OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [bfd/] [elfxx-mips.c] - Diff between revs 163 and 166

Only display areas with differences | Details | Blame | View Log

Rev 163 Rev 166
/* MIPS-specific support for ELF
/* MIPS-specific support for ELF
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
   2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
   2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Most of the information added by Ian Lance Taylor, Cygnus Support,
   Most of the information added by Ian Lance Taylor, Cygnus Support,
   <ian@cygnus.com>.
   <ian@cygnus.com>.
   N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
   N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
   <mark@codesourcery.com>
   <mark@codesourcery.com>
   Traditional MIPS targets support added by Koundinya.K, Dansk Data
   Traditional MIPS targets support added by Koundinya.K, Dansk Data
   Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
   Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
 
 
/* This file handles functionality common to the different MIPS ABI's.  */
/* This file handles functionality common to the different MIPS ABI's.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "libbfd.h"
#include "libbfd.h"
#include "libiberty.h"
#include "libiberty.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elfxx-mips.h"
#include "elfxx-mips.h"
#include "elf/mips.h"
#include "elf/mips.h"
#include "elf-vxworks.h"
#include "elf-vxworks.h"
 
 
/* Get the ECOFF swapping routines.  */
/* Get the ECOFF swapping routines.  */
#include "coff/sym.h"
#include "coff/sym.h"
#include "coff/symconst.h"
#include "coff/symconst.h"
#include "coff/ecoff.h"
#include "coff/ecoff.h"
#include "coff/mips.h"
#include "coff/mips.h"
 
 
#include "hashtab.h"
#include "hashtab.h"
 
 
/* This structure is used to hold information about one GOT entry.
/* This structure is used to hold information about one GOT entry.
   There are three types of entry:
   There are three types of entry:
 
 
      (1) absolute addresses
      (1) absolute addresses
            (abfd == NULL)
            (abfd == NULL)
      (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
      (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
            (abfd != NULL, symndx >= 0)
            (abfd != NULL, symndx >= 0)
      (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
      (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
            (abfd != NULL, symndx == -1)
            (abfd != NULL, symndx == -1)
 
 
   Type (3) entries are treated differently for different types of GOT.
   Type (3) entries are treated differently for different types of GOT.
   In the "master" GOT -- i.e.  the one that describes every GOT
   In the "master" GOT -- i.e.  the one that describes every GOT
   reference needed in the link -- the mips_got_entry is keyed on both
   reference needed in the link -- the mips_got_entry is keyed on both
   the symbol and the input bfd that references it.  If it turns out
   the symbol and the input bfd that references it.  If it turns out
   that we need multiple GOTs, we can then use this information to
   that we need multiple GOTs, we can then use this information to
   create separate GOTs for each input bfd.
   create separate GOTs for each input bfd.
 
 
   However, we want each of these separate GOTs to have at most one
   However, we want each of these separate GOTs to have at most one
   entry for a given symbol, so their type (3) entries are keyed only
   entry for a given symbol, so their type (3) entries are keyed only
   on the symbol.  The input bfd given by the "abfd" field is somewhat
   on the symbol.  The input bfd given by the "abfd" field is somewhat
   arbitrary in this case.
   arbitrary in this case.
 
 
   This means that when there are multiple GOTs, each GOT has a unique
   This means that when there are multiple GOTs, each GOT has a unique
   mips_got_entry for every symbol within it.  We can therefore use the
   mips_got_entry for every symbol within it.  We can therefore use the
   mips_got_entry fields (tls_type and gotidx) to track the symbol's
   mips_got_entry fields (tls_type and gotidx) to track the symbol's
   GOT index.
   GOT index.
 
 
   However, if it turns out that we need only a single GOT, we continue
   However, if it turns out that we need only a single GOT, we continue
   to use the master GOT to describe it.  There may therefore be several
   to use the master GOT to describe it.  There may therefore be several
   mips_got_entries for the same symbol, each with a different input bfd.
   mips_got_entries for the same symbol, each with a different input bfd.
   We want to make sure that each symbol gets a unique GOT entry, so when
   We want to make sure that each symbol gets a unique GOT entry, so when
   there's a single GOT, we use the symbol's hash entry, not the
   there's a single GOT, we use the symbol's hash entry, not the
   mips_got_entry fields, to track a symbol's GOT index.  */
   mips_got_entry fields, to track a symbol's GOT index.  */
struct mips_got_entry
struct mips_got_entry
{
{
  /* The input bfd in which the symbol is defined.  */
  /* The input bfd in which the symbol is defined.  */
  bfd *abfd;
  bfd *abfd;
  /* The index of the symbol, as stored in the relocation r_info, if
  /* The index of the symbol, as stored in the relocation r_info, if
     we have a local symbol; -1 otherwise.  */
     we have a local symbol; -1 otherwise.  */
  long symndx;
  long symndx;
  union
  union
  {
  {
    /* If abfd == NULL, an address that must be stored in the got.  */
    /* If abfd == NULL, an address that must be stored in the got.  */
    bfd_vma address;
    bfd_vma address;
    /* If abfd != NULL && symndx != -1, the addend of the relocation
    /* If abfd != NULL && symndx != -1, the addend of the relocation
       that should be added to the symbol value.  */
       that should be added to the symbol value.  */
    bfd_vma addend;
    bfd_vma addend;
    /* If abfd != NULL && symndx == -1, the hash table entry
    /* If abfd != NULL && symndx == -1, the hash table entry
       corresponding to symbol in the GOT.  The symbol's entry
       corresponding to symbol in the GOT.  The symbol's entry
       is in the local area if h->global_got_area is GGA_NONE,
       is in the local area if h->global_got_area is GGA_NONE,
       otherwise it is in the global area.  */
       otherwise it is in the global area.  */
    struct mips_elf_link_hash_entry *h;
    struct mips_elf_link_hash_entry *h;
  } d;
  } d;
 
 
  /* The TLS types included in this GOT entry (specifically, GD and
  /* The TLS types included in this GOT entry (specifically, GD and
     IE).  The GD and IE flags can be added as we encounter new
     IE).  The GD and IE flags can be added as we encounter new
     relocations.  LDM can also be set; it will always be alone, not
     relocations.  LDM can also be set; it will always be alone, not
     combined with any GD or IE flags.  An LDM GOT entry will be
     combined with any GD or IE flags.  An LDM GOT entry will be
     a local symbol entry with r_symndx == 0.  */
     a local symbol entry with r_symndx == 0.  */
  unsigned char tls_type;
  unsigned char tls_type;
 
 
  /* The offset from the beginning of the .got section to the entry
  /* The offset from the beginning of the .got section to the entry
     corresponding to this symbol+addend.  If it's a global symbol
     corresponding to this symbol+addend.  If it's a global symbol
     whose offset is yet to be decided, it's going to be -1.  */
     whose offset is yet to be decided, it's going to be -1.  */
  long gotidx;
  long gotidx;
};
};
 
 
/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
   The structures form a non-overlapping list that is sorted by increasing
   The structures form a non-overlapping list that is sorted by increasing
   MIN_ADDEND.  */
   MIN_ADDEND.  */
struct mips_got_page_range
struct mips_got_page_range
{
{
  struct mips_got_page_range *next;
  struct mips_got_page_range *next;
  bfd_signed_vma min_addend;
  bfd_signed_vma min_addend;
  bfd_signed_vma max_addend;
  bfd_signed_vma max_addend;
};
};
 
 
/* This structure describes the range of addends that are applied to page
/* This structure describes the range of addends that are applied to page
   relocations against a given symbol.  */
   relocations against a given symbol.  */
struct mips_got_page_entry
struct mips_got_page_entry
{
{
  /* The input bfd in which the symbol is defined.  */
  /* The input bfd in which the symbol is defined.  */
  bfd *abfd;
  bfd *abfd;
  /* The index of the symbol, as stored in the relocation r_info.  */
  /* The index of the symbol, as stored in the relocation r_info.  */
  long symndx;
  long symndx;
  /* The ranges for this page entry.  */
  /* The ranges for this page entry.  */
  struct mips_got_page_range *ranges;
  struct mips_got_page_range *ranges;
  /* The maximum number of page entries needed for RANGES.  */
  /* The maximum number of page entries needed for RANGES.  */
  bfd_vma num_pages;
  bfd_vma num_pages;
};
};
 
 
/* This structure is used to hold .got information when linking.  */
/* This structure is used to hold .got information when linking.  */
 
 
struct mips_got_info
struct mips_got_info
{
{
  /* The global symbol in the GOT with the lowest index in the dynamic
  /* The global symbol in the GOT with the lowest index in the dynamic
     symbol table.  */
     symbol table.  */
  struct elf_link_hash_entry *global_gotsym;
  struct elf_link_hash_entry *global_gotsym;
  /* The number of global .got entries.  */
  /* The number of global .got entries.  */
  unsigned int global_gotno;
  unsigned int global_gotno;
  /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
  /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
  unsigned int reloc_only_gotno;
  unsigned int reloc_only_gotno;
  /* The number of .got slots used for TLS.  */
  /* The number of .got slots used for TLS.  */
  unsigned int tls_gotno;
  unsigned int tls_gotno;
  /* The first unused TLS .got entry.  Used only during
  /* The first unused TLS .got entry.  Used only during
     mips_elf_initialize_tls_index.  */
     mips_elf_initialize_tls_index.  */
  unsigned int tls_assigned_gotno;
  unsigned int tls_assigned_gotno;
  /* The number of local .got entries, eventually including page entries.  */
  /* The number of local .got entries, eventually including page entries.  */
  unsigned int local_gotno;
  unsigned int local_gotno;
  /* The maximum number of page entries needed.  */
  /* The maximum number of page entries needed.  */
  unsigned int page_gotno;
  unsigned int page_gotno;
  /* The number of local .got entries we have used.  */
  /* The number of local .got entries we have used.  */
  unsigned int assigned_gotno;
  unsigned int assigned_gotno;
  /* A hash table holding members of the got.  */
  /* A hash table holding members of the got.  */
  struct htab *got_entries;
  struct htab *got_entries;
  /* A hash table of mips_got_page_entry structures.  */
  /* A hash table of mips_got_page_entry structures.  */
  struct htab *got_page_entries;
  struct htab *got_page_entries;
  /* A hash table mapping input bfds to other mips_got_info.  NULL
  /* A hash table mapping input bfds to other mips_got_info.  NULL
     unless multi-got was necessary.  */
     unless multi-got was necessary.  */
  struct htab *bfd2got;
  struct htab *bfd2got;
  /* In multi-got links, a pointer to the next got (err, rather, most
  /* In multi-got links, a pointer to the next got (err, rather, most
     of the time, it points to the previous got).  */
     of the time, it points to the previous got).  */
  struct mips_got_info *next;
  struct mips_got_info *next;
  /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
  /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
     for none, or MINUS_TWO for not yet assigned.  This is needed
     for none, or MINUS_TWO for not yet assigned.  This is needed
     because a single-GOT link may have multiple hash table entries
     because a single-GOT link may have multiple hash table entries
     for the LDM.  It does not get initialized in multi-GOT mode.  */
     for the LDM.  It does not get initialized in multi-GOT mode.  */
  bfd_vma tls_ldm_offset;
  bfd_vma tls_ldm_offset;
};
};
 
 
/* Map an input bfd to a got in a multi-got link.  */
/* Map an input bfd to a got in a multi-got link.  */
 
 
struct mips_elf_bfd2got_hash
struct mips_elf_bfd2got_hash
{
{
  bfd *bfd;
  bfd *bfd;
  struct mips_got_info *g;
  struct mips_got_info *g;
};
};
 
 
/* Structure passed when traversing the bfd2got hash table, used to
/* Structure passed when traversing the bfd2got hash table, used to
   create and merge bfd's gots.  */
   create and merge bfd's gots.  */
 
 
struct mips_elf_got_per_bfd_arg
struct mips_elf_got_per_bfd_arg
{
{
  /* A hashtable that maps bfds to gots.  */
  /* A hashtable that maps bfds to gots.  */
  htab_t bfd2got;
  htab_t bfd2got;
  /* The output bfd.  */
  /* The output bfd.  */
  bfd *obfd;
  bfd *obfd;
  /* The link information.  */
  /* The link information.  */
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  /* A pointer to the primary got, i.e., the one that's going to get
  /* A pointer to the primary got, i.e., the one that's going to get
     the implicit relocations from DT_MIPS_LOCAL_GOTNO and
     the implicit relocations from DT_MIPS_LOCAL_GOTNO and
     DT_MIPS_GOTSYM.  */
     DT_MIPS_GOTSYM.  */
  struct mips_got_info *primary;
  struct mips_got_info *primary;
  /* A non-primary got we're trying to merge with other input bfd's
  /* A non-primary got we're trying to merge with other input bfd's
     gots.  */
     gots.  */
  struct mips_got_info *current;
  struct mips_got_info *current;
  /* The maximum number of got entries that can be addressed with a
  /* The maximum number of got entries that can be addressed with a
     16-bit offset.  */
     16-bit offset.  */
  unsigned int max_count;
  unsigned int max_count;
  /* The maximum number of page entries needed by each got.  */
  /* The maximum number of page entries needed by each got.  */
  unsigned int max_pages;
  unsigned int max_pages;
  /* The total number of global entries which will live in the
  /* The total number of global entries which will live in the
     primary got and be automatically relocated.  This includes
     primary got and be automatically relocated.  This includes
     those not referenced by the primary GOT but included in
     those not referenced by the primary GOT but included in
     the "master" GOT.  */
     the "master" GOT.  */
  unsigned int global_count;
  unsigned int global_count;
};
};
 
 
/* Another structure used to pass arguments for got entries traversal.  */
/* Another structure used to pass arguments for got entries traversal.  */
 
 
struct mips_elf_set_global_got_offset_arg
struct mips_elf_set_global_got_offset_arg
{
{
  struct mips_got_info *g;
  struct mips_got_info *g;
  int value;
  int value;
  unsigned int needed_relocs;
  unsigned int needed_relocs;
  struct bfd_link_info *info;
  struct bfd_link_info *info;
};
};
 
 
/* A structure used to count TLS relocations or GOT entries, for GOT
/* A structure used to count TLS relocations or GOT entries, for GOT
   entry or ELF symbol table traversal.  */
   entry or ELF symbol table traversal.  */
 
 
struct mips_elf_count_tls_arg
struct mips_elf_count_tls_arg
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  unsigned int needed;
  unsigned int needed;
};
};
 
 
struct _mips_elf_section_data
struct _mips_elf_section_data
{
{
  struct bfd_elf_section_data elf;
  struct bfd_elf_section_data elf;
  union
  union
  {
  {
    bfd_byte *tdata;
    bfd_byte *tdata;
  } u;
  } u;
};
};
 
 
#define mips_elf_section_data(sec) \
#define mips_elf_section_data(sec) \
  ((struct _mips_elf_section_data *) elf_section_data (sec))
  ((struct _mips_elf_section_data *) elf_section_data (sec))
 
 
#define is_mips_elf(bfd)                                \
#define is_mips_elf(bfd)                                \
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour      \
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour      \
   && elf_tdata (bfd) != NULL                           \
   && elf_tdata (bfd) != NULL                           \
   && elf_object_id (bfd) == MIPS_ELF_DATA)
   && elf_object_id (bfd) == MIPS_ELF_DATA)
 
 
/* The ABI says that every symbol used by dynamic relocations must have
/* The ABI says that every symbol used by dynamic relocations must have
   a global GOT entry.  Among other things, this provides the dynamic
   a global GOT entry.  Among other things, this provides the dynamic
   linker with a free, directly-indexed cache.  The GOT can therefore
   linker with a free, directly-indexed cache.  The GOT can therefore
   contain symbols that are not referenced by GOT relocations themselves
   contain symbols that are not referenced by GOT relocations themselves
   (in other words, it may have symbols that are not referenced by things
   (in other words, it may have symbols that are not referenced by things
   like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
   like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
 
 
   GOT relocations are less likely to overflow if we put the associated
   GOT relocations are less likely to overflow if we put the associated
   GOT entries towards the beginning.  We therefore divide the global
   GOT entries towards the beginning.  We therefore divide the global
   GOT entries into two areas: "normal" and "reloc-only".  Entries in
   GOT entries into two areas: "normal" and "reloc-only".  Entries in
   the first area can be used for both dynamic relocations and GP-relative
   the first area can be used for both dynamic relocations and GP-relative
   accesses, while those in the "reloc-only" area are for dynamic
   accesses, while those in the "reloc-only" area are for dynamic
   relocations only.
   relocations only.
 
 
   These GGA_* ("Global GOT Area") values are organised so that lower
   These GGA_* ("Global GOT Area") values are organised so that lower
   values are more general than higher values.  Also, non-GGA_NONE
   values are more general than higher values.  Also, non-GGA_NONE
   values are ordered by the position of the area in the GOT.  */
   values are ordered by the position of the area in the GOT.  */
#define GGA_NORMAL 0
#define GGA_NORMAL 0
#define GGA_RELOC_ONLY 1
#define GGA_RELOC_ONLY 1
#define GGA_NONE 2
#define GGA_NONE 2
 
 
/* Information about a non-PIC interface to a PIC function.  There are
/* Information about a non-PIC interface to a PIC function.  There are
   two ways of creating these interfaces.  The first is to add:
   two ways of creating these interfaces.  The first is to add:
 
 
        lui     $25,%hi(func)
        lui     $25,%hi(func)
        addiu   $25,$25,%lo(func)
        addiu   $25,$25,%lo(func)
 
 
   immediately before a PIC function "func".  The second is to add:
   immediately before a PIC function "func".  The second is to add:
 
 
        lui     $25,%hi(func)
        lui     $25,%hi(func)
        j       func
        j       func
        addiu   $25,$25,%lo(func)
        addiu   $25,$25,%lo(func)
 
 
   to a separate trampoline section.
   to a separate trampoline section.
 
 
   Stubs of the first kind go in a new section immediately before the
   Stubs of the first kind go in a new section immediately before the
   target function.  Stubs of the second kind go in a single section
   target function.  Stubs of the second kind go in a single section
   pointed to by the hash table's "strampoline" field.  */
   pointed to by the hash table's "strampoline" field.  */
struct mips_elf_la25_stub {
struct mips_elf_la25_stub {
  /* The generated section that contains this stub.  */
  /* The generated section that contains this stub.  */
  asection *stub_section;
  asection *stub_section;
 
 
  /* The offset of the stub from the start of STUB_SECTION.  */
  /* The offset of the stub from the start of STUB_SECTION.  */
  bfd_vma offset;
  bfd_vma offset;
 
 
  /* One symbol for the original function.  Its location is available
  /* One symbol for the original function.  Its location is available
     in H->root.root.u.def.  */
     in H->root.root.u.def.  */
  struct mips_elf_link_hash_entry *h;
  struct mips_elf_link_hash_entry *h;
};
};
 
 
/* Macros for populating a mips_elf_la25_stub.  */
/* Macros for populating a mips_elf_la25_stub.  */
 
 
#define LA25_LUI(VAL) (0x3c190000 | (VAL))      /* lui t9,VAL */
#define LA25_LUI(VAL) (0x3c190000 | (VAL))      /* lui t9,VAL */
#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
#define LA25_ADDIU(VAL) (0x27390000 | (VAL))    /* addiu t9,t9,VAL */
#define LA25_ADDIU(VAL) (0x27390000 | (VAL))    /* addiu t9,t9,VAL */
#define LA25_LUI_MICROMIPS_1(VAL) (0x41b9)      /* lui t9,VAL */
#define LA25_LUI_MICROMIPS_1(VAL) (0x41b9)      /* lui t9,VAL */
#define LA25_LUI_MICROMIPS_2(VAL) (VAL)
#define LA25_LUI_MICROMIPS_2(VAL) (VAL)
#define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
#define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
#define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
#define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
#define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339)    /* addiu t9,t9,VAL */
#define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339)    /* addiu t9,t9,VAL */
#define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
#define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
 
 
/* This structure is passed to mips_elf_sort_hash_table_f when sorting
/* This structure is passed to mips_elf_sort_hash_table_f when sorting
   the dynamic symbols.  */
   the dynamic symbols.  */
 
 
struct mips_elf_hash_sort_data
struct mips_elf_hash_sort_data
{
{
  /* The symbol in the global GOT with the lowest dynamic symbol table
  /* The symbol in the global GOT with the lowest dynamic symbol table
     index.  */
     index.  */
  struct elf_link_hash_entry *low;
  struct elf_link_hash_entry *low;
  /* The least dynamic symbol table index corresponding to a non-TLS
  /* The least dynamic symbol table index corresponding to a non-TLS
     symbol with a GOT entry.  */
     symbol with a GOT entry.  */
  long min_got_dynindx;
  long min_got_dynindx;
  /* The greatest dynamic symbol table index corresponding to a symbol
  /* The greatest dynamic symbol table index corresponding to a symbol
     with a GOT entry that is not referenced (e.g., a dynamic symbol
     with a GOT entry that is not referenced (e.g., a dynamic symbol
     with dynamic relocations pointing to it from non-primary GOTs).  */
     with dynamic relocations pointing to it from non-primary GOTs).  */
  long max_unref_got_dynindx;
  long max_unref_got_dynindx;
  /* The greatest dynamic symbol table index not corresponding to a
  /* The greatest dynamic symbol table index not corresponding to a
     symbol without a GOT entry.  */
     symbol without a GOT entry.  */
  long max_non_got_dynindx;
  long max_non_got_dynindx;
};
};
 
 
/* The MIPS ELF linker needs additional information for each symbol in
/* The MIPS ELF linker needs additional information for each symbol in
   the global hash table.  */
   the global hash table.  */
 
 
struct mips_elf_link_hash_entry
struct mips_elf_link_hash_entry
{
{
  struct elf_link_hash_entry root;
  struct elf_link_hash_entry root;
 
 
  /* External symbol information.  */
  /* External symbol information.  */
  EXTR esym;
  EXTR esym;
 
 
  /* The la25 stub we have created for ths symbol, if any.  */
  /* The la25 stub we have created for ths symbol, if any.  */
  struct mips_elf_la25_stub *la25_stub;
  struct mips_elf_la25_stub *la25_stub;
 
 
  /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
  /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
     this symbol.  */
     this symbol.  */
  unsigned int possibly_dynamic_relocs;
  unsigned int possibly_dynamic_relocs;
 
 
  /* If there is a stub that 32 bit functions should use to call this
  /* If there is a stub that 32 bit functions should use to call this
     16 bit function, this points to the section containing the stub.  */
     16 bit function, this points to the section containing the stub.  */
  asection *fn_stub;
  asection *fn_stub;
 
 
  /* If there is a stub that 16 bit functions should use to call this
  /* If there is a stub that 16 bit functions should use to call this
     32 bit function, this points to the section containing the stub.  */
     32 bit function, this points to the section containing the stub.  */
  asection *call_stub;
  asection *call_stub;
 
 
  /* This is like the call_stub field, but it is used if the function
  /* This is like the call_stub field, but it is used if the function
     being called returns a floating point value.  */
     being called returns a floating point value.  */
  asection *call_fp_stub;
  asection *call_fp_stub;
 
 
#define GOT_NORMAL      0
#define GOT_NORMAL      0
#define GOT_TLS_GD      1
#define GOT_TLS_GD      1
#define GOT_TLS_LDM     2
#define GOT_TLS_LDM     2
#define GOT_TLS_IE      4
#define GOT_TLS_IE      4
#define GOT_TLS_OFFSET_DONE    0x40
#define GOT_TLS_OFFSET_DONE    0x40
#define GOT_TLS_DONE    0x80
#define GOT_TLS_DONE    0x80
  unsigned char tls_type;
  unsigned char tls_type;
 
 
  /* This is only used in single-GOT mode; in multi-GOT mode there
  /* This is only used in single-GOT mode; in multi-GOT mode there
     is one mips_got_entry per GOT entry, so the offset is stored
     is one mips_got_entry per GOT entry, so the offset is stored
     there.  In single-GOT mode there may be many mips_got_entry
     there.  In single-GOT mode there may be many mips_got_entry
     structures all referring to the same GOT slot.  It might be
     structures all referring to the same GOT slot.  It might be
     possible to use root.got.offset instead, but that field is
     possible to use root.got.offset instead, but that field is
     overloaded already.  */
     overloaded already.  */
  bfd_vma tls_got_offset;
  bfd_vma tls_got_offset;
 
 
  /* The highest GGA_* value that satisfies all references to this symbol.  */
  /* The highest GGA_* value that satisfies all references to this symbol.  */
  unsigned int global_got_area : 2;
  unsigned int global_got_area : 2;
 
 
  /* True if all GOT relocations against this symbol are for calls.  This is
  /* True if all GOT relocations against this symbol are for calls.  This is
     a looser condition than no_fn_stub below, because there may be other
     a looser condition than no_fn_stub below, because there may be other
     non-call non-GOT relocations against the symbol.  */
     non-call non-GOT relocations against the symbol.  */
  unsigned int got_only_for_calls : 1;
  unsigned int got_only_for_calls : 1;
 
 
  /* True if one of the relocations described by possibly_dynamic_relocs
  /* True if one of the relocations described by possibly_dynamic_relocs
     is against a readonly section.  */
     is against a readonly section.  */
  unsigned int readonly_reloc : 1;
  unsigned int readonly_reloc : 1;
 
 
  /* True if there is a relocation against this symbol that must be
  /* True if there is a relocation against this symbol that must be
     resolved by the static linker (in other words, if the relocation
     resolved by the static linker (in other words, if the relocation
     cannot possibly be made dynamic).  */
     cannot possibly be made dynamic).  */
  unsigned int has_static_relocs : 1;
  unsigned int has_static_relocs : 1;
 
 
  /* True if we must not create a .MIPS.stubs entry for this symbol.
  /* True if we must not create a .MIPS.stubs entry for this symbol.
     This is set, for example, if there are relocations related to
     This is set, for example, if there are relocations related to
     taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
     taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
     See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
     See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
  unsigned int no_fn_stub : 1;
  unsigned int no_fn_stub : 1;
 
 
  /* Whether we need the fn_stub; this is true if this symbol appears
  /* Whether we need the fn_stub; this is true if this symbol appears
     in any relocs other than a 16 bit call.  */
     in any relocs other than a 16 bit call.  */
  unsigned int need_fn_stub : 1;
  unsigned int need_fn_stub : 1;
 
 
  /* True if this symbol is referenced by branch relocations from
  /* True if this symbol is referenced by branch relocations from
     any non-PIC input file.  This is used to determine whether an
     any non-PIC input file.  This is used to determine whether an
     la25 stub is required.  */
     la25 stub is required.  */
  unsigned int has_nonpic_branches : 1;
  unsigned int has_nonpic_branches : 1;
 
 
  /* Does this symbol need a traditional MIPS lazy-binding stub
  /* Does this symbol need a traditional MIPS lazy-binding stub
     (as opposed to a PLT entry)?  */
     (as opposed to a PLT entry)?  */
  unsigned int needs_lazy_stub : 1;
  unsigned int needs_lazy_stub : 1;
};
};
 
 
/* MIPS ELF linker hash table.  */
/* MIPS ELF linker hash table.  */
 
 
struct mips_elf_link_hash_table
struct mips_elf_link_hash_table
{
{
  struct elf_link_hash_table root;
  struct elf_link_hash_table root;
#if 0
#if 0
  /* We no longer use this.  */
  /* We no longer use this.  */
  /* String section indices for the dynamic section symbols.  */
  /* String section indices for the dynamic section symbols.  */
  bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
  bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
#endif
#endif
 
 
  /* The number of .rtproc entries.  */
  /* The number of .rtproc entries.  */
  bfd_size_type procedure_count;
  bfd_size_type procedure_count;
 
 
  /* The size of the .compact_rel section (if SGI_COMPAT).  */
  /* The size of the .compact_rel section (if SGI_COMPAT).  */
  bfd_size_type compact_rel_size;
  bfd_size_type compact_rel_size;
 
 
  /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
  /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
     entry is set to the address of __rld_obj_head as in IRIX5.  */
     entry is set to the address of __rld_obj_head as in IRIX5.  */
  bfd_boolean use_rld_obj_head;
  bfd_boolean use_rld_obj_head;
 
 
  /* This is the value of the __rld_map or __rld_obj_head symbol.  */
  /* The  __rld_map or __rld_obj_head symbol. */
  bfd_vma rld_value;
  struct elf_link_hash_entry *rld_symbol;
 
 
  /* This is set if we see any mips16 stub sections.  */
  /* This is set if we see any mips16 stub sections.  */
  bfd_boolean mips16_stubs_seen;
  bfd_boolean mips16_stubs_seen;
 
 
  /* True if we can generate copy relocs and PLTs.  */
  /* True if we can generate copy relocs and PLTs.  */
  bfd_boolean use_plts_and_copy_relocs;
  bfd_boolean use_plts_and_copy_relocs;
 
 
  /* True if we're generating code for VxWorks.  */
  /* True if we're generating code for VxWorks.  */
  bfd_boolean is_vxworks;
  bfd_boolean is_vxworks;
 
 
  /* True if we already reported the small-data section overflow.  */
  /* True if we already reported the small-data section overflow.  */
  bfd_boolean small_data_overflow_reported;
  bfd_boolean small_data_overflow_reported;
 
 
  /* Shortcuts to some dynamic sections, or NULL if they are not
  /* Shortcuts to some dynamic sections, or NULL if they are not
     being used.  */
     being used.  */
  asection *srelbss;
  asection *srelbss;
  asection *sdynbss;
  asection *sdynbss;
  asection *srelplt;
  asection *srelplt;
  asection *srelplt2;
  asection *srelplt2;
  asection *sgotplt;
  asection *sgotplt;
  asection *splt;
  asection *splt;
  asection *sstubs;
  asection *sstubs;
  asection *sgot;
  asection *sgot;
 
 
  /* The master GOT information.  */
  /* The master GOT information.  */
  struct mips_got_info *got_info;
  struct mips_got_info *got_info;
 
 
  /* The size of the PLT header in bytes.  */
  /* The size of the PLT header in bytes.  */
  bfd_vma plt_header_size;
  bfd_vma plt_header_size;
 
 
  /* The size of a PLT entry in bytes.  */
  /* The size of a PLT entry in bytes.  */
  bfd_vma plt_entry_size;
  bfd_vma plt_entry_size;
 
 
  /* The number of functions that need a lazy-binding stub.  */
  /* The number of functions that need a lazy-binding stub.  */
  bfd_vma lazy_stub_count;
  bfd_vma lazy_stub_count;
 
 
  /* The size of a function stub entry in bytes.  */
  /* The size of a function stub entry in bytes.  */
  bfd_vma function_stub_size;
  bfd_vma function_stub_size;
 
 
  /* The number of reserved entries at the beginning of the GOT.  */
  /* The number of reserved entries at the beginning of the GOT.  */
  unsigned int reserved_gotno;
  unsigned int reserved_gotno;
 
 
  /* The section used for mips_elf_la25_stub trampolines.
  /* The section used for mips_elf_la25_stub trampolines.
     See the comment above that structure for details.  */
     See the comment above that structure for details.  */
  asection *strampoline;
  asection *strampoline;
 
 
  /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
  /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
     pairs.  */
     pairs.  */
  htab_t la25_stubs;
  htab_t la25_stubs;
 
 
  /* A function FN (NAME, IS, OS) that creates a new input section
  /* A function FN (NAME, IS, OS) that creates a new input section
     called NAME and links it to output section OS.  If IS is nonnull,
     called NAME and links it to output section OS.  If IS is nonnull,
     the new section should go immediately before it, otherwise it
     the new section should go immediately before it, otherwise it
     should go at the (current) beginning of OS.
     should go at the (current) beginning of OS.
 
 
     The function returns the new section on success, otherwise it
     The function returns the new section on success, otherwise it
     returns null.  */
     returns null.  */
  asection *(*add_stub_section) (const char *, asection *, asection *);
  asection *(*add_stub_section) (const char *, asection *, asection *);
};
};
 
 
/* Get the MIPS ELF linker hash table from a link_info structure.  */
/* Get the MIPS ELF linker hash table from a link_info structure.  */
 
 
#define mips_elf_hash_table(p) \
#define mips_elf_hash_table(p) \
  (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
  (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
  == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
  == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
 
 
/* A structure used to communicate with htab_traverse callbacks.  */
/* A structure used to communicate with htab_traverse callbacks.  */
struct mips_htab_traverse_info
struct mips_htab_traverse_info
{
{
  /* The usual link-wide information.  */
  /* The usual link-wide information.  */
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  bfd *output_bfd;
  bfd *output_bfd;
 
 
  /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
  /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
  bfd_boolean error;
  bfd_boolean error;
};
};
 
 
#define TLS_RELOC_P(r_type) \
#define TLS_RELOC_P(r_type) \
  (r_type == R_MIPS_TLS_DTPMOD32                \
  (r_type == R_MIPS_TLS_DTPMOD32                \
   || r_type == R_MIPS_TLS_DTPMOD64             \
   || r_type == R_MIPS_TLS_DTPMOD64             \
   || r_type == R_MIPS_TLS_DTPREL32             \
   || r_type == R_MIPS_TLS_DTPREL32             \
   || r_type == R_MIPS_TLS_DTPREL64             \
   || r_type == R_MIPS_TLS_DTPREL64             \
   || r_type == R_MIPS_TLS_GD                   \
   || r_type == R_MIPS_TLS_GD                   \
   || r_type == R_MIPS_TLS_LDM                  \
   || r_type == R_MIPS_TLS_LDM                  \
   || r_type == R_MIPS_TLS_DTPREL_HI16          \
   || r_type == R_MIPS_TLS_DTPREL_HI16          \
   || r_type == R_MIPS_TLS_DTPREL_LO16          \
   || r_type == R_MIPS_TLS_DTPREL_LO16          \
   || r_type == R_MIPS_TLS_GOTTPREL             \
   || r_type == R_MIPS_TLS_GOTTPREL             \
   || r_type == R_MIPS_TLS_TPREL32              \
   || r_type == R_MIPS_TLS_TPREL32              \
   || r_type == R_MIPS_TLS_TPREL64              \
   || r_type == R_MIPS_TLS_TPREL64              \
   || r_type == R_MIPS_TLS_TPREL_HI16           \
   || r_type == R_MIPS_TLS_TPREL_HI16           \
   || r_type == R_MIPS_TLS_TPREL_LO16           \
   || r_type == R_MIPS_TLS_TPREL_LO16           \
 
   || r_type == R_MIPS16_TLS_GD                 \
 
   || r_type == R_MIPS16_TLS_LDM                \
 
   || r_type == R_MIPS16_TLS_DTPREL_HI16        \
 
   || r_type == R_MIPS16_TLS_DTPREL_LO16        \
 
   || r_type == R_MIPS16_TLS_GOTTPREL           \
 
   || r_type == R_MIPS16_TLS_TPREL_HI16         \
 
   || r_type == R_MIPS16_TLS_TPREL_LO16         \
   || r_type == R_MICROMIPS_TLS_GD              \
   || r_type == R_MICROMIPS_TLS_GD              \
   || r_type == R_MICROMIPS_TLS_LDM             \
   || r_type == R_MICROMIPS_TLS_LDM             \
   || r_type == R_MICROMIPS_TLS_DTPREL_HI16     \
   || r_type == R_MICROMIPS_TLS_DTPREL_HI16     \
   || r_type == R_MICROMIPS_TLS_DTPREL_LO16     \
   || r_type == R_MICROMIPS_TLS_DTPREL_LO16     \
   || r_type == R_MICROMIPS_TLS_GOTTPREL        \
   || r_type == R_MICROMIPS_TLS_GOTTPREL        \
   || r_type == R_MICROMIPS_TLS_TPREL_HI16      \
   || r_type == R_MICROMIPS_TLS_TPREL_HI16      \
   || r_type == R_MICROMIPS_TLS_TPREL_LO16)
   || r_type == R_MICROMIPS_TLS_TPREL_LO16)
 
 
/* Structure used to pass information to mips_elf_output_extsym.  */
/* Structure used to pass information to mips_elf_output_extsym.  */
 
 
struct extsym_info
struct extsym_info
{
{
  bfd *abfd;
  bfd *abfd;
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct ecoff_debug_info *debug;
  struct ecoff_debug_info *debug;
  const struct ecoff_debug_swap *swap;
  const struct ecoff_debug_swap *swap;
  bfd_boolean failed;
  bfd_boolean failed;
};
};
 
 
/* The names of the runtime procedure table symbols used on IRIX5.  */
/* The names of the runtime procedure table symbols used on IRIX5.  */
 
 
static const char * const mips_elf_dynsym_rtproc_names[] =
static const char * const mips_elf_dynsym_rtproc_names[] =
{
{
  "_procedure_table",
  "_procedure_table",
  "_procedure_string_table",
  "_procedure_string_table",
  "_procedure_table_size",
  "_procedure_table_size",
  NULL
  NULL
};
};
 
 
/* These structures are used to generate the .compact_rel section on
/* These structures are used to generate the .compact_rel section on
   IRIX5.  */
   IRIX5.  */
 
 
typedef struct
typedef struct
{
{
  unsigned long id1;            /* Always one?  */
  unsigned long id1;            /* Always one?  */
  unsigned long num;            /* Number of compact relocation entries.  */
  unsigned long num;            /* Number of compact relocation entries.  */
  unsigned long id2;            /* Always two?  */
  unsigned long id2;            /* Always two?  */
  unsigned long offset;         /* The file offset of the first relocation.  */
  unsigned long offset;         /* The file offset of the first relocation.  */
  unsigned long reserved0;      /* Zero?  */
  unsigned long reserved0;      /* Zero?  */
  unsigned long reserved1;      /* Zero?  */
  unsigned long reserved1;      /* Zero?  */
} Elf32_compact_rel;
} Elf32_compact_rel;
 
 
typedef struct
typedef struct
{
{
  bfd_byte id1[4];
  bfd_byte id1[4];
  bfd_byte num[4];
  bfd_byte num[4];
  bfd_byte id2[4];
  bfd_byte id2[4];
  bfd_byte offset[4];
  bfd_byte offset[4];
  bfd_byte reserved0[4];
  bfd_byte reserved0[4];
  bfd_byte reserved1[4];
  bfd_byte reserved1[4];
} Elf32_External_compact_rel;
} Elf32_External_compact_rel;
 
 
typedef struct
typedef struct
{
{
  unsigned int ctype : 1;       /* 1: long 0: short format. See below.  */
  unsigned int ctype : 1;       /* 1: long 0: short format. See below.  */
  unsigned int rtype : 4;       /* Relocation types. See below.  */
  unsigned int rtype : 4;       /* Relocation types. See below.  */
  unsigned int dist2to : 8;
  unsigned int dist2to : 8;
  unsigned int relvaddr : 19;   /* (VADDR - vaddr of the previous entry)/ 4 */
  unsigned int relvaddr : 19;   /* (VADDR - vaddr of the previous entry)/ 4 */
  unsigned long konst;          /* KONST field. See below.  */
  unsigned long konst;          /* KONST field. See below.  */
  unsigned long vaddr;          /* VADDR to be relocated.  */
  unsigned long vaddr;          /* VADDR to be relocated.  */
} Elf32_crinfo;
} Elf32_crinfo;
 
 
typedef struct
typedef struct
{
{
  unsigned int ctype : 1;       /* 1: long 0: short format. See below.  */
  unsigned int ctype : 1;       /* 1: long 0: short format. See below.  */
  unsigned int rtype : 4;       /* Relocation types. See below.  */
  unsigned int rtype : 4;       /* Relocation types. See below.  */
  unsigned int dist2to : 8;
  unsigned int dist2to : 8;
  unsigned int relvaddr : 19;   /* (VADDR - vaddr of the previous entry)/ 4 */
  unsigned int relvaddr : 19;   /* (VADDR - vaddr of the previous entry)/ 4 */
  unsigned long konst;          /* KONST field. See below.  */
  unsigned long konst;          /* KONST field. See below.  */
} Elf32_crinfo2;
} Elf32_crinfo2;
 
 
typedef struct
typedef struct
{
{
  bfd_byte info[4];
  bfd_byte info[4];
  bfd_byte konst[4];
  bfd_byte konst[4];
  bfd_byte vaddr[4];
  bfd_byte vaddr[4];
} Elf32_External_crinfo;
} Elf32_External_crinfo;
 
 
typedef struct
typedef struct
{
{
  bfd_byte info[4];
  bfd_byte info[4];
  bfd_byte konst[4];
  bfd_byte konst[4];
} Elf32_External_crinfo2;
} Elf32_External_crinfo2;
 
 
/* These are the constants used to swap the bitfields in a crinfo.  */
/* These are the constants used to swap the bitfields in a crinfo.  */
 
 
#define CRINFO_CTYPE (0x1)
#define CRINFO_CTYPE (0x1)
#define CRINFO_CTYPE_SH (31)
#define CRINFO_CTYPE_SH (31)
#define CRINFO_RTYPE (0xf)
#define CRINFO_RTYPE (0xf)
#define CRINFO_RTYPE_SH (27)
#define CRINFO_RTYPE_SH (27)
#define CRINFO_DIST2TO (0xff)
#define CRINFO_DIST2TO (0xff)
#define CRINFO_DIST2TO_SH (19)
#define CRINFO_DIST2TO_SH (19)
#define CRINFO_RELVADDR (0x7ffff)
#define CRINFO_RELVADDR (0x7ffff)
#define CRINFO_RELVADDR_SH (0)
#define CRINFO_RELVADDR_SH (0)
 
 
/* A compact relocation info has long (3 words) or short (2 words)
/* A compact relocation info has long (3 words) or short (2 words)
   formats.  A short format doesn't have VADDR field and relvaddr
   formats.  A short format doesn't have VADDR field and relvaddr
   fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
   fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
#define CRF_MIPS_LONG                   1
#define CRF_MIPS_LONG                   1
#define CRF_MIPS_SHORT                  0
#define CRF_MIPS_SHORT                  0
 
 
/* There are 4 types of compact relocation at least. The value KONST
/* There are 4 types of compact relocation at least. The value KONST
   has different meaning for each type:
   has different meaning for each type:
 
 
   (type)               (konst)
   (type)               (konst)
   CT_MIPS_REL32        Address in data
   CT_MIPS_REL32        Address in data
   CT_MIPS_WORD         Address in word (XXX)
   CT_MIPS_WORD         Address in word (XXX)
   CT_MIPS_GPHI_LO      GP - vaddr
   CT_MIPS_GPHI_LO      GP - vaddr
   CT_MIPS_JMPAD        Address to jump
   CT_MIPS_JMPAD        Address to jump
   */
   */
 
 
#define CRT_MIPS_REL32                  0xa
#define CRT_MIPS_REL32                  0xa
#define CRT_MIPS_WORD                   0xb
#define CRT_MIPS_WORD                   0xb
#define CRT_MIPS_GPHI_LO                0xc
#define CRT_MIPS_GPHI_LO                0xc
#define CRT_MIPS_JMPAD                  0xd
#define CRT_MIPS_JMPAD                  0xd
 
 
#define mips_elf_set_cr_format(x,format)        ((x).ctype = (format))
#define mips_elf_set_cr_format(x,format)        ((x).ctype = (format))
#define mips_elf_set_cr_type(x,type)            ((x).rtype = (type))
#define mips_elf_set_cr_type(x,type)            ((x).rtype = (type))
#define mips_elf_set_cr_dist2to(x,v)            ((x).dist2to = (v))
#define mips_elf_set_cr_dist2to(x,v)            ((x).dist2to = (v))
#define mips_elf_set_cr_relvaddr(x,d)           ((x).relvaddr = (d)<<2)
#define mips_elf_set_cr_relvaddr(x,d)           ((x).relvaddr = (d)<<2)


/* The structure of the runtime procedure descriptor created by the
/* The structure of the runtime procedure descriptor created by the
   loader for use by the static exception system.  */
   loader for use by the static exception system.  */
 
 
typedef struct runtime_pdr {
typedef struct runtime_pdr {
        bfd_vma adr;            /* Memory address of start of procedure.  */
        bfd_vma adr;            /* Memory address of start of procedure.  */
        long    regmask;        /* Save register mask.  */
        long    regmask;        /* Save register mask.  */
        long    regoffset;      /* Save register offset.  */
        long    regoffset;      /* Save register offset.  */
        long    fregmask;       /* Save floating point register mask.  */
        long    fregmask;       /* Save floating point register mask.  */
        long    fregoffset;     /* Save floating point register offset.  */
        long    fregoffset;     /* Save floating point register offset.  */
        long    frameoffset;    /* Frame size.  */
        long    frameoffset;    /* Frame size.  */
        short   framereg;       /* Frame pointer register.  */
        short   framereg;       /* Frame pointer register.  */
        short   pcreg;          /* Offset or reg of return pc.  */
        short   pcreg;          /* Offset or reg of return pc.  */
        long    irpss;          /* Index into the runtime string table.  */
        long    irpss;          /* Index into the runtime string table.  */
        long    reserved;
        long    reserved;
        struct exception_info *exception_info;/* Pointer to exception array.  */
        struct exception_info *exception_info;/* Pointer to exception array.  */
} RPDR, *pRPDR;
} RPDR, *pRPDR;
#define cbRPDR sizeof (RPDR)
#define cbRPDR sizeof (RPDR)
#define rpdNil ((pRPDR) 0)
#define rpdNil ((pRPDR) 0)


static struct mips_got_entry *mips_elf_create_local_got_entry
static struct mips_got_entry *mips_elf_create_local_got_entry
  (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
  (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
   struct mips_elf_link_hash_entry *, int);
   struct mips_elf_link_hash_entry *, int);
static bfd_boolean mips_elf_sort_hash_table_f
static bfd_boolean mips_elf_sort_hash_table_f
  (struct mips_elf_link_hash_entry *, void *);
  (struct mips_elf_link_hash_entry *, void *);
static bfd_vma mips_elf_high
static bfd_vma mips_elf_high
  (bfd_vma);
  (bfd_vma);
static bfd_boolean mips_elf_create_dynamic_relocation
static bfd_boolean mips_elf_create_dynamic_relocation
  (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
  (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
   struct mips_elf_link_hash_entry *, asection *, bfd_vma,
   struct mips_elf_link_hash_entry *, asection *, bfd_vma,
   bfd_vma *, asection *);
   bfd_vma *, asection *);
static hashval_t mips_elf_got_entry_hash
static hashval_t mips_elf_got_entry_hash
  (const void *);
  (const void *);
static bfd_vma mips_elf_adjust_gp
static bfd_vma mips_elf_adjust_gp
  (bfd *, struct mips_got_info *, bfd *);
  (bfd *, struct mips_got_info *, bfd *);
static struct mips_got_info *mips_elf_got_for_ibfd
static struct mips_got_info *mips_elf_got_for_ibfd
  (struct mips_got_info *, bfd *);
  (struct mips_got_info *, bfd *);
 
 
/* This will be used when we sort the dynamic relocation records.  */
/* This will be used when we sort the dynamic relocation records.  */
static bfd *reldyn_sorting_bfd;
static bfd *reldyn_sorting_bfd;
 
 
/* True if ABFD is for CPUs with load interlocking that include
/* True if ABFD is for CPUs with load interlocking that include
   non-MIPS1 CPUs and R3900.  */
   non-MIPS1 CPUs and R3900.  */
#define LOAD_INTERLOCKS_P(abfd) \
#define LOAD_INTERLOCKS_P(abfd) \
  (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
  (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
   || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
   || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
 
 
/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
   This should be safe for all architectures.  We enable this predicate
   This should be safe for all architectures.  We enable this predicate
   for RM9000 for now.  */
   for RM9000 for now.  */
#define JAL_TO_BAL_P(abfd) \
#define JAL_TO_BAL_P(abfd) \
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
 
 
/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
   This should be safe for all architectures.  We enable this predicate for
   This should be safe for all architectures.  We enable this predicate for
   all CPUs.  */
   all CPUs.  */
#define JALR_TO_BAL_P(abfd) 1
#define JALR_TO_BAL_P(abfd) 1
 
 
/* True if ABFD is for CPUs that are faster if JR is converted to B.
/* True if ABFD is for CPUs that are faster if JR is converted to B.
   This should be safe for all architectures.  We enable this predicate for
   This should be safe for all architectures.  We enable this predicate for
   all CPUs.  */
   all CPUs.  */
#define JR_TO_B_P(abfd) 1
#define JR_TO_B_P(abfd) 1
 
 
/* True if ABFD is a PIC object.  */
/* True if ABFD is a PIC object.  */
#define PIC_OBJECT_P(abfd) \
#define PIC_OBJECT_P(abfd) \
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
 
 
/* Nonzero if ABFD is using the N32 ABI.  */
/* Nonzero if ABFD is using the N32 ABI.  */
#define ABI_N32_P(abfd) \
#define ABI_N32_P(abfd) \
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
  ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
 
 
/* Nonzero if ABFD is using the N64 ABI.  */
/* Nonzero if ABFD is using the N64 ABI.  */
#define ABI_64_P(abfd) \
#define ABI_64_P(abfd) \
  (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
  (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
 
 
/* Nonzero if ABFD is using NewABI conventions.  */
/* Nonzero if ABFD is using NewABI conventions.  */
#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
 
 
/* The IRIX compatibility level we are striving for.  */
/* The IRIX compatibility level we are striving for.  */
#define IRIX_COMPAT(abfd) \
#define IRIX_COMPAT(abfd) \
  (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
  (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
 
 
/* Whether we are trying to be compatible with IRIX at all.  */
/* Whether we are trying to be compatible with IRIX at all.  */
#define SGI_COMPAT(abfd) \
#define SGI_COMPAT(abfd) \
  (IRIX_COMPAT (abfd) != ict_none)
  (IRIX_COMPAT (abfd) != ict_none)
 
 
/* The name of the options section.  */
/* The name of the options section.  */
#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
  (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
  (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
 
 
/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
   Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
   Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
  (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
  (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
 
 
/* Whether the section is readonly.  */
/* Whether the section is readonly.  */
#define MIPS_ELF_READONLY_SECTION(sec) \
#define MIPS_ELF_READONLY_SECTION(sec) \
  ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))         \
  ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))         \
   == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
   == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
 
 
/* The name of the stub section.  */
/* The name of the stub section.  */
#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
 
 
/* The size of an external REL relocation.  */
/* The size of an external REL relocation.  */
#define MIPS_ELF_REL_SIZE(abfd) \
#define MIPS_ELF_REL_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->sizeof_rel)
  (get_elf_backend_data (abfd)->s->sizeof_rel)
 
 
/* The size of an external RELA relocation.  */
/* The size of an external RELA relocation.  */
#define MIPS_ELF_RELA_SIZE(abfd) \
#define MIPS_ELF_RELA_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->sizeof_rela)
  (get_elf_backend_data (abfd)->s->sizeof_rela)
 
 
/* The size of an external dynamic table entry.  */
/* The size of an external dynamic table entry.  */
#define MIPS_ELF_DYN_SIZE(abfd) \
#define MIPS_ELF_DYN_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->sizeof_dyn)
  (get_elf_backend_data (abfd)->s->sizeof_dyn)
 
 
/* The size of a GOT entry.  */
/* The size of a GOT entry.  */
#define MIPS_ELF_GOT_SIZE(abfd) \
#define MIPS_ELF_GOT_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->arch_size / 8)
  (get_elf_backend_data (abfd)->s->arch_size / 8)
 
 
 
/* The size of the .rld_map section. */
 
#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
 
  (get_elf_backend_data (abfd)->s->arch_size / 8)
 
 
/* The size of a symbol-table entry.  */
/* The size of a symbol-table entry.  */
#define MIPS_ELF_SYM_SIZE(abfd) \
#define MIPS_ELF_SYM_SIZE(abfd) \
  (get_elf_backend_data (abfd)->s->sizeof_sym)
  (get_elf_backend_data (abfd)->s->sizeof_sym)
 
 
/* The default alignment for sections, as a power of two.  */
/* The default alignment for sections, as a power of two.  */
#define MIPS_ELF_LOG_FILE_ALIGN(abfd)                           \
#define MIPS_ELF_LOG_FILE_ALIGN(abfd)                           \
  (get_elf_backend_data (abfd)->s->log_file_align)
  (get_elf_backend_data (abfd)->s->log_file_align)
 
 
/* Get word-sized data.  */
/* Get word-sized data.  */
#define MIPS_ELF_GET_WORD(abfd, ptr) \
#define MIPS_ELF_GET_WORD(abfd, ptr) \
  (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
  (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
 
 
/* Put out word-sized data.  */
/* Put out word-sized data.  */
#define MIPS_ELF_PUT_WORD(abfd, val, ptr)       \
#define MIPS_ELF_PUT_WORD(abfd, val, ptr)       \
  (ABI_64_P (abfd)                              \
  (ABI_64_P (abfd)                              \
   ? bfd_put_64 (abfd, val, ptr)                \
   ? bfd_put_64 (abfd, val, ptr)                \
   : bfd_put_32 (abfd, val, ptr))
   : bfd_put_32 (abfd, val, ptr))
 
 
/* The opcode for word-sized loads (LW or LD).  */
/* The opcode for word-sized loads (LW or LD).  */
#define MIPS_ELF_LOAD_WORD(abfd) \
#define MIPS_ELF_LOAD_WORD(abfd) \
  (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
  (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
 
 
/* Add a dynamic symbol table-entry.  */
/* Add a dynamic symbol table-entry.  */
#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)      \
#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)      \
  _bfd_elf_add_dynamic_entry (info, tag, val)
  _bfd_elf_add_dynamic_entry (info, tag, val)
 
 
#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)                      \
#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)                      \
  (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
  (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
 
 
/* The name of the dynamic relocation section.  */
/* The name of the dynamic relocation section.  */
#define MIPS_ELF_REL_DYN_NAME(INFO) \
#define MIPS_ELF_REL_DYN_NAME(INFO) \
  (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
  (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
 
 
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
   from smaller values.  Start with zero, widen, *then* decrement.  */
   from smaller values.  Start with zero, widen, *then* decrement.  */
#define MINUS_ONE       (((bfd_vma)0) - 1)
#define MINUS_ONE       (((bfd_vma)0) - 1)
#define MINUS_TWO       (((bfd_vma)0) - 2)
#define MINUS_TWO       (((bfd_vma)0) - 2)
 
 
/* The value to write into got[1] for SVR4 targets, to identify it is
/* The value to write into got[1] for SVR4 targets, to identify it is
   a GNU object.  The dynamic linker can then use got[1] to store the
   a GNU object.  The dynamic linker can then use got[1] to store the
   module pointer.  */
   module pointer.  */
#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
  ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
  ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
 
 
/* The offset of $gp from the beginning of the .got section.  */
/* The offset of $gp from the beginning of the .got section.  */
#define ELF_MIPS_GP_OFFSET(INFO) \
#define ELF_MIPS_GP_OFFSET(INFO) \
  (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
  (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
 
 
/* The maximum size of the GOT for it to be addressable using 16-bit
/* The maximum size of the GOT for it to be addressable using 16-bit
   offsets from $gp.  */
   offsets from $gp.  */
#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
 
 
/* Instructions which appear in a stub.  */
/* Instructions which appear in a stub.  */
#define STUB_LW(abfd)                                                   \
#define STUB_LW(abfd)                                                   \
  ((ABI_64_P (abfd)                                                     \
  ((ABI_64_P (abfd)                                                     \
    ? 0xdf998010                                /* ld t9,0x8010(gp) */  \
    ? 0xdf998010                                /* ld t9,0x8010(gp) */  \
    : 0x8f998010))                              /* lw t9,0x8010(gp) */
    : 0x8f998010))                              /* lw t9,0x8010(gp) */
#define STUB_MOVE(abfd)                                                 \
#define STUB_MOVE(abfd)                                                 \
   ((ABI_64_P (abfd)                                                    \
   ((ABI_64_P (abfd)                                                    \
     ? 0x03e0782d                               /* daddu t7,ra */       \
     ? 0x03e0782d                               /* daddu t7,ra */       \
     : 0x03e07821))                             /* addu t7,ra */
     : 0x03e07821))                             /* addu t7,ra */
#define STUB_LUI(VAL) (0x3c180000 + (VAL))      /* lui t8,VAL */
#define STUB_LUI(VAL) (0x3c180000 + (VAL))      /* lui t8,VAL */
#define STUB_JALR 0x0320f809                    /* jalr t9,ra */
#define STUB_JALR 0x0320f809                    /* jalr t9,ra */
#define STUB_ORI(VAL) (0x37180000 + (VAL))      /* ori t8,t8,VAL */
#define STUB_ORI(VAL) (0x37180000 + (VAL))      /* ori t8,t8,VAL */
#define STUB_LI16U(VAL) (0x34180000 + (VAL))    /* ori t8,zero,VAL unsigned */
#define STUB_LI16U(VAL) (0x34180000 + (VAL))    /* ori t8,zero,VAL unsigned */
#define STUB_LI16S(abfd, VAL)                                           \
#define STUB_LI16S(abfd, VAL)                                           \
   ((ABI_64_P (abfd)                                                    \
   ((ABI_64_P (abfd)                                                    \
    ? (0x64180000 + (VAL))      /* daddiu t8,zero,VAL sign extended */  \
    ? (0x64180000 + (VAL))      /* daddiu t8,zero,VAL sign extended */  \
    : (0x24180000 + (VAL))))    /* addiu t8,zero,VAL sign extended */
    : (0x24180000 + (VAL))))    /* addiu t8,zero,VAL sign extended */
 
 
#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
#define MIPS_FUNCTION_STUB_BIG_SIZE 20
#define MIPS_FUNCTION_STUB_BIG_SIZE 20
 
 
/* The name of the dynamic interpreter.  This is put in the .interp
/* The name of the dynamic interpreter.  This is put in the .interp
   section.  */
   section.  */
 
 
#define ELF_DYNAMIC_INTERPRETER(abfd)           \
#define ELF_DYNAMIC_INTERPRETER(abfd)           \
   (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1"   \
   (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1"   \
    : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1"  \
    : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1"  \
    : "/usr/lib/libc.so.1")
    : "/usr/lib/libc.so.1")
 
 
#ifdef BFD64
#ifdef BFD64
#define MNAME(bfd,pre,pos) \
#define MNAME(bfd,pre,pos) \
  (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
  (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
#define ELF_R_SYM(bfd, i)                                       \
#define ELF_R_SYM(bfd, i)                                       \
  (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
  (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
#define ELF_R_TYPE(bfd, i)                                      \
#define ELF_R_TYPE(bfd, i)                                      \
  (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
  (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
#define ELF_R_INFO(bfd, s, t)                                   \
#define ELF_R_INFO(bfd, s, t)                                   \
  (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
  (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
#else
#else
#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
#define ELF_R_SYM(bfd, i)                                       \
#define ELF_R_SYM(bfd, i)                                       \
  (ELF32_R_SYM (i))
  (ELF32_R_SYM (i))
#define ELF_R_TYPE(bfd, i)                                      \
#define ELF_R_TYPE(bfd, i)                                      \
  (ELF32_R_TYPE (i))
  (ELF32_R_TYPE (i))
#define ELF_R_INFO(bfd, s, t)                                   \
#define ELF_R_INFO(bfd, s, t)                                   \
  (ELF32_R_INFO (s, t))
  (ELF32_R_INFO (s, t))
#endif
#endif


  /* The mips16 compiler uses a couple of special sections to handle
  /* The mips16 compiler uses a couple of special sections to handle
     floating point arguments.
     floating point arguments.
 
 
     Section names that look like .mips16.fn.FNNAME contain stubs that
     Section names that look like .mips16.fn.FNNAME contain stubs that
     copy floating point arguments from the fp regs to the gp regs and
     copy floating point arguments from the fp regs to the gp regs and
     then jump to FNNAME.  If any 32 bit function calls FNNAME, the
     then jump to FNNAME.  If any 32 bit function calls FNNAME, the
     call should be redirected to the stub instead.  If no 32 bit
     call should be redirected to the stub instead.  If no 32 bit
     function calls FNNAME, the stub should be discarded.  We need to
     function calls FNNAME, the stub should be discarded.  We need to
     consider any reference to the function, not just a call, because
     consider any reference to the function, not just a call, because
     if the address of the function is taken we will need the stub,
     if the address of the function is taken we will need the stub,
     since the address might be passed to a 32 bit function.
     since the address might be passed to a 32 bit function.
 
 
     Section names that look like .mips16.call.FNNAME contain stubs
     Section names that look like .mips16.call.FNNAME contain stubs
     that copy floating point arguments from the gp regs to the fp
     that copy floating point arguments from the gp regs to the fp
     regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
     regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
     then any 16 bit function that calls FNNAME should be redirected
     then any 16 bit function that calls FNNAME should be redirected
     to the stub instead.  If FNNAME is not a 32 bit function, the
     to the stub instead.  If FNNAME is not a 32 bit function, the
     stub should be discarded.
     stub should be discarded.
 
 
     .mips16.call.fp.FNNAME sections are similar, but contain stubs
     .mips16.call.fp.FNNAME sections are similar, but contain stubs
     which call FNNAME and then copy the return value from the fp regs
     which call FNNAME and then copy the return value from the fp regs
     to the gp regs.  These stubs store the return value in $18 while
     to the gp regs.  These stubs store the return value in $18 while
     calling FNNAME; any function which might call one of these stubs
     calling FNNAME; any function which might call one of these stubs
     must arrange to save $18 around the call.  (This case is not
     must arrange to save $18 around the call.  (This case is not
     needed for 32 bit functions that call 16 bit functions, because
     needed for 32 bit functions that call 16 bit functions, because
     16 bit functions always return floating point values in both
     16 bit functions always return floating point values in both
     $f0/$f1 and $2/$3.)
     $f0/$f1 and $2/$3.)
 
 
     Note that in all cases FNNAME might be defined statically.
     Note that in all cases FNNAME might be defined statically.
     Therefore, FNNAME is not used literally.  Instead, the relocation
     Therefore, FNNAME is not used literally.  Instead, the relocation
     information will indicate which symbol the section is for.
     information will indicate which symbol the section is for.
 
 
     We record any stubs that we find in the symbol table.  */
     We record any stubs that we find in the symbol table.  */
 
 
#define FN_STUB ".mips16.fn."
#define FN_STUB ".mips16.fn."
#define CALL_STUB ".mips16.call."
#define CALL_STUB ".mips16.call."
#define CALL_FP_STUB ".mips16.call.fp."
#define CALL_FP_STUB ".mips16.call.fp."
 
