          break;
 
 
        case Tag_MPextension_use_legacy:
        case Tag_MPextension_use_legacy:
          /* We don't output objects with Tag_MPextension_use_legacy - we
          /* We don't output objects with Tag_MPextension_use_legacy - we
             move the value to Tag_MPextension_use.  */
             move the value to Tag_MPextension_use.  */
          if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
          if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
            {
            {
              if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
              if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
                {
                {
                  _bfd_error_handler
                  _bfd_error_handler
                    (_("%B has has both the current and legacy "
                    (_("%B has has both the current and legacy "
                       "Tag_MPextension_use attributes"),
                       "Tag_MPextension_use attributes"),
                     ibfd);
                     ibfd);
                  result = FALSE;
                  result = FALSE;
                }
                }
            }
            }
 
 
          if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
          if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
            out_attr[Tag_MPextension_use] = in_attr[i];
            out_attr[Tag_MPextension_use] = in_attr[i];
 
 
          break;
          break;
 
 
        case Tag_nodefaults:
        case Tag_nodefaults:
          /* This tag is set if it exists, but the value is unused (and is
          /* This tag is set if it exists, but the value is unused (and is
             typically zero).  We don't actually need to do anything here -
             typically zero).  We don't actually need to do anything here -
             the merge happens automatically when the type flags are merged
             the merge happens automatically when the type flags are merged
             below.  */
             below.  */
          break;
          break;
        case Tag_also_compatible_with:
        case Tag_also_compatible_with:
          /* Already done in Tag_CPU_arch.  */
          /* Already done in Tag_CPU_arch.  */
          break;
          break;
        case Tag_conformance:
        case Tag_conformance:
          /* Keep the attribute if it matches.  Throw it away otherwise.
          /* Keep the attribute if it matches.  Throw it away otherwise.
             No attribute means no claim to conform.  */
             No attribute means no claim to conform.  */
          if (!in_attr[i].s || !out_attr[i].s
          if (!in_attr[i].s || !out_attr[i].s
              || strcmp (in_attr[i].s, out_attr[i].s) != 0)
              || strcmp (in_attr[i].s, out_attr[i].s) != 0)
            out_attr[i].s = NULL;
            out_attr[i].s = NULL;
          break;
          break;
 
 
        default:
        default:
          result
          result
            = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
            = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
        }
        }
 
 
      /* If out_attr was copied from in_attr then it won't have a type yet.  */
      /* If out_attr was copied from in_attr then it won't have a type yet.  */
      if (in_attr[i].type && !out_attr[i].type)
      if (in_attr[i].type && !out_attr[i].type)
        out_attr[i].type = in_attr[i].type;
        out_attr[i].type = in_attr[i].type;
    }
    }
 
 
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
  if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
  if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
    return FALSE;
    return FALSE;
 
 
  /* Check for any attributes not known on ARM.  */
  /* Check for any attributes not known on ARM.  */
  result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
  result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
 
 
  return result;
  return result;
}
}
 
 
 
 
/* Return TRUE if the two EABI versions are incompatible.  */
/* Return TRUE if the two EABI versions are incompatible.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_versions_compatible (unsigned iver, unsigned over)
elf32_arm_versions_compatible (unsigned iver, unsigned over)
{
{
  /* v4 and v5 are the same spec before and after it was released,
  /* v4 and v5 are the same spec before and after it was released,
     so allow mixing them.  */
     so allow mixing them.  */
  if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
  if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
      || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
      || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
    return TRUE;
    return TRUE;
 
 
  return (iver == over);
  return (iver == over);
}
}
 
 
/* Merge backend specific data from an object file to the output
/* Merge backend specific data from an object file to the output
   object file when linking.  */
   object file when linking.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
 
 
/* Display the flags field.  */
/* Display the flags field.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
{
{
  FILE * file = (FILE *) ptr;
  FILE * file = (FILE *) ptr;
  unsigned long flags;
  unsigned long flags;
 
 
  BFD_ASSERT (abfd != NULL && ptr != NULL);
  BFD_ASSERT (abfd != NULL && ptr != NULL);
 
 
  /* Print normal ELF private data.  */
  /* Print normal ELF private data.  */
  _bfd_elf_print_private_bfd_data (abfd, ptr);
  _bfd_elf_print_private_bfd_data (abfd, ptr);
 
 
  flags = elf_elfheader (abfd)->e_flags;
  flags = elf_elfheader (abfd)->e_flags;
  /* Ignore init flag - it may not be set, despite the flags field
  /* Ignore init flag - it may not be set, despite the flags field
     containing valid data.  */
     containing valid data.  */
 
 
  /* xgettext:c-format */
  /* xgettext:c-format */
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
 
 
  switch (EF_ARM_EABI_VERSION (flags))
  switch (EF_ARM_EABI_VERSION (flags))
    {
    {
    case EF_ARM_EABI_UNKNOWN:
    case EF_ARM_EABI_UNKNOWN:
      /* The following flag bits are GNU extensions and not part of the
      /* The following flag bits are GNU extensions and not part of the
         official ARM ELF extended ABI.  Hence they are only decoded if
         official ARM ELF extended ABI.  Hence they are only decoded if
         the EABI version is not set.  */
         the EABI version is not set.  */
      if (flags & EF_ARM_INTERWORK)
      if (flags & EF_ARM_INTERWORK)
        fprintf (file, _(" [interworking enabled]"));
        fprintf (file, _(" [interworking enabled]"));
 
 
      if (flags & EF_ARM_APCS_26)
      if (flags & EF_ARM_APCS_26)
        fprintf (file, " [APCS-26]");
        fprintf (file, " [APCS-26]");
      else
      else
        fprintf (file, " [APCS-32]");
        fprintf (file, " [APCS-32]");
 
 
      if (flags & EF_ARM_VFP_FLOAT)
      if (flags & EF_ARM_VFP_FLOAT)
        fprintf (file, _(" [VFP float format]"));
        fprintf (file, _(" [VFP float format]"));
      else if (flags & EF_ARM_MAVERICK_FLOAT)
      else if (flags & EF_ARM_MAVERICK_FLOAT)
        fprintf (file, _(" [Maverick float format]"));
        fprintf (file, _(" [Maverick float format]"));
      else
      else
        fprintf (file, _(" [FPA float format]"));
        fprintf (file, _(" [FPA float format]"));
 
 
      if (flags & EF_ARM_APCS_FLOAT)
      if (flags & EF_ARM_APCS_FLOAT)
        fprintf (file, _(" [floats passed in float registers]"));
        fprintf (file, _(" [floats passed in float registers]"));
 
 
      if (flags & EF_ARM_PIC)
      if (flags & EF_ARM_PIC)
        fprintf (file, _(" [position independent]"));
        fprintf (file, _(" [position independent]"));
 
 
      if (flags & EF_ARM_NEW_ABI)
      if (flags & EF_ARM_NEW_ABI)
        fprintf (file, _(" [new ABI]"));
        fprintf (file, _(" [new ABI]"));
 
 
      if (flags & EF_ARM_OLD_ABI)
      if (flags & EF_ARM_OLD_ABI)
        fprintf (file, _(" [old ABI]"));
        fprintf (file, _(" [old ABI]"));
 
 
      if (flags & EF_ARM_SOFT_FLOAT)
      if (flags & EF_ARM_SOFT_FLOAT)
        fprintf (file, _(" [software FP]"));
        fprintf (file, _(" [software FP]"));
 
 
      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
                 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
                 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
                 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
                 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
                 | EF_ARM_MAVERICK_FLOAT);
                 | EF_ARM_MAVERICK_FLOAT);
      break;
      break;
 
 
    case EF_ARM_EABI_VER1:
    case EF_ARM_EABI_VER1:
      fprintf (file, _(" [Version1 EABI]"));
      fprintf (file, _(" [Version1 EABI]"));
 
 
      if (flags & EF_ARM_SYMSARESORTED)
      if (flags & EF_ARM_SYMSARESORTED)
        fprintf (file, _(" [sorted symbol table]"));
        fprintf (file, _(" [sorted symbol table]"));
      else
      else
        fprintf (file, _(" [unsorted symbol table]"));
        fprintf (file, _(" [unsorted symbol table]"));
 
 
      flags &= ~ EF_ARM_SYMSARESORTED;
      flags &= ~ EF_ARM_SYMSARESORTED;
      break;
      break;
 
 
    case EF_ARM_EABI_VER2:
    case EF_ARM_EABI_VER2:
      fprintf (file, _(" [Version2 EABI]"));
      fprintf (file, _(" [Version2 EABI]"));
 
 
      if (flags & EF_ARM_SYMSARESORTED)
      if (flags & EF_ARM_SYMSARESORTED)
        fprintf (file, _(" [sorted symbol table]"));
        fprintf (file, _(" [sorted symbol table]"));
      else
      else
        fprintf (file, _(" [unsorted symbol table]"));
        fprintf (file, _(" [unsorted symbol table]"));
 
 
      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
        fprintf (file, _(" [dynamic symbols use segment index]"));
        fprintf (file, _(" [dynamic symbols use segment index]"));
 
 
      if (flags & EF_ARM_MAPSYMSFIRST)
      if (flags & EF_ARM_MAPSYMSFIRST)
        fprintf (file, _(" [mapping symbols precede others]"));
        fprintf (file, _(" [mapping symbols precede others]"));
 
 
      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
                 | EF_ARM_MAPSYMSFIRST);
                 | EF_ARM_MAPSYMSFIRST);
      break;
      break;
 
 
    case EF_ARM_EABI_VER3:
    case EF_ARM_EABI_VER3:
      fprintf (file, _(" [Version3 EABI]"));
      fprintf (file, _(" [Version3 EABI]"));
      break;
      break;
 
 
    case EF_ARM_EABI_VER4:
    case EF_ARM_EABI_VER4:
      fprintf (file, _(" [Version4 EABI]"));
      fprintf (file, _(" [Version4 EABI]"));
      goto eabi;
      goto eabi;
 
 
    case EF_ARM_EABI_VER5:
    case EF_ARM_EABI_VER5:
      fprintf (file, _(" [Version5 EABI]"));
      fprintf (file, _(" [Version5 EABI]"));
    eabi:
    eabi:
      if (flags & EF_ARM_BE8)
      if (flags & EF_ARM_BE8)
        fprintf (file, _(" [BE8]"));
        fprintf (file, _(" [BE8]"));
 
 
      if (flags & EF_ARM_LE8)
      if (flags & EF_ARM_LE8)
        fprintf (file, _(" [LE8]"));
        fprintf (file, _(" [LE8]"));
 
 
      flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
      flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
      break;
      break;
 
 
    default:
    default:
      fprintf (file, _(" <EABI version unrecognised>"));
      fprintf (file, _(" <EABI version unrecognised>"));
      break;
      break;
    }
    }
 
 
  flags &= ~ EF_ARM_EABIMASK;
  flags &= ~ EF_ARM_EABIMASK;
 
 
  if (flags & EF_ARM_RELEXEC)
  if (flags & EF_ARM_RELEXEC)
    fprintf (file, _(" [relocatable executable]"));
    fprintf (file, _(" [relocatable executable]"));
 
 
  if (flags & EF_ARM_HASENTRY)
  if (flags & EF_ARM_HASENTRY)
    fprintf (file, _(" [has entry point]"));
    fprintf (file, _(" [has entry point]"));
 
 
  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
 
 
  if (flags)
  if (flags)
    fprintf (file, _("<Unrecognised flag bits set>"));
    fprintf (file, _("<Unrecognised flag bits set>"));
 
 
  fputc ('\n', file);
  fputc ('\n', file);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static int
static int
elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
{
{
  switch (ELF_ST_TYPE (elf_sym->st_info))
  switch (ELF_ST_TYPE (elf_sym->st_info))
    {
    {
    case STT_ARM_TFUNC:
    case STT_ARM_TFUNC:
      return ELF_ST_TYPE (elf_sym->st_info);
      return ELF_ST_TYPE (elf_sym->st_info);
 
 
    case STT_ARM_16BIT:
    case STT_ARM_16BIT:
      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
         This allows us to distinguish between data used by Thumb instructions
         This allows us to distinguish between data used by Thumb instructions
         and non-data (which is probably code) inside Thumb regions of an
         and non-data (which is probably code) inside Thumb regions of an
         executable.  */
         executable.  */
      if (type != STT_OBJECT && type != STT_TLS)
      if (type != STT_OBJECT && type != STT_TLS)
        return ELF_ST_TYPE (elf_sym->st_info);
        return ELF_ST_TYPE (elf_sym->st_info);
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return type;
  return type;
}
}
 
 
static asection *
static asection *
elf32_arm_gc_mark_hook (asection *sec,
elf32_arm_gc_mark_hook (asection *sec,
                        struct bfd_link_info *info,
                        struct bfd_link_info *info,
                        Elf_Internal_Rela *rel,
                        Elf_Internal_Rela *rel,
                        struct elf_link_hash_entry *h,
                        struct elf_link_hash_entry *h,
                        Elf_Internal_Sym *sym)
                        Elf_Internal_Sym *sym)
{
{
  if (h != NULL)
  if (h != NULL)
    switch (ELF32_R_TYPE (rel->r_info))
    switch (ELF32_R_TYPE (rel->r_info))
      {
      {
      case R_ARM_GNU_VTINHERIT:
      case R_ARM_GNU_VTINHERIT:
      case R_ARM_GNU_VTENTRY:
      case R_ARM_GNU_VTENTRY:
        return NULL;
        return NULL;
      }
      }
 
 
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
}
 
 
/* Update the got entry reference counts for the section being removed.  */
/* Update the got entry reference counts for the section being removed.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_gc_sweep_hook (bfd *                     abfd,
elf32_arm_gc_sweep_hook (bfd *                     abfd,
                         struct bfd_link_info *    info,
                         struct bfd_link_info *    info,
                         asection *                sec,
                         asection *                sec,
                         const Elf_Internal_Rela * relocs)
                         const Elf_Internal_Rela * relocs)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  bfd_signed_vma *local_got_refcounts;
  bfd_signed_vma *local_got_refcounts;
  const Elf_Internal_Rela *rel, *relend;
  const Elf_Internal_Rela *rel, *relend;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  if (globals == NULL)
  if (globals == NULL)
    return FALSE;
    return FALSE;
 
 
  elf_section_data (sec)->local_dynrel = NULL;
  elf_section_data (sec)->local_dynrel = NULL;
 
 
  symtab_hdr = & elf_symtab_hdr (abfd);
  symtab_hdr = & elf_symtab_hdr (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
 
 
  check_use_blx (globals);
  check_use_blx (globals);
 
 
  relend = relocs + sec->reloc_count;
  relend = relocs + sec->reloc_count;
  for (rel = relocs; rel < relend; rel++)
  for (rel = relocs; rel < relend; rel++)
    {
    {
      unsigned long r_symndx;
      unsigned long r_symndx;
      struct elf_link_hash_entry *h = NULL;
      struct elf_link_hash_entry *h = NULL;
      struct elf32_arm_link_hash_entry *eh;
      struct elf32_arm_link_hash_entry *eh;
      int r_type;
      int r_type;
      bfd_boolean call_reloc_p;
      bfd_boolean call_reloc_p;
      bfd_boolean may_become_dynamic_p;
      bfd_boolean may_become_dynamic_p;
      bfd_boolean may_need_local_target_p;
      bfd_boolean may_need_local_target_p;
      union gotplt_union *root_plt;
      union gotplt_union *root_plt;
      struct arm_plt_info *arm_plt;
      struct arm_plt_info *arm_plt;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      if (r_symndx >= symtab_hdr->sh_info)
      if (r_symndx >= symtab_hdr->sh_info)
        {
        {
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
        }
        }
      eh = (struct elf32_arm_link_hash_entry *) h;
      eh = (struct elf32_arm_link_hash_entry *) h;
 
 
      call_reloc_p = FALSE;
      call_reloc_p = FALSE;
      may_become_dynamic_p = FALSE;
      may_become_dynamic_p = FALSE;
      may_need_local_target_p = FALSE;
      may_need_local_target_p = FALSE;
 
 
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = arm_real_reloc_type (globals, r_type);
      r_type = arm_real_reloc_type (globals, r_type);
      switch (r_type)
      switch (r_type)
        {
        {
        case R_ARM_GOT32:
        case R_ARM_GOT32:
        case R_ARM_GOT_PREL:
        case R_ARM_GOT_PREL:
        case R_ARM_TLS_GD32:
        case R_ARM_TLS_GD32:
        case R_ARM_TLS_IE32:
        case R_ARM_TLS_IE32:
          if (h != NULL)
          if (h != NULL)
            {
            {
              if (h->got.refcount > 0)
              if (h->got.refcount > 0)
                h->got.refcount -= 1;
                h->got.refcount -= 1;
            }
            }
          else if (local_got_refcounts != NULL)
          else if (local_got_refcounts != NULL)
            {
            {
              if (local_got_refcounts[r_symndx] > 0)
              if (local_got_refcounts[r_symndx] > 0)
                local_got_refcounts[r_symndx] -= 1;
                local_got_refcounts[r_symndx] -= 1;
            }
            }
          break;
          break;
 
 
        case R_ARM_TLS_LDM32:
        case R_ARM_TLS_LDM32:
          globals->tls_ldm_got.refcount -= 1;
          globals->tls_ldm_got.refcount -= 1;
          break;
          break;
 
 
        case R_ARM_PC24:
        case R_ARM_PC24:
        case R_ARM_PLT32:
        case R_ARM_PLT32:
        case R_ARM_CALL:
        case R_ARM_CALL:
        case R_ARM_JUMP24:
        case R_ARM_JUMP24:
        case R_ARM_PREL31:
        case R_ARM_PREL31:
        case R_ARM_THM_CALL:
        case R_ARM_THM_CALL:
        case R_ARM_THM_JUMP24:
        case R_ARM_THM_JUMP24:
        case R_ARM_THM_JUMP19:
        case R_ARM_THM_JUMP19:
          call_reloc_p = TRUE;
          call_reloc_p = TRUE;
          may_need_local_target_p = TRUE;
          may_need_local_target_p = TRUE;
          break;
          break;
 
 
        case R_ARM_ABS12:
        case R_ARM_ABS12:
          if (!globals->vxworks_p)
          if (!globals->vxworks_p)
            {
            {
              may_need_local_target_p = TRUE;
              may_need_local_target_p = TRUE;
              break;
              break;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
        case R_ARM_ABS32:
        case R_ARM_ABS32:
        case R_ARM_ABS32_NOI:
        case R_ARM_ABS32_NOI:
        case R_ARM_REL32:
        case R_ARM_REL32:
        case R_ARM_REL32_NOI:
        case R_ARM_REL32_NOI:
        case R_ARM_MOVW_ABS_NC:
        case R_ARM_MOVW_ABS_NC:
        case R_ARM_MOVT_ABS:
        case R_ARM_MOVT_ABS:
        case R_ARM_MOVW_PREL_NC:
        case R_ARM_MOVW_PREL_NC:
        case R_ARM_MOVT_PREL:
        case R_ARM_MOVT_PREL:
        case R_ARM_THM_MOVW_ABS_NC:
        case R_ARM_THM_MOVW_ABS_NC:
        case R_ARM_THM_MOVT_ABS:
        case R_ARM_THM_MOVT_ABS:
        case R_ARM_THM_MOVW_PREL_NC:
        case R_ARM_THM_MOVW_PREL_NC:
        case R_ARM_THM_MOVT_PREL:
        case R_ARM_THM_MOVT_PREL:
          /* Should the interworking branches be here also?  */
          /* Should the interworking branches be here also?  */
          if ((info->shared || globals->root.is_relocatable_executable)
          if ((info->shared || globals->root.is_relocatable_executable)
              && (sec->flags & SEC_ALLOC) != 0)
              && (sec->flags & SEC_ALLOC) != 0)
            {
            {
              if (h == NULL
              if (h == NULL
                  && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
                  && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
                {
                {
                  call_reloc_p = TRUE;
                  call_reloc_p = TRUE;
                  may_need_local_target_p = TRUE;
                  may_need_local_target_p = TRUE;
                }
                }
              else
              else
                may_become_dynamic_p = TRUE;
                may_become_dynamic_p = TRUE;
            }
            }
          else
          else
            may_need_local_target_p = TRUE;
            may_need_local_target_p = TRUE;
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      if (may_need_local_target_p
      if (may_need_local_target_p
          && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
          && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
        {
        {
          BFD_ASSERT (root_plt->refcount > 0);
          BFD_ASSERT (root_plt->refcount > 0);
          root_plt->refcount -= 1;
          root_plt->refcount -= 1;
 
 
          if (!call_reloc_p)
          if (!call_reloc_p)
            arm_plt->noncall_refcount--;
            arm_plt->noncall_refcount--;
 
 
          if (r_type == R_ARM_THM_CALL)
          if (r_type == R_ARM_THM_CALL)
            arm_plt->maybe_thumb_refcount--;
            arm_plt->maybe_thumb_refcount--;
 
 
          if (r_type == R_ARM_THM_JUMP24
          if (r_type == R_ARM_THM_JUMP24
              || r_type == R_ARM_THM_JUMP19)
              || r_type == R_ARM_THM_JUMP19)
            arm_plt->thumb_refcount--;
            arm_plt->thumb_refcount--;
        }
        }
 
 
      if (may_become_dynamic_p)
      if (may_become_dynamic_p)
        {
        {
          struct elf_dyn_relocs **pp;
          struct elf_dyn_relocs **pp;
          struct elf_dyn_relocs *p;
          struct elf_dyn_relocs *p;
 
 
          if (h != NULL)
          if (h != NULL)
            pp = &(eh->dyn_relocs);
            pp = &(eh->dyn_relocs);
          else
          else
            {
            {
              Elf_Internal_Sym *isym;
              Elf_Internal_Sym *isym;
 
 
              isym = bfd_sym_from_r_symndx (&globals->sym_cache,
              isym = bfd_sym_from_r_symndx (&globals->sym_cache,
                                            abfd, r_symndx);
                                            abfd, r_symndx);
              if (isym == NULL)
              if (isym == NULL)
                return FALSE;
                return FALSE;
              pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
              pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
              if (pp == NULL)
              if (pp == NULL)
                return FALSE;
                return FALSE;
            }
            }
          for (; (p = *pp) != NULL; pp = &p->next)
          for (; (p = *pp) != NULL; pp = &p->next)
            if (p->sec == sec)
            if (p->sec == sec)
              {
              {
                /* Everything must go for SEC.  */
                /* Everything must go for SEC.  */
                *pp = p->next;
                *pp = p->next;
                break;
                break;
              }
              }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Look through the relocs for a section during the first phase.  */
/* Look through the relocs for a section during the first phase.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
                        asection *sec, const Elf_Internal_Rela *relocs)
                        asection *sec, const Elf_Internal_Rela *relocs)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel_end;
  const Elf_Internal_Rela *rel_end;
  bfd *dynobj;
  bfd *dynobj;
  asection *sreloc;
  asection *sreloc;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
  bfd_boolean call_reloc_p;
  bfd_boolean call_reloc_p;
  bfd_boolean may_become_dynamic_p;
  bfd_boolean may_become_dynamic_p;
  bfd_boolean may_need_local_target_p;
  bfd_boolean may_need_local_target_p;
  unsigned long nsyms;
  unsigned long nsyms;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  BFD_ASSERT (is_arm_elf (abfd));
  BFD_ASSERT (is_arm_elf (abfd));
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  sreloc = NULL;
  sreloc = NULL;
 
 
  /* Create dynamic sections for relocatable executables so that we can
  /* Create dynamic sections for relocatable executables so that we can
     copy relocations.  */
     copy relocations.  */
  if (htab->root.is_relocatable_executable
  if (htab->root.is_relocatable_executable
      && ! htab->root.dynamic_sections_created)
      && ! htab->root.dynamic_sections_created)
    {
    {
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (htab->root.dynobj == NULL)
  if (htab->root.dynobj == NULL)
    htab->root.dynobj = abfd;
    htab->root.dynobj = abfd;
  if (!create_ifunc_sections (info))
  if (!create_ifunc_sections (info))
    return FALSE;
    return FALSE;
 
 
  dynobj = htab->root.dynobj;
  dynobj = htab->root.dynobj;
 
 
  symtab_hdr = & elf_symtab_hdr (abfd);
  symtab_hdr = & elf_symtab_hdr (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
  nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
 
 
  rel_end = relocs + sec->reloc_count;
  rel_end = relocs + sec->reloc_count;
  for (rel = relocs; rel < rel_end; rel++)
  for (rel = relocs; rel < rel_end; rel++)
    {
    {
      Elf_Internal_Sym *isym;
      Elf_Internal_Sym *isym;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      struct elf32_arm_link_hash_entry *eh;
      struct elf32_arm_link_hash_entry *eh;
      unsigned long r_symndx;
      unsigned long r_symndx;
      int r_type;
      int r_type;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = arm_real_reloc_type (htab, r_type);
      r_type = arm_real_reloc_type (htab, r_type);
 
 
      if (r_symndx >= nsyms
      if (r_symndx >= nsyms
          /* PR 9934: It is possible to have relocations that do not
          /* PR 9934: It is possible to have relocations that do not
             refer to symbols, thus it is also possible to have an
             refer to symbols, thus it is also possible to have an
             object file containing relocations but no symbol table.  */
             object file containing relocations but no symbol table.  */
          && (r_symndx > STN_UNDEF || nsyms > 0))
          && (r_symndx > STN_UNDEF || nsyms > 0))
        {
        {
          (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
          (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
                                   r_symndx);
                                   r_symndx);
          return FALSE;
          return FALSE;
        }
        }
 
 
      h = NULL;
      h = NULL;
      isym = NULL;
      isym = NULL;
      if (nsyms > 0)
      if (nsyms > 0)
        {
        {
          if (r_symndx < symtab_hdr->sh_info)
          if (r_symndx < symtab_hdr->sh_info)
            {
            {
              /* A local symbol.  */
              /* A local symbol.  */
              isym = bfd_sym_from_r_symndx (&htab->sym_cache,
              isym = bfd_sym_from_r_symndx (&htab->sym_cache,
                                            abfd, r_symndx);
                                            abfd, r_symndx);
              if (isym == NULL)
              if (isym == NULL)
                return FALSE;
                return FALSE;
            }
            }
          else
          else
            {
            {
              h = sym_hashes[r_symndx - symtab_hdr->sh_info];
              h = sym_hashes[r_symndx - symtab_hdr->sh_info];
              while (h->root.type == bfd_link_hash_indirect
              while (h->root.type == bfd_link_hash_indirect
                     || h->root.type == bfd_link_hash_warning)
                     || h->root.type == bfd_link_hash_warning)
                h = (struct elf_link_hash_entry *) h->root.u.i.link;
                h = (struct elf_link_hash_entry *) h->root.u.i.link;
            }
            }
        }
        }
 
 
      eh = (struct elf32_arm_link_hash_entry *) h;
      eh = (struct elf32_arm_link_hash_entry *) h;
 
 
      call_reloc_p = FALSE;
      call_reloc_p = FALSE;
      may_become_dynamic_p = FALSE;
      may_become_dynamic_p = FALSE;
      may_need_local_target_p = FALSE;
      may_need_local_target_p = FALSE;
 