 
#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)


/* The format of the first PLT entry in an O32 executable.  */
/* The format of the first PLT entry in an O32 executable.  */
static const bfd_vma mips_o32_exec_plt0_entry[] =
static const bfd_vma mips_o32_exec_plt0_entry[] =
{
{
  0x3c1c0000,   /* lui $28, %hi(&GOTPLT[0])                             */
  0x3c1c0000,   /* lui $28, %hi(&GOTPLT[0])                             */
  0x8f990000,   /* lw $25, %lo(&GOTPLT[0])($28)                         */
  0x8f990000,   /* lw $25, %lo(&GOTPLT[0])($28)                         */
  0x279c0000,   /* addiu $28, $28, %lo(&GOTPLT[0])                      */
  0x279c0000,   /* addiu $28, $28, %lo(&GOTPLT[0])                      */
  0x031cc023,   /* subu $24, $24, $28                                   */
  0x031cc023,   /* subu $24, $24, $28                                   */
  0x03e07821,   /* move $15, $31                                        */
  0x03e07821,   /* move $15, $31        # 32-bit move (addu)            */
  0x0018c082,   /* srl $24, $24, 2                                      */
  0x0018c082,   /* srl $24, $24, 2                                      */
  0x0320f809,   /* jalr $25                                             */
  0x0320f809,   /* jalr $25                                             */
  0x2718fffe    /* subu $24, $24, 2                                     */
  0x2718fffe    /* subu $24, $24, 2                                     */
};
};
 
 
/* The format of the first PLT entry in an N32 executable.  Different
/* The format of the first PLT entry in an N32 executable.  Different
   because gp ($28) is not available; we use t2 ($14) instead.  */
   because gp ($28) is not available; we use t2 ($14) instead.  */
static const bfd_vma mips_n32_exec_plt0_entry[] =
static const bfd_vma mips_n32_exec_plt0_entry[] =
{
{
  0x3c0e0000,   /* lui $14, %hi(&GOTPLT[0])                             */
  0x3c0e0000,   /* lui $14, %hi(&GOTPLT[0])                             */
  0x8dd90000,   /* lw $25, %lo(&GOTPLT[0])($14)                         */
  0x8dd90000,   /* lw $25, %lo(&GOTPLT[0])($14)                         */
  0x25ce0000,   /* addiu $14, $14, %lo(&GOTPLT[0])                      */
  0x25ce0000,   /* addiu $14, $14, %lo(&GOTPLT[0])                      */
  0x030ec023,   /* subu $24, $24, $14                                   */
  0x030ec023,   /* subu $24, $24, $14                                   */
  0x03e07821,   /* move $15, $31                                        */
  0x03e07821,   /* move $15, $31        # 32-bit move (addu)            */
  0x0018c082,   /* srl $24, $24, 2                                      */
  0x0018c082,   /* srl $24, $24, 2                                      */
  0x0320f809,   /* jalr $25                                             */
  0x0320f809,   /* jalr $25                                             */
  0x2718fffe    /* subu $24, $24, 2                                     */
  0x2718fffe    /* subu $24, $24, 2                                     */
};
};
 
 
/* The format of the first PLT entry in an N64 executable.  Different
/* The format of the first PLT entry in an N64 executable.  Different
   from N32 because of the increased size of GOT entries.  */
   from N32 because of the increased size of GOT entries.  */
static const bfd_vma mips_n64_exec_plt0_entry[] =
static const bfd_vma mips_n64_exec_plt0_entry[] =
{
{
  0x3c0e0000,   /* lui $14, %hi(&GOTPLT[0])                             */
  0x3c0e0000,   /* lui $14, %hi(&GOTPLT[0])                             */
  0xddd90000,   /* ld $25, %lo(&GOTPLT[0])($14)                         */
  0xddd90000,   /* ld $25, %lo(&GOTPLT[0])($14)                         */
  0x25ce0000,   /* addiu $14, $14, %lo(&GOTPLT[0])                      */
  0x25ce0000,   /* addiu $14, $14, %lo(&GOTPLT[0])                      */
  0x030ec023,   /* subu $24, $24, $14                                   */
  0x030ec023,   /* subu $24, $24, $14                                   */
  0x03e07821,   /* move $15, $31                                        */
  0x03e0782d,   /* move $15, $31        # 64-bit move (daddu)           */
  0x0018c0c2,   /* srl $24, $24, 3                                      */
  0x0018c0c2,   /* srl $24, $24, 3                                      */
  0x0320f809,   /* jalr $25                                             */
  0x0320f809,   /* jalr $25                                             */
  0x2718fffe    /* subu $24, $24, 2                                     */
  0x2718fffe    /* subu $24, $24, 2                                     */
};
};
 
 
/* The format of subsequent PLT entries.  */
/* The format of subsequent PLT entries.  */
static const bfd_vma mips_exec_plt_entry[] =
static const bfd_vma mips_exec_plt_entry[] =
{
{
  0x3c0f0000,   /* lui $15, %hi(.got.plt entry)                 */
  0x3c0f0000,   /* lui $15, %hi(.got.plt entry)                 */
  0x01f90000,   /* l[wd] $25, %lo(.got.plt entry)($15)          */
  0x01f90000,   /* l[wd] $25, %lo(.got.plt entry)($15)          */
  0x25f80000,   /* addiu $24, $15, %lo(.got.plt entry)          */
  0x25f80000,   /* addiu $24, $15, %lo(.got.plt entry)          */
  0x03200008    /* jr $25                                       */
  0x03200008    /* jr $25                                       */
};
};
 
 
/* The format of the first PLT entry in a VxWorks executable.  */
/* The format of the first PLT entry in a VxWorks executable.  */
static const bfd_vma mips_vxworks_exec_plt0_entry[] =
static const bfd_vma mips_vxworks_exec_plt0_entry[] =
{
{
  0x3c190000,   /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)           */
  0x3c190000,   /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)           */
  0x27390000,   /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)     */
  0x27390000,   /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)     */
  0x8f390008,   /* lw t9, 8(t9)                                 */
  0x8f390008,   /* lw t9, 8(t9)                                 */
  0x00000000,   /* nop                                          */
  0x00000000,   /* nop                                          */
  0x03200008,   /* jr t9                                        */
  0x03200008,   /* jr t9                                        */
  0x00000000    /* nop                                          */
  0x00000000    /* nop                                          */
};
};
 
 
/* The format of subsequent PLT entries.  */
/* The format of subsequent PLT entries.  */
static const bfd_vma mips_vxworks_exec_plt_entry[] =
static const bfd_vma mips_vxworks_exec_plt_entry[] =
{
{
  0x10000000,   /* b .PLT_resolver                      */
  0x10000000,   /* b .PLT_resolver                      */
  0x24180000,   /* li t8, <pltindex>                    */
  0x24180000,   /* li t8, <pltindex>                    */
  0x3c190000,   /* lui t9, %hi(<.got.plt slot>)         */
  0x3c190000,   /* lui t9, %hi(<.got.plt slot>)         */
  0x27390000,   /* addiu t9, t9, %lo(<.got.plt slot>)   */
  0x27390000,   /* addiu t9, t9, %lo(<.got.plt slot>)   */
  0x8f390000,   /* lw t9, 0(t9)                         */
  0x8f390000,   /* lw t9, 0(t9)                         */
  0x00000000,   /* nop                                  */
  0x00000000,   /* nop                                  */
  0x03200008,   /* jr t9                                */
  0x03200008,   /* jr t9                                */
  0x00000000    /* nop                                  */
  0x00000000    /* nop                                  */
};
};
 
 
/* The format of the first PLT entry in a VxWorks shared object.  */
/* The format of the first PLT entry in a VxWorks shared object.  */
static const bfd_vma mips_vxworks_shared_plt0_entry[] =
static const bfd_vma mips_vxworks_shared_plt0_entry[] =
{
{
  0x8f990008,   /* lw t9, 8(gp)         */
  0x8f990008,   /* lw t9, 8(gp)         */
  0x00000000,   /* nop                  */
  0x00000000,   /* nop                  */
  0x03200008,   /* jr t9                */
  0x03200008,   /* jr t9                */
  0x00000000,   /* nop                  */
  0x00000000,   /* nop                  */
  0x00000000,   /* nop                  */
  0x00000000,   /* nop                  */
  0x00000000    /* nop                  */
  0x00000000    /* nop                  */
};
};
 
 
/* The format of subsequent PLT entries.  */
/* The format of subsequent PLT entries.  */
static const bfd_vma mips_vxworks_shared_plt_entry[] =
static const bfd_vma mips_vxworks_shared_plt_entry[] =
{
{
  0x10000000,   /* b .PLT_resolver      */
  0x10000000,   /* b .PLT_resolver      */
  0x24180000    /* li t8, <pltindex>    */
  0x24180000    /* li t8, <pltindex>    */
};
};


/* Look up an entry in a MIPS ELF linker hash table.  */
/* Look up an entry in a MIPS ELF linker hash table.  */
 
 
#define mips_elf_link_hash_lookup(table, string, create, copy, follow)  \
#define mips_elf_link_hash_lookup(table, string, create, copy, follow)  \
  ((struct mips_elf_link_hash_entry *)                                  \
  ((struct mips_elf_link_hash_entry *)                                  \
   elf_link_hash_lookup (&(table)->root, (string), (create),            \
   elf_link_hash_lookup (&(table)->root, (string), (create),            \
                         (copy), (follow)))
                         (copy), (follow)))
 
 
/* Traverse a MIPS ELF linker hash table.  */
/* Traverse a MIPS ELF linker hash table.  */
 
 
#define mips_elf_link_hash_traverse(table, func, info)                  \
#define mips_elf_link_hash_traverse(table, func, info)                  \
  (elf_link_hash_traverse                                               \
  (elf_link_hash_traverse                                               \
   (&(table)->root,                                                     \
   (&(table)->root,                                                     \
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
    (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),    \
    (info)))
    (info)))
 
 
/* Find the base offsets for thread-local storage in this object,
/* Find the base offsets for thread-local storage in this object,
   for GD/LD and IE/LE respectively.  */
   for GD/LD and IE/LE respectively.  */
 
 
#define TP_OFFSET 0x7000
#define TP_OFFSET 0x7000
#define DTP_OFFSET 0x8000
#define DTP_OFFSET 0x8000
 
 
static bfd_vma
static bfd_vma
dtprel_base (struct bfd_link_info *info)
dtprel_base (struct bfd_link_info *info)
{
{
  /* If tls_sec is NULL, we should have signalled an error already.  */
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (elf_hash_table (info)->tls_sec == NULL)
  if (elf_hash_table (info)->tls_sec == NULL)
    return 0;
    return 0;
  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
}
}
 
 
static bfd_vma
static bfd_vma
tprel_base (struct bfd_link_info *info)
tprel_base (struct bfd_link_info *info)
{
{
  /* If tls_sec is NULL, we should have signalled an error already.  */
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (elf_hash_table (info)->tls_sec == NULL)
  if (elf_hash_table (info)->tls_sec == NULL)
    return 0;
    return 0;
  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
}
}
 
 
/* Create an entry in a MIPS ELF linker hash table.  */
/* Create an entry in a MIPS ELF linker hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
                            struct bfd_hash_table *table, const char *string)
                            struct bfd_hash_table *table, const char *string)
{
{
  struct mips_elf_link_hash_entry *ret =
  struct mips_elf_link_hash_entry *ret =
    (struct mips_elf_link_hash_entry *) entry;
    (struct mips_elf_link_hash_entry *) entry;
 
 
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (ret == NULL)
  if (ret == NULL)
    ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
    ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
  if (ret == NULL)
  if (ret == NULL)
    return (struct bfd_hash_entry *) ret;
    return (struct bfd_hash_entry *) ret;
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  ret = ((struct mips_elf_link_hash_entry *)
  ret = ((struct mips_elf_link_hash_entry *)
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
                                     table, string));
                                     table, string));
  if (ret != NULL)
  if (ret != NULL)
    {
    {
      /* Set local fields.  */
      /* Set local fields.  */
      memset (&ret->esym, 0, sizeof (EXTR));
      memset (&ret->esym, 0, sizeof (EXTR));
      /* We use -2 as a marker to indicate that the information has
      /* We use -2 as a marker to indicate that the information has
         not been set.  -1 means there is no associated ifd.  */
         not been set.  -1 means there is no associated ifd.  */
      ret->esym.ifd = -2;
      ret->esym.ifd = -2;
      ret->la25_stub = 0;
      ret->la25_stub = 0;
      ret->possibly_dynamic_relocs = 0;
      ret->possibly_dynamic_relocs = 0;
      ret->fn_stub = NULL;
      ret->fn_stub = NULL;
      ret->call_stub = NULL;
      ret->call_stub = NULL;
      ret->call_fp_stub = NULL;
      ret->call_fp_stub = NULL;
      ret->tls_type = GOT_NORMAL;
      ret->tls_type = GOT_NORMAL;
      ret->global_got_area = GGA_NONE;
      ret->global_got_area = GGA_NONE;
      ret->got_only_for_calls = TRUE;
      ret->got_only_for_calls = TRUE;
      ret->readonly_reloc = FALSE;
      ret->readonly_reloc = FALSE;
      ret->has_static_relocs = FALSE;
      ret->has_static_relocs = FALSE;
      ret->no_fn_stub = FALSE;
      ret->no_fn_stub = FALSE;
      ret->need_fn_stub = FALSE;
      ret->need_fn_stub = FALSE;
      ret->has_nonpic_branches = FALSE;
      ret->has_nonpic_branches = FALSE;
      ret->needs_lazy_stub = FALSE;
      ret->needs_lazy_stub = FALSE;
    }
    }
 
 
  return (struct bfd_hash_entry *) ret;
  return (struct bfd_hash_entry *) ret;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
{
{
  if (!sec->used_by_bfd)
  if (!sec->used_by_bfd)
    {
    {
      struct _mips_elf_section_data *sdata;
      struct _mips_elf_section_data *sdata;
      bfd_size_type amt = sizeof (*sdata);
      bfd_size_type amt = sizeof (*sdata);
 
 
      sdata = bfd_zalloc (abfd, amt);
      sdata = bfd_zalloc (abfd, amt);
      if (sdata == NULL)
      if (sdata == NULL)
        return FALSE;
        return FALSE;
      sec->used_by_bfd = sdata;
      sec->used_by_bfd = sdata;
    }
    }
 
 
  return _bfd_elf_new_section_hook (abfd, sec);
  return _bfd_elf_new_section_hook (abfd, sec);
}
}


/* Read ECOFF debugging information from a .mdebug section into a
/* Read ECOFF debugging information from a .mdebug section into a
   ecoff_debug_info structure.  */
   ecoff_debug_info structure.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
                               struct ecoff_debug_info *debug)
                               struct ecoff_debug_info *debug)
{
{
  HDRR *symhdr;
  HDRR *symhdr;
  const struct ecoff_debug_swap *swap;
  const struct ecoff_debug_swap *swap;
  char *ext_hdr;
  char *ext_hdr;
 
 
  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
  memset (debug, 0, sizeof (*debug));
  memset (debug, 0, sizeof (*debug));
 
 
  ext_hdr = bfd_malloc (swap->external_hdr_size);
  ext_hdr = bfd_malloc (swap->external_hdr_size);
  if (ext_hdr == NULL && swap->external_hdr_size != 0)
  if (ext_hdr == NULL && swap->external_hdr_size != 0)
    goto error_return;
    goto error_return;
 
 
  if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
  if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
                                  swap->external_hdr_size))
                                  swap->external_hdr_size))
    goto error_return;
    goto error_return;
 
 
  symhdr = &debug->symbolic_header;
  symhdr = &debug->symbolic_header;
  (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
  (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
 
 
  /* The symbolic header contains absolute file offsets and sizes to
  /* The symbolic header contains absolute file offsets and sizes to
     read.  */
     read.  */
#define READ(ptr, offset, count, size, type)                            \
#define READ(ptr, offset, count, size, type)                            \
  if (symhdr->count == 0)                                                \
  if (symhdr->count == 0)                                                \
    debug->ptr = NULL;                                                  \
    debug->ptr = NULL;                                                  \
  else                                                                  \
  else                                                                  \
    {                                                                   \
    {                                                                   \
      bfd_size_type amt = (bfd_size_type) size * symhdr->count;         \
      bfd_size_type amt = (bfd_size_type) size * symhdr->count;         \
      debug->ptr = bfd_malloc (amt);                                    \
      debug->ptr = bfd_malloc (amt);                                    \
      if (debug->ptr == NULL)                                           \
      if (debug->ptr == NULL)                                           \
        goto error_return;                                              \
        goto error_return;                                              \
      if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0         \
      if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0         \
          || bfd_bread (debug->ptr, amt, abfd) != amt)                  \
          || bfd_bread (debug->ptr, amt, abfd) != amt)                  \
        goto error_return;                                              \
        goto error_return;                                              \
    }
    }
 
 
  READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
  READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
  READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
  READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
  READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
  READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
  READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
  READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
  READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
  READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
  READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
  READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
        union aux_ext *);
        union aux_ext *);
  READ (ss, cbSsOffset, issMax, sizeof (char), char *);
  READ (ss, cbSsOffset, issMax, sizeof (char), char *);
  READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
  READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
  READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
  READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
  READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
  READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
  READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
  READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
#undef READ
#undef READ
 
 
  debug->fdr = NULL;
  debug->fdr = NULL;
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (ext_hdr != NULL)
  if (ext_hdr != NULL)
    free (ext_hdr);
    free (ext_hdr);
  if (debug->line != NULL)
  if (debug->line != NULL)
    free (debug->line);
    free (debug->line);
  if (debug->external_dnr != NULL)
  if (debug->external_dnr != NULL)
    free (debug->external_dnr);
    free (debug->external_dnr);
  if (debug->external_pdr != NULL)
  if (debug->external_pdr != NULL)
    free (debug->external_pdr);
    free (debug->external_pdr);
  if (debug->external_sym != NULL)
  if (debug->external_sym != NULL)
    free (debug->external_sym);
    free (debug->external_sym);
  if (debug->external_opt != NULL)
  if (debug->external_opt != NULL)
    free (debug->external_opt);
    free (debug->external_opt);
  if (debug->external_aux != NULL)
  if (debug->external_aux != NULL)
    free (debug->external_aux);
    free (debug->external_aux);
  if (debug->ss != NULL)
  if (debug->ss != NULL)
    free (debug->ss);
    free (debug->ss);
  if (debug->ssext != NULL)
  if (debug->ssext != NULL)
    free (debug->ssext);
    free (debug->ssext);
  if (debug->external_fdr != NULL)
  if (debug->external_fdr != NULL)
    free (debug->external_fdr);
    free (debug->external_fdr);
  if (debug->external_rfd != NULL)
  if (debug->external_rfd != NULL)
    free (debug->external_rfd);
    free (debug->external_rfd);
  if (debug->external_ext != NULL)
  if (debug->external_ext != NULL)
    free (debug->external_ext);
    free (debug->external_ext);
  return FALSE;
  return FALSE;
}
}


/* Swap RPDR (runtime procedure table entry) for output.  */
/* Swap RPDR (runtime procedure table entry) for output.  */
 
 
static void
static void
ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
{
{
  H_PUT_S32 (abfd, in->adr, ex->p_adr);
  H_PUT_S32 (abfd, in->adr, ex->p_adr);
  H_PUT_32 (abfd, in->regmask, ex->p_regmask);
  H_PUT_32 (abfd, in->regmask, ex->p_regmask);
  H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
  H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
  H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
  H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
  H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
  H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
  H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
  H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
 
 
  H_PUT_16 (abfd, in->framereg, ex->p_framereg);
  H_PUT_16 (abfd, in->framereg, ex->p_framereg);
  H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
  H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
 
 
  H_PUT_32 (abfd, in->irpss, ex->p_irpss);
  H_PUT_32 (abfd, in->irpss, ex->p_irpss);
}
}
 
 
/* Create a runtime procedure table from the .mdebug section.  */
/* Create a runtime procedure table from the .mdebug section.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_create_procedure_table (void *handle, bfd *abfd,
mips_elf_create_procedure_table (void *handle, bfd *abfd,
                                 struct bfd_link_info *info, asection *s,
                                 struct bfd_link_info *info, asection *s,
                                 struct ecoff_debug_info *debug)
                                 struct ecoff_debug_info *debug)
{
{
  const struct ecoff_debug_swap *swap;
  const struct ecoff_debug_swap *swap;
  HDRR *hdr = &debug->symbolic_header;
  HDRR *hdr = &debug->symbolic_header;
  RPDR *rpdr, *rp;
  RPDR *rpdr, *rp;
  struct rpdr_ext *erp;
  struct rpdr_ext *erp;
  void *rtproc;
  void *rtproc;
  struct pdr_ext *epdr;
  struct pdr_ext *epdr;
  struct sym_ext *esym;
  struct sym_ext *esym;
  char *ss, **sv;
  char *ss, **sv;
  char *str;
  char *str;
  bfd_size_type size;
  bfd_size_type size;
  bfd_size_type count;
  bfd_size_type count;
  unsigned long sindex;
  unsigned long sindex;
  unsigned long i;
  unsigned long i;
  PDR pdr;
  PDR pdr;
  SYMR sym;
  SYMR sym;
  const char *no_name_func = _("static procedure (no name)");
  const char *no_name_func = _("static procedure (no name)");
 
 
  epdr = NULL;
  epdr = NULL;
  rpdr = NULL;
  rpdr = NULL;
  esym = NULL;
  esym = NULL;
  ss = NULL;
  ss = NULL;
  sv = NULL;
  sv = NULL;
 
 
  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
  swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
 
 
  sindex = strlen (no_name_func) + 1;
  sindex = strlen (no_name_func) + 1;
  count = hdr->ipdMax;
  count = hdr->ipdMax;
  if (count > 0)
  if (count > 0)
    {
    {
      size = swap->external_pdr_size;
      size = swap->external_pdr_size;
 
 
      epdr = bfd_malloc (size * count);
      epdr = bfd_malloc (size * count);
      if (epdr == NULL)
      if (epdr == NULL)
        goto error_return;
        goto error_return;
 
 
      if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
      if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
        goto error_return;
        goto error_return;
 
 
      size = sizeof (RPDR);
      size = sizeof (RPDR);
      rp = rpdr = bfd_malloc (size * count);
      rp = rpdr = bfd_malloc (size * count);
      if (rpdr == NULL)
      if (rpdr == NULL)
        goto error_return;
        goto error_return;
 
 
      size = sizeof (char *);
      size = sizeof (char *);
      sv = bfd_malloc (size * count);
      sv = bfd_malloc (size * count);
      if (sv == NULL)
      if (sv == NULL)
        goto error_return;
        goto error_return;
 
 
      count = hdr->isymMax;
      count = hdr->isymMax;
      size = swap->external_sym_size;
      size = swap->external_sym_size;
      esym = bfd_malloc (size * count);
      esym = bfd_malloc (size * count);
      if (esym == NULL)
      if (esym == NULL)
        goto error_return;
        goto error_return;
 
 
      if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
      if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
        goto error_return;
        goto error_return;
 
 
      count = hdr->issMax;
      count = hdr->issMax;
      ss = bfd_malloc (count);
      ss = bfd_malloc (count);
      if (ss == NULL)
      if (ss == NULL)
        goto error_return;
        goto error_return;
      if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
      if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
        goto error_return;
        goto error_return;
 
 
      count = hdr->ipdMax;
      count = hdr->ipdMax;
      for (i = 0; i < (unsigned long) count; i++, rp++)
      for (i = 0; i < (unsigned long) count; i++, rp++)
        {
        {
          (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
          (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
          (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
          (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
          rp->adr = sym.value;
          rp->adr = sym.value;
          rp->regmask = pdr.regmask;
          rp->regmask = pdr.regmask;
          rp->regoffset = pdr.regoffset;
          rp->regoffset = pdr.regoffset;
          rp->fregmask = pdr.fregmask;
          rp->fregmask = pdr.fregmask;
          rp->fregoffset = pdr.fregoffset;
          rp->fregoffset = pdr.fregoffset;
          rp->frameoffset = pdr.frameoffset;
          rp->frameoffset = pdr.frameoffset;
          rp->framereg = pdr.framereg;
          rp->framereg = pdr.framereg;
          rp->pcreg = pdr.pcreg;
          rp->pcreg = pdr.pcreg;
          rp->irpss = sindex;
          rp->irpss = sindex;
          sv[i] = ss + sym.iss;
          sv[i] = ss + sym.iss;
          sindex += strlen (sv[i]) + 1;
          sindex += strlen (sv[i]) + 1;
        }
        }
    }
    }
 
 
  size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
  size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
  size = BFD_ALIGN (size, 16);
  size = BFD_ALIGN (size, 16);
  rtproc = bfd_alloc (abfd, size);
  rtproc = bfd_alloc (abfd, size);
  if (rtproc == NULL)
  if (rtproc == NULL)
    {
    {
      mips_elf_hash_table (info)->procedure_count = 0;
      mips_elf_hash_table (info)->procedure_count = 0;
      goto error_return;
      goto error_return;
    }
    }
 
 
  mips_elf_hash_table (info)->procedure_count = count + 2;
  mips_elf_hash_table (info)->procedure_count = count + 2;
 
 
  erp = rtproc;
  erp = rtproc;
  memset (erp, 0, sizeof (struct rpdr_ext));
  memset (erp, 0, sizeof (struct rpdr_ext));
  erp++;
  erp++;
  str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
  str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
  strcpy (str, no_name_func);
  strcpy (str, no_name_func);
  str += strlen (no_name_func) + 1;
  str += strlen (no_name_func) + 1;
  for (i = 0; i < count; i++)
  for (i = 0; i < count; i++)
    {
    {
      ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
      ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
      strcpy (str, sv[i]);
      strcpy (str, sv[i]);
      str += strlen (sv[i]) + 1;
      str += strlen (sv[i]) + 1;
    }
    }
  H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
  H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
 
 
  /* Set the size and contents of .rtproc section.  */
  /* Set the size and contents of .rtproc section.  */
  s->size = size;
  s->size = size;
  s->contents = rtproc;
  s->contents = rtproc;
 
 
  /* Skip this section later on (I don't think this currently
  /* Skip this section later on (I don't think this currently
     matters, but someday it might).  */
     matters, but someday it might).  */
  s->map_head.link_order = NULL;
  s->map_head.link_order = NULL;
 
 
  if (epdr != NULL)
  if (epdr != NULL)
    free (epdr);
    free (epdr);
  if (rpdr != NULL)
  if (rpdr != NULL)
    free (rpdr);
    free (rpdr);
  if (esym != NULL)
  if (esym != NULL)
    free (esym);
    free (esym);
  if (ss != NULL)
  if (ss != NULL)
    free (ss);
    free (ss);
  if (sv != NULL)
  if (sv != NULL)
    free (sv);
    free (sv);
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (epdr != NULL)
  if (epdr != NULL)
    free (epdr);
    free (epdr);
  if (rpdr != NULL)
  if (rpdr != NULL)
    free (rpdr);
    free (rpdr);
  if (esym != NULL)
  if (esym != NULL)
    free (esym);
    free (esym);
  if (ss != NULL)
  if (ss != NULL)
    free (ss);
    free (ss);
  if (sv != NULL)
  if (sv != NULL)
    free (sv);
    free (sv);
  return FALSE;
  return FALSE;
}
}


/* We're going to create a stub for H.  Create a symbol for the stub's
/* We're going to create a stub for H.  Create a symbol for the stub's
   value and size, to help make the disassembly easier to read.  */
   value and size, to help make the disassembly easier to read.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_create_stub_symbol (struct bfd_link_info *info,
mips_elf_create_stub_symbol (struct bfd_link_info *info,
                             struct mips_elf_link_hash_entry *h,
                             struct mips_elf_link_hash_entry *h,
                             const char *prefix, asection *s, bfd_vma value,
                             const char *prefix, asection *s, bfd_vma value,
                             bfd_vma size)
                             bfd_vma size)
{
{
  struct bfd_link_hash_entry *bh;
  struct bfd_link_hash_entry *bh;
  struct elf_link_hash_entry *elfh;
  struct elf_link_hash_entry *elfh;
  const char *name;
  const char *name;
 
 
  if (ELF_ST_IS_MICROMIPS (h->root.other))
  if (ELF_ST_IS_MICROMIPS (h->root.other))
    value |= 1;
    value |= 1;
 
 
  /* Create a new symbol.  */
  /* Create a new symbol.  */
  name = ACONCAT ((prefix, h->root.root.root.string, NULL));
  name = ACONCAT ((prefix, h->root.root.root.string, NULL));
  bh = NULL;
  bh = NULL;
  if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
  if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
                                         BSF_LOCAL, s, value, NULL,
                                         BSF_LOCAL, s, value, NULL,
                                         TRUE, FALSE, &bh))
                                         TRUE, FALSE, &bh))
    return FALSE;
    return FALSE;
 
 
  /* Make it a local function.  */
  /* Make it a local function.  */
  elfh = (struct elf_link_hash_entry *) bh;
  elfh = (struct elf_link_hash_entry *) bh;
  elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
  elfh->size = size;
  elfh->size = size;
  elfh->forced_local = 1;
  elfh->forced_local = 1;
  return TRUE;
  return TRUE;
}
}
 
 
/* We're about to redefine H.  Create a symbol to represent H's
/* We're about to redefine H.  Create a symbol to represent H's
   current value and size, to help make the disassembly easier
   current value and size, to help make the disassembly easier
   to read.  */
   to read.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_create_shadow_symbol (struct bfd_link_info *info,
mips_elf_create_shadow_symbol (struct bfd_link_info *info,
                               struct mips_elf_link_hash_entry *h,
                               struct mips_elf_link_hash_entry *h,
                               const char *prefix)
                               const char *prefix)
{
{
  struct bfd_link_hash_entry *bh;
  struct bfd_link_hash_entry *bh;
  struct elf_link_hash_entry *elfh;
  struct elf_link_hash_entry *elfh;
  const char *name;
  const char *name;
  asection *s;
  asection *s;
  bfd_vma value;
  bfd_vma value;
 
 
  /* Read the symbol's value.  */
  /* Read the symbol's value.  */
  BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
  BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
              || h->root.root.type == bfd_link_hash_defweak);
              || h->root.root.type == bfd_link_hash_defweak);
  s = h->root.root.u.def.section;
  s = h->root.root.u.def.section;
  value = h->root.root.u.def.value;
  value = h->root.root.u.def.value;
 
 
  /* Create a new symbol.  */
  /* Create a new symbol.  */
  name = ACONCAT ((prefix, h->root.root.root.string, NULL));
  name = ACONCAT ((prefix, h->root.root.root.string, NULL));
  bh = NULL;
  bh = NULL;
  if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
  if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
                                         BSF_LOCAL, s, value, NULL,
                                         BSF_LOCAL, s, value, NULL,
                                         TRUE, FALSE, &bh))
                                         TRUE, FALSE, &bh))
    return FALSE;
    return FALSE;
 
 
  /* Make it local and copy the other attributes from H.  */
  /* Make it local and copy the other attributes from H.  */
  elfh = (struct elf_link_hash_entry *) bh;
  elfh = (struct elf_link_hash_entry *) bh;
  elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
  elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
  elfh->other = h->root.other;
  elfh->other = h->root.other;
  elfh->size = h->root.size;
  elfh->size = h->root.size;
  elfh->forced_local = 1;
  elfh->forced_local = 1;
  return TRUE;
  return TRUE;
}
}
 
 
/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
   function rather than to a hard-float stub.  */
   function rather than to a hard-float stub.  */
 
 
static bfd_boolean
static bfd_boolean
section_allows_mips16_refs_p (asection *section)
section_allows_mips16_refs_p (asection *section)
{
{
  const char *name;
  const char *name;
 
 
  name = bfd_get_section_name (section->owner, section);
  name = bfd_get_section_name (section->owner, section);
  return (FN_STUB_P (name)
  return (FN_STUB_P (name)
          || CALL_STUB_P (name)
          || CALL_STUB_P (name)
          || CALL_FP_STUB_P (name)
          || CALL_FP_STUB_P (name)
          || strcmp (name, ".pdr") == 0);
          || strcmp (name, ".pdr") == 0);
}
}
 
 
/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
   stub section of some kind.  Return the R_SYMNDX of the target
   stub section of some kind.  Return the R_SYMNDX of the target
   function, or 0 if we can't decide which function that is.  */
   function, or 0 if we can't decide which function that is.  */
 
 
static unsigned long
static unsigned long
mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
                    const Elf_Internal_Rela *relocs,
                    const Elf_Internal_Rela *relocs,
                    const Elf_Internal_Rela *relend)
                    const Elf_Internal_Rela *relend)
{
{
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel;
 
 
  /* Trust the first R_MIPS_NONE relocation, if any.  */
  /* Trust the first R_MIPS_NONE relocation, if any.  */
  for (rel = relocs; rel < relend; rel++)
  for (rel = relocs; rel < relend; rel++)
    if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
    if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
      return ELF_R_SYM (sec->owner, rel->r_info);
      return ELF_R_SYM (sec->owner, rel->r_info);
 
 
  /* Otherwise trust the first relocation, whatever its kind.  This is
  /* Otherwise trust the first relocation, whatever its kind.  This is
     the traditional behavior.  */
     the traditional behavior.  */
  if (relocs < relend)
  if (relocs < relend)
    return ELF_R_SYM (sec->owner, relocs->r_info);
    return ELF_R_SYM (sec->owner, relocs->r_info);
 
 
  return 0;
  return 0;
}
}
 
 
/* Check the mips16 stubs for a particular symbol, and see if we can
/* Check the mips16 stubs for a particular symbol, and see if we can
   discard them.  */
   discard them.  */
 
 
static void
static void
mips_elf_check_mips16_stubs (struct bfd_link_info *info,
mips_elf_check_mips16_stubs (struct bfd_link_info *info,
                             struct mips_elf_link_hash_entry *h)
                             struct mips_elf_link_hash_entry *h)
{
{
  /* Dynamic symbols must use the standard call interface, in case other
  /* Dynamic symbols must use the standard call interface, in case other
     objects try to call them.  */
     objects try to call them.  */
  if (h->fn_stub != NULL
  if (h->fn_stub != NULL
      && h->root.dynindx != -1)
      && h->root.dynindx != -1)
    {
    {
      mips_elf_create_shadow_symbol (info, h, ".mips16.");
      mips_elf_create_shadow_symbol (info, h, ".mips16.");
      h->need_fn_stub = TRUE;
      h->need_fn_stub = TRUE;
    }
    }
 
 
  if (h->fn_stub != NULL
  if (h->fn_stub != NULL
      && ! h->need_fn_stub)
      && ! h->need_fn_stub)
    {
    {
      /* We don't need the fn_stub; the only references to this symbol
      /* We don't need the fn_stub; the only references to this symbol
         are 16 bit calls.  Clobber the size to 0 to prevent it from
         are 16 bit calls.  Clobber the size to 0 to prevent it from
         being included in the link.  */
         being included in the link.  */
      h->fn_stub->size = 0;
      h->fn_stub->size = 0;
      h->fn_stub->flags &= ~SEC_RELOC;
      h->fn_stub->flags &= ~SEC_RELOC;
      h->fn_stub->reloc_count = 0;
      h->fn_stub->reloc_count = 0;
      h->fn_stub->flags |= SEC_EXCLUDE;
      h->fn_stub->flags |= SEC_EXCLUDE;
    }
    }
 
 
  if (h->call_stub != NULL
  if (h->call_stub != NULL
      && ELF_ST_IS_MIPS16 (h->root.other))
      && ELF_ST_IS_MIPS16 (h->root.other))
    {
    {
      /* We don't need the call_stub; this is a 16 bit function, so
      /* We don't need the call_stub; this is a 16 bit function, so
         calls from other 16 bit functions are OK.  Clobber the size
         calls from other 16 bit functions are OK.  Clobber the size
         to 0 to prevent it from being included in the link.  */
         to 0 to prevent it from being included in the link.  */
      h->call_stub->size = 0;
      h->call_stub->size = 0;
      h->call_stub->flags &= ~SEC_RELOC;
      h->call_stub->flags &= ~SEC_RELOC;
      h->call_stub->reloc_count = 0;
      h->call_stub->reloc_count = 0;
      h->call_stub->flags |= SEC_EXCLUDE;
      h->call_stub->flags |= SEC_EXCLUDE;
    }
    }
 
 
  if (h->call_fp_stub != NULL
  if (h->call_fp_stub != NULL
      && ELF_ST_IS_MIPS16 (h->root.other))
      && ELF_ST_IS_MIPS16 (h->root.other))
    {
    {
      /* We don't need the call_stub; this is a 16 bit function, so
      /* We don't need the call_stub; this is a 16 bit function, so
         calls from other 16 bit functions are OK.  Clobber the size
         calls from other 16 bit functions are OK.  Clobber the size
         to 0 to prevent it from being included in the link.  */
         to 0 to prevent it from being included in the link.  */
      h->call_fp_stub->size = 0;
      h->call_fp_stub->size = 0;
      h->call_fp_stub->flags &= ~SEC_RELOC;
      h->call_fp_stub->flags &= ~SEC_RELOC;
      h->call_fp_stub->reloc_count = 0;
      h->call_fp_stub->reloc_count = 0;
      h->call_fp_stub->flags |= SEC_EXCLUDE;
      h->call_fp_stub->flags |= SEC_EXCLUDE;
    }
    }
}
}
 
 
/* Hashtable callbacks for mips_elf_la25_stubs.  */
/* Hashtable callbacks for mips_elf_la25_stubs.  */
 
 
static hashval_t
static hashval_t
mips_elf_la25_stub_hash (const void *entry_)
mips_elf_la25_stub_hash (const void *entry_)
{
{
  const struct mips_elf_la25_stub *entry;
  const struct mips_elf_la25_stub *entry;
 
 
  entry = (struct mips_elf_la25_stub *) entry_;
  entry = (struct mips_elf_la25_stub *) entry_;
  return entry->h->root.root.u.def.section->id
  return entry->h->root.root.u.def.section->id
    + entry->h->root.root.u.def.value;
    + entry->h->root.root.u.def.value;
}
}
 
 
static int
static int
mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
{
{
  const struct mips_elf_la25_stub *entry1, *entry2;
  const struct mips_elf_la25_stub *entry1, *entry2;
 
 
  entry1 = (struct mips_elf_la25_stub *) entry1_;
  entry1 = (struct mips_elf_la25_stub *) entry1_;
  entry2 = (struct mips_elf_la25_stub *) entry2_;
  entry2 = (struct mips_elf_la25_stub *) entry2_;
  return ((entry1->h->root.root.u.def.section
  return ((entry1->h->root.root.u.def.section
           == entry2->h->root.root.u.def.section)
           == entry2->h->root.root.u.def.section)
          && (entry1->h->root.root.u.def.value
          && (entry1->h->root.root.u.def.value
              == entry2->h->root.root.u.def.value));
              == entry2->h->root.root.u.def.value));
}
}
 
 
/* Called by the linker to set up the la25 stub-creation code.  FN is
/* Called by the linker to set up the la25 stub-creation code.  FN is
   the linker's implementation of add_stub_function.  Return true on
   the linker's implementation of add_stub_function.  Return true on
   success.  */
   success.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
                          asection *(*fn) (const char *, asection *,
                          asection *(*fn) (const char *, asection *,
                                           asection *))
                                           asection *))
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  htab->add_stub_section = fn;
  htab->add_stub_section = fn;
  htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
  htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
                                      mips_elf_la25_stub_eq, NULL);
                                      mips_elf_la25_stub_eq, NULL);
  if (htab->la25_stubs == NULL)
  if (htab->la25_stubs == NULL)
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return true if H is a locally-defined PIC function, in the sense
/* Return true if H is a locally-defined PIC function, in the sense
   that it might need $25 to be valid on entry.  Note that MIPS16
   that it or its fn_stub might need $25 to be valid on entry.
   functions never need $25 to be valid on entry; they set up $gp
   Note that MIPS16 functions set up $gp using PC-relative instructions,
   using PC-relative instructions instead.  */
   so they themselves never need $25 to be valid.  Only non-MIPS16
 
   entry points are of interest here.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
{
{
  return ((h->root.root.type == bfd_link_hash_defined
  return ((h->root.root.type == bfd_link_hash_defined
           || h->root.root.type == bfd_link_hash_defweak)
           || h->root.root.type == bfd_link_hash_defweak)
          && h->root.def_regular
          && h->root.def_regular
          && !bfd_is_abs_section (h->root.root.u.def.section)
          && !bfd_is_abs_section (h->root.root.u.def.section)
          && !ELF_ST_IS_MIPS16 (h->root.other)
          && (!ELF_ST_IS_MIPS16 (h->root.other)
 
              || (h->fn_stub && h->need_fn_stub))
          && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
          && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
              || ELF_ST_IS_MIPS_PIC (h->root.other)));
              || ELF_ST_IS_MIPS_PIC (h->root.other)));
}
}
 
 
 
/* Set *SEC to the input section that contains the target of STUB.
 
   Return the offset of the target from the start of that section.  */
 
 
 
static bfd_vma
 
mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
 
                          asection **sec)
 
{
 
  if (ELF_ST_IS_MIPS16 (stub->h->root.other))
 
    {
 
      BFD_ASSERT (stub->h->need_fn_stub);
 
      *sec = stub->h->fn_stub;
 
      return 0;
 
    }
 
  else
 
    {
 
      *sec = stub->h->root.root.u.def.section;
 
      return stub->h->root.root.u.def.value;
 
    }
 
}
 
 
/* STUB describes an la25 stub that we have decided to implement
/* STUB describes an la25 stub that we have decided to implement
   by inserting an LUI/ADDIU pair before the target function.
   by inserting an LUI/ADDIU pair before the target function.
   Create the section and redirect the function symbol to it.  */
   Create the section and redirect the function symbol to it.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
                         struct bfd_link_info *info)
                         struct bfd_link_info *info)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  char *name;
  char *name;
  asection *s, *input_section;
  asection *s, *input_section;
  unsigned int align;
  unsigned int align;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Create a unique name for the new section.  */
  /* Create a unique name for the new section.  */
  name = bfd_malloc (11 + sizeof (".text.stub."));
  name = bfd_malloc (11 + sizeof (".text.stub."));
  if (name == NULL)
  if (name == NULL)
    return FALSE;
    return FALSE;
  sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
  sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
 
 
  /* Create the section.  */
  /* Create the section.  */
  input_section = stub->h->root.root.u.def.section;
  mips_elf_get_la25_target (stub, &input_section);
  s = htab->add_stub_section (name, input_section,
  s = htab->add_stub_section (name, input_section,
                              input_section->output_section);
                              input_section->output_section);
  if (s == NULL)
  if (s == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Make sure that any padding goes before the stub.  */
  /* Make sure that any padding goes before the stub.  */
  align = input_section->alignment_power;
  align = input_section->alignment_power;
  if (!bfd_set_section_alignment (s->owner, s, align))
  if (!bfd_set_section_alignment (s->owner, s, align))
    return FALSE;
    return FALSE;
  if (align > 3)
  if (align > 3)
    s->size = (1 << align) - 8;
    s->size = (1 << align) - 8;
 
 
  /* Create a symbol for the stub.  */
  /* Create a symbol for the stub.  */
  mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
  mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
  stub->stub_section = s;
  stub->stub_section = s;
  stub->offset = s->size;
  stub->offset = s->size;
 
 
  /* Allocate room for it.  */
  /* Allocate room for it.  */
  s->size += 8;
  s->size += 8;
  return TRUE;
  return TRUE;
}
}
 
 
/* STUB describes an la25 stub that we have decided to implement
/* STUB describes an la25 stub that we have decided to implement
   with a separate trampoline.  Allocate room for it and redirect
   with a separate trampoline.  Allocate room for it and redirect
   the function symbol to it.  */
   the function symbol to it.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
                              struct bfd_link_info *info)
                              struct bfd_link_info *info)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  asection *s;
  asection *s;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Create a trampoline section, if we haven't already.  */
  /* Create a trampoline section, if we haven't already.  */
  s = htab->strampoline;
  s = htab->strampoline;
  if (s == NULL)
  if (s == NULL)
    {
    {
      asection *input_section = stub->h->root.root.u.def.section;
      asection *input_section = stub->h->root.root.u.def.section;
      s = htab->add_stub_section (".text", NULL,
      s = htab->add_stub_section (".text", NULL,
                                  input_section->output_section);
                                  input_section->output_section);
      if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
      if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
        return FALSE;
        return FALSE;
      htab->strampoline = s;
      htab->strampoline = s;
    }
    }
 
 
  /* Create a symbol for the stub.  */
  /* Create a symbol for the stub.  */
  mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
  mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
  stub->stub_section = s;
  stub->stub_section = s;
  stub->offset = s->size;
  stub->offset = s->size;
 
 
  /* Allocate room for it.  */
  /* Allocate room for it.  */
  s->size += 16;
  s->size += 16;
  return TRUE;
  return TRUE;
}
}
 
 
/* H describes a symbol that needs an la25 stub.  Make sure that an
/* H describes a symbol that needs an la25 stub.  Make sure that an
   appropriate stub exists and point H at it.  */
   appropriate stub exists and point H at it.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_add_la25_stub (struct bfd_link_info *info,
mips_elf_add_la25_stub (struct bfd_link_info *info,
                        struct mips_elf_link_hash_entry *h)
                        struct mips_elf_link_hash_entry *h)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_la25_stub search, *stub;
  struct mips_elf_la25_stub search, *stub;
  bfd_boolean use_trampoline_p;
  bfd_boolean use_trampoline_p;
  asection *s;
  asection *s;
  bfd_vma value;
  bfd_vma value;
  void **slot;
  void **slot;
 
 
  /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
 
     of the section and if we would need no more than 2 nops.  */
 
  s = h->root.root.u.def.section;
 
  value = h->root.root.u.def.value;
 
  use_trampoline_p = (value != 0 || s->alignment_power > 4);
 
 
 
  /* Describe the stub we want.  */
  /* Describe the stub we want.  */
  search.stub_section = NULL;
  search.stub_section = NULL;
  search.offset = 0;
  search.offset = 0;
  search.h = h;
  search.h = h;
 
 
  /* See if we've already created an equivalent stub.  */
  /* See if we've already created an equivalent stub.  */
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return FALSE;
    return FALSE;
 
 
  slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
  slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
  if (slot == NULL)
  if (slot == NULL)
    return FALSE;
    return FALSE;
 
 
  stub = (struct mips_elf_la25_stub *) *slot;
  stub = (struct mips_elf_la25_stub *) *slot;
  if (stub != NULL)
  if (stub != NULL)
    {
    {
      /* We can reuse the existing stub.  */
      /* We can reuse the existing stub.  */
      h->la25_stub = stub;
      h->la25_stub = stub;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Create a permanent copy of ENTRY and add it to the hash table.  */
  /* Create a permanent copy of ENTRY and add it to the hash table.  */
  stub = bfd_malloc (sizeof (search));
  stub = bfd_malloc (sizeof (search));
  if (stub == NULL)
  if (stub == NULL)
    return FALSE;
    return FALSE;
  *stub = search;
  *stub = search;
  *slot = stub;
  *slot = stub;
 
 
 
  /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
 
     of the section and if we would need no more than 2 nops.  */
 
  value = mips_elf_get_la25_target (stub, &s);
 
  use_trampoline_p = (value != 0 || s->alignment_power > 4);
 
 
  h->la25_stub = stub;
  h->la25_stub = stub;
  return (use_trampoline_p
  return (use_trampoline_p
          ? mips_elf_add_la25_trampoline (stub, info)
          ? mips_elf_add_la25_trampoline (stub, info)
          : mips_elf_add_la25_intro (stub, info));
          : mips_elf_add_la25_intro (stub, info));
}
}
 
 
/* A mips_elf_link_hash_traverse callback that is called before sizing
/* A mips_elf_link_hash_traverse callback that is called before sizing
   sections.  DATA points to a mips_htab_traverse_info structure.  */
   sections.  DATA points to a mips_htab_traverse_info structure.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
{
{
  struct mips_htab_traverse_info *hti;
  struct mips_htab_traverse_info *hti;
 
 
  hti = (struct mips_htab_traverse_info *) data;
  hti = (struct mips_htab_traverse_info *) data;
  if (!hti->info->relocatable)
  if (!hti->info->relocatable)
    mips_elf_check_mips16_stubs (hti->info, h);
    mips_elf_check_mips16_stubs (hti->info, h);
 
 
  if (mips_elf_local_pic_function_p (h))
  if (mips_elf_local_pic_function_p (h))
    {
    {
      /* PR 12845: If H is in a section that has been garbage
      /* PR 12845: If H is in a section that has been garbage
         collected it will have its output section set to *ABS*.  */
         collected it will have its output section set to *ABS*.  */
      if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
      if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
        return TRUE;
        return TRUE;
 
 
      /* H is a function that might need $25 to be valid on entry.
      /* H is a function that might need $25 to be valid on entry.
         If we're creating a non-PIC relocatable object, mark H as
         If we're creating a non-PIC relocatable object, mark H as
         being PIC.  If we're creating a non-relocatable object with
         being PIC.  If we're creating a non-relocatable object with
         non-PIC branches and jumps to H, make sure that H has an la25
         non-PIC branches and jumps to H, make sure that H has an la25
         stub.  */
         stub.  */
      if (hti->info->relocatable)
      if (hti->info->relocatable)
        {
        {
          if (!PIC_OBJECT_P (hti->output_bfd))
          if (!PIC_OBJECT_P (hti->output_bfd))
            h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
            h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
        }
        }
      else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
      else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
        {
        {
          hti->error = TRUE;
          hti->error = TRUE;
          return FALSE;
          return FALSE;
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}


/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
   Most mips16 instructions are 16 bits, but these instructions
   Most mips16 instructions are 16 bits, but these instructions
   are 32 bits.
   are 32 bits.
 
 
   The format of these instructions is:
   The format of these instructions is:
 
 
   +--------------+--------------------------------+
   +--------------+--------------------------------+
   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
   +--------------+--------------------------------+
   +--------------+--------------------------------+
   |                Immediate  15:0                |
   |                Immediate  15:0                |
   +-----------------------------------------------+
   +-----------------------------------------------+
 
 
   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
   Note that the immediate value in the first word is swapped.
   Note that the immediate value in the first word is swapped.
 
 
   When producing a relocatable object file, R_MIPS16_26 is
   When producing a relocatable object file, R_MIPS16_26 is
   handled mostly like R_MIPS_26.  In particular, the addend is
   handled mostly like R_MIPS_26.  In particular, the addend is
   stored as a straight 26-bit value in a 32-bit instruction.
   stored as a straight 26-bit value in a 32-bit instruction.
   (gas makes life simpler for itself by never adjusting a
   (gas makes life simpler for itself by never adjusting a
   R_MIPS16_26 reloc to be against a section, so the addend is
   R_MIPS16_26 reloc to be against a section, so the addend is
   always zero).  However, the 32 bit instruction is stored as 2
   always zero).  However, the 32 bit instruction is stored as 2
   16-bit values, rather than a single 32-bit value.  In a
   16-bit values, rather than a single 32-bit value.  In a
   big-endian file, the result is the same; in a little-endian
   big-endian file, the result is the same; in a little-endian
   file, the two 16-bit halves of the 32 bit value are swapped.
   file, the two 16-bit halves of the 32 bit value are swapped.
   This is so that a disassembler can recognize the jal
   This is so that a disassembler can recognize the jal
   instruction.
   instruction.
 
 
   When doing a final link, R_MIPS16_26 is treated as a 32 bit
   When doing a final link, R_MIPS16_26 is treated as a 32 bit
   instruction stored as two 16-bit values.  The addend A is the
   instruction stored as two 16-bit values.  The addend A is the
   contents of the targ26 field.  The calculation is the same as
   contents of the targ26 field.  The calculation is the same as
   R_MIPS_26.  When storing the calculated value, reorder the
   R_MIPS_26.  When storing the calculated value, reorder the
   immediate value as shown above, and don't forget to store the
   immediate value as shown above, and don't forget to store the
   value as two 16-bit values.
   value as two 16-bit values.
 
 
   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
   defined as
   defined as
 
 
   big-endian:
   big-endian:
   +--------+----------------------+
   +--------+----------------------+
   |        |                      |
   |        |                      |
   |        |    targ26-16         |
   |        |    targ26-16         |
   |31    26|25                   0|
   |31    26|25                   0|
   +--------+----------------------+
   +--------+----------------------+
 
 
   little-endian:
   little-endian:
   +----------+------+-------------+
   +----------+------+-------------+
   |          |      |             |
   |          |      |             |
   |  sub1    |      |     sub2    |
   |  sub1    |      |     sub2    |
   |0        9|10  15|16         31|
   |0        9|10  15|16         31|
   +----------+--------------------+
   +----------+--------------------+
   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
   ((sub1 << 16) | sub2)).
   ((sub1 << 16) | sub2)).
 
 
   When producing a relocatable object file, the calculation is
   When producing a relocatable object file, the calculation is
   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
   When producing a fully linked file, the calculation is
   When producing a fully linked file, the calculation is
   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
 
 
   The table below lists the other MIPS16 instruction relocations.
   The table below lists the other MIPS16 instruction relocations.
   Each one is calculated in the same way as the non-MIPS16 relocation
   Each one is calculated in the same way as the non-MIPS16 relocation
   given on the right, but using the extended MIPS16 layout of 16-bit
   given on the right, but using the extended MIPS16 layout of 16-bit
   immediate fields:
   immediate fields:
 
 
        R_MIPS16_GPREL          R_MIPS_GPREL16
        R_MIPS16_GPREL          R_MIPS_GPREL16
        R_MIPS16_GOT16          R_MIPS_GOT16
        R_MIPS16_GOT16          R_MIPS_GOT16
        R_MIPS16_CALL16         R_MIPS_CALL16
        R_MIPS16_CALL16         R_MIPS_CALL16
        R_MIPS16_HI16           R_MIPS_HI16
        R_MIPS16_HI16           R_MIPS_HI16
        R_MIPS16_LO16           R_MIPS_LO16
        R_MIPS16_LO16           R_MIPS_LO16
 
 
   A typical instruction will have a format like this:
   A typical instruction will have a format like this:
 
 
   +--------------+--------------------------------+
   +--------------+--------------------------------+
   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
   +--------------+--------------------------------+
   +--------------+--------------------------------+
   |    Major     |   rx   |   ry   |   Imm  4:0   |
   |    Major     |   rx   |   ry   |   Imm  4:0   |
   +--------------+--------------------------------+
   +--------------+--------------------------------+
 
 
   EXTEND is the five bit value 11110.  Major is the instruction
   EXTEND is the five bit value 11110.  Major is the instruction
   opcode.
   opcode.
 
 
   All we need to do here is shuffle the bits appropriately.
   All we need to do here is shuffle the bits appropriately.
   As above, the two 16-bit halves must be swapped on a
   As above, the two 16-bit halves must be swapped on a
   little-endian system.  */
   little-endian system.  */
 
 
static inline bfd_boolean
static inline bfd_boolean
mips16_reloc_p (int r_type)
mips16_reloc_p (int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case R_MIPS16_26:
    case R_MIPS16_26:
    case R_MIPS16_GPREL:
    case R_MIPS16_GPREL:
    case R_MIPS16_GOT16:
    case R_MIPS16_GOT16:
    case R_MIPS16_CALL16:
    case R_MIPS16_CALL16:
    case R_MIPS16_HI16:
    case R_MIPS16_HI16:
    case R_MIPS16_LO16:
    case R_MIPS16_LO16:
 
    case R_MIPS16_TLS_GD:
 
    case R_MIPS16_TLS_LDM:
 
    case R_MIPS16_TLS_DTPREL_HI16:
 
    case R_MIPS16_TLS_DTPREL_LO16:
 
    case R_MIPS16_TLS_GOTTPREL:
 
    case R_MIPS16_TLS_TPREL_HI16:
 
    case R_MIPS16_TLS_TPREL_LO16:
      return TRUE;
      return TRUE;
 
 
    default:
    default:
      return FALSE;
      return FALSE;
    }
    }
}
}
 
 
/* Check if a microMIPS reloc.  */
/* Check if a microMIPS reloc.  */
 
 
static inline bfd_boolean
static inline bfd_boolean
micromips_reloc_p (unsigned int r_type)
micromips_reloc_p (unsigned int r_type)
{
{
  return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
  return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
}
}
 
 
/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
   on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
   on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
   and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
   and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
 
 
static inline bfd_boolean
static inline bfd_boolean
micromips_reloc_shuffle_p (unsigned int r_type)
micromips_reloc_shuffle_p (unsigned int r_type)
{
{
  return (micromips_reloc_p (r_type)
  return (micromips_reloc_p (r_type)
          && r_type != R_MICROMIPS_PC7_S1
          && r_type != R_MICROMIPS_PC7_S1
          && r_type != R_MICROMIPS_PC10_S1);
          && r_type != R_MICROMIPS_PC10_S1);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
got16_reloc_p (int r_type)
got16_reloc_p (int r_type)
{
{
  return (r_type == R_MIPS_GOT16
  return (r_type == R_MIPS_GOT16
          || r_type == R_MIPS16_GOT16
          || r_type == R_MIPS16_GOT16
          || r_type == R_MICROMIPS_GOT16);
          || r_type == R_MICROMIPS_GOT16);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
call16_reloc_p (int r_type)
call16_reloc_p (int r_type)
{
{
  return (r_type == R_MIPS_CALL16
  return (r_type == R_MIPS_CALL16
          || r_type == R_MIPS16_CALL16
          || r_type == R_MIPS16_CALL16
          || r_type == R_MICROMIPS_CALL16);
          || r_type == R_MICROMIPS_CALL16);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
got_disp_reloc_p (unsigned int r_type)
got_disp_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
  return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
got_page_reloc_p (unsigned int r_type)
got_page_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
  return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
got_ofst_reloc_p (unsigned int r_type)
got_ofst_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
  return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
got_hi16_reloc_p (unsigned int r_type)
got_hi16_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
  return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
got_lo16_reloc_p (unsigned int r_type)
got_lo16_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
  return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
call_hi16_reloc_p (unsigned int r_type)
call_hi16_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
  return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
call_lo16_reloc_p (unsigned int r_type)
call_lo16_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
  return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
hi16_reloc_p (int r_type)
hi16_reloc_p (int r_type)
{
{
  return (r_type == R_MIPS_HI16
  return (r_type == R_MIPS_HI16
          || r_type == R_MIPS16_HI16
          || r_type == R_MIPS16_HI16
          || r_type == R_MICROMIPS_HI16);
          || r_type == R_MICROMIPS_HI16);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
lo16_reloc_p (int r_type)
lo16_reloc_p (int r_type)
{
{
  return (r_type == R_MIPS_LO16
  return (r_type == R_MIPS_LO16
          || r_type == R_MIPS16_LO16
          || r_type == R_MIPS16_LO16
          || r_type == R_MICROMIPS_LO16);
          || r_type == R_MICROMIPS_LO16);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
mips16_call_reloc_p (int r_type)
mips16_call_reloc_p (int r_type)
{
{
  return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
  return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
jal_reloc_p (int r_type)
jal_reloc_p (int r_type)
{
{
  return (r_type == R_MIPS_26
  return (r_type == R_MIPS_26
          || r_type == R_MIPS16_26
          || r_type == R_MIPS16_26
          || r_type == R_MICROMIPS_26_S1);
          || r_type == R_MICROMIPS_26_S1);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
micromips_branch_reloc_p (int r_type)
micromips_branch_reloc_p (int r_type)
{
{
  return (r_type == R_MICROMIPS_26_S1
  return (r_type == R_MICROMIPS_26_S1
          || r_type == R_MICROMIPS_PC16_S1
          || r_type == R_MICROMIPS_PC16_S1
          || r_type == R_MICROMIPS_PC10_S1
          || r_type == R_MICROMIPS_PC10_S1
          || r_type == R_MICROMIPS_PC7_S1);
          || r_type == R_MICROMIPS_PC7_S1);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
tls_gd_reloc_p (unsigned int r_type)
tls_gd_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
  return (r_type == R_MIPS_TLS_GD
 
          || r_type == R_MIPS16_TLS_GD
 
          || r_type == R_MICROMIPS_TLS_GD);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
tls_ldm_reloc_p (unsigned int r_type)
tls_ldm_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
  return (r_type == R_MIPS_TLS_LDM
 
          || r_type == R_MIPS16_TLS_LDM
 
          || r_type == R_MICROMIPS_TLS_LDM);
}
}
 
 
static inline bfd_boolean
static inline bfd_boolean
tls_gottprel_reloc_p (unsigned int r_type)
tls_gottprel_reloc_p (unsigned int r_type)
{
{
  return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
  return (r_type == R_MIPS_TLS_GOTTPREL
 
          || r_type == R_MIPS16_TLS_GOTTPREL
 
          || r_type == R_MICROMIPS_TLS_GOTTPREL);
}
}
 
 
void
void
_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
                               bfd_boolean jal_shuffle, bfd_byte *data)
                               bfd_boolean jal_shuffle, bfd_byte *data)
{
{
  bfd_vma first, second, val;
  bfd_vma first, second, val;
 
 
  if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
  if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
    return;
    return;
 
 
  /* Pick up the first and second halfwords of the instruction.  */
  /* Pick up the first and second halfwords of the instruction.  */
  first = bfd_get_16 (abfd, data);
  first = bfd_get_16 (abfd, data);
  second = bfd_get_16 (abfd, data + 2);
  second = bfd_get_16 (abfd, data + 2);
  if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
  if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
    val = first << 16 | second;
    val = first << 16 | second;
  else if (r_type != R_MIPS16_26)
  else if (r_type != R_MIPS16_26)
    val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
    val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
           | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
           | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
  else
  else
    val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
    val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
           | ((first & 0x1f) << 21) | second);
           | ((first & 0x1f) << 21) | second);
  bfd_put_32 (abfd, val, data);
  bfd_put_32 (abfd, val, data);
}
}
 
 
void
void
_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
                             bfd_boolean jal_shuffle, bfd_byte *data)
                             bfd_boolean jal_shuffle, bfd_byte *data)
{
{
  bfd_vma first, second, val;
  bfd_vma first, second, val;
 
 
  if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
  if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
    return;
    return;
 
 
  val = bfd_get_32 (abfd, data);
  val = bfd_get_32 (abfd, data);
  if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
  if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
    {
    {
      second = val & 0xffff;
      second = val & 0xffff;
      first = val >> 16;
      first = val >> 16;
    }
    }
  else if (r_type != R_MIPS16_26)
  else if (r_type != R_MIPS16_26)
    {
    {
      second = ((val >> 11) & 0xffe0) | (val & 0x1f);
      second = ((val >> 11) & 0xffe0) | (val & 0x1f);
      first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
      first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
    }
    }
  else
  else
    {
    {
      second = val & 0xffff;
      second = val & 0xffff;
      first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
      first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
               | ((val >> 21) & 0x1f);
               | ((val >> 21) & 0x1f);
    }
    }
  bfd_put_16 (abfd, second, data + 2);
  bfd_put_16 (abfd, second, data + 2);
  bfd_put_16 (abfd, first, data);
  bfd_put_16 (abfd, first, data);
}
}
 
 
bfd_reloc_status_type
bfd_reloc_status_type
_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
                               arelent *reloc_entry, asection *input_section,
                               arelent *reloc_entry, asection *input_section,
                               bfd_boolean relocatable, void *data, bfd_vma gp)
                               bfd_boolean relocatable, void *data, bfd_vma gp)
{
{
  bfd_vma relocation;
  bfd_vma relocation;
  bfd_signed_vma val;
  bfd_signed_vma val;
  bfd_reloc_status_type status;
  bfd_reloc_status_type status;
 
 
  if (bfd_is_com_section (symbol->section))
  if (bfd_is_com_section (symbol->section))
    relocation = 0;
    relocation = 0;
  else
  else
    relocation = symbol->value;
    relocation = symbol->value;
 
 
  relocation += symbol->section->output_section->vma;
  relocation += symbol->section->output_section->vma;
  relocation += symbol->section->output_offset;
  relocation += symbol->section->output_offset;
 
 
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  /* Set val to the offset into the section or symbol.  */
  /* Set val to the offset into the section or symbol.  */
  val = reloc_entry->addend;
  val = reloc_entry->addend;
 
 
  _bfd_mips_elf_sign_extend (val, 16);
  _bfd_mips_elf_sign_extend (val, 16);
 
 
  /* Adjust val for the final section location and GP value.  If we
  /* Adjust val for the final section location and GP value.  If we
     are producing relocatable output, we don't want to do this for
     are producing relocatable output, we don't want to do this for
     an external symbol.  */
     an external symbol.  */
  if (! relocatable
  if (! relocatable
      || (symbol->flags & BSF_SECTION_SYM) != 0)
      || (symbol->flags & BSF_SECTION_SYM) != 0)
    val += relocation - gp;
    val += relocation - gp;
 
 
  if (reloc_entry->howto->partial_inplace)
  if (reloc_entry->howto->partial_inplace)
    {
    {
      status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
      status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
                                       (bfd_byte *) data
                                       (bfd_byte *) data
                                       + reloc_entry->address);
                                       + reloc_entry->address);
      if (status != bfd_reloc_ok)
      if (status != bfd_reloc_ok)
        return status;
        return status;
    }
    }
  else
  else
    reloc_entry->addend = val;
    reloc_entry->addend = val;
 
 
  if (relocatable)
  if (relocatable)
    reloc_entry->address += input_section->output_offset;
    reloc_entry->address += input_section->output_offset;
 
 
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
   R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
   R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
   that contains the relocation field and DATA points to the start of
   that contains the relocation field and DATA points to the start of
   INPUT_SECTION.  */
   INPUT_SECTION.  */
 
 
struct mips_hi16
struct mips_hi16
{
{
  struct mips_hi16 *next;
  struct mips_hi16 *next;
  bfd_byte *data;
  bfd_byte *data;
  asection *input_section;
  asection *input_section;
  arelent rel;
  arelent rel;
};
};
 
 
/* FIXME: This should not be a static variable.  */
/* FIXME: This should not be a static variable.  */
 
 
static struct mips_hi16 *mips_hi16_list;
static struct mips_hi16 *mips_hi16_list;
 
 
/* A howto special_function for REL *HI16 relocations.  We can only
/* A howto special_function for REL *HI16 relocations.  We can only
   calculate the correct value once we've seen the partnering
   calculate the correct value once we've seen the partnering
   *LO16 relocation, so just save the information for later.
   *LO16 relocation, so just save the information for later.
 
 
   The ABI requires that the *LO16 immediately follow the *HI16.
   The ABI requires that the *LO16 immediately follow the *HI16.
   However, as a GNU extension, we permit an arbitrary number of
   However, as a GNU extension, we permit an arbitrary number of
   *HI16s to be associated with a single *LO16.  This significantly
   *HI16s to be associated with a single *LO16.  This significantly
   simplies the relocation handling in gcc.  */
   simplies the relocation handling in gcc.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
                          asymbol *symbol ATTRIBUTE_UNUSED, void *data,
                          asymbol *symbol ATTRIBUTE_UNUSED, void *data,
                          asection *input_section, bfd *output_bfd,
                          asection *input_section, bfd *output_bfd,
                          char **error_message ATTRIBUTE_UNUSED)
                          char **error_message ATTRIBUTE_UNUSED)
{
{
  struct mips_hi16 *n;
  struct mips_hi16 *n;
 
 
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  n = bfd_malloc (sizeof *n);
  n = bfd_malloc (sizeof *n);
  if (n == NULL)
  if (n == NULL)
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  n->next = mips_hi16_list;
  n->next = mips_hi16_list;
  n->data = data;
  n->data = data;
  n->input_section = input_section;
  n->input_section = input_section;
  n->rel = *reloc_entry;
  n->rel = *reloc_entry;
  mips_hi16_list = n;
  mips_hi16_list = n;
 
 
  if (output_bfd != NULL)
  if (output_bfd != NULL)
    reloc_entry->address += input_section->output_offset;
    reloc_entry->address += input_section->output_offset;
 
 
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
/* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
   like any other 16-bit relocation when applied to global symbols, but is
   like any other 16-bit relocation when applied to global symbols, but is
   treated in the same as R_MIPS_HI16 when applied to local symbols.  */
   treated in the same as R_MIPS_HI16 when applied to local symbols.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
                           void *data, asection *input_section,
                           void *data, asection *input_section,
                           bfd *output_bfd, char **error_message)
                           bfd *output_bfd, char **error_message)
{
{
  if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
  if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
      || bfd_is_und_section (bfd_get_section (symbol))
      || bfd_is_und_section (bfd_get_section (symbol))
      || bfd_is_com_section (bfd_get_section (symbol)))
      || bfd_is_com_section (bfd_get_section (symbol)))
    /* The relocation is against a global symbol.  */
    /* The relocation is against a global symbol.  */
    return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
    return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
                                        input_section, output_bfd,
                                        input_section, output_bfd,
                                        error_message);
                                        error_message);
 
 
  return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
  return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
                                   input_section, output_bfd, error_message);
                                   input_section, output_bfd, error_message);
}
}
 
 
/* A howto special_function for REL *LO16 relocations.  The *LO16 itself
/* A howto special_function for REL *LO16 relocations.  The *LO16 itself
   is a straightforward 16 bit inplace relocation, but we must deal with
   is a straightforward 16 bit inplace relocation, but we must deal with
   any partnering high-part relocations as well.  */
   any partnering high-part relocations as well.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
                          void *data, asection *input_section,
                          void *data, asection *input_section,
                          bfd *output_bfd, char **error_message)
                          bfd *output_bfd, char **error_message)
{
{
  bfd_vma vallo;
  bfd_vma vallo;
  bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
  bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
 
 
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
  _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
                                 location);
                                 location);
  vallo = bfd_get_32 (abfd, location);
  vallo = bfd_get_32 (abfd, location);
  _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
  _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
                               location);
                               location);
 
 
  while (mips_hi16_list != NULL)
  while (mips_hi16_list != NULL)
    {
    {
      bfd_reloc_status_type ret;
      bfd_reloc_status_type ret;
      struct mips_hi16 *hi;
      struct mips_hi16 *hi;
 
 
      hi = mips_hi16_list;
      hi = mips_hi16_list;
 
 
      /* R_MIPS*_GOT16 relocations are something of a special case.  We
      /* R_MIPS*_GOT16 relocations are something of a special case.  We
         want to install the addend in the same way as for a R_MIPS*_HI16
         want to install the addend in the same way as for a R_MIPS*_HI16
         relocation (with a rightshift of 16).  However, since GOT16
         relocation (with a rightshift of 16).  However, since GOT16
         relocations can also be used with global symbols, their howto
         relocations can also be used with global symbols, their howto
         has a rightshift of 0.  */
         has a rightshift of 0.  */
      if (hi->rel.howto->type == R_MIPS_GOT16)
      if (hi->rel.howto->type == R_MIPS_GOT16)
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
      else if (hi->rel.howto->type == R_MIPS16_GOT16)
      else if (hi->rel.howto->type == R_MIPS16_GOT16)
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
      else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
      else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
        hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
 
 
      /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
      /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
         carry or borrow will induce a change of +1 or -1 in the high part.  */
         carry or borrow will induce a change of +1 or -1 in the high part.  */
      hi->rel.addend += (vallo + 0x8000) & 0xffff;
      hi->rel.addend += (vallo + 0x8000) & 0xffff;
 
 
      ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
      ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
                                         hi->input_section, output_bfd,
                                         hi->input_section, output_bfd,
                                         error_message);
                                         error_message);
      if (ret != bfd_reloc_ok)
      if (ret != bfd_reloc_ok)
        return ret;
        return ret;
 
 
      mips_hi16_list = hi->next;
      mips_hi16_list = hi->next;
      free (hi);
      free (hi);
    }
    }
 
 
  return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
  return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
                                      input_section, output_bfd,
                                      input_section, output_bfd,
                                      error_message);
                                      error_message);
}
}
 
 
/* A generic howto special_function.  This calculates and installs the
/* A generic howto special_function.  This calculates and installs the
   relocation itself, thus avoiding the oft-discussed problems in
   relocation itself, thus avoiding the oft-discussed problems in
   bfd_perform_relocation and bfd_install_relocation.  */
   bfd_perform_relocation and bfd_install_relocation.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
                             asymbol *symbol, void *data ATTRIBUTE_UNUSED,
                             asymbol *symbol, void *data ATTRIBUTE_UNUSED,
                             asection *input_section, bfd *output_bfd,
                             asection *input_section, bfd *output_bfd,
                             char **error_message ATTRIBUTE_UNUSED)
                             char **error_message ATTRIBUTE_UNUSED)
{
{
  bfd_signed_vma val;
  bfd_signed_vma val;
  bfd_reloc_status_type status;
  bfd_reloc_status_type status;
  bfd_boolean relocatable;
  bfd_boolean relocatable;
 
 
  relocatable = (output_bfd != NULL);
  relocatable = (output_bfd != NULL);
 
 
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  /* Build up the field adjustment in VAL.  */
  /* Build up the field adjustment in VAL.  */
  val = 0;
  val = 0;
  if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
  if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
    {
    {
      /* Either we're calculating the final field value or we have a
      /* Either we're calculating the final field value or we have a
         relocation against a section symbol.  Add in the section's
         relocation against a section symbol.  Add in the section's
         offset or address.  */
         offset or address.  */
      val += symbol->section->output_section->vma;
      val += symbol->section->output_section->vma;
      val += symbol->section->output_offset;
      val += symbol->section->output_offset;
    }
    }
 
 
  if (!relocatable)
  if (!relocatable)
    {
    {
      /* We're calculating the final field value.  Add in the symbol's value
      /* We're calculating the final field value.  Add in the symbol's value
         and, if pc-relative, subtract the address of the field itself.  */
         and, if pc-relative, subtract the address of the field itself.  */
      val += symbol->value;
      val += symbol->value;
      if (reloc_entry->howto->pc_relative)
      if (reloc_entry->howto->pc_relative)
        {
        {
          val -= input_section->output_section->vma;
          val -= input_section->output_section->vma;
          val -= input_section->output_offset;
          val -= input_section->output_offset;
          val -= reloc_entry->address;
          val -= reloc_entry->address;
        }
        }
    }
    }
 
 
  /* VAL is now the final adjustment.  If we're keeping this relocation
  /* VAL is now the final adjustment.  If we're keeping this relocation
     in the output file, and if the relocation uses a separate addend,
     in the output file, and if the relocation uses a separate addend,
     we just need to add VAL to that addend.  Otherwise we need to add
     we just need to add VAL to that addend.  Otherwise we need to add
     VAL to the relocation field itself.  */
     VAL to the relocation field itself.  */
  if (relocatable && !reloc_entry->howto->partial_inplace)
  if (relocatable && !reloc_entry->howto->partial_inplace)
    reloc_entry->addend += val;
    reloc_entry->addend += val;
  else
  else
    {
    {
      bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
      bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
 
 
      /* Add in the separate addend, if any.  */
      /* Add in the separate addend, if any.  */
      val += reloc_entry->addend;
      val += reloc_entry->addend;
 
 
      /* Add VAL to the relocation field.  */
      /* Add VAL to the relocation field.  */
      _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
      _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
                                     location);
                                     location);
      status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
      status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
                                       location);
                                       location);
      _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
      _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
                                   location);
                                   location);
 
 
      if (status != bfd_reloc_ok)
      if (status != bfd_reloc_ok)
        return status;
        return status;
    }
    }
 
 
  if (relocatable)
  if (relocatable)
    reloc_entry->address += input_section->output_offset;
    reloc_entry->address += input_section->output_offset;
 
 
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}


/* Swap an entry in a .gptab section.  Note that these routines rely
/* Swap an entry in a .gptab section.  Note that these routines rely
   on the equivalence of the two elements of the union.  */
   on the equivalence of the two elements of the union.  */
 
 
static void
static void
bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
                              Elf32_gptab *in)
                              Elf32_gptab *in)
{
{
  in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
  in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
  in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
  in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
}
}
 
 
static void
static void
bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
                               Elf32_External_gptab *ex)
                               Elf32_External_gptab *ex)
{
{
  H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
  H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
  H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
  H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
}
}
 
 
static void
static void
bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
                                Elf32_External_compact_rel *ex)
                                Elf32_External_compact_rel *ex)
{
{
  H_PUT_32 (abfd, in->id1, ex->id1);
  H_PUT_32 (abfd, in->id1, ex->id1);
  H_PUT_32 (abfd, in->num, ex->num);
  H_PUT_32 (abfd, in->num, ex->num);
  H_PUT_32 (abfd, in->id2, ex->id2);
  H_PUT_32 (abfd, in->id2, ex->id2);
  H_PUT_32 (abfd, in->offset, ex->offset);
  H_PUT_32 (abfd, in->offset, ex->offset);
  H_PUT_32 (abfd, in->reserved0, ex->reserved0);
  H_PUT_32 (abfd, in->reserved0, ex->reserved0);
  H_PUT_32 (abfd, in->reserved1, ex->reserved1);
  H_PUT_32 (abfd, in->reserved1, ex->reserved1);
}
}
 
 
static void
static void
bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
                           Elf32_External_crinfo *ex)
                           Elf32_External_crinfo *ex)
{
{
  unsigned long l;
  unsigned long l;
 
 
  l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
  l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
       | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
       | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
       | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
       | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
       | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
       | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
  H_PUT_32 (abfd, l, ex->info);
  H_PUT_32 (abfd, l, ex->info);
  H_PUT_32 (abfd, in->konst, ex->konst);
  H_PUT_32 (abfd, in->konst, ex->konst);
  H_PUT_32 (abfd, in->vaddr, ex->vaddr);
  H_PUT_32 (abfd, in->vaddr, ex->vaddr);
}
}


/* A .reginfo section holds a single Elf32_RegInfo structure.  These
/* A .reginfo section holds a single Elf32_RegInfo structure.  These
   routines swap this structure in and out.  They are used outside of
   routines swap this structure in and out.  They are used outside of
   BFD, so they are globally visible.  */
   BFD, so they are globally visible.  */
 
 
void
void
bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
                                Elf32_RegInfo *in)
                                Elf32_RegInfo *in)
{
{
  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
  in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
  in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
}
}
 
 
void
void
bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
                                 Elf32_External_RegInfo *ex)
                                 Elf32_External_RegInfo *ex)
{
{
  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
  H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
  H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
}
}
 
 
/* In the 64 bit ABI, the .MIPS.options section holds register
/* In the 64 bit ABI, the .MIPS.options section holds register
   information in an Elf64_Reginfo structure.  These routines swap
   information in an Elf64_Reginfo structure.  These routines swap
   them in and out.  They are globally visible because they are used
   them in and out.  They are globally visible because they are used
   outside of BFD.  These routines are here so that gas can call them
   outside of BFD.  These routines are here so that gas can call them
   without worrying about whether the 64 bit ABI has been included.  */
   without worrying about whether the 64 bit ABI has been included.  */
 
 
void
void
bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
                                Elf64_Internal_RegInfo *in)
                                Elf64_Internal_RegInfo *in)
{
{
  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
  in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
  in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
  in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
  in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
  in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
  in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
  in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
  in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
  in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
}
}
 
 
void
void
bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
                                 Elf64_External_RegInfo *ex)
                                 Elf64_External_RegInfo *ex)
{
{
  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
  H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
  H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
  H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
  H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
  H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
  H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
  H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
  H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
  H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
}
}
 
 
/* Swap in an options header.  */
/* Swap in an options header.  */
 
 
void
void
bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
                              Elf_Internal_Options *in)
                              Elf_Internal_Options *in)
{
{
  in->kind = H_GET_8 (abfd, ex->kind);
  in->kind = H_GET_8 (abfd, ex->kind);
  in->size = H_GET_8 (abfd, ex->size);
  in->size = H_GET_8 (abfd, ex->size);
  in->section = H_GET_16 (abfd, ex->section);
  in->section = H_GET_16 (abfd, ex->section);
  in->info = H_GET_32 (abfd, ex->info);
  in->info = H_GET_32 (abfd, ex->info);
}
}
 
 
/* Swap out an options header.  */
/* Swap out an options header.  */
 
 
void
void
bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
                               Elf_External_Options *ex)
                               Elf_External_Options *ex)
{
{
  H_PUT_8 (abfd, in->kind, ex->kind);
  H_PUT_8 (abfd, in->kind, ex->kind);
  H_PUT_8 (abfd, in->size, ex->size);
  H_PUT_8 (abfd, in->size, ex->size);
  H_PUT_16 (abfd, in->section, ex->section);
  H_PUT_16 (abfd, in->section, ex->section);
  H_PUT_32 (abfd, in->info, ex->info);
  H_PUT_32 (abfd, in->info, ex->info);
}
}


/* This function is called via qsort() to sort the dynamic relocation
/* This function is called via qsort() to sort the dynamic relocation
   entries by increasing r_symndx value.  */
   entries by increasing r_symndx value.  */
 
 
static int
static int
sort_dynamic_relocs (const void *arg1, const void *arg2)
sort_dynamic_relocs (const void *arg1, const void *arg2)
{
{
  Elf_Internal_Rela int_reloc1;
  Elf_Internal_Rela int_reloc1;
  Elf_Internal_Rela int_reloc2;
  Elf_Internal_Rela int_reloc2;
  int diff;
  int diff;
 
 
  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
  bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
 
 
  diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
  diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
  if (diff != 0)
  if (diff != 0)
    return diff;
    return diff;
 
 
  if (int_reloc1.r_offset < int_reloc2.r_offset)
  if (int_reloc1.r_offset < int_reloc2.r_offset)
    return -1;
    return -1;
  if (int_reloc1.r_offset > int_reloc2.r_offset)
  if (int_reloc1.r_offset > int_reloc2.r_offset)
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
/* Like sort_dynamic_relocs, but used for elf64 relocations.  */
/* Like sort_dynamic_relocs, but used for elf64 relocations.  */
 
 
static int
static int
sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
                        const void *arg2 ATTRIBUTE_UNUSED)
                        const void *arg2 ATTRIBUTE_UNUSED)
{
{
#ifdef BFD64
#ifdef BFD64
  Elf_Internal_Rela int_reloc1[3];
  Elf_Internal_Rela int_reloc1[3];
  Elf_Internal_Rela int_reloc2[3];
  Elf_Internal_Rela int_reloc2[3];
 
 
  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
    (reldyn_sorting_bfd, arg1, int_reloc1);
    (reldyn_sorting_bfd, arg1, int_reloc1);
  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
  (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
    (reldyn_sorting_bfd, arg2, int_reloc2);
    (reldyn_sorting_bfd, arg2, int_reloc2);
 
 
  if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
  if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
    return -1;
    return -1;
  if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
  if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
    return 1;
    return 1;
 
 
  if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
  if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
    return -1;
    return -1;
  if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
  if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
    return 1;
    return 1;
  return 0;
  return 0;
#else
#else
  abort ();
  abort ();
#endif
#endif
}
}
 
 
 
 
/* This routine is used to write out ECOFF debugging external symbol
/* This routine is used to write out ECOFF debugging external symbol
   information.  It is called via mips_elf_link_hash_traverse.  The
   information.  It is called via mips_elf_link_hash_traverse.  The
   ECOFF external symbol information must match the ELF external
   ECOFF external symbol information must match the ELF external
   symbol information.  Unfortunately, at this point we don't know
   symbol information.  Unfortunately, at this point we don't know
   whether a symbol is required by reloc information, so the two
   whether a symbol is required by reloc information, so the two
   tables may wind up being different.  We must sort out the external
   tables may wind up being different.  We must sort out the external
   symbol information before we can set the final size of the .mdebug
   symbol information before we can set the final size of the .mdebug
   section, and we must set the size of the .mdebug section before we
   section, and we must set the size of the .mdebug section before we
   can relocate any sections, and we can't know which symbols are
   can relocate any sections, and we can't know which symbols are
   required by relocation until we relocate the sections.
   required by relocation until we relocate the sections.
   Fortunately, it is relatively unlikely that any symbol will be
   Fortunately, it is relatively unlikely that any symbol will be
   stripped but required by a reloc.  In particular, it can not happen
   stripped but required by a reloc.  In particular, it can not happen
   when generating a final executable.  */
   when generating a final executable.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
{
{
  struct extsym_info *einfo = data;
  struct extsym_info *einfo = data;
  bfd_boolean strip;
  bfd_boolean strip;
  asection *sec, *output_section;
  asection *sec, *output_section;
 
 
  if (h->root.indx == -2)
  if (h->root.indx == -2)
    strip = FALSE;
    strip = FALSE;
  else if ((h->root.def_dynamic
  else if ((h->root.def_dynamic
            || h->root.ref_dynamic
            || h->root.ref_dynamic
            || h->root.type == bfd_link_hash_new)
            || h->root.type == bfd_link_hash_new)
           && !h->root.def_regular
           && !h->root.def_regular
           && !h->root.ref_regular)
           && !h->root.ref_regular)
    strip = TRUE;
    strip = TRUE;
  else if (einfo->info->strip == strip_all
  else if (einfo->info->strip == strip_all
           || (einfo->info->strip == strip_some
           || (einfo->info->strip == strip_some
               && bfd_hash_lookup (einfo->info->keep_hash,
               && bfd_hash_lookup (einfo->info->keep_hash,
                                   h->root.root.root.string,
                                   h->root.root.root.string,
                                   FALSE, FALSE) == NULL))
                                   FALSE, FALSE) == NULL))
    strip = TRUE;
    strip = TRUE;
  else
  else
    strip = FALSE;
    strip = FALSE;
 
 
  if (strip)
  if (strip)
    return TRUE;
    return TRUE;
 
 
  if (h->esym.ifd == -2)
  if (h->esym.ifd == -2)
    {
    {
      h->esym.jmptbl = 0;
      h->esym.jmptbl = 0;
      h->esym.cobol_main = 0;
      h->esym.cobol_main = 0;
      h->esym.weakext = 0;
      h->esym.weakext = 0;
      h->esym.reserved = 0;
      h->esym.reserved = 0;
      h->esym.ifd = ifdNil;
      h->esym.ifd = ifdNil;
      h->esym.asym.value = 0;
      h->esym.asym.value = 0;
      h->esym.asym.st = stGlobal;
      h->esym.asym.st = stGlobal;
 
 
      if (h->root.root.type == bfd_link_hash_undefined
      if (h->root.root.type == bfd_link_hash_undefined
          || h->root.root.type == bfd_link_hash_undefweak)
          || h->root.root.type == bfd_link_hash_undefweak)
        {
        {
          const char *name;
          const char *name;
 
 
          /* Use undefined class.  Also, set class and type for some
          /* Use undefined class.  Also, set class and type for some
             special symbols.  */
             special symbols.  */
          name = h->root.root.root.string;
          name = h->root.root.root.string;
          if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
          if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
              || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
              || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
            {
            {
              h->esym.asym.sc = scData;
              h->esym.asym.sc = scData;
              h->esym.asym.st = stLabel;
              h->esym.asym.st = stLabel;
              h->esym.asym.value = 0;
              h->esym.asym.value = 0;
            }
            }
          else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
          else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
            {
            {
              h->esym.asym.sc = scAbs;
              h->esym.asym.sc = scAbs;
              h->esym.asym.st = stLabel;
              h->esym.asym.st = stLabel;
              h->esym.asym.value =
              h->esym.asym.value =
                mips_elf_hash_table (einfo->info)->procedure_count;
                mips_elf_hash_table (einfo->info)->procedure_count;
            }
            }
          else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
          else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
            {
            {
              h->esym.asym.sc = scAbs;
              h->esym.asym.sc = scAbs;
              h->esym.asym.st = stLabel;
              h->esym.asym.st = stLabel;
              h->esym.asym.value = elf_gp (einfo->abfd);
              h->esym.asym.value = elf_gp (einfo->abfd);
            }
            }
          else
          else
            h->esym.asym.sc = scUndefined;
            h->esym.asym.sc = scUndefined;
        }
        }
      else if (h->root.root.type != bfd_link_hash_defined
      else if (h->root.root.type != bfd_link_hash_defined
          && h->root.root.type != bfd_link_hash_defweak)
          && h->root.root.type != bfd_link_hash_defweak)
        h->esym.asym.sc = scAbs;
        h->esym.asym.sc = scAbs;
      else
      else
        {
        {
          const char *name;
          const char *name;
 
 
          sec = h->root.root.u.def.section;
          sec = h->root.root.u.def.section;
          output_section = sec->output_section;
          output_section = sec->output_section;
 
 
          /* When making a shared library and symbol h is the one from
          /* When making a shared library and symbol h is the one from
             the another shared library, OUTPUT_SECTION may be null.  */
             the another shared library, OUTPUT_SECTION may be null.  */
          if (output_section == NULL)
          if (output_section == NULL)
            h->esym.asym.sc = scUndefined;
            h->esym.asym.sc = scUndefined;
          else
          else
            {
            {
              name = bfd_section_name (output_section->owner, output_section);
              name = bfd_section_name (output_section->owner, output_section);
 
 
              if (strcmp (name, ".text") == 0)
              if (strcmp (name, ".text") == 0)
                h->esym.asym.sc = scText;
                h->esym.asym.sc = scText;
              else if (strcmp (name, ".data") == 0)
              else if (strcmp (name, ".data") == 0)
                h->esym.asym.sc = scData;
                h->esym.asym.sc = scData;
              else if (strcmp (name, ".sdata") == 0)
              else if (strcmp (name, ".sdata") == 0)
                h->esym.asym.sc = scSData;
                h->esym.asym.sc = scSData;
              else if (strcmp (name, ".rodata") == 0
              else if (strcmp (name, ".rodata") == 0
                       || strcmp (name, ".rdata") == 0)
                       || strcmp (name, ".rdata") == 0)
                h->esym.asym.sc = scRData;
                h->esym.asym.sc = scRData;
              else if (strcmp (name, ".bss") == 0)
              else if (strcmp (name, ".bss") == 0)
                h->esym.asym.sc = scBss;
                h->esym.asym.sc = scBss;
              else if (strcmp (name, ".sbss") == 0)
              else if (strcmp (name, ".sbss") == 0)
                h->esym.asym.sc = scSBss;
                h->esym.asym.sc = scSBss;
              else if (strcmp (name, ".init") == 0)
              else if (strcmp (name, ".init") == 0)
                h->esym.asym.sc = scInit;
                h->esym.asym.sc = scInit;
              else if (strcmp (name, ".fini") == 0)
              else if (strcmp (name, ".fini") == 0)
                h->esym.asym.sc = scFini;
                h->esym.asym.sc = scFini;
              else
              else
                h->esym.asym.sc = scAbs;
                h->esym.asym.sc = scAbs;
            }
            }
        }
        }
 
 
      h->esym.asym.reserved = 0;
      h->esym.asym.reserved = 0;
      h->esym.asym.index = indexNil;
      h->esym.asym.index = indexNil;
    }
    }
 
 
  if (h->root.root.type == bfd_link_hash_common)
  if (h->root.root.type == bfd_link_hash_common)
    h->esym.asym.value = h->root.root.u.c.size;
    h->esym.asym.value = h->root.root.u.c.size;
  else if (h->root.root.type == bfd_link_hash_defined
  else if (h->root.root.type == bfd_link_hash_defined
           || h->root.root.type == bfd_link_hash_defweak)
           || h->root.root.type == bfd_link_hash_defweak)
    {
    {
      if (h->esym.asym.sc == scCommon)
      if (h->esym.asym.sc == scCommon)
        h->esym.asym.sc = scBss;
        h->esym.asym.sc = scBss;
      else if (h->esym.asym.sc == scSCommon)
      else if (h->esym.asym.sc == scSCommon)
        h->esym.asym.sc = scSBss;
        h->esym.asym.sc = scSBss;
 
 
      sec = h->root.root.u.def.section;
      sec = h->root.root.u.def.section;
      output_section = sec->output_section;
      output_section = sec->output_section;
      if (output_section != NULL)
      if (output_section != NULL)
        h->esym.asym.value = (h->root.root.u.def.value
        h->esym.asym.value = (h->root.root.u.def.value
                              + sec->output_offset
                              + sec->output_offset
                              + output_section->vma);
                              + output_section->vma);
      else
      else
        h->esym.asym.value = 0;
        h->esym.asym.value = 0;
    }
    }
  else
  else
    {
    {
      struct mips_elf_link_hash_entry *hd = h;
      struct mips_elf_link_hash_entry *hd = h;
 
 
      while (hd->root.root.type == bfd_link_hash_indirect)
      while (hd->root.root.type == bfd_link_hash_indirect)
        hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
        hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
 
 
      if (hd->needs_lazy_stub)
      if (hd->needs_lazy_stub)
        {
        {
          /* Set type and value for a symbol with a function stub.  */
          /* Set type and value for a symbol with a function stub.  */
          h->esym.asym.st = stProc;
          h->esym.asym.st = stProc;
          sec = hd->root.root.u.def.section;
          sec = hd->root.root.u.def.section;
          if (sec == NULL)
          if (sec == NULL)
            h->esym.asym.value = 0;
            h->esym.asym.value = 0;
          else
          else
            {
            {
              output_section = sec->output_section;
              output_section = sec->output_section;
              if (output_section != NULL)
              if (output_section != NULL)
                h->esym.asym.value = (hd->root.plt.offset
                h->esym.asym.value = (hd->root.plt.offset
                                      + sec->output_offset
                                      + sec->output_offset
                                      + output_section->vma);
                                      + output_section->vma);
              else
              else
                h->esym.asym.value = 0;
                h->esym.asym.value = 0;
            }
            }
        }
        }
    }
    }
 
 
  if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
  if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
                                      h->root.root.root.string,
                                      h->root.root.root.string,
                                      &h->esym))
                                      &h->esym))
    {
    {
      einfo->failed = TRUE;
      einfo->failed = TRUE;
      return FALSE;
      return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* A comparison routine used to sort .gptab entries.  */
/* A comparison routine used to sort .gptab entries.  */
 
 
static int
static int
gptab_compare (const void *p1, const void *p2)
gptab_compare (const void *p1, const void *p2)
{
{
  const Elf32_gptab *a1 = p1;
  const Elf32_gptab *a1 = p1;
  const Elf32_gptab *a2 = p2;
  const Elf32_gptab *a2 = p2;
 
 
  return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
  return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
}
}


/* Functions to manage the got entry hash table.  */
/* Functions to manage the got entry hash table.  */
 
 
/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
   hash number.  */
   hash number.  */
 
 
static INLINE hashval_t
static INLINE hashval_t
mips_elf_hash_bfd_vma (bfd_vma addr)
mips_elf_hash_bfd_vma (bfd_vma addr)
{
{
#ifdef BFD64
#ifdef BFD64
  return addr + (addr >> 32);
  return addr + (addr >> 32);
#else
#else
  return addr;
  return addr;
#endif
#endif
}
}
 
 
/* got_entries only match if they're identical, except for gotidx, so
/* got_entries only match if they're identical, except for gotidx, so
   use all fields to compute the hash, and compare the appropriate
   use all fields to compute the hash, and compare the appropriate
   union members.  */
   union members.  */
 
 
static hashval_t
static hashval_t
mips_elf_got_entry_hash (const void *entry_)
mips_elf_got_entry_hash (const void *entry_)
{
{
  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
 
 
  return entry->symndx
  return entry->symndx
    + ((entry->tls_type & GOT_TLS_LDM) << 17)
    + ((entry->tls_type & GOT_TLS_LDM) << 17)
    + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
    + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
       : entry->abfd->id
       : entry->abfd->id
         + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
         + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
            : entry->d.h->root.root.root.hash));
            : entry->d.h->root.root.root.hash));
}
}
 
 
static int
static int
mips_elf_got_entry_eq (const void *entry1, const void *entry2)
mips_elf_got_entry_eq (const void *entry1, const void *entry2)
{
{
  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
 
 
  /* An LDM entry can only match another LDM entry.  */
  /* An LDM entry can only match another LDM entry.  */
  if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
  if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
    return 0;
    return 0;
 
 
  return e1->abfd == e2->abfd && e1->symndx == e2->symndx
  return e1->abfd == e2->abfd && e1->symndx == e2->symndx
    && (! e1->abfd ? e1->d.address == e2->d.address
    && (! e1->abfd ? e1->d.address == e2->d.address
        : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
        : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
        : e1->d.h == e2->d.h);
        : e1->d.h == e2->d.h);
}
}
 
 
/* multi_got_entries are still a match in the case of global objects,
/* multi_got_entries are still a match in the case of global objects,
   even if the input bfd in which they're referenced differs, so the
   even if the input bfd in which they're referenced differs, so the
   hash computation and compare functions are adjusted
   hash computation and compare functions are adjusted
   accordingly.  */
   accordingly.  */
 
 
static hashval_t
static hashval_t
mips_elf_multi_got_entry_hash (const void *entry_)
mips_elf_multi_got_entry_hash (const void *entry_)
{
{
  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
  const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
 
 
  return entry->symndx
  return entry->symndx
    + (! entry->abfd
    + (! entry->abfd
       ? mips_elf_hash_bfd_vma (entry->d.address)
       ? mips_elf_hash_bfd_vma (entry->d.address)
       : entry->symndx >= 0
       : entry->symndx >= 0
       ? ((entry->tls_type & GOT_TLS_LDM)
       ? ((entry->tls_type & GOT_TLS_LDM)
          ? (GOT_TLS_LDM << 17)
          ? (GOT_TLS_LDM << 17)
          : (entry->abfd->id
          : (entry->abfd->id
             + mips_elf_hash_bfd_vma (entry->d.addend)))
             + mips_elf_hash_bfd_vma (entry->d.addend)))
       : entry->d.h->root.root.root.hash);
       : entry->d.h->root.root.root.hash);
}
}
 
 
static int
static int
mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
{
{
  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
  const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
  const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
 
 
  /* Any two LDM entries match.  */
  /* Any two LDM entries match.  */
  if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
  if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
    return 1;
    return 1;
 
 
  /* Nothing else matches an LDM entry.  */
  /* Nothing else matches an LDM entry.  */
  if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
  if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
    return 0;
    return 0;
 
 
  return e1->symndx == e2->symndx
  return e1->symndx == e2->symndx
    && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
    && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
        : e1->abfd == NULL || e2->abfd == NULL
        : e1->abfd == NULL || e2->abfd == NULL
        ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
        ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
        : e1->d.h == e2->d.h);
        : e1->d.h == e2->d.h);
}
}
 
 
static hashval_t
static hashval_t
mips_got_page_entry_hash (const void *entry_)
mips_got_page_entry_hash (const void *entry_)
{
{
  const struct mips_got_page_entry *entry;
  const struct mips_got_page_entry *entry;
 
 
  entry = (const struct mips_got_page_entry *) entry_;
  entry = (const struct mips_got_page_entry *) entry_;
  return entry->abfd->id + entry->symndx;
  return entry->abfd->id + entry->symndx;
}
}
 
 
static int
static int
mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
{
{
  const struct mips_got_page_entry *entry1, *entry2;
  const struct mips_got_page_entry *entry1, *entry2;
 
 
  entry1 = (const struct mips_got_page_entry *) entry1_;
  entry1 = (const struct mips_got_page_entry *) entry1_;
  entry2 = (const struct mips_got_page_entry *) entry2_;
  entry2 = (const struct mips_got_page_entry *) entry2_;
  return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
  return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
}
}


/* Return the dynamic relocation section.  If it doesn't exist, try to
/* Return the dynamic relocation section.  If it doesn't exist, try to
   create a new it if CREATE_P, otherwise return NULL.  Also return NULL
   create a new it if CREATE_P, otherwise return NULL.  Also return NULL
   if creation fails.  */
   if creation fails.  */
 
 
static asection *
static asection *
mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
{
{
  const char *dname;
  const char *dname;
  asection *sreloc;
  asection *sreloc;
  bfd *dynobj;
  bfd *dynobj;
 
 
  dname = MIPS_ELF_REL_DYN_NAME (info);
  dname = MIPS_ELF_REL_DYN_NAME (info);
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  sreloc = bfd_get_section_by_name (dynobj, dname);
  sreloc = bfd_get_section_by_name (dynobj, dname);
  if (sreloc == NULL && create_p)
  if (sreloc == NULL && create_p)
    {
    {
      sreloc = bfd_make_section_with_flags (dynobj, dname,
      sreloc = bfd_make_section_with_flags (dynobj, dname,
                                            (SEC_ALLOC
                                            (SEC_ALLOC
                                             | SEC_LOAD
                                             | SEC_LOAD
                                             | SEC_HAS_CONTENTS
                                             | SEC_HAS_CONTENTS
                                             | SEC_IN_MEMORY
                                             | SEC_IN_MEMORY
                                             | SEC_LINKER_CREATED
                                             | SEC_LINKER_CREATED
                                             | SEC_READONLY));
                                             | SEC_READONLY));
      if (sreloc == NULL
      if (sreloc == NULL
          || ! bfd_set_section_alignment (dynobj, sreloc,
          || ! bfd_set_section_alignment (dynobj, sreloc,
                                          MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
                                          MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
        return NULL;
        return NULL;
    }
    }
  return sreloc;
  return sreloc;
}
}
 
 
/* Count the number of relocations needed for a TLS GOT entry, with
/* Count the number of relocations needed for a TLS GOT entry, with
   access types from TLS_TYPE, and symbol H (or a local symbol if H
   access types from TLS_TYPE, and symbol H (or a local symbol if H
   is NULL).  */
   is NULL).  */
 
 
static int
static int
mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
                     struct elf_link_hash_entry *h)
                     struct elf_link_hash_entry *h)
{
{
  int indx = 0;
  int indx = 0;
  int ret = 0;
  int ret = 0;
  bfd_boolean need_relocs = FALSE;
  bfd_boolean need_relocs = FALSE;
  bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
  bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
 
 
  if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
  if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
      && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
      && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
    indx = h->dynindx;
    indx = h->dynindx;
 
 
  if ((info->shared || indx != 0)
  if ((info->shared || indx != 0)
      && (h == NULL
      && (h == NULL
          || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
          || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
          || h->root.type != bfd_link_hash_undefweak))
          || h->root.type != bfd_link_hash_undefweak))
    need_relocs = TRUE;
    need_relocs = TRUE;
 
 
  if (!need_relocs)
  if (!need_relocs)
    return FALSE;
    return FALSE;
 
 
  if (tls_type & GOT_TLS_GD)
  if (tls_type & GOT_TLS_GD)
    {
    {
      ret++;
      ret++;
      if (indx != 0)
      if (indx != 0)
        ret++;
        ret++;
    }
    }
 
 
  if (tls_type & GOT_TLS_IE)
  if (tls_type & GOT_TLS_IE)
    ret++;
    ret++;
 
 
  if ((tls_type & GOT_TLS_LDM) && info->shared)
  if ((tls_type & GOT_TLS_LDM) && info->shared)
    ret++;
    ret++;
 
 
  return ret;
  return ret;
}
}
 
 
/* Count the number of TLS relocations required for the GOT entry in
/* Count the number of TLS relocations required for the GOT entry in
   ARG1, if it describes a local symbol.  */
   ARG1, if it describes a local symbol.  */
 
 
static int
static int
mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
{
{
  struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
  struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
  struct mips_elf_count_tls_arg *arg = arg2;
  struct mips_elf_count_tls_arg *arg = arg2;
 
 
  if (entry->abfd != NULL && entry->symndx != -1)
  if (entry->abfd != NULL && entry->symndx != -1)
    arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
    arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
 
 
  return 1;
  return 1;
}
}
 
 
/* Count the number of TLS GOT entries required for the global (or
/* Count the number of TLS GOT entries required for the global (or
   forced-local) symbol in ARG1.  */
   forced-local) symbol in ARG1.  */
 
 
static int
static int
mips_elf_count_global_tls_entries (void *arg1, void *arg2)
mips_elf_count_global_tls_entries (void *arg1, void *arg2)
{
{
  struct mips_elf_link_hash_entry *hm
  struct mips_elf_link_hash_entry *hm
    = (struct mips_elf_link_hash_entry *) arg1;
    = (struct mips_elf_link_hash_entry *) arg1;
  struct mips_elf_count_tls_arg *arg = arg2;
  struct mips_elf_count_tls_arg *arg = arg2;
 
 
  if (hm->tls_type & GOT_TLS_GD)
  if (hm->tls_type & GOT_TLS_GD)
    arg->needed += 2;
    arg->needed += 2;
  if (hm->tls_type & GOT_TLS_IE)
  if (hm->tls_type & GOT_TLS_IE)
    arg->needed += 1;
    arg->needed += 1;
 
 
  return 1;
  return 1;
}
}
 
 
/* Count the number of TLS relocations required for the global (or
/* Count the number of TLS relocations required for the global (or
   forced-local) symbol in ARG1.  */
   forced-local) symbol in ARG1.  */
 
 
static int
static int
mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
{
{
  struct mips_elf_link_hash_entry *hm
  struct mips_elf_link_hash_entry *hm
    = (struct mips_elf_link_hash_entry *) arg1;
    = (struct mips_elf_link_hash_entry *) arg1;
  struct mips_elf_count_tls_arg *arg = arg2;
  struct mips_elf_count_tls_arg *arg = arg2;
 
 
  arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
  arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
 
 
  return 1;
  return 1;
}
}
 
 
/* Output a simple dynamic relocation into SRELOC.  */
/* Output a simple dynamic relocation into SRELOC.  */
 
 
static void
static void
mips_elf_output_dynamic_relocation (bfd *output_bfd,
mips_elf_output_dynamic_relocation (bfd *output_bfd,
                                    asection *sreloc,
                                    asection *sreloc,
                                    unsigned long reloc_index,
                                    unsigned long reloc_index,
                                    unsigned long indx,
                                    unsigned long indx,
                                    int r_type,
                                    int r_type,
                                    bfd_vma offset)
                                    bfd_vma offset)
{
{
  Elf_Internal_Rela rel[3];
  Elf_Internal_Rela rel[3];
 
 
  memset (rel, 0, sizeof (rel));
  memset (rel, 0, sizeof (rel));
 
 
  rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
  rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
 
 
  if (ABI_64_P (output_bfd))
  if (ABI_64_P (output_bfd))
    {
    {
      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
        (output_bfd, &rel[0],
        (output_bfd, &rel[0],
         (sreloc->contents
         (sreloc->contents
          + reloc_index * sizeof (Elf64_Mips_External_Rel)));
          + reloc_index * sizeof (Elf64_Mips_External_Rel)));
    }
    }
  else
  else
    bfd_elf32_swap_reloc_out
    bfd_elf32_swap_reloc_out
      (output_bfd, &rel[0],
      (output_bfd, &rel[0],
       (sreloc->contents
       (sreloc->contents
        + reloc_index * sizeof (Elf32_External_Rel)));
        + reloc_index * sizeof (Elf32_External_Rel)));
}
}
 
 
/* Initialize a set of TLS GOT entries for one symbol.  */
/* Initialize a set of TLS GOT entries for one symbol.  */
 
 
static void
static void
mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
                               unsigned char *tls_type_p,
                               unsigned char *tls_type_p,
                               struct bfd_link_info *info,
                               struct bfd_link_info *info,
                               struct mips_elf_link_hash_entry *h,
                               struct mips_elf_link_hash_entry *h,
                               bfd_vma value)
                               bfd_vma value)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  int indx;
  int indx;
  asection *sreloc, *sgot;
  asection *sreloc, *sgot;
  bfd_vma offset, offset2;
  bfd_vma offset, offset2;
  bfd_boolean need_relocs = FALSE;
  bfd_boolean need_relocs = FALSE;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  if (htab == NULL)
  if (htab == NULL)
    return;
    return;
 
 
  sgot = htab->sgot;
  sgot = htab->sgot;
 
 
  indx = 0;
  indx = 0;
  if (h != NULL)
  if (h != NULL)
    {
    {
      bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
      bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
 
 
      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
      if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
          && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
          && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
        indx = h->root.dynindx;
        indx = h->root.dynindx;
    }
    }
 
 
  if (*tls_type_p & GOT_TLS_DONE)
  if (*tls_type_p & GOT_TLS_DONE)
    return;
    return;
 
 
  if ((info->shared || indx != 0)
  if ((info->shared || indx != 0)
      && (h == NULL
      && (h == NULL
          || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
          || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
          || h->root.type != bfd_link_hash_undefweak))
          || h->root.type != bfd_link_hash_undefweak))
    need_relocs = TRUE;
    need_relocs = TRUE;
 
 
  /* MINUS_ONE means the symbol is not defined in this object.  It may not
  /* MINUS_ONE means the symbol is not defined in this object.  It may not
     be defined at all; assume that the value doesn't matter in that
     be defined at all; assume that the value doesn't matter in that
     case.  Otherwise complain if we would use the value.  */
     case.  Otherwise complain if we would use the value.  */
  BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
  BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
              || h->root.root.type == bfd_link_hash_undefweak);
              || h->root.root.type == bfd_link_hash_undefweak);
 
 
  /* Emit necessary relocations.  */
  /* Emit necessary relocations.  */
  sreloc = mips_elf_rel_dyn_section (info, FALSE);
  sreloc = mips_elf_rel_dyn_section (info, FALSE);
 
 
  /* General Dynamic.  */
  /* General Dynamic.  */
  if (*tls_type_p & GOT_TLS_GD)
  if (*tls_type_p & GOT_TLS_GD)
    {
    {
      offset = got_offset;
      offset = got_offset;
      offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
      offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
 
 
      if (need_relocs)
      if (need_relocs)
        {
        {
          mips_elf_output_dynamic_relocation
          mips_elf_output_dynamic_relocation
            (abfd, sreloc, sreloc->reloc_count++, indx,
            (abfd, sreloc, sreloc->reloc_count++, indx,
             ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
             ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
             sgot->output_offset + sgot->output_section->vma + offset);
             sgot->output_offset + sgot->output_section->vma + offset);
 
 
          if (indx)
          if (indx)
            mips_elf_output_dynamic_relocation
            mips_elf_output_dynamic_relocation
              (abfd, sreloc, sreloc->reloc_count++, indx,
              (abfd, sreloc, sreloc->reloc_count++, indx,
               ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
               ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
               sgot->output_offset + sgot->output_section->vma + offset2);
               sgot->output_offset + sgot->output_section->vma + offset2);
          else
          else
            MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
            MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
                               sgot->contents + offset2);
                               sgot->contents + offset2);
        }
        }
      else
      else
        {
        {
          MIPS_ELF_PUT_WORD (abfd, 1,
          MIPS_ELF_PUT_WORD (abfd, 1,
                             sgot->contents + offset);
                             sgot->contents + offset);
          MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
          MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
                             sgot->contents + offset2);
                             sgot->contents + offset2);
        }
        }
 
 
      got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
      got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
    }
    }
 
 
  /* Initial Exec model.  */
  /* Initial Exec model.  */
  if (*tls_type_p & GOT_TLS_IE)
  if (*tls_type_p & GOT_TLS_IE)
    {
    {
      offset = got_offset;
      offset = got_offset;
 
 
      if (need_relocs)
      if (need_relocs)
        {
        {
          if (indx == 0)
          if (indx == 0)
            MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
            MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
                               sgot->contents + offset);
                               sgot->contents + offset);
          else
          else
            MIPS_ELF_PUT_WORD (abfd, 0,
            MIPS_ELF_PUT_WORD (abfd, 0,
                               sgot->contents + offset);
                               sgot->contents + offset);
 
 
          mips_elf_output_dynamic_relocation
          mips_elf_output_dynamic_relocation
            (abfd, sreloc, sreloc->reloc_count++, indx,
            (abfd, sreloc, sreloc->reloc_count++, indx,
             ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
             ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
             sgot->output_offset + sgot->output_section->vma + offset);
             sgot->output_offset + sgot->output_section->vma + offset);
        }
        }
      else
      else
        MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
        MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
                           sgot->contents + offset);
                           sgot->contents + offset);
    }
    }
 
 
  if (*tls_type_p & GOT_TLS_LDM)
  if (*tls_type_p & GOT_TLS_LDM)
    {
    {
      /* The initial offset is zero, and the LD offsets will include the
      /* The initial offset is zero, and the LD offsets will include the
         bias by DTP_OFFSET.  */
         bias by DTP_OFFSET.  */
      MIPS_ELF_PUT_WORD (abfd, 0,
      MIPS_ELF_PUT_WORD (abfd, 0,
                         sgot->contents + got_offset
                         sgot->contents + got_offset
                         + MIPS_ELF_GOT_SIZE (abfd));
                         + MIPS_ELF_GOT_SIZE (abfd));
 
 
      if (!info->shared)
      if (!info->shared)
        MIPS_ELF_PUT_WORD (abfd, 1,
        MIPS_ELF_PUT_WORD (abfd, 1,
                           sgot->contents + got_offset);
                           sgot->contents + got_offset);
      else
      else
        mips_elf_output_dynamic_relocation
        mips_elf_output_dynamic_relocation
          (abfd, sreloc, sreloc->reloc_count++, indx,
          (abfd, sreloc, sreloc->reloc_count++, indx,
           ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
           ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
           sgot->output_offset + sgot->output_section->vma + got_offset);
           sgot->output_offset + sgot->output_section->vma + got_offset);
    }
    }
 
 
  *tls_type_p |= GOT_TLS_DONE;
  *tls_type_p |= GOT_TLS_DONE;
}
}
 
 
/* Return the GOT index to use for a relocation of type R_TYPE against
/* Return the GOT index to use for a relocation of type R_TYPE against
   a symbol accessed using TLS_TYPE models.  The GOT entries for this
   a symbol accessed using TLS_TYPE models.  The GOT entries for this
   symbol in this GOT start at GOT_INDEX.  This function initializes the
   symbol in this GOT start at GOT_INDEX.  This function initializes the
   GOT entries and corresponding relocations.  */
   GOT entries and corresponding relocations.  */
 
 
static bfd_vma
static bfd_vma
mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
                    int r_type, struct bfd_link_info *info,
                    int r_type, struct bfd_link_info *info,
                    struct mips_elf_link_hash_entry *h, bfd_vma symbol)
                    struct mips_elf_link_hash_entry *h, bfd_vma symbol)
{
{
  BFD_ASSERT (tls_gottprel_reloc_p (r_type)
  BFD_ASSERT (tls_gottprel_reloc_p (r_type)
              || tls_gd_reloc_p (r_type)
              || tls_gd_reloc_p (r_type)
              || tls_ldm_reloc_p (r_type));
              || tls_ldm_reloc_p (r_type));
 
 
  mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
  mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
 
 
  if (tls_gottprel_reloc_p (r_type))
  if (tls_gottprel_reloc_p (r_type))
    {
    {
      BFD_ASSERT (*tls_type & GOT_TLS_IE);
      BFD_ASSERT (*tls_type & GOT_TLS_IE);
      if (*tls_type & GOT_TLS_GD)
      if (*tls_type & GOT_TLS_GD)
        return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
        return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
      else
      else
        return got_index;
        return got_index;
    }
    }
 
 
  if (tls_gd_reloc_p (r_type))
  if (tls_gd_reloc_p (r_type))
    {
    {
      BFD_ASSERT (*tls_type & GOT_TLS_GD);
      BFD_ASSERT (*tls_type & GOT_TLS_GD);
      return got_index;
      return got_index;
    }
    }
 
 
  if (tls_ldm_reloc_p (r_type))
  if (tls_ldm_reloc_p (r_type))
    {
    {
      BFD_ASSERT (*tls_type & GOT_TLS_LDM);
      BFD_ASSERT (*tls_type & GOT_TLS_LDM);
      return got_index;
      return got_index;
    }
    }
 
 
  return got_index;
  return got_index;
}
}
 
 
/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
   for global symbol H.  .got.plt comes before the GOT, so the offset
   for global symbol H.  .got.plt comes before the GOT, so the offset
   will be negative.  */
   will be negative.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_gotplt_index (struct bfd_link_info *info,
mips_elf_gotplt_index (struct bfd_link_info *info,
                       struct elf_link_hash_entry *h)
                       struct elf_link_hash_entry *h)
{
{
  bfd_vma plt_index, got_address, got_value;
  bfd_vma plt_index, got_address, got_value;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
  BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
 
 
  /* This function only works for VxWorks, because a non-VxWorks .got.plt
  /* This function only works for VxWorks, because a non-VxWorks .got.plt
     section starts with reserved entries.  */
     section starts with reserved entries.  */
  BFD_ASSERT (htab->is_vxworks);
  BFD_ASSERT (htab->is_vxworks);
 
 
  /* Calculate the index of the symbol's PLT entry.  */
  /* Calculate the index of the symbol's PLT entry.  */
  plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
  plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
 
 
  /* Calculate the address of the associated .got.plt entry.  */
  /* Calculate the address of the associated .got.plt entry.  */
  got_address = (htab->sgotplt->output_section->vma
  got_address = (htab->sgotplt->output_section->vma
                 + htab->sgotplt->output_offset
                 + htab->sgotplt->output_offset
                 + plt_index * 4);
                 + plt_index * 4);
 
 
  /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
  /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
  got_value = (htab->root.hgot->root.u.def.section->output_section->vma
  got_value = (htab->root.hgot->root.u.def.section->output_section->vma
               + htab->root.hgot->root.u.def.section->output_offset
               + htab->root.hgot->root.u.def.section->output_offset
               + htab->root.hgot->root.u.def.value);
               + htab->root.hgot->root.u.def.value);
 
 
  return got_address - got_value;
  return got_address - got_value;
}
}
 
 
/* Return the GOT offset for address VALUE.   If there is not yet a GOT
/* Return the GOT offset for address VALUE.   If there is not yet a GOT
   entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
   entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
   create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
   create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
   offset can be found.  */
   offset can be found.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
                          bfd_vma value, unsigned long r_symndx,
                          bfd_vma value, unsigned long r_symndx,
                          struct mips_elf_link_hash_entry *h, int r_type)
                          struct mips_elf_link_hash_entry *h, int r_type)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_got_entry *entry;
  struct mips_got_entry *entry;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
                                           r_symndx, h, r_type);
                                           r_symndx, h, r_type);
  if (!entry)
  if (!entry)
    return MINUS_ONE;
    return MINUS_ONE;
 
 
  if (TLS_RELOC_P (r_type))
  if (TLS_RELOC_P (r_type))
    {
    {
      if (entry->symndx == -1 && htab->got_info->next == NULL)
      if (entry->symndx == -1 && htab->got_info->next == NULL)
        /* A type (3) entry in the single-GOT case.  We use the symbol's
        /* A type (3) entry in the single-GOT case.  We use the symbol's
           hash table entry to track the index.  */
           hash table entry to track the index.  */
        return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
        return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
                                   r_type, info, h, value);
                                   r_type, info, h, value);
      else
      else
        return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
        return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
                                   r_type, info, h, value);
                                   r_type, info, h, value);
    }
    }
  else
  else
    return entry->gotidx;
    return entry->gotidx;
}
}
 
 
/* Returns the GOT index for the global symbol indicated by H.  */
/* Returns the GOT index for the global symbol indicated by H.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
                           int r_type, struct bfd_link_info *info)
                           int r_type, struct bfd_link_info *info)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  bfd_vma got_index;
  bfd_vma got_index;
  struct mips_got_info *g, *gg;
  struct mips_got_info *g, *gg;
  long global_got_dynindx = 0;
  long global_got_dynindx = 0;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  gg = g = htab->got_info;
  gg = g = htab->got_info;
  if (g->bfd2got && ibfd)
  if (g->bfd2got && ibfd)
    {
    {
      struct mips_got_entry e, *p;
      struct mips_got_entry e, *p;
 
 
      BFD_ASSERT (h->dynindx >= 0);
      BFD_ASSERT (h->dynindx >= 0);
 
 
      g = mips_elf_got_for_ibfd (g, ibfd);
      g = mips_elf_got_for_ibfd (g, ibfd);
      if (g->next != gg || TLS_RELOC_P (r_type))
      if (g->next != gg || TLS_RELOC_P (r_type))
        {
        {
          e.abfd = ibfd;
          e.abfd = ibfd;
          e.symndx = -1;
          e.symndx = -1;
          e.d.h = (struct mips_elf_link_hash_entry *)h;
          e.d.h = (struct mips_elf_link_hash_entry *)h;
          e.tls_type = 0;
          e.tls_type = 0;
 
 
          p = htab_find (g->got_entries, &e);
          p = htab_find (g->got_entries, &e);
 
 
          BFD_ASSERT (p->gotidx > 0);
          BFD_ASSERT (p->gotidx > 0);
 
 
          if (TLS_RELOC_P (r_type))
          if (TLS_RELOC_P (r_type))
            {
            {
              bfd_vma value = MINUS_ONE;
              bfd_vma value = MINUS_ONE;
              if ((h->root.type == bfd_link_hash_defined
              if ((h->root.type == bfd_link_hash_defined
                   || h->root.type == bfd_link_hash_defweak)
                   || h->root.type == bfd_link_hash_defweak)
                  && h->root.u.def.section->output_section)
                  && h->root.u.def.section->output_section)
                value = (h->root.u.def.value
                value = (h->root.u.def.value
                         + h->root.u.def.section->output_offset
                         + h->root.u.def.section->output_offset
                         + h->root.u.def.section->output_section->vma);
                         + h->root.u.def.section->output_section->vma);
 
 
              return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
              return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
                                         info, e.d.h, value);
                                         info, e.d.h, value);
            }
            }
          else
          else
            return p->gotidx;
            return p->gotidx;
        }
        }
    }
    }
 
 
  if (gg->global_gotsym != NULL)
  if (gg->global_gotsym != NULL)
    global_got_dynindx = gg->global_gotsym->dynindx;
    global_got_dynindx = gg->global_gotsym->dynindx;
 
 
  if (TLS_RELOC_P (r_type))
  if (TLS_RELOC_P (r_type))
    {
    {
      struct mips_elf_link_hash_entry *hm
      struct mips_elf_link_hash_entry *hm
        = (struct mips_elf_link_hash_entry *) h;
        = (struct mips_elf_link_hash_entry *) h;
      bfd_vma value = MINUS_ONE;
      bfd_vma value = MINUS_ONE;
 
 
      if ((h->root.type == bfd_link_hash_defined
      if ((h->root.type == bfd_link_hash_defined
           || h->root.type == bfd_link_hash_defweak)
           || h->root.type == bfd_link_hash_defweak)
          && h->root.u.def.section->output_section)
          && h->root.u.def.section->output_section)
        value = (h->root.u.def.value
        value = (h->root.u.def.value
                 + h->root.u.def.section->output_offset
                 + h->root.u.def.section->output_offset
                 + h->root.u.def.section->output_section->vma);
                 + h->root.u.def.section->output_section->vma);
 
 
      got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
      got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
                                      r_type, info, hm, value);
                                      r_type, info, hm, value);
    }
    }
  else
  else
    {
    {
      /* Once we determine the global GOT entry with the lowest dynamic
      /* Once we determine the global GOT entry with the lowest dynamic
         symbol table index, we must put all dynamic symbols with greater
         symbol table index, we must put all dynamic symbols with greater
         indices into the GOT.  That makes it easy to calculate the GOT
         indices into the GOT.  That makes it easy to calculate the GOT
         offset.  */
         offset.  */
      BFD_ASSERT (h->dynindx >= global_got_dynindx);
      BFD_ASSERT (h->dynindx >= global_got_dynindx);
      got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
      got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
                   * MIPS_ELF_GOT_SIZE (abfd));
                   * MIPS_ELF_GOT_SIZE (abfd));
    }
    }
  BFD_ASSERT (got_index < htab->sgot->size);
  BFD_ASSERT (got_index < htab->sgot->size);
 
 
  return got_index;
  return got_index;
}
}
 
 
/* Find a GOT page entry that points to within 32KB of VALUE.  These
/* Find a GOT page entry that points to within 32KB of VALUE.  These
   entries are supposed to be placed at small offsets in the GOT, i.e.,
   entries are supposed to be placed at small offsets in the GOT, i.e.,
   within 32KB of GP.  Return the index of the GOT entry, or -1 if no
   within 32KB of GP.  Return the index of the GOT entry, or -1 if no
   entry could be created.  If OFFSETP is nonnull, use it to return the
   entry could be created.  If OFFSETP is nonnull, use it to return the
   offset of the GOT entry from VALUE.  */
   offset of the GOT entry from VALUE.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
                   bfd_vma value, bfd_vma *offsetp)
                   bfd_vma value, bfd_vma *offsetp)
{
{
  bfd_vma page, got_index;
  bfd_vma page, got_index;
  struct mips_got_entry *entry;
  struct mips_got_entry *entry;
 
 
  page = (value + 0x8000) & ~(bfd_vma) 0xffff;
  page = (value + 0x8000) & ~(bfd_vma) 0xffff;
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
                                           NULL, R_MIPS_GOT_PAGE);
                                           NULL, R_MIPS_GOT_PAGE);
 
 
  if (!entry)
  if (!entry)
    return MINUS_ONE;
    return MINUS_ONE;
 
 
  got_index = entry->gotidx;
  got_index = entry->gotidx;
 
 
  if (offsetp)
  if (offsetp)
    *offsetp = value - entry->d.address;
    *offsetp = value - entry->d.address;
 
 
  return got_index;
  return got_index;
}
}
 
 
/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
   EXTERNAL is true if the relocation was originally against a global
   EXTERNAL is true if the relocation was originally against a global
   symbol that binds locally.  */
   symbol that binds locally.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
                      bfd_vma value, bfd_boolean external)
                      bfd_vma value, bfd_boolean external)
{
{
  struct mips_got_entry *entry;
  struct mips_got_entry *entry;
 
 
  /* GOT16 relocations against local symbols are followed by a LO16
  /* GOT16 relocations against local symbols are followed by a LO16
     relocation; those against global symbols are not.  Thus if the
     relocation; those against global symbols are not.  Thus if the
     symbol was originally local, the GOT16 relocation should load the
     symbol was originally local, the GOT16 relocation should load the
     equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
     equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
  if (! external)
  if (! external)
    value = mips_elf_high (value) << 16;
    value = mips_elf_high (value) << 16;
 
 
  /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
  /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
     R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
     R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
     same in all cases.  */
     same in all cases.  */
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
  entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
                                           NULL, R_MIPS_GOT16);
                                           NULL, R_MIPS_GOT16);
  if (entry)
  if (entry)
    return entry->gotidx;
    return entry->gotidx;
  else
  else
    return MINUS_ONE;
    return MINUS_ONE;
}
}
 
 
/* Returns the offset for the entry at the INDEXth position
/* Returns the offset for the entry at the INDEXth position
   in the GOT.  */
   in the GOT.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
                                bfd *input_bfd, bfd_vma got_index)
                                bfd *input_bfd, bfd_vma got_index)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  asection *sgot;
  asection *sgot;
  bfd_vma gp;
  bfd_vma gp;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  sgot = htab->sgot;
  sgot = htab->sgot;
  gp = _bfd_get_gp_value (output_bfd)
  gp = _bfd_get_gp_value (output_bfd)
    + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
    + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
 
 
  return sgot->output_section->vma + sgot->output_offset + got_index - gp;
  return sgot->output_section->vma + sgot->output_offset + got_index - gp;
}
}
 
 
/* Create and return a local GOT entry for VALUE, which was calculated
/* Create and return a local GOT entry for VALUE, which was calculated
   from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
   from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
   be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
   be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
   instead.  */
   instead.  */
 
 
static struct mips_got_entry *
static struct mips_got_entry *
mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
                                 bfd *ibfd, bfd_vma value,
                                 bfd *ibfd, bfd_vma value,
                                 unsigned long r_symndx,
                                 unsigned long r_symndx,
                                 struct mips_elf_link_hash_entry *h,
                                 struct mips_elf_link_hash_entry *h,
                                 int r_type)
                                 int r_type)
{
{
  struct mips_got_entry entry, **loc;
  struct mips_got_entry entry, **loc;
  struct mips_got_info *g;
  struct mips_got_info *g;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  entry.abfd = NULL;
  entry.abfd = NULL;
  entry.symndx = -1;
  entry.symndx = -1;
  entry.d.address = value;
  entry.d.address = value;
  entry.tls_type = 0;
  entry.tls_type = 0;
 
 
  g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
  g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
  if (g == NULL)
  if (g == NULL)
    {
    {
      g = mips_elf_got_for_ibfd (htab->got_info, abfd);
      g = mips_elf_got_for_ibfd (htab->got_info, abfd);
      BFD_ASSERT (g != NULL);
      BFD_ASSERT (g != NULL);
    }
    }
 
 
  /* This function shouldn't be called for symbols that live in the global
  /* This function shouldn't be called for symbols that live in the global
     area of the GOT.  */
     area of the GOT.  */
  BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
  BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
  if (TLS_RELOC_P (r_type))
  if (TLS_RELOC_P (r_type))
    {
    {
      struct mips_got_entry *p;
      struct mips_got_entry *p;
 
 
      entry.abfd = ibfd;
      entry.abfd = ibfd;
      if (tls_ldm_reloc_p (r_type))
      if (tls_ldm_reloc_p (r_type))
        {
        {
          entry.tls_type = GOT_TLS_LDM;
          entry.tls_type = GOT_TLS_LDM;
          entry.symndx = 0;
          entry.symndx = 0;
          entry.d.addend = 0;
          entry.d.addend = 0;
        }
        }
      else if (h == NULL)
      else if (h == NULL)
        {
        {
          entry.symndx = r_symndx;
          entry.symndx = r_symndx;
          entry.d.addend = 0;
          entry.d.addend = 0;
        }
        }
      else
      else
        entry.d.h = h;
        entry.d.h = h;
 
 
      p = (struct mips_got_entry *)
      p = (struct mips_got_entry *)
        htab_find (g->got_entries, &entry);
        htab_find (g->got_entries, &entry);
 
 
      BFD_ASSERT (p);
      BFD_ASSERT (p);
      return p;
      return p;
    }
    }
 
 
  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
                                                   INSERT);
                                                   INSERT);
  if (*loc)
  if (*loc)
    return *loc;
    return *loc;
 
 
  entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
  entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
  entry.tls_type = 0;
  entry.tls_type = 0;
 
 
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
 
 
  if (! *loc)
  if (! *loc)
    return NULL;
    return NULL;
 
 
  memcpy (*loc, &entry, sizeof entry);
  memcpy (*loc, &entry, sizeof entry);
 
 
  if (g->assigned_gotno > g->local_gotno)
  if (g->assigned_gotno > g->local_gotno)
    {
    {
      (*loc)->gotidx = -1;
      (*loc)->gotidx = -1;
      /* We didn't allocate enough space in the GOT.  */
      /* We didn't allocate enough space in the GOT.  */
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("not enough GOT space for local GOT entries"));
        (_("not enough GOT space for local GOT entries"));
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return NULL;
      return NULL;
    }
    }
 
 
  MIPS_ELF_PUT_WORD (abfd, value,
  MIPS_ELF_PUT_WORD (abfd, value,
                     (htab->sgot->contents + entry.gotidx));
                     (htab->sgot->contents + entry.gotidx));
 
 
  /* These GOT entries need a dynamic relocation on VxWorks.  */
  /* These GOT entries need a dynamic relocation on VxWorks.  */
  if (htab->is_vxworks)
  if (htab->is_vxworks)
    {
    {
      Elf_Internal_Rela outrel;
      Elf_Internal_Rela outrel;
      asection *s;
      asection *s;
      bfd_byte *rloc;
      bfd_byte *rloc;
      bfd_vma got_address;
      bfd_vma got_address;
 
 
      s = mips_elf_rel_dyn_section (info, FALSE);
      s = mips_elf_rel_dyn_section (info, FALSE);
      got_address = (htab->sgot->output_section->vma
      got_address = (htab->sgot->output_section->vma
                     + htab->sgot->output_offset
                     + htab->sgot->output_offset
                     + entry.gotidx);
                     + entry.gotidx);
 
 
      rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
      rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
      outrel.r_offset = got_address;
      outrel.r_offset = got_address;
      outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
      outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
      outrel.r_addend = value;
      outrel.r_addend = value;
      bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
      bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
    }
    }
 
 
  return *loc;
  return *loc;
}
}
 
 
/* Return the number of dynamic section symbols required by OUTPUT_BFD.
/* Return the number of dynamic section symbols required by OUTPUT_BFD.
   The number might be exact or a worst-case estimate, depending on how
   The number might be exact or a worst-case estimate, depending on how
   much information is available to elf_backend_omit_section_dynsym at
   much information is available to elf_backend_omit_section_dynsym at
   the current linking stage.  */
   the current linking stage.  */
 
 
static bfd_size_type
static bfd_size_type
count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
{
{
  bfd_size_type count;
  bfd_size_type count;
 
 
  count = 0;
  count = 0;
  if (info->shared || elf_hash_table (info)->is_relocatable_executable)
  if (info->shared || elf_hash_table (info)->is_relocatable_executable)
    {
    {
      asection *p;
      asection *p;
      const struct elf_backend_data *bed;
      const struct elf_backend_data *bed;
 
 
      bed = get_elf_backend_data (output_bfd);
      bed = get_elf_backend_data (output_bfd);
      for (p = output_bfd->sections; p ; p = p->next)
      for (p = output_bfd->sections; p ; p = p->next)
        if ((p->flags & SEC_EXCLUDE) == 0
        if ((p->flags & SEC_EXCLUDE) == 0
            && (p->flags & SEC_ALLOC) != 0
            && (p->flags & SEC_ALLOC) != 0
            && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
            && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
          ++count;
          ++count;
    }
    }
  return count;
  return count;
}
}
 