 
      /* Could be done earlier, if h were already available.  */
      /* Could be done earlier, if h were already available.  */
      r_type = elf32_arm_tls_transition (info, r_type, h);
      r_type = elf32_arm_tls_transition (info, r_type, h);
      switch (r_type)
      switch (r_type)
        {
        {
          case R_ARM_GOT32:
          case R_ARM_GOT32:
          case R_ARM_GOT_PREL:
          case R_ARM_GOT_PREL:
          case R_ARM_TLS_GD32:
          case R_ARM_TLS_GD32:
          case R_ARM_TLS_IE32:
          case R_ARM_TLS_IE32:
          case R_ARM_TLS_GOTDESC:
          case R_ARM_TLS_GOTDESC:
          case R_ARM_TLS_DESCSEQ:
          case R_ARM_TLS_DESCSEQ:
          case R_ARM_THM_TLS_DESCSEQ:
          case R_ARM_THM_TLS_DESCSEQ:
          case R_ARM_TLS_CALL:
          case R_ARM_TLS_CALL:
          case R_ARM_THM_TLS_CALL:
          case R_ARM_THM_TLS_CALL:
            /* This symbol requires a global offset table entry.  */
            /* This symbol requires a global offset table entry.  */
            {
            {
              int tls_type, old_tls_type;
              int tls_type, old_tls_type;
 
 
              switch (r_type)
              switch (r_type)
                {
                {
                case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
                case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
 
 
                case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
                case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
 
 
                case R_ARM_TLS_GOTDESC:
                case R_ARM_TLS_GOTDESC:
                case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
                case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
                case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
                case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
                  tls_type = GOT_TLS_GDESC; break;
                  tls_type = GOT_TLS_GDESC; break;
 
 
                default: tls_type = GOT_NORMAL; break;
                default: tls_type = GOT_NORMAL; break;
                }
                }
 
 
              if (h != NULL)
              if (h != NULL)
                {
                {
                  h->got.refcount++;
                  h->got.refcount++;
                  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
                  old_tls_type = elf32_arm_hash_entry (h)->tls_type;
                }
                }
              else
              else
                {
                {
                  /* This is a global offset table entry for a local symbol.  */
                  /* This is a global offset table entry for a local symbol.  */
                  if (!elf32_arm_allocate_local_sym_info (abfd))
                  if (!elf32_arm_allocate_local_sym_info (abfd))
                    return FALSE;
                    return FALSE;
                  elf_local_got_refcounts (abfd)[r_symndx] += 1;
                  elf_local_got_refcounts (abfd)[r_symndx] += 1;
                  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
                  old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
                }
                }
 
 
              /* If a variable is accessed with both tls methods, two
              /* If a variable is accessed with both tls methods, two
                 slots may be created.  */
                 slots may be created.  */
              if (GOT_TLS_GD_ANY_P (old_tls_type)
              if (GOT_TLS_GD_ANY_P (old_tls_type)
                  && GOT_TLS_GD_ANY_P (tls_type))
                  && GOT_TLS_GD_ANY_P (tls_type))
                tls_type |= old_tls_type;
                tls_type |= old_tls_type;
 
 
              /* We will already have issued an error message if there
              /* We will already have issued an error message if there
                 is a TLS/non-TLS mismatch, based on the symbol
                 is a TLS/non-TLS mismatch, based on the symbol
                 type.  So just combine any TLS types needed.  */
                 type.  So just combine any TLS types needed.  */
              if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
              if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
                  && tls_type != GOT_NORMAL)
                  && tls_type != GOT_NORMAL)
                tls_type |= old_tls_type;
                tls_type |= old_tls_type;
 
 
              /* If the symbol is accessed in both IE and GDESC
              /* If the symbol is accessed in both IE and GDESC
                 method, we're able to relax. Turn off the GDESC flag,
                 method, we're able to relax. Turn off the GDESC flag,
                 without messing up with any other kind of tls types
                 without messing up with any other kind of tls types
                 that may be involved */
                 that may be involved */
              if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
              if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
                tls_type &= ~GOT_TLS_GDESC;
                tls_type &= ~GOT_TLS_GDESC;
 
 
              if (old_tls_type != tls_type)
              if (old_tls_type != tls_type)
                {
                {
                  if (h != NULL)
                  if (h != NULL)
                    elf32_arm_hash_entry (h)->tls_type = tls_type;
                    elf32_arm_hash_entry (h)->tls_type = tls_type;
                  else
                  else
                    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
                    elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
                }
                }
            }
            }
            /* Fall through.  */
            /* Fall through.  */
 
 
          case R_ARM_TLS_LDM32:
          case R_ARM_TLS_LDM32:
            if (r_type == R_ARM_TLS_LDM32)
            if (r_type == R_ARM_TLS_LDM32)
                htab->tls_ldm_got.refcount++;
                htab->tls_ldm_got.refcount++;
            /* Fall through.  */
            /* Fall through.  */
 
 
          case R_ARM_GOTOFF32:
          case R_ARM_GOTOFF32:
          case R_ARM_GOTPC:
          case R_ARM_GOTPC:
            if (htab->root.sgot == NULL
            if (htab->root.sgot == NULL
                && !create_got_section (htab->root.dynobj, info))
                && !create_got_section (htab->root.dynobj, info))
              return FALSE;
              return FALSE;
            break;
            break;
 
 
          case R_ARM_PC24:
          case R_ARM_PC24:
          case R_ARM_PLT32:
          case R_ARM_PLT32:
          case R_ARM_CALL:
          case R_ARM_CALL:
          case R_ARM_JUMP24:
          case R_ARM_JUMP24:
          case R_ARM_PREL31:
          case R_ARM_PREL31:
          case R_ARM_THM_CALL:
          case R_ARM_THM_CALL:
          case R_ARM_THM_JUMP24:
          case R_ARM_THM_JUMP24:
          case R_ARM_THM_JUMP19:
          case R_ARM_THM_JUMP19:
            call_reloc_p = TRUE;
            call_reloc_p = TRUE;
            may_need_local_target_p = TRUE;
            may_need_local_target_p = TRUE;
            break;
            break;
 
 
          case R_ARM_ABS12:
          case R_ARM_ABS12:
            /* VxWorks uses dynamic R_ARM_ABS12 relocations for
            /* VxWorks uses dynamic R_ARM_ABS12 relocations for
               ldr __GOTT_INDEX__ offsets.  */
               ldr __GOTT_INDEX__ offsets.  */
            if (!htab->vxworks_p)
            if (!htab->vxworks_p)
              {
              {
                may_need_local_target_p = TRUE;
                may_need_local_target_p = TRUE;
                break;
                break;
              }
              }
            /* Fall through.  */
            /* Fall through.  */
 
 
          case R_ARM_MOVW_ABS_NC:
          case R_ARM_MOVW_ABS_NC:
          case R_ARM_MOVT_ABS:
          case R_ARM_MOVT_ABS:
          case R_ARM_THM_MOVW_ABS_NC:
          case R_ARM_THM_MOVW_ABS_NC:
          case R_ARM_THM_MOVT_ABS:
          case R_ARM_THM_MOVT_ABS:
            if (info->shared)
            if (info->shared)
              {
              {
                (*_bfd_error_handler)
                (*_bfd_error_handler)
                  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
                  (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
                   abfd, elf32_arm_howto_table_1[r_type].name,
                   abfd, elf32_arm_howto_table_1[r_type].name,
                   (h) ? h->root.root.string : "a local symbol");
                   (h) ? h->root.root.string : "a local symbol");
                bfd_set_error (bfd_error_bad_value);
                bfd_set_error (bfd_error_bad_value);
                return FALSE;
                return FALSE;
              }
              }
 
 
            /* Fall through.  */
            /* Fall through.  */
          case R_ARM_ABS32:
          case R_ARM_ABS32:
          case R_ARM_ABS32_NOI:
          case R_ARM_ABS32_NOI:
          case R_ARM_REL32:
          case R_ARM_REL32:
          case R_ARM_REL32_NOI:
          case R_ARM_REL32_NOI:
          case R_ARM_MOVW_PREL_NC:
          case R_ARM_MOVW_PREL_NC:
          case R_ARM_MOVT_PREL:
          case R_ARM_MOVT_PREL:
          case R_ARM_THM_MOVW_PREL_NC:
          case R_ARM_THM_MOVW_PREL_NC:
          case R_ARM_THM_MOVT_PREL:
          case R_ARM_THM_MOVT_PREL:
 
 
            /* Should the interworking branches be listed here?  */
            /* Should the interworking branches be listed here?  */
            if ((info->shared || htab->root.is_relocatable_executable)
            if ((info->shared || htab->root.is_relocatable_executable)
                && (sec->flags & SEC_ALLOC) != 0)
                && (sec->flags & SEC_ALLOC) != 0)
              {
              {
                if (h == NULL
                if (h == NULL
                    && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
                    && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
                  {
                  {
                    /* In shared libraries and relocatable executables,
                    /* In shared libraries and relocatable executables,
                       we treat local relative references as calls;
                       we treat local relative references as calls;
                       see the related SYMBOL_CALLS_LOCAL code in
                       see the related SYMBOL_CALLS_LOCAL code in
                       allocate_dynrelocs.  */
                       allocate_dynrelocs.  */
                    call_reloc_p = TRUE;
                    call_reloc_p = TRUE;
                    may_need_local_target_p = TRUE;
                    may_need_local_target_p = TRUE;
                  }
                  }
                else
                else
                  /* We are creating a shared library or relocatable
                  /* We are creating a shared library or relocatable
                     executable, and this is a reloc against a global symbol,
                     executable, and this is a reloc against a global symbol,
                     or a non-PC-relative reloc against a local symbol.
                     or a non-PC-relative reloc against a local symbol.
                     We may need to copy the reloc into the output.  */
                     We may need to copy the reloc into the output.  */
                  may_become_dynamic_p = TRUE;
                  may_become_dynamic_p = TRUE;
              }
              }
            else
            else
              may_need_local_target_p = TRUE;
              may_need_local_target_p = TRUE;
            break;
            break;
 
 
        /* This relocation describes the C++ object vtable hierarchy.
        /* This relocation describes the C++ object vtable hierarchy.
           Reconstruct it for later use during GC.  */
           Reconstruct it for later use during GC.  */
        case R_ARM_GNU_VTINHERIT:
        case R_ARM_GNU_VTINHERIT:
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
            return FALSE;
            return FALSE;
          break;
          break;
 
 
        /* This relocation describes which C++ vtable entries are actually
        /* This relocation describes which C++ vtable entries are actually
           used.  Record for later use during GC.  */
           used.  Record for later use during GC.  */
        case R_ARM_GNU_VTENTRY:
        case R_ARM_GNU_VTENTRY:
          BFD_ASSERT (h != NULL);
          BFD_ASSERT (h != NULL);
          if (h != NULL
          if (h != NULL
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
            return FALSE;
            return FALSE;
          break;
          break;
        }
        }
 
 
      if (h != NULL)
      if (h != NULL)
        {
        {
          if (call_reloc_p)
          if (call_reloc_p)
            /* We may need a .plt entry if the function this reloc
            /* We may need a .plt entry if the function this reloc
               refers to is in a different object, regardless of the
               refers to is in a different object, regardless of the
               symbol's type.  We can't tell for sure yet, because
               symbol's type.  We can't tell for sure yet, because
               something later might force the symbol local.  */
               something later might force the symbol local.  */
            h->needs_plt = 1;
            h->needs_plt = 1;
          else if (may_need_local_target_p)
          else if (may_need_local_target_p)
            /* If this reloc is in a read-only section, we might
            /* If this reloc is in a read-only section, we might
               need a copy reloc.  We can't check reliably at this
               need a copy reloc.  We can't check reliably at this
               stage whether the section is read-only, as input
               stage whether the section is read-only, as input
               sections have not yet been mapped to output sections.
               sections have not yet been mapped to output sections.
               Tentatively set the flag for now, and correct in
               Tentatively set the flag for now, and correct in
               adjust_dynamic_symbol.  */
               adjust_dynamic_symbol.  */
            h->non_got_ref = 1;
            h->non_got_ref = 1;
        }
        }
 
 
      if (may_need_local_target_p
      if (may_need_local_target_p
          && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
          && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
        {
        {
          union gotplt_union *root_plt;
          union gotplt_union *root_plt;
          struct arm_plt_info *arm_plt;
          struct arm_plt_info *arm_plt;
          struct arm_local_iplt_info *local_iplt;
          struct arm_local_iplt_info *local_iplt;
 
 
          if (h != NULL)
          if (h != NULL)
            {
            {
              root_plt = &h->plt;
              root_plt = &h->plt;
              arm_plt = &eh->plt;
              arm_plt = &eh->plt;
            }
            }
          else
          else
            {
            {
              local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
              local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
              if (local_iplt == NULL)
              if (local_iplt == NULL)
                return FALSE;
                return FALSE;
              root_plt = &local_iplt->root;
              root_plt = &local_iplt->root;
              arm_plt = &local_iplt->arm;
              arm_plt = &local_iplt->arm;
            }
            }
 
 
          /* If the symbol is a function that doesn't bind locally,
          /* If the symbol is a function that doesn't bind locally,
             this relocation will need a PLT entry.  */
             this relocation will need a PLT entry.  */
          root_plt->refcount += 1;
          root_plt->refcount += 1;
 
 
          if (!call_reloc_p)
          if (!call_reloc_p)
            arm_plt->noncall_refcount++;
            arm_plt->noncall_refcount++;
 
 
          /* It's too early to use htab->use_blx here, so we have to
          /* It's too early to use htab->use_blx here, so we have to
             record possible blx references separately from
             record possible blx references separately from
             relocs that definitely need a thumb stub.  */
             relocs that definitely need a thumb stub.  */
 
 
          if (r_type == R_ARM_THM_CALL)
          if (r_type == R_ARM_THM_CALL)
            arm_plt->maybe_thumb_refcount += 1;
            arm_plt->maybe_thumb_refcount += 1;
 
 
          if (r_type == R_ARM_THM_JUMP24
          if (r_type == R_ARM_THM_JUMP24
              || r_type == R_ARM_THM_JUMP19)
              || r_type == R_ARM_THM_JUMP19)
            arm_plt->thumb_refcount += 1;
            arm_plt->thumb_refcount += 1;
        }
        }
 
 
      if (may_become_dynamic_p)
      if (may_become_dynamic_p)
        {
        {
          struct elf_dyn_relocs *p, **head;
          struct elf_dyn_relocs *p, **head;
 
 
          /* Create a reloc section in dynobj.  */
          /* Create a reloc section in dynobj.  */
          if (sreloc == NULL)
          if (sreloc == NULL)
            {
            {
              sreloc = _bfd_elf_make_dynamic_reloc_section
              sreloc = _bfd_elf_make_dynamic_reloc_section
                (sec, dynobj, 2, abfd, ! htab->use_rel);
                (sec, dynobj, 2, abfd, ! htab->use_rel);
 
 
              if (sreloc == NULL)
              if (sreloc == NULL)
                return FALSE;
                return FALSE;
 
 
              /* BPABI objects never have dynamic relocations mapped.  */
              /* BPABI objects never have dynamic relocations mapped.  */
              if (htab->symbian_p)
              if (htab->symbian_p)
                {
                {
                  flagword flags;
                  flagword flags;
 
 
                  flags = bfd_get_section_flags (dynobj, sreloc);
                  flags = bfd_get_section_flags (dynobj, sreloc);
                  flags &= ~(SEC_LOAD | SEC_ALLOC);
                  flags &= ~(SEC_LOAD | SEC_ALLOC);
                  bfd_set_section_flags (dynobj, sreloc, flags);
                  bfd_set_section_flags (dynobj, sreloc, flags);
                }
                }
            }
            }
 
 
          /* If this is a global symbol, count the number of
          /* If this is a global symbol, count the number of
             relocations we need for this symbol.  */
             relocations we need for this symbol.  */
          if (h != NULL)
          if (h != NULL)
            head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
            head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
          else
          else
            {
            {
              head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
              head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
              if (head == NULL)
              if (head == NULL)
                return FALSE;
                return FALSE;
            }
            }
 
 
          p = *head;
          p = *head;
          if (p == NULL || p->sec != sec)
          if (p == NULL || p->sec != sec)
            {
            {
              bfd_size_type amt = sizeof *p;
              bfd_size_type amt = sizeof *p;
 
 
              p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
              p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
              if (p == NULL)
              if (p == NULL)
                return FALSE;
                return FALSE;
              p->next = *head;
              p->next = *head;
              *head = p;
              *head = p;
              p->sec = sec;
              p->sec = sec;
              p->count = 0;
              p->count = 0;
              p->pc_count = 0;
              p->pc_count = 0;
            }
            }
 
 
          if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
          if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
            p->pc_count += 1;
            p->pc_count += 1;
          p->count += 1;
          p->count += 1;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Unwinding tables are not referenced directly.  This pass marks them as
/* Unwinding tables are not referenced directly.  This pass marks them as
   required if the corresponding code section is marked.  */
   required if the corresponding code section is marked.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
                                  elf_gc_mark_hook_fn gc_mark_hook)
                                  elf_gc_mark_hook_fn gc_mark_hook)
{
{
  bfd *sub;
  bfd *sub;
  Elf_Internal_Shdr **elf_shdrp;
  Elf_Internal_Shdr **elf_shdrp;
  bfd_boolean again;
  bfd_boolean again;
 
 
  _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
  _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
 
 
  /* Marking EH data may cause additional code sections to be marked,
  /* Marking EH data may cause additional code sections to be marked,
     requiring multiple passes.  */
     requiring multiple passes.  */
  again = TRUE;
  again = TRUE;
  while (again)
  while (again)
    {
    {
      again = FALSE;
      again = FALSE;
      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
      for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
        {
        {
          asection *o;
          asection *o;
 
 
          if (! is_arm_elf (sub))
          if (! is_arm_elf (sub))
            continue;
            continue;
 
 
          elf_shdrp = elf_elfsections (sub);
          elf_shdrp = elf_elfsections (sub);
          for (o = sub->sections; o != NULL; o = o->next)
          for (o = sub->sections; o != NULL; o = o->next)
            {
            {
              Elf_Internal_Shdr *hdr;
              Elf_Internal_Shdr *hdr;
 
 
              hdr = &elf_section_data (o)->this_hdr;
              hdr = &elf_section_data (o)->this_hdr;
              if (hdr->sh_type == SHT_ARM_EXIDX
              if (hdr->sh_type == SHT_ARM_EXIDX
                  && hdr->sh_link
                  && hdr->sh_link
                  && hdr->sh_link < elf_numsections (sub)
                  && hdr->sh_link < elf_numsections (sub)
                  && !o->gc_mark
                  && !o->gc_mark
                  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
                  && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
                {
                {
                  again = TRUE;
                  again = TRUE;
                  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
                  if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
                    return FALSE;
                    return FALSE;
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Treat mapping symbols as special target symbols.  */
/* Treat mapping symbols as special target symbols.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
{
{
  return bfd_is_arm_special_symbol_name (sym->name,
  return bfd_is_arm_special_symbol_name (sym->name,
                                         BFD_ARM_SPECIAL_SYM_TYPE_ANY);
                                         BFD_ARM_SPECIAL_SYM_TYPE_ANY);
}
}
 
 
/* This is a copy of elf_find_function() from elf.c except that
/* This is a copy of elf_find_function() from elf.c except that
   ARM mapping symbols are ignored when looking for function names
   ARM mapping symbols are ignored when looking for function names
   and STT_ARM_TFUNC is considered to a function type.  */
   and STT_ARM_TFUNC is considered to a function type.  */
 
 
static bfd_boolean
static bfd_boolean
arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
arm_elf_find_function (bfd *         abfd ATTRIBUTE_UNUSED,
                       asection *    section,
                       asection *    section,
                       asymbol **    symbols,
                       asymbol **    symbols,
                       bfd_vma       offset,
                       bfd_vma       offset,
                       const char ** filename_ptr,
                       const char ** filename_ptr,
                       const char ** functionname_ptr)
                       const char ** functionname_ptr)
{
{
  const char * filename = NULL;
  const char * filename = NULL;
  asymbol * func = NULL;
  asymbol * func = NULL;
  bfd_vma low_func = 0;
  bfd_vma low_func = 0;
  asymbol ** p;
  asymbol ** p;
 
 
  for (p = symbols; *p != NULL; p++)
  for (p = symbols; *p != NULL; p++)
    {
    {
      elf_symbol_type *q;
      elf_symbol_type *q;
 
 
      q = (elf_symbol_type *) *p;
      q = (elf_symbol_type *) *p;
 
 
      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
        {
        {
        default:
        default:
          break;
          break;
        case STT_FILE:
        case STT_FILE:
          filename = bfd_asymbol_name (&q->symbol);
          filename = bfd_asymbol_name (&q->symbol);
          break;
          break;
        case STT_FUNC:
        case STT_FUNC:
        case STT_ARM_TFUNC:
        case STT_ARM_TFUNC:
        case STT_NOTYPE:
        case STT_NOTYPE:
          /* Skip mapping symbols.  */
          /* Skip mapping symbols.  */
          if ((q->symbol.flags & BSF_LOCAL)
          if ((q->symbol.flags & BSF_LOCAL)
              && bfd_is_arm_special_symbol_name (q->symbol.name,
              && bfd_is_arm_special_symbol_name (q->symbol.name,
                    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
                    BFD_ARM_SPECIAL_SYM_TYPE_ANY))
            continue;
            continue;
          /* Fall through.  */
          /* Fall through.  */
          if (bfd_get_section (&q->symbol) == section
          if (bfd_get_section (&q->symbol) == section
              && q->symbol.value >= low_func
              && q->symbol.value >= low_func
              && q->symbol.value <= offset)
              && q->symbol.value <= offset)
            {
            {
              func = (asymbol *) q;
              func = (asymbol *) q;
              low_func = q->symbol.value;
              low_func = q->symbol.value;
            }
            }
          break;
          break;
        }
        }
    }
    }
 
 
  if (func == NULL)
  if (func == NULL)
    return FALSE;
    return FALSE;
 
 
  if (filename_ptr)
  if (filename_ptr)
    *filename_ptr = filename;
    *filename_ptr = filename;
  if (functionname_ptr)
  if (functionname_ptr)
    *functionname_ptr = bfd_asymbol_name (func);
    *functionname_ptr = bfd_asymbol_name (func);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
 
 
/* Find the nearest line to a particular section and offset, for error
/* Find the nearest line to a particular section and offset, for error
   reporting.   This code is a duplicate of the code in elf.c, except
   reporting.   This code is a duplicate of the code in elf.c, except
   that it uses arm_elf_find_function.  */
   that it uses arm_elf_find_function.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_find_nearest_line (bfd *          abfd,
elf32_arm_find_nearest_line (bfd *          abfd,
                             asection *     section,
                             asection *     section,
                             asymbol **     symbols,
                             asymbol **     symbols,
                             bfd_vma        offset,
                             bfd_vma        offset,
                             const char **  filename_ptr,
                             const char **  filename_ptr,
                             const char **  functionname_ptr,
                             const char **  functionname_ptr,
                             unsigned int * line_ptr)
                             unsigned int * line_ptr)
{
{
  bfd_boolean found = FALSE;
  bfd_boolean found = FALSE;
 
 
  /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
  /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it.  */
 
 
  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
  if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
 
                                     section, symbols, offset,
                                     filename_ptr, functionname_ptr,
                                     filename_ptr, functionname_ptr,
                                     line_ptr, 0,
                                     line_ptr, 0,
                                     & elf_tdata (abfd)->dwarf2_find_line_info))
                                     & elf_tdata (abfd)->dwarf2_find_line_info))
    {
    {
      if (!*functionname_ptr)
      if (!*functionname_ptr)
        arm_elf_find_function (abfd, section, symbols, offset,
        arm_elf_find_function (abfd, section, symbols, offset,
                               *filename_ptr ? NULL : filename_ptr,
                               *filename_ptr ? NULL : filename_ptr,
                               functionname_ptr);
                               functionname_ptr);
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
                                             & found, filename_ptr,
                                             & found, filename_ptr,
                                             functionname_ptr, line_ptr,
                                             functionname_ptr, line_ptr,
                                             & elf_tdata (abfd)->line_info))
                                             & elf_tdata (abfd)->line_info))
    return FALSE;
    return FALSE;
 
 
  if (found && (*functionname_ptr || *line_ptr))
  if (found && (*functionname_ptr || *line_ptr))
    return TRUE;
    return TRUE;
 
 
  if (symbols == NULL)
  if (symbols == NULL)
    return FALSE;
    return FALSE;
 
 
  if (! arm_elf_find_function (abfd, section, symbols, offset,
  if (! arm_elf_find_function (abfd, section, symbols, offset,
                               filename_ptr, functionname_ptr))
                               filename_ptr, functionname_ptr))
    return FALSE;
    return FALSE;
 
 
  *line_ptr = 0;
  *line_ptr = 0;
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_find_inliner_info (bfd *          abfd,
elf32_arm_find_inliner_info (bfd *          abfd,
                             const char **  filename_ptr,
                             const char **  filename_ptr,
                             const char **  functionname_ptr,
                             const char **  functionname_ptr,
                             unsigned int * line_ptr)
                             unsigned int * line_ptr)
{
{
  bfd_boolean found;
  bfd_boolean found;
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
                                         functionname_ptr, line_ptr,
                                         functionname_ptr, line_ptr,
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
  return found;
  return found;
}
}
 
 
/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  The current definition is in some section of the
   regular object.  The current definition is in some section of the
   dynamic object, but we're not including those sections.  We have to
   dynamic object, but we're not including those sections.  We have to
   change the definition to something the rest of the link can
   change the definition to something the rest of the link can
   understand.  */
   understand.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
                                 struct elf_link_hash_entry * h)
                                 struct elf_link_hash_entry * h)
{
{
  bfd * dynobj;
  bfd * dynobj;
  asection * s;
  asection * s;
  struct elf32_arm_link_hash_entry * eh;
  struct elf32_arm_link_hash_entry * eh;
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  if (globals == NULL)
  if (globals == NULL)
    return FALSE;
    return FALSE;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  /* Make sure we know what is going on here.  */
  /* Make sure we know what is going on here.  */
  BFD_ASSERT (dynobj != NULL
  BFD_ASSERT (dynobj != NULL
              && (h->needs_plt
              && (h->needs_plt
                  || h->type == STT_GNU_IFUNC
                  || h->type == STT_GNU_IFUNC
                  || h->u.weakdef != NULL
                  || h->u.weakdef != NULL
                  || (h->def_dynamic
                  || (h->def_dynamic
                      && h->ref_regular
                      && h->ref_regular
                      && !h->def_regular)));
                      && !h->def_regular)));
 
 
  eh = (struct elf32_arm_link_hash_entry *) h;
  eh = (struct elf32_arm_link_hash_entry *) h;
 