 
/* Sort the dynamic symbol table so that symbols that need GOT entries
/* Sort the dynamic symbol table so that symbols that need GOT entries
   appear towards the end.  */
   appear towards the end.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_hash_sort_data hsd;
  struct mips_elf_hash_sort_data hsd;
  struct mips_got_info *g;
  struct mips_got_info *g;
 
 
  if (elf_hash_table (info)->dynsymcount == 0)
  if (elf_hash_table (info)->dynsymcount == 0)
    return TRUE;
    return TRUE;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  g = htab->got_info;
  g = htab->got_info;
  if (g == NULL)
  if (g == NULL)
    return TRUE;
    return TRUE;
 
 
  hsd.low = NULL;
  hsd.low = NULL;
  hsd.max_unref_got_dynindx
  hsd.max_unref_got_dynindx
    = hsd.min_got_dynindx
    = hsd.min_got_dynindx
    = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
    = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
  hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
  hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
  mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
  mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
                                elf_hash_table (info)),
                                elf_hash_table (info)),
                               mips_elf_sort_hash_table_f,
                               mips_elf_sort_hash_table_f,
                               &hsd);
                               &hsd);
 
 
  /* There should have been enough room in the symbol table to
  /* There should have been enough room in the symbol table to
     accommodate both the GOT and non-GOT symbols.  */
     accommodate both the GOT and non-GOT symbols.  */
  BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
  BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
  BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
  BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
              == elf_hash_table (info)->dynsymcount);
              == elf_hash_table (info)->dynsymcount);
  BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
  BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
              == g->global_gotno);
              == g->global_gotno);
 
 
  /* Now we know which dynamic symbol has the lowest dynamic symbol
  /* Now we know which dynamic symbol has the lowest dynamic symbol
     table index in the GOT.  */
     table index in the GOT.  */
  g->global_gotsym = hsd.low;
  g->global_gotsym = hsd.low;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* If H needs a GOT entry, assign it the highest available dynamic
/* If H needs a GOT entry, assign it the highest available dynamic
   index.  Otherwise, assign it the lowest available dynamic
   index.  Otherwise, assign it the lowest available dynamic
   index.  */
   index.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
{
{
  struct mips_elf_hash_sort_data *hsd = data;
  struct mips_elf_hash_sort_data *hsd = data;
 
 
  /* Symbols without dynamic symbol table entries aren't interesting
  /* Symbols without dynamic symbol table entries aren't interesting
     at all.  */
     at all.  */
  if (h->root.dynindx == -1)
  if (h->root.dynindx == -1)
    return TRUE;
    return TRUE;
 
 
  switch (h->global_got_area)
  switch (h->global_got_area)
    {
    {
    case GGA_NONE:
    case GGA_NONE:
      h->root.dynindx = hsd->max_non_got_dynindx++;
      h->root.dynindx = hsd->max_non_got_dynindx++;
      break;
      break;
 
 
    case GGA_NORMAL:
    case GGA_NORMAL:
      BFD_ASSERT (h->tls_type == GOT_NORMAL);
      BFD_ASSERT (h->tls_type == GOT_NORMAL);
 
 
      h->root.dynindx = --hsd->min_got_dynindx;
      h->root.dynindx = --hsd->min_got_dynindx;
      hsd->low = (struct elf_link_hash_entry *) h;
      hsd->low = (struct elf_link_hash_entry *) h;
      break;
      break;
 
 
    case GGA_RELOC_ONLY:
    case GGA_RELOC_ONLY:
      BFD_ASSERT (h->tls_type == GOT_NORMAL);
      BFD_ASSERT (h->tls_type == GOT_NORMAL);
 
 
      if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
      if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
        hsd->low = (struct elf_link_hash_entry *) h;
        hsd->low = (struct elf_link_hash_entry *) h;
      h->root.dynindx = hsd->max_unref_got_dynindx++;
      h->root.dynindx = hsd->max_unref_got_dynindx++;
      break;
      break;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* If H is a symbol that needs a global GOT entry, but has a dynamic
/* If H is a symbol that needs a global GOT entry, but has a dynamic
   symbol table index lower than any we've seen to date, record it for
   symbol table index lower than any we've seen to date, record it for
   posterity.  FOR_CALL is true if the caller is only interested in
   posterity.  FOR_CALL is true if the caller is only interested in
   using the GOT entry for calls.  */
   using the GOT entry for calls.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
                                   bfd *abfd, struct bfd_link_info *info,
                                   bfd *abfd, struct bfd_link_info *info,
                                   bfd_boolean for_call,
                                   bfd_boolean for_call,
                                   unsigned char tls_flag)
                                   unsigned char tls_flag)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_entry *hmips;
  struct mips_elf_link_hash_entry *hmips;
  struct mips_got_entry entry, **loc;
  struct mips_got_entry entry, **loc;
  struct mips_got_info *g;
  struct mips_got_info *g;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  hmips = (struct mips_elf_link_hash_entry *) h;
  hmips = (struct mips_elf_link_hash_entry *) h;
  if (!for_call)
  if (!for_call)
    hmips->got_only_for_calls = FALSE;
    hmips->got_only_for_calls = FALSE;
 
 
  /* A global symbol in the GOT must also be in the dynamic symbol
  /* A global symbol in the GOT must also be in the dynamic symbol
     table.  */
     table.  */
  if (h->dynindx == -1)
  if (h->dynindx == -1)
    {
    {
      switch (ELF_ST_VISIBILITY (h->other))
      switch (ELF_ST_VISIBILITY (h->other))
        {
        {
        case STV_INTERNAL:
        case STV_INTERNAL:
        case STV_HIDDEN:
        case STV_HIDDEN:
          _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
          _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
          break;
          break;
        }
        }
      if (!bfd_elf_link_record_dynamic_symbol (info, h))
      if (!bfd_elf_link_record_dynamic_symbol (info, h))
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* Make sure we have a GOT to put this entry into.  */
  /* Make sure we have a GOT to put this entry into.  */
  g = htab->got_info;
  g = htab->got_info;
  BFD_ASSERT (g != NULL);
  BFD_ASSERT (g != NULL);
 
 
  entry.abfd = abfd;
  entry.abfd = abfd;
  entry.symndx = -1;
  entry.symndx = -1;
  entry.d.h = (struct mips_elf_link_hash_entry *) h;
  entry.d.h = (struct mips_elf_link_hash_entry *) h;
  entry.tls_type = 0;
  entry.tls_type = 0;
 
 
  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
  loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
                                                   INSERT);
                                                   INSERT);
 
 
  /* If we've already marked this entry as needing GOT space, we don't
  /* If we've already marked this entry as needing GOT space, we don't
     need to do it again.  */
     need to do it again.  */
  if (*loc)
  if (*loc)
    {
    {
      (*loc)->tls_type |= tls_flag;
      (*loc)->tls_type |= tls_flag;
      return TRUE;
      return TRUE;
    }
    }
 
 
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
 
 
  if (! *loc)
  if (! *loc)
    return FALSE;
    return FALSE;
 
 
  entry.gotidx = -1;
  entry.gotidx = -1;
  entry.tls_type = tls_flag;
  entry.tls_type = tls_flag;
 
 
  memcpy (*loc, &entry, sizeof entry);
  memcpy (*loc, &entry, sizeof entry);
 
 
  if (tls_flag == 0)
  if (tls_flag == 0)
    hmips->global_got_area = GGA_NORMAL;
    hmips->global_got_area = GGA_NORMAL;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Reserve space in G for a GOT entry containing the value of symbol
/* Reserve space in G for a GOT entry containing the value of symbol
   SYMNDX in input bfd ABDF, plus ADDEND.  */
   SYMNDX in input bfd ABDF, plus ADDEND.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
                                  struct bfd_link_info *info,
                                  struct bfd_link_info *info,
                                  unsigned char tls_flag)
                                  unsigned char tls_flag)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_got_info *g;
  struct mips_got_info *g;
  struct mips_got_entry entry, **loc;
  struct mips_got_entry entry, **loc;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  g = htab->got_info;
  g = htab->got_info;
  BFD_ASSERT (g != NULL);
  BFD_ASSERT (g != NULL);
 
 
  entry.abfd = abfd;
  entry.abfd = abfd;
  entry.symndx = symndx;
  entry.symndx = symndx;
  entry.d.addend = addend;
  entry.d.addend = addend;
  entry.tls_type = tls_flag;
  entry.tls_type = tls_flag;
  loc = (struct mips_got_entry **)
  loc = (struct mips_got_entry **)
    htab_find_slot (g->got_entries, &entry, INSERT);
    htab_find_slot (g->got_entries, &entry, INSERT);
 
 
  if (*loc)
  if (*loc)
    {
    {
      if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
      if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
        {
        {
          g->tls_gotno += 2;
          g->tls_gotno += 2;
          (*loc)->tls_type |= tls_flag;
          (*loc)->tls_type |= tls_flag;
        }
        }
      else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
      else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
        {
        {
          g->tls_gotno += 1;
          g->tls_gotno += 1;
          (*loc)->tls_type |= tls_flag;
          (*loc)->tls_type |= tls_flag;
        }
        }
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (tls_flag != 0)
  if (tls_flag != 0)
    {
    {
      entry.gotidx = -1;
      entry.gotidx = -1;
      entry.tls_type = tls_flag;
      entry.tls_type = tls_flag;
      if (tls_flag == GOT_TLS_IE)
      if (tls_flag == GOT_TLS_IE)
        g->tls_gotno += 1;
        g->tls_gotno += 1;
      else if (tls_flag == GOT_TLS_GD)
      else if (tls_flag == GOT_TLS_GD)
        g->tls_gotno += 2;
        g->tls_gotno += 2;
      else if (g->tls_ldm_offset == MINUS_ONE)
      else if (g->tls_ldm_offset == MINUS_ONE)
        {
        {
          g->tls_ldm_offset = MINUS_TWO;
          g->tls_ldm_offset = MINUS_TWO;
          g->tls_gotno += 2;
          g->tls_gotno += 2;
        }
        }
    }
    }
  else
  else
    {
    {
      entry.gotidx = g->local_gotno++;
      entry.gotidx = g->local_gotno++;
      entry.tls_type = 0;
      entry.tls_type = 0;
    }
    }
 
 
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
  *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
 
 
  if (! *loc)
  if (! *loc)
    return FALSE;
    return FALSE;
 
 
  memcpy (*loc, &entry, sizeof entry);
  memcpy (*loc, &entry, sizeof entry);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the maximum number of GOT page entries required for RANGE.  */
/* Return the maximum number of GOT page entries required for RANGE.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_pages_for_range (const struct mips_got_page_range *range)
mips_elf_pages_for_range (const struct mips_got_page_range *range)
{
{
  return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
  return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
}
}
 
 
/* Record that ABFD has a page relocation against symbol SYMNDX and
/* Record that ABFD has a page relocation against symbol SYMNDX and
   that ADDEND is the addend for that relocation.
   that ADDEND is the addend for that relocation.
 
 
   This function creates an upper bound on the number of GOT slots
   This function creates an upper bound on the number of GOT slots
   required; no attempt is made to combine references to non-overridable
   required; no attempt is made to combine references to non-overridable
   global symbols across multiple input files.  */
   global symbols across multiple input files.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
                                long symndx, bfd_signed_vma addend)
                                long symndx, bfd_signed_vma addend)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_got_info *g;
  struct mips_got_info *g;
  struct mips_got_page_entry lookup, *entry;
  struct mips_got_page_entry lookup, *entry;
  struct mips_got_page_range **range_ptr, *range;
  struct mips_got_page_range **range_ptr, *range;
  bfd_vma old_pages, new_pages;
  bfd_vma old_pages, new_pages;
  void **loc;
  void **loc;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  g = htab->got_info;
  g = htab->got_info;
  BFD_ASSERT (g != NULL);
  BFD_ASSERT (g != NULL);
 
 
  /* Find the mips_got_page_entry hash table entry for this symbol.  */
  /* Find the mips_got_page_entry hash table entry for this symbol.  */
  lookup.abfd = abfd;
  lookup.abfd = abfd;
  lookup.symndx = symndx;
  lookup.symndx = symndx;
  loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
  loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
  if (loc == NULL)
  if (loc == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Create a mips_got_page_entry if this is the first time we've
  /* Create a mips_got_page_entry if this is the first time we've
     seen the symbol.  */
     seen the symbol.  */
  entry = (struct mips_got_page_entry *) *loc;
  entry = (struct mips_got_page_entry *) *loc;
  if (!entry)
  if (!entry)
    {
    {
      entry = bfd_alloc (abfd, sizeof (*entry));
      entry = bfd_alloc (abfd, sizeof (*entry));
      if (!entry)
      if (!entry)
        return FALSE;
        return FALSE;
 
 
      entry->abfd = abfd;
      entry->abfd = abfd;
      entry->symndx = symndx;
      entry->symndx = symndx;
      entry->ranges = NULL;
      entry->ranges = NULL;
      entry->num_pages = 0;
      entry->num_pages = 0;
      *loc = entry;
      *loc = entry;
    }
    }
 
 
  /* Skip over ranges whose maximum extent cannot share a page entry
  /* Skip over ranges whose maximum extent cannot share a page entry
     with ADDEND.  */
     with ADDEND.  */
  range_ptr = &entry->ranges;
  range_ptr = &entry->ranges;
  while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
  while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
    range_ptr = &(*range_ptr)->next;
    range_ptr = &(*range_ptr)->next;
 
 
  /* If we scanned to the end of the list, or found a range whose
  /* If we scanned to the end of the list, or found a range whose
     minimum extent cannot share a page entry with ADDEND, create
     minimum extent cannot share a page entry with ADDEND, create
     a new singleton range.  */
     a new singleton range.  */
  range = *range_ptr;
  range = *range_ptr;
  if (!range || addend < range->min_addend - 0xffff)
  if (!range || addend < range->min_addend - 0xffff)
    {
    {
      range = bfd_alloc (abfd, sizeof (*range));
      range = bfd_alloc (abfd, sizeof (*range));
      if (!range)
      if (!range)
        return FALSE;
        return FALSE;
 
 
      range->next = *range_ptr;
      range->next = *range_ptr;
      range->min_addend = addend;
      range->min_addend = addend;
      range->max_addend = addend;
      range->max_addend = addend;
 
 
      *range_ptr = range;
      *range_ptr = range;
      entry->num_pages++;
      entry->num_pages++;
      g->page_gotno++;
      g->page_gotno++;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Remember how many pages the old range contributed.  */
  /* Remember how many pages the old range contributed.  */
  old_pages = mips_elf_pages_for_range (range);
  old_pages = mips_elf_pages_for_range (range);
 
 
  /* Update the ranges.  */
  /* Update the ranges.  */
  if (addend < range->min_addend)
  if (addend < range->min_addend)
    range->min_addend = addend;
    range->min_addend = addend;
  else if (addend > range->max_addend)
  else if (addend > range->max_addend)
    {
    {
      if (range->next && addend >= range->next->min_addend - 0xffff)
      if (range->next && addend >= range->next->min_addend - 0xffff)
        {
        {
          old_pages += mips_elf_pages_for_range (range->next);
          old_pages += mips_elf_pages_for_range (range->next);
          range->max_addend = range->next->max_addend;
          range->max_addend = range->next->max_addend;
          range->next = range->next->next;
          range->next = range->next->next;
        }
        }
      else
      else
        range->max_addend = addend;
        range->max_addend = addend;
    }
    }
 
 
  /* Record any change in the total estimate.  */
  /* Record any change in the total estimate.  */
  new_pages = mips_elf_pages_for_range (range);
  new_pages = mips_elf_pages_for_range (range);
  if (old_pages != new_pages)
  if (old_pages != new_pages)
    {
    {
      entry->num_pages += new_pages - old_pages;
      entry->num_pages += new_pages - old_pages;
      g->page_gotno += new_pages - old_pages;
      g->page_gotno += new_pages - old_pages;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
/* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
 
 
static void
static void
mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
                                       unsigned int n)
                                       unsigned int n)
{
{
  asection *s;
  asection *s;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  s = mips_elf_rel_dyn_section (info, FALSE);
  s = mips_elf_rel_dyn_section (info, FALSE);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  if (htab->is_vxworks)
  if (htab->is_vxworks)
    s->size += n * MIPS_ELF_RELA_SIZE (abfd);
    s->size += n * MIPS_ELF_RELA_SIZE (abfd);
  else
  else
    {
    {
      if (s->size == 0)
      if (s->size == 0)
        {
        {
          /* Make room for a null element.  */
          /* Make room for a null element.  */
          s->size += MIPS_ELF_REL_SIZE (abfd);
          s->size += MIPS_ELF_REL_SIZE (abfd);
          ++s->reloc_count;
          ++s->reloc_count;
        }
        }
      s->size += n * MIPS_ELF_REL_SIZE (abfd);
      s->size += n * MIPS_ELF_REL_SIZE (abfd);
    }
    }
}
}


/* A htab_traverse callback for GOT entries.  Set boolean *DATA to true
/* A htab_traverse callback for GOT entries.  Set boolean *DATA to true
   if the GOT entry is for an indirect or warning symbol.  */
   if the GOT entry is for an indirect or warning symbol.  */
 
 
static int
static int
mips_elf_check_recreate_got (void **entryp, void *data)
mips_elf_check_recreate_got (void **entryp, void *data)
{
{
  struct mips_got_entry *entry;
  struct mips_got_entry *entry;
  bfd_boolean *must_recreate;
  bfd_boolean *must_recreate;
 
 
  entry = (struct mips_got_entry *) *entryp;
  entry = (struct mips_got_entry *) *entryp;
  must_recreate = (bfd_boolean *) data;
  must_recreate = (bfd_boolean *) data;
  if (entry->abfd != NULL && entry->symndx == -1)
  if (entry->abfd != NULL && entry->symndx == -1)
    {
    {
      struct mips_elf_link_hash_entry *h;
      struct mips_elf_link_hash_entry *h;
 
 
      h = entry->d.h;
      h = entry->d.h;
      if (h->root.root.type == bfd_link_hash_indirect
      if (h->root.root.type == bfd_link_hash_indirect
          || h->root.root.type == bfd_link_hash_warning)
          || h->root.root.type == bfd_link_hash_warning)
        {
        {
          *must_recreate = TRUE;
          *must_recreate = TRUE;
          return 0;
          return 0;
        }
        }
    }
    }
  return 1;
  return 1;
}
}
 
 
/* A htab_traverse callback for GOT entries.  Add all entries to
/* A htab_traverse callback for GOT entries.  Add all entries to
   hash table *DATA, converting entries for indirect and warning
   hash table *DATA, converting entries for indirect and warning
   symbols into entries for the target symbol.  Set *DATA to null
   symbols into entries for the target symbol.  Set *DATA to null
   on error.  */
   on error.  */
 
 
static int
static int
mips_elf_recreate_got (void **entryp, void *data)
mips_elf_recreate_got (void **entryp, void *data)
{
{
  htab_t *new_got;
  htab_t *new_got;
  struct mips_got_entry *entry;
  struct mips_got_entry *entry;
  void **slot;
  void **slot;
 
 
  new_got = (htab_t *) data;
  new_got = (htab_t *) data;
  entry = (struct mips_got_entry *) *entryp;
  entry = (struct mips_got_entry *) *entryp;
  if (entry->abfd != NULL && entry->symndx == -1)
  if (entry->abfd != NULL && entry->symndx == -1)
    {
    {
      struct mips_elf_link_hash_entry *h;
      struct mips_elf_link_hash_entry *h;
 
 
      h = entry->d.h;
      h = entry->d.h;
      while (h->root.root.type == bfd_link_hash_indirect
      while (h->root.root.type == bfd_link_hash_indirect
             || h->root.root.type == bfd_link_hash_warning)
             || h->root.root.type == bfd_link_hash_warning)
        {
        {
          BFD_ASSERT (h->global_got_area == GGA_NONE);
          BFD_ASSERT (h->global_got_area == GGA_NONE);
          h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
          h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
        }
        }
      entry->d.h = h;
      entry->d.h = h;
    }
    }
  slot = htab_find_slot (*new_got, entry, INSERT);
  slot = htab_find_slot (*new_got, entry, INSERT);
  if (slot == NULL)
  if (slot == NULL)
    {
    {
      *new_got = NULL;
      *new_got = NULL;
      return 0;
      return 0;
    }
    }
  if (*slot == NULL)
  if (*slot == NULL)
    *slot = entry;
    *slot = entry;
  else
  else
    free (entry);
    free (entry);
  return 1;
  return 1;
}
}
 
 
/* If any entries in G->got_entries are for indirect or warning symbols,
/* If any entries in G->got_entries are for indirect or warning symbols,
   replace them with entries for the target symbol.  */
   replace them with entries for the target symbol.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_resolve_final_got_entries (struct mips_got_info *g)
mips_elf_resolve_final_got_entries (struct mips_got_info *g)
{
{
  bfd_boolean must_recreate;
  bfd_boolean must_recreate;
  htab_t new_got;
  htab_t new_got;
 
 
  must_recreate = FALSE;
  must_recreate = FALSE;
  htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
  htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
  if (must_recreate)
  if (must_recreate)
    {
    {
      new_got = htab_create (htab_size (g->got_entries),
      new_got = htab_create (htab_size (g->got_entries),
                             mips_elf_got_entry_hash,
                             mips_elf_got_entry_hash,
                             mips_elf_got_entry_eq, NULL);
                             mips_elf_got_entry_eq, NULL);
      htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
      htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
      if (new_got == NULL)
      if (new_got == NULL)
        return FALSE;
        return FALSE;
 
 
      /* Each entry in g->got_entries has either been copied to new_got
      /* Each entry in g->got_entries has either been copied to new_got
         or freed.  Now delete the hash table itself.  */
         or freed.  Now delete the hash table itself.  */
      htab_delete (g->got_entries);
      htab_delete (g->got_entries);
      g->got_entries = new_got;
      g->got_entries = new_got;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* A mips_elf_link_hash_traverse callback for which DATA points
/* A mips_elf_link_hash_traverse callback for which DATA points
   to the link_info structure.  Count the number of type (3) entries
   to the link_info structure.  Count the number of type (3) entries
   in the master GOT.  */
   in the master GOT.  */
 
 
static int
static int
mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_got_info *g;
  struct mips_got_info *g;
 
 
  info = (struct bfd_link_info *) data;
  info = (struct bfd_link_info *) data;
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  g = htab->got_info;
  g = htab->got_info;
  if (h->global_got_area != GGA_NONE)
  if (h->global_got_area != GGA_NONE)
    {
    {
      /* Make a final decision about whether the symbol belongs in the
      /* Make a final decision about whether the symbol belongs in the
         local or global GOT.  Symbols that bind locally can (and in the
         local or global GOT.  Symbols that bind locally can (and in the
         case of forced-local symbols, must) live in the local GOT.
         case of forced-local symbols, must) live in the local GOT.
         Those that are aren't in the dynamic symbol table must also
         Those that are aren't in the dynamic symbol table must also
         live in the local GOT.
         live in the local GOT.
 
 
         Note that the former condition does not always imply the
         Note that the former condition does not always imply the
         latter: symbols do not bind locally if they are completely
         latter: symbols do not bind locally if they are completely
         undefined.  We'll report undefined symbols later if appropriate.  */
         undefined.  We'll report undefined symbols later if appropriate.  */
      if (h->root.dynindx == -1
      if (h->root.dynindx == -1
          || (h->got_only_for_calls
          || (h->got_only_for_calls
              ? SYMBOL_CALLS_LOCAL (info, &h->root)
              ? SYMBOL_CALLS_LOCAL (info, &h->root)
              : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
              : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
        {
        {
          /* The symbol belongs in the local GOT.  We no longer need this
          /* The symbol belongs in the local GOT.  We no longer need this
             entry if it was only used for relocations; those relocations
             entry if it was only used for relocations; those relocations
             will be against the null or section symbol instead of H.  */
             will be against the null or section symbol instead of H.  */
          if (h->global_got_area != GGA_RELOC_ONLY)
          if (h->global_got_area != GGA_RELOC_ONLY)
            g->local_gotno++;
            g->local_gotno++;
          h->global_got_area = GGA_NONE;
          h->global_got_area = GGA_NONE;
        }
        }
      else if (htab->is_vxworks
      else if (htab->is_vxworks
               && h->got_only_for_calls
               && h->got_only_for_calls
               && h->root.plt.offset != MINUS_ONE)
               && h->root.plt.offset != MINUS_ONE)
        /* On VxWorks, calls can refer directly to the .got.plt entry;
        /* On VxWorks, calls can refer directly to the .got.plt entry;
           they don't need entries in the regular GOT.  .got.plt entries
           they don't need entries in the regular GOT.  .got.plt entries
           will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
           will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
        h->global_got_area = GGA_NONE;
        h->global_got_area = GGA_NONE;
      else
      else
        {
        {
          g->global_gotno++;
          g->global_gotno++;
          if (h->global_got_area == GGA_RELOC_ONLY)
          if (h->global_got_area == GGA_RELOC_ONLY)
            g->reloc_only_gotno++;
            g->reloc_only_gotno++;
        }
        }
    }
    }
  return 1;
  return 1;
}
}


/* Compute the hash value of the bfd in a bfd2got hash entry.  */
/* Compute the hash value of the bfd in a bfd2got hash entry.  */
 
 
static hashval_t
static hashval_t
mips_elf_bfd2got_entry_hash (const void *entry_)
mips_elf_bfd2got_entry_hash (const void *entry_)
{
{
  const struct mips_elf_bfd2got_hash *entry
  const struct mips_elf_bfd2got_hash *entry
    = (struct mips_elf_bfd2got_hash *)entry_;
    = (struct mips_elf_bfd2got_hash *)entry_;
 
 
  return entry->bfd->id;
  return entry->bfd->id;
}
}
 
 
/* Check whether two hash entries have the same bfd.  */
/* Check whether two hash entries have the same bfd.  */
 
 
static int
static int
mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
{
{
  const struct mips_elf_bfd2got_hash *e1
  const struct mips_elf_bfd2got_hash *e1
    = (const struct mips_elf_bfd2got_hash *)entry1;
    = (const struct mips_elf_bfd2got_hash *)entry1;
  const struct mips_elf_bfd2got_hash *e2
  const struct mips_elf_bfd2got_hash *e2
    = (const struct mips_elf_bfd2got_hash *)entry2;
    = (const struct mips_elf_bfd2got_hash *)entry2;
 
 
  return e1->bfd == e2->bfd;
  return e1->bfd == e2->bfd;
}
}
 
 
/* In a multi-got link, determine the GOT to be used for IBFD.  G must
/* In a multi-got link, determine the GOT to be used for IBFD.  G must
   be the master GOT data.  */
   be the master GOT data.  */
 
 
static struct mips_got_info *
static struct mips_got_info *
mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
{
{
  struct mips_elf_bfd2got_hash e, *p;
  struct mips_elf_bfd2got_hash e, *p;
 
 
  if (! g->bfd2got)
  if (! g->bfd2got)
    return g;
    return g;
 
 
  e.bfd = ibfd;
  e.bfd = ibfd;
  p = htab_find (g->bfd2got, &e);
  p = htab_find (g->bfd2got, &e);
  return p ? p->g : NULL;
  return p ? p->g : NULL;
}
}
 
 
/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
/* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
   Return NULL if an error occured.  */
   Return NULL if an error occured.  */
 
 
static struct mips_got_info *
static struct mips_got_info *
mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
                          bfd *input_bfd)
                          bfd *input_bfd)
{
{
  struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
  struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
  struct mips_got_info *g;
  struct mips_got_info *g;
  void **bfdgotp;
  void **bfdgotp;
 
 
  bfdgot_entry.bfd = input_bfd;
  bfdgot_entry.bfd = input_bfd;
  bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
  bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
  bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
  bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
 
 
  if (bfdgot == NULL)
  if (bfdgot == NULL)
    {
    {
      bfdgot = ((struct mips_elf_bfd2got_hash *)
      bfdgot = ((struct mips_elf_bfd2got_hash *)
                bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
                bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
      if (bfdgot == NULL)
      if (bfdgot == NULL)
        return NULL;
        return NULL;
 
 
      *bfdgotp = bfdgot;
      *bfdgotp = bfdgot;
 
 
      g = ((struct mips_got_info *)
      g = ((struct mips_got_info *)
           bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
           bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
      if (g == NULL)
      if (g == NULL)
        return NULL;
        return NULL;
 
 
      bfdgot->bfd = input_bfd;
      bfdgot->bfd = input_bfd;
      bfdgot->g = g;
      bfdgot->g = g;
 
 
      g->global_gotsym = NULL;
      g->global_gotsym = NULL;
      g->global_gotno = 0;
      g->global_gotno = 0;
      g->reloc_only_gotno = 0;
      g->reloc_only_gotno = 0;
      g->local_gotno = 0;
      g->local_gotno = 0;
      g->page_gotno = 0;
      g->page_gotno = 0;
      g->assigned_gotno = -1;
      g->assigned_gotno = -1;
      g->tls_gotno = 0;
      g->tls_gotno = 0;
      g->tls_assigned_gotno = 0;
      g->tls_assigned_gotno = 0;
      g->tls_ldm_offset = MINUS_ONE;
      g->tls_ldm_offset = MINUS_ONE;
      g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
      g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
                                        mips_elf_multi_got_entry_eq, NULL);
                                        mips_elf_multi_got_entry_eq, NULL);
      if (g->got_entries == NULL)
      if (g->got_entries == NULL)
        return NULL;
        return NULL;
 
 
      g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
      g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
                                             mips_got_page_entry_eq, NULL);
                                             mips_got_page_entry_eq, NULL);
      if (g->got_page_entries == NULL)
      if (g->got_page_entries == NULL)
        return NULL;
        return NULL;
 
 
      g->bfd2got = NULL;
      g->bfd2got = NULL;
      g->next = NULL;
      g->next = NULL;
    }
    }
 
 
  return bfdgot->g;
  return bfdgot->g;
}
}
 
 
/* A htab_traverse callback for the entries in the master got.
/* A htab_traverse callback for the entries in the master got.
   Create one separate got for each bfd that has entries in the global
   Create one separate got for each bfd that has entries in the global
   got, such that we can tell how many local and global entries each
   got, such that we can tell how many local and global entries each
   bfd requires.  */
   bfd requires.  */
 
 
static int
static int
mips_elf_make_got_per_bfd (void **entryp, void *p)
mips_elf_make_got_per_bfd (void **entryp, void *p)
{
{
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
  struct mips_got_info *g;
  struct mips_got_info *g;
 
 
  g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
  g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
  if (g == NULL)
  if (g == NULL)
    {
    {
      arg->obfd = NULL;
      arg->obfd = NULL;
      return 0;
      return 0;
    }
    }
 
 
  /* Insert the GOT entry in the bfd's got entry hash table.  */
  /* Insert the GOT entry in the bfd's got entry hash table.  */
  entryp = htab_find_slot (g->got_entries, entry, INSERT);
  entryp = htab_find_slot (g->got_entries, entry, INSERT);
  if (*entryp != NULL)
  if (*entryp != NULL)
    return 1;
    return 1;
 
 
  *entryp = entry;
  *entryp = entry;
 
 
  if (entry->tls_type)
  if (entry->tls_type)
    {
    {
      if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
      if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
        g->tls_gotno += 2;
        g->tls_gotno += 2;
      if (entry->tls_type & GOT_TLS_IE)
      if (entry->tls_type & GOT_TLS_IE)
        g->tls_gotno += 1;
        g->tls_gotno += 1;
    }
    }
  else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
  else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
    ++g->local_gotno;
    ++g->local_gotno;
  else
  else
    ++g->global_gotno;
    ++g->global_gotno;
 
 
  return 1;
  return 1;
}
}
 
 
/* A htab_traverse callback for the page entries in the master got.
/* A htab_traverse callback for the page entries in the master got.
   Associate each page entry with the bfd's got.  */
   Associate each page entry with the bfd's got.  */
 
 
static int
static int
mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
{
{
  struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
  struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
  struct mips_got_info *g;
  struct mips_got_info *g;
 
 
  g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
  g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
  if (g == NULL)
  if (g == NULL)
    {
    {
      arg->obfd = NULL;
      arg->obfd = NULL;
      return 0;
      return 0;
    }
    }
 
 
  /* Insert the GOT entry in the bfd's got entry hash table.  */
  /* Insert the GOT entry in the bfd's got entry hash table.  */
  entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
  entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
  if (*entryp != NULL)
  if (*entryp != NULL)
    return 1;
    return 1;
 
 
  *entryp = entry;
  *entryp = entry;
  g->page_gotno += entry->num_pages;
  g->page_gotno += entry->num_pages;
  return 1;
  return 1;
}
}
 
 
/* Consider merging the got described by BFD2GOT with TO, using the
/* Consider merging the got described by BFD2GOT with TO, using the
   information given by ARG.  Return -1 if this would lead to overflow,
   information given by ARG.  Return -1 if this would lead to overflow,
   1 if they were merged successfully, and 0 if a merge failed due to
   1 if they were merged successfully, and 0 if a merge failed due to
   lack of memory.  (These values are chosen so that nonnegative return
   lack of memory.  (These values are chosen so that nonnegative return
   values can be returned by a htab_traverse callback.)  */
   values can be returned by a htab_traverse callback.)  */
 
 
static int
static int
mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
                         struct mips_got_info *to,
                         struct mips_got_info *to,
                         struct mips_elf_got_per_bfd_arg *arg)
                         struct mips_elf_got_per_bfd_arg *arg)
{
{
  struct mips_got_info *from = bfd2got->g;
  struct mips_got_info *from = bfd2got->g;
  unsigned int estimate;
  unsigned int estimate;
 
 
  /* Work out how many page entries we would need for the combined GOT.  */
  /* Work out how many page entries we would need for the combined GOT.  */
  estimate = arg->max_pages;
  estimate = arg->max_pages;
  if (estimate >= from->page_gotno + to->page_gotno)
  if (estimate >= from->page_gotno + to->page_gotno)
    estimate = from->page_gotno + to->page_gotno;
    estimate = from->page_gotno + to->page_gotno;
 
 
  /* And conservatively estimate how many local and TLS entries
  /* And conservatively estimate how many local and TLS entries
     would be needed.  */
     would be needed.  */
  estimate += from->local_gotno + to->local_gotno;
  estimate += from->local_gotno + to->local_gotno;
  estimate += from->tls_gotno + to->tls_gotno;
  estimate += from->tls_gotno + to->tls_gotno;
 
 
  /* If we're merging with the primary got, we will always have
  /* If we're merging with the primary got, we will always have
     the full set of global entries.  Otherwise estimate those
     the full set of global entries.  Otherwise estimate those
     conservatively as well.  */
     conservatively as well.  */
  if (to == arg->primary)
  if (to == arg->primary)
    estimate += arg->global_count;
    estimate += arg->global_count;
  else
  else
    estimate += from->global_gotno + to->global_gotno;
    estimate += from->global_gotno + to->global_gotno;
 
 
  /* Bail out if the combined GOT might be too big.  */
  /* Bail out if the combined GOT might be too big.  */
  if (estimate > arg->max_count)
  if (estimate > arg->max_count)
    return -1;
    return -1;
 
 
  /* Commit to the merge.  Record that TO is now the bfd for this got.  */
  /* Commit to the merge.  Record that TO is now the bfd for this got.  */
  bfd2got->g = to;
  bfd2got->g = to;
 
 
  /* Transfer the bfd's got information from FROM to TO.  */
  /* Transfer the bfd's got information from FROM to TO.  */
  htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
  htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
  if (arg->obfd == NULL)
  if (arg->obfd == NULL)
    return 0;
    return 0;
 
 
  htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
  htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
  if (arg->obfd == NULL)
  if (arg->obfd == NULL)
    return 0;
    return 0;
 
 
  /* We don't have to worry about releasing memory of the actual
  /* We don't have to worry about releasing memory of the actual
     got entries, since they're all in the master got_entries hash
     got entries, since they're all in the master got_entries hash
     table anyway.  */
     table anyway.  */
  htab_delete (from->got_entries);
  htab_delete (from->got_entries);
  htab_delete (from->got_page_entries);
  htab_delete (from->got_page_entries);
  return 1;
  return 1;
}
}
 
 
/* Attempt to merge gots of different input bfds.  Try to use as much
/* Attempt to merge gots of different input bfds.  Try to use as much
   as possible of the primary got, since it doesn't require explicit
   as possible of the primary got, since it doesn't require explicit
   dynamic relocations, but don't use bfds that would reference global
   dynamic relocations, but don't use bfds that would reference global
   symbols out of the addressable range.  Failing the primary got,
   symbols out of the addressable range.  Failing the primary got,
   attempt to merge with the current got, or finish the current got
   attempt to merge with the current got, or finish the current got
   and then make make the new got current.  */
   and then make make the new got current.  */
 
 
static int
static int
mips_elf_merge_gots (void **bfd2got_, void *p)
mips_elf_merge_gots (void **bfd2got_, void *p)
{
{
  struct mips_elf_bfd2got_hash *bfd2got
  struct mips_elf_bfd2got_hash *bfd2got
    = (struct mips_elf_bfd2got_hash *)*bfd2got_;
    = (struct mips_elf_bfd2got_hash *)*bfd2got_;
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
  struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
  struct mips_got_info *g;
  struct mips_got_info *g;
  unsigned int estimate;
  unsigned int estimate;
  int result;
  int result;
 
 
  g = bfd2got->g;
  g = bfd2got->g;
 
 
  /* Work out the number of page, local and TLS entries.  */
  /* Work out the number of page, local and TLS entries.  */
  estimate = arg->max_pages;
  estimate = arg->max_pages;
  if (estimate > g->page_gotno)
  if (estimate > g->page_gotno)
    estimate = g->page_gotno;
    estimate = g->page_gotno;
  estimate += g->local_gotno + g->tls_gotno;
  estimate += g->local_gotno + g->tls_gotno;
 
 
  /* We place TLS GOT entries after both locals and globals.  The globals
  /* We place TLS GOT entries after both locals and globals.  The globals
     for the primary GOT may overflow the normal GOT size limit, so be
     for the primary GOT may overflow the normal GOT size limit, so be
     sure not to merge a GOT which requires TLS with the primary GOT in that
     sure not to merge a GOT which requires TLS with the primary GOT in that
     case.  This doesn't affect non-primary GOTs.  */
     case.  This doesn't affect non-primary GOTs.  */
  estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
  estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
 
 
  if (estimate <= arg->max_count)
  if (estimate <= arg->max_count)
    {
    {
      /* If we don't have a primary GOT, use it as
      /* If we don't have a primary GOT, use it as
         a starting point for the primary GOT.  */
         a starting point for the primary GOT.  */
      if (!arg->primary)
      if (!arg->primary)
        {
        {
          arg->primary = bfd2got->g;
          arg->primary = bfd2got->g;
          return 1;
          return 1;
        }
        }
 
 
      /* Try merging with the primary GOT.  */
      /* Try merging with the primary GOT.  */
      result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
      result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
      if (result >= 0)
      if (result >= 0)
        return result;
        return result;
    }
    }
 
 
  /* If we can merge with the last-created got, do it.  */
  /* If we can merge with the last-created got, do it.  */
  if (arg->current)
  if (arg->current)
    {
    {
      result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
      result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
      if (result >= 0)
      if (result >= 0)
        return result;
        return result;
    }
    }
 
 
  /* Well, we couldn't merge, so create a new GOT.  Don't check if it
  /* Well, we couldn't merge, so create a new GOT.  Don't check if it
     fits; if it turns out that it doesn't, we'll get relocation
     fits; if it turns out that it doesn't, we'll get relocation
     overflows anyway.  */
     overflows anyway.  */
  g->next = arg->current;
  g->next = arg->current;
  arg->current = g;
  arg->current = g;
 
 
  return 1;
  return 1;
}
}
 
 
/* Set the TLS GOT index for the GOT entry in ENTRYP.  ENTRYP's NEXT field
/* Set the TLS GOT index for the GOT entry in ENTRYP.  ENTRYP's NEXT field
   is null iff there is just a single GOT.  */
   is null iff there is just a single GOT.  */
 
 
static int
static int
mips_elf_initialize_tls_index (void **entryp, void *p)
mips_elf_initialize_tls_index (void **entryp, void *p)
{
{
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  struct mips_got_info *g = p;
  struct mips_got_info *g = p;
  bfd_vma next_index;
  bfd_vma next_index;
  unsigned char tls_type;
  unsigned char tls_type;
 
 
  /* We're only interested in TLS symbols.  */
  /* We're only interested in TLS symbols.  */
  if (entry->tls_type == 0)
  if (entry->tls_type == 0)
    return 1;
    return 1;
 
 
  next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
  next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
 
 
  if (entry->symndx == -1 && g->next == NULL)
  if (entry->symndx == -1 && g->next == NULL)
    {
    {
      /* A type (3) got entry in the single-GOT case.  We use the symbol's
      /* A type (3) got entry in the single-GOT case.  We use the symbol's
         hash table entry to track its index.  */
         hash table entry to track its index.  */
      if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
      if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
        return 1;
        return 1;
      entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
      entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
      entry->d.h->tls_got_offset = next_index;
      entry->d.h->tls_got_offset = next_index;
      tls_type = entry->d.h->tls_type;
      tls_type = entry->d.h->tls_type;
    }
    }
  else
  else
    {
    {
      if (entry->tls_type & GOT_TLS_LDM)
      if (entry->tls_type & GOT_TLS_LDM)
        {
        {
          /* There are separate mips_got_entry objects for each input bfd
          /* There are separate mips_got_entry objects for each input bfd
             that requires an LDM entry.  Make sure that all LDM entries in
             that requires an LDM entry.  Make sure that all LDM entries in
             a GOT resolve to the same index.  */
             a GOT resolve to the same index.  */
          if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
          if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
            {
            {
              entry->gotidx = g->tls_ldm_offset;
              entry->gotidx = g->tls_ldm_offset;
              return 1;
              return 1;
            }
            }
          g->tls_ldm_offset = next_index;
          g->tls_ldm_offset = next_index;
        }
        }
      entry->gotidx = next_index;
      entry->gotidx = next_index;
      tls_type = entry->tls_type;
      tls_type = entry->tls_type;
    }
    }
 
 
  /* Account for the entries we've just allocated.  */
  /* Account for the entries we've just allocated.  */
  if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
  if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
    g->tls_assigned_gotno += 2;
    g->tls_assigned_gotno += 2;
  if (tls_type & GOT_TLS_IE)
  if (tls_type & GOT_TLS_IE)
    g->tls_assigned_gotno += 1;
    g->tls_assigned_gotno += 1;
 
 
  return 1;
  return 1;
}
}
 
 
/* If passed a NULL mips_got_info in the argument, set the marker used
/* If passed a NULL mips_got_info in the argument, set the marker used
   to tell whether a global symbol needs a got entry (in the primary
   to tell whether a global symbol needs a got entry (in the primary
   got) to the given VALUE.
   got) to the given VALUE.
 
 
   If passed a pointer G to a mips_got_info in the argument (it must
   If passed a pointer G to a mips_got_info in the argument (it must
   not be the primary GOT), compute the offset from the beginning of
   not be the primary GOT), compute the offset from the beginning of
   the (primary) GOT section to the entry in G corresponding to the
   the (primary) GOT section to the entry in G corresponding to the
   global symbol.  G's assigned_gotno must contain the index of the
   global symbol.  G's assigned_gotno must contain the index of the
   first available global GOT entry in G.  VALUE must contain the size
   first available global GOT entry in G.  VALUE must contain the size
   of a GOT entry in bytes.  For each global GOT entry that requires a
   of a GOT entry in bytes.  For each global GOT entry that requires a
   dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
   dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
   marked as not eligible for lazy resolution through a function
   marked as not eligible for lazy resolution through a function
   stub.  */
   stub.  */
static int
static int
mips_elf_set_global_got_offset (void **entryp, void *p)
mips_elf_set_global_got_offset (void **entryp, void *p)
{
{
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
  struct mips_elf_set_global_got_offset_arg *arg
  struct mips_elf_set_global_got_offset_arg *arg
    = (struct mips_elf_set_global_got_offset_arg *)p;
    = (struct mips_elf_set_global_got_offset_arg *)p;
  struct mips_got_info *g = arg->g;
  struct mips_got_info *g = arg->g;
 
 
  if (g && entry->tls_type != GOT_NORMAL)
  if (g && entry->tls_type != GOT_NORMAL)
    arg->needed_relocs +=
    arg->needed_relocs +=
      mips_tls_got_relocs (arg->info, entry->tls_type,
      mips_tls_got_relocs (arg->info, entry->tls_type,
                           entry->symndx == -1 ? &entry->d.h->root : NULL);
                           entry->symndx == -1 ? &entry->d.h->root : NULL);
 
 
  if (entry->abfd != NULL
  if (entry->abfd != NULL
      && entry->symndx == -1
      && entry->symndx == -1
      && entry->d.h->global_got_area != GGA_NONE)
      && entry->d.h->global_got_area != GGA_NONE)
    {
    {
      if (g)
      if (g)
        {
        {
          BFD_ASSERT (g->global_gotsym == NULL);
          BFD_ASSERT (g->global_gotsym == NULL);
 
 
          entry->gotidx = arg->value * (long) g->assigned_gotno++;
          entry->gotidx = arg->value * (long) g->assigned_gotno++;
          if (arg->info->shared
          if (arg->info->shared
              || (elf_hash_table (arg->info)->dynamic_sections_created
              || (elf_hash_table (arg->info)->dynamic_sections_created
                  && entry->d.h->root.def_dynamic
                  && entry->d.h->root.def_dynamic
                  && !entry->d.h->root.def_regular))
                  && !entry->d.h->root.def_regular))
            ++arg->needed_relocs;
            ++arg->needed_relocs;
        }
        }
      else
      else
        entry->d.h->global_got_area = arg->value;
        entry->d.h->global_got_area = arg->value;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* A htab_traverse callback for GOT entries for which DATA is the
/* A htab_traverse callback for GOT entries for which DATA is the
   bfd_link_info.  Forbid any global symbols from having traditional
   bfd_link_info.  Forbid any global symbols from having traditional
   lazy-binding stubs.  */
   lazy-binding stubs.  */
 
 
static int
static int
mips_elf_forbid_lazy_stubs (void **entryp, void *data)
mips_elf_forbid_lazy_stubs (void **entryp, void *data)
{
{
  struct bfd_link_info *info;
  struct bfd_link_info *info;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_got_entry *entry;
  struct mips_got_entry *entry;
 
 
  entry = (struct mips_got_entry *) *entryp;
  entry = (struct mips_got_entry *) *entryp;
  info = (struct bfd_link_info *) data;
  info = (struct bfd_link_info *) data;
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  if (entry->abfd != NULL
  if (entry->abfd != NULL
      && entry->symndx == -1
      && entry->symndx == -1
      && entry->d.h->needs_lazy_stub)
      && entry->d.h->needs_lazy_stub)
    {
    {
      entry->d.h->needs_lazy_stub = FALSE;
      entry->d.h->needs_lazy_stub = FALSE;
      htab->lazy_stub_count--;
      htab->lazy_stub_count--;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Return the offset of an input bfd IBFD's GOT from the beginning of
/* Return the offset of an input bfd IBFD's GOT from the beginning of
   the primary GOT.  */
   the primary GOT.  */
static bfd_vma
static bfd_vma
mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
{
{
  if (g->bfd2got == NULL)
  if (g->bfd2got == NULL)
    return 0;
    return 0;
 
 
  g = mips_elf_got_for_ibfd (g, ibfd);
  g = mips_elf_got_for_ibfd (g, ibfd);
  if (! g)
  if (! g)
    return 0;
    return 0;
 
 
  BFD_ASSERT (g->next);
  BFD_ASSERT (g->next);
 
 
  g = g->next;
  g = g->next;
 
 
  return (g->local_gotno + g->global_gotno + g->tls_gotno)
  return (g->local_gotno + g->global_gotno + g->tls_gotno)
    * MIPS_ELF_GOT_SIZE (abfd);
    * MIPS_ELF_GOT_SIZE (abfd);
}
}
 
 
/* Turn a single GOT that is too big for 16-bit addressing into
/* Turn a single GOT that is too big for 16-bit addressing into
   a sequence of GOTs, each one 16-bit addressable.  */
   a sequence of GOTs, each one 16-bit addressable.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
                    asection *got, bfd_size_type pages)
                    asection *got, bfd_size_type pages)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
  struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
  struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
  struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
  struct mips_got_info *g, *gg;
  struct mips_got_info *g, *gg;
  unsigned int assign, needed_relocs;
  unsigned int assign, needed_relocs;
  bfd *dynobj;
  bfd *dynobj;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  g = htab->got_info;
  g = htab->got_info;
  g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
  g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
                                mips_elf_bfd2got_entry_eq, NULL);
                                mips_elf_bfd2got_entry_eq, NULL);
  if (g->bfd2got == NULL)
  if (g->bfd2got == NULL)
    return FALSE;
    return FALSE;
 
 
  got_per_bfd_arg.bfd2got = g->bfd2got;
  got_per_bfd_arg.bfd2got = g->bfd2got;
  got_per_bfd_arg.obfd = abfd;
  got_per_bfd_arg.obfd = abfd;
  got_per_bfd_arg.info = info;
  got_per_bfd_arg.info = info;
 
 
  /* Count how many GOT entries each input bfd requires, creating a
  /* Count how many GOT entries each input bfd requires, creating a
     map from bfd to got info while at that.  */
     map from bfd to got info while at that.  */
  htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
  htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
  if (got_per_bfd_arg.obfd == NULL)
  if (got_per_bfd_arg.obfd == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Also count how many page entries each input bfd requires.  */
  /* Also count how many page entries each input bfd requires.  */
  htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
  htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
                 &got_per_bfd_arg);
                 &got_per_bfd_arg);
  if (got_per_bfd_arg.obfd == NULL)
  if (got_per_bfd_arg.obfd == NULL)
    return FALSE;
    return FALSE;
 
 
  got_per_bfd_arg.current = NULL;
  got_per_bfd_arg.current = NULL;
  got_per_bfd_arg.primary = NULL;
  got_per_bfd_arg.primary = NULL;
  got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
  got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
                                / MIPS_ELF_GOT_SIZE (abfd))
                                / MIPS_ELF_GOT_SIZE (abfd))
                               - htab->reserved_gotno);
                               - htab->reserved_gotno);
  got_per_bfd_arg.max_pages = pages;
  got_per_bfd_arg.max_pages = pages;
  /* The number of globals that will be included in the primary GOT.
  /* The number of globals that will be included in the primary GOT.
     See the calls to mips_elf_set_global_got_offset below for more
     See the calls to mips_elf_set_global_got_offset below for more
     information.  */
     information.  */
  got_per_bfd_arg.global_count = g->global_gotno;
  got_per_bfd_arg.global_count = g->global_gotno;
 
 
  /* Try to merge the GOTs of input bfds together, as long as they
  /* Try to merge the GOTs of input bfds together, as long as they
     don't seem to exceed the maximum GOT size, choosing one of them
     don't seem to exceed the maximum GOT size, choosing one of them
     to be the primary GOT.  */
     to be the primary GOT.  */
  htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
  htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
  if (got_per_bfd_arg.obfd == NULL)
  if (got_per_bfd_arg.obfd == NULL)
    return FALSE;
    return FALSE;
 
 
  /* If we do not find any suitable primary GOT, create an empty one.  */
  /* If we do not find any suitable primary GOT, create an empty one.  */
  if (got_per_bfd_arg.primary == NULL)
  if (got_per_bfd_arg.primary == NULL)
    {
    {
      g->next = (struct mips_got_info *)
      g->next = (struct mips_got_info *)
        bfd_alloc (abfd, sizeof (struct mips_got_info));
        bfd_alloc (abfd, sizeof (struct mips_got_info));
      if (g->next == NULL)
      if (g->next == NULL)
        return FALSE;
        return FALSE;
 
 
      g->next->global_gotsym = NULL;
      g->next->global_gotsym = NULL;
      g->next->global_gotno = 0;
      g->next->global_gotno = 0;
      g->next->reloc_only_gotno = 0;
      g->next->reloc_only_gotno = 0;
      g->next->local_gotno = 0;
      g->next->local_gotno = 0;
      g->next->page_gotno = 0;
      g->next->page_gotno = 0;
      g->next->tls_gotno = 0;
      g->next->tls_gotno = 0;
      g->next->assigned_gotno = 0;
      g->next->assigned_gotno = 0;
      g->next->tls_assigned_gotno = 0;
      g->next->tls_assigned_gotno = 0;
      g->next->tls_ldm_offset = MINUS_ONE;
      g->next->tls_ldm_offset = MINUS_ONE;
      g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
      g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
                                              mips_elf_multi_got_entry_eq,
                                              mips_elf_multi_got_entry_eq,
                                              NULL);
                                              NULL);
      if (g->next->got_entries == NULL)
      if (g->next->got_entries == NULL)
        return FALSE;
        return FALSE;
      g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
      g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
                                                   mips_got_page_entry_eq,
                                                   mips_got_page_entry_eq,
                                                   NULL);
                                                   NULL);
      if (g->next->got_page_entries == NULL)
      if (g->next->got_page_entries == NULL)
        return FALSE;
        return FALSE;
      g->next->bfd2got = NULL;
      g->next->bfd2got = NULL;
    }
    }
  else
  else
    g->next = got_per_bfd_arg.primary;
    g->next = got_per_bfd_arg.primary;
  g->next->next = got_per_bfd_arg.current;
  g->next->next = got_per_bfd_arg.current;
 
 
  /* GG is now the master GOT, and G is the primary GOT.  */
  /* GG is now the master GOT, and G is the primary GOT.  */
  gg = g;
  gg = g;
  g = g->next;
  g = g->next;
 
 
  /* Map the output bfd to the primary got.  That's what we're going
  /* Map the output bfd to the primary got.  That's what we're going
     to use for bfds that use GOT16 or GOT_PAGE relocations that we
     to use for bfds that use GOT16 or GOT_PAGE relocations that we
     didn't mark in check_relocs, and we want a quick way to find it.
     didn't mark in check_relocs, and we want a quick way to find it.
     We can't just use gg->next because we're going to reverse the
     We can't just use gg->next because we're going to reverse the
     list.  */
     list.  */
  {
  {
    struct mips_elf_bfd2got_hash *bfdgot;
    struct mips_elf_bfd2got_hash *bfdgot;
    void **bfdgotp;
    void **bfdgotp;
 
 
    bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
    bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
      (abfd, sizeof (struct mips_elf_bfd2got_hash));
      (abfd, sizeof (struct mips_elf_bfd2got_hash));
 
 
    if (bfdgot == NULL)
    if (bfdgot == NULL)
      return FALSE;
      return FALSE;
 
 
    bfdgot->bfd = abfd;
    bfdgot->bfd = abfd;
    bfdgot->g = g;
    bfdgot->g = g;
    bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
    bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
 
 
    BFD_ASSERT (*bfdgotp == NULL);
    BFD_ASSERT (*bfdgotp == NULL);
    *bfdgotp = bfdgot;
    *bfdgotp = bfdgot;
  }
  }
 
 
  /* Every symbol that is referenced in a dynamic relocation must be
  /* Every symbol that is referenced in a dynamic relocation must be
     present in the primary GOT, so arrange for them to appear after
     present in the primary GOT, so arrange for them to appear after
     those that are actually referenced.  */
     those that are actually referenced.  */
  gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
  gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
  g->global_gotno = gg->global_gotno;
  g->global_gotno = gg->global_gotno;
 
 
  set_got_offset_arg.g = NULL;
  set_got_offset_arg.g = NULL;
  set_got_offset_arg.value = GGA_RELOC_ONLY;
  set_got_offset_arg.value = GGA_RELOC_ONLY;
  htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
  htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
                 &set_got_offset_arg);
                 &set_got_offset_arg);
  set_got_offset_arg.value = GGA_NORMAL;
  set_got_offset_arg.value = GGA_NORMAL;
  htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
  htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
                 &set_got_offset_arg);
                 &set_got_offset_arg);
 
 
  /* Now go through the GOTs assigning them offset ranges.
  /* Now go through the GOTs assigning them offset ranges.
     [assigned_gotno, local_gotno[ will be set to the range of local
     [assigned_gotno, local_gotno[ will be set to the range of local
     entries in each GOT.  We can then compute the end of a GOT by
     entries in each GOT.  We can then compute the end of a GOT by
     adding local_gotno to global_gotno.  We reverse the list and make
     adding local_gotno to global_gotno.  We reverse the list and make
     it circular since then we'll be able to quickly compute the
     it circular since then we'll be able to quickly compute the
     beginning of a GOT, by computing the end of its predecessor.  To
     beginning of a GOT, by computing the end of its predecessor.  To
     avoid special cases for the primary GOT, while still preserving
     avoid special cases for the primary GOT, while still preserving
     assertions that are valid for both single- and multi-got links,
     assertions that are valid for both single- and multi-got links,
     we arrange for the main got struct to have the right number of
     we arrange for the main got struct to have the right number of
     global entries, but set its local_gotno such that the initial
     global entries, but set its local_gotno such that the initial
     offset of the primary GOT is zero.  Remember that the primary GOT
     offset of the primary GOT is zero.  Remember that the primary GOT
     will become the last item in the circular linked list, so it
     will become the last item in the circular linked list, so it
     points back to the master GOT.  */
     points back to the master GOT.  */
  gg->local_gotno = -g->global_gotno;
  gg->local_gotno = -g->global_gotno;
  gg->global_gotno = g->global_gotno;
  gg->global_gotno = g->global_gotno;
  gg->tls_gotno = 0;
  gg->tls_gotno = 0;
  assign = 0;
  assign = 0;
  gg->next = gg;
  gg->next = gg;
 
 
  do
  do
    {
    {
      struct mips_got_info *gn;
      struct mips_got_info *gn;
 
 
      assign += htab->reserved_gotno;
      assign += htab->reserved_gotno;
      g->assigned_gotno = assign;
      g->assigned_gotno = assign;
      g->local_gotno += assign;
      g->local_gotno += assign;
      g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
      g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
      assign = g->local_gotno + g->global_gotno + g->tls_gotno;
      assign = g->local_gotno + g->global_gotno + g->tls_gotno;
 
 
      /* Take g out of the direct list, and push it onto the reversed
      /* Take g out of the direct list, and push it onto the reversed
         list that gg points to.  g->next is guaranteed to be nonnull after
         list that gg points to.  g->next is guaranteed to be nonnull after
         this operation, as required by mips_elf_initialize_tls_index. */
         this operation, as required by mips_elf_initialize_tls_index. */
      gn = g->next;
      gn = g->next;
      g->next = gg->next;
      g->next = gg->next;
      gg->next = g;
      gg->next = g;
 
 
      /* Set up any TLS entries.  We always place the TLS entries after
      /* Set up any TLS entries.  We always place the TLS entries after
         all non-TLS entries.  */
         all non-TLS entries.  */
      g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
      g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
      htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
      htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
 
 
      /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
      /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
      g = gn;
      g = gn;
 
 
      /* Forbid global symbols in every non-primary GOT from having
      /* Forbid global symbols in every non-primary GOT from having
         lazy-binding stubs.  */
         lazy-binding stubs.  */
      if (g)
      if (g)
        htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
        htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
    }
    }
  while (g);
  while (g);
 
 
  got->size = (gg->next->local_gotno
  got->size = (gg->next->local_gotno
               + gg->next->global_gotno
               + gg->next->global_gotno
               + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
               + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
 
 
  needed_relocs = 0;
  needed_relocs = 0;
  set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
  set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
  set_got_offset_arg.info = info;
  set_got_offset_arg.info = info;
  for (g = gg->next; g && g->next != gg; g = g->next)
  for (g = gg->next; g && g->next != gg; g = g->next)
    {
    {
      unsigned int save_assign;
      unsigned int save_assign;
 
 
      /* Assign offsets to global GOT entries.  */
      /* Assign offsets to global GOT entries.  */
      save_assign = g->assigned_gotno;
      save_assign = g->assigned_gotno;
      g->assigned_gotno = g->local_gotno;
      g->assigned_gotno = g->local_gotno;
      set_got_offset_arg.g = g;
      set_got_offset_arg.g = g;
      set_got_offset_arg.needed_relocs = 0;
      set_got_offset_arg.needed_relocs = 0;
      htab_traverse (g->got_entries,
      htab_traverse (g->got_entries,
                     mips_elf_set_global_got_offset,
                     mips_elf_set_global_got_offset,
                     &set_got_offset_arg);
                     &set_got_offset_arg);
      needed_relocs += set_got_offset_arg.needed_relocs;
      needed_relocs += set_got_offset_arg.needed_relocs;
      BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
      BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
 
 
      g->assigned_gotno = save_assign;
      g->assigned_gotno = save_assign;
      if (info->shared)
      if (info->shared)
        {
        {
          needed_relocs += g->local_gotno - g->assigned_gotno;
          needed_relocs += g->local_gotno - g->assigned_gotno;
          BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
          BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
                      + g->next->global_gotno
                      + g->next->global_gotno
                      + g->next->tls_gotno
                      + g->next->tls_gotno
                      + htab->reserved_gotno);
                      + htab->reserved_gotno);
        }
        }
    }
    }
 
 
  if (needed_relocs)
  if (needed_relocs)
    mips_elf_allocate_dynamic_relocations (dynobj, info,
    mips_elf_allocate_dynamic_relocations (dynobj, info,
                                           needed_relocs);
                                           needed_relocs);
 
 
  return TRUE;
  return TRUE;
}
}
 
 


/* Returns the first relocation of type r_type found, beginning with
/* Returns the first relocation of type r_type found, beginning with
   RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
   RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
 
 
static const Elf_Internal_Rela *
static const Elf_Internal_Rela *
mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
                          const Elf_Internal_Rela *relocation,
                          const Elf_Internal_Rela *relocation,
                          const Elf_Internal_Rela *relend)
                          const Elf_Internal_Rela *relend)
{
{
  unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
  unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
 
 
  while (relocation < relend)
  while (relocation < relend)
    {
    {
      if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
      if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
          && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
          && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
        return relocation;
        return relocation;
 
 
      ++relocation;
      ++relocation;
    }
    }
 
 
  /* We didn't find it.  */
  /* We didn't find it.  */
  return NULL;
  return NULL;
}
}
 
 
/* Return whether an input relocation is against a local symbol.  */
/* Return whether an input relocation is against a local symbol.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_local_relocation_p (bfd *input_bfd,
mips_elf_local_relocation_p (bfd *input_bfd,
                             const Elf_Internal_Rela *relocation,
                             const Elf_Internal_Rela *relocation,
                             asection **local_sections)
                             asection **local_sections)
{
{
  unsigned long r_symndx;
  unsigned long r_symndx;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  size_t extsymoff;
  size_t extsymoff;
 
 
  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
  extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
 
 
  if (r_symndx < extsymoff)
  if (r_symndx < extsymoff)
    return TRUE;
    return TRUE;
  if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
  if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
    return TRUE;
    return TRUE;
 
 
  return FALSE;
  return FALSE;
}
}


/* Sign-extend VALUE, which has the indicated number of BITS.  */
/* Sign-extend VALUE, which has the indicated number of BITS.  */
 
 
bfd_vma
bfd_vma
_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
{
{
  if (value & ((bfd_vma) 1 << (bits - 1)))
  if (value & ((bfd_vma) 1 << (bits - 1)))
    /* VALUE is negative.  */
    /* VALUE is negative.  */
    value |= ((bfd_vma) - 1) << bits;
    value |= ((bfd_vma) - 1) << bits;
 
 
  return value;
  return value;
}
}
 
 
/* Return non-zero if the indicated VALUE has overflowed the maximum
/* Return non-zero if the indicated VALUE has overflowed the maximum
   range expressible by a signed number with the indicated number of
   range expressible by a signed number with the indicated number of
   BITS.  */
   BITS.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_overflow_p (bfd_vma value, int bits)
mips_elf_overflow_p (bfd_vma value, int bits)
{
{
  bfd_signed_vma svalue = (bfd_signed_vma) value;
  bfd_signed_vma svalue = (bfd_signed_vma) value;
 
 
  if (svalue > (1 << (bits - 1)) - 1)
  if (svalue > (1 << (bits - 1)) - 1)
    /* The value is too big.  */
    /* The value is too big.  */
    return TRUE;
    return TRUE;
  else if (svalue < -(1 << (bits - 1)))
  else if (svalue < -(1 << (bits - 1)))
    /* The value is too small.  */
    /* The value is too small.  */
    return TRUE;
    return TRUE;
 
 
  /* All is well.  */
  /* All is well.  */
  return FALSE;
  return FALSE;
}
}
 
 
/* Calculate the %high function.  */
/* Calculate the %high function.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_high (bfd_vma value)
mips_elf_high (bfd_vma value)
{
{
  return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
  return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
}
}
 
 
/* Calculate the %higher function.  */
/* Calculate the %higher function.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
{
{
#ifdef BFD64
#ifdef BFD64
  return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
  return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
#else
#else
  abort ();
  abort ();
  return MINUS_ONE;
  return MINUS_ONE;
#endif
#endif
}
}
 
 
/* Calculate the %highest function.  */
/* Calculate the %highest function.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
{
{
#ifdef BFD64
#ifdef BFD64
  return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
  return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
#else
#else
  abort ();
  abort ();
  return MINUS_ONE;
  return MINUS_ONE;
#endif
#endif
}
}


/* Create the .compact_rel section.  */
/* Create the .compact_rel section.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_create_compact_rel_section
mips_elf_create_compact_rel_section
  (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
  (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
{
  flagword flags;
  flagword flags;
  register asection *s;
  register asection *s;
 
 
  if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
  if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
    {
    {
      flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
      flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
               | SEC_READONLY);
               | SEC_READONLY);
 
 
      s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
      s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
      if (s == NULL
      if (s == NULL
          || ! bfd_set_section_alignment (abfd, s,
          || ! bfd_set_section_alignment (abfd, s,
                                          MIPS_ELF_LOG_FILE_ALIGN (abfd)))
                                          MIPS_ELF_LOG_FILE_ALIGN (abfd)))
        return FALSE;
        return FALSE;
 
 
      s->size = sizeof (Elf32_External_compact_rel);
      s->size = sizeof (Elf32_External_compact_rel);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Create the .got section to hold the global offset table.  */
/* Create the .got section to hold the global offset table.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
{
{
  flagword flags;
  flagword flags;
  register asection *s;
  register asection *s;
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
  struct bfd_link_hash_entry *bh;
  struct bfd_link_hash_entry *bh;
  struct mips_got_info *g;
  struct mips_got_info *g;
  bfd_size_type amt;
  bfd_size_type amt;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  /* This function may be called more than once.  */
  /* This function may be called more than once.  */
  if (htab->sgot)
  if (htab->sgot)
    return TRUE;
    return TRUE;
 
 
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
           | SEC_LINKER_CREATED);
           | SEC_LINKER_CREATED);
 
 
  /* We have to use an alignment of 2**4 here because this is hardcoded
  /* We have to use an alignment of 2**4 here because this is hardcoded
     in the function stub generation and in the linker script.  */
     in the function stub generation and in the linker script.  */
  s = bfd_make_section_with_flags (abfd, ".got", flags);
  s = bfd_make_section_with_flags (abfd, ".got", flags);
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_alignment (abfd, s, 4))
      || ! bfd_set_section_alignment (abfd, s, 4))
    return FALSE;
    return FALSE;
  htab->sgot = s;
  htab->sgot = s;
 
 
  /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
  /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
     linker script because we don't want to define the symbol if we
     linker script because we don't want to define the symbol if we
     are not creating a global offset table.  */
     are not creating a global offset table.  */
  bh = NULL;
  bh = NULL;
  if (! (_bfd_generic_link_add_one_symbol
  if (! (_bfd_generic_link_add_one_symbol
         (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
         (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
          0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
          0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
    return FALSE;
    return FALSE;
 
 
  h = (struct elf_link_hash_entry *) bh;
  h = (struct elf_link_hash_entry *) bh;
  h->non_elf = 0;
  h->non_elf = 0;
  h->def_regular = 1;
  h->def_regular = 1;
  h->type = STT_OBJECT;
  h->type = STT_OBJECT;
  elf_hash_table (info)->hgot = h;
  elf_hash_table (info)->hgot = h;
 
 
  if (info->shared
  if (info->shared
      && ! bfd_elf_link_record_dynamic_symbol (info, h))
      && ! bfd_elf_link_record_dynamic_symbol (info, h))
    return FALSE;
    return FALSE;
 
 
  amt = sizeof (struct mips_got_info);
  amt = sizeof (struct mips_got_info);
  g = bfd_alloc (abfd, amt);
  g = bfd_alloc (abfd, amt);
  if (g == NULL)
  if (g == NULL)
    return FALSE;
    return FALSE;
  g->global_gotsym = NULL;
  g->global_gotsym = NULL;
  g->global_gotno = 0;
  g->global_gotno = 0;
  g->reloc_only_gotno = 0;
  g->reloc_only_gotno = 0;
  g->tls_gotno = 0;
  g->tls_gotno = 0;
  g->local_gotno = 0;
  g->local_gotno = 0;
  g->page_gotno = 0;
  g->page_gotno = 0;
  g->assigned_gotno = 0;
  g->assigned_gotno = 0;
  g->bfd2got = NULL;
  g->bfd2got = NULL;
  g->next = NULL;
  g->next = NULL;
  g->tls_ldm_offset = MINUS_ONE;
  g->tls_ldm_offset = MINUS_ONE;
  g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
  g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
                                    mips_elf_got_entry_eq, NULL);
                                    mips_elf_got_entry_eq, NULL);
  if (g->got_entries == NULL)
  if (g->got_entries == NULL)
    return FALSE;
    return FALSE;
  g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
  g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
                                         mips_got_page_entry_eq, NULL);
                                         mips_got_page_entry_eq, NULL);
  if (g->got_page_entries == NULL)
  if (g->got_page_entries == NULL)
    return FALSE;
    return FALSE;
  htab->got_info = g;
  htab->got_info = g;
  mips_elf_section_data (s)->elf.this_hdr.sh_flags
  mips_elf_section_data (s)->elf.this_hdr.sh_flags
    |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
    |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
 
 
  /* We also need a .got.plt section when generating PLTs.  */
  /* We also need a .got.plt section when generating PLTs.  */
  s = bfd_make_section_with_flags (abfd, ".got.plt",
  s = bfd_make_section_with_flags (abfd, ".got.plt",
                                   SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
                                   SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
                                   | SEC_IN_MEMORY | SEC_LINKER_CREATED);
                                   | SEC_IN_MEMORY | SEC_LINKER_CREATED);
  if (s == NULL)
  if (s == NULL)
    return FALSE;
    return FALSE;
  htab->sgotplt = s;
  htab->sgotplt = s;
 
 
  return TRUE;
  return TRUE;
}
}


/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
   __GOTT_INDEX__ symbols.  These symbols are only special for
   __GOTT_INDEX__ symbols.  These symbols are only special for
   shared objects; they are not used in executables.  */
   shared objects; they are not used in executables.  */
 
 
static bfd_boolean
static bfd_boolean
is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
{
{
  return (mips_elf_hash_table (info)->is_vxworks
  return (mips_elf_hash_table (info)->is_vxworks
          && info->shared
          && info->shared
          && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
          && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
              || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
              || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
}
}
 
 
/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
   require an la25 stub.  See also mips_elf_local_pic_function_p,
   require an la25 stub.  See also mips_elf_local_pic_function_p,
   which determines whether the destination function ever requires a
   which determines whether the destination function ever requires a
   stub.  */
   stub.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
 
                                     bfd_boolean target_is_16_bit_code_p)
{
{
  /* We specifically ignore branches and jumps from EF_PIC objects,
  /* We specifically ignore branches and jumps from EF_PIC objects,
     where the onus is on the compiler or programmer to perform any
     where the onus is on the compiler or programmer to perform any
     necessary initialization of $25.  Sometimes such initialization
     necessary initialization of $25.  Sometimes such initialization
     is unnecessary; for example, -mno-shared functions do not use
     is unnecessary; for example, -mno-shared functions do not use
     the incoming value of $25, and may therefore be called directly.  */
     the incoming value of $25, and may therefore be called directly.  */
  if (PIC_OBJECT_P (input_bfd))
  if (PIC_OBJECT_P (input_bfd))
    return FALSE;
    return FALSE;
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_MIPS_26:
    case R_MIPS_26:
    case R_MIPS_PC16:
    case R_MIPS_PC16:
    case R_MIPS16_26:
 
    case R_MICROMIPS_26_S1:
    case R_MICROMIPS_26_S1:
    case R_MICROMIPS_PC7_S1:
    case R_MICROMIPS_PC7_S1:
    case R_MICROMIPS_PC10_S1:
    case R_MICROMIPS_PC10_S1:
    case R_MICROMIPS_PC16_S1:
    case R_MICROMIPS_PC16_S1:
    case R_MICROMIPS_PC23_S2:
    case R_MICROMIPS_PC23_S2:
      return TRUE;
      return TRUE;
 
 
 
    case R_MIPS16_26:
 
      return !target_is_16_bit_code_p;
 
 
    default:
    default:
      return FALSE;
      return FALSE;
    }
    }
}
}


/* Calculate the value produced by the RELOCATION (which comes from
/* Calculate the value produced by the RELOCATION (which comes from
   the INPUT_BFD).  The ADDEND is the addend to use for this
   the INPUT_BFD).  The ADDEND is the addend to use for this
   RELOCATION; RELOCATION->R_ADDEND is ignored.
   RELOCATION; RELOCATION->R_ADDEND is ignored.
 
 
   The result of the relocation calculation is stored in VALUEP.
   The result of the relocation calculation is stored in VALUEP.
   On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
   On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
   is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
   is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
 
 
   This function returns bfd_reloc_continue if the caller need take no
   This function returns bfd_reloc_continue if the caller need take no
   further action regarding this relocation, bfd_reloc_notsupported if
   further action regarding this relocation, bfd_reloc_notsupported if
   something goes dramatically wrong, bfd_reloc_overflow if an
   something goes dramatically wrong, bfd_reloc_overflow if an
   overflow occurs, and bfd_reloc_ok to indicate success.  */
   overflow occurs, and bfd_reloc_ok to indicate success.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
                               asection *input_section,
                               asection *input_section,
                               struct bfd_link_info *info,
                               struct bfd_link_info *info,
                               const Elf_Internal_Rela *relocation,
                               const Elf_Internal_Rela *relocation,
                               bfd_vma addend, reloc_howto_type *howto,
                               bfd_vma addend, reloc_howto_type *howto,
                               Elf_Internal_Sym *local_syms,
                               Elf_Internal_Sym *local_syms,
                               asection **local_sections, bfd_vma *valuep,
                               asection **local_sections, bfd_vma *valuep,
                               const char **namep,
                               const char **namep,
                               bfd_boolean *cross_mode_jump_p,
                               bfd_boolean *cross_mode_jump_p,
                               bfd_boolean save_addend)
                               bfd_boolean save_addend)
{
{
  /* The eventual value we will return.  */
  /* The eventual value we will return.  */
  bfd_vma value;
  bfd_vma value;
  /* The address of the symbol against which the relocation is
  /* The address of the symbol against which the relocation is
     occurring.  */
     occurring.  */
  bfd_vma symbol = 0;
  bfd_vma symbol = 0;
  /* The final GP value to be used for the relocatable, executable, or
  /* The final GP value to be used for the relocatable, executable, or
     shared object file being produced.  */
     shared object file being produced.  */
  bfd_vma gp;
  bfd_vma gp;
  /* The place (section offset or address) of the storage unit being
  /* The place (section offset or address) of the storage unit being
     relocated.  */
     relocated.  */
  bfd_vma p;
  bfd_vma p;
  /* The value of GP used to create the relocatable object.  */
  /* The value of GP used to create the relocatable object.  */
  bfd_vma gp0;
  bfd_vma gp0;
  /* The offset into the global offset table at which the address of
  /* The offset into the global offset table at which the address of
     the relocation entry symbol, adjusted by the addend, resides
     the relocation entry symbol, adjusted by the addend, resides
     during execution.  */
     during execution.  */
  bfd_vma g = MINUS_ONE;
  bfd_vma g = MINUS_ONE;
  /* The section in which the symbol referenced by the relocation is
  /* The section in which the symbol referenced by the relocation is
     located.  */
     located.  */
  asection *sec = NULL;
  asection *sec = NULL;
  struct mips_elf_link_hash_entry *h = NULL;
  struct mips_elf_link_hash_entry *h = NULL;
  /* TRUE if the symbol referred to by this relocation is a local
  /* TRUE if the symbol referred to by this relocation is a local
     symbol.  */
     symbol.  */
  bfd_boolean local_p, was_local_p;
  bfd_boolean local_p, was_local_p;
  /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
  /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
  bfd_boolean gp_disp_p = FALSE;
  bfd_boolean gp_disp_p = FALSE;
  /* TRUE if the symbol referred to by this relocation is
  /* TRUE if the symbol referred to by this relocation is
     "__gnu_local_gp".  */
     "__gnu_local_gp".  */
  bfd_boolean gnu_local_gp_p = FALSE;
  bfd_boolean gnu_local_gp_p = FALSE;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  size_t extsymoff;
  size_t extsymoff;
  unsigned long r_symndx;
  unsigned long r_symndx;
  int r_type;
  int r_type;
  /* TRUE if overflow occurred during the calculation of the
  /* TRUE if overflow occurred during the calculation of the
     relocation value.  */
     relocation value.  */
  bfd_boolean overflowed_p;
  bfd_boolean overflowed_p;
  /* TRUE if this relocation refers to a MIPS16 function.  */
  /* TRUE if this relocation refers to a MIPS16 function.  */
  bfd_boolean target_is_16_bit_code_p = FALSE;
  bfd_boolean target_is_16_bit_code_p = FALSE;
  bfd_boolean target_is_micromips_code_p = FALSE;
  bfd_boolean target_is_micromips_code_p = FALSE;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  bfd *dynobj;
  bfd *dynobj;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  /* Parse the relocation.  */
  /* Parse the relocation.  */
  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
  r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
  r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
  r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
  p = (input_section->output_section->vma
  p = (input_section->output_section->vma
       + input_section->output_offset
       + input_section->output_offset
       + relocation->r_offset);
       + relocation->r_offset);
 
 
  /* Assume that there will be no overflow.  */
  /* Assume that there will be no overflow.  */
  overflowed_p = FALSE;
  overflowed_p = FALSE;
 
 
  /* Figure out whether or not the symbol is local, and get the offset
  /* Figure out whether or not the symbol is local, and get the offset
     used in the array of hash table entries.  */
     used in the array of hash table entries.  */
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  local_p = mips_elf_local_relocation_p (input_bfd, relocation,
  local_p = mips_elf_local_relocation_p (input_bfd, relocation,
                                         local_sections);
                                         local_sections);
  was_local_p = local_p;
  was_local_p = local_p;
  if (! elf_bad_symtab (input_bfd))
  if (! elf_bad_symtab (input_bfd))
    extsymoff = symtab_hdr->sh_info;
    extsymoff = symtab_hdr->sh_info;
  else
  else
    {
    {
      /* The symbol table does not follow the rule that local symbols
      /* The symbol table does not follow the rule that local symbols
         must come before globals.  */
         must come before globals.  */
      extsymoff = 0;
      extsymoff = 0;
    }
    }
 
 
  /* Figure out the value of the symbol.  */
  /* Figure out the value of the symbol.  */
  if (local_p)
  if (local_p)
    {
    {
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
 
 
      sym = local_syms + r_symndx;
      sym = local_syms + r_symndx;
      sec = local_sections[r_symndx];
      sec = local_sections[r_symndx];
 
 
      symbol = sec->output_section->vma + sec->output_offset;
      symbol = sec->output_section->vma + sec->output_offset;
      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
          || (sec->flags & SEC_MERGE))
          || (sec->flags & SEC_MERGE))
        symbol += sym->st_value;
        symbol += sym->st_value;
      if ((sec->flags & SEC_MERGE)
      if ((sec->flags & SEC_MERGE)
          && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
          && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
        {
        {
          addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
          addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
          addend -= symbol;
          addend -= symbol;
          addend += sec->output_section->vma + sec->output_offset;
          addend += sec->output_section->vma + sec->output_offset;
        }
        }
 
 
      /* MIPS16/microMIPS text labels should be treated as odd.  */
      /* MIPS16/microMIPS text labels should be treated as odd.  */
      if (ELF_ST_IS_COMPRESSED (sym->st_other))
      if (ELF_ST_IS_COMPRESSED (sym->st_other))
        ++symbol;
        ++symbol;
 
 
      /* Record the name of this symbol, for our caller.  */
      /* Record the name of this symbol, for our caller.  */
      *namep = bfd_elf_string_from_elf_section (input_bfd,
      *namep = bfd_elf_string_from_elf_section (input_bfd,
                                                symtab_hdr->sh_link,
                                                symtab_hdr->sh_link,
                                                sym->st_name);
                                                sym->st_name);
      if (*namep == '\0')
      if (*namep == '\0')
        *namep = bfd_section_name (input_bfd, sec);
        *namep = bfd_section_name (input_bfd, sec);
 
 
      target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
      target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
      target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
      target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
    }
    }
  else
  else
    {
    {
      /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
      /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
 
 
      /* For global symbols we look up the symbol in the hash-table.  */
      /* For global symbols we look up the symbol in the hash-table.  */
      h = ((struct mips_elf_link_hash_entry *)
      h = ((struct mips_elf_link_hash_entry *)
           elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
           elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
      /* Find the real hash-table entry for this symbol.  */
      /* Find the real hash-table entry for this symbol.  */
      while (h->root.root.type == bfd_link_hash_indirect
      while (h->root.root.type == bfd_link_hash_indirect
             || h->root.root.type == bfd_link_hash_warning)
             || h->root.root.type == bfd_link_hash_warning)
        h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
        h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
 
 
      /* Record the name of this symbol, for our caller.  */
      /* Record the name of this symbol, for our caller.  */
      *namep = h->root.root.root.string;
      *namep = h->root.root.root.string;
 
 
      /* See if this is the special _gp_disp symbol.  Note that such a
      /* See if this is the special _gp_disp symbol.  Note that such a
         symbol must always be a global symbol.  */
         symbol must always be a global symbol.  */
      if (strcmp (*namep, "_gp_disp") == 0
      if (strcmp (*namep, "_gp_disp") == 0
          && ! NEWABI_P (input_bfd))
          && ! NEWABI_P (input_bfd))
        {
        {
          /* Relocations against _gp_disp are permitted only with
          /* Relocations against _gp_disp are permitted only with
             R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
             R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
          if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
          if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
            return bfd_reloc_notsupported;
            return bfd_reloc_notsupported;
 
 
          gp_disp_p = TRUE;
          gp_disp_p = TRUE;
        }
        }
      /* See if this is the special _gp symbol.  Note that such a
      /* See if this is the special _gp symbol.  Note that such a
         symbol must always be a global symbol.  */
         symbol must always be a global symbol.  */
      else if (strcmp (*namep, "__gnu_local_gp") == 0)
      else if (strcmp (*namep, "__gnu_local_gp") == 0)
        gnu_local_gp_p = TRUE;
        gnu_local_gp_p = TRUE;
 
 
 
 
      /* If this symbol is defined, calculate its address.  Note that
      /* If this symbol is defined, calculate its address.  Note that
         _gp_disp is a magic symbol, always implicitly defined by the
         _gp_disp is a magic symbol, always implicitly defined by the
         linker, so it's inappropriate to check to see whether or not
         linker, so it's inappropriate to check to see whether or not
         its defined.  */
         its defined.  */
      else if ((h->root.root.type == bfd_link_hash_defined
      else if ((h->root.root.type == bfd_link_hash_defined
                || h->root.root.type == bfd_link_hash_defweak)
                || h->root.root.type == bfd_link_hash_defweak)
               && h->root.root.u.def.section)
               && h->root.root.u.def.section)
        {
        {
          sec = h->root.root.u.def.section;
          sec = h->root.root.u.def.section;
          if (sec->output_section)
          if (sec->output_section)
            symbol = (h->root.root.u.def.value
            symbol = (h->root.root.u.def.value
                      + sec->output_section->vma
                      + sec->output_section->vma
                      + sec->output_offset);
                      + sec->output_offset);
          else
          else
            symbol = h->root.root.u.def.value;
            symbol = h->root.root.u.def.value;
        }
        }
      else if (h->root.root.type == bfd_link_hash_undefweak)
      else if (h->root.root.type == bfd_link_hash_undefweak)
        /* We allow relocations against undefined weak symbols, giving
        /* We allow relocations against undefined weak symbols, giving
           it the value zero, so that you can undefined weak functions
           it the value zero, so that you can undefined weak functions
           and check to see if they exist by looking at their
           and check to see if they exist by looking at their
           addresses.  */
           addresses.  */
        symbol = 0;
        symbol = 0;
      else if (info->unresolved_syms_in_objects == RM_IGNORE
      else if (info->unresolved_syms_in_objects == RM_IGNORE
               && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
               && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
        symbol = 0;
        symbol = 0;
      else if (strcmp (*namep, SGI_COMPAT (input_bfd)
      else if (strcmp (*namep, SGI_COMPAT (input_bfd)
                       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
                       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
        {
        {
          /* If this is a dynamic link, we should have created a
          /* If this is a dynamic link, we should have created a
             _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
             _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
             in in _bfd_mips_elf_create_dynamic_sections.
             in in _bfd_mips_elf_create_dynamic_sections.
             Otherwise, we should define the symbol with a value of 0.
             Otherwise, we should define the symbol with a value of 0.
             FIXME: It should probably get into the symbol table
             FIXME: It should probably get into the symbol table
             somehow as well.  */
             somehow as well.  */
          BFD_ASSERT (! info->shared);
          BFD_ASSERT (! info->shared);
          BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
          BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
          symbol = 0;
          symbol = 0;
        }
        }
      else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
      else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
        {
        {
          /* This is an optional symbol - an Irix specific extension to the
          /* This is an optional symbol - an Irix specific extension to the
             ELF spec.  Ignore it for now.
             ELF spec.  Ignore it for now.
             XXX - FIXME - there is more to the spec for OPTIONAL symbols
             XXX - FIXME - there is more to the spec for OPTIONAL symbols
             than simply ignoring them, but we do not handle this for now.
             than simply ignoring them, but we do not handle this for now.
             For information see the "64-bit ELF Object File Specification"
             For information see the "64-bit ELF Object File Specification"
             which is available from here:
             which is available from here:
             http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
             http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
          symbol = 0;
          symbol = 0;
        }
        }
      else if ((*info->callbacks->undefined_symbol)
      else if ((*info->callbacks->undefined_symbol)
               (info, h->root.root.root.string, input_bfd,
               (info, h->root.root.root.string, input_bfd,
                input_section, relocation->r_offset,
                input_section, relocation->r_offset,
                (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
                (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
                 || ELF_ST_VISIBILITY (h->root.other)))
                 || ELF_ST_VISIBILITY (h->root.other)))
        {
        {
          return bfd_reloc_undefined;
          return bfd_reloc_undefined;
        }
        }
      else
      else
        {
        {
          return bfd_reloc_notsupported;
          return bfd_reloc_notsupported;
        }
        }
 
 
      target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
      target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
      /* If the output section is the PLT section,
      /* If the output section is the PLT section,
         then the target is not microMIPS.  */
         then the target is not microMIPS.  */
      target_is_micromips_code_p = (htab->splt != sec
      target_is_micromips_code_p = (htab->splt != sec
                                    && ELF_ST_IS_MICROMIPS (h->root.other));
                                    && ELF_ST_IS_MICROMIPS (h->root.other));
    }
    }
 
 
  /* If this is a reference to a 16-bit function with a stub, we need
  /* If this is a reference to a 16-bit function with a stub, we need
     to redirect the relocation to the stub unless:
     to redirect the relocation to the stub unless:
 
 
     (a) the relocation is for a MIPS16 JAL;
     (a) the relocation is for a MIPS16 JAL;
 
 
     (b) the relocation is for a MIPS16 PIC call, and there are no
     (b) the relocation is for a MIPS16 PIC call, and there are no
         non-MIPS16 uses of the GOT slot; or
         non-MIPS16 uses of the GOT slot; or
 
 
     (c) the section allows direct references to MIPS16 functions.  */
     (c) the section allows direct references to MIPS16 functions.  */
  if (r_type != R_MIPS16_26
  if (r_type != R_MIPS16_26
      && !info->relocatable
      && !info->relocatable
      && ((h != NULL
      && ((h != NULL
           && h->fn_stub != NULL
           && h->fn_stub != NULL
           && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
           && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
          || (local_p
          || (local_p
              && elf_tdata (input_bfd)->local_stubs != NULL
              && elf_tdata (input_bfd)->local_stubs != NULL
              && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
              && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
      && !section_allows_mips16_refs_p (input_section))
      && !section_allows_mips16_refs_p (input_section))
    {
    {
      /* This is a 32- or 64-bit call to a 16-bit function.  We should
      /* This is a 32- or 64-bit call to a 16-bit function.  We should
         have already noticed that we were going to need the
         have already noticed that we were going to need the
         stub.  */
         stub.  */
      if (local_p)
      if (local_p)
 
        {
        sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
        sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
 
          value = 0;
 
        }
      else
      else
        {
        {
          BFD_ASSERT (h->need_fn_stub);
          BFD_ASSERT (h->need_fn_stub);
 
          if (h->la25_stub)
 
            {
 
              /* If a LA25 header for the stub itself exists, point to the
 
                 prepended LUI/ADDIU sequence.  */
 
              sec = h->la25_stub->stub_section;
 
              value = h->la25_stub->offset;
 
            }
 
          else
 
            {
          sec = h->fn_stub;
          sec = h->fn_stub;
 
              value = 0;
 
            }
        }
        }
 
 
      symbol = sec->output_section->vma + sec->output_offset;
      symbol = sec->output_section->vma + sec->output_offset + value;
      /* The target is 16-bit, but the stub isn't.  */
      /* The target is 16-bit, but the stub isn't.  */
      target_is_16_bit_code_p = FALSE;
      target_is_16_bit_code_p = FALSE;
    }
    }
  /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
  /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
     need to redirect the call to the stub.  Note that we specifically
     need to redirect the call to the stub.  Note that we specifically
     exclude R_MIPS16_CALL16 from this behavior; indirect calls should
     exclude R_MIPS16_CALL16 from this behavior; indirect calls should
     use an indirect stub instead.  */
     use an indirect stub instead.  */
  else if (r_type == R_MIPS16_26 && !info->relocatable
  else if (r_type == R_MIPS16_26 && !info->relocatable
           && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
           && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
               || (local_p
               || (local_p
                   && elf_tdata (input_bfd)->local_call_stubs != NULL
                   && elf_tdata (input_bfd)->local_call_stubs != NULL
                   && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
                   && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
           && !target_is_16_bit_code_p)
           && !target_is_16_bit_code_p)
    {
    {
      if (local_p)
      if (local_p)
        sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
        sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
      else
      else
        {
        {
          /* If both call_stub and call_fp_stub are defined, we can figure
          /* If both call_stub and call_fp_stub are defined, we can figure
             out which one to use by checking which one appears in the input
             out which one to use by checking which one appears in the input
             file.  */
             file.  */
          if (h->call_stub != NULL && h->call_fp_stub != NULL)
          if (h->call_stub != NULL && h->call_fp_stub != NULL)
            {
            {
              asection *o;
              asection *o;
 
 
              sec = NULL;
              sec = NULL;
              for (o = input_bfd->sections; o != NULL; o = o->next)
              for (o = input_bfd->sections; o != NULL; o = o->next)
                {
                {
                  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
                  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
                    {
                    {
                      sec = h->call_fp_stub;
                      sec = h->call_fp_stub;
                      break;
                      break;
                    }
                    }
                }
                }
              if (sec == NULL)
              if (sec == NULL)
                sec = h->call_stub;
                sec = h->call_stub;
            }
            }
          else if (h->call_stub != NULL)
          else if (h->call_stub != NULL)
            sec = h->call_stub;
            sec = h->call_stub;
          else
          else
            sec = h->call_fp_stub;
            sec = h->call_fp_stub;
        }
        }
 
 
      BFD_ASSERT (sec->size > 0);
      BFD_ASSERT (sec->size > 0);
      symbol = sec->output_section->vma + sec->output_offset;
      symbol = sec->output_section->vma + sec->output_offset;
    }
    }
  /* If this is a direct call to a PIC function, redirect to the
  /* If this is a direct call to a PIC function, redirect to the
     non-PIC stub.  */
     non-PIC stub.  */
  else if (h != NULL && h->la25_stub
  else if (h != NULL && h->la25_stub
           && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
           && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
 
                                                   target_is_16_bit_code_p))
    symbol = (h->la25_stub->stub_section->output_section->vma
    symbol = (h->la25_stub->stub_section->output_section->vma
              + h->la25_stub->stub_section->output_offset
              + h->la25_stub->stub_section->output_offset
              + h->la25_stub->offset);
              + h->la25_stub->offset);
 
 
  /* Make sure MIPS16 and microMIPS are not used together.  */
  /* Make sure MIPS16 and microMIPS are not used together.  */
  if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
  if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
      || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
      || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
   {
   {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("MIPS16 and microMIPS functions cannot call each other"));
        (_("MIPS16 and microMIPS functions cannot call each other"));
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
   }
   }
 
 
  /* Calls from 16-bit code to 32-bit code and vice versa require the
  /* Calls from 16-bit code to 32-bit code and vice versa require the
     mode change.  However, we can ignore calls to undefined weak symbols,
     mode change.  However, we can ignore calls to undefined weak symbols,
     which should never be executed at runtime.  This exception is important
     which should never be executed at runtime.  This exception is important
     because the assembly writer may have "known" that any definition of the
     because the assembly writer may have "known" that any definition of the
     symbol would be 16-bit code, and that direct jumps were therefore
     symbol would be 16-bit code, and that direct jumps were therefore
     acceptable.  */
     acceptable.  */
  *cross_mode_jump_p = (!info->relocatable
  *cross_mode_jump_p = (!info->relocatable
                        && !(h && h->root.root.type == bfd_link_hash_undefweak)
                        && !(h && h->root.root.type == bfd_link_hash_undefweak)
                        && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
                        && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
                            || (r_type == R_MICROMIPS_26_S1
                            || (r_type == R_MICROMIPS_26_S1
                                && !target_is_micromips_code_p)
                                && !target_is_micromips_code_p)
                            || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
                            || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
                                && (target_is_16_bit_code_p
                                && (target_is_16_bit_code_p
                                    || target_is_micromips_code_p))));
                                    || target_is_micromips_code_p))));
 
 
  local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
  local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
 
 
  gp0 = _bfd_get_gp_value (input_bfd);
  gp0 = _bfd_get_gp_value (input_bfd);
  gp = _bfd_get_gp_value (abfd);
  gp = _bfd_get_gp_value (abfd);
  if (htab->got_info)
  if (htab->got_info)
    gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
    gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
 
 
  if (gnu_local_gp_p)
  if (gnu_local_gp_p)
    symbol = gp;
    symbol = gp;
 
 
  /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
  /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
     to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
     to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
     corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
     corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
  if (got_page_reloc_p (r_type) && !local_p)
  if (got_page_reloc_p (r_type) && !local_p)
    {
    {
      r_type = (micromips_reloc_p (r_type)
      r_type = (micromips_reloc_p (r_type)
                ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
                ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
      addend = 0;
      addend = 0;
    }
    }
 
 
  /* If we haven't already determined the GOT offset, and we're going
  /* If we haven't already determined the GOT offset, and we're going
     to need it, get it now.  */
     to need it, get it now.  */
  switch (r_type)
  switch (r_type)
    {
    {
    case R_MIPS16_CALL16:
    case R_MIPS16_CALL16:
    case R_MIPS16_GOT16:
    case R_MIPS16_GOT16:
    case R_MIPS_CALL16:
    case R_MIPS_CALL16:
    case R_MIPS_GOT16:
    case R_MIPS_GOT16:
    case R_MIPS_GOT_DISP:
    case R_MIPS_GOT_DISP:
    case R_MIPS_GOT_HI16:
    case R_MIPS_GOT_HI16:
    case R_MIPS_CALL_HI16:
    case R_MIPS_CALL_HI16:
    case R_MIPS_GOT_LO16:
    case R_MIPS_GOT_LO16:
    case R_MIPS_CALL_LO16:
    case R_MIPS_CALL_LO16:
    case R_MICROMIPS_CALL16:
    case R_MICROMIPS_CALL16:
    case R_MICROMIPS_GOT16:
    case R_MICROMIPS_GOT16:
    case R_MICROMIPS_GOT_DISP:
    case R_MICROMIPS_GOT_DISP:
    case R_MICROMIPS_GOT_HI16:
    case R_MICROMIPS_GOT_HI16:
    case R_MICROMIPS_CALL_HI16:
    case R_MICROMIPS_CALL_HI16:
    case R_MICROMIPS_GOT_LO16:
    case R_MICROMIPS_GOT_LO16:
    case R_MICROMIPS_CALL_LO16:
    case R_MICROMIPS_CALL_LO16:
    case R_MIPS_TLS_GD:
    case R_MIPS_TLS_GD:
    case R_MIPS_TLS_GOTTPREL:
    case R_MIPS_TLS_GOTTPREL:
    case R_MIPS_TLS_LDM:
    case R_MIPS_TLS_LDM:
 
    case R_MIPS16_TLS_GD:
 
    case R_MIPS16_TLS_GOTTPREL:
 
    case R_MIPS16_TLS_LDM:
    case R_MICROMIPS_TLS_GD:
    case R_MICROMIPS_TLS_GD:
    case R_MICROMIPS_TLS_GOTTPREL:
    case R_MICROMIPS_TLS_GOTTPREL:
    case R_MICROMIPS_TLS_LDM:
    case R_MICROMIPS_TLS_LDM:
      /* Find the index into the GOT where this value is located.  */
      /* Find the index into the GOT where this value is located.  */
      if (tls_ldm_reloc_p (r_type))
      if (tls_ldm_reloc_p (r_type))
        {
        {
          g = mips_elf_local_got_index (abfd, input_bfd, info,
          g = mips_elf_local_got_index (abfd, input_bfd, info,
                                        0, 0, NULL, r_type);
                                        0, 0, NULL, r_type);
          if (g == MINUS_ONE)
          if (g == MINUS_ONE)
            return bfd_reloc_outofrange;
            return bfd_reloc_outofrange;
        }
        }
      else if (!local_p)
      else if (!local_p)
        {
        {
          /* On VxWorks, CALL relocations should refer to the .got.plt
          /* On VxWorks, CALL relocations should refer to the .got.plt
             entry, which is initialized to point at the PLT stub.  */
             entry, which is initialized to point at the PLT stub.  */
          if (htab->is_vxworks
          if (htab->is_vxworks
              && (call_hi16_reloc_p (r_type)
              && (call_hi16_reloc_p (r_type)
                  || call_lo16_reloc_p (r_type)
                  || call_lo16_reloc_p (r_type)
                  || call16_reloc_p (r_type)))
                  || call16_reloc_p (r_type)))
            {
            {
              BFD_ASSERT (addend == 0);
              BFD_ASSERT (addend == 0);
              BFD_ASSERT (h->root.needs_plt);
              BFD_ASSERT (h->root.needs_plt);
              g = mips_elf_gotplt_index (info, &h->root);
              g = mips_elf_gotplt_index (info, &h->root);
            }
            }
          else
          else
            {
            {
              BFD_ASSERT (addend == 0);
              BFD_ASSERT (addend == 0);
              g = mips_elf_global_got_index (dynobj, input_bfd,
              g = mips_elf_global_got_index (dynobj, input_bfd,
                                             &h->root, r_type, info);
                                             &h->root, r_type, info);
              if (h->tls_type == GOT_NORMAL
              if (h->tls_type == GOT_NORMAL
                  && !elf_hash_table (info)->dynamic_sections_created)
                  && !elf_hash_table (info)->dynamic_sections_created)
                /* This is a static link.  We must initialize the GOT entry.  */
                /* This is a static link.  We must initialize the GOT entry.  */
                MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
                MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
            }
            }
        }
        }
      else if (!htab->is_vxworks
      else if (!htab->is_vxworks
               && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
               && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
        /* The calculation below does not involve "g".  */
        /* The calculation below does not involve "g".  */
        break;
        break;
      else
      else
        {
        {
          g = mips_elf_local_got_index (abfd, input_bfd, info,
          g = mips_elf_local_got_index (abfd, input_bfd, info,
                                        symbol + addend, r_symndx, h, r_type);
                                        symbol + addend, r_symndx, h, r_type);
          if (g == MINUS_ONE)
          if (g == MINUS_ONE)
            return bfd_reloc_outofrange;
            return bfd_reloc_outofrange;
        }
        }
 
 
      /* Convert GOT indices to actual offsets.  */
      /* Convert GOT indices to actual offsets.  */
      g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
      g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
      break;
      break;
    }
    }
 
 
  /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
  /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
     symbols are resolved by the loader.  Add them to .rela.dyn.  */
     symbols are resolved by the loader.  Add them to .rela.dyn.  */
  if (h != NULL && is_gott_symbol (info, &h->root))
  if (h != NULL && is_gott_symbol (info, &h->root))
    {
    {
      Elf_Internal_Rela outrel;
      Elf_Internal_Rela outrel;
      bfd_byte *loc;
      bfd_byte *loc;
      asection *s;
      asection *s;
 
 
      s = mips_elf_rel_dyn_section (info, FALSE);
      s = mips_elf_rel_dyn_section (info, FALSE);
      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
 
 
      outrel.r_offset = (input_section->output_section->vma
      outrel.r_offset = (input_section->output_section->vma
                         + input_section->output_offset
                         + input_section->output_offset
                         + relocation->r_offset);
                         + relocation->r_offset);
      outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
      outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
      outrel.r_addend = addend;
      outrel.r_addend = addend;
      bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
      bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
 
 
      /* If we've written this relocation for a readonly section,
      /* If we've written this relocation for a readonly section,
         we need to set DF_TEXTREL again, so that we do not delete the
         we need to set DF_TEXTREL again, so that we do not delete the
         DT_TEXTREL tag.  */
         DT_TEXTREL tag.  */
      if (MIPS_ELF_READONLY_SECTION (input_section))
      if (MIPS_ELF_READONLY_SECTION (input_section))
        info->flags |= DF_TEXTREL;
        info->flags |= DF_TEXTREL;
 
 
      *valuep = 0;
      *valuep = 0;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
    }
    }
 
 
  /* Figure out what kind of relocation is being performed.  */
  /* Figure out what kind of relocation is being performed.  */
  switch (r_type)
  switch (r_type)
    {
    {
    case R_MIPS_NONE:
    case R_MIPS_NONE:
      return bfd_reloc_continue;
      return bfd_reloc_continue;
 
 
    case R_MIPS_16:
    case R_MIPS_16:
      value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
      value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
      overflowed_p = mips_elf_overflow_p (value, 16);
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;
      break;
 
 
    case R_MIPS_32:
    case R_MIPS_32:
    case R_MIPS_REL32:
    case R_MIPS_REL32:
    case R_MIPS_64:
    case R_MIPS_64:
      if ((info->shared
      if ((info->shared
           || (htab->root.dynamic_sections_created
           || (htab->root.dynamic_sections_created
               && h != NULL
               && h != NULL
               && h->root.def_dynamic
               && h->root.def_dynamic
               && !h->root.def_regular
               && !h->root.def_regular
               && !h->has_static_relocs))
               && !h->has_static_relocs))
          && r_symndx != STN_UNDEF
          && r_symndx != STN_UNDEF
          && (h == NULL
          && (h == NULL
              || h->root.root.type != bfd_link_hash_undefweak
              || h->root.root.type != bfd_link_hash_undefweak
              || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
              || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
          && (input_section->flags & SEC_ALLOC) != 0)
          && (input_section->flags & SEC_ALLOC) != 0)
        {
        {
          /* If we're creating a shared library, then we can't know
          /* If we're creating a shared library, then we can't know
             where the symbol will end up.  So, we create a relocation
             where the symbol will end up.  So, we create a relocation
             record in the output, and leave the job up to the dynamic
             record in the output, and leave the job up to the dynamic
             linker.  We must do the same for executable references to
             linker.  We must do the same for executable references to
             shared library symbols, unless we've decided to use copy
             shared library symbols, unless we've decided to use copy
             relocs or PLTs instead.  */
             relocs or PLTs instead.  */
          value = addend;
          value = addend;
          if (!mips_elf_create_dynamic_relocation (abfd,
          if (!mips_elf_create_dynamic_relocation (abfd,
                                                   info,
                                                   info,
                                                   relocation,
                                                   relocation,
                                                   h,
                                                   h,
                                                   sec,
                                                   sec,
                                                   symbol,
                                                   symbol,
                                                   &value,
                                                   &value,
                                                   input_section))
                                                   input_section))
            return bfd_reloc_undefined;
            return bfd_reloc_undefined;
        }
        }
      else
      else
        {
        {
          if (r_type != R_MIPS_REL32)
          if (r_type != R_MIPS_REL32)
            value = symbol + addend;
            value = symbol + addend;
          else
          else
            value = addend;
            value = addend;
        }
        }
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_PC32:
    case R_MIPS_PC32:
      value = symbol + addend - p;
      value = symbol + addend - p;
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS16_26:
    case R_MIPS16_26:
      /* The calculation for R_MIPS16_26 is just the same as for an
      /* The calculation for R_MIPS16_26 is just the same as for an
         R_MIPS_26.  It's only the storage of the relocated field into
         R_MIPS_26.  It's only the storage of the relocated field into
         the output file that's different.  That's handled in
         the output file that's different.  That's handled in
         mips_elf_perform_relocation.  So, we just fall through to the
         mips_elf_perform_relocation.  So, we just fall through to the
         R_MIPS_26 case here.  */
         R_MIPS_26 case here.  */
    case R_MIPS_26:
    case R_MIPS_26:
    case R_MICROMIPS_26_S1:
    case R_MICROMIPS_26_S1:
      {
      {
        unsigned int shift;
        unsigned int shift;
 
 
        /* Make sure the target of JALX is word-aligned.  Bit 0 must be
        /* Make sure the target of JALX is word-aligned.  Bit 0 must be
           the correct ISA mode selector and bit 1 must be 0.  */
           the correct ISA mode selector and bit 1 must be 0.  */
        if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
        if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
          return bfd_reloc_outofrange;
          return bfd_reloc_outofrange;
 
 
        /* Shift is 2, unusually, for microMIPS JALX.  */
        /* Shift is 2, unusually, for microMIPS JALX.  */
        shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
        shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
 
 
        if (was_local_p)
        if (was_local_p)
          value = addend | ((p + 4) & (0xfc000000 << shift));
          value = addend | ((p + 4) & (0xfc000000 << shift));
        else
        else
          value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
          value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
        value = (value + symbol) >> shift;
        value = (value + symbol) >> shift;
        if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
        if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
          overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
          overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
        value &= howto->dst_mask;
        value &= howto->dst_mask;
      }
      }
      break;
      break;
 
 
    case R_MIPS_TLS_DTPREL_HI16:
    case R_MIPS_TLS_DTPREL_HI16:
 
    case R_MIPS16_TLS_DTPREL_HI16:
    case R_MICROMIPS_TLS_DTPREL_HI16:
    case R_MICROMIPS_TLS_DTPREL_HI16:
      value = (mips_elf_high (addend + symbol - dtprel_base (info))
      value = (mips_elf_high (addend + symbol - dtprel_base (info))
               & howto->dst_mask);
               & howto->dst_mask);
      break;
      break;
 
 
    case R_MIPS_TLS_DTPREL_LO16:
    case R_MIPS_TLS_DTPREL_LO16:
    case R_MIPS_TLS_DTPREL32:
    case R_MIPS_TLS_DTPREL32:
    case R_MIPS_TLS_DTPREL64:
    case R_MIPS_TLS_DTPREL64:
 
    case R_MIPS16_TLS_DTPREL_LO16:
    case R_MICROMIPS_TLS_DTPREL_LO16:
    case R_MICROMIPS_TLS_DTPREL_LO16:
      value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
      value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_TLS_TPREL_HI16:
    case R_MIPS_TLS_TPREL_HI16:
 
    case R_MIPS16_TLS_TPREL_HI16:
    case R_MICROMIPS_TLS_TPREL_HI16:
    case R_MICROMIPS_TLS_TPREL_HI16:
      value = (mips_elf_high (addend + symbol - tprel_base (info))
      value = (mips_elf_high (addend + symbol - tprel_base (info))
               & howto->dst_mask);
               & howto->dst_mask);
      break;
      break;
 
 
    case R_MIPS_TLS_TPREL_LO16:
    case R_MIPS_TLS_TPREL_LO16:
 
    case R_MIPS_TLS_TPREL32:
 
    case R_MIPS_TLS_TPREL64:
 
    case R_MIPS16_TLS_TPREL_LO16:
    case R_MICROMIPS_TLS_TPREL_LO16:
    case R_MICROMIPS_TLS_TPREL_LO16:
      value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
      value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_HI16:
    case R_MIPS_HI16:
    case R_MIPS16_HI16:
    case R_MIPS16_HI16:
    case R_MICROMIPS_HI16:
    case R_MICROMIPS_HI16:
      if (!gp_disp_p)
      if (!gp_disp_p)
        {
        {
          value = mips_elf_high (addend + symbol);
          value = mips_elf_high (addend + symbol);
          value &= howto->dst_mask;
          value &= howto->dst_mask;
        }
        }
      else
      else
        {
        {
          /* For MIPS16 ABI code we generate this sequence
          /* For MIPS16 ABI code we generate this sequence
                0: li      $v0,%hi(_gp_disp)
                0: li      $v0,%hi(_gp_disp)
                4: addiupc $v1,%lo(_gp_disp)
                4: addiupc $v1,%lo(_gp_disp)
                8: sll     $v0,16
                8: sll     $v0,16
               12: addu    $v0,$v1
               12: addu    $v0,$v1
               14: move    $gp,$v0
               14: move    $gp,$v0
             So the offsets of hi and lo relocs are the same, but the
             So the offsets of hi and lo relocs are the same, but the
             $pc is four higher than $t9 would be, so reduce
             base $pc is that used by the ADDIUPC instruction at $t9 + 4.
             both reloc addends by 4. */
             ADDIUPC clears the low two bits of the instruction address,
 
             so the base is ($t9 + 4) & ~3.  */
          if (r_type == R_MIPS16_HI16)
          if (r_type == R_MIPS16_HI16)
            value = mips_elf_high (addend + gp - p - 4);
            value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
          /* The microMIPS .cpload sequence uses the same assembly
          /* The microMIPS .cpload sequence uses the same assembly
             instructions as the traditional psABI version, but the
             instructions as the traditional psABI version, but the
             incoming $t9 has the low bit set.  */
             incoming $t9 has the low bit set.  */
          else if (r_type == R_MICROMIPS_HI16)
          else if (r_type == R_MICROMIPS_HI16)
            value = mips_elf_high (addend + gp - p - 1);
            value = mips_elf_high (addend + gp - p - 1);
          else
          else
            value = mips_elf_high (addend + gp - p);
            value = mips_elf_high (addend + gp - p);
          overflowed_p = mips_elf_overflow_p (value, 16);
          overflowed_p = mips_elf_overflow_p (value, 16);
        }
        }
      break;
      break;
 
 
    case R_MIPS_LO16:
    case R_MIPS_LO16:
    case R_MIPS16_LO16:
    case R_MIPS16_LO16:
    case R_MICROMIPS_LO16:
    case R_MICROMIPS_LO16:
    case R_MICROMIPS_HI0_LO16:
    case R_MICROMIPS_HI0_LO16:
      if (!gp_disp_p)
      if (!gp_disp_p)
        value = (symbol + addend) & howto->dst_mask;
        value = (symbol + addend) & howto->dst_mask;
      else
      else
        {
        {
          /* See the comment for R_MIPS16_HI16 above for the reason
          /* See the comment for R_MIPS16_HI16 above for the reason
             for this conditional.  */
             for this conditional.  */
          if (r_type == R_MIPS16_LO16)
          if (r_type == R_MIPS16_LO16)
            value = addend + gp - p;
            value = addend + gp - (p & ~(bfd_vma) 0x3);
          else if (r_type == R_MICROMIPS_LO16
          else if (r_type == R_MICROMIPS_LO16
                   || r_type == R_MICROMIPS_HI0_LO16)
                   || r_type == R_MICROMIPS_HI0_LO16)
            value = addend + gp - p + 3;
            value = addend + gp - p + 3;
          else
          else
            value = addend + gp - p + 4;
            value = addend + gp - p + 4;
          /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
          /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
             for overflow.  But, on, say, IRIX5, relocations against
             for overflow.  But, on, say, IRIX5, relocations against
             _gp_disp are normally generated from the .cpload
             _gp_disp are normally generated from the .cpload
             pseudo-op.  It generates code that normally looks like
             pseudo-op.  It generates code that normally looks like
             this:
             this:
 
 
               lui    $gp,%hi(_gp_disp)
               lui    $gp,%hi(_gp_disp)
               addiu  $gp,$gp,%lo(_gp_disp)
               addiu  $gp,$gp,%lo(_gp_disp)
               addu   $gp,$gp,$t9
               addu   $gp,$gp,$t9
 
 
             Here $t9 holds the address of the function being called,
             Here $t9 holds the address of the function being called,
             as required by the MIPS ELF ABI.  The R_MIPS_LO16
             as required by the MIPS ELF ABI.  The R_MIPS_LO16
             relocation can easily overflow in this situation, but the
             relocation can easily overflow in this situation, but the
             R_MIPS_HI16 relocation will handle the overflow.
             R_MIPS_HI16 relocation will handle the overflow.
             Therefore, we consider this a bug in the MIPS ABI, and do
             Therefore, we consider this a bug in the MIPS ABI, and do
             not check for overflow here.  */
             not check for overflow here.  */
        }
        }
      break;
      break;
 
 
    case R_MIPS_LITERAL:
    case R_MIPS_LITERAL:
    case R_MICROMIPS_LITERAL:
    case R_MICROMIPS_LITERAL:
      /* Because we don't merge literal sections, we can handle this
      /* Because we don't merge literal sections, we can handle this
         just like R_MIPS_GPREL16.  In the long run, we should merge
         just like R_MIPS_GPREL16.  In the long run, we should merge
         shared literals, and then we will need to additional work
         shared literals, and then we will need to additional work
         here.  */
         here.  */
 
 
      /* Fall through.  */
      /* Fall through.  */
 
 
    case R_MIPS16_GPREL:
    case R_MIPS16_GPREL:
      /* The R_MIPS16_GPREL performs the same calculation as
      /* The R_MIPS16_GPREL performs the same calculation as
         R_MIPS_GPREL16, but stores the relocated bits in a different
         R_MIPS_GPREL16, but stores the relocated bits in a different
         order.  We don't need to do anything special here; the
         order.  We don't need to do anything special here; the
         differences are handled in mips_elf_perform_relocation.  */
         differences are handled in mips_elf_perform_relocation.  */
    case R_MIPS_GPREL16:
    case R_MIPS_GPREL16:
    case R_MICROMIPS_GPREL7_S2:
    case R_MICROMIPS_GPREL7_S2:
    case R_MICROMIPS_GPREL16:
    case R_MICROMIPS_GPREL16:
      /* Only sign-extend the addend if it was extracted from the
      /* Only sign-extend the addend if it was extracted from the
         instruction.  If the addend was separate, leave it alone,
         instruction.  If the addend was separate, leave it alone,
         otherwise we may lose significant bits.  */
         otherwise we may lose significant bits.  */
      if (howto->partial_inplace)
      if (howto->partial_inplace)
        addend = _bfd_mips_elf_sign_extend (addend, 16);
        addend = _bfd_mips_elf_sign_extend (addend, 16);
      value = symbol + addend - gp;
      value = symbol + addend - gp;
      /* If the symbol was local, any earlier relocatable links will
      /* If the symbol was local, any earlier relocatable links will
         have adjusted its addend with the gp offset, so compensate
         have adjusted its addend with the gp offset, so compensate
         for that now.  Don't do it for symbols forced local in this
         for that now.  Don't do it for symbols forced local in this
         link, though, since they won't have had the gp offset applied
         link, though, since they won't have had the gp offset applied
         to them before.  */
         to them before.  */
      if (was_local_p)
      if (was_local_p)
        value += gp0;
        value += gp0;
      overflowed_p = mips_elf_overflow_p (value, 16);
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;
      break;
 
 
    case R_MIPS16_GOT16:
    case R_MIPS16_GOT16:
    case R_MIPS16_CALL16:
    case R_MIPS16_CALL16:
    case R_MIPS_GOT16:
    case R_MIPS_GOT16:
    case R_MIPS_CALL16:
    case R_MIPS_CALL16:
    case R_MICROMIPS_GOT16:
    case R_MICROMIPS_GOT16:
    case R_MICROMIPS_CALL16:
    case R_MICROMIPS_CALL16:
      /* VxWorks does not have separate local and global semantics for
      /* VxWorks does not have separate local and global semantics for
         R_MIPS*_GOT16; every relocation evaluates to "G".  */
         R_MIPS*_GOT16; every relocation evaluates to "G".  */
      if (!htab->is_vxworks && local_p)
      if (!htab->is_vxworks && local_p)
        {
        {
          value = mips_elf_got16_entry (abfd, input_bfd, info,
          value = mips_elf_got16_entry (abfd, input_bfd, info,
                                        symbol + addend, !was_local_p);
                                        symbol + addend, !was_local_p);
          if (value == MINUS_ONE)
          if (value == MINUS_ONE)
            return bfd_reloc_outofrange;
            return bfd_reloc_outofrange;
          value
          value
            = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
            = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
          overflowed_p = mips_elf_overflow_p (value, 16);
          overflowed_p = mips_elf_overflow_p (value, 16);
          break;
          break;
        }
        }
 
 
      /* Fall through.  */
      /* Fall through.  */
 
 
    case R_MIPS_TLS_GD:
    case R_MIPS_TLS_GD:
    case R_MIPS_TLS_GOTTPREL:
    case R_MIPS_TLS_GOTTPREL:
    case R_MIPS_TLS_LDM:
    case R_MIPS_TLS_LDM:
    case R_MIPS_GOT_DISP:
    case R_MIPS_GOT_DISP:
 
    case R_MIPS16_TLS_GD:
 
    case R_MIPS16_TLS_GOTTPREL:
 
    case R_MIPS16_TLS_LDM:
    case R_MICROMIPS_TLS_GD:
    case R_MICROMIPS_TLS_GD:
    case R_MICROMIPS_TLS_GOTTPREL:
    case R_MICROMIPS_TLS_GOTTPREL:
    case R_MICROMIPS_TLS_LDM:
    case R_MICROMIPS_TLS_LDM:
    case R_MICROMIPS_GOT_DISP:
    case R_MICROMIPS_GOT_DISP:
      value = g;
      value = g;
      overflowed_p = mips_elf_overflow_p (value, 16);
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;
      break;
 
 
    case R_MIPS_GPREL32:
    case R_MIPS_GPREL32:
      value = (addend + symbol + gp0 - gp);
      value = (addend + symbol + gp0 - gp);
      if (!save_addend)
      if (!save_addend)
        value &= howto->dst_mask;
        value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_PC16:
    case R_MIPS_PC16:
    case R_MIPS_GNU_REL16_S2:
    case R_MIPS_GNU_REL16_S2:
      value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
      value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
      overflowed_p = mips_elf_overflow_p (value, 18);
      overflowed_p = mips_elf_overflow_p (value, 18);
      value >>= howto->rightshift;
      value >>= howto->rightshift;
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MICROMIPS_PC7_S1:
    case R_MICROMIPS_PC7_S1:
      value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
      value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
      overflowed_p = mips_elf_overflow_p (value, 8);
      overflowed_p = mips_elf_overflow_p (value, 8);
      value >>= howto->rightshift;
      value >>= howto->rightshift;
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MICROMIPS_PC10_S1:
    case R_MICROMIPS_PC10_S1:
      value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
      value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
      overflowed_p = mips_elf_overflow_p (value, 11);
      overflowed_p = mips_elf_overflow_p (value, 11);
      value >>= howto->rightshift;
      value >>= howto->rightshift;
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MICROMIPS_PC16_S1:
    case R_MICROMIPS_PC16_S1:
      value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
      value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
      overflowed_p = mips_elf_overflow_p (value, 17);
      overflowed_p = mips_elf_overflow_p (value, 17);
      value >>= howto->rightshift;
      value >>= howto->rightshift;
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MICROMIPS_PC23_S2:
    case R_MICROMIPS_PC23_S2:
      value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
      value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
      overflowed_p = mips_elf_overflow_p (value, 25);
      overflowed_p = mips_elf_overflow_p (value, 25);
      value >>= howto->rightshift;
      value >>= howto->rightshift;
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_GOT_HI16:
    case R_MIPS_GOT_HI16:
    case R_MIPS_CALL_HI16:
    case R_MIPS_CALL_HI16:
    case R_MICROMIPS_GOT_HI16:
    case R_MICROMIPS_GOT_HI16:
    case R_MICROMIPS_CALL_HI16:
    case R_MICROMIPS_CALL_HI16:
      /* We're allowed to handle these two relocations identically.
      /* We're allowed to handle these two relocations identically.
         The dynamic linker is allowed to handle the CALL relocations
         The dynamic linker is allowed to handle the CALL relocations
         differently by creating a lazy evaluation stub.  */
         differently by creating a lazy evaluation stub.  */
      value = g;
      value = g;
      value = mips_elf_high (value);
      value = mips_elf_high (value);
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_GOT_LO16:
    case R_MIPS_GOT_LO16:
    case R_MIPS_CALL_LO16:
    case R_MIPS_CALL_LO16:
    case R_MICROMIPS_GOT_LO16:
    case R_MICROMIPS_GOT_LO16:
    case R_MICROMIPS_CALL_LO16:
    case R_MICROMIPS_CALL_LO16:
      value = g & howto->dst_mask;
      value = g & howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_GOT_PAGE:
    case R_MIPS_GOT_PAGE:
    case R_MICROMIPS_GOT_PAGE:
    case R_MICROMIPS_GOT_PAGE:
      value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
      value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
      if (value == MINUS_ONE)
      if (value == MINUS_ONE)
        return bfd_reloc_outofrange;
        return bfd_reloc_outofrange;
      value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
      value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
      overflowed_p = mips_elf_overflow_p (value, 16);
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;
      break;
 
 
    case R_MIPS_GOT_OFST:
    case R_MIPS_GOT_OFST:
    case R_MICROMIPS_GOT_OFST:
    case R_MICROMIPS_GOT_OFST:
      if (local_p)
      if (local_p)
        mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
        mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
      else
      else
        value = addend;
        value = addend;
      overflowed_p = mips_elf_overflow_p (value, 16);
      overflowed_p = mips_elf_overflow_p (value, 16);
      break;
      break;
 
 
    case R_MIPS_SUB:
    case R_MIPS_SUB:
    case R_MICROMIPS_SUB:
    case R_MICROMIPS_SUB:
      value = symbol - addend;
      value = symbol - addend;
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_HIGHER:
    case R_MIPS_HIGHER:
    case R_MICROMIPS_HIGHER:
    case R_MICROMIPS_HIGHER:
      value = mips_elf_higher (addend + symbol);
      value = mips_elf_higher (addend + symbol);
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_HIGHEST:
    case R_MIPS_HIGHEST:
    case R_MICROMIPS_HIGHEST:
    case R_MICROMIPS_HIGHEST:
      value = mips_elf_highest (addend + symbol);
      value = mips_elf_highest (addend + symbol);
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_SCN_DISP:
    case R_MIPS_SCN_DISP:
    case R_MICROMIPS_SCN_DISP:
    case R_MICROMIPS_SCN_DISP:
      value = symbol + addend - sec->output_offset;
      value = symbol + addend - sec->output_offset;
      value &= howto->dst_mask;
      value &= howto->dst_mask;
      break;
      break;
 
 
    case R_MIPS_JALR:
    case R_MIPS_JALR:
    case R_MICROMIPS_JALR:
    case R_MICROMIPS_JALR:
      /* This relocation is only a hint.  In some cases, we optimize
      /* This relocation is only a hint.  In some cases, we optimize
         it into a bal instruction.  But we don't try to optimize
         it into a bal instruction.  But we don't try to optimize
         when the symbol does not resolve locally.  */
         when the symbol does not resolve locally.  */
      if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
      if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
        return bfd_reloc_continue;
        return bfd_reloc_continue;
      value = symbol + addend;
      value = symbol + addend;
      break;
      break;
 
 
    case R_MIPS_PJUMP:
    case R_MIPS_PJUMP:
    case R_MIPS_GNU_VTINHERIT:
    case R_MIPS_GNU_VTINHERIT:
    case R_MIPS_GNU_VTENTRY:
    case R_MIPS_GNU_VTENTRY:
      /* We don't do anything with these at present.  */
      /* We don't do anything with these at present.  */
      return bfd_reloc_continue;
      return bfd_reloc_continue;
 
 
    default:
    default:
      /* An unrecognized relocation type.  */
      /* An unrecognized relocation type.  */
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
    }
    }
 
 
  /* Store the VALUE for our caller.  */
  /* Store the VALUE for our caller.  */
  *valuep = value;
  *valuep = value;
  return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
  return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
}
}
 
 
/* Obtain the field relocated by RELOCATION.  */
/* Obtain the field relocated by RELOCATION.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_obtain_contents (reloc_howto_type *howto,
mips_elf_obtain_contents (reloc_howto_type *howto,
                          const Elf_Internal_Rela *relocation,
                          const Elf_Internal_Rela *relocation,
                          bfd *input_bfd, bfd_byte *contents)
                          bfd *input_bfd, bfd_byte *contents)
{
{
  bfd_vma x;
  bfd_vma x;
  bfd_byte *location = contents + relocation->r_offset;
  bfd_byte *location = contents + relocation->r_offset;
 
 
  /* Obtain the bytes.  */
  /* Obtain the bytes.  */
  x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
  x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
 
 
  return x;
  return x;
}
}
 
 
/* It has been determined that the result of the RELOCATION is the
/* It has been determined that the result of the RELOCATION is the
   VALUE.  Use HOWTO to place VALUE into the output file at the
   VALUE.  Use HOWTO to place VALUE into the output file at the
   appropriate position.  The SECTION is the section to which the
   appropriate position.  The SECTION is the section to which the
   relocation applies.
   relocation applies.
   CROSS_MODE_JUMP_P is true if the relocation field
   CROSS_MODE_JUMP_P is true if the relocation field
   is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
   is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
 
 
   Returns FALSE if anything goes wrong.  */
   Returns FALSE if anything goes wrong.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_perform_relocation (struct bfd_link_info *info,
mips_elf_perform_relocation (struct bfd_link_info *info,
                             reloc_howto_type *howto,
                             reloc_howto_type *howto,
                             const Elf_Internal_Rela *relocation,
                             const Elf_Internal_Rela *relocation,
                             bfd_vma value, bfd *input_bfd,
                             bfd_vma value, bfd *input_bfd,
                             asection *input_section, bfd_byte *contents,
                             asection *input_section, bfd_byte *contents,
                             bfd_boolean cross_mode_jump_p)
                             bfd_boolean cross_mode_jump_p)
{
{
  bfd_vma x;
  bfd_vma x;
  bfd_byte *location;
  bfd_byte *location;
  int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
  int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
 
 
  /* Figure out where the relocation is occurring.  */
  /* Figure out where the relocation is occurring.  */
  location = contents + relocation->r_offset;
  location = contents + relocation->r_offset;
 
 
  _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
  _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
 
 
  /* Obtain the current value.  */
  /* Obtain the current value.  */
  x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
  x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
 
 
  /* Clear the field we are setting.  */
  /* Clear the field we are setting.  */
  x &= ~howto->dst_mask;
  x &= ~howto->dst_mask;
 
 
  /* Set the field.  */
  /* Set the field.  */
  x |= (value & howto->dst_mask);
  x |= (value & howto->dst_mask);
 
 
  /* If required, turn JAL into JALX.  */
  /* If required, turn JAL into JALX.  */
  if (cross_mode_jump_p && jal_reloc_p (r_type))
  if (cross_mode_jump_p && jal_reloc_p (r_type))
    {
    {
      bfd_boolean ok;
      bfd_boolean ok;
      bfd_vma opcode = x >> 26;
      bfd_vma opcode = x >> 26;
      bfd_vma jalx_opcode;
      bfd_vma jalx_opcode;
 
 
      /* Check to see if the opcode is already JAL or JALX.  */
      /* Check to see if the opcode is already JAL or JALX.  */
      if (r_type == R_MIPS16_26)
      if (r_type == R_MIPS16_26)
        {
        {
          ok = ((opcode == 0x6) || (opcode == 0x7));
          ok = ((opcode == 0x6) || (opcode == 0x7));
          jalx_opcode = 0x7;
          jalx_opcode = 0x7;
        }
        }
      else if (r_type == R_MICROMIPS_26_S1)
      else if (r_type == R_MICROMIPS_26_S1)
        {
        {
          ok = ((opcode == 0x3d) || (opcode == 0x3c));
          ok = ((opcode == 0x3d) || (opcode == 0x3c));
          jalx_opcode = 0x3c;
          jalx_opcode = 0x3c;
        }
        }
      else
      else
        {
        {
          ok = ((opcode == 0x3) || (opcode == 0x1d));
          ok = ((opcode == 0x3) || (opcode == 0x1d));
          jalx_opcode = 0x1d;
          jalx_opcode = 0x1d;
        }
        }
 
 
      /* If the opcode is not JAL or JALX, there's a problem.  */
      /* If the opcode is not JAL or JALX, there's a problem.  */
      if (!ok)
      if (!ok)
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
            (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
             input_bfd,
             input_bfd,
             input_section,
             input_section,
             (unsigned long) relocation->r_offset);
             (unsigned long) relocation->r_offset);
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
 
 
      /* Make this the JALX opcode.  */
      /* Make this the JALX opcode.  */
      x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
      x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
    }
    }
 