 
  /* If this is a function, put it in the procedure linkage table.  We
  /* If this is a function, put it in the procedure linkage table.  We
     will fill in the contents of the procedure linkage table later,
     will fill in the contents of the procedure linkage table later,
     when we know the address of the .got section.  */
     when we know the address of the .got section.  */
  if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
  if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
    {
    {
      /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
      /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
         symbol binds locally.  */
         symbol binds locally.  */
      if (h->plt.refcount <= 0
      if (h->plt.refcount <= 0
          || (h->type != STT_GNU_IFUNC
          || (h->type != STT_GNU_IFUNC
              && (SYMBOL_CALLS_LOCAL (info, h)
              && (SYMBOL_CALLS_LOCAL (info, h)
                  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
                  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
                      && h->root.type == bfd_link_hash_undefweak))))
                      && h->root.type == bfd_link_hash_undefweak))))
        {
        {
          /* This case can occur if we saw a PLT32 reloc in an input
          /* This case can occur if we saw a PLT32 reloc in an input
             file, but the symbol was never referred to by a dynamic
             file, but the symbol was never referred to by a dynamic
             object, or if all references were garbage collected.  In
             object, or if all references were garbage collected.  In
             such a case, we don't actually need to build a procedure
             such a case, we don't actually need to build a procedure
             linkage table, and we can just do a PC24 reloc instead.  */
             linkage table, and we can just do a PC24 reloc instead.  */
          h->plt.offset = (bfd_vma) -1;
          h->plt.offset = (bfd_vma) -1;
          eh->plt.thumb_refcount = 0;
          eh->plt.thumb_refcount = 0;
          eh->plt.maybe_thumb_refcount = 0;
          eh->plt.maybe_thumb_refcount = 0;
          eh->plt.noncall_refcount = 0;
          eh->plt.noncall_refcount = 0;
          h->needs_plt = 0;
          h->needs_plt = 0;
        }
        }
 
 
      return TRUE;
      return TRUE;
    }
    }
  else
  else
    {
    {
      /* It's possible that we incorrectly decided a .plt reloc was
      /* It's possible that we incorrectly decided a .plt reloc was
         needed for an R_ARM_PC24 or similar reloc to a non-function sym
         needed for an R_ARM_PC24 or similar reloc to a non-function sym
         in check_relocs.  We can't decide accurately between function
         in check_relocs.  We can't decide accurately between function
         and non-function syms in check-relocs; Objects loaded later in
         and non-function syms in check-relocs; Objects loaded later in
         the link may change h->type.  So fix it now.  */
         the link may change h->type.  So fix it now.  */
      h->plt.offset = (bfd_vma) -1;
      h->plt.offset = (bfd_vma) -1;
      eh->plt.thumb_refcount = 0;
      eh->plt.thumb_refcount = 0;
      eh->plt.maybe_thumb_refcount = 0;
      eh->plt.maybe_thumb_refcount = 0;
      eh->plt.noncall_refcount = 0;
      eh->plt.noncall_refcount = 0;
    }
    }
 
 
  /* If this is a weak symbol, and there is a real definition, the
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
     real definition first, and we can just use the same value.  */
  if (h->u.weakdef != NULL)
  if (h->u.weakdef != NULL)
    {
    {
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* If there are no non-GOT references, we do not need a copy
  /* If there are no non-GOT references, we do not need a copy
     relocation.  */
     relocation.  */
  if (!h->non_got_ref)
  if (!h->non_got_ref)
    return TRUE;
    return TRUE;
 
 
  /* This is a reference to a symbol defined by a dynamic object which
  /* This is a reference to a symbol defined by a dynamic object which
     is not a function.  */
     is not a function.  */
 
 
  /* If we are creating a shared library, we must presume that the
  /* If we are creating a shared library, we must presume that the
     only references to the symbol are via the global offset table.
     only references to the symbol are via the global offset table.
     For such cases we need not do anything here; the relocations will
     For such cases we need not do anything here; the relocations will
     be handled correctly by relocate_section.  Relocatable executables
     be handled correctly by relocate_section.  Relocatable executables
     can reference data in shared objects directly, so we don't need to
     can reference data in shared objects directly, so we don't need to
     do anything here.  */
     do anything here.  */
  if (info->shared || globals->root.is_relocatable_executable)
  if (info->shared || globals->root.is_relocatable_executable)
    return TRUE;
    return TRUE;
 
 
  if (h->size == 0)
  if (h->size == 0)
    {
    {
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
      (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
                             h->root.root.string);
                             h->root.root.string);
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* We must allocate the symbol in our .dynbss section, which will
  /* We must allocate the symbol in our .dynbss section, which will
     become part of the .bss section of the executable.  There will be
     become part of the .bss section of the executable.  There will be
     an entry for this symbol in the .dynsym section.  The dynamic
     an entry for this symbol in the .dynsym section.  The dynamic
     object will contain position independent code, so all references
     object will contain position independent code, so all references
     from the dynamic object to this symbol will go through the global
     from the dynamic object to this symbol will go through the global
     offset table.  The dynamic linker will use the .dynsym entry to
     offset table.  The dynamic linker will use the .dynsym entry to
     determine the address it must put in the global offset table, so
     determine the address it must put in the global offset table, so
     both the dynamic object and the regular object will refer to the
     both the dynamic object and the regular object will refer to the
     same memory location for the variable.  */
     same memory location for the variable.  */
  s = bfd_get_section_by_name (dynobj, ".dynbss");
  s = bfd_get_section_by_name (dynobj, ".dynbss");
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
     copy the initial value out of the dynamic object and into the
     copy the initial value out of the dynamic object and into the
     runtime process image.  We need to remember the offset into the
     runtime process image.  We need to remember the offset into the
     .rel(a).bss section we are going to use.  */
     .rel(a).bss section we are going to use.  */
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
    {
    {
      asection *srel;
      asection *srel;
 
 
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
      srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
      elf32_arm_allocate_dynrelocs (info, srel, 1);
      elf32_arm_allocate_dynrelocs (info, srel, 1);
      h->needs_copy = 1;
      h->needs_copy = 1;
    }
    }
 
 
  return _bfd_elf_adjust_dynamic_copy (h, s);
  return _bfd_elf_adjust_dynamic_copy (h, s);
}
}
 
 
/* Allocate space in .plt, .got and associated reloc sections for
/* Allocate space in .plt, .got and associated reloc sections for
   dynamic relocs.  */
   dynamic relocs.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_entry *eh;
  struct elf32_arm_link_hash_entry *eh;
  struct elf_dyn_relocs *p;
  struct elf_dyn_relocs *p;
 
 
  if (h->root.type == bfd_link_hash_indirect)
  if (h->root.type == bfd_link_hash_indirect)
    return TRUE;
    return TRUE;
 
 
  eh = (struct elf32_arm_link_hash_entry *) h;
  eh = (struct elf32_arm_link_hash_entry *) h;
 
 
  info = (struct bfd_link_info *) inf;
  info = (struct bfd_link_info *) inf;
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
  if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
      && h->plt.refcount > 0)
      && h->plt.refcount > 0)
    {
    {
      /* Make sure this symbol is output as a dynamic symbol.
      /* Make sure this symbol is output as a dynamic symbol.
         Undefined weak syms won't yet be marked as dynamic.  */
         Undefined weak syms won't yet be marked as dynamic.  */
      if (h->dynindx == -1
      if (h->dynindx == -1
          && !h->forced_local)
          && !h->forced_local)
        {
        {
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
            return FALSE;
            return FALSE;
        }
        }
 
 
      /* If the call in the PLT entry binds locally, the associated
      /* If the call in the PLT entry binds locally, the associated
         GOT entry should use an R_ARM_IRELATIVE relocation instead of
         GOT entry should use an R_ARM_IRELATIVE relocation instead of
         the usual R_ARM_JUMP_SLOT.  Put it in the .iplt section rather
         the usual R_ARM_JUMP_SLOT.  Put it in the .iplt section rather
         than the .plt section.  */
         than the .plt section.  */
      if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
      if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
        {
        {
          eh->is_iplt = 1;
          eh->is_iplt = 1;
          if (eh->plt.noncall_refcount == 0
          if (eh->plt.noncall_refcount == 0
              && SYMBOL_REFERENCES_LOCAL (info, h))
              && SYMBOL_REFERENCES_LOCAL (info, h))
            /* All non-call references can be resolved directly.
            /* All non-call references can be resolved directly.
               This means that they can (and in some cases, must)
               This means that they can (and in some cases, must)
               resolve directly to the run-time target, rather than
               resolve directly to the run-time target, rather than
               to the PLT.  That in turns means that any .got entry
               to the PLT.  That in turns means that any .got entry
               would be equal to the .igot.plt entry, so there's
               would be equal to the .igot.plt entry, so there's
               no point having both.  */
               no point having both.  */
            h->got.refcount = 0;
            h->got.refcount = 0;
        }
        }
 
 
      if (info->shared
      if (info->shared
          || eh->is_iplt
          || eh->is_iplt
          || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
          || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
        {
        {
          elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
          elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
 
 
          /* If this symbol is not defined in a regular file, and we are
          /* If this symbol is not defined in a regular file, and we are
             not generating a shared library, then set the symbol to this
             not generating a shared library, then set the symbol to this
             location in the .plt.  This is required to make function
             location in the .plt.  This is required to make function
             pointers compare as equal between the normal executable and
             pointers compare as equal between the normal executable and
             the shared library.  */
             the shared library.  */
          if (! info->shared
          if (! info->shared
              && !h->def_regular)
              && !h->def_regular)
            {
            {
              h->root.u.def.section = htab->root.splt;
              h->root.u.def.section = htab->root.splt;
              h->root.u.def.value = h->plt.offset;
              h->root.u.def.value = h->plt.offset;
 
 
              /* Make sure the function is not marked as Thumb, in case
              /* Make sure the function is not marked as Thumb, in case
                 it is the target of an ABS32 relocation, which will
                 it is the target of an ABS32 relocation, which will
                 point to the PLT entry.  */
                 point to the PLT entry.  */
              h->target_internal = ST_BRANCH_TO_ARM;
              h->target_internal = ST_BRANCH_TO_ARM;
            }
            }
 
 
          htab->next_tls_desc_index++;
          htab->next_tls_desc_index++;
 
 
          /* VxWorks executables have a second set of relocations for
          /* VxWorks executables have a second set of relocations for
             each PLT entry.  They go in a separate relocation section,
             each PLT entry.  They go in a separate relocation section,
             which is processed by the kernel loader.  */
             which is processed by the kernel loader.  */
          if (htab->vxworks_p && !info->shared)
          if (htab->vxworks_p && !info->shared)
            {
            {
              /* There is a relocation for the initial PLT entry:
              /* There is a relocation for the initial PLT entry:
                 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
                 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_.  */
              if (h->plt.offset == htab->plt_header_size)
              if (h->plt.offset == htab->plt_header_size)
                elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
                elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
 
 
              /* There are two extra relocations for each subsequent
              /* There are two extra relocations for each subsequent
                 PLT entry: an R_ARM_32 relocation for the GOT entry,
                 PLT entry: an R_ARM_32 relocation for the GOT entry,
                 and an R_ARM_32 relocation for the PLT entry.  */
                 and an R_ARM_32 relocation for the PLT entry.  */
              elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
              elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
            }
            }
        }
        }
      else
      else
        {
        {
          h->plt.offset = (bfd_vma) -1;
          h->plt.offset = (bfd_vma) -1;
          h->needs_plt = 0;
          h->needs_plt = 0;
        }
        }
    }
    }
  else
  else
    {
    {
      h->plt.offset = (bfd_vma) -1;
      h->plt.offset = (bfd_vma) -1;
      h->needs_plt = 0;
      h->needs_plt = 0;
    }
    }
 
 
  eh = (struct elf32_arm_link_hash_entry *) h;
  eh = (struct elf32_arm_link_hash_entry *) h;
  eh->tlsdesc_got = (bfd_vma) -1;
  eh->tlsdesc_got = (bfd_vma) -1;
 
 
  if (h->got.refcount > 0)
  if (h->got.refcount > 0)
    {
    {
      asection *s;
      asection *s;
      bfd_boolean dyn;
      bfd_boolean dyn;
      int tls_type = elf32_arm_hash_entry (h)->tls_type;
      int tls_type = elf32_arm_hash_entry (h)->tls_type;
      int indx;
      int indx;
 
 
      /* Make sure this symbol is output as a dynamic symbol.
      /* Make sure this symbol is output as a dynamic symbol.
         Undefined weak syms won't yet be marked as dynamic.  */
         Undefined weak syms won't yet be marked as dynamic.  */
      if (h->dynindx == -1
      if (h->dynindx == -1
          && !h->forced_local)
          && !h->forced_local)
        {
        {
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (!htab->symbian_p)
      if (!htab->symbian_p)
        {
        {
          s = htab->root.sgot;
          s = htab->root.sgot;
          h->got.offset = s->size;
          h->got.offset = s->size;
 
 
          if (tls_type == GOT_UNKNOWN)
          if (tls_type == GOT_UNKNOWN)
            abort ();
            abort ();
 
 
          if (tls_type == GOT_NORMAL)
          if (tls_type == GOT_NORMAL)
            /* Non-TLS symbols need one GOT slot.  */
            /* Non-TLS symbols need one GOT slot.  */
            s->size += 4;
            s->size += 4;
          else
          else
            {
            {
              if (tls_type & GOT_TLS_GDESC)
              if (tls_type & GOT_TLS_GDESC)
                {
                {
                  /* R_ARM_TLS_DESC needs 2 GOT slots.  */
                  /* R_ARM_TLS_DESC needs 2 GOT slots.  */
                  eh->tlsdesc_got
                  eh->tlsdesc_got
                    = (htab->root.sgotplt->size
                    = (htab->root.sgotplt->size
                       - elf32_arm_compute_jump_table_size (htab));
                       - elf32_arm_compute_jump_table_size (htab));
                  htab->root.sgotplt->size += 8;
                  htab->root.sgotplt->size += 8;
                  h->got.offset = (bfd_vma) -2;
                  h->got.offset = (bfd_vma) -2;
                  /* plt.got_offset needs to know there's a TLS_DESC
                  /* plt.got_offset needs to know there's a TLS_DESC
                     reloc in the middle of .got.plt.  */
                     reloc in the middle of .got.plt.  */
                  htab->num_tls_desc++;
                  htab->num_tls_desc++;
                }
                }
 
 
              if (tls_type & GOT_TLS_GD)
              if (tls_type & GOT_TLS_GD)
                {
                {
                  /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  If
                  /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots.  If
                     the symbol is both GD and GDESC, got.offset may
                     the symbol is both GD and GDESC, got.offset may
                     have been overwritten.  */
                     have been overwritten.  */
                  h->got.offset = s->size;
                  h->got.offset = s->size;
                  s->size += 8;
                  s->size += 8;
                }
                }
 
 
              if (tls_type & GOT_TLS_IE)
              if (tls_type & GOT_TLS_IE)
                /* R_ARM_TLS_IE32 needs one GOT slot.  */
                /* R_ARM_TLS_IE32 needs one GOT slot.  */
                s->size += 4;
                s->size += 4;
            }
            }
 
 
          dyn = htab->root.dynamic_sections_created;
          dyn = htab->root.dynamic_sections_created;
 
 
          indx = 0;
          indx = 0;
          if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
          if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
              && (!info->shared
              && (!info->shared
                  || !SYMBOL_REFERENCES_LOCAL (info, h)))
                  || !SYMBOL_REFERENCES_LOCAL (info, h)))
            indx = h->dynindx;
            indx = h->dynindx;
 
 
          if (tls_type != GOT_NORMAL
          if (tls_type != GOT_NORMAL
              && (info->shared || indx != 0)
              && (info->shared || indx != 0)
              && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
              && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
                  || h->root.type != bfd_link_hash_undefweak))
                  || h->root.type != bfd_link_hash_undefweak))
            {
            {
              if (tls_type & GOT_TLS_IE)
              if (tls_type & GOT_TLS_IE)
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
 
 
              if (tls_type & GOT_TLS_GD)
              if (tls_type & GOT_TLS_GD)
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
 
 
              if (tls_type & GOT_TLS_GDESC)
              if (tls_type & GOT_TLS_GDESC)
                {
                {
                  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
                  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
                  /* GDESC needs a trampoline to jump to.  */
                  /* GDESC needs a trampoline to jump to.  */
                  htab->tls_trampoline = -1;
                  htab->tls_trampoline = -1;
                }
                }
 
 
              /* Only GD needs it.  GDESC just emits one relocation per
              /* Only GD needs it.  GDESC just emits one relocation per
                 2 entries.  */
                 2 entries.  */
              if ((tls_type & GOT_TLS_GD) && indx != 0)
              if ((tls_type & GOT_TLS_GD) && indx != 0)
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
            }
            }
          else if (!SYMBOL_REFERENCES_LOCAL (info, h))
          else if (!SYMBOL_REFERENCES_LOCAL (info, h))
            {
            {
              if (htab->root.dynamic_sections_created)
              if (htab->root.dynamic_sections_created)
                /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation.  */
                /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation.  */
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
                elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
            }
            }
          else if (h->type == STT_GNU_IFUNC
          else if (h->type == STT_GNU_IFUNC
                   && eh->plt.noncall_refcount == 0)
                   && eh->plt.noncall_refcount == 0)
            /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
            /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
               they all resolve dynamically instead.  Reserve room for the
               they all resolve dynamically instead.  Reserve room for the
               GOT entry's R_ARM_IRELATIVE relocation.  */
               GOT entry's R_ARM_IRELATIVE relocation.  */
            elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
            elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
          else if (info->shared)
          else if (info->shared)
            /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation.  */
            /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation.  */
            elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
            elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
        }
        }
    }
    }
  else
  else
    h->got.offset = (bfd_vma) -1;
    h->got.offset = (bfd_vma) -1;
 
 
  /* Allocate stubs for exported Thumb functions on v4t.  */
  /* Allocate stubs for exported Thumb functions on v4t.  */
  if (!htab->use_blx && h->dynindx != -1
  if (!htab->use_blx && h->dynindx != -1
      && h->def_regular
      && h->def_regular
      && h->target_internal == ST_BRANCH_TO_THUMB
      && h->target_internal == ST_BRANCH_TO_THUMB
      && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
      && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
    {
    {
      struct elf_link_hash_entry * th;
      struct elf_link_hash_entry * th;
      struct bfd_link_hash_entry * bh;
      struct bfd_link_hash_entry * bh;
      struct elf_link_hash_entry * myh;
      struct elf_link_hash_entry * myh;
      char name[1024];
      char name[1024];
      asection *s;
      asection *s;
      bh = NULL;
      bh = NULL;
      /* Create a new symbol to regist the real location of the function.  */
      /* Create a new symbol to regist the real location of the function.  */
      s = h->root.u.def.section;
      s = h->root.u.def.section;
      sprintf (name, "__real_%s", h->root.root.string);
      sprintf (name, "__real_%s", h->root.root.string);
      _bfd_generic_link_add_one_symbol (info, s->owner,
      _bfd_generic_link_add_one_symbol (info, s->owner,
                                        name, BSF_GLOBAL, s,
                                        name, BSF_GLOBAL, s,
                                        h->root.u.def.value,
                                        h->root.u.def.value,
                                        NULL, TRUE, FALSE, &bh);
                                        NULL, TRUE, FALSE, &bh);
 
 
      myh = (struct elf_link_hash_entry *) bh;
      myh = (struct elf_link_hash_entry *) bh;
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
      myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
      myh->forced_local = 1;
      myh->forced_local = 1;
      myh->target_internal = ST_BRANCH_TO_THUMB;
      myh->target_internal = ST_BRANCH_TO_THUMB;
      eh->export_glue = myh;
      eh->export_glue = myh;
      th = record_arm_to_thumb_glue (info, h);
      th = record_arm_to_thumb_glue (info, h);
      /* Point the symbol at the stub.  */
      /* Point the symbol at the stub.  */
      h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
      h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
      h->target_internal = ST_BRANCH_TO_ARM;
      h->target_internal = ST_BRANCH_TO_ARM;
      h->root.u.def.section = th->root.u.def.section;
      h->root.u.def.section = th->root.u.def.section;
      h->root.u.def.value = th->root.u.def.value & ~1;
      h->root.u.def.value = th->root.u.def.value & ~1;
    }
    }
 
 
  if (eh->dyn_relocs == NULL)
  if (eh->dyn_relocs == NULL)
    return TRUE;
    return TRUE;
 
 
  /* In the shared -Bsymbolic case, discard space allocated for
  /* In the shared -Bsymbolic case, discard space allocated for
     dynamic pc-relative relocs against symbols which turn out to be
     dynamic pc-relative relocs against symbols which turn out to be
     defined in regular objects.  For the normal shared case, discard
     defined in regular objects.  For the normal shared case, discard
     space for pc-relative relocs that have become local due to symbol
     space for pc-relative relocs that have become local due to symbol
     visibility changes.  */
     visibility changes.  */
 
 
  if (info->shared || htab->root.is_relocatable_executable)
  if (info->shared || htab->root.is_relocatable_executable)
    {
    {
      /* The only relocs that use pc_count are R_ARM_REL32 and
      /* The only relocs that use pc_count are R_ARM_REL32 and
         R_ARM_REL32_NOI, which will appear on something like
         R_ARM_REL32_NOI, which will appear on something like
         ".long foo - .".  We want calls to protected symbols to resolve
         ".long foo - .".  We want calls to protected symbols to resolve
         directly to the function rather than going via the plt.  If people
         directly to the function rather than going via the plt.  If people
         want function pointer comparisons to work as expected then they
         want function pointer comparisons to work as expected then they
         should avoid writing assembly like ".long foo - .".  */
         should avoid writing assembly like ".long foo - .".  */
      if (SYMBOL_CALLS_LOCAL (info, h))
      if (SYMBOL_CALLS_LOCAL (info, h))
        {
        {
          struct elf_dyn_relocs **pp;
          struct elf_dyn_relocs **pp;
 
 
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
            {
            {
              p->count -= p->pc_count;
              p->count -= p->pc_count;
              p->pc_count = 0;
              p->pc_count = 0;
              if (p->count == 0)
              if (p->count == 0)
                *pp = p->next;
                *pp = p->next;
              else
              else
                pp = &p->next;
                pp = &p->next;
            }
            }
        }
        }
 
 
      if (htab->vxworks_p)
      if (htab->vxworks_p)
        {
        {
          struct elf_dyn_relocs **pp;
          struct elf_dyn_relocs **pp;
 
 
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
          for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
            {
            {
              if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
              if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
                *pp = p->next;
                *pp = p->next;
              else
              else
                pp = &p->next;
                pp = &p->next;
            }
            }
        }
        }
 
 
      /* Also discard relocs on undefined weak syms with non-default
      /* Also discard relocs on undefined weak syms with non-default
         visibility.  */
         visibility.  */
      if (eh->dyn_relocs != NULL
      if (eh->dyn_relocs != NULL
          && h->root.type == bfd_link_hash_undefweak)
          && h->root.type == bfd_link_hash_undefweak)
        {
        {
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
            eh->dyn_relocs = NULL;
            eh->dyn_relocs = NULL;
 
 
          /* Make sure undefined weak symbols are output as a dynamic
          /* Make sure undefined weak symbols are output as a dynamic
             symbol in PIEs.  */
             symbol in PIEs.  */
          else if (h->dynindx == -1
          else if (h->dynindx == -1
                   && !h->forced_local)
                   && !h->forced_local)
            {
            {
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
 
 
      else if (htab->root.is_relocatable_executable && h->dynindx == -1
      else if (htab->root.is_relocatable_executable && h->dynindx == -1
               && h->root.type == bfd_link_hash_new)
               && h->root.type == bfd_link_hash_new)
        {
        {
          /* Output absolute symbols so that we can create relocations
          /* Output absolute symbols so that we can create relocations
             against them.  For normal symbols we output a relocation
             against them.  For normal symbols we output a relocation
             against the section that contains them.  */
             against the section that contains them.  */
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
            return FALSE;
            return FALSE;
        }
        }
 
 
    }
    }
  else
  else
    {
    {
      /* For the non-shared case, discard space for relocs against
      /* For the non-shared case, discard space for relocs against
         symbols which turn out to need copy relocs or are not
         symbols which turn out to need copy relocs or are not
         dynamic.  */
         dynamic.  */
 
 
      if (!h->non_got_ref
      if (!h->non_got_ref
          && ((h->def_dynamic
          && ((h->def_dynamic
               && !h->def_regular)
               && !h->def_regular)
              || (htab->root.dynamic_sections_created
              || (htab->root.dynamic_sections_created
                  && (h->root.type == bfd_link_hash_undefweak
                  && (h->root.type == bfd_link_hash_undefweak
                      || h->root.type == bfd_link_hash_undefined))))
                      || h->root.type == bfd_link_hash_undefined))))
        {
        {
          /* Make sure this symbol is output as a dynamic symbol.
          /* Make sure this symbol is output as a dynamic symbol.
             Undefined weak syms won't yet be marked as dynamic.  */
             Undefined weak syms won't yet be marked as dynamic.  */
          if (h->dynindx == -1
          if (h->dynindx == -1
              && !h->forced_local)
              && !h->forced_local)
            {
            {
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
                return FALSE;
                return FALSE;
            }
            }
 
 
          /* If that succeeded, we know we'll be keeping all the
          /* If that succeeded, we know we'll be keeping all the
             relocs.  */
             relocs.  */
          if (h->dynindx != -1)
          if (h->dynindx != -1)
            goto keep;
            goto keep;
        }
        }
 
 
      eh->dyn_relocs = NULL;
      eh->dyn_relocs = NULL;
 
 
    keep: ;
    keep: ;
    }
    }
 
 
  /* Finally, allocate space.  */
  /* Finally, allocate space.  */
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
    {
    {
      asection *sreloc = elf_section_data (p->sec)->sreloc;
      asection *sreloc = elf_section_data (p->sec)->sreloc;
      if (h->type == STT_GNU_IFUNC
      if (h->type == STT_GNU_IFUNC
          && eh->plt.noncall_refcount == 0
          && eh->plt.noncall_refcount == 0
          && SYMBOL_REFERENCES_LOCAL (info, h))
          && SYMBOL_REFERENCES_LOCAL (info, h))
        elf32_arm_allocate_irelocs (info, sreloc, p->count);
        elf32_arm_allocate_irelocs (info, sreloc, p->count);
      else
      else
        elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
        elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Find any dynamic relocs that apply to read-only sections.  */
/* Find any dynamic relocs that apply to read-only sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
{
{
  struct elf32_arm_link_hash_entry * eh;
  struct elf32_arm_link_hash_entry * eh;
  struct elf_dyn_relocs * p;
  struct elf_dyn_relocs * p;
 
 
  eh = (struct elf32_arm_link_hash_entry *) h;
  eh = (struct elf32_arm_link_hash_entry *) h;
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
  for (p = eh->dyn_relocs; p != NULL; p = p->next)
    {
    {
      asection *s = p->sec;
      asection *s = p->sec;
 
 
      if (s != NULL && (s->flags & SEC_READONLY) != 0)
      if (s != NULL && (s->flags & SEC_READONLY) != 0)
        {
        {
          struct bfd_link_info *info = (struct bfd_link_info *) inf;
          struct bfd_link_info *info = (struct bfd_link_info *) inf;
 
 
          info->flags |= DF_TEXTREL;
          info->flags |= DF_TEXTREL;
 
 
          /* Not an error, just cut short the traversal.  */
          /* Not an error, just cut short the traversal.  */
          return FALSE;
          return FALSE;
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
void
void
bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
                                 int byteswap_code)
                                 int byteswap_code)
{
{
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
  if (globals == NULL)
  if (globals == NULL)
    return;
    return;
 
 
  globals->byteswap_code = byteswap_code;
  globals->byteswap_code = byteswap_code;
}
}
 
 
/* Set the sizes of the dynamic sections.  */
/* Set the sizes of the dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
                                 struct bfd_link_info * info)
                                 struct bfd_link_info * info)
{
{
  bfd * dynobj;
  bfd * dynobj;
  asection * s;
  asection * s;
  bfd_boolean plt;
  bfd_boolean plt;
  bfd_boolean relocs;
  bfd_boolean relocs;
  bfd *ibfd;
  bfd *ibfd;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  BFD_ASSERT (dynobj != NULL);
  BFD_ASSERT (dynobj != NULL);
  check_use_blx (htab);
  check_use_blx (htab);
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Set the contents of the .interp section to the interpreter.  */
      /* Set the contents of the .interp section to the interpreter.  */
      if (info->executable)
      if (info->executable)
        {
        {
          s = bfd_get_section_by_name (dynobj, ".interp");
          s = bfd_get_section_by_name (dynobj, ".interp");
          BFD_ASSERT (s != NULL);
          BFD_ASSERT (s != NULL);
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
        }
        }
    }
    }
 