 
  /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
  /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
     range.  */
     range.  */
  if (!info->relocatable
  if (!info->relocatable
      && !cross_mode_jump_p
      && !cross_mode_jump_p
      && ((JAL_TO_BAL_P (input_bfd)
      && ((JAL_TO_BAL_P (input_bfd)
           && r_type == R_MIPS_26
           && r_type == R_MIPS_26
           && (x >> 26) == 0x3)         /* jal addr */
           && (x >> 26) == 0x3)         /* jal addr */
          || (JALR_TO_BAL_P (input_bfd)
          || (JALR_TO_BAL_P (input_bfd)
              && r_type == R_MIPS_JALR
              && r_type == R_MIPS_JALR
              && x == 0x0320f809)       /* jalr t9 */
              && x == 0x0320f809)       /* jalr t9 */
          || (JR_TO_B_P (input_bfd)
          || (JR_TO_B_P (input_bfd)
              && r_type == R_MIPS_JALR
              && r_type == R_MIPS_JALR
              && x == 0x03200008)))     /* jr t9 */
              && x == 0x03200008)))     /* jr t9 */
    {
    {
      bfd_vma addr;
      bfd_vma addr;
      bfd_vma dest;
      bfd_vma dest;
      bfd_signed_vma off;
      bfd_signed_vma off;
 
 
      addr = (input_section->output_section->vma
      addr = (input_section->output_section->vma
              + input_section->output_offset
              + input_section->output_offset
              + relocation->r_offset
              + relocation->r_offset
              + 4);
              + 4);
      if (r_type == R_MIPS_26)
      if (r_type == R_MIPS_26)
        dest = (value << 2) | ((addr >> 28) << 28);
        dest = (value << 2) | ((addr >> 28) << 28);
      else
      else
        dest = value;
        dest = value;
      off = dest - addr;
      off = dest - addr;
      if (off <= 0x1ffff && off >= -0x20000)
      if (off <= 0x1ffff && off >= -0x20000)
        {
        {
          if (x == 0x03200008)  /* jr t9 */
          if (x == 0x03200008)  /* jr t9 */
            x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
            x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
          else
          else
            x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
            x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
        }
        }
    }
    }
 
 
  /* Put the value into the output.  */
  /* Put the value into the output.  */
  bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
  bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
 
 
  _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
  _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
                               location);
                               location);
 
 
  return TRUE;
  return TRUE;
}
}


/* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
/* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
   is the original relocation, which is now being transformed into a
   is the original relocation, which is now being transformed into a
   dynamic relocation.  The ADDENDP is adjusted if necessary; the
   dynamic relocation.  The ADDENDP is adjusted if necessary; the
   caller should store the result in place of the original addend.  */
   caller should store the result in place of the original addend.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_create_dynamic_relocation (bfd *output_bfd,
mips_elf_create_dynamic_relocation (bfd *output_bfd,
                                    struct bfd_link_info *info,
                                    struct bfd_link_info *info,
                                    const Elf_Internal_Rela *rel,
                                    const Elf_Internal_Rela *rel,
                                    struct mips_elf_link_hash_entry *h,
                                    struct mips_elf_link_hash_entry *h,
                                    asection *sec, bfd_vma symbol,
                                    asection *sec, bfd_vma symbol,
                                    bfd_vma *addendp, asection *input_section)
                                    bfd_vma *addendp, asection *input_section)
{
{
  Elf_Internal_Rela outrel[3];
  Elf_Internal_Rela outrel[3];
  asection *sreloc;
  asection *sreloc;
  bfd *dynobj;
  bfd *dynobj;
  int r_type;
  int r_type;
  long indx;
  long indx;
  bfd_boolean defined_p;
  bfd_boolean defined_p;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  r_type = ELF_R_TYPE (output_bfd, rel->r_info);
  r_type = ELF_R_TYPE (output_bfd, rel->r_info);
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  sreloc = mips_elf_rel_dyn_section (info, FALSE);
  sreloc = mips_elf_rel_dyn_section (info, FALSE);
  BFD_ASSERT (sreloc != NULL);
  BFD_ASSERT (sreloc != NULL);
  BFD_ASSERT (sreloc->contents != NULL);
  BFD_ASSERT (sreloc->contents != NULL);
  BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
  BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
              < sreloc->size);
              < sreloc->size);
 
 
  outrel[0].r_offset =
  outrel[0].r_offset =
    _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
    _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
  if (ABI_64_P (output_bfd))
  if (ABI_64_P (output_bfd))
    {
    {
      outrel[1].r_offset =
      outrel[1].r_offset =
        _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
        _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
      outrel[2].r_offset =
      outrel[2].r_offset =
        _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
        _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
    }
    }
 
 
  if (outrel[0].r_offset == MINUS_ONE)
  if (outrel[0].r_offset == MINUS_ONE)
    /* The relocation field has been deleted.  */
    /* The relocation field has been deleted.  */
    return TRUE;
    return TRUE;
 
 
  if (outrel[0].r_offset == MINUS_TWO)
  if (outrel[0].r_offset == MINUS_TWO)
    {
    {
      /* The relocation field has been converted into a relative value of
      /* The relocation field has been converted into a relative value of
         some sort.  Functions like _bfd_elf_write_section_eh_frame expect
         some sort.  Functions like _bfd_elf_write_section_eh_frame expect
         the field to be fully relocated, so add in the symbol's value.  */
         the field to be fully relocated, so add in the symbol's value.  */
      *addendp += symbol;
      *addendp += symbol;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* We must now calculate the dynamic symbol table index to use
  /* We must now calculate the dynamic symbol table index to use
     in the relocation.  */
     in the relocation.  */
  if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
  if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
    {
    {
      BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
      BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
      indx = h->root.dynindx;
      indx = h->root.dynindx;
      if (SGI_COMPAT (output_bfd))
      if (SGI_COMPAT (output_bfd))
        defined_p = h->root.def_regular;
        defined_p = h->root.def_regular;
      else
      else
        /* ??? glibc's ld.so just adds the final GOT entry to the
        /* ??? glibc's ld.so just adds the final GOT entry to the
           relocation field.  It therefore treats relocs against
           relocation field.  It therefore treats relocs against
           defined symbols in the same way as relocs against
           defined symbols in the same way as relocs against
           undefined symbols.  */
           undefined symbols.  */
        defined_p = FALSE;
        defined_p = FALSE;
    }
    }
  else
  else
    {
    {
      if (sec != NULL && bfd_is_abs_section (sec))
      if (sec != NULL && bfd_is_abs_section (sec))
        indx = 0;
        indx = 0;
      else if (sec == NULL || sec->owner == NULL)
      else if (sec == NULL || sec->owner == NULL)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
      else
      else
        {
        {
          indx = elf_section_data (sec->output_section)->dynindx;
          indx = elf_section_data (sec->output_section)->dynindx;
          if (indx == 0)
          if (indx == 0)
            {
            {
              asection *osec = htab->root.text_index_section;
              asection *osec = htab->root.text_index_section;
              indx = elf_section_data (osec)->dynindx;
              indx = elf_section_data (osec)->dynindx;
            }
            }
          if (indx == 0)
          if (indx == 0)
            abort ();
            abort ();
        }
        }
 
 
      /* Instead of generating a relocation using the section
      /* Instead of generating a relocation using the section
         symbol, we may as well make it a fully relative
         symbol, we may as well make it a fully relative
         relocation.  We want to avoid generating relocations to
         relocation.  We want to avoid generating relocations to
         local symbols because we used to generate them
         local symbols because we used to generate them
         incorrectly, without adding the original symbol value,
         incorrectly, without adding the original symbol value,
         which is mandated by the ABI for section symbols.  In
         which is mandated by the ABI for section symbols.  In
         order to give dynamic loaders and applications time to
         order to give dynamic loaders and applications time to
         phase out the incorrect use, we refrain from emitting
         phase out the incorrect use, we refrain from emitting
         section-relative relocations.  It's not like they're
         section-relative relocations.  It's not like they're
         useful, after all.  This should be a bit more efficient
         useful, after all.  This should be a bit more efficient
         as well.  */
         as well.  */
      /* ??? Although this behavior is compatible with glibc's ld.so,
      /* ??? Although this behavior is compatible with glibc's ld.so,
         the ABI says that relocations against STN_UNDEF should have
         the ABI says that relocations against STN_UNDEF should have
         a symbol value of 0.  Irix rld honors this, so relocations
         a symbol value of 0.  Irix rld honors this, so relocations
         against STN_UNDEF have no effect.  */
         against STN_UNDEF have no effect.  */
      if (!SGI_COMPAT (output_bfd))
      if (!SGI_COMPAT (output_bfd))
        indx = 0;
        indx = 0;
      defined_p = TRUE;
      defined_p = TRUE;
    }
    }
 
 
  /* If the relocation was previously an absolute relocation and
  /* If the relocation was previously an absolute relocation and
     this symbol will not be referred to by the relocation, we must
     this symbol will not be referred to by the relocation, we must
     adjust it by the value we give it in the dynamic symbol table.
     adjust it by the value we give it in the dynamic symbol table.
     Otherwise leave the job up to the dynamic linker.  */
     Otherwise leave the job up to the dynamic linker.  */
  if (defined_p && r_type != R_MIPS_REL32)
  if (defined_p && r_type != R_MIPS_REL32)
    *addendp += symbol;
    *addendp += symbol;
 
 
  if (htab->is_vxworks)
  if (htab->is_vxworks)
    /* VxWorks uses non-relative relocations for this.  */
    /* VxWorks uses non-relative relocations for this.  */
    outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
    outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
  else
  else
    /* The relocation is always an REL32 relocation because we don't
    /* The relocation is always an REL32 relocation because we don't
       know where the shared library will wind up at load-time.  */
       know where the shared library will wind up at load-time.  */
    outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
    outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
                                   R_MIPS_REL32);
                                   R_MIPS_REL32);
 
 
  /* For strict adherence to the ABI specification, we should
  /* For strict adherence to the ABI specification, we should
     generate a R_MIPS_64 relocation record by itself before the
     generate a R_MIPS_64 relocation record by itself before the
     _REL32/_64 record as well, such that the addend is read in as
     _REL32/_64 record as well, such that the addend is read in as
     a 64-bit value (REL32 is a 32-bit relocation, after all).
     a 64-bit value (REL32 is a 32-bit relocation, after all).
     However, since none of the existing ELF64 MIPS dynamic
     However, since none of the existing ELF64 MIPS dynamic
     loaders seems to care, we don't waste space with these
     loaders seems to care, we don't waste space with these
     artificial relocations.  If this turns out to not be true,
     artificial relocations.  If this turns out to not be true,
     mips_elf_allocate_dynamic_relocation() should be tweaked so
     mips_elf_allocate_dynamic_relocation() should be tweaked so
     as to make room for a pair of dynamic relocations per
     as to make room for a pair of dynamic relocations per
     invocation if ABI_64_P, and here we should generate an
     invocation if ABI_64_P, and here we should generate an
     additional relocation record with R_MIPS_64 by itself for a
     additional relocation record with R_MIPS_64 by itself for a
     NULL symbol before this relocation record.  */
     NULL symbol before this relocation record.  */
  outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
  outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
                                 ABI_64_P (output_bfd)
                                 ABI_64_P (output_bfd)
                                 ? R_MIPS_64
                                 ? R_MIPS_64
                                 : R_MIPS_NONE);
                                 : R_MIPS_NONE);
  outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
  outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
 
 
  /* Adjust the output offset of the relocation to reference the
  /* Adjust the output offset of the relocation to reference the
     correct location in the output file.  */
     correct location in the output file.  */
  outrel[0].r_offset += (input_section->output_section->vma
  outrel[0].r_offset += (input_section->output_section->vma
                         + input_section->output_offset);
                         + input_section->output_offset);
  outrel[1].r_offset += (input_section->output_section->vma
  outrel[1].r_offset += (input_section->output_section->vma
                         + input_section->output_offset);
                         + input_section->output_offset);
  outrel[2].r_offset += (input_section->output_section->vma
  outrel[2].r_offset += (input_section->output_section->vma
                         + input_section->output_offset);
                         + input_section->output_offset);
 
 
  /* Put the relocation back out.  We have to use the special
  /* Put the relocation back out.  We have to use the special
     relocation outputter in the 64-bit case since the 64-bit
     relocation outputter in the 64-bit case since the 64-bit
     relocation format is non-standard.  */
     relocation format is non-standard.  */
  if (ABI_64_P (output_bfd))
  if (ABI_64_P (output_bfd))
    {
    {
      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
      (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
        (output_bfd, &outrel[0],
        (output_bfd, &outrel[0],
         (sreloc->contents
         (sreloc->contents
          + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
          + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
    }
    }
  else if (htab->is_vxworks)
  else if (htab->is_vxworks)
    {
    {
      /* VxWorks uses RELA rather than REL dynamic relocations.  */
      /* VxWorks uses RELA rather than REL dynamic relocations.  */
      outrel[0].r_addend = *addendp;
      outrel[0].r_addend = *addendp;
      bfd_elf32_swap_reloca_out
      bfd_elf32_swap_reloca_out
        (output_bfd, &outrel[0],
        (output_bfd, &outrel[0],
         (sreloc->contents
         (sreloc->contents
          + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
          + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
    }
    }
  else
  else
    bfd_elf32_swap_reloc_out
    bfd_elf32_swap_reloc_out
      (output_bfd, &outrel[0],
      (output_bfd, &outrel[0],
       (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
       (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
 
 
  /* We've now added another relocation.  */
  /* We've now added another relocation.  */
  ++sreloc->reloc_count;
  ++sreloc->reloc_count;
 
 
  /* Make sure the output section is writable.  The dynamic linker
  /* Make sure the output section is writable.  The dynamic linker
     will be writing to it.  */
     will be writing to it.  */
  elf_section_data (input_section->output_section)->this_hdr.sh_flags
  elf_section_data (input_section->output_section)->this_hdr.sh_flags
    |= SHF_WRITE;
    |= SHF_WRITE;
 
 
  /* On IRIX5, make an entry of compact relocation info.  */
  /* On IRIX5, make an entry of compact relocation info.  */
  if (IRIX_COMPAT (output_bfd) == ict_irix5)
  if (IRIX_COMPAT (output_bfd) == ict_irix5)
    {
    {
      asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
      asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
      bfd_byte *cr;
      bfd_byte *cr;
 
 
      if (scpt)
      if (scpt)
        {
        {
          Elf32_crinfo cptrel;
          Elf32_crinfo cptrel;
 
 
          mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
          mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
          cptrel.vaddr = (rel->r_offset
          cptrel.vaddr = (rel->r_offset
                          + input_section->output_section->vma
                          + input_section->output_section->vma
                          + input_section->output_offset);
                          + input_section->output_offset);
          if (r_type == R_MIPS_REL32)
          if (r_type == R_MIPS_REL32)
            mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
            mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
          else
          else
            mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
            mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
          mips_elf_set_cr_dist2to (cptrel, 0);
          mips_elf_set_cr_dist2to (cptrel, 0);
          cptrel.konst = *addendp;
          cptrel.konst = *addendp;
 
 
          cr = (scpt->contents
          cr = (scpt->contents
                + sizeof (Elf32_External_compact_rel));
                + sizeof (Elf32_External_compact_rel));
          mips_elf_set_cr_relvaddr (cptrel, 0);
          mips_elf_set_cr_relvaddr (cptrel, 0);
          bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
          bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
                                     ((Elf32_External_crinfo *) cr
                                     ((Elf32_External_crinfo *) cr
                                      + scpt->reloc_count));
                                      + scpt->reloc_count));
          ++scpt->reloc_count;
          ++scpt->reloc_count;
        }
        }
    }
    }
 
 
  /* If we've written this relocation for a readonly section,
  /* If we've written this relocation for a readonly section,
     we need to set DF_TEXTREL again, so that we do not delete the
     we need to set DF_TEXTREL again, so that we do not delete the
     DT_TEXTREL tag.  */
     DT_TEXTREL tag.  */
  if (MIPS_ELF_READONLY_SECTION (input_section))
  if (MIPS_ELF_READONLY_SECTION (input_section))
    info->flags |= DF_TEXTREL;
    info->flags |= DF_TEXTREL;
 
 
  return TRUE;
  return TRUE;
}
}


/* Return the MACH for a MIPS e_flags value.  */
/* Return the MACH for a MIPS e_flags value.  */
 
 
unsigned long
unsigned long
_bfd_elf_mips_mach (flagword flags)
_bfd_elf_mips_mach (flagword flags)
{
{
  switch (flags & EF_MIPS_MACH)
  switch (flags & EF_MIPS_MACH)
    {
    {
    case E_MIPS_MACH_3900:
    case E_MIPS_MACH_3900:
      return bfd_mach_mips3900;
      return bfd_mach_mips3900;
 
 
    case E_MIPS_MACH_4010:
    case E_MIPS_MACH_4010:
      return bfd_mach_mips4010;
      return bfd_mach_mips4010;
 
 
    case E_MIPS_MACH_4100:
    case E_MIPS_MACH_4100:
      return bfd_mach_mips4100;
      return bfd_mach_mips4100;
 
 
    case E_MIPS_MACH_4111:
    case E_MIPS_MACH_4111:
      return bfd_mach_mips4111;
      return bfd_mach_mips4111;
 
 
    case E_MIPS_MACH_4120:
    case E_MIPS_MACH_4120:
      return bfd_mach_mips4120;
      return bfd_mach_mips4120;
 
 
    case E_MIPS_MACH_4650:
    case E_MIPS_MACH_4650:
      return bfd_mach_mips4650;
      return bfd_mach_mips4650;
 
 
    case E_MIPS_MACH_5400:
    case E_MIPS_MACH_5400:
      return bfd_mach_mips5400;
      return bfd_mach_mips5400;
 
 
    case E_MIPS_MACH_5500:
    case E_MIPS_MACH_5500:
      return bfd_mach_mips5500;
      return bfd_mach_mips5500;
 
 
    case E_MIPS_MACH_9000:
    case E_MIPS_MACH_9000:
      return bfd_mach_mips9000;
      return bfd_mach_mips9000;
 
 
    case E_MIPS_MACH_SB1:
    case E_MIPS_MACH_SB1:
      return bfd_mach_mips_sb1;
      return bfd_mach_mips_sb1;
 
 
    case E_MIPS_MACH_LS2E:
    case E_MIPS_MACH_LS2E:
      return bfd_mach_mips_loongson_2e;
      return bfd_mach_mips_loongson_2e;
 
 
    case E_MIPS_MACH_LS2F:
    case E_MIPS_MACH_LS2F:
      return bfd_mach_mips_loongson_2f;
      return bfd_mach_mips_loongson_2f;
 
 
    case E_MIPS_MACH_LS3A:
    case E_MIPS_MACH_LS3A:
      return bfd_mach_mips_loongson_3a;
      return bfd_mach_mips_loongson_3a;
 
 
 
    case E_MIPS_MACH_OCTEON2:
 
      return bfd_mach_mips_octeon2;
 
 
    case E_MIPS_MACH_OCTEON:
    case E_MIPS_MACH_OCTEON:
      return bfd_mach_mips_octeon;
      return bfd_mach_mips_octeon;
 
 
    case E_MIPS_MACH_XLR:
    case E_MIPS_MACH_XLR:
      return bfd_mach_mips_xlr;
      return bfd_mach_mips_xlr;
 
 
    default:
    default:
      switch (flags & EF_MIPS_ARCH)
      switch (flags & EF_MIPS_ARCH)
        {
        {
        default:
        default:
        case E_MIPS_ARCH_1:
        case E_MIPS_ARCH_1:
          return bfd_mach_mips3000;
          return bfd_mach_mips3000;
 
 
        case E_MIPS_ARCH_2:
        case E_MIPS_ARCH_2:
          return bfd_mach_mips6000;
          return bfd_mach_mips6000;
 
 
        case E_MIPS_ARCH_3:
        case E_MIPS_ARCH_3:
          return bfd_mach_mips4000;
          return bfd_mach_mips4000;
 
 
        case E_MIPS_ARCH_4:
        case E_MIPS_ARCH_4:
          return bfd_mach_mips8000;
          return bfd_mach_mips8000;
 
 
        case E_MIPS_ARCH_5:
        case E_MIPS_ARCH_5:
          return bfd_mach_mips5;
          return bfd_mach_mips5;
 
 
        case E_MIPS_ARCH_32:
        case E_MIPS_ARCH_32:
          return bfd_mach_mipsisa32;
          return bfd_mach_mipsisa32;
 
 
        case E_MIPS_ARCH_64:
        case E_MIPS_ARCH_64:
          return bfd_mach_mipsisa64;
          return bfd_mach_mipsisa64;
 
 
        case E_MIPS_ARCH_32R2:
        case E_MIPS_ARCH_32R2:
          return bfd_mach_mipsisa32r2;
          return bfd_mach_mipsisa32r2;
 
 
        case E_MIPS_ARCH_64R2:
        case E_MIPS_ARCH_64R2:
          return bfd_mach_mipsisa64r2;
          return bfd_mach_mipsisa64r2;
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Return printable name for ABI.  */
/* Return printable name for ABI.  */
 
 
static INLINE char *
static INLINE char *
elf_mips_abi_name (bfd *abfd)
elf_mips_abi_name (bfd *abfd)
{
{
  flagword flags;
  flagword flags;
 
 
  flags = elf_elfheader (abfd)->e_flags;
  flags = elf_elfheader (abfd)->e_flags;
  switch (flags & EF_MIPS_ABI)
  switch (flags & EF_MIPS_ABI)
    {
    {
    case 0:
    case 0:
      if (ABI_N32_P (abfd))
      if (ABI_N32_P (abfd))
        return "N32";
        return "N32";
      else if (ABI_64_P (abfd))
      else if (ABI_64_P (abfd))
        return "64";
        return "64";
      else
      else
        return "none";
        return "none";
    case E_MIPS_ABI_O32:
    case E_MIPS_ABI_O32:
      return "O32";
      return "O32";
    case E_MIPS_ABI_O64:
    case E_MIPS_ABI_O64:
      return "O64";
      return "O64";
    case E_MIPS_ABI_EABI32:
    case E_MIPS_ABI_EABI32:
      return "EABI32";
      return "EABI32";
    case E_MIPS_ABI_EABI64:
    case E_MIPS_ABI_EABI64:
      return "EABI64";
      return "EABI64";
    default:
    default:
      return "unknown abi";
      return "unknown abi";
    }
    }
}
}


/* MIPS ELF uses two common sections.  One is the usual one, and the
/* MIPS ELF uses two common sections.  One is the usual one, and the
   other is for small objects.  All the small objects are kept
   other is for small objects.  All the small objects are kept
   together, and then referenced via the gp pointer, which yields
   together, and then referenced via the gp pointer, which yields
   faster assembler code.  This is what we use for the small common
   faster assembler code.  This is what we use for the small common
   section.  This approach is copied from ecoff.c.  */
   section.  This approach is copied from ecoff.c.  */
static asection mips_elf_scom_section;
static asection mips_elf_scom_section;
static asymbol mips_elf_scom_symbol;
static asymbol mips_elf_scom_symbol;
static asymbol *mips_elf_scom_symbol_ptr;
static asymbol *mips_elf_scom_symbol_ptr;
 
 
/* MIPS ELF also uses an acommon section, which represents an
/* MIPS ELF also uses an acommon section, which represents an
   allocated common symbol which may be overridden by a
   allocated common symbol which may be overridden by a
   definition in a shared library.  */
   definition in a shared library.  */
static asection mips_elf_acom_section;
static asection mips_elf_acom_section;
static asymbol mips_elf_acom_symbol;
static asymbol mips_elf_acom_symbol;
static asymbol *mips_elf_acom_symbol_ptr;
static asymbol *mips_elf_acom_symbol_ptr;
 
 
/* This is used for both the 32-bit and the 64-bit ABI.  */
/* This is used for both the 32-bit and the 64-bit ABI.  */
 
 
void
void
_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
{
{
  elf_symbol_type *elfsym;
  elf_symbol_type *elfsym;
 
 
  /* Handle the special MIPS section numbers that a symbol may use.  */
  /* Handle the special MIPS section numbers that a symbol may use.  */
  elfsym = (elf_symbol_type *) asym;
  elfsym = (elf_symbol_type *) asym;
  switch (elfsym->internal_elf_sym.st_shndx)
  switch (elfsym->internal_elf_sym.st_shndx)
    {
    {
    case SHN_MIPS_ACOMMON:
    case SHN_MIPS_ACOMMON:
      /* This section is used in a dynamically linked executable file.
      /* This section is used in a dynamically linked executable file.
         It is an allocated common section.  The dynamic linker can
         It is an allocated common section.  The dynamic linker can
         either resolve these symbols to something in a shared
         either resolve these symbols to something in a shared
         library, or it can just leave them here.  For our purposes,
         library, or it can just leave them here.  For our purposes,
         we can consider these symbols to be in a new section.  */
         we can consider these symbols to be in a new section.  */
      if (mips_elf_acom_section.name == NULL)
      if (mips_elf_acom_section.name == NULL)
        {
        {
          /* Initialize the acommon section.  */
          /* Initialize the acommon section.  */
          mips_elf_acom_section.name = ".acommon";
          mips_elf_acom_section.name = ".acommon";
          mips_elf_acom_section.flags = SEC_ALLOC;
          mips_elf_acom_section.flags = SEC_ALLOC;
          mips_elf_acom_section.output_section = &mips_elf_acom_section;
          mips_elf_acom_section.output_section = &mips_elf_acom_section;
          mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
          mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
          mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
          mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
          mips_elf_acom_symbol.name = ".acommon";
          mips_elf_acom_symbol.name = ".acommon";
          mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
          mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
          mips_elf_acom_symbol.section = &mips_elf_acom_section;
          mips_elf_acom_symbol.section = &mips_elf_acom_section;
          mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
          mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
        }
        }
      asym->section = &mips_elf_acom_section;
      asym->section = &mips_elf_acom_section;
      break;
      break;
 
 
    case SHN_COMMON:
    case SHN_COMMON:
      /* Common symbols less than the GP size are automatically
      /* Common symbols less than the GP size are automatically
         treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
         treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
      if (asym->value > elf_gp_size (abfd)
      if (asym->value > elf_gp_size (abfd)
          || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
          || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
          || IRIX_COMPAT (abfd) == ict_irix6)
          || IRIX_COMPAT (abfd) == ict_irix6)
        break;
        break;
      /* Fall through.  */
      /* Fall through.  */
    case SHN_MIPS_SCOMMON:
    case SHN_MIPS_SCOMMON:
      if (mips_elf_scom_section.name == NULL)
      if (mips_elf_scom_section.name == NULL)
        {
        {
          /* Initialize the small common section.  */
          /* Initialize the small common section.  */
          mips_elf_scom_section.name = ".scommon";
          mips_elf_scom_section.name = ".scommon";
          mips_elf_scom_section.flags = SEC_IS_COMMON;
          mips_elf_scom_section.flags = SEC_IS_COMMON;
          mips_elf_scom_section.output_section = &mips_elf_scom_section;
          mips_elf_scom_section.output_section = &mips_elf_scom_section;
          mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
          mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
          mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
          mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
          mips_elf_scom_symbol.name = ".scommon";
          mips_elf_scom_symbol.name = ".scommon";
          mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
          mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
          mips_elf_scom_symbol.section = &mips_elf_scom_section;
          mips_elf_scom_symbol.section = &mips_elf_scom_section;
          mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
          mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
        }
        }
      asym->section = &mips_elf_scom_section;
      asym->section = &mips_elf_scom_section;
      asym->value = elfsym->internal_elf_sym.st_size;
      asym->value = elfsym->internal_elf_sym.st_size;
      break;
      break;
 
 
    case SHN_MIPS_SUNDEFINED:
    case SHN_MIPS_SUNDEFINED:
      asym->section = bfd_und_section_ptr;
      asym->section = bfd_und_section_ptr;
      break;
      break;
 
 
    case SHN_MIPS_TEXT:
    case SHN_MIPS_TEXT:
      {
      {
        asection *section = bfd_get_section_by_name (abfd, ".text");
        asection *section = bfd_get_section_by_name (abfd, ".text");
 
 
        if (section != NULL)
        if (section != NULL)
          {
          {
            asym->section = section;
            asym->section = section;
            /* MIPS_TEXT is a bit special, the address is not an offset
            /* MIPS_TEXT is a bit special, the address is not an offset
               to the base of the .text section.  So substract the section
               to the base of the .text section.  So substract the section
               base address to make it an offset.  */
               base address to make it an offset.  */
            asym->value -= section->vma;
            asym->value -= section->vma;
          }
          }
      }
      }
      break;
      break;
 
 
    case SHN_MIPS_DATA:
    case SHN_MIPS_DATA:
      {
      {
        asection *section = bfd_get_section_by_name (abfd, ".data");
        asection *section = bfd_get_section_by_name (abfd, ".data");
 
 
        if (section != NULL)
        if (section != NULL)
          {
          {
            asym->section = section;
            asym->section = section;
            /* MIPS_DATA is a bit special, the address is not an offset
            /* MIPS_DATA is a bit special, the address is not an offset
               to the base of the .data section.  So substract the section
               to the base of the .data section.  So substract the section
               base address to make it an offset.  */
               base address to make it an offset.  */
            asym->value -= section->vma;
            asym->value -= section->vma;
          }
          }
      }
      }
      break;
      break;
    }
    }
 
 
  /* If this is an odd-valued function symbol, assume it's a MIPS16
  /* If this is an odd-valued function symbol, assume it's a MIPS16
     or microMIPS one.  */
     or microMIPS one.  */
  if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
  if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
      && (asym->value & 1) != 0)
      && (asym->value & 1) != 0)
    {
    {
      asym->value--;
      asym->value--;
      if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
      if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
        elfsym->internal_elf_sym.st_other
        elfsym->internal_elf_sym.st_other
          = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
          = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
      else
      else
        elfsym->internal_elf_sym.st_other
        elfsym->internal_elf_sym.st_other
          = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
          = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
    }
    }
}
}


/* Implement elf_backend_eh_frame_address_size.  This differs from
/* Implement elf_backend_eh_frame_address_size.  This differs from
   the default in the way it handles EABI64.
   the default in the way it handles EABI64.
 
 
   EABI64 was originally specified as an LP64 ABI, and that is what
   EABI64 was originally specified as an LP64 ABI, and that is what
   -mabi=eabi normally gives on a 64-bit target.  However, gcc has
   -mabi=eabi normally gives on a 64-bit target.  However, gcc has
   historically accepted the combination of -mabi=eabi and -mlong32,
   historically accepted the combination of -mabi=eabi and -mlong32,
   and this ILP32 variation has become semi-official over time.
   and this ILP32 variation has become semi-official over time.
   Both forms use elf32 and have pointer-sized FDE addresses.
   Both forms use elf32 and have pointer-sized FDE addresses.
 
 
   If an EABI object was generated by GCC 4.0 or above, it will have
   If an EABI object was generated by GCC 4.0 or above, it will have
   an empty .gcc_compiled_longXX section, where XX is the size of longs
   an empty .gcc_compiled_longXX section, where XX is the size of longs
   in bits.  Unfortunately, ILP32 objects generated by earlier compilers
   in bits.  Unfortunately, ILP32 objects generated by earlier compilers
   have no special marking to distinguish them from LP64 objects.
   have no special marking to distinguish them from LP64 objects.
 
 
   We don't want users of the official LP64 ABI to be punished for the
   We don't want users of the official LP64 ABI to be punished for the
   existence of the ILP32 variant, but at the same time, we don't want
   existence of the ILP32 variant, but at the same time, we don't want
   to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
   to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
   We therefore take the following approach:
   We therefore take the following approach:
 
 
      - If ABFD contains a .gcc_compiled_longXX section, use it to
      - If ABFD contains a .gcc_compiled_longXX section, use it to
        determine the pointer size.
        determine the pointer size.
 
 
      - Otherwise check the type of the first relocation.  Assume that
      - Otherwise check the type of the first relocation.  Assume that
        the LP64 ABI is being used if the relocation is of type R_MIPS_64.
        the LP64 ABI is being used if the relocation is of type R_MIPS_64.
 
 
      - Otherwise punt.
      - Otherwise punt.
 
 
   The second check is enough to detect LP64 objects generated by pre-4.0
   The second check is enough to detect LP64 objects generated by pre-4.0
   compilers because, in the kind of output generated by those compilers,
   compilers because, in the kind of output generated by those compilers,
   the first relocation will be associated with either a CIE personality
   the first relocation will be associated with either a CIE personality
   routine or an FDE start address.  Furthermore, the compilers never
   routine or an FDE start address.  Furthermore, the compilers never
   used a special (non-pointer) encoding for this ABI.
   used a special (non-pointer) encoding for this ABI.
 
 
   Checking the relocation type should also be safe because there is no
   Checking the relocation type should also be safe because there is no
   reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
   reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
   did so.  */
   did so.  */
 
 
unsigned int
unsigned int
_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
{
{
  if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
  if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
    return 8;
    return 8;
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
    {
    {
      bfd_boolean long32_p, long64_p;
      bfd_boolean long32_p, long64_p;
 
 
      long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
      long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
      long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
      long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
      if (long32_p && long64_p)
      if (long32_p && long64_p)
        return 0;
        return 0;
      if (long32_p)
      if (long32_p)
        return 4;
        return 4;
      if (long64_p)
      if (long64_p)
        return 8;
        return 8;
 
 
      if (sec->reloc_count > 0
      if (sec->reloc_count > 0
          && elf_section_data (sec)->relocs != NULL
          && elf_section_data (sec)->relocs != NULL
          && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
          && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
              == R_MIPS_64))
              == R_MIPS_64))
        return 8;
        return 8;
 
 
      return 0;
      return 0;
    }
    }
  return 4;
  return 4;
}
}


/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
   relocations against two unnamed section symbols to resolve to the
   relocations against two unnamed section symbols to resolve to the
   same address.  For example, if we have code like:
   same address.  For example, if we have code like:
 
 
        lw      $4,%got_disp(.data)($gp)
        lw      $4,%got_disp(.data)($gp)
        lw      $25,%got_disp(.text)($gp)
        lw      $25,%got_disp(.text)($gp)
        jalr    $25
        jalr    $25
 
 
   then the linker will resolve both relocations to .data and the program
   then the linker will resolve both relocations to .data and the program
   will jump there rather than to .text.
   will jump there rather than to .text.
 
 
   We can work around this problem by giving names to local section symbols.
   We can work around this problem by giving names to local section symbols.
   This is also what the MIPSpro tools do.  */
   This is also what the MIPSpro tools do.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
{
{
  return SGI_COMPAT (abfd);
  return SGI_COMPAT (abfd);
}
}


/* Work over a section just before writing it out.  This routine is
/* Work over a section just before writing it out.  This routine is
   used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
   used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
   sections that need the SHF_MIPS_GPREL flag by name; there has to be
   sections that need the SHF_MIPS_GPREL flag by name; there has to be
   a better way.  */
   a better way.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
{
{
  if (hdr->sh_type == SHT_MIPS_REGINFO
  if (hdr->sh_type == SHT_MIPS_REGINFO
      && hdr->sh_size > 0)
      && hdr->sh_size > 0)
    {
    {
      bfd_byte buf[4];
      bfd_byte buf[4];
 
 
      BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
      BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
      BFD_ASSERT (hdr->contents == NULL);
      BFD_ASSERT (hdr->contents == NULL);
 
 
      if (bfd_seek (abfd,
      if (bfd_seek (abfd,
                    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
                    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
                    SEEK_SET) != 0)
                    SEEK_SET) != 0)
        return FALSE;
        return FALSE;
      H_PUT_32 (abfd, elf_gp (abfd), buf);
      H_PUT_32 (abfd, elf_gp (abfd), buf);
      if (bfd_bwrite (buf, 4, abfd) != 4)
      if (bfd_bwrite (buf, 4, abfd) != 4)
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (hdr->sh_type == SHT_MIPS_OPTIONS
  if (hdr->sh_type == SHT_MIPS_OPTIONS
      && hdr->bfd_section != NULL
      && hdr->bfd_section != NULL
      && mips_elf_section_data (hdr->bfd_section) != NULL
      && mips_elf_section_data (hdr->bfd_section) != NULL
      && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
      && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
    {
    {
      bfd_byte *contents, *l, *lend;
      bfd_byte *contents, *l, *lend;
 
 
      /* We stored the section contents in the tdata field in the
      /* We stored the section contents in the tdata field in the
         set_section_contents routine.  We save the section contents
         set_section_contents routine.  We save the section contents
         so that we don't have to read them again.
         so that we don't have to read them again.
         At this point we know that elf_gp is set, so we can look
         At this point we know that elf_gp is set, so we can look
         through the section contents to see if there is an
         through the section contents to see if there is an
         ODK_REGINFO structure.  */
         ODK_REGINFO structure.  */
 
 
      contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
      contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
      l = contents;
      l = contents;
      lend = contents + hdr->sh_size;
      lend = contents + hdr->sh_size;
      while (l + sizeof (Elf_External_Options) <= lend)
      while (l + sizeof (Elf_External_Options) <= lend)
        {
        {
          Elf_Internal_Options intopt;
          Elf_Internal_Options intopt;
 
 
          bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
          bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
                                        &intopt);
                                        &intopt);
          if (intopt.size < sizeof (Elf_External_Options))
          if (intopt.size < sizeof (Elf_External_Options))
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: Warning: bad `%s' option size %u smaller than its header"),
                (_("%B: Warning: bad `%s' option size %u smaller than its header"),
                abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
                abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
              break;
              break;
            }
            }
          if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
          if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
            {
            {
              bfd_byte buf[8];
              bfd_byte buf[8];
 
 
              if (bfd_seek (abfd,
              if (bfd_seek (abfd,
                            (hdr->sh_offset
                            (hdr->sh_offset
                             + (l - contents)
                             + (l - contents)
                             + sizeof (Elf_External_Options)
                             + sizeof (Elf_External_Options)
                             + (sizeof (Elf64_External_RegInfo) - 8)),
                             + (sizeof (Elf64_External_RegInfo) - 8)),
                             SEEK_SET) != 0)
                             SEEK_SET) != 0)
                return FALSE;
                return FALSE;
              H_PUT_64 (abfd, elf_gp (abfd), buf);
              H_PUT_64 (abfd, elf_gp (abfd), buf);
              if (bfd_bwrite (buf, 8, abfd) != 8)
              if (bfd_bwrite (buf, 8, abfd) != 8)
                return FALSE;
                return FALSE;
            }
            }
          else if (intopt.kind == ODK_REGINFO)
          else if (intopt.kind == ODK_REGINFO)
            {
            {
              bfd_byte buf[4];
              bfd_byte buf[4];
 
 
              if (bfd_seek (abfd,
              if (bfd_seek (abfd,
                            (hdr->sh_offset
                            (hdr->sh_offset
                             + (l - contents)
                             + (l - contents)
                             + sizeof (Elf_External_Options)
                             + sizeof (Elf_External_Options)
                             + (sizeof (Elf32_External_RegInfo) - 4)),
                             + (sizeof (Elf32_External_RegInfo) - 4)),
                            SEEK_SET) != 0)
                            SEEK_SET) != 0)
                return FALSE;
                return FALSE;
              H_PUT_32 (abfd, elf_gp (abfd), buf);
              H_PUT_32 (abfd, elf_gp (abfd), buf);
              if (bfd_bwrite (buf, 4, abfd) != 4)
              if (bfd_bwrite (buf, 4, abfd) != 4)
                return FALSE;
                return FALSE;
            }
            }
          l += intopt.size;
          l += intopt.size;
        }
        }
    }
    }
 
 
  if (hdr->bfd_section != NULL)
  if (hdr->bfd_section != NULL)
    {
    {
      const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
      const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
 
 
      /* .sbss is not handled specially here because the GNU/Linux
      /* .sbss is not handled specially here because the GNU/Linux
         prelinker can convert .sbss from NOBITS to PROGBITS and
         prelinker can convert .sbss from NOBITS to PROGBITS and
         changing it back to NOBITS breaks the binary.  The entry in
         changing it back to NOBITS breaks the binary.  The entry in
         _bfd_mips_elf_special_sections will ensure the correct flags
         _bfd_mips_elf_special_sections will ensure the correct flags
         are set on .sbss if BFD creates it without reading it from an
         are set on .sbss if BFD creates it without reading it from an
         input file, and without special handling here the flags set
         input file, and without special handling here the flags set
         on it in an input file will be followed.  */
         on it in an input file will be followed.  */
      if (strcmp (name, ".sdata") == 0
      if (strcmp (name, ".sdata") == 0
          || strcmp (name, ".lit8") == 0
          || strcmp (name, ".lit8") == 0
          || strcmp (name, ".lit4") == 0)
          || strcmp (name, ".lit4") == 0)
        {
        {
          hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
          hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
          hdr->sh_type = SHT_PROGBITS;
          hdr->sh_type = SHT_PROGBITS;
        }
        }
      else if (strcmp (name, ".srdata") == 0)
      else if (strcmp (name, ".srdata") == 0)
        {
        {
          hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
          hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
          hdr->sh_type = SHT_PROGBITS;
          hdr->sh_type = SHT_PROGBITS;
        }
        }
      else if (strcmp (name, ".compact_rel") == 0)
      else if (strcmp (name, ".compact_rel") == 0)
        {
        {
          hdr->sh_flags = 0;
          hdr->sh_flags = 0;
          hdr->sh_type = SHT_PROGBITS;
          hdr->sh_type = SHT_PROGBITS;
        }
        }
      else if (strcmp (name, ".rtproc") == 0)
      else if (strcmp (name, ".rtproc") == 0)
        {
        {
          if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
          if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
            {
            {
              unsigned int adjust;
              unsigned int adjust;
 
 
              adjust = hdr->sh_size % hdr->sh_addralign;
              adjust = hdr->sh_size % hdr->sh_addralign;
              if (adjust != 0)
              if (adjust != 0)
                hdr->sh_size += hdr->sh_addralign - adjust;
                hdr->sh_size += hdr->sh_addralign - adjust;
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Handle a MIPS specific section when reading an object file.  This
/* Handle a MIPS specific section when reading an object file.  This
   is called when elfcode.h finds a section with an unknown type.
   is called when elfcode.h finds a section with an unknown type.
   This routine supports both the 32-bit and 64-bit ELF ABI.
   This routine supports both the 32-bit and 64-bit ELF ABI.
 
 
   FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
   FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
   how to.  */
   how to.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_section_from_shdr (bfd *abfd,
_bfd_mips_elf_section_from_shdr (bfd *abfd,
                                 Elf_Internal_Shdr *hdr,
                                 Elf_Internal_Shdr *hdr,
                                 const char *name,
                                 const char *name,
                                 int shindex)
                                 int shindex)
{
{
  flagword flags = 0;
  flagword flags = 0;
 
 
  /* There ought to be a place to keep ELF backend specific flags, but
  /* There ought to be a place to keep ELF backend specific flags, but
     at the moment there isn't one.  We just keep track of the
     at the moment there isn't one.  We just keep track of the
     sections by their name, instead.  Fortunately, the ABI gives
     sections by their name, instead.  Fortunately, the ABI gives
     suggested names for all the MIPS specific sections, so we will
     suggested names for all the MIPS specific sections, so we will
     probably get away with this.  */
     probably get away with this.  */
  switch (hdr->sh_type)
  switch (hdr->sh_type)
    {
    {
    case SHT_MIPS_LIBLIST:
    case SHT_MIPS_LIBLIST:
      if (strcmp (name, ".liblist") != 0)
      if (strcmp (name, ".liblist") != 0)
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_MSYM:
    case SHT_MIPS_MSYM:
      if (strcmp (name, ".msym") != 0)
      if (strcmp (name, ".msym") != 0)
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_CONFLICT:
    case SHT_MIPS_CONFLICT:
      if (strcmp (name, ".conflict") != 0)
      if (strcmp (name, ".conflict") != 0)
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_GPTAB:
    case SHT_MIPS_GPTAB:
      if (! CONST_STRNEQ (name, ".gptab."))
      if (! CONST_STRNEQ (name, ".gptab."))
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_UCODE:
    case SHT_MIPS_UCODE:
      if (strcmp (name, ".ucode") != 0)
      if (strcmp (name, ".ucode") != 0)
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_DEBUG:
    case SHT_MIPS_DEBUG:
      if (strcmp (name, ".mdebug") != 0)
      if (strcmp (name, ".mdebug") != 0)
        return FALSE;
        return FALSE;
      flags = SEC_DEBUGGING;
      flags = SEC_DEBUGGING;
      break;
      break;
    case SHT_MIPS_REGINFO:
    case SHT_MIPS_REGINFO:
      if (strcmp (name, ".reginfo") != 0
      if (strcmp (name, ".reginfo") != 0
          || hdr->sh_size != sizeof (Elf32_External_RegInfo))
          || hdr->sh_size != sizeof (Elf32_External_RegInfo))
        return FALSE;
        return FALSE;
      flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
      flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
      break;
      break;
    case SHT_MIPS_IFACE:
    case SHT_MIPS_IFACE:
      if (strcmp (name, ".MIPS.interfaces") != 0)
      if (strcmp (name, ".MIPS.interfaces") != 0)
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_CONTENT:
    case SHT_MIPS_CONTENT:
      if (! CONST_STRNEQ (name, ".MIPS.content"))
      if (! CONST_STRNEQ (name, ".MIPS.content"))
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_OPTIONS:
    case SHT_MIPS_OPTIONS:
      if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
      if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_DWARF:
    case SHT_MIPS_DWARF:
      if (! CONST_STRNEQ (name, ".debug_")
      if (! CONST_STRNEQ (name, ".debug_")
          && ! CONST_STRNEQ (name, ".zdebug_"))
          && ! CONST_STRNEQ (name, ".zdebug_"))
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_SYMBOL_LIB:
    case SHT_MIPS_SYMBOL_LIB:
      if (strcmp (name, ".MIPS.symlib") != 0)
      if (strcmp (name, ".MIPS.symlib") != 0)
        return FALSE;
        return FALSE;
      break;
      break;
    case SHT_MIPS_EVENTS:
    case SHT_MIPS_EVENTS:
      if (! CONST_STRNEQ (name, ".MIPS.events")
      if (! CONST_STRNEQ (name, ".MIPS.events")
          && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
          && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
        return FALSE;
        return FALSE;
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
 
 
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
    return FALSE;
    return FALSE;
 
 
  if (flags)
  if (flags)
    {
    {
      if (! bfd_set_section_flags (abfd, hdr->bfd_section,
      if (! bfd_set_section_flags (abfd, hdr->bfd_section,
                                   (bfd_get_section_flags (abfd,
                                   (bfd_get_section_flags (abfd,
                                                           hdr->bfd_section)
                                                           hdr->bfd_section)
                                    | flags)))
                                    | flags)))
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* FIXME: We should record sh_info for a .gptab section.  */
  /* FIXME: We should record sh_info for a .gptab section.  */
 
 
  /* For a .reginfo section, set the gp value in the tdata information
  /* For a .reginfo section, set the gp value in the tdata information
     from the contents of this section.  We need the gp value while
     from the contents of this section.  We need the gp value while
     processing relocs, so we just get it now.  The .reginfo section
     processing relocs, so we just get it now.  The .reginfo section
     is not used in the 64-bit MIPS ELF ABI.  */
     is not used in the 64-bit MIPS ELF ABI.  */
  if (hdr->sh_type == SHT_MIPS_REGINFO)
  if (hdr->sh_type == SHT_MIPS_REGINFO)
    {
    {
      Elf32_External_RegInfo ext;
      Elf32_External_RegInfo ext;
      Elf32_RegInfo s;
      Elf32_RegInfo s;
 
 
      if (! bfd_get_section_contents (abfd, hdr->bfd_section,
      if (! bfd_get_section_contents (abfd, hdr->bfd_section,
                                      &ext, 0, sizeof ext))
                                      &ext, 0, sizeof ext))
        return FALSE;
        return FALSE;
      bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
      bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
      elf_gp (abfd) = s.ri_gp_value;
      elf_gp (abfd) = s.ri_gp_value;
    }
    }
 
 
  /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
  /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
     set the gp value based on what we find.  We may see both
     set the gp value based on what we find.  We may see both
     SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
     SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
     they should agree.  */
     they should agree.  */
  if (hdr->sh_type == SHT_MIPS_OPTIONS)
  if (hdr->sh_type == SHT_MIPS_OPTIONS)
    {
    {
      bfd_byte *contents, *l, *lend;
      bfd_byte *contents, *l, *lend;
 
 
      contents = bfd_malloc (hdr->sh_size);
      contents = bfd_malloc (hdr->sh_size);
      if (contents == NULL)
      if (contents == NULL)
        return FALSE;
        return FALSE;
      if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
      if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
                                      0, hdr->sh_size))
                                      0, hdr->sh_size))
        {
        {
          free (contents);
          free (contents);
          return FALSE;
          return FALSE;
        }
        }
      l = contents;
      l = contents;
      lend = contents + hdr->sh_size;
      lend = contents + hdr->sh_size;
      while (l + sizeof (Elf_External_Options) <= lend)
      while (l + sizeof (Elf_External_Options) <= lend)
        {
        {
          Elf_Internal_Options intopt;
          Elf_Internal_Options intopt;
 
 
          bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
          bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
                                        &intopt);
                                        &intopt);
          if (intopt.size < sizeof (Elf_External_Options))
          if (intopt.size < sizeof (Elf_External_Options))
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: Warning: bad `%s' option size %u smaller than its header"),
                (_("%B: Warning: bad `%s' option size %u smaller than its header"),
                abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
                abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
              break;
              break;
            }
            }
          if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
          if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
            {
            {
              Elf64_Internal_RegInfo intreg;
              Elf64_Internal_RegInfo intreg;
 
 
              bfd_mips_elf64_swap_reginfo_in
              bfd_mips_elf64_swap_reginfo_in
                (abfd,
                (abfd,
                 ((Elf64_External_RegInfo *)
                 ((Elf64_External_RegInfo *)
                  (l + sizeof (Elf_External_Options))),
                  (l + sizeof (Elf_External_Options))),
                 &intreg);
                 &intreg);
              elf_gp (abfd) = intreg.ri_gp_value;
              elf_gp (abfd) = intreg.ri_gp_value;
            }
            }
          else if (intopt.kind == ODK_REGINFO)
          else if (intopt.kind == ODK_REGINFO)
            {
            {
              Elf32_RegInfo intreg;
              Elf32_RegInfo intreg;
 
 
              bfd_mips_elf32_swap_reginfo_in
              bfd_mips_elf32_swap_reginfo_in
                (abfd,
                (abfd,
                 ((Elf32_External_RegInfo *)
                 ((Elf32_External_RegInfo *)
                  (l + sizeof (Elf_External_Options))),
                  (l + sizeof (Elf_External_Options))),
                 &intreg);
                 &intreg);
              elf_gp (abfd) = intreg.ri_gp_value;
              elf_gp (abfd) = intreg.ri_gp_value;
            }
            }
          l += intopt.size;
          l += intopt.size;
        }
        }
      free (contents);
      free (contents);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Set the correct type for a MIPS ELF section.  We do this by the
/* Set the correct type for a MIPS ELF section.  We do this by the
   section name, which is a hack, but ought to work.  This routine is
   section name, which is a hack, but ought to work.  This routine is
   used by both the 32-bit and the 64-bit ABI.  */
   used by both the 32-bit and the 64-bit ABI.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
{
{
  const char *name = bfd_get_section_name (abfd, sec);
  const char *name = bfd_get_section_name (abfd, sec);
 
 
  if (strcmp (name, ".liblist") == 0)
  if (strcmp (name, ".liblist") == 0)
    {
    {
      hdr->sh_type = SHT_MIPS_LIBLIST;
      hdr->sh_type = SHT_MIPS_LIBLIST;
      hdr->sh_info = sec->size / sizeof (Elf32_Lib);
      hdr->sh_info = sec->size / sizeof (Elf32_Lib);
      /* The sh_link field is set in final_write_processing.  */
      /* The sh_link field is set in final_write_processing.  */
    }
    }
  else if (strcmp (name, ".conflict") == 0)
  else if (strcmp (name, ".conflict") == 0)
    hdr->sh_type = SHT_MIPS_CONFLICT;
    hdr->sh_type = SHT_MIPS_CONFLICT;
  else if (CONST_STRNEQ (name, ".gptab."))
  else if (CONST_STRNEQ (name, ".gptab."))
    {
    {
      hdr->sh_type = SHT_MIPS_GPTAB;
      hdr->sh_type = SHT_MIPS_GPTAB;
      hdr->sh_entsize = sizeof (Elf32_External_gptab);
      hdr->sh_entsize = sizeof (Elf32_External_gptab);
      /* The sh_info field is set in final_write_processing.  */
      /* The sh_info field is set in final_write_processing.  */
    }
    }
  else if (strcmp (name, ".ucode") == 0)
  else if (strcmp (name, ".ucode") == 0)
    hdr->sh_type = SHT_MIPS_UCODE;
    hdr->sh_type = SHT_MIPS_UCODE;
  else if (strcmp (name, ".mdebug") == 0)
  else if (strcmp (name, ".mdebug") == 0)
    {
    {
      hdr->sh_type = SHT_MIPS_DEBUG;
      hdr->sh_type = SHT_MIPS_DEBUG;
      /* In a shared object on IRIX 5.3, the .mdebug section has an
      /* In a shared object on IRIX 5.3, the .mdebug section has an
         entsize of 0.  FIXME: Does this matter?  */
         entsize of 0.  FIXME: Does this matter?  */
      if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
      if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
        hdr->sh_entsize = 0;
        hdr->sh_entsize = 0;
      else
      else
        hdr->sh_entsize = 1;
        hdr->sh_entsize = 1;
    }
    }
  else if (strcmp (name, ".reginfo") == 0)
  else if (strcmp (name, ".reginfo") == 0)
    {
    {
      hdr->sh_type = SHT_MIPS_REGINFO;
      hdr->sh_type = SHT_MIPS_REGINFO;
      /* In a shared object on IRIX 5.3, the .reginfo section has an
      /* In a shared object on IRIX 5.3, the .reginfo section has an
         entsize of 0x18.  FIXME: Does this matter?  */
         entsize of 0x18.  FIXME: Does this matter?  */
      if (SGI_COMPAT (abfd))
      if (SGI_COMPAT (abfd))
        {
        {
          if ((abfd->flags & DYNAMIC) != 0)
          if ((abfd->flags & DYNAMIC) != 0)
            hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
            hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
          else
          else
            hdr->sh_entsize = 1;
            hdr->sh_entsize = 1;
        }
        }
      else
      else
        hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
        hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
    }
    }
  else if (SGI_COMPAT (abfd)
  else if (SGI_COMPAT (abfd)
           && (strcmp (name, ".hash") == 0
           && (strcmp (name, ".hash") == 0
               || strcmp (name, ".dynamic") == 0
               || strcmp (name, ".dynamic") == 0
               || strcmp (name, ".dynstr") == 0))
               || strcmp (name, ".dynstr") == 0))
    {
    {
      if (SGI_COMPAT (abfd))
      if (SGI_COMPAT (abfd))
        hdr->sh_entsize = 0;
        hdr->sh_entsize = 0;
#if 0
#if 0
      /* This isn't how the IRIX6 linker behaves.  */
      /* This isn't how the IRIX6 linker behaves.  */
      hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
      hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
#endif
#endif
    }
    }
  else if (strcmp (name, ".got") == 0
  else if (strcmp (name, ".got") == 0
           || strcmp (name, ".srdata") == 0
           || strcmp (name, ".srdata") == 0
           || strcmp (name, ".sdata") == 0
           || strcmp (name, ".sdata") == 0
           || strcmp (name, ".sbss") == 0
           || strcmp (name, ".sbss") == 0
           || strcmp (name, ".lit4") == 0
           || strcmp (name, ".lit4") == 0
           || strcmp (name, ".lit8") == 0)
           || strcmp (name, ".lit8") == 0)
    hdr->sh_flags |= SHF_MIPS_GPREL;
    hdr->sh_flags |= SHF_MIPS_GPREL;
  else if (strcmp (name, ".MIPS.interfaces") == 0)
  else if (strcmp (name, ".MIPS.interfaces") == 0)
    {
    {
      hdr->sh_type = SHT_MIPS_IFACE;
      hdr->sh_type = SHT_MIPS_IFACE;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
    }
    }
  else if (CONST_STRNEQ (name, ".MIPS.content"))
  else if (CONST_STRNEQ (name, ".MIPS.content"))
    {
    {
      hdr->sh_type = SHT_MIPS_CONTENT;
      hdr->sh_type = SHT_MIPS_CONTENT;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
      /* The sh_info field is set in final_write_processing.  */
      /* The sh_info field is set in final_write_processing.  */
    }
    }
  else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
  else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
    {
    {
      hdr->sh_type = SHT_MIPS_OPTIONS;
      hdr->sh_type = SHT_MIPS_OPTIONS;
      hdr->sh_entsize = 1;
      hdr->sh_entsize = 1;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
    }
    }
  else if (CONST_STRNEQ (name, ".debug_")
  else if (CONST_STRNEQ (name, ".debug_")
           || CONST_STRNEQ (name, ".zdebug_"))
           || CONST_STRNEQ (name, ".zdebug_"))
    {
    {
      hdr->sh_type = SHT_MIPS_DWARF;
      hdr->sh_type = SHT_MIPS_DWARF;
 
 
      /* Irix facilities such as libexc expect a single .debug_frame
      /* Irix facilities such as libexc expect a single .debug_frame
         per executable, the system ones have NOSTRIP set and the linker
         per executable, the system ones have NOSTRIP set and the linker
         doesn't merge sections with different flags so ...  */
         doesn't merge sections with different flags so ...  */
      if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
      if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
        hdr->sh_flags |= SHF_MIPS_NOSTRIP;
        hdr->sh_flags |= SHF_MIPS_NOSTRIP;
    }
    }
  else if (strcmp (name, ".MIPS.symlib") == 0)
  else if (strcmp (name, ".MIPS.symlib") == 0)
    {
    {
      hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
      hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
      /* The sh_link and sh_info fields are set in
      /* The sh_link and sh_info fields are set in
         final_write_processing.  */
         final_write_processing.  */
    }
    }
  else if (CONST_STRNEQ (name, ".MIPS.events")
  else if (CONST_STRNEQ (name, ".MIPS.events")
           || CONST_STRNEQ (name, ".MIPS.post_rel"))
           || CONST_STRNEQ (name, ".MIPS.post_rel"))
    {
    {
      hdr->sh_type = SHT_MIPS_EVENTS;
      hdr->sh_type = SHT_MIPS_EVENTS;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
      hdr->sh_flags |= SHF_MIPS_NOSTRIP;
      /* The sh_link field is set in final_write_processing.  */
      /* The sh_link field is set in final_write_processing.  */
    }
    }
  else if (strcmp (name, ".msym") == 0)
  else if (strcmp (name, ".msym") == 0)
    {
    {
      hdr->sh_type = SHT_MIPS_MSYM;
      hdr->sh_type = SHT_MIPS_MSYM;
      hdr->sh_flags |= SHF_ALLOC;
      hdr->sh_flags |= SHF_ALLOC;
      hdr->sh_entsize = 8;
      hdr->sh_entsize = 8;
    }
    }
 
 
  /* The generic elf_fake_sections will set up REL_HDR using the default
  /* The generic elf_fake_sections will set up REL_HDR using the default
   kind of relocations.  We used to set up a second header for the
   kind of relocations.  We used to set up a second header for the
   non-default kind of relocations here, but only NewABI would use
   non-default kind of relocations here, but only NewABI would use
   these, and the IRIX ld doesn't like resulting empty RELA sections.
   these, and the IRIX ld doesn't like resulting empty RELA sections.
   Thus we create those header only on demand now.  */
   Thus we create those header only on demand now.  */
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Given a BFD section, try to locate the corresponding ELF section
/* Given a BFD section, try to locate the corresponding ELF section
   index.  This is used by both the 32-bit and the 64-bit ABI.
   index.  This is used by both the 32-bit and the 64-bit ABI.
   Actually, it's not clear to me that the 64-bit ABI supports these,
   Actually, it's not clear to me that the 64-bit ABI supports these,
   but for non-PIC objects we will certainly want support for at least
   but for non-PIC objects we will certainly want support for at least
   the .scommon section.  */
   the .scommon section.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
                                        asection *sec, int *retval)
                                        asection *sec, int *retval)
{
{
  if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
  if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
    {
    {
      *retval = SHN_MIPS_SCOMMON;
      *retval = SHN_MIPS_SCOMMON;
      return TRUE;
      return TRUE;
    }
    }
  if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
  if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
    {
    {
      *retval = SHN_MIPS_ACOMMON;
      *retval = SHN_MIPS_ACOMMON;
      return TRUE;
      return TRUE;
    }
    }
  return FALSE;
  return FALSE;
}
}


/* Hook called by the linker routine which adds symbols from an object
/* Hook called by the linker routine which adds symbols from an object
   file.  We must handle the special MIPS section numbers here.  */
   file.  We must handle the special MIPS section numbers here.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
                               Elf_Internal_Sym *sym, const char **namep,
                               Elf_Internal_Sym *sym, const char **namep,
                               flagword *flagsp ATTRIBUTE_UNUSED,
                               flagword *flagsp ATTRIBUTE_UNUSED,
                               asection **secp, bfd_vma *valp)
                               asection **secp, bfd_vma *valp)
{
{
  if (SGI_COMPAT (abfd)
  if (SGI_COMPAT (abfd)
      && (abfd->flags & DYNAMIC) != 0
      && (abfd->flags & DYNAMIC) != 0
      && strcmp (*namep, "_rld_new_interface") == 0)
      && strcmp (*namep, "_rld_new_interface") == 0)
    {
    {
      /* Skip IRIX5 rld entry name.  */
      /* Skip IRIX5 rld entry name.  */
      *namep = NULL;
      *namep = NULL;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Shared objects may have a dynamic symbol '_gp_disp' defined as
  /* Shared objects may have a dynamic symbol '_gp_disp' defined as
     a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
     a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
     by setting a DT_NEEDED for the shared object.  Since _gp_disp is
     by setting a DT_NEEDED for the shared object.  Since _gp_disp is
     a magic symbol resolved by the linker, we ignore this bogus definition
     a magic symbol resolved by the linker, we ignore this bogus definition
     of _gp_disp.  New ABI objects do not suffer from this problem so this
     of _gp_disp.  New ABI objects do not suffer from this problem so this
     is not done for them. */
     is not done for them. */
  if (!NEWABI_P(abfd)
  if (!NEWABI_P(abfd)
      && (sym->st_shndx == SHN_ABS)
      && (sym->st_shndx == SHN_ABS)
      && (strcmp (*namep, "_gp_disp") == 0))
      && (strcmp (*namep, "_gp_disp") == 0))
    {
    {
      *namep = NULL;
      *namep = NULL;
      return TRUE;
      return TRUE;
    }
    }
 
 
  switch (sym->st_shndx)
  switch (sym->st_shndx)
    {
    {
    case SHN_COMMON:
    case SHN_COMMON:
      /* Common symbols less than the GP size are automatically
      /* Common symbols less than the GP size are automatically
         treated as SHN_MIPS_SCOMMON symbols.  */
         treated as SHN_MIPS_SCOMMON symbols.  */
      if (sym->st_size > elf_gp_size (abfd)
      if (sym->st_size > elf_gp_size (abfd)
          || ELF_ST_TYPE (sym->st_info) == STT_TLS
          || ELF_ST_TYPE (sym->st_info) == STT_TLS
          || IRIX_COMPAT (abfd) == ict_irix6)
          || IRIX_COMPAT (abfd) == ict_irix6)
        break;
        break;
      /* Fall through.  */
      /* Fall through.  */
    case SHN_MIPS_SCOMMON:
    case SHN_MIPS_SCOMMON:
      *secp = bfd_make_section_old_way (abfd, ".scommon");
      *secp = bfd_make_section_old_way (abfd, ".scommon");
      (*secp)->flags |= SEC_IS_COMMON;
      (*secp)->flags |= SEC_IS_COMMON;
      *valp = sym->st_size;
      *valp = sym->st_size;
      break;
      break;
 
 
    case SHN_MIPS_TEXT:
    case SHN_MIPS_TEXT:
      /* This section is used in a shared object.  */
      /* This section is used in a shared object.  */
      if (elf_tdata (abfd)->elf_text_section == NULL)
      if (elf_tdata (abfd)->elf_text_section == NULL)
        {
        {
          asymbol *elf_text_symbol;
          asymbol *elf_text_symbol;
          asection *elf_text_section;
          asection *elf_text_section;
          bfd_size_type amt = sizeof (asection);
          bfd_size_type amt = sizeof (asection);
 
 
          elf_text_section = bfd_zalloc (abfd, amt);
          elf_text_section = bfd_zalloc (abfd, amt);
          if (elf_text_section == NULL)
          if (elf_text_section == NULL)
            return FALSE;
            return FALSE;
 
 
          amt = sizeof (asymbol);
          amt = sizeof (asymbol);
          elf_text_symbol = bfd_zalloc (abfd, amt);
          elf_text_symbol = bfd_zalloc (abfd, amt);
          if (elf_text_symbol == NULL)
          if (elf_text_symbol == NULL)
            return FALSE;
            return FALSE;
 