 
  /* Set up .got offsets for local syms, and space for local dynamic
  /* Set up .got offsets for local syms, and space for local dynamic
     relocs.  */
     relocs.  */
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      bfd_signed_vma *local_got;
      bfd_signed_vma *local_got;
      bfd_signed_vma *end_local_got;
      bfd_signed_vma *end_local_got;
      struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
      struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
      char *local_tls_type;
      char *local_tls_type;
      bfd_vma *local_tlsdesc_gotent;
      bfd_vma *local_tlsdesc_gotent;
      bfd_size_type locsymcount;
      bfd_size_type locsymcount;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      asection *srel;
      asection *srel;
      bfd_boolean is_vxworks = htab->vxworks_p;
      bfd_boolean is_vxworks = htab->vxworks_p;
      unsigned int symndx;
      unsigned int symndx;
 
 
      if (! is_arm_elf (ibfd))
      if (! is_arm_elf (ibfd))
        continue;
        continue;
 
 
      for (s = ibfd->sections; s != NULL; s = s->next)
      for (s = ibfd->sections; s != NULL; s = s->next)
        {
        {
          struct elf_dyn_relocs *p;
          struct elf_dyn_relocs *p;
 
 
          for (p = (struct elf_dyn_relocs *)
          for (p = (struct elf_dyn_relocs *)
                   elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
                   elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
            {
            {
              if (!bfd_is_abs_section (p->sec)
              if (!bfd_is_abs_section (p->sec)
                  && bfd_is_abs_section (p->sec->output_section))
                  && bfd_is_abs_section (p->sec->output_section))
                {
                {
                  /* Input section has been discarded, either because
                  /* Input section has been discarded, either because
                     it is a copy of a linkonce section or due to
                     it is a copy of a linkonce section or due to
                     linker script /DISCARD/, so we'll be discarding
                     linker script /DISCARD/, so we'll be discarding
                     the relocs too.  */
                     the relocs too.  */
                }
                }
              else if (is_vxworks
              else if (is_vxworks
                       && strcmp (p->sec->output_section->name,
                       && strcmp (p->sec->output_section->name,
                                  ".tls_vars") == 0)
                                  ".tls_vars") == 0)
                {
                {
                  /* Relocations in vxworks .tls_vars sections are
                  /* Relocations in vxworks .tls_vars sections are
                     handled specially by the loader.  */
                     handled specially by the loader.  */
                }
                }
              else if (p->count != 0)
              else if (p->count != 0)
                {
                {
                  srel = elf_section_data (p->sec)->sreloc;
                  srel = elf_section_data (p->sec)->sreloc;
                  elf32_arm_allocate_dynrelocs (info, srel, p->count);
                  elf32_arm_allocate_dynrelocs (info, srel, p->count);
                  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
                  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
                    info->flags |= DF_TEXTREL;
                    info->flags |= DF_TEXTREL;
                }
                }
            }
            }
        }
        }
 
 
      local_got = elf_local_got_refcounts (ibfd);
      local_got = elf_local_got_refcounts (ibfd);
      if (!local_got)
      if (!local_got)
        continue;
        continue;
 
 
      symtab_hdr = & elf_symtab_hdr (ibfd);
      symtab_hdr = & elf_symtab_hdr (ibfd);
      locsymcount = symtab_hdr->sh_info;
      locsymcount = symtab_hdr->sh_info;
      end_local_got = local_got + locsymcount;
      end_local_got = local_got + locsymcount;
      local_iplt_ptr = elf32_arm_local_iplt (ibfd);
      local_iplt_ptr = elf32_arm_local_iplt (ibfd);
      local_tls_type = elf32_arm_local_got_tls_type (ibfd);
      local_tls_type = elf32_arm_local_got_tls_type (ibfd);
      local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
      local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
      symndx = 0;
      symndx = 0;
      s = htab->root.sgot;
      s = htab->root.sgot;
      srel = htab->root.srelgot;
      srel = htab->root.srelgot;
      for (; local_got < end_local_got;
      for (; local_got < end_local_got;
           ++local_got, ++local_iplt_ptr, ++local_tls_type,
           ++local_got, ++local_iplt_ptr, ++local_tls_type,
           ++local_tlsdesc_gotent, ++symndx)
           ++local_tlsdesc_gotent, ++symndx)
        {
        {
          *local_tlsdesc_gotent = (bfd_vma) -1;
          *local_tlsdesc_gotent = (bfd_vma) -1;
          local_iplt = *local_iplt_ptr;
          local_iplt = *local_iplt_ptr;
          if (local_iplt != NULL)
          if (local_iplt != NULL)
            {
            {
              struct elf_dyn_relocs *p;
              struct elf_dyn_relocs *p;
 
 
              if (local_iplt->root.refcount > 0)
              if (local_iplt->root.refcount > 0)
                {
                {
                  elf32_arm_allocate_plt_entry (info, TRUE,
                  elf32_arm_allocate_plt_entry (info, TRUE,
                                                &local_iplt->root,
                                                &local_iplt->root,
                                                &local_iplt->arm);
                                                &local_iplt->arm);
                  if (local_iplt->arm.noncall_refcount == 0)
                  if (local_iplt->arm.noncall_refcount == 0)
                    /* All references to the PLT are calls, so all
                    /* All references to the PLT are calls, so all
                       non-call references can resolve directly to the
                       non-call references can resolve directly to the
                       run-time target.  This means that the .got entry
                       run-time target.  This means that the .got entry
                       would be the same as the .igot.plt entry, so there's
                       would be the same as the .igot.plt entry, so there's
                       no point creating both.  */
                       no point creating both.  */
                    *local_got = 0;
                    *local_got = 0;
                }
                }
              else
              else
                {
                {
                  BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
                  BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
                  local_iplt->root.offset = (bfd_vma) -1;
                  local_iplt->root.offset = (bfd_vma) -1;
                }
                }
 
 
              for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
              for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
                {
                {
                  asection *psrel;
                  asection *psrel;
 
 
                  psrel = elf_section_data (p->sec)->sreloc;
                  psrel = elf_section_data (p->sec)->sreloc;
                  if (local_iplt->arm.noncall_refcount == 0)
                  if (local_iplt->arm.noncall_refcount == 0)
                    elf32_arm_allocate_irelocs (info, psrel, p->count);
                    elf32_arm_allocate_irelocs (info, psrel, p->count);
                  else
                  else
                    elf32_arm_allocate_dynrelocs (info, psrel, p->count);
                    elf32_arm_allocate_dynrelocs (info, psrel, p->count);
                }
                }
            }
            }
          if (*local_got > 0)
          if (*local_got > 0)
            {
            {
              Elf_Internal_Sym *isym;
              Elf_Internal_Sym *isym;
 
 
              *local_got = s->size;
              *local_got = s->size;
              if (*local_tls_type & GOT_TLS_GD)
              if (*local_tls_type & GOT_TLS_GD)
                /* TLS_GD relocs need an 8-byte structure in the GOT.  */
                /* TLS_GD relocs need an 8-byte structure in the GOT.  */
                s->size += 8;
                s->size += 8;
              if (*local_tls_type & GOT_TLS_GDESC)
              if (*local_tls_type & GOT_TLS_GDESC)
                {
                {
                  *local_tlsdesc_gotent = htab->root.sgotplt->size
                  *local_tlsdesc_gotent = htab->root.sgotplt->size
                    - elf32_arm_compute_jump_table_size (htab);
                    - elf32_arm_compute_jump_table_size (htab);
                  htab->root.sgotplt->size += 8;
                  htab->root.sgotplt->size += 8;
                  *local_got = (bfd_vma) -2;
                  *local_got = (bfd_vma) -2;
                  /* plt.got_offset needs to know there's a TLS_DESC
                  /* plt.got_offset needs to know there's a TLS_DESC
                     reloc in the middle of .got.plt.  */
                     reloc in the middle of .got.plt.  */
                  htab->num_tls_desc++;
                  htab->num_tls_desc++;
                }
                }
              if (*local_tls_type & GOT_TLS_IE)
              if (*local_tls_type & GOT_TLS_IE)
                s->size += 4;
                s->size += 4;
 
 
              if (*local_tls_type & GOT_NORMAL)
              if (*local_tls_type & GOT_NORMAL)
                {
                {
                  /* If the symbol is both GD and GDESC, *local_got
                  /* If the symbol is both GD and GDESC, *local_got
                     may have been overwritten.  */
                     may have been overwritten.  */
                  *local_got = s->size;
                  *local_got = s->size;
                  s->size += 4;
                  s->size += 4;
                }
                }
 
 
              isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
              isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
              if (isym == NULL)
              if (isym == NULL)
                return FALSE;
                return FALSE;
 
 
              /* If all references to an STT_GNU_IFUNC PLT are calls,
              /* If all references to an STT_GNU_IFUNC PLT are calls,
                 then all non-call references, including this GOT entry,
                 then all non-call references, including this GOT entry,
                 resolve directly to the run-time target.  */
                 resolve directly to the run-time target.  */
              if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
              if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
                  && (local_iplt == NULL
                  && (local_iplt == NULL
                      || local_iplt->arm.noncall_refcount == 0))
                      || local_iplt->arm.noncall_refcount == 0))
                elf32_arm_allocate_irelocs (info, srel, 1);
                elf32_arm_allocate_irelocs (info, srel, 1);
              else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
              else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
                       || *local_tls_type & GOT_TLS_GD)
                       || *local_tls_type & GOT_TLS_GD)
                elf32_arm_allocate_dynrelocs (info, srel, 1);
                elf32_arm_allocate_dynrelocs (info, srel, 1);
 
 
              if (info->shared && *local_tls_type & GOT_TLS_GDESC)
              if (info->shared && *local_tls_type & GOT_TLS_GDESC)
                {
                {
                  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
                  elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
                  htab->tls_trampoline = -1;
                  htab->tls_trampoline = -1;
                }
                }
            }
            }
          else
          else
            *local_got = (bfd_vma) -1;
            *local_got = (bfd_vma) -1;
        }
        }
    }
    }
 
 
  if (htab->tls_ldm_got.refcount > 0)
  if (htab->tls_ldm_got.refcount > 0)
    {
    {
      /* Allocate two GOT entries and one dynamic relocation (if necessary)
      /* Allocate two GOT entries and one dynamic relocation (if necessary)
         for R_ARM_TLS_LDM32 relocations.  */
         for R_ARM_TLS_LDM32 relocations.  */
      htab->tls_ldm_got.offset = htab->root.sgot->size;
      htab->tls_ldm_got.offset = htab->root.sgot->size;
      htab->root.sgot->size += 8;
      htab->root.sgot->size += 8;
      if (info->shared)
      if (info->shared)
        elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
        elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
    }
    }
  else
  else
    htab->tls_ldm_got.offset = -1;
    htab->tls_ldm_got.offset = -1;
 
 
  /* Allocate global sym .plt and .got entries, and space for global
  /* Allocate global sym .plt and .got entries, and space for global
     sym dynamic relocs.  */
     sym dynamic relocs.  */
  elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
  elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
 
 
  /* Here we rummage through the found bfds to collect glue information.  */
  /* Here we rummage through the found bfds to collect glue information.  */
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      if (! is_arm_elf (ibfd))
      if (! is_arm_elf (ibfd))
        continue;
        continue;
 
 
      /* Initialise mapping tables for code/data.  */
      /* Initialise mapping tables for code/data.  */
      bfd_elf32_arm_init_maps (ibfd);
      bfd_elf32_arm_init_maps (ibfd);
 
 
      if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
      if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
          || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
          || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
        /* xgettext:c-format */
        /* xgettext:c-format */
        _bfd_error_handler (_("Errors encountered processing file %s"),
        _bfd_error_handler (_("Errors encountered processing file %s"),
                            ibfd->filename);
                            ibfd->filename);
    }
    }
 
 
  /* Allocate space for the glue sections now that we've sized them.  */
  /* Allocate space for the glue sections now that we've sized them.  */
  bfd_elf32_arm_allocate_interworking_sections (info);
  bfd_elf32_arm_allocate_interworking_sections (info);
 
 
  /* For every jump slot reserved in the sgotplt, reloc_count is
  /* For every jump slot reserved in the sgotplt, reloc_count is
     incremented.  However, when we reserve space for TLS descriptors,
     incremented.  However, when we reserve space for TLS descriptors,
     it's not incremented, so in order to compute the space reserved
     it's not incremented, so in order to compute the space reserved
     for them, it suffices to multiply the reloc count by the jump
     for them, it suffices to multiply the reloc count by the jump
     slot size.  */
     slot size.  */
  if (htab->root.srelplt)
  if (htab->root.srelplt)
    htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
    htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
 
 
  if (htab->tls_trampoline)
  if (htab->tls_trampoline)
    {
    {
      if (htab->root.splt->size == 0)
      if (htab->root.splt->size == 0)
        htab->root.splt->size += htab->plt_header_size;
        htab->root.splt->size += htab->plt_header_size;
 
 
      htab->tls_trampoline = htab->root.splt->size;
      htab->tls_trampoline = htab->root.splt->size;
      htab->root.splt->size += htab->plt_entry_size;
      htab->root.splt->size += htab->plt_entry_size;
 
 
      /* If we're not using lazy TLS relocations, don't generate the
      /* If we're not using lazy TLS relocations, don't generate the
         PLT and GOT entries they require.  */
         PLT and GOT entries they require.  */
      if (!(info->flags & DF_BIND_NOW))
      if (!(info->flags & DF_BIND_NOW))
        {
        {
          htab->dt_tlsdesc_got = htab->root.sgot->size;
          htab->dt_tlsdesc_got = htab->root.sgot->size;
          htab->root.sgot->size += 4;
          htab->root.sgot->size += 4;
 
 
          htab->dt_tlsdesc_plt = htab->root.splt->size;
          htab->dt_tlsdesc_plt = htab->root.splt->size;
          htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
          htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
        }
        }
    }
    }
 
 
  /* The check_relocs and adjust_dynamic_symbol entry points have
  /* The check_relocs and adjust_dynamic_symbol entry points have
     determined the sizes of the various dynamic sections.  Allocate
     determined the sizes of the various dynamic sections.  Allocate
     memory for them.  */
     memory for them.  */
  plt = FALSE;
  plt = FALSE;
  relocs = FALSE;
  relocs = FALSE;
  for (s = dynobj->sections; s != NULL; s = s->next)
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
    {
      const char * name;
      const char * name;
 
 
      if ((s->flags & SEC_LINKER_CREATED) == 0)
      if ((s->flags & SEC_LINKER_CREATED) == 0)
        continue;
        continue;
 
 
      /* It's OK to base decisions on the section name, because none
      /* It's OK to base decisions on the section name, because none
         of the dynobj section names depend upon the input files.  */
         of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);
      name = bfd_get_section_name (dynobj, s);
 
 
      if (s == htab->root.splt)
      if (s == htab->root.splt)
        {
        {
          /* Remember whether there is a PLT.  */
          /* Remember whether there is a PLT.  */
          plt = s->size != 0;
          plt = s->size != 0;
        }
        }
      else if (CONST_STRNEQ (name, ".rel"))
      else if (CONST_STRNEQ (name, ".rel"))
        {
        {
          if (s->size != 0)
          if (s->size != 0)
            {
            {
              /* Remember whether there are any reloc sections other
              /* Remember whether there are any reloc sections other
                 than .rel(a).plt and .rela.plt.unloaded.  */
                 than .rel(a).plt and .rela.plt.unloaded.  */
              if (s != htab->root.srelplt && s != htab->srelplt2)
              if (s != htab->root.srelplt && s != htab->srelplt2)
                relocs = TRUE;
                relocs = TRUE;
 
 
              /* We use the reloc_count field as a counter if we need
              /* We use the reloc_count field as a counter if we need
                 to copy relocs into the output file.  */
                 to copy relocs into the output file.  */
              s->reloc_count = 0;
              s->reloc_count = 0;
            }
            }
        }
        }
      else if (s != htab->root.sgot
      else if (s != htab->root.sgot
               && s != htab->root.sgotplt
               && s != htab->root.sgotplt
               && s != htab->root.iplt
               && s != htab->root.iplt
               && s != htab->root.igotplt
               && s != htab->root.igotplt
               && s != htab->sdynbss)
               && s != htab->sdynbss)
        {
        {
          /* It's not one of our sections, so don't allocate space.  */
          /* It's not one of our sections, so don't allocate space.  */
          continue;
          continue;
        }
        }
 
 
      if (s->size == 0)
      if (s->size == 0)
        {
        {
          /* If we don't need this section, strip it from the
          /* If we don't need this section, strip it from the
             output file.  This is mostly to handle .rel(a).bss and
             output file.  This is mostly to handle .rel(a).bss and
             .rel(a).plt.  We must create both sections in
             .rel(a).plt.  We must create both sections in
             create_dynamic_sections, because they must be created
             create_dynamic_sections, because they must be created
             before the linker maps input sections to output
             before the linker maps input sections to output
             sections.  The linker does that before
             sections.  The linker does that before
             adjust_dynamic_symbol is called, and it is that
             adjust_dynamic_symbol is called, and it is that
             function which decides whether anything needs to go
             function which decides whether anything needs to go
             into these sections.  */
             into these sections.  */
          s->flags |= SEC_EXCLUDE;
          s->flags |= SEC_EXCLUDE;
          continue;
          continue;
        }
        }
 
 
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
        continue;
        continue;
 
 
      /* Allocate memory for the section contents.  */
      /* Allocate memory for the section contents.  */
      s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
      s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
      if (s->contents == NULL)
      if (s->contents == NULL)
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Add some entries to the .dynamic section.  We fill in the
      /* Add some entries to the .dynamic section.  We fill in the
         values later, in elf32_arm_finish_dynamic_sections, but we
         values later, in elf32_arm_finish_dynamic_sections, but we
         must add the entries now so that we get the correct size for
         must add the entries now so that we get the correct size for
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         dynamic linker and used by the debugger.  */
         dynamic linker and used by the debugger.  */
#define add_dynamic_entry(TAG, VAL) \
#define add_dynamic_entry(TAG, VAL) \
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
 
 
     if (info->executable)
     if (info->executable)
        {
        {
          if (!add_dynamic_entry (DT_DEBUG, 0))
          if (!add_dynamic_entry (DT_DEBUG, 0))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (plt)
      if (plt)
        {
        {
          if (   !add_dynamic_entry (DT_PLTGOT, 0)
          if (   !add_dynamic_entry (DT_PLTGOT, 0)
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
              || !add_dynamic_entry (DT_PLTREL,
              || !add_dynamic_entry (DT_PLTREL,
                                     htab->use_rel ? DT_REL : DT_RELA)
                                     htab->use_rel ? DT_REL : DT_RELA)
              || !add_dynamic_entry (DT_JMPREL, 0))
              || !add_dynamic_entry (DT_JMPREL, 0))
            return FALSE;
            return FALSE;
 
 
          if (htab->dt_tlsdesc_plt &&
          if (htab->dt_tlsdesc_plt &&
                (!add_dynamic_entry (DT_TLSDESC_PLT,0)
                (!add_dynamic_entry (DT_TLSDESC_PLT,0)
                 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
                 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (relocs)
      if (relocs)
        {
        {
          if (htab->use_rel)
          if (htab->use_rel)
            {
            {
              if (!add_dynamic_entry (DT_REL, 0)
              if (!add_dynamic_entry (DT_REL, 0)
                  || !add_dynamic_entry (DT_RELSZ, 0)
                  || !add_dynamic_entry (DT_RELSZ, 0)
                  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
                  || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
                return FALSE;
                return FALSE;
            }
            }
          else
          else
            {
            {
              if (!add_dynamic_entry (DT_RELA, 0)
              if (!add_dynamic_entry (DT_RELA, 0)
                  || !add_dynamic_entry (DT_RELASZ, 0)
                  || !add_dynamic_entry (DT_RELASZ, 0)
                  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
                  || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
 
 
      /* If any dynamic relocs apply to a read-only section,
      /* If any dynamic relocs apply to a read-only section,
         then we need a DT_TEXTREL entry.  */
         then we need a DT_TEXTREL entry.  */
      if ((info->flags & DF_TEXTREL) == 0)
      if ((info->flags & DF_TEXTREL) == 0)
        elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
        elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
                                info);
                                info);
 
 
      if ((info->flags & DF_TEXTREL) != 0)
      if ((info->flags & DF_TEXTREL) != 0)
        {
        {
          if (!add_dynamic_entry (DT_TEXTREL, 0))
          if (!add_dynamic_entry (DT_TEXTREL, 0))
            return FALSE;
            return FALSE;
        }
        }
      if (htab->vxworks_p
      if (htab->vxworks_p
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
        return FALSE;
        return FALSE;
    }
    }
#undef add_dynamic_entry
#undef add_dynamic_entry
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Size sections even though they're not dynamic.  We use it to setup
/* Size sections even though they're not dynamic.  We use it to setup
   _TLS_MODULE_BASE_, if needed.  */
   _TLS_MODULE_BASE_, if needed.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_always_size_sections (bfd *output_bfd,
elf32_arm_always_size_sections (bfd *output_bfd,
                                struct bfd_link_info *info)
                                struct bfd_link_info *info)
{
{
  asection *tls_sec;
  asection *tls_sec;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  tls_sec = elf_hash_table (info)->tls_sec;
  tls_sec = elf_hash_table (info)->tls_sec;
 
 
  if (tls_sec)
  if (tls_sec)
    {
    {
      struct elf_link_hash_entry *tlsbase;
      struct elf_link_hash_entry *tlsbase;
 
 
      tlsbase = elf_link_hash_lookup
      tlsbase = elf_link_hash_lookup
        (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
        (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
 
 
      if (tlsbase)
      if (tlsbase)
        {
        {
          struct bfd_link_hash_entry *bh = NULL;
          struct bfd_link_hash_entry *bh = NULL;
          const struct elf_backend_data *bed
          const struct elf_backend_data *bed
            = get_elf_backend_data (output_bfd);
            = get_elf_backend_data (output_bfd);
 
 
          if (!(_bfd_generic_link_add_one_symbol
          if (!(_bfd_generic_link_add_one_symbol
                (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
                (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
                 tls_sec, 0, NULL, FALSE,
                 tls_sec, 0, NULL, FALSE,
                 bed->collect, &bh)))
                 bed->collect, &bh)))
            return FALSE;
            return FALSE;
 
 
          tlsbase->type = STT_TLS;
          tlsbase->type = STT_TLS;
          tlsbase = (struct elf_link_hash_entry *)bh;
          tlsbase = (struct elf_link_hash_entry *)bh;
          tlsbase->def_regular = 1;
          tlsbase->def_regular = 1;
          tlsbase->other = STV_HIDDEN;
          tlsbase->other = STV_HIDDEN;
          (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
          (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Finish up dynamic symbol handling.  We set the contents of various
/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */
   dynamic sections here.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
                                 struct bfd_link_info * info,
                                 struct bfd_link_info * info,
                                 struct elf_link_hash_entry * h,
                                 struct elf_link_hash_entry * h,
                                 Elf_Internal_Sym * sym)
                                 Elf_Internal_Sym * sym)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_entry *eh;
  struct elf32_arm_link_hash_entry *eh;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  eh = (struct elf32_arm_link_hash_entry *) h;
  eh = (struct elf32_arm_link_hash_entry *) h;
 
 
  if (h->plt.offset != (bfd_vma) -1)
  if (h->plt.offset != (bfd_vma) -1)
    {
    {
      if (!eh->is_iplt)
      if (!eh->is_iplt)
        {
        {
          BFD_ASSERT (h->dynindx != -1);
          BFD_ASSERT (h->dynindx != -1);
          elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
          elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
                                        h->dynindx, 0);
                                        h->dynindx, 0);
        }
        }
 
 
      if (!h->def_regular)
      if (!h->def_regular)
        {
        {
          /* Mark the symbol as undefined, rather than as defined in
          /* Mark the symbol as undefined, rather than as defined in
             the .plt section.  Leave the value alone.  */
             the .plt section.  Leave the value alone.  */
          sym->st_shndx = SHN_UNDEF;
          sym->st_shndx = SHN_UNDEF;
          /* If the symbol is weak, we do need to clear the value.
          /* If the symbol is weak, we do need to clear the value.
             Otherwise, the PLT entry would provide a definition for
             Otherwise, the PLT entry would provide a definition for
             the symbol even if the symbol wasn't defined anywhere,
             the symbol even if the symbol wasn't defined anywhere,
             and so the symbol would never be NULL.  */
             and so the symbol would never be NULL.  */
          if (!h->ref_regular_nonweak)
          if (!h->ref_regular_nonweak)
            sym->st_value = 0;
            sym->st_value = 0;
        }
        }
      else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
      else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
        {
        {
          /* At least one non-call relocation references this .iplt entry,
          /* At least one non-call relocation references this .iplt entry,
             so the .iplt entry is the function's canonical address.  */
             so the .iplt entry is the function's canonical address.  */
          sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
          sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
          sym->st_target_internal = ST_BRANCH_TO_ARM;
          sym->st_target_internal = ST_BRANCH_TO_ARM;
          sym->st_shndx = (_bfd_elf_section_from_bfd_section
          sym->st_shndx = (_bfd_elf_section_from_bfd_section
                           (output_bfd, htab->root.iplt->output_section));
                           (output_bfd, htab->root.iplt->output_section));
          sym->st_value = (h->plt.offset
          sym->st_value = (h->plt.offset
                           + htab->root.iplt->output_section->vma
                           + htab->root.iplt->output_section->vma
                           + htab->root.iplt->output_offset);
                           + htab->root.iplt->output_offset);
        }
        }
    }
    }
 
 
  if (h->needs_copy)
  if (h->needs_copy)
    {
    {
      asection * s;
      asection * s;
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
 
 
      /* This symbol needs a copy reloc.  Set it up.  */
      /* This symbol needs a copy reloc.  Set it up.  */
      BFD_ASSERT (h->dynindx != -1
      BFD_ASSERT (h->dynindx != -1
                  && (h->root.type == bfd_link_hash_defined
                  && (h->root.type == bfd_link_hash_defined
                      || h->root.type == bfd_link_hash_defweak));
                      || h->root.type == bfd_link_hash_defweak));
 
 
      s = htab->srelbss;
      s = htab->srelbss;
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      rel.r_addend = 0;
      rel.r_addend = 0;
      rel.r_offset = (h->root.u.def.value
      rel.r_offset = (h->root.u.def.value
                      + h->root.u.def.section->output_section->vma
                      + h->root.u.def.section->output_section->vma
                      + h->root.u.def.section->output_offset);
                      + h->root.u.def.section->output_offset);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
      elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
      elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
    }
    }
 
 
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  On VxWorks,
     the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
     the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
     to the ".got" section.  */
     to the ".got" section.  */
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
      || (!htab->vxworks_p && h == htab->root.hgot))
      || (!htab->vxworks_p && h == htab->root.hgot))
    sym->st_shndx = SHN_ABS;
    sym->st_shndx = SHN_ABS;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static void
static void
arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
                    void *contents,
                    void *contents,
                    const unsigned long *template, unsigned count)
                    const unsigned long *template, unsigned count)
{
{
  unsigned ix;
  unsigned ix;
 
 
  for (ix = 0; ix != count; ix++)
  for (ix = 0; ix != count; ix++)
    {
    {
      unsigned long insn = template[ix];
      unsigned long insn = template[ix];
 
 
      /* Emit mov pc,rx if bx is not permitted.  */
      /* Emit mov pc,rx if bx is not permitted.  */
      if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
      if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
        insn = (insn & 0xf000000f) | 0x01a0f000;
        insn = (insn & 0xf000000f) | 0x01a0f000;
      put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
      put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
    }
    }
}
}
 
 
/* Finish up the dynamic sections.  */
/* Finish up the dynamic sections.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
{
{
  bfd * dynobj;
  bfd * dynobj;
  asection * sgot;
  asection * sgot;
  asection * sdyn;
  asection * sdyn;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  sgot = htab->root.sgotplt;
  sgot = htab->root.sgotplt;
  /* A broken linker script might have discarded the dynamic sections.
  /* A broken linker script might have discarded the dynamic sections.
     Catch this here so that we do not seg-fault later on.  */
     Catch this here so that we do not seg-fault later on.  */
  if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
  if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
    return FALSE;
    return FALSE;
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      asection *splt;
      asection *splt;
      Elf32_External_Dyn *dyncon, *dynconend;
      Elf32_External_Dyn *dyncon, *dynconend;
 
 
      splt = htab->root.splt;
      splt = htab->root.splt;
      BFD_ASSERT (splt != NULL && sdyn != NULL);
      BFD_ASSERT (splt != NULL && sdyn != NULL);
      BFD_ASSERT (htab->symbian_p || sgot != NULL);
      BFD_ASSERT (htab->symbian_p || sgot != NULL);
 
 
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
 
 
      for (; dyncon < dynconend; dyncon++)
      for (; dyncon < dynconend; dyncon++)
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          const char * name;
          const char * name;
          asection * s;
          asection * s;
 
 
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
              unsigned int type;
              unsigned int type;
 
 
            default:
            default:
              if (htab->vxworks_p
              if (htab->vxworks_p
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
                bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_HASH:
            case DT_HASH:
              name = ".hash";
              name = ".hash";
              goto get_vma_if_bpabi;
              goto get_vma_if_bpabi;
            case DT_STRTAB:
            case DT_STRTAB:
              name = ".dynstr";
              name = ".dynstr";
              goto get_vma_if_bpabi;
              goto get_vma_if_bpabi;
            case DT_SYMTAB:
            case DT_SYMTAB:
              name = ".dynsym";
              name = ".dynsym";
              goto get_vma_if_bpabi;
              goto get_vma_if_bpabi;
            case DT_VERSYM:
            case DT_VERSYM:
              name = ".gnu.version";
              name = ".gnu.version";
              goto get_vma_if_bpabi;
              goto get_vma_if_bpabi;
            case DT_VERDEF:
            case DT_VERDEF:
              name = ".gnu.version_d";
              name = ".gnu.version_d";
              goto get_vma_if_bpabi;
              goto get_vma_if_bpabi;
            case DT_VERNEED:
            case DT_VERNEED:
              name = ".gnu.version_r";
              name = ".gnu.version_r";
              goto get_vma_if_bpabi;
              goto get_vma_if_bpabi;
 
 
            case DT_PLTGOT:
            case DT_PLTGOT:
              name = ".got";
              name = ".got";
              goto get_vma;
              goto get_vma;
            case DT_JMPREL:
            case DT_JMPREL:
              name = RELOC_SECTION (htab, ".plt");
              name = RELOC_SECTION (htab, ".plt");
            get_vma:
            get_vma:
              s = bfd_get_section_by_name (output_bfd, name);
              s = bfd_get_section_by_name (output_bfd, name);
              BFD_ASSERT (s != NULL);
              BFD_ASSERT (s != NULL);
              if (!htab->symbian_p)
              if (!htab->symbian_p)
                dyn.d_un.d_ptr = s->vma;
                dyn.d_un.d_ptr = s->vma;
              else
              else
                /* In the BPABI, tags in the PT_DYNAMIC section point
                /* In the BPABI, tags in the PT_DYNAMIC section point
                   at the file offset, not the memory address, for the
                   at the file offset, not the memory address, for the
                   convenience of the post linker.  */
                   convenience of the post linker.  */
                dyn.d_un.d_ptr = s->filepos;
                dyn.d_un.d_ptr = s->filepos;
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            get_vma_if_bpabi:
            get_vma_if_bpabi:
              if (htab->symbian_p)
              if (htab->symbian_p)
                goto get_vma;
                goto get_vma;
              break;
              break;
 
 
            case DT_PLTRELSZ:
            case DT_PLTRELSZ:
              s = htab->root.srelplt;
              s = htab->root.srelplt;
              BFD_ASSERT (s != NULL);
              BFD_ASSERT (s != NULL);
              dyn.d_un.d_val = s->size;
              dyn.d_un.d_val = s->size;
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_RELSZ:
            case DT_RELSZ:
            case DT_RELASZ:
            case DT_RELASZ:
              if (!htab->symbian_p)
              if (!htab->symbian_p)
                {
                {
                  /* My reading of the SVR4 ABI indicates that the
                  /* My reading of the SVR4 ABI indicates that the
                     procedure linkage table relocs (DT_JMPREL) should be
                     procedure linkage table relocs (DT_JMPREL) should be
                     included in the overall relocs (DT_REL).  This is
                     included in the overall relocs (DT_REL).  This is
                     what Solaris does.  However, UnixWare can not handle
                     what Solaris does.  However, UnixWare can not handle
                     that case.  Therefore, we override the DT_RELSZ entry
                     that case.  Therefore, we override the DT_RELSZ entry
                     here to make it not include the JMPREL relocs.  Since
                     here to make it not include the JMPREL relocs.  Since
                     the linker script arranges for .rel(a).plt to follow all
                     the linker script arranges for .rel(a).plt to follow all
                     other relocation sections, we don't have to worry
                     other relocation sections, we don't have to worry
                     about changing the DT_REL entry.  */
                     about changing the DT_REL entry.  */
                  s = htab->root.srelplt;
                  s = htab->root.srelplt;
                  if (s != NULL)
                  if (s != NULL)
                    dyn.d_un.d_val -= s->size;
                    dyn.d_un.d_val -= s->size;
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                  break;
                  break;
                }
                }
              /* Fall through.  */
              /* Fall through.  */
 
 
            case DT_REL:
            case DT_REL:
            case DT_RELA:
            case DT_RELA:
              /* In the BPABI, the DT_REL tag must point at the file
              /* In the BPABI, the DT_REL tag must point at the file
                 offset, not the VMA, of the first relocation
                 offset, not the VMA, of the first relocation
                 section.  So, we use code similar to that in
                 section.  So, we use code similar to that in
                 elflink.c, but do not check for SHF_ALLOC on the
                 elflink.c, but do not check for SHF_ALLOC on the
                 relcoation section, since relocations sections are
                 relcoation section, since relocations sections are
                 never allocated under the BPABI.  The comments above
                 never allocated under the BPABI.  The comments above
                 about Unixware notwithstanding, we include all of the
                 about Unixware notwithstanding, we include all of the
                 relocations here.  */
                 relocations here.  */
              if (htab->symbian_p)
              if (htab->symbian_p)
                {
                {
                  unsigned int i;
                  unsigned int i;
                  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
                  type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
                          ? SHT_REL : SHT_RELA);
                          ? SHT_REL : SHT_RELA);
                  dyn.d_un.d_val = 0;
                  dyn.d_un.d_val = 0;
                  for (i = 1; i < elf_numsections (output_bfd); i++)
                  for (i = 1; i < elf_numsections (output_bfd); i++)
                    {
                    {
                      Elf_Internal_Shdr *hdr
                      Elf_Internal_Shdr *hdr
                        = elf_elfsections (output_bfd)[i];
                        = elf_elfsections (output_bfd)[i];
                      if (hdr->sh_type == type)
                      if (hdr->sh_type == type)
                        {
                        {
                          if (dyn.d_tag == DT_RELSZ
                          if (dyn.d_tag == DT_RELSZ
                              || dyn.d_tag == DT_RELASZ)
                              || dyn.d_tag == DT_RELASZ)
                            dyn.d_un.d_val += hdr->sh_size;
                            dyn.d_un.d_val += hdr->sh_size;
                          else if ((ufile_ptr) hdr->sh_offset
                          else if ((ufile_ptr) hdr->sh_offset
                                   <= dyn.d_un.d_val - 1)
                                   <= dyn.d_un.d_val - 1)
                            dyn.d_un.d_val = hdr->sh_offset;
                            dyn.d_un.d_val = hdr->sh_offset;
                        }
                        }
                    }
                    }
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                }
                }
              break;
              break;
 
 
            case DT_TLSDESC_PLT:
            case DT_TLSDESC_PLT:
              s = htab->root.splt;
              s = htab->root.splt;
              dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
              dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
                                + htab->dt_tlsdesc_plt);
                                + htab->dt_tlsdesc_plt);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_TLSDESC_GOT:
            case DT_TLSDESC_GOT:
              s = htab->root.sgot;
              s = htab->root.sgot;
              dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
              dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
                                + htab->dt_tlsdesc_got);
                                + htab->dt_tlsdesc_got);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
              /* Set the bottom bit of DT_INIT/FINI if the
              /* Set the bottom bit of DT_INIT/FINI if the
                 corresponding function is Thumb.  */
                 corresponding function is Thumb.  */
            case DT_INIT:
            case DT_INIT:
              name = info->init_function;
              name = info->init_function;
              goto get_sym;
              goto get_sym;
            case DT_FINI:
            case DT_FINI:
              name = info->fini_function;
              name = info->fini_function;
            get_sym:
            get_sym:
              /* If it wasn't set by elf_bfd_final_link
              /* If it wasn't set by elf_bfd_final_link
                 then there is nothing to adjust.  */
                 then there is nothing to adjust.  */
              if (dyn.d_un.d_val != 0)
              if (dyn.d_un.d_val != 0)
                {
                {
                  struct elf_link_hash_entry * eh;
                  struct elf_link_hash_entry * eh;
 
 
                  eh = elf_link_hash_lookup (elf_hash_table (info), name,
                  eh = elf_link_hash_lookup (elf_hash_table (info), name,
                                             FALSE, FALSE, TRUE);
                                             FALSE, FALSE, TRUE);
                  if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
                  if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
                    {
                    {
                      dyn.d_un.d_val |= 1;
                      dyn.d_un.d_val |= 1;
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                    }
                    }
                }
                }
              break;
              break;
            }
            }
        }
        }
 
 
      /* Fill in the first entry in the procedure linkage table.  */
      /* Fill in the first entry in the procedure linkage table.  */
      if (splt->size > 0 && htab->plt_header_size)
      if (splt->size > 0 && htab->plt_header_size)
        {
        {
          const bfd_vma *plt0_entry;
          const bfd_vma *plt0_entry;
          bfd_vma got_address, plt_address, got_displacement;
          bfd_vma got_address, plt_address, got_displacement;
 
 
          /* Calculate the addresses of the GOT and PLT.  */
          /* Calculate the addresses of the GOT and PLT.  */
          got_address = sgot->output_section->vma + sgot->output_offset;
          got_address = sgot->output_section->vma + sgot->output_offset;
          plt_address = splt->output_section->vma + splt->output_offset;
          plt_address = splt->output_section->vma + splt->output_offset;
 
 
          if (htab->vxworks_p)
          if (htab->vxworks_p)
            {
            {
              /* The VxWorks GOT is relocated by the dynamic linker.
              /* The VxWorks GOT is relocated by the dynamic linker.
                 Therefore, we must emit relocations rather than simply
                 Therefore, we must emit relocations rather than simply
                 computing the values now.  */
                 computing the values now.  */
              Elf_Internal_Rela rel;
              Elf_Internal_Rela rel;
 
 
              plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
              plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
              put_arm_insn (htab, output_bfd, plt0_entry[0],
              put_arm_insn (htab, output_bfd, plt0_entry[0],
                            splt->contents + 0);
                            splt->contents + 0);
              put_arm_insn (htab, output_bfd, plt0_entry[1],
              put_arm_insn (htab, output_bfd, plt0_entry[1],
                            splt->contents + 4);
                            splt->contents + 4);
              put_arm_insn (htab, output_bfd, plt0_entry[2],
              put_arm_insn (htab, output_bfd, plt0_entry[2],
                            splt->contents + 8);
                            splt->contents + 8);
              bfd_put_32 (output_bfd, got_address, splt->contents + 12);
              bfd_put_32 (output_bfd, got_address, splt->contents + 12);
 
 
              /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
              /* Generate a relocation for _GLOBAL_OFFSET_TABLE_.  */
              rel.r_offset = plt_address + 12;
              rel.r_offset = plt_address + 12;
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
              rel.r_addend = 0;
              rel.r_addend = 0;
              SWAP_RELOC_OUT (htab) (output_bfd, &rel,
              SWAP_RELOC_OUT (htab) (output_bfd, &rel,
                                     htab->srelplt2->contents);
                                     htab->srelplt2->contents);
            }
            }
          else
          else
            {
            {
              got_displacement = got_address - (plt_address + 16);
              got_displacement = got_address - (plt_address + 16);
 
 
              plt0_entry = elf32_arm_plt0_entry;
              plt0_entry = elf32_arm_plt0_entry;
              put_arm_insn (htab, output_bfd, plt0_entry[0],
              put_arm_insn (htab, output_bfd, plt0_entry[0],
                            splt->contents + 0);
                            splt->contents + 0);
              put_arm_insn (htab, output_bfd, plt0_entry[1],
              put_arm_insn (htab, output_bfd, plt0_entry[1],
                            splt->contents + 4);
                            splt->contents + 4);
              put_arm_insn (htab, output_bfd, plt0_entry[2],
              put_arm_insn (htab, output_bfd, plt0_entry[2],
                            splt->contents + 8);
                            splt->contents + 8);
              put_arm_insn (htab, output_bfd, plt0_entry[3],
              put_arm_insn (htab, output_bfd, plt0_entry[3],
                            splt->contents + 12);
                            splt->contents + 12);
 
 
#ifdef FOUR_WORD_PLT
#ifdef FOUR_WORD_PLT
              /* The displacement value goes in the otherwise-unused
              /* The displacement value goes in the otherwise-unused
                 last word of the second entry.  */
                 last word of the second entry.  */
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
#else
#else
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
              bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
#endif
#endif
            }
            }
        }
        }
 
 
      /* UnixWare sets the entsize of .plt to 4, although that doesn't
      /* UnixWare sets the entsize of .plt to 4, although that doesn't
         really seem like the right value.  */
         really seem like the right value.  */
      if (splt->output_section->owner == output_bfd)
      if (splt->output_section->owner == output_bfd)
        elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
        elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
 
 
      if (htab->dt_tlsdesc_plt)
      if (htab->dt_tlsdesc_plt)
        {
        {
          bfd_vma got_address
          bfd_vma got_address
            = sgot->output_section->vma + sgot->output_offset;
            = sgot->output_section->vma + sgot->output_offset;
          bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
          bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
                                    + htab->root.sgot->output_offset);
                                    + htab->root.sgot->output_offset);
          bfd_vma plt_address
          bfd_vma plt_address
            = splt->output_section->vma + splt->output_offset;
            = splt->output_section->vma + splt->output_offset;
 
 
          arm_put_trampoline (htab, output_bfd,
          arm_put_trampoline (htab, output_bfd,
                              splt->contents + htab->dt_tlsdesc_plt,
                              splt->contents + htab->dt_tlsdesc_plt,
                              dl_tlsdesc_lazy_trampoline, 6);
                              dl_tlsdesc_lazy_trampoline, 6);
 
 
          bfd_put_32 (output_bfd,
          bfd_put_32 (output_bfd,
                      gotplt_address + htab->dt_tlsdesc_got
                      gotplt_address + htab->dt_tlsdesc_got
                      - (plt_address + htab->dt_tlsdesc_plt)
                      - (plt_address + htab->dt_tlsdesc_plt)
                      - dl_tlsdesc_lazy_trampoline[6],
                      - dl_tlsdesc_lazy_trampoline[6],
                      splt->contents + htab->dt_tlsdesc_plt + 24);
                      splt->contents + htab->dt_tlsdesc_plt + 24);
          bfd_put_32 (output_bfd,
          bfd_put_32 (output_bfd,
                      got_address - (plt_address + htab->dt_tlsdesc_plt)
                      got_address - (plt_address + htab->dt_tlsdesc_plt)
                      - dl_tlsdesc_lazy_trampoline[7],
                      - dl_tlsdesc_lazy_trampoline[7],
                      splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
                      splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
        }
        }
 
 
      if (htab->tls_trampoline)
      if (htab->tls_trampoline)
        {
        {
          arm_put_trampoline (htab, output_bfd,
          arm_put_trampoline (htab, output_bfd,
                              splt->contents + htab->tls_trampoline,
                              splt->contents + htab->tls_trampoline,
                              tls_trampoline, 3);
                              tls_trampoline, 3);
#ifdef FOUR_WORD_PLT
#ifdef FOUR_WORD_PLT
          bfd_put_32 (output_bfd, 0x00000000,
          bfd_put_32 (output_bfd, 0x00000000,
                      splt->contents + htab->tls_trampoline + 12);
                      splt->contents + htab->tls_trampoline + 12);
#endif 
#endif 
        }
        }
 
 
      if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
      if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
        {
        {
          /* Correct the .rel(a).plt.unloaded relocations.  They will have
          /* Correct the .rel(a).plt.unloaded relocations.  They will have
             incorrect symbol indexes.  */
             incorrect symbol indexes.  */
          int num_plts;
          int num_plts;
          unsigned char *p;
          unsigned char *p;
 
 
          num_plts = ((htab->root.splt->size - htab->plt_header_size)
          num_plts = ((htab->root.splt->size - htab->plt_header_size)
                      / htab->plt_entry_size);
                      / htab->plt_entry_size);
          p = htab->srelplt2->contents + RELOC_SIZE (htab);
          p = htab->srelplt2->contents + RELOC_SIZE (htab);
 
 
          for (; num_plts; num_plts--)
          for (; num_plts; num_plts--)
            {
            {
              Elf_Internal_Rela rel;
              Elf_Internal_Rela rel;
 
 
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
              rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
              p += RELOC_SIZE (htab);
              p += RELOC_SIZE (htab);
 
 
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
              SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
              rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
              rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
              SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
              p += RELOC_SIZE (htab);
              p += RELOC_SIZE (htab);
            }
            }
        }
        }
    }
    }
 
 
  /* Fill in the first three entries in the global offset table.  */
  /* Fill in the first three entries in the global offset table.  */
  if (sgot)
  if (sgot)
    {
    {
      if (sgot->size > 0)
      if (sgot->size > 0)
        {
        {
          if (sdyn == NULL)
          if (sdyn == NULL)
            bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
            bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
          else
          else
            bfd_put_32 (output_bfd,
            bfd_put_32 (output_bfd,
                        sdyn->output_section->vma + sdyn->output_offset,
                        sdyn->output_section->vma + sdyn->output_offset,
                        sgot->contents);
                        sgot->contents);
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
        }
        }
 
 
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static void
static void
elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
{
{
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
 
 
  if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
  if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
    i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
  else
  else
    i_ehdrp->e_ident[EI_OSABI] = 0;
    i_ehdrp->e_ident[EI_OSABI] = 0;
  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
 
 
  if (link_info)
  if (link_info)
    {
    {
      globals = elf32_arm_hash_table (link_info);
      globals = elf32_arm_hash_table (link_info);
      if (globals != NULL && globals->byteswap_code)
      if (globals != NULL && globals->byteswap_code)
        i_ehdrp->e_flags |= EF_ARM_BE8;
        i_ehdrp->e_flags |= EF_ARM_BE8;
    }
    }
}
}
 
 
static enum elf_reloc_type_class
static enum elf_reloc_type_class
elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
{
{
  switch ((int) ELF32_R_TYPE (rela->r_info))
  switch ((int) ELF32_R_TYPE (rela->r_info))
    {
    {
    case R_ARM_RELATIVE:
    case R_ARM_RELATIVE:
      return reloc_class_relative;
      return reloc_class_relative;
    case R_ARM_JUMP_SLOT:
    case R_ARM_JUMP_SLOT:
      return reloc_class_plt;
      return reloc_class_plt;
    case R_ARM_COPY:
    case R_ARM_COPY:
      return reloc_class_copy;
      return reloc_class_copy;
    default:
    default:
      return reloc_class_normal;
      return reloc_class_normal;
    }
    }
}
}
 
 
static void
static void
elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
{
{
  bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
  bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
}
}
 
 
/* Return TRUE if this is an unwinding table entry.  */
/* Return TRUE if this is an unwinding table entry.  */
 
 
static bfd_boolean
static bfd_boolean
is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
{
{
  return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
  return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
          || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
          || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
}
}
 
 
 
 
/* Set the type and flags for an ARM section.  We do this by
/* Set the type and flags for an ARM section.  We do this by
   the section name, which is a hack, but ought to work.  */
   the section name, which is a hack, but ought to work.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
{
{
  const char * name;
  const char * name;
 
 
  name = bfd_get_section_name (abfd, sec);
  name = bfd_get_section_name (abfd, sec);
 
 
  if (is_arm_elf_unwind_section_name (abfd, name))
  if (is_arm_elf_unwind_section_name (abfd, name))
    {
    {
      hdr->sh_type = SHT_ARM_EXIDX;
      hdr->sh_type = SHT_ARM_EXIDX;
      hdr->sh_flags |= SHF_LINK_ORDER;
      hdr->sh_flags |= SHF_LINK_ORDER;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Handle an ARM specific section when reading an object file.  This is
/* Handle an ARM specific section when reading an object file.  This is
   called when bfd_section_from_shdr finds a section with an unknown
   called when bfd_section_from_shdr finds a section with an unknown
   type.  */
   type.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_section_from_shdr (bfd *abfd,
elf32_arm_section_from_shdr (bfd *abfd,
                             Elf_Internal_Shdr * hdr,
                             Elf_Internal_Shdr * hdr,
                             const char *name,
                             const char *name,
                             int shindex)
                             int shindex)
{
{
  /* There ought to be a place to keep ELF backend specific flags, but
  /* There ought to be a place to keep ELF backend specific flags, but
     at the moment there isn't one.  We just keep track of the
     at the moment there isn't one.  We just keep track of the
     sections by their name, instead.  Fortunately, the ABI gives
     sections by their name, instead.  Fortunately, the ABI gives
     names for all the ARM specific sections, so we will probably get
     names for all the ARM specific sections, so we will probably get
     away with this.  */
     away with this.  */
  switch (hdr->sh_type)
  switch (hdr->sh_type)
    {
    {
    case SHT_ARM_EXIDX:
    case SHT_ARM_EXIDX:
    case SHT_ARM_PREEMPTMAP:
    case SHT_ARM_PREEMPTMAP:
    case SHT_ARM_ATTRIBUTES:
    case SHT_ARM_ATTRIBUTES:
      break;
      break;
 
 
    default:
    default:
      return FALSE;
      return FALSE;
    }
    }
 
 
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static _arm_elf_section_data *
static _arm_elf_section_data *
get_arm_elf_section_data (asection * sec)
get_arm_elf_section_data (asection * sec)
{
{
  if (sec && sec->owner && is_arm_elf (sec->owner))
  if (sec && sec->owner && is_arm_elf (sec->owner))
    return elf32_arm_section_data (sec);
    return elf32_arm_section_data (sec);
  else
  else
    return NULL;
    return NULL;
}
}
 
 
typedef struct
typedef struct
{
{
  void *finfo;
  void *finfo;
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  asection *sec;
  asection *sec;
  int sec_shndx;
  int sec_shndx;
  int (*func) (void *, const char *, Elf_Internal_Sym *,
  int (*func) (void *, const char *, Elf_Internal_Sym *,
               asection *, struct elf_link_hash_entry *);
               asection *, struct elf_link_hash_entry *);
} output_arch_syminfo;
} output_arch_syminfo;
 
 
enum map_symbol_type
enum map_symbol_type
{
{
  ARM_MAP_ARM,
  ARM_MAP_ARM,
  ARM_MAP_THUMB,
  ARM_MAP_THUMB,
  ARM_MAP_DATA
  ARM_MAP_DATA
};
};
 
 
 
 
/* Output a single mapping symbol.  */
/* Output a single mapping symbol.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_output_map_sym (output_arch_syminfo *osi,
elf32_arm_output_map_sym (output_arch_syminfo *osi,
                          enum map_symbol_type type,
                          enum map_symbol_type type,
                          bfd_vma offset)
                          bfd_vma offset)
{
{
  static const char *names[3] = {"$a", "$t", "$d"};
  static const char *names[3] = {"$a", "$t", "$d"};
  Elf_Internal_Sym sym;
  Elf_Internal_Sym sym;
 
 
  sym.st_value = osi->sec->output_section->vma
  sym.st_value = osi->sec->output_section->vma
                 + osi->sec->output_offset
                 + osi->sec->output_offset
                 + offset;
                 + offset;
  sym.st_size = 0;
  sym.st_size = 0;
  sym.st_other = 0;
  sym.st_other = 0;
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
  sym.st_shndx = osi->sec_shndx;
  sym.st_shndx = osi->sec_shndx;
  sym.st_target_internal = 0;
  sym.st_target_internal = 0;
  elf32_arm_section_map_add (osi->sec, names[type][1], offset);
  elf32_arm_section_map_add (osi->sec, names[type][1], offset);
  return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
  return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
}
}
 
 
/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
   IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt.  */
   IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
                            bfd_boolean is_iplt_entry_p,
                            bfd_boolean is_iplt_entry_p,
                            union gotplt_union *root_plt,
                            union gotplt_union *root_plt,
                            struct arm_plt_info *arm_plt)
                            struct arm_plt_info *arm_plt)
{
{
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
  bfd_vma addr, plt_header_size;
  bfd_vma addr, plt_header_size;
 
 
  if (root_plt->offset == (bfd_vma) -1)
  if (root_plt->offset == (bfd_vma) -1)
    return TRUE;
    return TRUE;
 
 
  htab = elf32_arm_hash_table (osi->info);
  htab = elf32_arm_hash_table (osi->info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  if (is_iplt_entry_p)
  if (is_iplt_entry_p)
    {
    {
      osi->sec = htab->root.iplt;
      osi->sec = htab->root.iplt;
      plt_header_size = 0;
      plt_header_size = 0;
    }
    }
  else
  else
    {
    {
      osi->sec = htab->root.splt;
      osi->sec = htab->root.splt;
      plt_header_size = htab->plt_header_size;
      plt_header_size = htab->plt_header_size;
    }
    }
  osi->sec_shndx = (_bfd_elf_section_from_bfd_section
  osi->sec_shndx = (_bfd_elf_section_from_bfd_section
                    (osi->info->output_bfd, osi->sec->output_section));
                    (osi->info->output_bfd, osi->sec->output_section));
 
 
  addr = root_plt->offset & -2;
  addr = root_plt->offset & -2;
  if (htab->symbian_p)
  if (htab->symbian_p)
    {
    {
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
        return FALSE;
        return FALSE;
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
        return FALSE;
        return FALSE;
    }
    }
  else if (htab->vxworks_p)
  else if (htab->vxworks_p)
    {
    {
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
        return FALSE;
        return FALSE;
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
        return FALSE;
        return FALSE;
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
        return FALSE;
        return FALSE;
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
        return FALSE;
        return FALSE;
    }
    }
  else
  else
    {
    {
      bfd_boolean thumb_stub_p;
      bfd_boolean thumb_stub_p;
 
 
      thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
      thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
      if (thumb_stub_p)
      if (thumb_stub_p)
        {
        {
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
            return FALSE;
            return FALSE;
        }
        }
#ifdef FOUR_WORD_PLT
#ifdef FOUR_WORD_PLT
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
        return FALSE;
        return FALSE;
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
      if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
        return FALSE;
        return FALSE;
#else
#else
      /* A three-word PLT with no Thumb thunk contains only Arm code,
      /* A three-word PLT with no Thumb thunk contains only Arm code,
         so only need to output a mapping symbol for the first PLT entry and
         so only need to output a mapping symbol for the first PLT entry and
         entries with thumb thunks.  */
         entries with thumb thunks.  */
      if (thumb_stub_p || addr == plt_header_size)
      if (thumb_stub_p || addr == plt_header_size)
        {
        {
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
          if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
            return FALSE;
            return FALSE;
        }
        }
#endif
#endif
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Output mapping symbols for PLT entries associated with H.  */
/* Output mapping symbols for PLT entries associated with H.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
{
{
  output_arch_syminfo *osi = (output_arch_syminfo *) inf;
  output_arch_syminfo *osi = (output_arch_syminfo *) inf;
  struct elf32_arm_link_hash_entry *eh;
  struct elf32_arm_link_hash_entry *eh;
 
 
  if (h->root.type == bfd_link_hash_indirect)
  if (h->root.type == bfd_link_hash_indirect)
    return TRUE;
    return TRUE;
 
 
  if (h->root.type == bfd_link_hash_warning)
  if (h->root.type == bfd_link_hash_warning)
    /* When warning symbols are created, they **replace** the "real"
    /* When warning symbols are created, they **replace** the "real"
       entry in the hash table, thus we never get to see the real
       entry in the hash table, thus we never get to see the real
       symbol in a hash traversal.  So look at it now.  */
       symbol in a hash traversal.  So look at it now.  */
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
  eh = (struct elf32_arm_link_hash_entry *) h;
  eh = (struct elf32_arm_link_hash_entry *) h;
  return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
  return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
                                     &h->plt, &eh->plt);
                                     &h->plt, &eh->plt);
}
}
 