 
          /* Initialize the section.  */
          /* Initialize the section.  */
 
 
          elf_tdata (abfd)->elf_text_section = elf_text_section;
          elf_tdata (abfd)->elf_text_section = elf_text_section;
          elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
          elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
 
 
          elf_text_section->symbol = elf_text_symbol;
          elf_text_section->symbol = elf_text_symbol;
          elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
          elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
 
 
          elf_text_section->name = ".text";
          elf_text_section->name = ".text";
          elf_text_section->flags = SEC_NO_FLAGS;
          elf_text_section->flags = SEC_NO_FLAGS;
          elf_text_section->output_section = NULL;
          elf_text_section->output_section = NULL;
          elf_text_section->owner = abfd;
          elf_text_section->owner = abfd;
          elf_text_symbol->name = ".text";
          elf_text_symbol->name = ".text";
          elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
          elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
          elf_text_symbol->section = elf_text_section;
          elf_text_symbol->section = elf_text_section;
        }
        }
      /* This code used to do *secp = bfd_und_section_ptr if
      /* This code used to do *secp = bfd_und_section_ptr if
         info->shared.  I don't know why, and that doesn't make sense,
         info->shared.  I don't know why, and that doesn't make sense,
         so I took it out.  */
         so I took it out.  */
      *secp = elf_tdata (abfd)->elf_text_section;
      *secp = elf_tdata (abfd)->elf_text_section;
      break;
      break;
 
 
    case SHN_MIPS_ACOMMON:
    case SHN_MIPS_ACOMMON:
      /* Fall through. XXX Can we treat this as allocated data?  */
      /* Fall through. XXX Can we treat this as allocated data?  */
    case SHN_MIPS_DATA:
    case SHN_MIPS_DATA:
      /* This section is used in a shared object.  */
      /* This section is used in a shared object.  */
      if (elf_tdata (abfd)->elf_data_section == NULL)
      if (elf_tdata (abfd)->elf_data_section == NULL)
        {
        {
          asymbol *elf_data_symbol;
          asymbol *elf_data_symbol;
          asection *elf_data_section;
          asection *elf_data_section;
          bfd_size_type amt = sizeof (asection);
          bfd_size_type amt = sizeof (asection);
 
 
          elf_data_section = bfd_zalloc (abfd, amt);
          elf_data_section = bfd_zalloc (abfd, amt);
          if (elf_data_section == NULL)
          if (elf_data_section == NULL)
            return FALSE;
            return FALSE;
 
 
          amt = sizeof (asymbol);
          amt = sizeof (asymbol);
          elf_data_symbol = bfd_zalloc (abfd, amt);
          elf_data_symbol = bfd_zalloc (abfd, amt);
          if (elf_data_symbol == NULL)
          if (elf_data_symbol == NULL)
            return FALSE;
            return FALSE;
 
 
          /* Initialize the section.  */
          /* Initialize the section.  */
 
 
          elf_tdata (abfd)->elf_data_section = elf_data_section;
          elf_tdata (abfd)->elf_data_section = elf_data_section;
          elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
          elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
 
 
          elf_data_section->symbol = elf_data_symbol;
          elf_data_section->symbol = elf_data_symbol;
          elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
          elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
 
 
          elf_data_section->name = ".data";
          elf_data_section->name = ".data";
          elf_data_section->flags = SEC_NO_FLAGS;
          elf_data_section->flags = SEC_NO_FLAGS;
          elf_data_section->output_section = NULL;
          elf_data_section->output_section = NULL;
          elf_data_section->owner = abfd;
          elf_data_section->owner = abfd;
          elf_data_symbol->name = ".data";
          elf_data_symbol->name = ".data";
          elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
          elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
          elf_data_symbol->section = elf_data_section;
          elf_data_symbol->section = elf_data_section;
        }
        }
      /* This code used to do *secp = bfd_und_section_ptr if
      /* This code used to do *secp = bfd_und_section_ptr if
         info->shared.  I don't know why, and that doesn't make sense,
         info->shared.  I don't know why, and that doesn't make sense,
         so I took it out.  */
         so I took it out.  */
      *secp = elf_tdata (abfd)->elf_data_section;
      *secp = elf_tdata (abfd)->elf_data_section;
      break;
      break;
 
 
    case SHN_MIPS_SUNDEFINED:
    case SHN_MIPS_SUNDEFINED:
      *secp = bfd_und_section_ptr;
      *secp = bfd_und_section_ptr;
      break;
      break;
    }
    }
 
 
  if (SGI_COMPAT (abfd)
  if (SGI_COMPAT (abfd)
      && ! info->shared
      && ! info->shared
      && info->output_bfd->xvec == abfd->xvec
      && info->output_bfd->xvec == abfd->xvec
      && strcmp (*namep, "__rld_obj_head") == 0)
      && strcmp (*namep, "__rld_obj_head") == 0)
    {
    {
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      struct bfd_link_hash_entry *bh;
      struct bfd_link_hash_entry *bh;
 
 
      /* Mark __rld_obj_head as dynamic.  */
      /* Mark __rld_obj_head as dynamic.  */
      bh = NULL;
      bh = NULL;
      if (! (_bfd_generic_link_add_one_symbol
      if (! (_bfd_generic_link_add_one_symbol
             (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
             (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
              get_elf_backend_data (abfd)->collect, &bh)))
              get_elf_backend_data (abfd)->collect, &bh)))
        return FALSE;
        return FALSE;
 
 
      h = (struct elf_link_hash_entry *) bh;
      h = (struct elf_link_hash_entry *) bh;
      h->non_elf = 0;
      h->non_elf = 0;
      h->def_regular = 1;
      h->def_regular = 1;
      h->type = STT_OBJECT;
      h->type = STT_OBJECT;
 
 
      if (! bfd_elf_link_record_dynamic_symbol (info, h))
      if (! bfd_elf_link_record_dynamic_symbol (info, h))
        return FALSE;
        return FALSE;
 
 
      mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
      mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
 
      mips_elf_hash_table (info)->rld_symbol = h;
    }
    }
 
 
  /* If this is a mips16 text symbol, add 1 to the value to make it
  /* If this is a mips16 text symbol, add 1 to the value to make it
     odd.  This will cause something like .word SYM to come up with
     odd.  This will cause something like .word SYM to come up with
     the right value when it is loaded into the PC.  */
     the right value when it is loaded into the PC.  */
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
    ++*valp;
    ++*valp;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* This hook function is called before the linker writes out a global
/* This hook function is called before the linker writes out a global
   symbol.  We mark symbols as small common if appropriate.  This is
   symbol.  We mark symbols as small common if appropriate.  This is
   also where we undo the increment of the value for a mips16 symbol.  */
   also where we undo the increment of the value for a mips16 symbol.  */
 
 
int
int
_bfd_mips_elf_link_output_symbol_hook
_bfd_mips_elf_link_output_symbol_hook
  (struct bfd_link_info *info ATTRIBUTE_UNUSED,
  (struct bfd_link_info *info ATTRIBUTE_UNUSED,
   const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
   const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
   asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
   asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
{
{
  /* If we see a common symbol, which implies a relocatable link, then
  /* If we see a common symbol, which implies a relocatable link, then
     if a symbol was small common in an input file, mark it as small
     if a symbol was small common in an input file, mark it as small
     common in the output file.  */
     common in the output file.  */
  if (sym->st_shndx == SHN_COMMON
  if (sym->st_shndx == SHN_COMMON
      && strcmp (input_sec->name, ".scommon") == 0)
      && strcmp (input_sec->name, ".scommon") == 0)
    sym->st_shndx = SHN_MIPS_SCOMMON;
    sym->st_shndx = SHN_MIPS_SCOMMON;
 
 
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
    sym->st_value &= ~1;
    sym->st_value &= ~1;
 
 
  return 1;
  return 1;
}
}


/* Functions for the dynamic linker.  */
/* Functions for the dynamic linker.  */
 
 
/* Create dynamic sections when linking against a dynamic object.  */
/* Create dynamic sections when linking against a dynamic object.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
{
{
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
  struct bfd_link_hash_entry *bh;
  struct bfd_link_hash_entry *bh;
  flagword flags;
  flagword flags;
  register asection *s;
  register asection *s;
  const char * const *namep;
  const char * const *namep;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
           | SEC_LINKER_CREATED | SEC_READONLY);
           | SEC_LINKER_CREATED | SEC_READONLY);
 
 
  /* The psABI requires a read-only .dynamic section, but the VxWorks
  /* The psABI requires a read-only .dynamic section, but the VxWorks
     EABI doesn't.  */
     EABI doesn't.  */
  if (!htab->is_vxworks)
  if (!htab->is_vxworks)
    {
    {
      s = bfd_get_section_by_name (abfd, ".dynamic");
      s = bfd_get_section_by_name (abfd, ".dynamic");
      if (s != NULL)
      if (s != NULL)
        {
        {
          if (! bfd_set_section_flags (abfd, s, flags))
          if (! bfd_set_section_flags (abfd, s, flags))
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  /* We need to create .got section.  */
  /* We need to create .got section.  */
  if (!mips_elf_create_got_section (abfd, info))
  if (!mips_elf_create_got_section (abfd, info))
    return FALSE;
    return FALSE;
 
 
  if (! mips_elf_rel_dyn_section (info, TRUE))
  if (! mips_elf_rel_dyn_section (info, TRUE))
    return FALSE;
    return FALSE;
 
 
  /* Create .stub section.  */
  /* Create .stub section.  */
  s = bfd_make_section_with_flags (abfd,
  s = bfd_make_section_with_flags (abfd,
                                   MIPS_ELF_STUB_SECTION_NAME (abfd),
                                   MIPS_ELF_STUB_SECTION_NAME (abfd),
                                   flags | SEC_CODE);
                                   flags | SEC_CODE);
  if (s == NULL
  if (s == NULL
      || ! bfd_set_section_alignment (abfd, s,
      || ! bfd_set_section_alignment (abfd, s,
                                      MIPS_ELF_LOG_FILE_ALIGN (abfd)))
                                      MIPS_ELF_LOG_FILE_ALIGN (abfd)))
    return FALSE;
    return FALSE;
  htab->sstubs = s;
  htab->sstubs = s;
 
 
  if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
  if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
      && !info->shared
      && !info->shared
      && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
      && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
    {
    {
      s = bfd_make_section_with_flags (abfd, ".rld_map",
      s = bfd_make_section_with_flags (abfd, ".rld_map",
                                       flags &~ (flagword) SEC_READONLY);
                                       flags &~ (flagword) SEC_READONLY);
      if (s == NULL
      if (s == NULL
          || ! bfd_set_section_alignment (abfd, s,
          || ! bfd_set_section_alignment (abfd, s,
                                          MIPS_ELF_LOG_FILE_ALIGN (abfd)))
                                          MIPS_ELF_LOG_FILE_ALIGN (abfd)))
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* On IRIX5, we adjust add some additional symbols and change the
  /* On IRIX5, we adjust add some additional symbols and change the
     alignments of several sections.  There is no ABI documentation
     alignments of several sections.  There is no ABI documentation
     indicating that this is necessary on IRIX6, nor any evidence that
     indicating that this is necessary on IRIX6, nor any evidence that
     the linker takes such action.  */
     the linker takes such action.  */
  if (IRIX_COMPAT (abfd) == ict_irix5)
  if (IRIX_COMPAT (abfd) == ict_irix5)
    {
    {
      for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
      for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
        {
        {
          bh = NULL;
          bh = NULL;
          if (! (_bfd_generic_link_add_one_symbol
          if (! (_bfd_generic_link_add_one_symbol
                 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
                 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
                  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
                  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
            return FALSE;
            return FALSE;
 
 
          h = (struct elf_link_hash_entry *) bh;
          h = (struct elf_link_hash_entry *) bh;
          h->non_elf = 0;
          h->non_elf = 0;
          h->def_regular = 1;
          h->def_regular = 1;
          h->type = STT_SECTION;
          h->type = STT_SECTION;
 
 
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
            return FALSE;
            return FALSE;
        }
        }
 
 
      /* We need to create a .compact_rel section.  */
      /* We need to create a .compact_rel section.  */
      if (SGI_COMPAT (abfd))
      if (SGI_COMPAT (abfd))
        {
        {
          if (!mips_elf_create_compact_rel_section (abfd, info))
          if (!mips_elf_create_compact_rel_section (abfd, info))
            return FALSE;
            return FALSE;
        }
        }
 
 
      /* Change alignments of some sections.  */
      /* Change alignments of some sections.  */
      s = bfd_get_section_by_name (abfd, ".hash");
      s = bfd_get_section_by_name (abfd, ".hash");
      if (s != NULL)
      if (s != NULL)
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
      s = bfd_get_section_by_name (abfd, ".dynsym");
      s = bfd_get_section_by_name (abfd, ".dynsym");
      if (s != NULL)
      if (s != NULL)
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
      s = bfd_get_section_by_name (abfd, ".dynstr");
      s = bfd_get_section_by_name (abfd, ".dynstr");
      if (s != NULL)
      if (s != NULL)
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
      s = bfd_get_section_by_name (abfd, ".reginfo");
      s = bfd_get_section_by_name (abfd, ".reginfo");
      if (s != NULL)
      if (s != NULL)
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
      s = bfd_get_section_by_name (abfd, ".dynamic");
      s = bfd_get_section_by_name (abfd, ".dynamic");
      if (s != NULL)
      if (s != NULL)
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
        bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
    }
    }
 
 
  if (!info->shared)
  if (!info->shared)
    {
    {
      const char *name;
      const char *name;
 
 
      name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
      name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
      bh = NULL;
      bh = NULL;
      if (!(_bfd_generic_link_add_one_symbol
      if (!(_bfd_generic_link_add_one_symbol
            (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
            (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
             NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
             NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
        return FALSE;
        return FALSE;
 
 
      h = (struct elf_link_hash_entry *) bh;
      h = (struct elf_link_hash_entry *) bh;
      h->non_elf = 0;
      h->non_elf = 0;
      h->def_regular = 1;
      h->def_regular = 1;
      h->type = STT_SECTION;
      h->type = STT_SECTION;
 
 
      if (! bfd_elf_link_record_dynamic_symbol (info, h))
      if (! bfd_elf_link_record_dynamic_symbol (info, h))
        return FALSE;
        return FALSE;
 
 
      if (! mips_elf_hash_table (info)->use_rld_obj_head)
      if (! mips_elf_hash_table (info)->use_rld_obj_head)
        {
        {
          /* __rld_map is a four byte word located in the .data section
          /* __rld_map is a four byte word located in the .data section
             and is filled in by the rtld to contain a pointer to
             and is filled in by the rtld to contain a pointer to
             the _r_debug structure. Its symbol value will be set in
             the _r_debug structure. Its symbol value will be set in
             _bfd_mips_elf_finish_dynamic_symbol.  */
             _bfd_mips_elf_finish_dynamic_symbol.  */
          s = bfd_get_section_by_name (abfd, ".rld_map");
          s = bfd_get_section_by_name (abfd, ".rld_map");
          BFD_ASSERT (s != NULL);
          BFD_ASSERT (s != NULL);
 
 
          name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
          name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
          bh = NULL;
          bh = NULL;
          if (!(_bfd_generic_link_add_one_symbol
          if (!(_bfd_generic_link_add_one_symbol
                (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
                (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
                 get_elf_backend_data (abfd)->collect, &bh)))
                 get_elf_backend_data (abfd)->collect, &bh)))
            return FALSE;
            return FALSE;
 
 
          h = (struct elf_link_hash_entry *) bh;
          h = (struct elf_link_hash_entry *) bh;
          h->non_elf = 0;
          h->non_elf = 0;
          h->def_regular = 1;
          h->def_regular = 1;
          h->type = STT_OBJECT;
          h->type = STT_OBJECT;
 
 
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
          if (! bfd_elf_link_record_dynamic_symbol (info, h))
            return FALSE;
            return FALSE;
 
          mips_elf_hash_table (info)->rld_symbol = h;
        }
        }
    }
    }
 
 
  /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
  /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
     Also create the _PROCEDURE_LINKAGE_TABLE symbol.  */
     Also create the _PROCEDURE_LINKAGE_TABLE symbol.  */
  if (!_bfd_elf_create_dynamic_sections (abfd, info))
  if (!_bfd_elf_create_dynamic_sections (abfd, info))
    return FALSE;
    return FALSE;
 
 
  /* Cache the sections created above.  */
  /* Cache the sections created above.  */
  htab->splt = bfd_get_section_by_name (abfd, ".plt");
  htab->splt = bfd_get_section_by_name (abfd, ".plt");
  htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
  htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
  if (htab->is_vxworks)
  if (htab->is_vxworks)
    {
    {
      htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
      htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
      htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
      htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
    }
    }
  else
  else
    htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
    htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
  if (!htab->sdynbss
  if (!htab->sdynbss
      || (htab->is_vxworks && !htab->srelbss && !info->shared)
      || (htab->is_vxworks && !htab->srelbss && !info->shared)
      || !htab->srelplt
      || !htab->srelplt
      || !htab->splt)
      || !htab->splt)
    abort ();
    abort ();
 
 
  if (htab->is_vxworks)
  if (htab->is_vxworks)
    {
    {
      /* Do the usual VxWorks handling.  */
      /* Do the usual VxWorks handling.  */
      if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
      if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
        return FALSE;
        return FALSE;
 
 
      /* Work out the PLT sizes.  */
      /* Work out the PLT sizes.  */
      if (info->shared)
      if (info->shared)
        {
        {
          htab->plt_header_size
          htab->plt_header_size
            = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
            = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
          htab->plt_entry_size
          htab->plt_entry_size
            = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
            = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
        }
        }
      else
      else
        {
        {
          htab->plt_header_size
          htab->plt_header_size
            = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
            = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
          htab->plt_entry_size
          htab->plt_entry_size
            = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
            = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
        }
        }
    }
    }
  else if (!info->shared)
  else if (!info->shared)
    {
    {
      /* All variants of the plt0 entry are the same size.  */
      /* All variants of the plt0 entry are the same size.  */
      htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
      htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
      htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
      htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}


/* Return true if relocation REL against section SEC is a REL rather than
/* Return true if relocation REL against section SEC is a REL rather than
   RELA relocation.  RELOCS is the first relocation in the section and
   RELA relocation.  RELOCS is the first relocation in the section and
   ABFD is the bfd that contains SEC.  */
   ABFD is the bfd that contains SEC.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
                           const Elf_Internal_Rela *relocs,
                           const Elf_Internal_Rela *relocs,
                           const Elf_Internal_Rela *rel)
                           const Elf_Internal_Rela *rel)
{
{
  Elf_Internal_Shdr *rel_hdr;
  Elf_Internal_Shdr *rel_hdr;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
 
 
  /* To determine which flavor of relocation this is, we depend on the
  /* To determine which flavor of relocation this is, we depend on the
     fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
     fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
  rel_hdr = elf_section_data (sec)->rel.hdr;
  rel_hdr = elf_section_data (sec)->rel.hdr;
  if (rel_hdr == NULL)
  if (rel_hdr == NULL)
    return FALSE;
    return FALSE;
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  return ((size_t) (rel - relocs)
  return ((size_t) (rel - relocs)
          < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
          < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
}
}
 
 
/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
   HOWTO is the relocation's howto and CONTENTS points to the contents
   HOWTO is the relocation's howto and CONTENTS points to the contents
   of the section that REL is against.  */
   of the section that REL is against.  */
 
 
static bfd_vma
static bfd_vma
mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
                          reloc_howto_type *howto, bfd_byte *contents)
                          reloc_howto_type *howto, bfd_byte *contents)
{
{
  bfd_byte *location;
  bfd_byte *location;
  unsigned int r_type;
  unsigned int r_type;
  bfd_vma addend;
  bfd_vma addend;
 
 
  r_type = ELF_R_TYPE (abfd, rel->r_info);
  r_type = ELF_R_TYPE (abfd, rel->r_info);
  location = contents + rel->r_offset;
  location = contents + rel->r_offset;
 
 
  /* Get the addend, which is stored in the input file.  */
  /* Get the addend, which is stored in the input file.  */
  _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
  _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
  addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
  addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
  _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
  _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
 
 
  return addend & howto->src_mask;
  return addend & howto->src_mask;
}
}
 
 
/* REL is a relocation in ABFD that needs a partnering LO16 relocation
/* REL is a relocation in ABFD that needs a partnering LO16 relocation
   and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
   and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
   and update *ADDEND with the final addend.  Return true on success
   and update *ADDEND with the final addend.  Return true on success
   or false if the LO16 could not be found.  RELEND is the exclusive
   or false if the LO16 could not be found.  RELEND is the exclusive
   upper bound on the relocations for REL's section.  */
   upper bound on the relocations for REL's section.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_add_lo16_rel_addend (bfd *abfd,
mips_elf_add_lo16_rel_addend (bfd *abfd,
                              const Elf_Internal_Rela *rel,
                              const Elf_Internal_Rela *rel,
                              const Elf_Internal_Rela *relend,
                              const Elf_Internal_Rela *relend,
                              bfd_byte *contents, bfd_vma *addend)
                              bfd_byte *contents, bfd_vma *addend)
{
{
  unsigned int r_type, lo16_type;
  unsigned int r_type, lo16_type;
  const Elf_Internal_Rela *lo16_relocation;
  const Elf_Internal_Rela *lo16_relocation;
  reloc_howto_type *lo16_howto;
  reloc_howto_type *lo16_howto;
  bfd_vma l;
  bfd_vma l;
 
 
  r_type = ELF_R_TYPE (abfd, rel->r_info);
  r_type = ELF_R_TYPE (abfd, rel->r_info);
  if (mips16_reloc_p (r_type))
  if (mips16_reloc_p (r_type))
    lo16_type = R_MIPS16_LO16;
    lo16_type = R_MIPS16_LO16;
  else if (micromips_reloc_p (r_type))
  else if (micromips_reloc_p (r_type))
    lo16_type = R_MICROMIPS_LO16;
    lo16_type = R_MICROMIPS_LO16;
  else
  else
    lo16_type = R_MIPS_LO16;
    lo16_type = R_MIPS_LO16;
 
 
  /* The combined value is the sum of the HI16 addend, left-shifted by
  /* The combined value is the sum of the HI16 addend, left-shifted by
     sixteen bits, and the LO16 addend, sign extended.  (Usually, the
     sixteen bits, and the LO16 addend, sign extended.  (Usually, the
     code does a `lui' of the HI16 value, and then an `addiu' of the
     code does a `lui' of the HI16 value, and then an `addiu' of the
     LO16 value.)
     LO16 value.)
 
 
     Scan ahead to find a matching LO16 relocation.
     Scan ahead to find a matching LO16 relocation.
 
 
     According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
     According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
     be immediately following.  However, for the IRIX6 ABI, the next
     be immediately following.  However, for the IRIX6 ABI, the next
     relocation may be a composed relocation consisting of several
     relocation may be a composed relocation consisting of several
     relocations for the same address.  In that case, the R_MIPS_LO16
     relocations for the same address.  In that case, the R_MIPS_LO16
     relocation may occur as one of these.  We permit a similar
     relocation may occur as one of these.  We permit a similar
     extension in general, as that is useful for GCC.
     extension in general, as that is useful for GCC.
 
 
     In some cases GCC dead code elimination removes the LO16 but keeps
     In some cases GCC dead code elimination removes the LO16 but keeps
     the corresponding HI16.  This is strictly speaking a violation of
     the corresponding HI16.  This is strictly speaking a violation of
     the ABI but not immediately harmful.  */
     the ABI but not immediately harmful.  */
  lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
  lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
  if (lo16_relocation == NULL)
  if (lo16_relocation == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Obtain the addend kept there.  */
  /* Obtain the addend kept there.  */
  lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
  lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
  l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
  l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
 
 
  l <<= lo16_howto->rightshift;
  l <<= lo16_howto->rightshift;
  l = _bfd_mips_elf_sign_extend (l, 16);
  l = _bfd_mips_elf_sign_extend (l, 16);
 
 
  *addend <<= 16;
  *addend <<= 16;
  *addend += l;
  *addend += l;
  return TRUE;
  return TRUE;
}
}
 
 
/* Try to read the contents of section SEC in bfd ABFD.  Return true and
/* Try to read the contents of section SEC in bfd ABFD.  Return true and
   store the contents in *CONTENTS on success.  Assume that *CONTENTS
   store the contents in *CONTENTS on success.  Assume that *CONTENTS
   already holds the contents if it is nonull on entry.  */
   already holds the contents if it is nonull on entry.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
{
{
  if (*contents)
  if (*contents)
    return TRUE;
    return TRUE;
 
 
  /* Get cached copy if it exists.  */
  /* Get cached copy if it exists.  */
  if (elf_section_data (sec)->this_hdr.contents != NULL)
  if (elf_section_data (sec)->this_hdr.contents != NULL)
    {
    {
      *contents = elf_section_data (sec)->this_hdr.contents;
      *contents = elf_section_data (sec)->this_hdr.contents;
      return TRUE;
      return TRUE;
    }
    }
 
 
  return bfd_malloc_and_get_section (abfd, sec, contents);
  return bfd_malloc_and_get_section (abfd, sec, contents);
}
}
 
 
/* Look through the relocs for a section during the first phase, and
/* Look through the relocs for a section during the first phase, and
   allocate space in the global offset table.  */
   allocate space in the global offset table.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
                            asection *sec, const Elf_Internal_Rela *relocs)
                            asection *sec, const Elf_Internal_Rela *relocs)
{
{
  const char *name;
  const char *name;
  bfd *dynobj;
  bfd *dynobj;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  size_t extsymoff;
  size_t extsymoff;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel_end;
  const Elf_Internal_Rela *rel_end;
  asection *sreloc;
  asection *sreloc;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  bfd_byte *contents;
  bfd_byte *contents;
  bfd_vma addend;
  bfd_vma addend;
  reloc_howto_type *howto;
  reloc_howto_type *howto;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
  rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
 
 
  /* Check for the mips16 stub sections.  */
  /* Check for the mips16 stub sections.  */
 
 
  name = bfd_get_section_name (abfd, sec);
  name = bfd_get_section_name (abfd, sec);
  if (FN_STUB_P (name))
  if (FN_STUB_P (name))
    {
    {
      unsigned long r_symndx;
      unsigned long r_symndx;
 
 
      /* Look at the relocation information to figure out which symbol
      /* Look at the relocation information to figure out which symbol
         this is for.  */
         this is for.  */
 
 
      r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
      r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
      if (r_symndx == 0)
      if (r_symndx == 0)
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: Warning: cannot determine the target function for"
            (_("%B: Warning: cannot determine the target function for"
               " stub section `%s'"),
               " stub section `%s'"),
             abfd, name);
             abfd, name);
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (r_symndx < extsymoff
      if (r_symndx < extsymoff
          || sym_hashes[r_symndx - extsymoff] == NULL)
          || sym_hashes[r_symndx - extsymoff] == NULL)
        {
        {
          asection *o;
          asection *o;
 
 
          /* This stub is for a local symbol.  This stub will only be
          /* This stub is for a local symbol.  This stub will only be
             needed if there is some relocation in this BFD, other
             needed if there is some relocation in this BFD, other
             than a 16 bit function call, which refers to this symbol.  */
             than a 16 bit function call, which refers to this symbol.  */
          for (o = abfd->sections; o != NULL; o = o->next)
          for (o = abfd->sections; o != NULL; o = o->next)
            {
            {
              Elf_Internal_Rela *sec_relocs;
              Elf_Internal_Rela *sec_relocs;
              const Elf_Internal_Rela *r, *rend;
              const Elf_Internal_Rela *r, *rend;
 
 
              /* We can ignore stub sections when looking for relocs.  */
              /* We can ignore stub sections when looking for relocs.  */
              if ((o->flags & SEC_RELOC) == 0
              if ((o->flags & SEC_RELOC) == 0
                  || o->reloc_count == 0
                  || o->reloc_count == 0
                  || section_allows_mips16_refs_p (o))
                  || section_allows_mips16_refs_p (o))
                continue;
                continue;
 
 
              sec_relocs
              sec_relocs
                = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
                = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
                                             info->keep_memory);
                                             info->keep_memory);
              if (sec_relocs == NULL)
              if (sec_relocs == NULL)
                return FALSE;
                return FALSE;
 
 
              rend = sec_relocs + o->reloc_count;
              rend = sec_relocs + o->reloc_count;
              for (r = sec_relocs; r < rend; r++)
              for (r = sec_relocs; r < rend; r++)
                if (ELF_R_SYM (abfd, r->r_info) == r_symndx
                if (ELF_R_SYM (abfd, r->r_info) == r_symndx
                    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
                    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
                  break;
                  break;
 
 
              if (elf_section_data (o)->relocs != sec_relocs)
              if (elf_section_data (o)->relocs != sec_relocs)
                free (sec_relocs);
                free (sec_relocs);
 
 
              if (r < rend)
              if (r < rend)
                break;
                break;
            }
            }
 
 
          if (o == NULL)
          if (o == NULL)
            {
            {
              /* There is no non-call reloc for this stub, so we do
              /* There is no non-call reloc for this stub, so we do
                 not need it.  Since this function is called before
                 not need it.  Since this function is called before
                 the linker maps input sections to output sections, we
                 the linker maps input sections to output sections, we
                 can easily discard it by setting the SEC_EXCLUDE
                 can easily discard it by setting the SEC_EXCLUDE
                 flag.  */
                 flag.  */
              sec->flags |= SEC_EXCLUDE;
              sec->flags |= SEC_EXCLUDE;
              return TRUE;
              return TRUE;
            }
            }
 
 
          /* Record this stub in an array of local symbol stubs for
          /* Record this stub in an array of local symbol stubs for
             this BFD.  */
             this BFD.  */
          if (elf_tdata (abfd)->local_stubs == NULL)
          if (elf_tdata (abfd)->local_stubs == NULL)
            {
            {
              unsigned long symcount;
              unsigned long symcount;
              asection **n;
              asection **n;
              bfd_size_type amt;
              bfd_size_type amt;
 
 
              if (elf_bad_symtab (abfd))
              if (elf_bad_symtab (abfd))
                symcount = NUM_SHDR_ENTRIES (symtab_hdr);
                symcount = NUM_SHDR_ENTRIES (symtab_hdr);
              else
              else
                symcount = symtab_hdr->sh_info;
                symcount = symtab_hdr->sh_info;
              amt = symcount * sizeof (asection *);
              amt = symcount * sizeof (asection *);
              n = bfd_zalloc (abfd, amt);
              n = bfd_zalloc (abfd, amt);
              if (n == NULL)
              if (n == NULL)
                return FALSE;
                return FALSE;
              elf_tdata (abfd)->local_stubs = n;
              elf_tdata (abfd)->local_stubs = n;
            }
            }
 
 
          sec->flags |= SEC_KEEP;
          sec->flags |= SEC_KEEP;
          elf_tdata (abfd)->local_stubs[r_symndx] = sec;
          elf_tdata (abfd)->local_stubs[r_symndx] = sec;
 
 
          /* We don't need to set mips16_stubs_seen in this case.
          /* We don't need to set mips16_stubs_seen in this case.
             That flag is used to see whether we need to look through
             That flag is used to see whether we need to look through
             the global symbol table for stubs.  We don't need to set
             the global symbol table for stubs.  We don't need to set
             it here, because we just have a local stub.  */
             it here, because we just have a local stub.  */
        }
        }
      else
      else
        {
        {
          struct mips_elf_link_hash_entry *h;
          struct mips_elf_link_hash_entry *h;
 
 
          h = ((struct mips_elf_link_hash_entry *)
          h = ((struct mips_elf_link_hash_entry *)
               sym_hashes[r_symndx - extsymoff]);
               sym_hashes[r_symndx - extsymoff]);
 
 
          while (h->root.root.type == bfd_link_hash_indirect
          while (h->root.root.type == bfd_link_hash_indirect
                 || h->root.root.type == bfd_link_hash_warning)
                 || h->root.root.type == bfd_link_hash_warning)
            h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
            h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
 
 
          /* H is the symbol this stub is for.  */
          /* H is the symbol this stub is for.  */
 
 
          /* If we already have an appropriate stub for this function, we
          /* If we already have an appropriate stub for this function, we
             don't need another one, so we can discard this one.  Since
             don't need another one, so we can discard this one.  Since
             this function is called before the linker maps input sections
             this function is called before the linker maps input sections
             to output sections, we can easily discard it by setting the
             to output sections, we can easily discard it by setting the
             SEC_EXCLUDE flag.  */
             SEC_EXCLUDE flag.  */
          if (h->fn_stub != NULL)
          if (h->fn_stub != NULL)
            {
            {
              sec->flags |= SEC_EXCLUDE;
              sec->flags |= SEC_EXCLUDE;
              return TRUE;
              return TRUE;
            }
            }
 
 
          sec->flags |= SEC_KEEP;
          sec->flags |= SEC_KEEP;
          h->fn_stub = sec;
          h->fn_stub = sec;
          mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
          mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
        }
        }
    }
    }
  else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
  else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
    {
    {
      unsigned long r_symndx;
      unsigned long r_symndx;
      struct mips_elf_link_hash_entry *h;
      struct mips_elf_link_hash_entry *h;
      asection **loc;
      asection **loc;
 
 
      /* Look at the relocation information to figure out which symbol
      /* Look at the relocation information to figure out which symbol
         this is for.  */
         this is for.  */
 
 
      r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
      r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
      if (r_symndx == 0)
      if (r_symndx == 0)
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: Warning: cannot determine the target function for"
            (_("%B: Warning: cannot determine the target function for"
               " stub section `%s'"),
               " stub section `%s'"),
             abfd, name);
             abfd, name);
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (r_symndx < extsymoff
      if (r_symndx < extsymoff
          || sym_hashes[r_symndx - extsymoff] == NULL)
          || sym_hashes[r_symndx - extsymoff] == NULL)
        {
        {
          asection *o;
          asection *o;
 
 
          /* This stub is for a local symbol.  This stub will only be
          /* This stub is for a local symbol.  This stub will only be
             needed if there is some relocation (R_MIPS16_26) in this BFD
             needed if there is some relocation (R_MIPS16_26) in this BFD
             that refers to this symbol.  */
             that refers to this symbol.  */
          for (o = abfd->sections; o != NULL; o = o->next)
          for (o = abfd->sections; o != NULL; o = o->next)
            {
            {
              Elf_Internal_Rela *sec_relocs;
              Elf_Internal_Rela *sec_relocs;
              const Elf_Internal_Rela *r, *rend;
              const Elf_Internal_Rela *r, *rend;
 
 
              /* We can ignore stub sections when looking for relocs.  */
              /* We can ignore stub sections when looking for relocs.  */
              if ((o->flags & SEC_RELOC) == 0
              if ((o->flags & SEC_RELOC) == 0
                  || o->reloc_count == 0
                  || o->reloc_count == 0
                  || section_allows_mips16_refs_p (o))
                  || section_allows_mips16_refs_p (o))
                continue;
                continue;
 
 
              sec_relocs
              sec_relocs
                = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
                = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
                                             info->keep_memory);
                                             info->keep_memory);
              if (sec_relocs == NULL)
              if (sec_relocs == NULL)
                return FALSE;
                return FALSE;
 
 
              rend = sec_relocs + o->reloc_count;
              rend = sec_relocs + o->reloc_count;
              for (r = sec_relocs; r < rend; r++)
              for (r = sec_relocs; r < rend; r++)
                if (ELF_R_SYM (abfd, r->r_info) == r_symndx
                if (ELF_R_SYM (abfd, r->r_info) == r_symndx
                    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
                    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
                    break;
                    break;
 
 
              if (elf_section_data (o)->relocs != sec_relocs)
              if (elf_section_data (o)->relocs != sec_relocs)
                free (sec_relocs);
                free (sec_relocs);
 
 
              if (r < rend)
              if (r < rend)
                break;
                break;
            }
            }
 
 
          if (o == NULL)
          if (o == NULL)
            {
            {
              /* There is no non-call reloc for this stub, so we do
              /* There is no non-call reloc for this stub, so we do
                 not need it.  Since this function is called before
                 not need it.  Since this function is called before
                 the linker maps input sections to output sections, we
                 the linker maps input sections to output sections, we
                 can easily discard it by setting the SEC_EXCLUDE
                 can easily discard it by setting the SEC_EXCLUDE
                 flag.  */
                 flag.  */
              sec->flags |= SEC_EXCLUDE;
              sec->flags |= SEC_EXCLUDE;
              return TRUE;
              return TRUE;
            }
            }
 
 
          /* Record this stub in an array of local symbol call_stubs for
          /* Record this stub in an array of local symbol call_stubs for
             this BFD.  */
             this BFD.  */
          if (elf_tdata (abfd)->local_call_stubs == NULL)
          if (elf_tdata (abfd)->local_call_stubs == NULL)
            {
            {
              unsigned long symcount;
              unsigned long symcount;
              asection **n;
              asection **n;
              bfd_size_type amt;
              bfd_size_type amt;
 
 
              if (elf_bad_symtab (abfd))
              if (elf_bad_symtab (abfd))
                symcount = NUM_SHDR_ENTRIES (symtab_hdr);
                symcount = NUM_SHDR_ENTRIES (symtab_hdr);
              else
              else
                symcount = symtab_hdr->sh_info;
                symcount = symtab_hdr->sh_info;
              amt = symcount * sizeof (asection *);
              amt = symcount * sizeof (asection *);
              n = bfd_zalloc (abfd, amt);
              n = bfd_zalloc (abfd, amt);
              if (n == NULL)
              if (n == NULL)
                return FALSE;
                return FALSE;
              elf_tdata (abfd)->local_call_stubs = n;
              elf_tdata (abfd)->local_call_stubs = n;
            }
            }
 
 
          sec->flags |= SEC_KEEP;
          sec->flags |= SEC_KEEP;
          elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
          elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
 
 
          /* We don't need to set mips16_stubs_seen in this case.
          /* We don't need to set mips16_stubs_seen in this case.
             That flag is used to see whether we need to look through
             That flag is used to see whether we need to look through
             the global symbol table for stubs.  We don't need to set
             the global symbol table for stubs.  We don't need to set
             it here, because we just have a local stub.  */
             it here, because we just have a local stub.  */
        }
        }
      else
      else
        {
        {
          h = ((struct mips_elf_link_hash_entry *)
          h = ((struct mips_elf_link_hash_entry *)
               sym_hashes[r_symndx - extsymoff]);
               sym_hashes[r_symndx - extsymoff]);
 
 
          /* H is the symbol this stub is for.  */
          /* H is the symbol this stub is for.  */
 
 
          if (CALL_FP_STUB_P (name))
          if (CALL_FP_STUB_P (name))
            loc = &h->call_fp_stub;
            loc = &h->call_fp_stub;
          else
          else
            loc = &h->call_stub;
            loc = &h->call_stub;
 
 
          /* If we already have an appropriate stub for this function, we
          /* If we already have an appropriate stub for this function, we
             don't need another one, so we can discard this one.  Since
             don't need another one, so we can discard this one.  Since
             this function is called before the linker maps input sections
             this function is called before the linker maps input sections
             to output sections, we can easily discard it by setting the
             to output sections, we can easily discard it by setting the
             SEC_EXCLUDE flag.  */
             SEC_EXCLUDE flag.  */
          if (*loc != NULL)
          if (*loc != NULL)
            {
            {
              sec->flags |= SEC_EXCLUDE;
              sec->flags |= SEC_EXCLUDE;
              return TRUE;
              return TRUE;
            }
            }
 
 
          sec->flags |= SEC_KEEP;
          sec->flags |= SEC_KEEP;
          *loc = sec;
          *loc = sec;
          mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
          mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
        }
        }
    }
    }
 
 
  sreloc = NULL;
  sreloc = NULL;
  contents = NULL;
  contents = NULL;
  for (rel = relocs; rel < rel_end; ++rel)
  for (rel = relocs; rel < rel_end; ++rel)
    {
    {
      unsigned long r_symndx;
      unsigned long r_symndx;
      unsigned int r_type;
      unsigned int r_type;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      bfd_boolean can_make_dynamic_p;
      bfd_boolean can_make_dynamic_p;
 
 
      r_symndx = ELF_R_SYM (abfd, rel->r_info);
      r_symndx = ELF_R_SYM (abfd, rel->r_info);
      r_type = ELF_R_TYPE (abfd, rel->r_info);
      r_type = ELF_R_TYPE (abfd, rel->r_info);
 
 
      if (r_symndx < extsymoff)
      if (r_symndx < extsymoff)
        h = NULL;
        h = NULL;
      else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
      else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: Malformed reloc detected for section %s"),
            (_("%B: Malformed reloc detected for section %s"),
             abfd, name);
             abfd, name);
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
      else
      else
        {
        {
          h = sym_hashes[r_symndx - extsymoff];
          h = sym_hashes[r_symndx - extsymoff];
          while (h != NULL
          while (h != NULL
                 && (h->root.type == bfd_link_hash_indirect
                 && (h->root.type == bfd_link_hash_indirect
                     || h->root.type == bfd_link_hash_warning))
                     || h->root.type == bfd_link_hash_warning))
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
        }
        }
 
 
      /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
      /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
         relocation into a dynamic one.  */
         relocation into a dynamic one.  */
      can_make_dynamic_p = FALSE;
      can_make_dynamic_p = FALSE;
      switch (r_type)
      switch (r_type)
        {
        {
        case R_MIPS16_GOT16:
 
        case R_MIPS16_CALL16:
 
        case R_MIPS_GOT16:
        case R_MIPS_GOT16:
        case R_MIPS_CALL16:
        case R_MIPS_CALL16:
        case R_MIPS_CALL_HI16:
        case R_MIPS_CALL_HI16:
        case R_MIPS_CALL_LO16:
        case R_MIPS_CALL_LO16:
        case R_MIPS_GOT_HI16:
        case R_MIPS_GOT_HI16:
        case R_MIPS_GOT_LO16:
        case R_MIPS_GOT_LO16:
        case R_MIPS_GOT_PAGE:
        case R_MIPS_GOT_PAGE:
        case R_MIPS_GOT_OFST:
        case R_MIPS_GOT_OFST:
        case R_MIPS_GOT_DISP:
        case R_MIPS_GOT_DISP:
        case R_MIPS_TLS_GOTTPREL:
        case R_MIPS_TLS_GOTTPREL:
        case R_MIPS_TLS_GD:
        case R_MIPS_TLS_GD:
        case R_MIPS_TLS_LDM:
        case R_MIPS_TLS_LDM:
 
        case R_MIPS16_GOT16:
 
        case R_MIPS16_CALL16:
 
        case R_MIPS16_TLS_GOTTPREL:
 
        case R_MIPS16_TLS_GD:
 
        case R_MIPS16_TLS_LDM:
        case R_MICROMIPS_GOT16:
        case R_MICROMIPS_GOT16:
        case R_MICROMIPS_CALL16:
        case R_MICROMIPS_CALL16:
        case R_MICROMIPS_CALL_HI16:
        case R_MICROMIPS_CALL_HI16:
        case R_MICROMIPS_CALL_LO16:
        case R_MICROMIPS_CALL_LO16:
        case R_MICROMIPS_GOT_HI16:
        case R_MICROMIPS_GOT_HI16:
        case R_MICROMIPS_GOT_LO16:
        case R_MICROMIPS_GOT_LO16:
        case R_MICROMIPS_GOT_PAGE:
        case R_MICROMIPS_GOT_PAGE:
        case R_MICROMIPS_GOT_OFST:
        case R_MICROMIPS_GOT_OFST:
        case R_MICROMIPS_GOT_DISP:
        case R_MICROMIPS_GOT_DISP:
        case R_MICROMIPS_TLS_GOTTPREL:
        case R_MICROMIPS_TLS_GOTTPREL:
        case R_MICROMIPS_TLS_GD:
        case R_MICROMIPS_TLS_GD:
        case R_MICROMIPS_TLS_LDM:
        case R_MICROMIPS_TLS_LDM:
          if (dynobj == NULL)
          if (dynobj == NULL)
            elf_hash_table (info)->dynobj = dynobj = abfd;
            elf_hash_table (info)->dynobj = dynobj = abfd;
          if (!mips_elf_create_got_section (dynobj, info))
          if (!mips_elf_create_got_section (dynobj, info))
            return FALSE;
            return FALSE;
          if (htab->is_vxworks && !info->shared)
          if (htab->is_vxworks && !info->shared)
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: GOT reloc at 0x%lx not expected in executables"),
                (_("%B: GOT reloc at 0x%lx not expected in executables"),
                 abfd, (unsigned long) rel->r_offset);
                 abfd, (unsigned long) rel->r_offset);
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
          break;
          break;
 
 
          /* This is just a hint; it can safely be ignored.  Don't set
          /* This is just a hint; it can safely be ignored.  Don't set
             has_static_relocs for the corresponding symbol.  */
             has_static_relocs for the corresponding symbol.  */
        case R_MIPS_JALR:
        case R_MIPS_JALR:
        case R_MICROMIPS_JALR:
        case R_MICROMIPS_JALR:
          break;
          break;
 
 
        case R_MIPS_32:
        case R_MIPS_32:
        case R_MIPS_REL32:
        case R_MIPS_REL32:
        case R_MIPS_64:
        case R_MIPS_64:
          /* In VxWorks executables, references to external symbols
          /* In VxWorks executables, references to external symbols
             must be handled using copy relocs or PLT entries; it is not
             must be handled using copy relocs or PLT entries; it is not
             possible to convert this relocation into a dynamic one.
             possible to convert this relocation into a dynamic one.
 
 
             For executables that use PLTs and copy-relocs, we have a
             For executables that use PLTs and copy-relocs, we have a
             choice between converting the relocation into a dynamic
             choice between converting the relocation into a dynamic
             one or using copy relocations or PLT entries.  It is
             one or using copy relocations or PLT entries.  It is
             usually better to do the former, unless the relocation is
             usually better to do the former, unless the relocation is
             against a read-only section.  */
             against a read-only section.  */
          if ((info->shared
          if ((info->shared
               || (h != NULL
               || (h != NULL
                   && !htab->is_vxworks
                   && !htab->is_vxworks
                   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
                   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
                   && !(!info->nocopyreloc
                   && !(!info->nocopyreloc
                        && !PIC_OBJECT_P (abfd)
                        && !PIC_OBJECT_P (abfd)
                        && MIPS_ELF_READONLY_SECTION (sec))))
                        && MIPS_ELF_READONLY_SECTION (sec))))
              && (sec->flags & SEC_ALLOC) != 0)
              && (sec->flags & SEC_ALLOC) != 0)
            {
            {
              can_make_dynamic_p = TRUE;
              can_make_dynamic_p = TRUE;
              if (dynobj == NULL)
              if (dynobj == NULL)
                elf_hash_table (info)->dynobj = dynobj = abfd;
                elf_hash_table (info)->dynobj = dynobj = abfd;
              break;
              break;
            }
            }
          /* For sections that are not SEC_ALLOC a copy reloc would be
          /* For sections that are not SEC_ALLOC a copy reloc would be
             output if possible (implying questionable semantics for
             output if possible (implying questionable semantics for
             read-only data objects) or otherwise the final link would
             read-only data objects) or otherwise the final link would
             fail as ld.so will not process them and could not therefore
             fail as ld.so will not process them and could not therefore
             handle any outstanding dynamic relocations.
             handle any outstanding dynamic relocations.
 
 
             For such sections that are also SEC_DEBUGGING, we can avoid
             For such sections that are also SEC_DEBUGGING, we can avoid
             these problems by simply ignoring any relocs as these
             these problems by simply ignoring any relocs as these
             sections have a predefined use and we know it is safe to do
             sections have a predefined use and we know it is safe to do
             so.
             so.
 
 
             This is needed in cases such as a global symbol definition
             This is needed in cases such as a global symbol definition
             in a shared library causing a common symbol from an object
             in a shared library causing a common symbol from an object
             file to be converted to an undefined reference.  If that
             file to be converted to an undefined reference.  If that
             happens, then all the relocations against this symbol from
             happens, then all the relocations against this symbol from
             SEC_DEBUGGING sections in the object file will resolve to
             SEC_DEBUGGING sections in the object file will resolve to
             nil.  */
             nil.  */
          if ((sec->flags & SEC_DEBUGGING) != 0)
          if ((sec->flags & SEC_DEBUGGING) != 0)
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
 
 
        default:
        default:
          /* Most static relocations require pointer equality, except
          /* Most static relocations require pointer equality, except
             for branches.  */
             for branches.  */
          if (h)
          if (h)
            h->pointer_equality_needed = TRUE;
            h->pointer_equality_needed = TRUE;
          /* Fall through.  */
          /* Fall through.  */
 
 
        case R_MIPS_26:
        case R_MIPS_26:
        case R_MIPS_PC16:
        case R_MIPS_PC16:
        case R_MIPS16_26:
        case R_MIPS16_26:
        case R_MICROMIPS_26_S1:
        case R_MICROMIPS_26_S1:
        case R_MICROMIPS_PC7_S1:
        case R_MICROMIPS_PC7_S1:
        case R_MICROMIPS_PC10_S1:
        case R_MICROMIPS_PC10_S1:
        case R_MICROMIPS_PC16_S1:
        case R_MICROMIPS_PC16_S1:
        case R_MICROMIPS_PC23_S2:
        case R_MICROMIPS_PC23_S2:
          if (h)
          if (h)
            ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
            ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
          break;
          break;
        }
        }
 
 
      if (h)
      if (h)
        {
        {
          /* Relocations against the special VxWorks __GOTT_BASE__ and
          /* Relocations against the special VxWorks __GOTT_BASE__ and
             __GOTT_INDEX__ symbols must be left to the loader.  Allocate
             __GOTT_INDEX__ symbols must be left to the loader.  Allocate
             room for them in .rela.dyn.  */
             room for them in .rela.dyn.  */
          if (is_gott_symbol (info, h))
          if (is_gott_symbol (info, h))
            {
            {
              if (sreloc == NULL)
              if (sreloc == NULL)
                {
                {
                  sreloc = mips_elf_rel_dyn_section (info, TRUE);
                  sreloc = mips_elf_rel_dyn_section (info, TRUE);
                  if (sreloc == NULL)
                  if (sreloc == NULL)
                    return FALSE;
                    return FALSE;
                }
                }
              mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
              mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
              if (MIPS_ELF_READONLY_SECTION (sec))
              if (MIPS_ELF_READONLY_SECTION (sec))
                /* We tell the dynamic linker that there are
                /* We tell the dynamic linker that there are
                   relocations against the text segment.  */
                   relocations against the text segment.  */
                info->flags |= DF_TEXTREL;
                info->flags |= DF_TEXTREL;
            }
            }
        }
        }
      else if (call_lo16_reloc_p (r_type)
      else if (call_lo16_reloc_p (r_type)
               || got_lo16_reloc_p (r_type)
               || got_lo16_reloc_p (r_type)
               || got_disp_reloc_p (r_type)
               || got_disp_reloc_p (r_type)
               || (got16_reloc_p (r_type) && htab->is_vxworks))
               || (got16_reloc_p (r_type) && htab->is_vxworks))
        {
        {
          /* We may need a local GOT entry for this relocation.  We
          /* We may need a local GOT entry for this relocation.  We
             don't count R_MIPS_GOT_PAGE because we can estimate the
             don't count R_MIPS_GOT_PAGE because we can estimate the
             maximum number of pages needed by looking at the size of
             maximum number of pages needed by looking at the size of
             the segment.  Similar comments apply to R_MIPS*_GOT16 and
             the segment.  Similar comments apply to R_MIPS*_GOT16 and
             R_MIPS*_CALL16, except on VxWorks, where GOT relocations
             R_MIPS*_CALL16, except on VxWorks, where GOT relocations
             always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
             always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
             R_MIPS_CALL_HI16 because these are always followed by an
             R_MIPS_CALL_HI16 because these are always followed by an
             R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
             R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
          if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
          if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
                                                 rel->r_addend, info, 0))
                                                 rel->r_addend, info, 0))
            return FALSE;
            return FALSE;
        }
        }
 
 
      if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
      if (h != NULL
 
          && mips_elf_relocation_needs_la25_stub (abfd, r_type,
 
                                                  ELF_ST_IS_MIPS16 (h->other)))
        ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
        ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
 
 
      switch (r_type)
      switch (r_type)
        {
        {
        case R_MIPS_CALL16:
        case R_MIPS_CALL16:
        case R_MIPS16_CALL16:
        case R_MIPS16_CALL16:
        case R_MICROMIPS_CALL16:
        case R_MICROMIPS_CALL16:
          if (h == NULL)
          if (h == NULL)
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
                (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
                 abfd, (unsigned long) rel->r_offset);
                 abfd, (unsigned long) rel->r_offset);
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
 
 
        case R_MIPS_CALL_HI16:
        case R_MIPS_CALL_HI16:
        case R_MIPS_CALL_LO16:
        case R_MIPS_CALL_LO16:
        case R_MICROMIPS_CALL_HI16:
        case R_MICROMIPS_CALL_HI16:
        case R_MICROMIPS_CALL_LO16:
        case R_MICROMIPS_CALL_LO16:
          if (h != NULL)
          if (h != NULL)
            {
            {
              /* Make sure there is room in the regular GOT to hold the
              /* Make sure there is room in the regular GOT to hold the
                 function's address.  We may eliminate it in favour of
                 function's address.  We may eliminate it in favour of
                 a .got.plt entry later; see mips_elf_count_got_symbols.  */
                 a .got.plt entry later; see mips_elf_count_got_symbols.  */
              if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
              if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
                return FALSE;
                return FALSE;
 
 
              /* We need a stub, not a plt entry for the undefined
              /* We need a stub, not a plt entry for the undefined
                 function.  But we record it as if it needs plt.  See
                 function.  But we record it as if it needs plt.  See
                 _bfd_elf_adjust_dynamic_symbol.  */
                 _bfd_elf_adjust_dynamic_symbol.  */
              h->needs_plt = 1;
              h->needs_plt = 1;
              h->type = STT_FUNC;
              h->type = STT_FUNC;
            }
            }
          break;
          break;
 
 
        case R_MIPS_GOT_PAGE:
        case R_MIPS_GOT_PAGE:
        case R_MICROMIPS_GOT_PAGE:
        case R_MICROMIPS_GOT_PAGE:
          /* If this is a global, overridable symbol, GOT_PAGE will
          /* If this is a global, overridable symbol, GOT_PAGE will
             decay to GOT_DISP, so we'll need a GOT entry for it.  */
             decay to GOT_DISP, so we'll need a GOT entry for it.  */
          if (h)
          if (h)
            {
            {
              struct mips_elf_link_hash_entry *hmips =
              struct mips_elf_link_hash_entry *hmips =
                (struct mips_elf_link_hash_entry *) h;
                (struct mips_elf_link_hash_entry *) h;
 
 
              /* This symbol is definitely not overridable.  */
              /* This symbol is definitely not overridable.  */
              if (hmips->root.def_regular
              if (hmips->root.def_regular
                  && ! (info->shared && ! info->symbolic
                  && ! (info->shared && ! info->symbolic
                        && ! hmips->root.forced_local))
                        && ! hmips->root.forced_local))
                h = NULL;
                h = NULL;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
 
 
        case R_MIPS16_GOT16:
        case R_MIPS16_GOT16:
        case R_MIPS_GOT16:
        case R_MIPS_GOT16:
        case R_MIPS_GOT_HI16:
        case R_MIPS_GOT_HI16:
        case R_MIPS_GOT_LO16:
        case R_MIPS_GOT_LO16:
        case R_MICROMIPS_GOT16:
        case R_MICROMIPS_GOT16:
        case R_MICROMIPS_GOT_HI16:
        case R_MICROMIPS_GOT_HI16:
        case R_MICROMIPS_GOT_LO16:
        case R_MICROMIPS_GOT_LO16:
          if (!h || got_page_reloc_p (r_type))
          if (!h || got_page_reloc_p (r_type))
            {
            {
              /* This relocation needs (or may need, if h != NULL) a
              /* This relocation needs (or may need, if h != NULL) a
                 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
                 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
                 know for sure until we know whether the symbol is
                 know for sure until we know whether the symbol is
                 preemptible.  */
                 preemptible.  */
              if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
              if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
                {
                {
                  if (!mips_elf_get_section_contents (abfd, sec, &contents))
                  if (!mips_elf_get_section_contents (abfd, sec, &contents))
                    return FALSE;
                    return FALSE;
                  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
                  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
                  addend = mips_elf_read_rel_addend (abfd, rel,
                  addend = mips_elf_read_rel_addend (abfd, rel,
                                                     howto, contents);
                                                     howto, contents);
                  if (got16_reloc_p (r_type))
                  if (got16_reloc_p (r_type))
                    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
                    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
                                                  contents, &addend);
                                                  contents, &addend);
                  else
                  else
                    addend <<= howto->rightshift;
                    addend <<= howto->rightshift;
                }
                }
              else
              else
                addend = rel->r_addend;
                addend = rel->r_addend;
              if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
              if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
                                                   addend))
                                                   addend))
                return FALSE;
                return FALSE;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
 
 
        case R_MIPS_GOT_DISP:
        case R_MIPS_GOT_DISP:
        case R_MICROMIPS_GOT_DISP:
        case R_MICROMIPS_GOT_DISP:
          if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
          if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
                                                       FALSE, 0))
                                                       FALSE, 0))
            return FALSE;
            return FALSE;
          break;
          break;
 
 
        case R_MIPS_TLS_GOTTPREL:
        case R_MIPS_TLS_GOTTPREL:
 
        case R_MIPS16_TLS_GOTTPREL:
        case R_MICROMIPS_TLS_GOTTPREL:
        case R_MICROMIPS_TLS_GOTTPREL:
          if (info->shared)
          if (info->shared)
            info->flags |= DF_STATIC_TLS;
            info->flags |= DF_STATIC_TLS;
          /* Fall through */
          /* Fall through */
 
 
        case R_MIPS_TLS_LDM:
        case R_MIPS_TLS_LDM:
 
        case R_MIPS16_TLS_LDM:
        case R_MICROMIPS_TLS_LDM:
        case R_MICROMIPS_TLS_LDM:
          if (tls_ldm_reloc_p (r_type))
          if (tls_ldm_reloc_p (r_type))
            {
            {
              r_symndx = STN_UNDEF;
              r_symndx = STN_UNDEF;
              h = NULL;
              h = NULL;
            }
            }
          /* Fall through */
          /* Fall through */
 
 
        case R_MIPS_TLS_GD:
        case R_MIPS_TLS_GD:
 
        case R_MIPS16_TLS_GD:
        case R_MICROMIPS_TLS_GD:
        case R_MICROMIPS_TLS_GD:
          /* This symbol requires a global offset table entry, or two
          /* This symbol requires a global offset table entry, or two
             for TLS GD relocations.  */
             for TLS GD relocations.  */
          {
          {
            unsigned char flag;
            unsigned char flag;
 
 
            flag = (tls_gd_reloc_p (r_type)
            flag = (tls_gd_reloc_p (r_type)
                    ? GOT_TLS_GD
                    ? GOT_TLS_GD
                    : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
                    : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
            if (h != NULL)
            if (h != NULL)
              {
              {
                struct mips_elf_link_hash_entry *hmips =
                struct mips_elf_link_hash_entry *hmips =
                  (struct mips_elf_link_hash_entry *) h;
                  (struct mips_elf_link_hash_entry *) h;
                hmips->tls_type |= flag;
                hmips->tls_type |= flag;
 
 
                if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
                if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
                                                             FALSE, flag))
                                                             FALSE, flag))
                  return FALSE;
                  return FALSE;
              }
              }
            else
            else
              {
              {
                BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
                BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
 
 
                if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
                if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
                                                       rel->r_addend,
                                                       rel->r_addend,
                                                       info, flag))
                                                       info, flag))
                  return FALSE;
                  return FALSE;
              }
              }
          }
          }
          break;
          break;
 
 
        case R_MIPS_32:
        case R_MIPS_32:
        case R_MIPS_REL32:
        case R_MIPS_REL32:
        case R_MIPS_64:
        case R_MIPS_64:
          /* In VxWorks executables, references to external symbols
          /* In VxWorks executables, references to external symbols
             are handled using copy relocs or PLT stubs, so there's
             are handled using copy relocs or PLT stubs, so there's
             no need to add a .rela.dyn entry for this relocation.  */
             no need to add a .rela.dyn entry for this relocation.  */
          if (can_make_dynamic_p)
          if (can_make_dynamic_p)
            {
            {
              if (sreloc == NULL)
              if (sreloc == NULL)
                {
                {
                  sreloc = mips_elf_rel_dyn_section (info, TRUE);
                  sreloc = mips_elf_rel_dyn_section (info, TRUE);
                  if (sreloc == NULL)
                  if (sreloc == NULL)
                    return FALSE;
                    return FALSE;
                }
                }
              if (info->shared && h == NULL)
              if (info->shared && h == NULL)
                {
                {
                  /* When creating a shared object, we must copy these
                  /* When creating a shared object, we must copy these
                     reloc types into the output file as R_MIPS_REL32
                     reloc types into the output file as R_MIPS_REL32
                     relocs.  Make room for this reloc in .rel(a).dyn.  */
                     relocs.  Make room for this reloc in .rel(a).dyn.  */
                  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
                  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
                  if (MIPS_ELF_READONLY_SECTION (sec))
                  if (MIPS_ELF_READONLY_SECTION (sec))
                    /* We tell the dynamic linker that there are
                    /* We tell the dynamic linker that there are
                       relocations against the text segment.  */
                       relocations against the text segment.  */
                    info->flags |= DF_TEXTREL;
                    info->flags |= DF_TEXTREL;
                }
                }
              else
              else
                {
                {
                  struct mips_elf_link_hash_entry *hmips;
                  struct mips_elf_link_hash_entry *hmips;
 
 
                  /* For a shared object, we must copy this relocation
                  /* For a shared object, we must copy this relocation
                     unless the symbol turns out to be undefined and
                     unless the symbol turns out to be undefined and
                     weak with non-default visibility, in which case
                     weak with non-default visibility, in which case
                     it will be left as zero.
                     it will be left as zero.
 
 
                     We could elide R_MIPS_REL32 for locally binding symbols
                     We could elide R_MIPS_REL32 for locally binding symbols
                     in shared libraries, but do not yet do so.
                     in shared libraries, but do not yet do so.
 