 
/* Output a single local symbol for a generated stub.  */
/* Output a single local symbol for a generated stub.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
                           bfd_vma offset, bfd_vma size)
                           bfd_vma offset, bfd_vma size)
{
{
  Elf_Internal_Sym sym;
  Elf_Internal_Sym sym;
 
 
  sym.st_value = osi->sec->output_section->vma
  sym.st_value = osi->sec->output_section->vma
                 + osi->sec->output_offset
                 + osi->sec->output_offset
                 + offset;
                 + offset;
  sym.st_size = size;
  sym.st_size = size;
  sym.st_other = 0;
  sym.st_other = 0;
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  sym.st_shndx = osi->sec_shndx;
  sym.st_shndx = osi->sec_shndx;
  sym.st_target_internal = 0;
  sym.st_target_internal = 0;
  return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
  return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
}
}
 
 
static bfd_boolean
static bfd_boolean
arm_map_one_stub (struct bfd_hash_entry * gen_entry,
arm_map_one_stub (struct bfd_hash_entry * gen_entry,
                  void * in_arg)
                  void * in_arg)
{
{
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct elf32_arm_stub_hash_entry *stub_entry;
  asection *stub_sec;
  asection *stub_sec;
  bfd_vma addr;
  bfd_vma addr;
  char *stub_name;
  char *stub_name;
  output_arch_syminfo *osi;
  output_arch_syminfo *osi;
  const insn_sequence *template_sequence;
  const insn_sequence *template_sequence;
  enum stub_insn_type prev_type;
  enum stub_insn_type prev_type;
  int size;
  int size;
  int i;
  int i;
  enum map_symbol_type sym_type;
  enum map_symbol_type sym_type;
 
 
  /* Massage our args to the form they really have.  */
  /* Massage our args to the form they really have.  */
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
  osi = (output_arch_syminfo *) in_arg;
  osi = (output_arch_syminfo *) in_arg;
 
 
  stub_sec = stub_entry->stub_sec;
  stub_sec = stub_entry->stub_sec;
 
 
  /* Ensure this stub is attached to the current section being
  /* Ensure this stub is attached to the current section being
     processed.  */
     processed.  */
  if (stub_sec != osi->sec)
  if (stub_sec != osi->sec)
    return TRUE;
    return TRUE;
 
 
  addr = (bfd_vma) stub_entry->stub_offset;
  addr = (bfd_vma) stub_entry->stub_offset;
  stub_name = stub_entry->output_name;
  stub_name = stub_entry->output_name;
 
 
  template_sequence = stub_entry->stub_template;
  template_sequence = stub_entry->stub_template;
  switch (template_sequence[0].type)
  switch (template_sequence[0].type)
    {
    {
    case ARM_TYPE:
    case ARM_TYPE:
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
        return FALSE;
        return FALSE;
      break;
      break;
    case THUMB16_TYPE:
    case THUMB16_TYPE:
    case THUMB32_TYPE:
    case THUMB32_TYPE:
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
      if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
                                      stub_entry->stub_size))
                                      stub_entry->stub_size))
        return FALSE;
        return FALSE;
      break;
      break;
    default:
    default:
      BFD_FAIL ();
      BFD_FAIL ();
      return 0;
      return 0;
    }
    }
 
 
  prev_type = DATA_TYPE;
  prev_type = DATA_TYPE;
  size = 0;
  size = 0;
  for (i = 0; i < stub_entry->stub_template_size; i++)
  for (i = 0; i < stub_entry->stub_template_size; i++)
    {
    {
      switch (template_sequence[i].type)
      switch (template_sequence[i].type)
        {
        {
        case ARM_TYPE:
        case ARM_TYPE:
          sym_type = ARM_MAP_ARM;
          sym_type = ARM_MAP_ARM;
          break;
          break;
 
 
        case THUMB16_TYPE:
        case THUMB16_TYPE:
        case THUMB32_TYPE:
        case THUMB32_TYPE:
          sym_type = ARM_MAP_THUMB;
          sym_type = ARM_MAP_THUMB;
          break;
          break;
 
 
        case DATA_TYPE:
        case DATA_TYPE:
          sym_type = ARM_MAP_DATA;
          sym_type = ARM_MAP_DATA;
          break;
          break;
 
 
        default:
        default:
          BFD_FAIL ();
          BFD_FAIL ();
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (template_sequence[i].type != prev_type)
      if (template_sequence[i].type != prev_type)
        {
        {
          prev_type = template_sequence[i].type;
          prev_type = template_sequence[i].type;
          if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
          if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
            return FALSE;
            return FALSE;
        }
        }
 
 
      switch (template_sequence[i].type)
      switch (template_sequence[i].type)
        {
        {
        case ARM_TYPE:
        case ARM_TYPE:
        case THUMB32_TYPE:
        case THUMB32_TYPE:
          size += 4;
          size += 4;
          break;
          break;
 
 
        case THUMB16_TYPE:
        case THUMB16_TYPE:
          size += 2;
          size += 2;
          break;
          break;
 
 
        case DATA_TYPE:
        case DATA_TYPE:
          size += 4;
          size += 4;
          break;
          break;
 
 
        default:
        default:
          BFD_FAIL ();
          BFD_FAIL ();
          return FALSE;
          return FALSE;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Output mapping symbols for linker generated sections,
/* Output mapping symbols for linker generated sections,
   and for those data-only sections that do not have a
   and for those data-only sections that do not have a
   $d.  */
   $d.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_output_arch_local_syms (bfd *output_bfd,
elf32_arm_output_arch_local_syms (bfd *output_bfd,
                                  struct bfd_link_info *info,
                                  struct bfd_link_info *info,
                                  void *finfo,
                                  void *finfo,
                                  int (*func) (void *, const char *,
                                  int (*func) (void *, const char *,
                                               Elf_Internal_Sym *,
                                               Elf_Internal_Sym *,
                                               asection *,
                                               asection *,
                                               struct elf_link_hash_entry *))
                                               struct elf_link_hash_entry *))
{
{
  output_arch_syminfo osi;
  output_arch_syminfo osi;
  struct elf32_arm_link_hash_table *htab;
  struct elf32_arm_link_hash_table *htab;
  bfd_vma offset;
  bfd_vma offset;
  bfd_size_type size;
  bfd_size_type size;
  bfd *input_bfd;
  bfd *input_bfd;
 
 
  htab = elf32_arm_hash_table (info);
  htab = elf32_arm_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  check_use_blx (htab);
  check_use_blx (htab);
 
 
  osi.finfo = finfo;
  osi.finfo = finfo;
  osi.info = info;
  osi.info = info;
  osi.func = func;
  osi.func = func;
 
 
  /* Add a $d mapping symbol to data-only sections that
  /* Add a $d mapping symbol to data-only sections that
     don't have any mapping symbol.  This may result in (harmless) redundant
     don't have any mapping symbol.  This may result in (harmless) redundant
     mapping symbols.  */
     mapping symbols.  */
  for (input_bfd = info->input_bfds;
  for (input_bfd = info->input_bfds;
       input_bfd != NULL;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next)
       input_bfd = input_bfd->link_next)
    {
    {
      if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
      if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
        for (osi.sec = input_bfd->sections;
        for (osi.sec = input_bfd->sections;
             osi.sec != NULL;
             osi.sec != NULL;
             osi.sec = osi.sec->next)
             osi.sec = osi.sec->next)
          {
          {
            if (osi.sec->output_section != NULL
            if (osi.sec->output_section != NULL
                && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
                && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
                    != 0)
                    != 0)
                && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
                && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
                   == SEC_HAS_CONTENTS
                   == SEC_HAS_CONTENTS
                && get_arm_elf_section_data (osi.sec) != NULL
                && get_arm_elf_section_data (osi.sec) != NULL
                && get_arm_elf_section_data (osi.sec)->mapcount == 0
                && get_arm_elf_section_data (osi.sec)->mapcount == 0
                && osi.sec->size > 0)
                && osi.sec->size > 0
 
                && (osi.sec->flags & SEC_EXCLUDE) == 0)
              {
              {
                osi.sec_shndx = _bfd_elf_section_from_bfd_section
                osi.sec_shndx = _bfd_elf_section_from_bfd_section
                  (output_bfd, osi.sec->output_section);
                  (output_bfd, osi.sec->output_section);
                if (osi.sec_shndx != (int)SHN_BAD)
                if (osi.sec_shndx != (int)SHN_BAD)
                  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
                  elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
              }
              }
          }
          }
    }
    }
 
 
  /* ARM->Thumb glue.  */
  /* ARM->Thumb glue.  */
  if (htab->arm_glue_size > 0)
  if (htab->arm_glue_size > 0)
    {
    {
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
                                         ARM2THUMB_GLUE_SECTION_NAME);
                                         ARM2THUMB_GLUE_SECTION_NAME);
 
 
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
          (output_bfd, osi.sec->output_section);
          (output_bfd, osi.sec->output_section);
      if (info->shared || htab->root.is_relocatable_executable
      if (info->shared || htab->root.is_relocatable_executable
          || htab->pic_veneer)
          || htab->pic_veneer)
        size = ARM2THUMB_PIC_GLUE_SIZE;
        size = ARM2THUMB_PIC_GLUE_SIZE;
      else if (htab->use_blx)
      else if (htab->use_blx)
        size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
        size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
      else
      else
        size = ARM2THUMB_STATIC_GLUE_SIZE;
        size = ARM2THUMB_STATIC_GLUE_SIZE;
 
 
      for (offset = 0; offset < htab->arm_glue_size; offset += size)
      for (offset = 0; offset < htab->arm_glue_size; offset += size)
        {
        {
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
          elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
          elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
        }
        }
    }
    }
 
 
  /* Thumb->ARM glue.  */
  /* Thumb->ARM glue.  */
  if (htab->thumb_glue_size > 0)
  if (htab->thumb_glue_size > 0)
    {
    {
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
                                         THUMB2ARM_GLUE_SECTION_NAME);
                                         THUMB2ARM_GLUE_SECTION_NAME);
 
 
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
          (output_bfd, osi.sec->output_section);
          (output_bfd, osi.sec->output_section);
      size = THUMB2ARM_GLUE_SIZE;
      size = THUMB2ARM_GLUE_SIZE;
 
 
      for (offset = 0; offset < htab->thumb_glue_size; offset += size)
      for (offset = 0; offset < htab->thumb_glue_size; offset += size)
        {
        {
          elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
          elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
          elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
        }
        }
    }
    }
 
 
  /* ARMv4 BX veneers.  */
  /* ARMv4 BX veneers.  */
  if (htab->bx_glue_size > 0)
  if (htab->bx_glue_size > 0)
    {
    {
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
      osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
                                         ARM_BX_GLUE_SECTION_NAME);
                                         ARM_BX_GLUE_SECTION_NAME);
 
 
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
      osi.sec_shndx = _bfd_elf_section_from_bfd_section
          (output_bfd, osi.sec->output_section);
          (output_bfd, osi.sec->output_section);
 
 
      elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
      elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
    }
    }
 
 
  /* Long calls stubs.  */
  /* Long calls stubs.  */
  if (htab->stub_bfd && htab->stub_bfd->sections)
  if (htab->stub_bfd && htab->stub_bfd->sections)
    {
    {
      asection* stub_sec;
      asection* stub_sec;
 
 
      for (stub_sec = htab->stub_bfd->sections;
      for (stub_sec = htab->stub_bfd->sections;
           stub_sec != NULL;
           stub_sec != NULL;
           stub_sec = stub_sec->next)
           stub_sec = stub_sec->next)
        {
        {
          /* Ignore non-stub sections.  */
          /* Ignore non-stub sections.  */
          if (!strstr (stub_sec->name, STUB_SUFFIX))
          if (!strstr (stub_sec->name, STUB_SUFFIX))
            continue;
            continue;
 
 
          osi.sec = stub_sec;
          osi.sec = stub_sec;
 
 
          osi.sec_shndx = _bfd_elf_section_from_bfd_section
          osi.sec_shndx = _bfd_elf_section_from_bfd_section
            (output_bfd, osi.sec->output_section);
            (output_bfd, osi.sec->output_section);
 
 
          bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
          bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
        }
        }
    }
    }
 
 
  /* Finally, output mapping symbols for the PLT.  */
  /* Finally, output mapping symbols for the PLT.  */
  if (htab->root.splt && htab->root.splt->size > 0)
  if (htab->root.splt && htab->root.splt->size > 0)
    {
    {
      osi.sec = htab->root.splt;
      osi.sec = htab->root.splt;
      osi.sec_shndx = (_bfd_elf_section_from_bfd_section
      osi.sec_shndx = (_bfd_elf_section_from_bfd_section
                       (output_bfd, osi.sec->output_section));
                       (output_bfd, osi.sec->output_section));
 
 
      /* Output mapping symbols for the plt header.  SymbianOS does not have a
      /* Output mapping symbols for the plt header.  SymbianOS does not have a
         plt header.  */
         plt header.  */
      if (htab->vxworks_p)
      if (htab->vxworks_p)
        {
        {
          /* VxWorks shared libraries have no PLT header.  */
          /* VxWorks shared libraries have no PLT header.  */
          if (!info->shared)
          if (!info->shared)
            {
            {
              if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
              if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
                return FALSE;
                return FALSE;
              if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
              if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
      else if (!htab->symbian_p)
      else if (!htab->symbian_p)
        {
        {
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
            return FALSE;
            return FALSE;
#ifndef FOUR_WORD_PLT
#ifndef FOUR_WORD_PLT
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
          if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
            return FALSE;
            return FALSE;
#endif
#endif
        }
        }
    }
    }
  if ((htab->root.splt && htab->root.splt->size > 0)
  if ((htab->root.splt && htab->root.splt->size > 0)
      || (htab->root.iplt && htab->root.iplt->size > 0))
      || (htab->root.iplt && htab->root.iplt->size > 0))
    {
    {
      elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
      elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
      for (input_bfd = info->input_bfds;
      for (input_bfd = info->input_bfds;
           input_bfd != NULL;
           input_bfd != NULL;
           input_bfd = input_bfd->link_next)
           input_bfd = input_bfd->link_next)
        {
        {
          struct arm_local_iplt_info **local_iplt;
          struct arm_local_iplt_info **local_iplt;
          unsigned int i, num_syms;
          unsigned int i, num_syms;
 
 
          local_iplt = elf32_arm_local_iplt (input_bfd);
          local_iplt = elf32_arm_local_iplt (input_bfd);
          if (local_iplt != NULL)
          if (local_iplt != NULL)
            {
            {
              num_syms = elf_symtab_hdr (input_bfd).sh_info;
              num_syms = elf_symtab_hdr (input_bfd).sh_info;
              for (i = 0; i < num_syms; i++)
              for (i = 0; i < num_syms; i++)
                if (local_iplt[i] != NULL
                if (local_iplt[i] != NULL
                    && !elf32_arm_output_plt_map_1 (&osi, TRUE,
                    && !elf32_arm_output_plt_map_1 (&osi, TRUE,
                                                    &local_iplt[i]->root,
                                                    &local_iplt[i]->root,
                                                    &local_iplt[i]->arm))
                                                    &local_iplt[i]->arm))
                  return FALSE;
                  return FALSE;
            }
            }
        }
        }
    }
    }
  if (htab->dt_tlsdesc_plt != 0)
  if (htab->dt_tlsdesc_plt != 0)
    {
    {
      /* Mapping symbols for the lazy tls trampoline.  */
      /* Mapping symbols for the lazy tls trampoline.  */
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
        return FALSE;
        return FALSE;
 
 
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
                                     htab->dt_tlsdesc_plt + 24))
                                     htab->dt_tlsdesc_plt + 24))
        return FALSE;
        return FALSE;
    }
    }
  if (htab->tls_trampoline != 0)
  if (htab->tls_trampoline != 0)
    {
    {
      /* Mapping symbols for the tls trampoline.  */
      /* Mapping symbols for the tls trampoline.  */
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
        return FALSE;
        return FALSE;
#ifdef FOUR_WORD_PLT
#ifdef FOUR_WORD_PLT
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
      if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
                                     htab->tls_trampoline + 12))
                                     htab->tls_trampoline + 12))
        return FALSE;
        return FALSE;
#endif 
#endif 
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate target specific section data.  */
/* Allocate target specific section data.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_new_section_hook (bfd *abfd, asection *sec)
elf32_arm_new_section_hook (bfd *abfd, asection *sec)
{
{
  if (!sec->used_by_bfd)
  if (!sec->used_by_bfd)
    {
    {
      _arm_elf_section_data *sdata;
      _arm_elf_section_data *sdata;
      bfd_size_type amt = sizeof (*sdata);
      bfd_size_type amt = sizeof (*sdata);
 
 
      sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
      sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
      if (sdata == NULL)
      if (sdata == NULL)
        return FALSE;
        return FALSE;
      sec->used_by_bfd = sdata;
      sec->used_by_bfd = sdata;
    }
    }
 
 
  return _bfd_elf_new_section_hook (abfd, sec);
  return _bfd_elf_new_section_hook (abfd, sec);
}
}
 
 
 
 
/* Used to order a list of mapping symbols by address.  */
/* Used to order a list of mapping symbols by address.  */
 
 
static int
static int
elf32_arm_compare_mapping (const void * a, const void * b)
elf32_arm_compare_mapping (const void * a, const void * b)
{
{
  const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
  const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
  const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
  const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
 
 
  if (amap->vma > bmap->vma)
  if (amap->vma > bmap->vma)
    return 1;
    return 1;
  else if (amap->vma < bmap->vma)
  else if (amap->vma < bmap->vma)
    return -1;
    return -1;
  else if (amap->type > bmap->type)
  else if (amap->type > bmap->type)
    /* Ensure results do not depend on the host qsort for objects with
    /* Ensure results do not depend on the host qsort for objects with
       multiple mapping symbols at the same address by sorting on type
       multiple mapping symbols at the same address by sorting on type
       after vma.  */
       after vma.  */
    return 1;
    return 1;
  else if (amap->type < bmap->type)
  else if (amap->type < bmap->type)
    return -1;
    return -1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified.  */
 
 
static unsigned long
static unsigned long
offset_prel31 (unsigned long addr, bfd_vma offset)
offset_prel31 (unsigned long addr, bfd_vma offset)
{
{
  return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
  return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
}
}
 
 
/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
   relocations.  */
   relocations.  */
 
 
static void
static void
copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
{
{
  unsigned long first_word = bfd_get_32 (output_bfd, from);
  unsigned long first_word = bfd_get_32 (output_bfd, from);
  unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
  unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
 
 
  /* High bit of first word is supposed to be zero.  */
  /* High bit of first word is supposed to be zero.  */
  if ((first_word & 0x80000000ul) == 0)
  if ((first_word & 0x80000000ul) == 0)
    first_word = offset_prel31 (first_word, offset);
    first_word = offset_prel31 (first_word, offset);
 
 
  /* If the high bit of the first word is clear, and the bit pattern is not 0x1
  /* If the high bit of the first word is clear, and the bit pattern is not 0x1
     (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
     (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry.  */
  if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
  if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
    second_word = offset_prel31 (second_word, offset);
    second_word = offset_prel31 (second_word, offset);
 
 
  bfd_put_32 (output_bfd, first_word, to);
  bfd_put_32 (output_bfd, first_word, to);
  bfd_put_32 (output_bfd, second_word, to + 4);
  bfd_put_32 (output_bfd, second_word, to + 4);
}
}
 
 
/* Data for make_branch_to_a8_stub().  */
/* Data for make_branch_to_a8_stub().  */
 
 
struct a8_branch_to_stub_data {
struct a8_branch_to_stub_data {
  asection *writing_section;
  asection *writing_section;
  bfd_byte *contents;
  bfd_byte *contents;
};
};
 
 
 
 
/* Helper to insert branches to Cortex-A8 erratum stubs in the right
/* Helper to insert branches to Cortex-A8 erratum stubs in the right
   places for a particular section.  */
   places for a particular section.  */
 
 
static bfd_boolean
static bfd_boolean
make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
                       void *in_arg)
                       void *in_arg)
{
{
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct elf32_arm_stub_hash_entry *stub_entry;
  struct a8_branch_to_stub_data *data;
  struct a8_branch_to_stub_data *data;
  bfd_byte *contents;
  bfd_byte *contents;
  unsigned long branch_insn;
  unsigned long branch_insn;
  bfd_vma veneered_insn_loc, veneer_entry_loc;
  bfd_vma veneered_insn_loc, veneer_entry_loc;
  bfd_signed_vma branch_offset;
  bfd_signed_vma branch_offset;
  bfd *abfd;
  bfd *abfd;
  unsigned int target;
  unsigned int target;
 
 
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
  stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
  data = (struct a8_branch_to_stub_data *) in_arg;
  data = (struct a8_branch_to_stub_data *) in_arg;
 
 
  if (stub_entry->target_section != data->writing_section
  if (stub_entry->target_section != data->writing_section
      || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
      || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
    return TRUE;
    return TRUE;
 
 
  contents = data->contents;
  contents = data->contents;
 
 
  veneered_insn_loc = stub_entry->target_section->output_section->vma
  veneered_insn_loc = stub_entry->target_section->output_section->vma
                      + stub_entry->target_section->output_offset
                      + stub_entry->target_section->output_offset
                      + stub_entry->target_value;
                      + stub_entry->target_value;
 
 
  veneer_entry_loc = stub_entry->stub_sec->output_section->vma
  veneer_entry_loc = stub_entry->stub_sec->output_section->vma
                     + stub_entry->stub_sec->output_offset
                     + stub_entry->stub_sec->output_offset
                     + stub_entry->stub_offset;
                     + stub_entry->stub_offset;
 
 
  if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
  if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
    veneered_insn_loc &= ~3u;
    veneered_insn_loc &= ~3u;
 
 
  branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
  branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
 
 
  abfd = stub_entry->target_section->owner;
  abfd = stub_entry->target_section->owner;
  target = stub_entry->target_value;
  target = stub_entry->target_value;
 
 
  /* We attempt to avoid this condition by setting stubs_always_after_branch
  /* We attempt to avoid this condition by setting stubs_always_after_branch
     in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
     in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
     This check is just to be on the safe side...  */
     This check is just to be on the safe side...  */
  if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
  if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
    {
    {
      (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
      (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
                               "allocated in unsafe location"), abfd);
                               "allocated in unsafe location"), abfd);
      return FALSE;
      return FALSE;
    }
    }
 
 
  switch (stub_entry->stub_type)
  switch (stub_entry->stub_type)
    {
    {
    case arm_stub_a8_veneer_b:
    case arm_stub_a8_veneer_b:
    case arm_stub_a8_veneer_b_cond:
    case arm_stub_a8_veneer_b_cond:
      branch_insn = 0xf0009000;
      branch_insn = 0xf0009000;
      goto jump24;
      goto jump24;
 
 
    case arm_stub_a8_veneer_blx:
    case arm_stub_a8_veneer_blx:
      branch_insn = 0xf000e800;
      branch_insn = 0xf000e800;
      goto jump24;
      goto jump24;
 
 
    case arm_stub_a8_veneer_bl:
    case arm_stub_a8_veneer_bl:
      {
      {
        unsigned int i1, j1, i2, j2, s;
        unsigned int i1, j1, i2, j2, s;
 
 
        branch_insn = 0xf000d000;
        branch_insn = 0xf000d000;
 
 
      jump24:
      jump24:
        if (branch_offset < -16777216 || branch_offset > 16777214)
        if (branch_offset < -16777216 || branch_offset > 16777214)
          {
          {
            /* There's not much we can do apart from complain if this
            /* There's not much we can do apart from complain if this
               happens.  */
               happens.  */
            (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
            (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
                                     "of range (input file too large)"), abfd);
                                     "of range (input file too large)"), abfd);
            return FALSE;
            return FALSE;
          }
          }
 
 
        /* i1 = not(j1 eor s), so:
        /* i1 = not(j1 eor s), so:
           not i1 = j1 eor s
           not i1 = j1 eor s
           j1 = (not i1) eor s.  */
           j1 = (not i1) eor s.  */
 
 
        branch_insn |= (branch_offset >> 1) & 0x7ff;
        branch_insn |= (branch_offset >> 1) & 0x7ff;
        branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
        branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
        i2 = (branch_offset >> 22) & 1;
        i2 = (branch_offset >> 22) & 1;
        i1 = (branch_offset >> 23) & 1;
        i1 = (branch_offset >> 23) & 1;
        s = (branch_offset >> 24) & 1;
        s = (branch_offset >> 24) & 1;
        j1 = (!i1) ^ s;
        j1 = (!i1) ^ s;
        j2 = (!i2) ^ s;
        j2 = (!i2) ^ s;
        branch_insn |= j2 << 11;
        branch_insn |= j2 << 11;
        branch_insn |= j1 << 13;
        branch_insn |= j1 << 13;
        branch_insn |= s << 26;
        branch_insn |= s << 26;
      }
      }
      break;
      break;
 
 
    default:
    default:
      BFD_FAIL ();
      BFD_FAIL ();
      return FALSE;
      return FALSE;
    }
    }
 
 
  bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
  bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
  bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
  bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Do code byteswapping.  Return FALSE afterwards so that the section is
/* Do code byteswapping.  Return FALSE afterwards so that the section is
   written out as normal.  */
   written out as normal.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_write_section (bfd *output_bfd,
elf32_arm_write_section (bfd *output_bfd,
                         struct bfd_link_info *link_info,
                         struct bfd_link_info *link_info,
                         asection *sec,
                         asection *sec,
                         bfd_byte *contents)
                         bfd_byte *contents)
{
{
  unsigned int mapcount, errcount;
  unsigned int mapcount, errcount;
  _arm_elf_section_data *arm_data;
  _arm_elf_section_data *arm_data;
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
  struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
  elf32_arm_section_map *map;
  elf32_arm_section_map *map;
  elf32_vfp11_erratum_list *errnode;
  elf32_vfp11_erratum_list *errnode;
  bfd_vma ptr;
  bfd_vma ptr;
  bfd_vma end;
  bfd_vma end;
  bfd_vma offset = sec->output_section->vma + sec->output_offset;
  bfd_vma offset = sec->output_section->vma + sec->output_offset;
  bfd_byte tmp;
  bfd_byte tmp;
  unsigned int i;
  unsigned int i;
 
 
  if (globals == NULL)
  if (globals == NULL)
    return FALSE;
    return FALSE;
 
 
  /* If this section has not been allocated an _arm_elf_section_data
  /* If this section has not been allocated an _arm_elf_section_data
     structure then we cannot record anything.  */
     structure then we cannot record anything.  */
  arm_data = get_arm_elf_section_data (sec);
  arm_data = get_arm_elf_section_data (sec);
  if (arm_data == NULL)
  if (arm_data == NULL)
    return FALSE;
    return FALSE;
 
 
  mapcount = arm_data->mapcount;
  mapcount = arm_data->mapcount;
  map = arm_data->map;
  map = arm_data->map;
  errcount = arm_data->erratumcount;
  errcount = arm_data->erratumcount;
 
 
  if (errcount != 0)
  if (errcount != 0)
    {
    {
      unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
      unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
 
 
      for (errnode = arm_data->erratumlist; errnode != 0;
      for (errnode = arm_data->erratumlist; errnode != 0;
           errnode = errnode->next)
           errnode = errnode->next)
        {
        {
          bfd_vma target = errnode->vma - offset;
          bfd_vma target = errnode->vma - offset;
 
 
          switch (errnode->type)
          switch (errnode->type)
            {
            {
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
            case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
              {
              {
                bfd_vma branch_to_veneer;
                bfd_vma branch_to_veneer;
                /* Original condition code of instruction, plus bit mask for
                /* Original condition code of instruction, plus bit mask for
                   ARM B instruction.  */
                   ARM B instruction.  */
                unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
                unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
                                  | 0x0a000000;
                                  | 0x0a000000;
 
 
                /* The instruction is before the label.  */
                /* The instruction is before the label.  */
                target -= 4;
                target -= 4;
 
 
                /* Above offset included in -4 below.  */
                /* Above offset included in -4 below.  */
                branch_to_veneer = errnode->u.b.veneer->vma
                branch_to_veneer = errnode->u.b.veneer->vma
                                   - errnode->vma - 4;
                                   - errnode->vma - 4;
 
 
                if ((signed) branch_to_veneer < -(1 << 25)
                if ((signed) branch_to_veneer < -(1 << 25)
                    || (signed) branch_to_veneer >= (1 << 25))
                    || (signed) branch_to_veneer >= (1 << 25))
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
                                           "range"), output_bfd);
                                           "range"), output_bfd);
 
 
                insn |= (branch_to_veneer >> 2) & 0xffffff;
                insn |= (branch_to_veneer >> 2) & 0xffffff;
                contents[endianflip ^ target] = insn & 0xff;
                contents[endianflip ^ target] = insn & 0xff;
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
              }
              }
              break;
              break;
 
 
            case VFP11_ERRATUM_ARM_VENEER:
            case VFP11_ERRATUM_ARM_VENEER:
              {
              {
                bfd_vma branch_from_veneer;
                bfd_vma branch_from_veneer;
                unsigned int insn;
                unsigned int insn;
 
 
                /* Take size of veneer into account.  */
                /* Take size of veneer into account.  */
                branch_from_veneer = errnode->u.v.branch->vma
                branch_from_veneer = errnode->u.v.branch->vma
                                     - errnode->vma - 12;
                                     - errnode->vma - 12;
 
 
                if ((signed) branch_from_veneer < -(1 << 25)
                if ((signed) branch_from_veneer < -(1 << 25)
                    || (signed) branch_from_veneer >= (1 << 25))
                    || (signed) branch_from_veneer >= (1 << 25))
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
                  (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
                                           "range"), output_bfd);
                                           "range"), output_bfd);
 
 
                /* Original instruction.  */
                /* Original instruction.  */
                insn = errnode->u.v.branch->u.b.vfp_insn;
                insn = errnode->u.v.branch->u.b.vfp_insn;
                contents[endianflip ^ target] = insn & 0xff;
                contents[endianflip ^ target] = insn & 0xff;
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
                contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
                contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
                contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
 
 
                /* Branch back to insn after original insn.  */
                /* Branch back to insn after original insn.  */
                insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
                insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
                contents[endianflip ^ (target + 4)] = insn & 0xff;
                contents[endianflip ^ (target + 4)] = insn & 0xff;
                contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
                contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
                contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
                contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
                contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
                contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
              }
              }
              break;
              break;
 
 
            default:
            default:
              abort ();
              abort ();
            }
            }
        }
        }
    }
    }
 
 
  if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
  if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
    {
    {
      arm_unwind_table_edit *edit_node
      arm_unwind_table_edit *edit_node
        = arm_data->u.exidx.unwind_edit_list;
        = arm_data->u.exidx.unwind_edit_list;
      /* Now, sec->size is the size of the section we will write.  The original
      /* Now, sec->size is the size of the section we will write.  The original
         size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
         size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
         markers) was sec->rawsize.  (This isn't the case if we perform no
         markers) was sec->rawsize.  (This isn't the case if we perform no
         edits, then rawsize will be zero and we should use size).  */
         edits, then rawsize will be zero and we should use size).  */
      bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
      bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
      unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
      unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
      unsigned int in_index, out_index;
      unsigned int in_index, out_index;
      bfd_vma add_to_offsets = 0;
      bfd_vma add_to_offsets = 0;
 
 
      for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
      for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
        {
        {
          if (edit_node)
          if (edit_node)
            {
            {
              unsigned int edit_index = edit_node->index;
              unsigned int edit_index = edit_node->index;
 
 
              if (in_index < edit_index && in_index * 8 < input_size)
              if (in_index < edit_index && in_index * 8 < input_size)
                {
                {
                  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
                  copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
                                    contents + in_index * 8, add_to_offsets);
                                    contents + in_index * 8, add_to_offsets);
                  out_index++;
                  out_index++;
                  in_index++;
                  in_index++;
                }
                }
              else if (in_index == edit_index
              else if (in_index == edit_index
                       || (in_index * 8 >= input_size
                       || (in_index * 8 >= input_size
                           && edit_index == UINT_MAX))
                           && edit_index == UINT_MAX))
                {
                {
                  switch (edit_node->type)
                  switch (edit_node->type)
                    {
                    {
                    case DELETE_EXIDX_ENTRY:
                    case DELETE_EXIDX_ENTRY:
                      in_index++;
                      in_index++;
                      add_to_offsets += 8;
                      add_to_offsets += 8;
                      break;
                      break;
 
 
                    case INSERT_EXIDX_CANTUNWIND_AT_END:
                    case INSERT_EXIDX_CANTUNWIND_AT_END:
                      {
                      {
                        asection *text_sec = edit_node->linked_section;
                        asection *text_sec = edit_node->linked_section;
                        bfd_vma text_offset = text_sec->output_section->vma
                        bfd_vma text_offset = text_sec->output_section->vma
                                              + text_sec->output_offset
                                              + text_sec->output_offset
                                              + text_sec->size;
                                              + text_sec->size;
                        bfd_vma exidx_offset = offset + out_index * 8;
                        bfd_vma exidx_offset = offset + out_index * 8;
                        unsigned long prel31_offset;
                        unsigned long prel31_offset;
 
 
                        /* Note: this is meant to be equivalent to an
                        /* Note: this is meant to be equivalent to an
                           R_ARM_PREL31 relocation.  These synthetic
                           R_ARM_PREL31 relocation.  These synthetic
                           EXIDX_CANTUNWIND markers are not relocated by the
                           EXIDX_CANTUNWIND markers are not relocated by the
                           usual BFD method.  */
                           usual BFD method.  */
                        prel31_offset = (text_offset - exidx_offset)
                        prel31_offset = (text_offset - exidx_offset)
                                        & 0x7ffffffful;
                                        & 0x7ffffffful;
 
 
                        /* First address we can't unwind.  */
                        /* First address we can't unwind.  */
                        bfd_put_32 (output_bfd, prel31_offset,
                        bfd_put_32 (output_bfd, prel31_offset,
                                    &edited_contents[out_index * 8]);
                                    &edited_contents[out_index * 8]);
 
 
                        /* Code for EXIDX_CANTUNWIND.  */
                        /* Code for EXIDX_CANTUNWIND.  */
                        bfd_put_32 (output_bfd, 0x1,
                        bfd_put_32 (output_bfd, 0x1,
                                    &edited_contents[out_index * 8 + 4]);
                                    &edited_contents[out_index * 8 + 4]);
 
 
                        out_index++;
                        out_index++;
                        add_to_offsets -= 8;
                        add_to_offsets -= 8;
                      }
                      }
                      break;
                      break;
                    }
                    }
 
 
                  edit_node = edit_node->next;
                  edit_node = edit_node->next;
                }
                }
            }
            }
          else
          else
            {
            {
              /* No more edits, copy remaining entries verbatim.  */
              /* No more edits, copy remaining entries verbatim.  */
              copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
              copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
                                contents + in_index * 8, add_to_offsets);
                                contents + in_index * 8, add_to_offsets);
              out_index++;
              out_index++;
              in_index++;
              in_index++;
            }
            }
        }
        }
 
 
      if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
      if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
        bfd_set_section_contents (output_bfd, sec->output_section,
        bfd_set_section_contents (output_bfd, sec->output_section,
                                  edited_contents,
                                  edited_contents,
                                  (file_ptr) sec->output_offset, sec->size);
                                  (file_ptr) sec->output_offset, sec->size);
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Fix code to point to Cortex-A8 erratum stubs.  */
  /* Fix code to point to Cortex-A8 erratum stubs.  */
  if (globals->fix_cortex_a8)
  if (globals->fix_cortex_a8)
    {
    {
      struct a8_branch_to_stub_data data;
      struct a8_branch_to_stub_data data;
 
 
      data.writing_section = sec;
      data.writing_section = sec;
      data.contents = contents;
      data.contents = contents;
 
 
      bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
      bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
                         &data);
                         &data);
    }
    }
 
 
  if (mapcount == 0)
  if (mapcount == 0)
    return FALSE;
    return FALSE;
 
 
  if (globals->byteswap_code)
  if (globals->byteswap_code)
    {
    {
      qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
      qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
 
 
      ptr = map[0].vma;
      ptr = map[0].vma;
      for (i = 0; i < mapcount; i++)
      for (i = 0; i < mapcount; i++)
        {
        {
          if (i == mapcount - 1)
          if (i == mapcount - 1)
            end = sec->size;
            end = sec->size;
          else
          else
            end = map[i + 1].vma;
            end = map[i + 1].vma;
 
 
          switch (map[i].type)
          switch (map[i].type)
            {
            {
            case 'a':
            case 'a':
              /* Byte swap code words.  */
              /* Byte swap code words.  */
              while (ptr + 3 < end)
              while (ptr + 3 < end)
                {
                {
                  tmp = contents[ptr];
                  tmp = contents[ptr];
                  contents[ptr] = contents[ptr + 3];
                  contents[ptr] = contents[ptr + 3];
                  contents[ptr + 3] = tmp;
                  contents[ptr + 3] = tmp;
                  tmp = contents[ptr + 1];
                  tmp = contents[ptr + 1];
                  contents[ptr + 1] = contents[ptr + 2];
                  contents[ptr + 1] = contents[ptr + 2];
                  contents[ptr + 2] = tmp;
                  contents[ptr + 2] = tmp;
                  ptr += 4;
                  ptr += 4;
                }
                }
              break;
              break;
 
 
            case 't':
            case 't':
              /* Byte swap code halfwords.  */
              /* Byte swap code halfwords.  */
              while (ptr + 1 < end)
              while (ptr + 1 < end)
                {
                {
                  tmp = contents[ptr];
                  tmp = contents[ptr];
                  contents[ptr] = contents[ptr + 1];
                  contents[ptr] = contents[ptr + 1];
                  contents[ptr + 1] = tmp;
                  contents[ptr + 1] = tmp;
                  ptr += 2;
                  ptr += 2;
                }
                }
              break;
              break;
 
 
            case 'd':
            case 'd':
              /* Leave data alone.  */
              /* Leave data alone.  */
              break;
              break;
            }
            }
          ptr = end;
          ptr = end;
        }
        }
    }
    }
 
 
  free (map);
  free (map);
  arm_data->mapcount = -1;
  arm_data->mapcount = -1;
  arm_data->mapsize = 0;
  arm_data->mapsize = 0;
  arm_data->map = NULL;
  arm_data->map = NULL;
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Mangle thumb function symbols as we read them in.  */
/* Mangle thumb function symbols as we read them in.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_swap_symbol_in (bfd * abfd,
elf32_arm_swap_symbol_in (bfd * abfd,
                          const void *psrc,
                          const void *psrc,
                          const void *pshn,
                          const void *pshn,
                          Elf_Internal_Sym *dst)
                          Elf_Internal_Sym *dst)
{
{
  if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
  if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
    return FALSE;
    return FALSE;
 
 
  /* New EABI objects mark thumb function symbols by setting the low bit of
  /* New EABI objects mark thumb function symbols by setting the low bit of
     the address.  */
     the address.  */
  if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
  if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
      || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
      || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
    {
    {
      if (dst->st_value & 1)
      if (dst->st_value & 1)
        {
        {
          dst->st_value &= ~(bfd_vma) 1;
          dst->st_value &= ~(bfd_vma) 1;
          dst->st_target_internal = ST_BRANCH_TO_THUMB;
          dst->st_target_internal = ST_BRANCH_TO_THUMB;
        }
        }
      else
      else
        dst->st_target_internal = ST_BRANCH_TO_ARM;
        dst->st_target_internal = ST_BRANCH_TO_ARM;
    }
    }
  else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
  else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
    {
    {
      dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
      dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
      dst->st_target_internal = ST_BRANCH_TO_THUMB;
      dst->st_target_internal = ST_BRANCH_TO_THUMB;
    }
    }
  else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
  else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
    dst->st_target_internal = ST_BRANCH_LONG;
    dst->st_target_internal = ST_BRANCH_LONG;
  else
  else
    dst->st_target_internal = ST_BRANCH_UNKNOWN;
    dst->st_target_internal = ST_BRANCH_UNKNOWN;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
 
 
/* Mangle thumb function symbols as we write them out.  */
/* Mangle thumb function symbols as we write them out.  */
 
 
static void
static void
elf32_arm_swap_symbol_out (bfd *abfd,
elf32_arm_swap_symbol_out (bfd *abfd,
                           const Elf_Internal_Sym *src,
                           const Elf_Internal_Sym *src,
                           void *cdst,
                           void *cdst,
                           void *shndx)
                           void *shndx)
{
{
  Elf_Internal_Sym newsym;
  Elf_Internal_Sym newsym;
 
 
  /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
  /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
     of the address set, as per the new EABI.  We do this unconditionally
     of the address set, as per the new EABI.  We do this unconditionally
     because objcopy does not set the elf header flags until after
     because objcopy does not set the elf header flags until after
     it writes out the symbol table.  */
     it writes out the symbol table.  */
  if (src->st_target_internal == ST_BRANCH_TO_THUMB)
  if (src->st_target_internal == ST_BRANCH_TO_THUMB)
    {
    {
      newsym = *src;
      newsym = *src;
      if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
      if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
        newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
        newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
      if (newsym.st_shndx != SHN_UNDEF)
      if (newsym.st_shndx != SHN_UNDEF)
        {
        {
          /* Do this only for defined symbols. At link type, the static
          /* Do this only for defined symbols. At link type, the static
             linker will simulate the work of dynamic linker of resolving
             linker will simulate the work of dynamic linker of resolving
             symbols and will carry over the thumbness of found symbols to
             symbols and will carry over the thumbness of found symbols to
             the output symbol table. It's not clear how it happens, but
             the output symbol table. It's not clear how it happens, but
             the thumbness of undefined symbols can well be different at
             the thumbness of undefined symbols can well be different at
             runtime, and writing '1' for them will be confusing for users
             runtime, and writing '1' for them will be confusing for users
             and possibly for dynamic linker itself.
             and possibly for dynamic linker itself.
          */
          */
          newsym.st_value |= 1;
          newsym.st_value |= 1;
        }
        }
 
 
      src = &newsym;
      src = &newsym;
    }
    }
  bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
  bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
}
}
 
 
/* Add the PT_ARM_EXIDX program header.  */
/* Add the PT_ARM_EXIDX program header.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_modify_segment_map (bfd *abfd,
elf32_arm_modify_segment_map (bfd *abfd,
                              struct bfd_link_info *info ATTRIBUTE_UNUSED)
                              struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
{
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  asection *sec;
  asection *sec;
 
 
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
    {
    {
      /* If there is already a PT_ARM_EXIDX header, then we do not
      /* If there is already a PT_ARM_EXIDX header, then we do not
         want to add another one.  This situation arises when running
         want to add another one.  This situation arises when running
         "strip"; the input binary already has the header.  */
         "strip"; the input binary already has the header.  */
      m = elf_tdata (abfd)->segment_map;
      m = elf_tdata (abfd)->segment_map;
      while (m && m->p_type != PT_ARM_EXIDX)
      while (m && m->p_type != PT_ARM_EXIDX)
        m = m->next;
        m = m->next;
      if (!m)
      if (!m)
        {
        {
          m = (struct elf_segment_map *)
          m = (struct elf_segment_map *)
              bfd_zalloc (abfd, sizeof (struct elf_segment_map));
              bfd_zalloc (abfd, sizeof (struct elf_segment_map));
          if (m == NULL)
          if (m == NULL)
            return FALSE;
            return FALSE;
          m->p_type = PT_ARM_EXIDX;
          m->p_type = PT_ARM_EXIDX;
          m->count = 1;
          m->count = 1;
          m->sections[0] = sec;
          m->sections[0] = sec;
 
 
          m->next = elf_tdata (abfd)->segment_map;
          m->next = elf_tdata (abfd)->segment_map;
          elf_tdata (abfd)->segment_map = m;
          elf_tdata (abfd)->segment_map = m;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* We may add a PT_ARM_EXIDX program header.  */
/* We may add a PT_ARM_EXIDX program header.  */
 
 
static int
static int
elf32_arm_additional_program_headers (bfd *abfd,
elf32_arm_additional_program_headers (bfd *abfd,
                                      struct bfd_link_info *info ATTRIBUTE_UNUSED)
                                      struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
{
  asection *sec;
  asection *sec;
 
 
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
  sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Hook called by the linker routine which adds symbols from an object
/* Hook called by the linker routine which adds symbols from an object
   file.  */
   file.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
                           Elf_Internal_Sym *sym, const char **namep,
                           Elf_Internal_Sym *sym, const char **namep,
                           flagword *flagsp, asection **secp, bfd_vma *valp)
                           flagword *flagsp, asection **secp, bfd_vma *valp)
{
{
  if ((abfd->flags & DYNAMIC) == 0
  if ((abfd->flags & DYNAMIC) == 0
      && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
      && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
          || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
          || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
    elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
    elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
 
 
  if (elf32_arm_hash_table (info)->vxworks_p
  if (elf32_arm_hash_table (info)->vxworks_p
      && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
      && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
                                       flagsp, secp, valp))
                                       flagsp, secp, valp))
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* We use this to override swap_symbol_in and swap_symbol_out.  */
/* We use this to override swap_symbol_in and swap_symbol_out.  */
const struct elf_size_info elf32_arm_size_info =
const struct elf_size_info elf32_arm_size_info =
{
{
  sizeof (Elf32_External_Ehdr),
  sizeof (Elf32_External_Ehdr),
  sizeof (Elf32_External_Phdr),
  sizeof (Elf32_External_Phdr),
  sizeof (Elf32_External_Shdr),
  sizeof (Elf32_External_Shdr),
  sizeof (Elf32_External_Rel),
  sizeof (Elf32_External_Rel),
  sizeof (Elf32_External_Rela),
  sizeof (Elf32_External_Rela),
  sizeof (Elf32_External_Sym),
  sizeof (Elf32_External_Sym),
  sizeof (Elf32_External_Dyn),
  sizeof (Elf32_External_Dyn),
  sizeof (Elf_External_Note),
  sizeof (Elf_External_Note),
  4,
  4,
  1,
  1,
  32, 2,
  32, 2,
  ELFCLASS32, EV_CURRENT,
  ELFCLASS32, EV_CURRENT,
  bfd_elf32_write_out_phdrs,
  bfd_elf32_write_out_phdrs,
  bfd_elf32_write_shdrs_and_ehdr,
  bfd_elf32_write_shdrs_and_ehdr,
  bfd_elf32_checksum_contents,
  bfd_elf32_checksum_contents,
  bfd_elf32_write_relocs,
  bfd_elf32_write_relocs,
  elf32_arm_swap_symbol_in,
  elf32_arm_swap_symbol_in,
  elf32_arm_swap_symbol_out,
  elf32_arm_swap_symbol_out,
  bfd_elf32_slurp_reloc_table,
  bfd_elf32_slurp_reloc_table,
  bfd_elf32_slurp_symbol_table,
  bfd_elf32_slurp_symbol_table,
  bfd_elf32_swap_dyn_in,
  bfd_elf32_swap_dyn_in,
  bfd_elf32_swap_dyn_out,
  bfd_elf32_swap_dyn_out,
  bfd_elf32_swap_reloc_in,
  bfd_elf32_swap_reloc_in,
  bfd_elf32_swap_reloc_out,
  bfd_elf32_swap_reloc_out,
  bfd_elf32_swap_reloca_in,
  bfd_elf32_swap_reloca_in,
  bfd_elf32_swap_reloca_out
  bfd_elf32_swap_reloca_out
};
};
 
 
#define ELF_ARCH                        bfd_arch_arm
#define ELF_ARCH                        bfd_arch_arm
#define ELF_TARGET_ID                   ARM_ELF_DATA
#define ELF_TARGET_ID                   ARM_ELF_DATA
#define ELF_MACHINE_CODE                EM_ARM
#define ELF_MACHINE_CODE                EM_ARM
#ifdef __QNXTARGET__
#ifdef __QNXTARGET__
#define ELF_MAXPAGESIZE                 0x1000
#define ELF_MAXPAGESIZE                 0x1000
#else
#else
#define ELF_MAXPAGESIZE                 0x8000
#define ELF_MAXPAGESIZE                 0x8000
#endif
#endif
#define ELF_MINPAGESIZE                 0x1000
#define ELF_MINPAGESIZE                 0x1000
#define ELF_COMMONPAGESIZE              0x1000
#define ELF_COMMONPAGESIZE              0x1000
 
 
#define bfd_elf32_mkobject                      elf32_arm_mkobject
#define bfd_elf32_mkobject                      elf32_arm_mkobject
 
 
#define bfd_elf32_bfd_copy_private_bfd_data     elf32_arm_copy_private_bfd_data
#define bfd_elf32_bfd_copy_private_bfd_data     elf32_arm_copy_private_bfd_data
#define bfd_elf32_bfd_merge_private_bfd_data    elf32_arm_merge_private_bfd_data
#define bfd_elf32_bfd_merge_private_bfd_data    elf32_arm_merge_private_bfd_data
#define bfd_elf32_bfd_set_private_flags         elf32_arm_set_private_flags
#define bfd_elf32_bfd_set_private_flags         elf32_arm_set_private_flags
#define bfd_elf32_bfd_print_private_bfd_data    elf32_arm_print_private_bfd_data
#define bfd_elf32_bfd_print_private_bfd_data    elf32_arm_print_private_bfd_data
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
#define bfd_elf32_bfd_link_hash_table_free      elf32_arm_hash_table_free
#define bfd_elf32_bfd_reloc_type_lookup         elf32_arm_reloc_type_lookup
#define bfd_elf32_bfd_reloc_type_lookup         elf32_arm_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
#define bfd_elf32_find_nearest_line             elf32_arm_find_nearest_line
#define bfd_elf32_find_nearest_line             elf32_arm_find_nearest_line
#define bfd_elf32_find_inliner_info             elf32_arm_find_inliner_info
#define bfd_elf32_find_inliner_info             elf32_arm_find_inliner_info
#define bfd_elf32_new_section_hook              elf32_arm_new_section_hook
#define bfd_elf32_new_section_hook              elf32_arm_new_section_hook
#define bfd_elf32_bfd_is_target_special_symbol  elf32_arm_is_target_special_symbol
#define bfd_elf32_bfd_is_target_special_symbol  elf32_arm_is_target_special_symbol
#define bfd_elf32_bfd_final_link                elf32_arm_final_link
#define bfd_elf32_bfd_final_link                elf32_arm_final_link
 
 
#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
#define elf_backend_gc_mark_extra_sections      elf32_arm_gc_mark_extra_sections
#define elf_backend_gc_mark_extra_sections      elf32_arm_gc_mark_extra_sections
#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
#define elf_backend_check_relocs                elf32_arm_check_relocs
#define elf_backend_check_relocs                elf32_arm_check_relocs
#define elf_backend_relocate_section            elf32_arm_relocate_section
#define elf_backend_relocate_section            elf32_arm_relocate_section
#define elf_backend_write_section               elf32_arm_write_section
#define elf_backend_write_section               elf32_arm_write_section
#define elf_backend_adjust_dynamic_symbol       elf32_arm_adjust_dynamic_symbol
#define elf_backend_adjust_dynamic_symbol       elf32_arm_adjust_dynamic_symbol
#define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
#define elf_backend_create_dynamic_sections     elf32_arm_create_dynamic_sections
#define elf_backend_finish_dynamic_symbol       elf32_arm_finish_dynamic_symbol
#define elf_backend_finish_dynamic_symbol       elf32_arm_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections     elf32_arm_finish_dynamic_sections
#define elf_backend_finish_dynamic_sections     elf32_arm_finish_dynamic_sections
#define elf_backend_size_dynamic_sections       elf32_arm_size_dynamic_sections
#define elf_backend_size_dynamic_sections       elf32_arm_size_dynamic_sections
#define elf_backend_always_size_sections        elf32_arm_always_size_sections
#define elf_backend_always_size_sections        elf32_arm_always_size_sections
#define elf_backend_init_index_section          _bfd_elf_init_2_index_sections
#define elf_backend_init_index_section          _bfd_elf_init_2_index_sections
#define elf_backend_post_process_headers        elf32_arm_post_process_headers
#define elf_backend_post_process_headers        elf32_arm_post_process_headers
#define elf_backend_reloc_type_class            elf32_arm_reloc_type_class
#define elf_backend_reloc_type_class            elf32_arm_reloc_type_class
#define elf_backend_object_p                    elf32_arm_object_p
#define elf_backend_object_p                    elf32_arm_object_p
#define elf_backend_fake_sections               elf32_arm_fake_sections
#define elf_backend_fake_sections               elf32_arm_fake_sections
#define elf_backend_section_from_shdr           elf32_arm_section_from_shdr
#define elf_backend_section_from_shdr           elf32_arm_section_from_shdr
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
#define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
#define elf_backend_copy_indirect_symbol        elf32_arm_copy_indirect_symbol
#define elf_backend_size_info                   elf32_arm_size_info
#define elf_backend_size_info                   elf32_arm_size_info
#define elf_backend_modify_segment_map          elf32_arm_modify_segment_map
#define elf_backend_modify_segment_map          elf32_arm_modify_segment_map
#define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
#define elf_backend_additional_program_headers  elf32_arm_additional_program_headers
#define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
#define elf_backend_output_arch_local_syms      elf32_arm_output_arch_local_syms
#define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
#define elf_backend_begin_write_processing      elf32_arm_begin_write_processing
#define elf_backend_add_symbol_hook             elf32_arm_add_symbol_hook
#define elf_backend_add_symbol_hook             elf32_arm_add_symbol_hook
 
 
#define elf_backend_can_refcount       1
#define elf_backend_can_refcount       1
#define elf_backend_can_gc_sections    1
#define elf_backend_can_gc_sections    1
#define elf_backend_plt_readonly       1
#define elf_backend_plt_readonly       1
#define elf_backend_want_got_plt       1
#define elf_backend_want_got_plt       1
#define elf_backend_want_plt_sym       0
#define elf_backend_want_plt_sym       0
#define elf_backend_may_use_rel_p      1
#define elf_backend_may_use_rel_p      1
#define elf_backend_may_use_rela_p     0
#define elf_backend_may_use_rela_p     0
#define elf_backend_default_use_rela_p 0
#define elf_backend_default_use_rela_p 0
 
 
#define elf_backend_got_header_size     12
#define elf_backend_got_header_size     12
 
 
#undef  elf_backend_obj_attrs_vendor
#undef  elf_backend_obj_attrs_vendor
#define elf_backend_obj_attrs_vendor            "aeabi"
#define elf_backend_obj_attrs_vendor            "aeabi"
#undef  elf_backend_obj_attrs_section
#undef  elf_backend_obj_attrs_section
#define elf_backend_obj_attrs_section           ".ARM.attributes"
#define elf_backend_obj_attrs_section           ".ARM.attributes"
#undef  elf_backend_obj_attrs_arg_type
#undef  elf_backend_obj_attrs_arg_type
#define elf_backend_obj_attrs_arg_type          elf32_arm_obj_attrs_arg_type
#define elf_backend_obj_attrs_arg_type          elf32_arm_obj_attrs_arg_type
#undef  elf_backend_obj_attrs_section_type
#undef  elf_backend_obj_attrs_section_type
#define elf_backend_obj_attrs_section_type      SHT_ARM_ATTRIBUTES
#define elf_backend_obj_attrs_section_type      SHT_ARM_ATTRIBUTES
#define elf_backend_obj_attrs_order     elf32_arm_obj_attrs_order
#define elf_backend_obj_attrs_order     elf32_arm_obj_attrs_order
#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
/* VxWorks Targets.  */
/* VxWorks Targets.  */
 
 
#undef  TARGET_LITTLE_SYM
#undef  TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_vxworks_vec
#undef  TARGET_LITTLE_NAME
#undef  TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
#define TARGET_LITTLE_NAME              "elf32-littlearm-vxworks"
#undef  TARGET_BIG_SYM
#undef  TARGET_BIG_SYM
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_vxworks_vec
#undef  TARGET_BIG_NAME
#undef  TARGET_BIG_NAME
#define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
#define TARGET_BIG_NAME                 "elf32-bigarm-vxworks"
 
 
/* Like elf32_arm_link_hash_table_create -- but overrides
/* Like elf32_arm_link_hash_table_create -- but overrides
   appropriately for VxWorks.  */
   appropriately for VxWorks.  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
{
{
  struct bfd_link_hash_table *ret;
  struct bfd_link_hash_table *ret;
 
 
  ret = elf32_arm_link_hash_table_create (abfd);
  ret = elf32_arm_link_hash_table_create (abfd);
  if (ret)
  if (ret)
    {
    {
      struct elf32_arm_link_hash_table *htab
      struct elf32_arm_link_hash_table *htab
        = (struct elf32_arm_link_hash_table *) ret;
        = (struct elf32_arm_link_hash_table *) ret;
      htab->use_rel = 0;
      htab->use_rel = 0;
      htab->vxworks_p = 1;
      htab->vxworks_p = 1;
    }
    }
  return ret;
  return ret;
}
}
 
 
static void
static void
elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
{
{
  elf32_arm_final_write_processing (abfd, linker);
  elf32_arm_final_write_processing (abfd, linker);
  elf_vxworks_final_write_processing (abfd, linker);
  elf_vxworks_final_write_processing (abfd, linker);
}
}
 
 
#undef  elf32_bed
#undef  elf32_bed
#define elf32_bed elf32_arm_vxworks_bed
#define elf32_bed elf32_arm_vxworks_bed
 
 
#undef  bfd_elf32_bfd_link_hash_table_create
#undef  bfd_elf32_bfd_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_vxworks_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_vxworks_link_hash_table_create
#undef  elf_backend_final_write_processing
#undef  elf_backend_final_write_processing
#define elf_backend_final_write_processing      elf32_arm_vxworks_final_write_processing
#define elf_backend_final_write_processing      elf32_arm_vxworks_final_write_processing
#undef  elf_backend_emit_relocs
#undef  elf_backend_emit_relocs
#define elf_backend_emit_relocs                 elf_vxworks_emit_relocs
#define elf_backend_emit_relocs                 elf_vxworks_emit_relocs
 
 
#undef  elf_backend_may_use_rel_p
#undef  elf_backend_may_use_rel_p
#define elf_backend_may_use_rel_p       0
#define elf_backend_may_use_rel_p       0
#undef  elf_backend_may_use_rela_p
#undef  elf_backend_may_use_rela_p
#define elf_backend_may_use_rela_p      1
#define elf_backend_may_use_rela_p      1
#undef  elf_backend_default_use_rela_p
#undef  elf_backend_default_use_rela_p
#define elf_backend_default_use_rela_p  1
#define elf_backend_default_use_rela_p  1
#undef  elf_backend_want_plt_sym
#undef  elf_backend_want_plt_sym
#define elf_backend_want_plt_sym        1
#define elf_backend_want_plt_sym        1
#undef  ELF_MAXPAGESIZE
#undef  ELF_MAXPAGESIZE
#define ELF_MAXPAGESIZE                 0x1000
#define ELF_MAXPAGESIZE                 0x1000
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
 
 
/* Merge backend specific data from an object file to the output
/* Merge backend specific data from an object file to the output
   object file when linking.  */
   object file when linking.  */
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
{
{
  flagword out_flags;
  flagword out_flags;
  flagword in_flags;
  flagword in_flags;
  bfd_boolean flags_compatible = TRUE;
  bfd_boolean flags_compatible = TRUE;
  asection *sec;
  asection *sec;
 
 
  /* Check if we have the same endianness.  */
  /* Check if we have the same endianness.  */
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
    return FALSE;
    return FALSE;
 
 
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
  if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
    return TRUE;
    return TRUE;
 
 
  if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
  if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
    return FALSE;
    return FALSE;
 
 
  /* The input BFD must have had its flags initialised.  */
  /* The input BFD must have had its flags initialised.  */
  /* The following seems bogus to me -- The flags are initialized in
  /* The following seems bogus to me -- The flags are initialized in
     the assembler but I don't think an elf_flags_init field is
     the assembler but I don't think an elf_flags_init field is
     written into the object.  */
     written into the object.  */
  /* BFD_ASSERT (elf_flags_init (ibfd)); */
  /* BFD_ASSERT (elf_flags_init (ibfd)); */
 
 
  in_flags  = elf_elfheader (ibfd)->e_flags;
  in_flags  = elf_elfheader (ibfd)->e_flags;
  out_flags = elf_elfheader (obfd)->e_flags;
  out_flags = elf_elfheader (obfd)->e_flags;
 
 
  /* In theory there is no reason why we couldn't handle this.  However
  /* In theory there is no reason why we couldn't handle this.  However
     in practice it isn't even close to working and there is no real
     in practice it isn't even close to working and there is no real
     reason to want it.  */
     reason to want it.  */
  if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
  if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
      && !(ibfd->flags & DYNAMIC)
      && !(ibfd->flags & DYNAMIC)
      && (in_flags & EF_ARM_BE8))
      && (in_flags & EF_ARM_BE8))
    {
    {
      _bfd_error_handler (_("error: %B is already in final BE8 format"),
      _bfd_error_handler (_("error: %B is already in final BE8 format"),
                          ibfd);
                          ibfd);
      return FALSE;
      return FALSE;
    }
    }
 
 
  if (!elf_flags_init (obfd))
  if (!elf_flags_init (obfd))
    {
    {
      /* If the input is the default architecture and had the default
      /* If the input is the default architecture and had the default
         flags then do not bother setting the flags for the output
         flags then do not bother setting the flags for the output
         architecture, instead allow future merges to do this.  If no
         architecture, instead allow future merges to do this.  If no
         future merges ever set these flags then they will retain their
         future merges ever set these flags then they will retain their
         uninitialised values, which surprise surprise, correspond
         uninitialised values, which surprise surprise, correspond
         to the default values.  */
         to the default values.  */
      if (bfd_get_arch_info (ibfd)->the_default
      if (bfd_get_arch_info (ibfd)->the_default
          && elf_elfheader (ibfd)->e_flags == 0)
          && elf_elfheader (ibfd)->e_flags == 0)
        return TRUE;
        return TRUE;
 
 
      elf_flags_init (obfd) = TRUE;
      elf_flags_init (obfd) = TRUE;
      elf_elfheader (obfd)->e_flags = in_flags;
      elf_elfheader (obfd)->e_flags = in_flags;
 
 
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
          && bfd_get_arch_info (obfd)->the_default)
          && bfd_get_arch_info (obfd)->the_default)
        return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
        return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Determine what should happen if the input ARM architecture
  /* Determine what should happen if the input ARM architecture
     does not match the output ARM architecture.  */
     does not match the output ARM architecture.  */
  if (! bfd_arm_merge_machines (ibfd, obfd))
  if (! bfd_arm_merge_machines (ibfd, obfd))
    return FALSE;
    return FALSE;
 
 
  /* Identical flags must be compatible.  */
  /* Identical flags must be compatible.  */
  if (in_flags == out_flags)
  if (in_flags == out_flags)
    return TRUE;
    return TRUE;
 
 
  /* Check to see if the input BFD actually contains any sections.  If
  /* Check to see if the input BFD actually contains any sections.  If
     not, its flags may not have been initialised either, but it
     not, its flags may not have been initialised either, but it
     cannot actually cause any incompatiblity.  Do not short-circuit
     cannot actually cause any incompatiblity.  Do not short-circuit
     dynamic objects; their section list may be emptied by
     dynamic objects; their section list may be emptied by
    elf_link_add_object_symbols.
    elf_link_add_object_symbols.
 
 
    Also check to see if there are no code sections in the input.
    Also check to see if there are no code sections in the input.
    In this case there is no need to check for code specific flags.
    In this case there is no need to check for code specific flags.
    XXX - do we need to worry about floating-point format compatability
    XXX - do we need to worry about floating-point format compatability
    in data sections ?  */
    in data sections ?  */
  if (!(ibfd->flags & DYNAMIC))
  if (!(ibfd->flags & DYNAMIC))
    {
    {
      bfd_boolean null_input_bfd = TRUE;
      bfd_boolean null_input_bfd = TRUE;
      bfd_boolean only_data_sections = TRUE;
      bfd_boolean only_data_sections = TRUE;
 
 
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
        {
        {
          /* Ignore synthetic glue sections.  */
          /* Ignore synthetic glue sections.  */
          if (strcmp (sec->name, ".glue_7")
          if (strcmp (sec->name, ".glue_7")
              && strcmp (sec->name, ".glue_7t"))
              && strcmp (sec->name, ".glue_7t"))
            {
            {
              if ((bfd_get_section_flags (ibfd, sec)
              if ((bfd_get_section_flags (ibfd, sec)
                   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
                   & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
                  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
                  == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
                only_data_sections = FALSE;
                only_data_sections = FALSE;
 
 
              null_input_bfd = FALSE;
              null_input_bfd = FALSE;
              break;
              break;
            }
            }
        }
        }
 
 
      if (null_input_bfd || only_data_sections)
      if (null_input_bfd || only_data_sections)
        return TRUE;
        return TRUE;
    }
    }
 
 
  /* Complain about various flag mismatches.  */
  /* Complain about various flag mismatches.  */
  if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
  if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
                                      EF_ARM_EABI_VERSION (out_flags)))
                                      EF_ARM_EABI_VERSION (out_flags)))
    {
    {
      _bfd_error_handler
      _bfd_error_handler
        (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
        (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
         ibfd, obfd,
         ibfd, obfd,
         (in_flags & EF_ARM_EABIMASK) >> 24,
         (in_flags & EF_ARM_EABIMASK) >> 24,
         (out_flags & EF_ARM_EABIMASK) >> 24);
         (out_flags & EF_ARM_EABIMASK) >> 24);
      return FALSE;
      return FALSE;
    }
    }
 
 
  /* Not sure what needs to be checked for EABI versions >= 1.  */
  /* Not sure what needs to be checked for EABI versions >= 1.  */
  /* VxWorks libraries do not use these flags.  */
  /* VxWorks libraries do not use these flags.  */
  if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
  if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
      && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
      && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
      && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
      && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
    {
    {
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
        {
        {
          _bfd_error_handler
          _bfd_error_handler
            (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
            (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
             ibfd, obfd,
             ibfd, obfd,
             in_flags & EF_ARM_APCS_26 ? 26 : 32,
             in_flags & EF_ARM_APCS_26 ? 26 : 32,
             out_flags & EF_ARM_APCS_26 ? 26 : 32);
             out_flags & EF_ARM_APCS_26 ? 26 : 32);
          flags_compatible = FALSE;
          flags_compatible = FALSE;
        }
        }
 
 
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
        {
        {
          if (in_flags & EF_ARM_APCS_FLOAT)
          if (in_flags & EF_ARM_APCS_FLOAT)
            _bfd_error_handler
            _bfd_error_handler
              (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
              (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
               ibfd, obfd);
               ibfd, obfd);
          else
          else
            _bfd_error_handler
            _bfd_error_handler
              (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
              (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
               ibfd, obfd);
               ibfd, obfd);
 
 
          flags_compatible = FALSE;
          flags_compatible = FALSE;
        }
        }
 
 
      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
        {
        {
          if (in_flags & EF_ARM_VFP_FLOAT)
          if (in_flags & EF_ARM_VFP_FLOAT)
            _bfd_error_handler
            _bfd_error_handler
              (_("error: %B uses VFP instructions, whereas %B does not"),
              (_("error: %B uses VFP instructions, whereas %B does not"),
               ibfd, obfd);
               ibfd, obfd);
          else
          else
            _bfd_error_handler
            _bfd_error_handler
              (_("error: %B uses FPA instructions, whereas %B does not"),
              (_("error: %B uses FPA instructions, whereas %B does not"),
               ibfd, obfd);
               ibfd, obfd);
 
 
          flags_compatible = FALSE;
          flags_compatible = FALSE;
        }
        }
 
 
      if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
      if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
        {
        {
          if (in_flags & EF_ARM_MAVERICK_FLOAT)
          if (in_flags & EF_ARM_MAVERICK_FLOAT)
            _bfd_error_handler
            _bfd_error_handler
              (_("error: %B uses Maverick instructions, whereas %B does not"),
              (_("error: %B uses Maverick instructions, whereas %B does not"),
               ibfd, obfd);
               ibfd, obfd);
          else
          else
            _bfd_error_handler
            _bfd_error_handler
              (_("error: %B does not use Maverick instructions, whereas %B does"),
              (_("error: %B does not use Maverick instructions, whereas %B does"),
               ibfd, obfd);
               ibfd, obfd);
 
 
          flags_compatible = FALSE;
          flags_compatible = FALSE;
        }
        }
 
 
#ifdef EF_ARM_SOFT_FLOAT
#ifdef EF_ARM_SOFT_FLOAT
      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
        {
        {
          /* We can allow interworking between code that is VFP format
          /* We can allow interworking between code that is VFP format
             layout, and uses either soft float or integer regs for
             layout, and uses either soft float or integer regs for
             passing floating point arguments and results.  We already
             passing floating point arguments and results.  We already
             know that the APCS_FLOAT flags match; similarly for VFP
             know that the APCS_FLOAT flags match; similarly for VFP
             flags.  */
             flags.  */
          if ((in_flags & EF_ARM_APCS_FLOAT) != 0
          if ((in_flags & EF_ARM_APCS_FLOAT) != 0
              || (in_flags & EF_ARM_VFP_FLOAT) == 0)
              || (in_flags & EF_ARM_VFP_FLOAT) == 0)
            {
            {
              if (in_flags & EF_ARM_SOFT_FLOAT)
              if (in_flags & EF_ARM_SOFT_FLOAT)
                _bfd_error_handler
                _bfd_error_handler
                  (_("error: %B uses software FP, whereas %B uses hardware FP"),
                  (_("error: %B uses software FP, whereas %B uses hardware FP"),
                   ibfd, obfd);
                   ibfd, obfd);
              else
              else
                _bfd_error_handler
                _bfd_error_handler
                  (_("error: %B uses hardware FP, whereas %B uses software FP"),
                  (_("error: %B uses hardware FP, whereas %B uses software FP"),
                   ibfd, obfd);
                   ibfd, obfd);
 
 
              flags_compatible = FALSE;
              flags_compatible = FALSE;
            }
            }
        }
        }
#endif
#endif
 
 
      /* Interworking mismatch is only a warning.  */
      /* Interworking mismatch is only a warning.  */
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
        {
        {
          if (in_flags & EF_ARM_INTERWORK)
          if (in_flags & EF_ARM_INTERWORK)
            {
            {
              _bfd_error_handler
              _bfd_error_handler
                (_("Warning: %B supports interworking, whereas %B does not"),
                (_("Warning: %B supports interworking, whereas %B does not"),
                 ibfd, obfd);
                 ibfd, obfd);
            }
            }
          else
          else
            {
            {
              _bfd_error_handler
              _bfd_error_handler
                (_("Warning: %B does not support interworking, whereas %B does"),
                (_("Warning: %B does not support interworking, whereas %B does"),
                 ibfd, obfd);
                 ibfd, obfd);
            }
            }
        }
        }
    }
    }
 
 
  return flags_compatible;
  return flags_compatible;
}
}
 
 
 
 
/* Symbian OS Targets.  */
/* Symbian OS Targets.  */
 
 
#undef  TARGET_LITTLE_SYM
#undef  TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
#define TARGET_LITTLE_SYM               bfd_elf32_littlearm_symbian_vec
#undef  TARGET_LITTLE_NAME
#undef  TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
#define TARGET_LITTLE_NAME              "elf32-littlearm-symbian"
#undef  TARGET_BIG_SYM
#undef  TARGET_BIG_SYM
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
#define TARGET_BIG_SYM                  bfd_elf32_bigarm_symbian_vec
#undef  TARGET_BIG_NAME
#undef  TARGET_BIG_NAME
#define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
#define TARGET_BIG_NAME                 "elf32-bigarm-symbian"
 
 
/* Like elf32_arm_link_hash_table_create -- but overrides
/* Like elf32_arm_link_hash_table_create -- but overrides
   appropriately for Symbian OS.  */
   appropriately for Symbian OS.  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
elf32_arm_symbian_link_hash_table_create (bfd *abfd)
elf32_arm_symbian_link_hash_table_create (bfd *abfd)
{
{
  struct bfd_link_hash_table *ret;
  struct bfd_link_hash_table *ret;
 
 
  ret = elf32_arm_link_hash_table_create (abfd);
  ret = elf32_arm_link_hash_table_create (abfd);
  if (ret)
  if (ret)
    {
    {
      struct elf32_arm_link_hash_table *htab
      struct elf32_arm_link_hash_table *htab
        = (struct elf32_arm_link_hash_table *)ret;
        = (struct elf32_arm_link_hash_table *)ret;
      /* There is no PLT header for Symbian OS.  */
      /* There is no PLT header for Symbian OS.  */
      htab->plt_header_size = 0;
      htab->plt_header_size = 0;
      /* The PLT entries are each one instruction and one word.  */
      /* The PLT entries are each one instruction and one word.  */
      htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
      htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
      htab->symbian_p = 1;
      htab->symbian_p = 1;
      /* Symbian uses armv5t or above, so use_blx is always true.  */
      /* Symbian uses armv5t or above, so use_blx is always true.  */
      htab->use_blx = 1;
      htab->use_blx = 1;
      htab->root.is_relocatable_executable = 1;
      htab->root.is_relocatable_executable = 1;
    }
    }
  return ret;
  return ret;
}
}
 
 
static const struct bfd_elf_special_section
static const struct bfd_elf_special_section
elf32_arm_symbian_special_sections[] =
elf32_arm_symbian_special_sections[] =
{
{
  /* In a BPABI executable, the dynamic linking sections do not go in
  /* In a BPABI executable, the dynamic linking sections do not go in
     the loadable read-only segment.  The post-linker may wish to
     the loadable read-only segment.  The post-linker may wish to
     refer to these sections, but they are not part of the final
     refer to these sections, but they are not part of the final
     program image.  */
     program image.  */
  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
  { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  0 },
  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
  { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   0 },
  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
  { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   0 },
  { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".got"),           0, SHT_PROGBITS, 0 },
  { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
  { STRING_COMMA_LEN (".hash"),          0, SHT_HASH,     0 },
  /* These sections do not need to be writable as the SymbianOS
  /* These sections do not need to be writable as the SymbianOS
     postlinker will arrange things so that no dynamic relocation is
     postlinker will arrange things so that no dynamic relocation is
     required.  */
     required.  */
  { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
  { STRING_COMMA_LEN (".init_array"),    0, SHT_INIT_ARRAY,    SHF_ALLOC },
  { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
  { STRING_COMMA_LEN (".fini_array"),    0, SHT_FINI_ARRAY,    SHF_ALLOC },
  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
  { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
  { NULL,                             0, 0, 0,                 0 }
  { NULL,                             0, 0, 0,                 0 }
};
};
 
 
static void
static void
elf32_arm_symbian_begin_write_processing (bfd *abfd,
elf32_arm_symbian_begin_write_processing (bfd *abfd,
                                          struct bfd_link_info *link_info)
                                          struct bfd_link_info *link_info)
{
{
  /* BPABI objects are never loaded directly by an OS kernel; they are
  /* BPABI objects are never loaded directly by an OS kernel; they are
     processed by a postlinker first, into an OS-specific format.  If
     processed by a postlinker first, into an OS-specific format.  If
     the D_PAGED bit is set on the file, BFD will align segments on
     the D_PAGED bit is set on the file, BFD will align segments on
     page boundaries, so that an OS can directly map the file.  With
     page boundaries, so that an OS can directly map the file.  With
     BPABI objects, that just results in wasted space.  In addition,
     BPABI objects, that just results in wasted space.  In addition,
     because we clear the D_PAGED bit, map_sections_to_segments will
     because we clear the D_PAGED bit, map_sections_to_segments will
     recognize that the program headers should not be mapped into any
     recognize that the program headers should not be mapped into any
     loadable segment.  */
     loadable segment.  */
  abfd->flags &= ~D_PAGED;
  abfd->flags &= ~D_PAGED;
  elf32_arm_begin_write_processing (abfd, link_info);
  elf32_arm_begin_write_processing (abfd, link_info);
}
}
 
 
static bfd_boolean
static bfd_boolean
elf32_arm_symbian_modify_segment_map (bfd *abfd,
elf32_arm_symbian_modify_segment_map (bfd *abfd,
                                      struct bfd_link_info *info)
                                      struct bfd_link_info *info)
{
{
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  asection *dynsec;
  asection *dynsec;
 
 
  /* BPABI shared libraries and executables should have a PT_DYNAMIC
  /* BPABI shared libraries and executables should have a PT_DYNAMIC
     segment.  However, because the .dynamic section is not marked
     segment.  However, because the .dynamic section is not marked
     with SEC_LOAD, the generic ELF code will not create such a
     with SEC_LOAD, the generic ELF code will not create such a
     segment.  */
     segment.  */
  dynsec = bfd_get_section_by_name (abfd, ".dynamic");
  dynsec = bfd_get_section_by_name (abfd, ".dynamic");
  if (dynsec)
  if (dynsec)
    {
    {
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
        if (m->p_type == PT_DYNAMIC)
        if (m->p_type == PT_DYNAMIC)
          break;
          break;
 
 
      if (m == NULL)
      if (m == NULL)
        {
        {
          m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
          m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
          m->next = elf_tdata (abfd)->segment_map;
          m->next = elf_tdata (abfd)->segment_map;
          elf_tdata (abfd)->segment_map = m;
          elf_tdata (abfd)->segment_map = m;
        }
        }
    }
    }
 
 
  /* Also call the generic arm routine.  */
  /* Also call the generic arm routine.  */
  return elf32_arm_modify_segment_map (abfd, info);
  return elf32_arm_modify_segment_map (abfd, info);
}
}
 
 
/* Return address for Ith PLT stub in section PLT, for relocation REL
/* Return address for Ith PLT stub in section PLT, for relocation REL
   or (bfd_vma) -1 if it should not be included.  */
   or (bfd_vma) -1 if it should not be included.  */
 
 
static bfd_vma
static bfd_vma
elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
                               const arelent *rel ATTRIBUTE_UNUSED)
                               const arelent *rel ATTRIBUTE_UNUSED)
{
{
  return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
  return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
}
}
 
 
 
 
#undef  elf32_bed
#undef  elf32_bed
#define elf32_bed elf32_arm_symbian_bed
#define elf32_bed elf32_arm_symbian_bed
 
 
/* The dynamic sections are not allocated on SymbianOS; the postlinker
/* The dynamic sections are not allocated on SymbianOS; the postlinker
   will process them and then discard them.  */
   will process them and then discard them.  */
#undef  ELF_DYNAMIC_SEC_FLAGS
#undef  ELF_DYNAMIC_SEC_FLAGS
#define ELF_DYNAMIC_SEC_FLAGS \
#define ELF_DYNAMIC_SEC_FLAGS \
  (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
  (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
 
 
#undef elf_backend_emit_relocs
#undef elf_backend_emit_relocs
 
 
#undef  bfd_elf32_bfd_link_hash_table_create
#undef  bfd_elf32_bfd_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_symbian_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_symbian_link_hash_table_create
#undef  elf_backend_special_sections
#undef  elf_backend_special_sections
#define elf_backend_special_sections            elf32_arm_symbian_special_sections
#define elf_backend_special_sections            elf32_arm_symbian_special_sections
#undef  elf_backend_begin_write_processing
#undef  elf_backend_begin_write_processing
#define elf_backend_begin_write_processing      elf32_arm_symbian_begin_write_processing
#define elf_backend_begin_write_processing      elf32_arm_symbian_begin_write_processing
#undef  elf_backend_final_write_processing
#undef  elf_backend_final_write_processing
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
#define elf_backend_final_write_processing      elf32_arm_final_write_processing
 
 
#undef  elf_backend_modify_segment_map
#undef  elf_backend_modify_segment_map
#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
 
 
/* There is no .got section for BPABI objects, and hence no header.  */
/* There is no .got section for BPABI objects, and hence no header.  */
#undef  elf_backend_got_header_size
#undef  elf_backend_got_header_size
#define elf_backend_got_header_size 0
#define elf_backend_got_header_size 0
 
 
/* Similarly, there is no .got.plt section.  */
/* Similarly, there is no .got.plt section.  */
#undef  elf_backend_want_got_plt
#undef  elf_backend_want_got_plt
#define elf_backend_want_got_plt 0
#define elf_backend_want_got_plt 0
 
 
#undef  elf_backend_plt_sym_val
#undef  elf_backend_plt_sym_val
#define elf_backend_plt_sym_val         elf32_arm_symbian_plt_sym_val
#define elf_backend_plt_sym_val         elf32_arm_symbian_plt_sym_val
 
 
#undef  elf_backend_may_use_rel_p
#undef  elf_backend_may_use_rel_p
#define elf_backend_may_use_rel_p       1
#define elf_backend_may_use_rel_p       1
#undef  elf_backend_may_use_rela_p
#undef  elf_backend_may_use_rela_p
#define elf_backend_may_use_rela_p      0
#define elf_backend_may_use_rela_p      0
#undef  elf_backend_default_use_rela_p
#undef  elf_backend_default_use_rela_p
#define elf_backend_default_use_rela_p  0
#define elf_backend_default_use_rela_p  0
#undef  elf_backend_want_plt_sym
#undef  elf_backend_want_plt_sym
#define elf_backend_want_plt_sym        0
#define elf_backend_want_plt_sym        0
#undef  ELF_MAXPAGESIZE
#undef  ELF_MAXPAGESIZE
#define ELF_MAXPAGESIZE                 0x8000
#define ELF_MAXPAGESIZE                 0x8000
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.