 
                     For an executable, we only need to copy this
                     For an executable, we only need to copy this
                     reloc if the symbol is defined in a dynamic
                     reloc if the symbol is defined in a dynamic
                     object.  */
                     object.  */
                  hmips = (struct mips_elf_link_hash_entry *) h;
                  hmips = (struct mips_elf_link_hash_entry *) h;
                  ++hmips->possibly_dynamic_relocs;
                  ++hmips->possibly_dynamic_relocs;
                  if (MIPS_ELF_READONLY_SECTION (sec))
                  if (MIPS_ELF_READONLY_SECTION (sec))
                    /* We need it to tell the dynamic linker if there
                    /* We need it to tell the dynamic linker if there
                       are relocations against the text segment.  */
                       are relocations against the text segment.  */
                    hmips->readonly_reloc = TRUE;
                    hmips->readonly_reloc = TRUE;
                }
                }
            }
            }
 
 
          if (SGI_COMPAT (abfd))
          if (SGI_COMPAT (abfd))
            mips_elf_hash_table (info)->compact_rel_size +=
            mips_elf_hash_table (info)->compact_rel_size +=
              sizeof (Elf32_External_crinfo);
              sizeof (Elf32_External_crinfo);
          break;
          break;
 
 
        case R_MIPS_26:
        case R_MIPS_26:
        case R_MIPS_GPREL16:
        case R_MIPS_GPREL16:
        case R_MIPS_LITERAL:
        case R_MIPS_LITERAL:
        case R_MIPS_GPREL32:
        case R_MIPS_GPREL32:
        case R_MICROMIPS_26_S1:
        case R_MICROMIPS_26_S1:
        case R_MICROMIPS_GPREL16:
        case R_MICROMIPS_GPREL16:
        case R_MICROMIPS_LITERAL:
        case R_MICROMIPS_LITERAL:
        case R_MICROMIPS_GPREL7_S2:
        case R_MICROMIPS_GPREL7_S2:
          if (SGI_COMPAT (abfd))
          if (SGI_COMPAT (abfd))
            mips_elf_hash_table (info)->compact_rel_size +=
            mips_elf_hash_table (info)->compact_rel_size +=
              sizeof (Elf32_External_crinfo);
              sizeof (Elf32_External_crinfo);
          break;
          break;
 
 
          /* This relocation describes the C++ object vtable hierarchy.
          /* This relocation describes the C++ object vtable hierarchy.
             Reconstruct it for later use during GC.  */
             Reconstruct it for later use during GC.  */
        case R_MIPS_GNU_VTINHERIT:
        case R_MIPS_GNU_VTINHERIT:
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
            return FALSE;
            return FALSE;
          break;
          break;
 
 
          /* This relocation describes which C++ vtable entries are actually
          /* This relocation describes which C++ vtable entries are actually
             used.  Record for later use during GC.  */
             used.  Record for later use during GC.  */
        case R_MIPS_GNU_VTENTRY:
        case R_MIPS_GNU_VTENTRY:
          BFD_ASSERT (h != NULL);
          BFD_ASSERT (h != NULL);
          if (h != NULL
          if (h != NULL
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
              && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
            return FALSE;
            return FALSE;
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      /* We must not create a stub for a symbol that has relocations
      /* We must not create a stub for a symbol that has relocations
         related to taking the function's address.  This doesn't apply to
         related to taking the function's address.  This doesn't apply to
         VxWorks, where CALL relocs refer to a .got.plt entry instead of
         VxWorks, where CALL relocs refer to a .got.plt entry instead of
         a normal .got entry.  */
         a normal .got entry.  */
      if (!htab->is_vxworks && h != NULL)
      if (!htab->is_vxworks && h != NULL)
        switch (r_type)
        switch (r_type)
          {
          {
          default:
          default:
            ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
            ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
            break;
            break;
          case R_MIPS16_CALL16:
          case R_MIPS16_CALL16:
          case R_MIPS_CALL16:
          case R_MIPS_CALL16:
          case R_MIPS_CALL_HI16:
          case R_MIPS_CALL_HI16:
          case R_MIPS_CALL_LO16:
          case R_MIPS_CALL_LO16:
          case R_MIPS_JALR:
          case R_MIPS_JALR:
          case R_MICROMIPS_CALL16:
          case R_MICROMIPS_CALL16:
          case R_MICROMIPS_CALL_HI16:
          case R_MICROMIPS_CALL_HI16:
          case R_MICROMIPS_CALL_LO16:
          case R_MICROMIPS_CALL_LO16:
          case R_MICROMIPS_JALR:
          case R_MICROMIPS_JALR:
            break;
            break;
          }
          }
 
 
      /* See if this reloc would need to refer to a MIPS16 hard-float stub,
      /* See if this reloc would need to refer to a MIPS16 hard-float stub,
         if there is one.  We only need to handle global symbols here;
         if there is one.  We only need to handle global symbols here;
         we decide whether to keep or delete stubs for local symbols
         we decide whether to keep or delete stubs for local symbols
         when processing the stub's relocations.  */
         when processing the stub's relocations.  */
      if (h != NULL
      if (h != NULL
          && !mips16_call_reloc_p (r_type)
          && !mips16_call_reloc_p (r_type)
          && !section_allows_mips16_refs_p (sec))
          && !section_allows_mips16_refs_p (sec))
        {
        {
          struct mips_elf_link_hash_entry *mh;
          struct mips_elf_link_hash_entry *mh;
 
 
          mh = (struct mips_elf_link_hash_entry *) h;
          mh = (struct mips_elf_link_hash_entry *) h;
          mh->need_fn_stub = TRUE;
          mh->need_fn_stub = TRUE;
        }
        }
 
 
      /* Refuse some position-dependent relocations when creating a
      /* Refuse some position-dependent relocations when creating a
         shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
         shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
         not PIC, but we can create dynamic relocations and the result
         not PIC, but we can create dynamic relocations and the result
         will be fine.  Also do not refuse R_MIPS_LO16, which can be
         will be fine.  Also do not refuse R_MIPS_LO16, which can be
         combined with R_MIPS_GOT16.  */
         combined with R_MIPS_GOT16.  */
      if (info->shared)
      if (info->shared)
        {
        {
          switch (r_type)
          switch (r_type)
            {
            {
            case R_MIPS16_HI16:
            case R_MIPS16_HI16:
            case R_MIPS_HI16:
            case R_MIPS_HI16:
            case R_MIPS_HIGHER:
            case R_MIPS_HIGHER:
            case R_MIPS_HIGHEST:
            case R_MIPS_HIGHEST:
            case R_MICROMIPS_HI16:
            case R_MICROMIPS_HI16:
            case R_MICROMIPS_HIGHER:
            case R_MICROMIPS_HIGHER:
            case R_MICROMIPS_HIGHEST:
            case R_MICROMIPS_HIGHEST:
              /* Don't refuse a high part relocation if it's against
              /* Don't refuse a high part relocation if it's against
                 no symbol (e.g. part of a compound relocation).  */
                 no symbol (e.g. part of a compound relocation).  */
              if (r_symndx == STN_UNDEF)
              if (r_symndx == STN_UNDEF)
                break;
                break;
 
 
              /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
              /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
                 and has a special meaning.  */
                 and has a special meaning.  */
              if (!NEWABI_P (abfd) && h != NULL
              if (!NEWABI_P (abfd) && h != NULL
                  && strcmp (h->root.root.string, "_gp_disp") == 0)
                  && strcmp (h->root.root.string, "_gp_disp") == 0)
                break;
                break;
 
 
              /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
              /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
              if (is_gott_symbol (info, h))
              if (is_gott_symbol (info, h))
                break;
                break;
 
 
              /* FALLTHROUGH */
              /* FALLTHROUGH */
 
 
            case R_MIPS16_26:
            case R_MIPS16_26:
            case R_MIPS_26:
            case R_MIPS_26:
            case R_MICROMIPS_26_S1:
            case R_MICROMIPS_26_S1:
              howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
              howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
                (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
                 abfd, howto->name,
                 abfd, howto->name,
                 (h) ? h->root.root.string : "a local symbol");
                 (h) ? h->root.root.string : "a local symbol");
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return FALSE;
              return FALSE;
            default:
            default:
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}


bfd_boolean
bfd_boolean
_bfd_mips_relax_section (bfd *abfd, asection *sec,
_bfd_mips_relax_section (bfd *abfd, asection *sec,
                         struct bfd_link_info *link_info,
                         struct bfd_link_info *link_info,
                         bfd_boolean *again)
                         bfd_boolean *again)
{
{
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  bfd_byte *contents = NULL;
  bfd_byte *contents = NULL;
  size_t extsymoff;
  size_t extsymoff;
  bfd_boolean changed_contents = FALSE;
  bfd_boolean changed_contents = FALSE;
  bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
  bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
  Elf_Internal_Sym *isymbuf = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
 
 
  /* We are not currently changing any sizes, so only one pass.  */
  /* We are not currently changing any sizes, so only one pass.  */
  *again = FALSE;
  *again = FALSE;
 
 
  if (link_info->relocatable)
  if (link_info->relocatable)
    return TRUE;
    return TRUE;
 
 
  internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
  internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
                                               link_info->keep_memory);
                                               link_info->keep_memory);
  if (internal_relocs == NULL)
  if (internal_relocs == NULL)
    return TRUE;
    return TRUE;
 
 
  irelend = internal_relocs + sec->reloc_count
  irelend = internal_relocs + sec->reloc_count
    * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
    * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
  extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
 
 
  for (irel = internal_relocs; irel < irelend; irel++)
  for (irel = internal_relocs; irel < irelend; irel++)
    {
    {
      bfd_vma symval;
      bfd_vma symval;
      bfd_signed_vma sym_offset;
      bfd_signed_vma sym_offset;
      unsigned int r_type;
      unsigned int r_type;
      unsigned long r_symndx;
      unsigned long r_symndx;
      asection *sym_sec;
      asection *sym_sec;
      unsigned long instruction;
      unsigned long instruction;
 
 
      /* Turn jalr into bgezal, and jr into beq, if they're marked
      /* Turn jalr into bgezal, and jr into beq, if they're marked
         with a JALR relocation, that indicate where they jump to.
         with a JALR relocation, that indicate where they jump to.
         This saves some pipeline bubbles.  */
         This saves some pipeline bubbles.  */
      r_type = ELF_R_TYPE (abfd, irel->r_info);
      r_type = ELF_R_TYPE (abfd, irel->r_info);
      if (r_type != R_MIPS_JALR)
      if (r_type != R_MIPS_JALR)
        continue;
        continue;
 
 
      r_symndx = ELF_R_SYM (abfd, irel->r_info);
      r_symndx = ELF_R_SYM (abfd, irel->r_info);
      /* Compute the address of the jump target.  */
      /* Compute the address of the jump target.  */
      if (r_symndx >= extsymoff)
      if (r_symndx >= extsymoff)
        {
        {
          struct mips_elf_link_hash_entry *h
          struct mips_elf_link_hash_entry *h
            = ((struct mips_elf_link_hash_entry *)
            = ((struct mips_elf_link_hash_entry *)
               elf_sym_hashes (abfd) [r_symndx - extsymoff]);
               elf_sym_hashes (abfd) [r_symndx - extsymoff]);
 
 
          while (h->root.root.type == bfd_link_hash_indirect
          while (h->root.root.type == bfd_link_hash_indirect
                 || h->root.root.type == bfd_link_hash_warning)
                 || h->root.root.type == bfd_link_hash_warning)
            h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
            h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
 
 
          /* If a symbol is undefined, or if it may be overridden,
          /* If a symbol is undefined, or if it may be overridden,
             skip it.  */
             skip it.  */
          if (! ((h->root.root.type == bfd_link_hash_defined
          if (! ((h->root.root.type == bfd_link_hash_defined
                  || h->root.root.type == bfd_link_hash_defweak)
                  || h->root.root.type == bfd_link_hash_defweak)
                 && h->root.root.u.def.section)
                 && h->root.root.u.def.section)
              || (link_info->shared && ! link_info->symbolic
              || (link_info->shared && ! link_info->symbolic
                  && !h->root.forced_local))
                  && !h->root.forced_local))
            continue;
            continue;
 
 
          sym_sec = h->root.root.u.def.section;
          sym_sec = h->root.root.u.def.section;
          if (sym_sec->output_section)
          if (sym_sec->output_section)
            symval = (h->root.root.u.def.value
            symval = (h->root.root.u.def.value
                      + sym_sec->output_section->vma
                      + sym_sec->output_section->vma
                      + sym_sec->output_offset);
                      + sym_sec->output_offset);
          else
          else
            symval = h->root.root.u.def.value;
            symval = h->root.root.u.def.value;
        }
        }
      else
      else
        {
        {
          Elf_Internal_Sym *isym;
          Elf_Internal_Sym *isym;
 
 
          /* Read this BFD's symbols if we haven't done so already.  */
          /* Read this BFD's symbols if we haven't done so already.  */
          if (isymbuf == NULL && symtab_hdr->sh_info != 0)
          if (isymbuf == NULL && symtab_hdr->sh_info != 0)
            {
            {
              isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
              isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
              if (isymbuf == NULL)
              if (isymbuf == NULL)
                isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
                isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
                                                symtab_hdr->sh_info, 0,
                                                symtab_hdr->sh_info, 0,
                                                NULL, NULL, NULL);
                                                NULL, NULL, NULL);
              if (isymbuf == NULL)
              if (isymbuf == NULL)
                goto relax_return;
                goto relax_return;
            }
            }
 
 
          isym = isymbuf + r_symndx;
          isym = isymbuf + r_symndx;
          if (isym->st_shndx == SHN_UNDEF)
          if (isym->st_shndx == SHN_UNDEF)
            continue;
            continue;
          else if (isym->st_shndx == SHN_ABS)
          else if (isym->st_shndx == SHN_ABS)
            sym_sec = bfd_abs_section_ptr;
            sym_sec = bfd_abs_section_ptr;
          else if (isym->st_shndx == SHN_COMMON)
          else if (isym->st_shndx == SHN_COMMON)
            sym_sec = bfd_com_section_ptr;
            sym_sec = bfd_com_section_ptr;
          else
          else
            sym_sec
            sym_sec
              = bfd_section_from_elf_index (abfd, isym->st_shndx);
              = bfd_section_from_elf_index (abfd, isym->st_shndx);
          symval = isym->st_value
          symval = isym->st_value
            + sym_sec->output_section->vma
            + sym_sec->output_section->vma
            + sym_sec->output_offset;
            + sym_sec->output_offset;
        }
        }
 
 
      /* Compute branch offset, from delay slot of the jump to the
      /* Compute branch offset, from delay slot of the jump to the
         branch target.  */
         branch target.  */
      sym_offset = (symval + irel->r_addend)
      sym_offset = (symval + irel->r_addend)
        - (sec_start + irel->r_offset + 4);
        - (sec_start + irel->r_offset + 4);
 
 
      /* Branch offset must be properly aligned.  */
      /* Branch offset must be properly aligned.  */
      if ((sym_offset & 3) != 0)
      if ((sym_offset & 3) != 0)
        continue;
        continue;
 
 
      sym_offset >>= 2;
      sym_offset >>= 2;
 
 
      /* Check that it's in range.  */
      /* Check that it's in range.  */
      if (sym_offset < -0x8000 || sym_offset >= 0x8000)
      if (sym_offset < -0x8000 || sym_offset >= 0x8000)
        continue;
        continue;
 
 
      /* Get the section contents if we haven't done so already.  */
      /* Get the section contents if we haven't done so already.  */
      if (!mips_elf_get_section_contents (abfd, sec, &contents))
      if (!mips_elf_get_section_contents (abfd, sec, &contents))
        goto relax_return;
        goto relax_return;
 
 
      instruction = bfd_get_32 (abfd, contents + irel->r_offset);
      instruction = bfd_get_32 (abfd, contents + irel->r_offset);
 
 
      /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
      /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
      if ((instruction & 0xfc1fffff) == 0x0000f809)
      if ((instruction & 0xfc1fffff) == 0x0000f809)
        instruction = 0x04110000;
        instruction = 0x04110000;
      /* If it was jr <reg>, turn it into b <target>.  */
      /* If it was jr <reg>, turn it into b <target>.  */
      else if ((instruction & 0xfc1fffff) == 0x00000008)
      else if ((instruction & 0xfc1fffff) == 0x00000008)
        instruction = 0x10000000;
        instruction = 0x10000000;
      else
      else
        continue;
        continue;
 
 
      instruction |= (sym_offset & 0xffff);
      instruction |= (sym_offset & 0xffff);
      bfd_put_32 (abfd, instruction, contents + irel->r_offset);
      bfd_put_32 (abfd, instruction, contents + irel->r_offset);
      changed_contents = TRUE;
      changed_contents = TRUE;
    }
    }
 
 
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    {
    {
      if (!changed_contents && !link_info->keep_memory)
      if (!changed_contents && !link_info->keep_memory)
        free (contents);
        free (contents);
      else
      else
        {
        {
          /* Cache the section contents for elf_link_input_bfd.  */
          /* Cache the section contents for elf_link_input_bfd.  */
          elf_section_data (sec)->this_hdr.contents = contents;
          elf_section_data (sec)->this_hdr.contents = contents;
        }
        }
    }
    }
  return TRUE;
  return TRUE;
 
 
 relax_return:
 relax_return:
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    free (contents);
    free (contents);
  return FALSE;
  return FALSE;
}
}


/* Allocate space for global sym dynamic relocs.  */
/* Allocate space for global sym dynamic relocs.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
{
{
  struct bfd_link_info *info = inf;
  struct bfd_link_info *info = inf;
  bfd *dynobj;
  bfd *dynobj;
  struct mips_elf_link_hash_entry *hmips;
  struct mips_elf_link_hash_entry *hmips;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  hmips = (struct mips_elf_link_hash_entry *) h;
  hmips = (struct mips_elf_link_hash_entry *) h;
 
 
  /* VxWorks executables are handled elsewhere; we only need to
  /* VxWorks executables are handled elsewhere; we only need to
     allocate relocations in shared objects.  */
     allocate relocations in shared objects.  */
  if (htab->is_vxworks && !info->shared)
  if (htab->is_vxworks && !info->shared)
    return TRUE;
    return TRUE;
 
 
  /* Ignore indirect symbols.  All relocations against such symbols
  /* Ignore indirect symbols.  All relocations against such symbols
     will be redirected to the target symbol.  */
     will be redirected to the target symbol.  */
  if (h->root.type == bfd_link_hash_indirect)
  if (h->root.type == bfd_link_hash_indirect)
    return TRUE;
    return TRUE;
 
 
  /* If this symbol is defined in a dynamic object, or we are creating
  /* If this symbol is defined in a dynamic object, or we are creating
     a shared library, we will need to copy any R_MIPS_32 or
     a shared library, we will need to copy any R_MIPS_32 or
     R_MIPS_REL32 relocs against it into the output file.  */
     R_MIPS_REL32 relocs against it into the output file.  */
  if (! info->relocatable
  if (! info->relocatable
      && hmips->possibly_dynamic_relocs != 0
      && hmips->possibly_dynamic_relocs != 0
      && (h->root.type == bfd_link_hash_defweak
      && (h->root.type == bfd_link_hash_defweak
          || !h->def_regular
          || !h->def_regular
          || info->shared))
          || info->shared))
    {
    {
      bfd_boolean do_copy = TRUE;
      bfd_boolean do_copy = TRUE;
 
 
      if (h->root.type == bfd_link_hash_undefweak)
      if (h->root.type == bfd_link_hash_undefweak)
        {
        {
          /* Do not copy relocations for undefined weak symbols with
          /* Do not copy relocations for undefined weak symbols with
             non-default visibility.  */
             non-default visibility.  */
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
          if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
            do_copy = FALSE;
            do_copy = FALSE;
 
 
          /* Make sure undefined weak symbols are output as a dynamic
          /* Make sure undefined weak symbols are output as a dynamic
             symbol in PIEs.  */
             symbol in PIEs.  */
          else if (h->dynindx == -1 && !h->forced_local)
          else if (h->dynindx == -1 && !h->forced_local)
            {
            {
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
              if (! bfd_elf_link_record_dynamic_symbol (info, h))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
 
 
      if (do_copy)
      if (do_copy)
        {
        {
          /* Even though we don't directly need a GOT entry for this symbol,
          /* Even though we don't directly need a GOT entry for this symbol,
             the SVR4 psABI requires it to have a dynamic symbol table
             the SVR4 psABI requires it to have a dynamic symbol table
             index greater that DT_MIPS_GOTSYM if there are dynamic
             index greater that DT_MIPS_GOTSYM if there are dynamic
             relocations against it.
             relocations against it.
 
 
             VxWorks does not enforce the same mapping between the GOT
             VxWorks does not enforce the same mapping between the GOT
             and the symbol table, so the same requirement does not
             and the symbol table, so the same requirement does not
             apply there.  */
             apply there.  */
          if (!htab->is_vxworks)
          if (!htab->is_vxworks)
            {
            {
              if (hmips->global_got_area > GGA_RELOC_ONLY)
              if (hmips->global_got_area > GGA_RELOC_ONLY)
                hmips->global_got_area = GGA_RELOC_ONLY;
                hmips->global_got_area = GGA_RELOC_ONLY;
              hmips->got_only_for_calls = FALSE;
              hmips->got_only_for_calls = FALSE;
            }
            }
 
 
          mips_elf_allocate_dynamic_relocations
          mips_elf_allocate_dynamic_relocations
            (dynobj, info, hmips->possibly_dynamic_relocs);
            (dynobj, info, hmips->possibly_dynamic_relocs);
          if (hmips->readonly_reloc)
          if (hmips->readonly_reloc)
            /* We tell the dynamic linker that there are relocations
            /* We tell the dynamic linker that there are relocations
               against the text segment.  */
               against the text segment.  */
            info->flags |= DF_TEXTREL;
            info->flags |= DF_TEXTREL;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  The current definition is in some section of the
   regular object.  The current definition is in some section of the
   dynamic object, but we're not including those sections.  We have to
   dynamic object, but we're not including those sections.  We have to
   change the definition to something the rest of the link can
   change the definition to something the rest of the link can
   understand.  */
   understand.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
                                     struct elf_link_hash_entry *h)
                                     struct elf_link_hash_entry *h)
{
{
  bfd *dynobj;
  bfd *dynobj;
  struct mips_elf_link_hash_entry *hmips;
  struct mips_elf_link_hash_entry *hmips;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  hmips = (struct mips_elf_link_hash_entry *) h;
  hmips = (struct mips_elf_link_hash_entry *) h;
 
 
  /* Make sure we know what is going on here.  */
  /* Make sure we know what is going on here.  */
  BFD_ASSERT (dynobj != NULL
  BFD_ASSERT (dynobj != NULL
              && (h->needs_plt
              && (h->needs_plt
                  || h->u.weakdef != NULL
                  || h->u.weakdef != NULL
                  || (h->def_dynamic
                  || (h->def_dynamic
                      && h->ref_regular
                      && h->ref_regular
                      && !h->def_regular)));
                      && !h->def_regular)));
 
 
  hmips = (struct mips_elf_link_hash_entry *) h;
  hmips = (struct mips_elf_link_hash_entry *) h;
 
 
  /* If there are call relocations against an externally-defined symbol,
  /* If there are call relocations against an externally-defined symbol,
     see whether we can create a MIPS lazy-binding stub for it.  We can
     see whether we can create a MIPS lazy-binding stub for it.  We can
     only do this if all references to the function are through call
     only do this if all references to the function are through call
     relocations, and in that case, the traditional lazy-binding stubs
     relocations, and in that case, the traditional lazy-binding stubs
     are much more efficient than PLT entries.
     are much more efficient than PLT entries.
 
 
     Traditional stubs are only available on SVR4 psABI-based systems;
     Traditional stubs are only available on SVR4 psABI-based systems;
     VxWorks always uses PLTs instead.  */
     VxWorks always uses PLTs instead.  */
  if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
  if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
    {
    {
      if (! elf_hash_table (info)->dynamic_sections_created)
      if (! elf_hash_table (info)->dynamic_sections_created)
        return TRUE;
        return TRUE;
 
 
      /* If this symbol is not defined in a regular file, then set
      /* If this symbol is not defined in a regular file, then set
         the symbol to the stub location.  This is required to make
         the symbol to the stub location.  This is required to make
         function pointers compare as equal between the normal
         function pointers compare as equal between the normal
         executable and the shared library.  */
         executable and the shared library.  */
      if (!h->def_regular)
      if (!h->def_regular)
        {
        {
          hmips->needs_lazy_stub = TRUE;
          hmips->needs_lazy_stub = TRUE;
          htab->lazy_stub_count++;
          htab->lazy_stub_count++;
          return TRUE;
          return TRUE;
        }
        }
    }
    }
  /* As above, VxWorks requires PLT entries for externally-defined
  /* As above, VxWorks requires PLT entries for externally-defined
     functions that are only accessed through call relocations.
     functions that are only accessed through call relocations.
 
 
     Both VxWorks and non-VxWorks targets also need PLT entries if there
     Both VxWorks and non-VxWorks targets also need PLT entries if there
     are static-only relocations against an externally-defined function.
     are static-only relocations against an externally-defined function.
     This can technically occur for shared libraries if there are
     This can technically occur for shared libraries if there are
     branches to the symbol, although it is unlikely that this will be
     branches to the symbol, although it is unlikely that this will be
     used in practice due to the short ranges involved.  It can occur
     used in practice due to the short ranges involved.  It can occur
     for any relative or absolute relocation in executables; in that
     for any relative or absolute relocation in executables; in that
     case, the PLT entry becomes the function's canonical address.  */
     case, the PLT entry becomes the function's canonical address.  */
  else if (((h->needs_plt && !hmips->no_fn_stub)
  else if (((h->needs_plt && !hmips->no_fn_stub)
            || (h->type == STT_FUNC && hmips->has_static_relocs))
            || (h->type == STT_FUNC && hmips->has_static_relocs))
           && htab->use_plts_and_copy_relocs
           && htab->use_plts_and_copy_relocs
           && !SYMBOL_CALLS_LOCAL (info, h)
           && !SYMBOL_CALLS_LOCAL (info, h)
           && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
           && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
                && h->root.type == bfd_link_hash_undefweak))
                && h->root.type == bfd_link_hash_undefweak))
    {
    {
      /* If this is the first symbol to need a PLT entry, allocate room
      /* If this is the first symbol to need a PLT entry, allocate room
         for the header.  */
         for the header.  */
      if (htab->splt->size == 0)
      if (htab->splt->size == 0)
        {
        {
          BFD_ASSERT (htab->sgotplt->size == 0);
          BFD_ASSERT (htab->sgotplt->size == 0);
 
 
          /* If we're using the PLT additions to the psABI, each PLT
          /* If we're using the PLT additions to the psABI, each PLT
             entry is 16 bytes and the PLT0 entry is 32 bytes.
             entry is 16 bytes and the PLT0 entry is 32 bytes.
             Encourage better cache usage by aligning.  We do this
             Encourage better cache usage by aligning.  We do this
             lazily to avoid pessimizing traditional objects.  */
             lazily to avoid pessimizing traditional objects.  */
          if (!htab->is_vxworks
          if (!htab->is_vxworks
              && !bfd_set_section_alignment (dynobj, htab->splt, 5))
              && !bfd_set_section_alignment (dynobj, htab->splt, 5))
            return FALSE;
            return FALSE;
 
 
          /* Make sure that .got.plt is word-aligned.  We do this lazily
          /* Make sure that .got.plt is word-aligned.  We do this lazily
             for the same reason as above.  */
             for the same reason as above.  */
          if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
          if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
                                          MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
                                          MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
            return FALSE;
            return FALSE;
 
 
          htab->splt->size += htab->plt_header_size;
          htab->splt->size += htab->plt_header_size;
 
 
          /* On non-VxWorks targets, the first two entries in .got.plt
          /* On non-VxWorks targets, the first two entries in .got.plt
             are reserved.  */
             are reserved.  */
          if (!htab->is_vxworks)
          if (!htab->is_vxworks)
            htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
            htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
 
 
          /* On VxWorks, also allocate room for the header's
          /* On VxWorks, also allocate room for the header's
             .rela.plt.unloaded entries.  */
             .rela.plt.unloaded entries.  */
          if (htab->is_vxworks && !info->shared)
          if (htab->is_vxworks && !info->shared)
            htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
            htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
        }
        }
 
 
      /* Assign the next .plt entry to this symbol.  */
      /* Assign the next .plt entry to this symbol.  */
      h->plt.offset = htab->splt->size;
      h->plt.offset = htab->splt->size;
      htab->splt->size += htab->plt_entry_size;
      htab->splt->size += htab->plt_entry_size;
 
 
      /* If the output file has no definition of the symbol, set the
      /* If the output file has no definition of the symbol, set the
         symbol's value to the address of the stub.  */
         symbol's value to the address of the stub.  */
      if (!info->shared && !h->def_regular)
      if (!info->shared && !h->def_regular)
        {
        {
          h->root.u.def.section = htab->splt;
          h->root.u.def.section = htab->splt;
          h->root.u.def.value = h->plt.offset;
          h->root.u.def.value = h->plt.offset;
          /* For VxWorks, point at the PLT load stub rather than the
          /* For VxWorks, point at the PLT load stub rather than the
             lazy resolution stub; this stub will become the canonical
             lazy resolution stub; this stub will become the canonical
             function address.  */
             function address.  */
          if (htab->is_vxworks)
          if (htab->is_vxworks)
            h->root.u.def.value += 8;
            h->root.u.def.value += 8;
        }
        }
 
 
      /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
      /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
         relocation.  */
         relocation.  */
      htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
      htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
      htab->srelplt->size += (htab->is_vxworks
      htab->srelplt->size += (htab->is_vxworks
                              ? MIPS_ELF_RELA_SIZE (dynobj)
                              ? MIPS_ELF_RELA_SIZE (dynobj)
                              : MIPS_ELF_REL_SIZE (dynobj));
                              : MIPS_ELF_REL_SIZE (dynobj));
 
 
      /* Make room for the .rela.plt.unloaded relocations.  */
      /* Make room for the .rela.plt.unloaded relocations.  */
      if (htab->is_vxworks && !info->shared)
      if (htab->is_vxworks && !info->shared)
        htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
        htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
 
 
      /* All relocations against this symbol that could have been made
      /* All relocations against this symbol that could have been made
         dynamic will now refer to the PLT entry instead.  */
         dynamic will now refer to the PLT entry instead.  */
      hmips->possibly_dynamic_relocs = 0;
      hmips->possibly_dynamic_relocs = 0;
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* If this is a weak symbol, and there is a real definition, the
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
     real definition first, and we can just use the same value.  */
  if (h->u.weakdef != NULL)
  if (h->u.weakdef != NULL)
    {
    {
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Otherwise, there is nothing further to do for symbols defined
  /* Otherwise, there is nothing further to do for symbols defined
     in regular objects.  */
     in regular objects.  */
  if (h->def_regular)
  if (h->def_regular)
    return TRUE;
    return TRUE;
 
 
  /* There's also nothing more to do if we'll convert all relocations
  /* There's also nothing more to do if we'll convert all relocations
     against this symbol into dynamic relocations.  */
     against this symbol into dynamic relocations.  */
  if (!hmips->has_static_relocs)
  if (!hmips->has_static_relocs)
    return TRUE;
    return TRUE;
 
 
  /* We're now relying on copy relocations.  Complain if we have
  /* We're now relying on copy relocations.  Complain if we have
     some that we can't convert.  */
     some that we can't convert.  */
  if (!htab->use_plts_and_copy_relocs || info->shared)
  if (!htab->use_plts_and_copy_relocs || info->shared)
    {
    {
      (*_bfd_error_handler) (_("non-dynamic relocations refer to "
      (*_bfd_error_handler) (_("non-dynamic relocations refer to "
                               "dynamic symbol %s"),
                               "dynamic symbol %s"),
                             h->root.root.string);
                             h->root.root.string);
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
      return FALSE;
    }
    }
 
 
  /* We must allocate the symbol in our .dynbss section, which will
  /* We must allocate the symbol in our .dynbss section, which will
     become part of the .bss section of the executable.  There will be
     become part of the .bss section of the executable.  There will be
     an entry for this symbol in the .dynsym section.  The dynamic
     an entry for this symbol in the .dynsym section.  The dynamic
     object will contain position independent code, so all references
     object will contain position independent code, so all references
     from the dynamic object to this symbol will go through the global
     from the dynamic object to this symbol will go through the global
     offset table.  The dynamic linker will use the .dynsym entry to
     offset table.  The dynamic linker will use the .dynsym entry to
     determine the address it must put in the global offset table, so
     determine the address it must put in the global offset table, so
     both the dynamic object and the regular object will refer to the
     both the dynamic object and the regular object will refer to the
     same memory location for the variable.  */
     same memory location for the variable.  */
 
 
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
    {
    {
      if (htab->is_vxworks)
      if (htab->is_vxworks)
        htab->srelbss->size += sizeof (Elf32_External_Rela);
        htab->srelbss->size += sizeof (Elf32_External_Rela);
      else
      else
        mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
        mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
      h->needs_copy = 1;
      h->needs_copy = 1;
    }
    }
 
 
  /* All relocations against this symbol that could have been made
  /* All relocations against this symbol that could have been made
     dynamic will now refer to the local copy instead.  */
     dynamic will now refer to the local copy instead.  */
  hmips->possibly_dynamic_relocs = 0;
  hmips->possibly_dynamic_relocs = 0;
 
 
  return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
  return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
}
}


/* This function is called after all the input files have been read,
/* This function is called after all the input files have been read,
   and the input sections have been assigned to output sections.  We
   and the input sections have been assigned to output sections.  We
   check for any mips16 stub sections that we can discard.  */
   check for any mips16 stub sections that we can discard.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_always_size_sections (bfd *output_bfd,
_bfd_mips_elf_always_size_sections (bfd *output_bfd,
                                    struct bfd_link_info *info)
                                    struct bfd_link_info *info)
{
{
  asection *ri;
  asection *ri;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_htab_traverse_info hti;
  struct mips_htab_traverse_info hti;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  /* The .reginfo section has a fixed size.  */
  /* The .reginfo section has a fixed size.  */
  ri = bfd_get_section_by_name (output_bfd, ".reginfo");
  ri = bfd_get_section_by_name (output_bfd, ".reginfo");
  if (ri != NULL)
  if (ri != NULL)
    bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
    bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
 
 
  hti.info = info;
  hti.info = info;
  hti.output_bfd = output_bfd;
  hti.output_bfd = output_bfd;
  hti.error = FALSE;
  hti.error = FALSE;
  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
                               mips_elf_check_symbols, &hti);
                               mips_elf_check_symbols, &hti);
  if (hti.error)
  if (hti.error)
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* If the link uses a GOT, lay it out and work out its size.  */
/* If the link uses a GOT, lay it out and work out its size.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *s;
  asection *s;
  struct mips_got_info *g;
  struct mips_got_info *g;
  bfd_size_type loadable_size = 0;
  bfd_size_type loadable_size = 0;
  bfd_size_type page_gotno;
  bfd_size_type page_gotno;
  bfd *sub;
  bfd *sub;
  struct mips_elf_count_tls_arg count_tls_arg;
  struct mips_elf_count_tls_arg count_tls_arg;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  s = htab->sgot;
  s = htab->sgot;
  if (s == NULL)
  if (s == NULL)
    return TRUE;
    return TRUE;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  g = htab->got_info;
  g = htab->got_info;
 
 
  /* Allocate room for the reserved entries.  VxWorks always reserves
  /* Allocate room for the reserved entries.  VxWorks always reserves
     3 entries; other objects only reserve 2 entries.  */
     3 entries; other objects only reserve 2 entries.  */
  BFD_ASSERT (g->assigned_gotno == 0);
  BFD_ASSERT (g->assigned_gotno == 0);
  if (htab->is_vxworks)
  if (htab->is_vxworks)
    htab->reserved_gotno = 3;
    htab->reserved_gotno = 3;
  else
  else
    htab->reserved_gotno = 2;
    htab->reserved_gotno = 2;
  g->local_gotno += htab->reserved_gotno;
  g->local_gotno += htab->reserved_gotno;
  g->assigned_gotno = htab->reserved_gotno;
  g->assigned_gotno = htab->reserved_gotno;
 
 
  /* Replace entries for indirect and warning symbols with entries for
  /* Replace entries for indirect and warning symbols with entries for
     the target symbol.  */
     the target symbol.  */
  if (!mips_elf_resolve_final_got_entries (g))
  if (!mips_elf_resolve_final_got_entries (g))
    return FALSE;
    return FALSE;
 
 
  /* Count the number of GOT symbols.  */
  /* Count the number of GOT symbols.  */
  mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
  mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
 
 
  /* Calculate the total loadable size of the output.  That
  /* Calculate the total loadable size of the output.  That
     will give us the maximum number of GOT_PAGE entries
     will give us the maximum number of GOT_PAGE entries
     required.  */
     required.  */
  for (sub = info->input_bfds; sub; sub = sub->link_next)
  for (sub = info->input_bfds; sub; sub = sub->link_next)
    {
    {
      asection *subsection;
      asection *subsection;
 
 
      for (subsection = sub->sections;
      for (subsection = sub->sections;
           subsection;
           subsection;
           subsection = subsection->next)
           subsection = subsection->next)
        {
        {
          if ((subsection->flags & SEC_ALLOC) == 0)
          if ((subsection->flags & SEC_ALLOC) == 0)
            continue;
            continue;
          loadable_size += ((subsection->size + 0xf)
          loadable_size += ((subsection->size + 0xf)
                            &~ (bfd_size_type) 0xf);
                            &~ (bfd_size_type) 0xf);
        }
        }
    }
    }
 
 
  if (htab->is_vxworks)
  if (htab->is_vxworks)
    /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
    /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
       relocations against local symbols evaluate to "G", and the EABI does
       relocations against local symbols evaluate to "G", and the EABI does
       not include R_MIPS_GOT_PAGE.  */
       not include R_MIPS_GOT_PAGE.  */
    page_gotno = 0;
    page_gotno = 0;
  else
  else
    /* Assume there are two loadable segments consisting of contiguous
    /* Assume there are two loadable segments consisting of contiguous
       sections.  Is 5 enough?  */
       sections.  Is 5 enough?  */
    page_gotno = (loadable_size >> 16) + 5;
    page_gotno = (loadable_size >> 16) + 5;
 
 
  /* Choose the smaller of the two estimates; both are intended to be
  /* Choose the smaller of the two estimates; both are intended to be
     conservative.  */
     conservative.  */
  if (page_gotno > g->page_gotno)
  if (page_gotno > g->page_gotno)
    page_gotno = g->page_gotno;
    page_gotno = g->page_gotno;
 
 
  g->local_gotno += page_gotno;
  g->local_gotno += page_gotno;
  s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
  s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
  s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
  s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
 
 
  /* We need to calculate tls_gotno for global symbols at this point
  /* We need to calculate tls_gotno for global symbols at this point
     instead of building it up earlier, to avoid doublecounting
     instead of building it up earlier, to avoid doublecounting
     entries for one global symbol from multiple input files.  */
     entries for one global symbol from multiple input files.  */
  count_tls_arg.info = info;
  count_tls_arg.info = info;
  count_tls_arg.needed = 0;
  count_tls_arg.needed = 0;
  elf_link_hash_traverse (elf_hash_table (info),
  elf_link_hash_traverse (elf_hash_table (info),
                          mips_elf_count_global_tls_entries,
                          mips_elf_count_global_tls_entries,
                          &count_tls_arg);
                          &count_tls_arg);
  g->tls_gotno += count_tls_arg.needed;
  g->tls_gotno += count_tls_arg.needed;
  s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
  s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
 
 
  /* VxWorks does not support multiple GOTs.  It initializes $gp to
  /* VxWorks does not support multiple GOTs.  It initializes $gp to
     __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
     __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
     dynamic loader.  */
     dynamic loader.  */
  if (htab->is_vxworks)
  if (htab->is_vxworks)
    {
    {
      /* VxWorks executables do not need a GOT.  */
      /* VxWorks executables do not need a GOT.  */
      if (info->shared)
      if (info->shared)
        {
        {
          /* Each VxWorks GOT entry needs an explicit relocation.  */
          /* Each VxWorks GOT entry needs an explicit relocation.  */
          unsigned int count;
          unsigned int count;
 
 
          count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
          count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
          if (count)
          if (count)
            mips_elf_allocate_dynamic_relocations (dynobj, info, count);
            mips_elf_allocate_dynamic_relocations (dynobj, info, count);
        }
        }
    }
    }
  else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
  else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
    {
    {
      if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
      if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
        return FALSE;
        return FALSE;
    }
    }
  else
  else
    {
    {
      struct mips_elf_count_tls_arg arg;
      struct mips_elf_count_tls_arg arg;
 
 
      /* Set up TLS entries.  */
      /* Set up TLS entries.  */
      g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
      g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
      htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
      htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
 
 
      /* Allocate room for the TLS relocations.  */
      /* Allocate room for the TLS relocations.  */
      arg.info = info;
      arg.info = info;
      arg.needed = 0;
      arg.needed = 0;
      htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
      htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
      elf_link_hash_traverse (elf_hash_table (info),
      elf_link_hash_traverse (elf_hash_table (info),
                              mips_elf_count_global_tls_relocs,
                              mips_elf_count_global_tls_relocs,
                              &arg);
                              &arg);
      if (arg.needed)
      if (arg.needed)
        mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
        mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Estimate the size of the .MIPS.stubs section.  */
/* Estimate the size of the .MIPS.stubs section.  */
 
 
static void
static void
mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  bfd_size_type dynsymcount;
  bfd_size_type dynsymcount;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  if (htab->lazy_stub_count == 0)
  if (htab->lazy_stub_count == 0)
    return;
    return;
 
 
  /* IRIX rld assumes that a function stub isn't at the end of the .text
  /* IRIX rld assumes that a function stub isn't at the end of the .text
     section, so add a dummy entry to the end.  */
     section, so add a dummy entry to the end.  */
  htab->lazy_stub_count++;
  htab->lazy_stub_count++;
 
 
  /* Get a worst-case estimate of the number of dynamic symbols needed.
  /* Get a worst-case estimate of the number of dynamic symbols needed.
     At this point, dynsymcount does not account for section symbols
     At this point, dynsymcount does not account for section symbols
     and count_section_dynsyms may overestimate the number that will
     and count_section_dynsyms may overestimate the number that will
     be needed.  */
     be needed.  */
  dynsymcount = (elf_hash_table (info)->dynsymcount
  dynsymcount = (elf_hash_table (info)->dynsymcount
                 + count_section_dynsyms (output_bfd, info));
                 + count_section_dynsyms (output_bfd, info));
 
 
  /* Determine the size of one stub entry.  */
  /* Determine the size of one stub entry.  */
  htab->function_stub_size = (dynsymcount > 0x10000
  htab->function_stub_size = (dynsymcount > 0x10000
                              ? MIPS_FUNCTION_STUB_BIG_SIZE
                              ? MIPS_FUNCTION_STUB_BIG_SIZE
                              : MIPS_FUNCTION_STUB_NORMAL_SIZE);
                              : MIPS_FUNCTION_STUB_NORMAL_SIZE);
 
 
  htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
  htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
}
}
 
 
/* A mips_elf_link_hash_traverse callback for which DATA points to the
/* A mips_elf_link_hash_traverse callback for which DATA points to the
   MIPS hash table.  If H needs a traditional MIPS lazy-binding stub,
   MIPS hash table.  If H needs a traditional MIPS lazy-binding stub,
   allocate an entry in the stubs section.  */
   allocate an entry in the stubs section.  */
 
 
static bfd_boolean
static bfd_boolean
mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = (struct mips_elf_link_hash_table *) data;
  htab = (struct mips_elf_link_hash_table *) data;
  if (h->needs_lazy_stub)
  if (h->needs_lazy_stub)
    {
    {
      h->root.root.u.def.section = htab->sstubs;
      h->root.root.u.def.section = htab->sstubs;
      h->root.root.u.def.value = htab->sstubs->size;
      h->root.root.u.def.value = htab->sstubs->size;
      h->root.plt.offset = htab->sstubs->size;
      h->root.plt.offset = htab->sstubs->size;
      htab->sstubs->size += htab->function_stub_size;
      htab->sstubs->size += htab->function_stub_size;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate offsets in the stubs section to each symbol that needs one.
/* Allocate offsets in the stubs section to each symbol that needs one.
   Set the final size of the .MIPS.stub section.  */
   Set the final size of the .MIPS.stub section.  */
 
 
static void
static void
mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  if (htab->lazy_stub_count == 0)
  if (htab->lazy_stub_count == 0)
    return;
    return;
 
 
  htab->sstubs->size = 0;
  htab->sstubs->size = 0;
  mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
  mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
  htab->sstubs->size += htab->function_stub_size;
  htab->sstubs->size += htab->function_stub_size;
  BFD_ASSERT (htab->sstubs->size
  BFD_ASSERT (htab->sstubs->size
              == htab->lazy_stub_count * htab->function_stub_size);
              == htab->lazy_stub_count * htab->function_stub_size);
}
}
 
 
/* Set the sizes of the dynamic sections.  */
/* Set the sizes of the dynamic sections.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
                                     struct bfd_link_info *info)
                                     struct bfd_link_info *info)
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *s, *sreldyn;
  asection *s, *sreldyn;
  bfd_boolean reltext;
  bfd_boolean reltext;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  BFD_ASSERT (dynobj != NULL);
  BFD_ASSERT (dynobj != NULL);
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Set the contents of the .interp section to the interpreter.  */
      /* Set the contents of the .interp section to the interpreter.  */
      if (info->executable)
      if (info->executable)
        {
        {
          s = bfd_get_section_by_name (dynobj, ".interp");
          s = bfd_get_section_by_name (dynobj, ".interp");
          BFD_ASSERT (s != NULL);
          BFD_ASSERT (s != NULL);
          s->size
          s->size
            = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
            = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
          s->contents
          s->contents
            = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
            = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
        }
        }
 
 
      /* Create a symbol for the PLT, if we know that we are using it.  */
      /* Create a symbol for the PLT, if we know that we are using it.  */
      if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
      if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
        {
        {
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          BFD_ASSERT (htab->use_plts_and_copy_relocs);
          BFD_ASSERT (htab->use_plts_and_copy_relocs);
 
 
          h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
          h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
                                           "_PROCEDURE_LINKAGE_TABLE_");
                                           "_PROCEDURE_LINKAGE_TABLE_");
          htab->root.hplt = h;
          htab->root.hplt = h;
          if (h == NULL)
          if (h == NULL)
            return FALSE;
            return FALSE;
          h->type = STT_FUNC;
          h->type = STT_FUNC;
        }
        }
    }
    }
 
 
  /* Allocate space for global sym dynamic relocs.  */
  /* Allocate space for global sym dynamic relocs.  */
  elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
  elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
 
 
  mips_elf_estimate_stub_size (output_bfd, info);
  mips_elf_estimate_stub_size (output_bfd, info);
 
 
  if (!mips_elf_lay_out_got (output_bfd, info))
  if (!mips_elf_lay_out_got (output_bfd, info))
    return FALSE;
    return FALSE;
 
 
  mips_elf_lay_out_lazy_stubs (info);
  mips_elf_lay_out_lazy_stubs (info);
 
 
  /* The check_relocs and adjust_dynamic_symbol entry points have
  /* The check_relocs and adjust_dynamic_symbol entry points have
     determined the sizes of the various dynamic sections.  Allocate
     determined the sizes of the various dynamic sections.  Allocate
     memory for them.  */
     memory for them.  */
  reltext = FALSE;
  reltext = FALSE;
  for (s = dynobj->sections; s != NULL; s = s->next)
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
    {
      const char *name;
      const char *name;
 
 
      /* It's OK to base decisions on the section name, because none
      /* It's OK to base decisions on the section name, because none
         of the dynobj section names depend upon the input files.  */
         of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);
      name = bfd_get_section_name (dynobj, s);
 
 
      if ((s->flags & SEC_LINKER_CREATED) == 0)
      if ((s->flags & SEC_LINKER_CREATED) == 0)
        continue;
        continue;
 
 
      if (CONST_STRNEQ (name, ".rel"))
      if (CONST_STRNEQ (name, ".rel"))
        {
        {
          if (s->size != 0)
          if (s->size != 0)
            {
            {
              const char *outname;
              const char *outname;
              asection *target;
              asection *target;
 
 
              /* If this relocation section applies to a read only
              /* If this relocation section applies to a read only
                 section, then we probably need a DT_TEXTREL entry.
                 section, then we probably need a DT_TEXTREL entry.
                 If the relocation section is .rel(a).dyn, we always
                 If the relocation section is .rel(a).dyn, we always
                 assert a DT_TEXTREL entry rather than testing whether
                 assert a DT_TEXTREL entry rather than testing whether
                 there exists a relocation to a read only section or
                 there exists a relocation to a read only section or
                 not.  */
                 not.  */
              outname = bfd_get_section_name (output_bfd,
              outname = bfd_get_section_name (output_bfd,
                                              s->output_section);
                                              s->output_section);
              target = bfd_get_section_by_name (output_bfd, outname + 4);
              target = bfd_get_section_by_name (output_bfd, outname + 4);
              if ((target != NULL
              if ((target != NULL
                   && (target->flags & SEC_READONLY) != 0
                   && (target->flags & SEC_READONLY) != 0
                   && (target->flags & SEC_ALLOC) != 0)
                   && (target->flags & SEC_ALLOC) != 0)
                  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
                  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
                reltext = TRUE;
                reltext = TRUE;
 
 
              /* We use the reloc_count field as a counter if we need
              /* We use the reloc_count field as a counter if we need
                 to copy relocs into the output file.  */
                 to copy relocs into the output file.  */
              if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
              if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
                s->reloc_count = 0;
                s->reloc_count = 0;
 
 
              /* If combreloc is enabled, elf_link_sort_relocs() will
              /* If combreloc is enabled, elf_link_sort_relocs() will
                 sort relocations, but in a different way than we do,
                 sort relocations, but in a different way than we do,
                 and before we're done creating relocations.  Also, it
                 and before we're done creating relocations.  Also, it
                 will move them around between input sections'
                 will move them around between input sections'
                 relocation's contents, so our sorting would be
                 relocation's contents, so our sorting would be
                 broken, so don't let it run.  */
                 broken, so don't let it run.  */
              info->combreloc = 0;
              info->combreloc = 0;
            }
            }
        }
        }
      else if (! info->shared
      else if (! info->shared
               && ! mips_elf_hash_table (info)->use_rld_obj_head
               && ! mips_elf_hash_table (info)->use_rld_obj_head
               && CONST_STRNEQ (name, ".rld_map"))
               && CONST_STRNEQ (name, ".rld_map"))
        {
        {
          /* We add a room for __rld_map.  It will be filled in by the
          /* We add a room for __rld_map.  It will be filled in by the
             rtld to contain a pointer to the _r_debug structure.  */
             rtld to contain a pointer to the _r_debug structure.  */
          s->size += 4;
          s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
        }
        }
      else if (SGI_COMPAT (output_bfd)
      else if (SGI_COMPAT (output_bfd)
               && CONST_STRNEQ (name, ".compact_rel"))
               && CONST_STRNEQ (name, ".compact_rel"))
        s->size += mips_elf_hash_table (info)->compact_rel_size;
        s->size += mips_elf_hash_table (info)->compact_rel_size;
      else if (s == htab->splt)
      else if (s == htab->splt)
        {
        {
          /* If the last PLT entry has a branch delay slot, allocate
          /* If the last PLT entry has a branch delay slot, allocate
             room for an extra nop to fill the delay slot.  This is
             room for an extra nop to fill the delay slot.  This is
             for CPUs without load interlocking.  */
             for CPUs without load interlocking.  */
          if (! LOAD_INTERLOCKS_P (output_bfd)
          if (! LOAD_INTERLOCKS_P (output_bfd)
              && ! htab->is_vxworks && s->size > 0)
              && ! htab->is_vxworks && s->size > 0)
            s->size += 4;
            s->size += 4;
        }
        }
      else if (! CONST_STRNEQ (name, ".init")
      else if (! CONST_STRNEQ (name, ".init")
               && s != htab->sgot
               && s != htab->sgot
               && s != htab->sgotplt
               && s != htab->sgotplt
               && s != htab->sstubs
               && s != htab->sstubs
               && s != htab->sdynbss)
               && s != htab->sdynbss)
        {
        {
          /* It's not one of our sections, so don't allocate space.  */
          /* It's not one of our sections, so don't allocate space.  */
          continue;
          continue;
        }
        }
 
 
      if (s->size == 0)
      if (s->size == 0)
        {
        {
          s->flags |= SEC_EXCLUDE;
          s->flags |= SEC_EXCLUDE;
          continue;
          continue;
        }
        }
 
 
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
        continue;
        continue;
 
 
      /* Allocate memory for the section contents.  */
      /* Allocate memory for the section contents.  */
      s->contents = bfd_zalloc (dynobj, s->size);
      s->contents = bfd_zalloc (dynobj, s->size);
      if (s->contents == NULL)
      if (s->contents == NULL)
        {
        {
          bfd_set_error (bfd_error_no_memory);
          bfd_set_error (bfd_error_no_memory);
          return FALSE;
          return FALSE;
        }
        }
    }
    }
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Add some entries to the .dynamic section.  We fill in the
      /* Add some entries to the .dynamic section.  We fill in the
         values later, in _bfd_mips_elf_finish_dynamic_sections, but we
         values later, in _bfd_mips_elf_finish_dynamic_sections, but we
         must add the entries now so that we get the correct size for
         must add the entries now so that we get the correct size for
         the .dynamic section.  */
         the .dynamic section.  */
 
 
      /* SGI object has the equivalence of DT_DEBUG in the
      /* SGI object has the equivalence of DT_DEBUG in the
         DT_MIPS_RLD_MAP entry.  This must come first because glibc
         DT_MIPS_RLD_MAP entry.  This must come first because glibc
         only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
         only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
         looks at the first one it sees.  */
         looks at the first one it sees.  */
      if (!info->shared
      if (!info->shared
          && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
          && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
        return FALSE;
        return FALSE;
 
 
      /* The DT_DEBUG entry may be filled in by the dynamic linker and
      /* The DT_DEBUG entry may be filled in by the dynamic linker and
         used by the debugger.  */
         used by the debugger.  */
      if (info->executable
      if (info->executable
          && !SGI_COMPAT (output_bfd)
          && !SGI_COMPAT (output_bfd)
          && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
          && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
        return FALSE;
        return FALSE;
 
 
      if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
      if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
        info->flags |= DF_TEXTREL;
        info->flags |= DF_TEXTREL;
 
 
      if ((info->flags & DF_TEXTREL) != 0)
      if ((info->flags & DF_TEXTREL) != 0)
        {
        {
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
            return FALSE;
            return FALSE;
 
 
          /* Clear the DF_TEXTREL flag.  It will be set again if we
          /* Clear the DF_TEXTREL flag.  It will be set again if we
             write out an actual text relocation; we may not, because
             write out an actual text relocation; we may not, because
             at this point we do not know whether e.g. any .eh_frame
             at this point we do not know whether e.g. any .eh_frame
             absolute relocations have been converted to PC-relative.  */
             absolute relocations have been converted to PC-relative.  */
          info->flags &= ~DF_TEXTREL;
          info->flags &= ~DF_TEXTREL;
        }
        }
 
 
      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
        return FALSE;
        return FALSE;
 
 
      sreldyn = mips_elf_rel_dyn_section (info, FALSE);
      sreldyn = mips_elf_rel_dyn_section (info, FALSE);
      if (htab->is_vxworks)
      if (htab->is_vxworks)
        {
        {
          /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
          /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
             use any of the DT_MIPS_* tags.  */
             use any of the DT_MIPS_* tags.  */
          if (sreldyn && sreldyn->size > 0)
          if (sreldyn && sreldyn->size > 0)
            {
            {
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
                return FALSE;
                return FALSE;
 
 
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
                return FALSE;
                return FALSE;
 
 
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
      else
      else
        {
        {
          if (sreldyn && sreldyn->size > 0)
          if (sreldyn && sreldyn->size > 0)
            {
            {
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
                return FALSE;
                return FALSE;
 
 
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
                return FALSE;
                return FALSE;
 
 
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
              if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
                return FALSE;
                return FALSE;
            }
            }
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
            return FALSE;
            return FALSE;
 
 
          if (IRIX_COMPAT (dynobj) == ict_irix5
          if (IRIX_COMPAT (dynobj) == ict_irix5
              && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
              && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
            return FALSE;
            return FALSE;
 
 
          if (IRIX_COMPAT (dynobj) == ict_irix6
          if (IRIX_COMPAT (dynobj) == ict_irix6
              && (bfd_get_section_by_name
              && (bfd_get_section_by_name
                  (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
                  (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
              && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
              && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
            return FALSE;
            return FALSE;
        }
        }
      if (htab->splt->size > 0)
      if (htab->splt->size > 0)
        {
        {
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
            return FALSE;
            return FALSE;
 
 
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
          if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
            return FALSE;
            return FALSE;
        }
        }
      if (htab->is_vxworks
      if (htab->is_vxworks
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
          && !elf_vxworks_add_dynamic_entries (output_bfd, info))
        return FALSE;
        return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}


/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
   Adjust its R_ADDEND field so that it is correct for the output file.
   Adjust its R_ADDEND field so that it is correct for the output file.
   LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
   LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
   and sections respectively; both use symbol indexes.  */
   and sections respectively; both use symbol indexes.  */
 
 
static void
static void
mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
                        bfd *input_bfd, Elf_Internal_Sym *local_syms,
                        bfd *input_bfd, Elf_Internal_Sym *local_syms,
                        asection **local_sections, Elf_Internal_Rela *rel)
                        asection **local_sections, Elf_Internal_Rela *rel)
{
{
  unsigned int r_type, r_symndx;
  unsigned int r_type, r_symndx;
  Elf_Internal_Sym *sym;
  Elf_Internal_Sym *sym;
  asection *sec;
  asection *sec;
 
 
  if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
  if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
    {
    {
      r_type = ELF_R_TYPE (output_bfd, rel->r_info);
      r_type = ELF_R_TYPE (output_bfd, rel->r_info);
      if (gprel16_reloc_p (r_type)
      if (gprel16_reloc_p (r_type)
          || r_type == R_MIPS_GPREL32
          || r_type == R_MIPS_GPREL32
          || literal_reloc_p (r_type))
          || literal_reloc_p (r_type))
        {
        {
          rel->r_addend += _bfd_get_gp_value (input_bfd);
          rel->r_addend += _bfd_get_gp_value (input_bfd);
          rel->r_addend -= _bfd_get_gp_value (output_bfd);
          rel->r_addend -= _bfd_get_gp_value (output_bfd);
        }
        }
 
 
      r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
      r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
      sym = local_syms + r_symndx;
      sym = local_syms + r_symndx;
 
 
      /* Adjust REL's addend to account for section merging.  */
      /* Adjust REL's addend to account for section merging.  */
      if (!info->relocatable)
      if (!info->relocatable)
        {
        {
          sec = local_sections[r_symndx];
          sec = local_sections[r_symndx];
          _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
          _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
        }
        }
 
 
      /* This would normally be done by the rela_normal code in elflink.c.  */
      /* This would normally be done by the rela_normal code in elflink.c.  */
      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
        rel->r_addend += local_sections[r_symndx]->output_offset;
        rel->r_addend += local_sections[r_symndx]->output_offset;
    }
    }
}
}
 
 
/* Relocate a MIPS ELF section.  */
/* Relocate a MIPS ELF section.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
                                bfd *input_bfd, asection *input_section,
                                bfd *input_bfd, asection *input_section,
                                bfd_byte *contents, Elf_Internal_Rela *relocs,
                                bfd_byte *contents, Elf_Internal_Rela *relocs,
                                Elf_Internal_Sym *local_syms,
                                Elf_Internal_Sym *local_syms,
                                asection **local_sections)
                                asection **local_sections)
{
{
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *relend;
  const Elf_Internal_Rela *relend;
  bfd_vma addend = 0;
  bfd_vma addend = 0;
  bfd_boolean use_saved_addend_p = FALSE;
  bfd_boolean use_saved_addend_p = FALSE;
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
 
 
  bed = get_elf_backend_data (output_bfd);
  bed = get_elf_backend_data (output_bfd);
  relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
  relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
  for (rel = relocs; rel < relend; ++rel)
  for (rel = relocs; rel < relend; ++rel)
    {
    {
      const char *name;
      const char *name;
      bfd_vma value = 0;
      bfd_vma value = 0;
      reloc_howto_type *howto;
      reloc_howto_type *howto;
      bfd_boolean cross_mode_jump_p;
      bfd_boolean cross_mode_jump_p;
      /* TRUE if the relocation is a RELA relocation, rather than a
      /* TRUE if the relocation is a RELA relocation, rather than a
         REL relocation.  */
         REL relocation.  */
      bfd_boolean rela_relocation_p = TRUE;
      bfd_boolean rela_relocation_p = TRUE;
      unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
      unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
      const char *msg;
      const char *msg;
      unsigned long r_symndx;
      unsigned long r_symndx;
      asection *sec;
      asection *sec;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      bfd_boolean rel_reloc;
      bfd_boolean rel_reloc;
 
 
      rel_reloc = (NEWABI_P (input_bfd)
      rel_reloc = (NEWABI_P (input_bfd)
                   && mips_elf_rel_relocation_p (input_bfd, input_section,
                   && mips_elf_rel_relocation_p (input_bfd, input_section,
                                                 relocs, rel));
                                                 relocs, rel));
      /* Find the relocation howto for this relocation.  */
      /* Find the relocation howto for this relocation.  */
      howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
      howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
 
 
      r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
      r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
      if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
        {
        {
          sec = local_sections[r_symndx];
          sec = local_sections[r_symndx];
          h = NULL;
          h = NULL;
        }
        }
      else
      else
        {
        {
          unsigned long extsymoff;
          unsigned long extsymoff;
 
 
          extsymoff = 0;
          extsymoff = 0;
          if (!elf_bad_symtab (input_bfd))
          if (!elf_bad_symtab (input_bfd))
            extsymoff = symtab_hdr->sh_info;
            extsymoff = symtab_hdr->sh_info;
          h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
          h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
          sec = NULL;
          sec = NULL;
          if (h->root.type == bfd_link_hash_defined
          if (h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak)
              || h->root.type == bfd_link_hash_defweak)
            sec = h->root.u.def.section;
            sec = h->root.u.def.section;
        }
        }
 
 
      if (sec != NULL && elf_discarded_section (sec))
      if (sec != NULL && elf_discarded_section (sec))
        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
                                         rel, relend, howto, contents);
                                         rel, relend, howto, contents);
 
 
      if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
      if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
        {
        {
          /* Some 32-bit code uses R_MIPS_64.  In particular, people use
          /* Some 32-bit code uses R_MIPS_64.  In particular, people use
             64-bit code, but make sure all their addresses are in the
             64-bit code, but make sure all their addresses are in the
             lowermost or uppermost 32-bit section of the 64-bit address
             lowermost or uppermost 32-bit section of the 64-bit address
             space.  Thus, when they use an R_MIPS_64 they mean what is
             space.  Thus, when they use an R_MIPS_64 they mean what is
             usually meant by R_MIPS_32, with the exception that the
             usually meant by R_MIPS_32, with the exception that the
             stored value is sign-extended to 64 bits.  */
             stored value is sign-extended to 64 bits.  */
          howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
          howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
 
 
          /* On big-endian systems, we need to lie about the position
          /* On big-endian systems, we need to lie about the position
             of the reloc.  */
             of the reloc.  */
          if (bfd_big_endian (input_bfd))
          if (bfd_big_endian (input_bfd))
            rel->r_offset += 4;
            rel->r_offset += 4;
        }
        }
 
 
      if (!use_saved_addend_p)
      if (!use_saved_addend_p)
        {
        {
          /* If these relocations were originally of the REL variety,
          /* If these relocations were originally of the REL variety,
             we must pull the addend out of the field that will be
             we must pull the addend out of the field that will be
             relocated.  Otherwise, we simply use the contents of the
             relocated.  Otherwise, we simply use the contents of the
             RELA relocation.  */
             RELA relocation.  */
          if (mips_elf_rel_relocation_p (input_bfd, input_section,
          if (mips_elf_rel_relocation_p (input_bfd, input_section,
                                         relocs, rel))
                                         relocs, rel))
            {
            {
              rela_relocation_p = FALSE;
              rela_relocation_p = FALSE;
              addend = mips_elf_read_rel_addend (input_bfd, rel,
              addend = mips_elf_read_rel_addend (input_bfd, rel,
                                                 howto, contents);
                                                 howto, contents);
              if (hi16_reloc_p (r_type)
              if (hi16_reloc_p (r_type)
                  || (got16_reloc_p (r_type)
                  || (got16_reloc_p (r_type)
                      && mips_elf_local_relocation_p (input_bfd, rel,
                      && mips_elf_local_relocation_p (input_bfd, rel,
                                                      local_sections)))
                                                      local_sections)))
                {
                {
                  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
                  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
                                                     contents, &addend))
                                                     contents, &addend))
                    {
                    {
                      if (h)
                      if (h)
                        name = h->root.root.string;
                        name = h->root.root.string;
                      else
                      else
                        name = bfd_elf_sym_name (input_bfd, symtab_hdr,
                        name = bfd_elf_sym_name (input_bfd, symtab_hdr,
                                                 local_syms + r_symndx,
                                                 local_syms + r_symndx,
                                                 sec);
                                                 sec);
                      (*_bfd_error_handler)
                      (*_bfd_error_handler)
                        (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
                        (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
                         input_bfd, input_section, name, howto->name,
                         input_bfd, input_section, name, howto->name,
                         rel->r_offset);
                         rel->r_offset);
                    }
                    }
                }
                }
              else
              else
                addend <<= howto->rightshift;
                addend <<= howto->rightshift;
            }
            }
          else
          else
            addend = rel->r_addend;
            addend = rel->r_addend;
          mips_elf_adjust_addend (output_bfd, info, input_bfd,
          mips_elf_adjust_addend (output_bfd, info, input_bfd,
                                  local_syms, local_sections, rel);
                                  local_syms, local_sections, rel);
        }
        }
 
 
      if (info->relocatable)
      if (info->relocatable)
        {
        {
          if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
          if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
              && bfd_big_endian (input_bfd))
              && bfd_big_endian (input_bfd))
            rel->r_offset -= 4;
            rel->r_offset -= 4;
 
 
          if (!rela_relocation_p && rel->r_addend)
          if (!rela_relocation_p && rel->r_addend)
            {
            {
              addend += rel->r_addend;
              addend += rel->r_addend;
              if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
              if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
                addend = mips_elf_high (addend);
                addend = mips_elf_high (addend);
              else if (r_type == R_MIPS_HIGHER)
              else if (r_type == R_MIPS_HIGHER)
                addend = mips_elf_higher (addend);
                addend = mips_elf_higher (addend);
              else if (r_type == R_MIPS_HIGHEST)
              else if (r_type == R_MIPS_HIGHEST)
                addend = mips_elf_highest (addend);
                addend = mips_elf_highest (addend);
              else
              else
                addend >>= howto->rightshift;
                addend >>= howto->rightshift;
 
 
              /* We use the source mask, rather than the destination
              /* We use the source mask, rather than the destination
                 mask because the place to which we are writing will be
                 mask because the place to which we are writing will be
                 source of the addend in the final link.  */
                 source of the addend in the final link.  */
              addend &= howto->src_mask;
              addend &= howto->src_mask;
 
 
              if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
              if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
                /* See the comment above about using R_MIPS_64 in the 32-bit
                /* See the comment above about using R_MIPS_64 in the 32-bit
                   ABI.  Here, we need to update the addend.  It would be
                   ABI.  Here, we need to update the addend.  It would be
                   possible to get away with just using the R_MIPS_32 reloc
                   possible to get away with just using the R_MIPS_32 reloc
                   but for endianness.  */
                   but for endianness.  */
                {
                {
                  bfd_vma sign_bits;
                  bfd_vma sign_bits;
                  bfd_vma low_bits;
                  bfd_vma low_bits;
                  bfd_vma high_bits;
                  bfd_vma high_bits;
 
 
                  if (addend & ((bfd_vma) 1 << 31))
                  if (addend & ((bfd_vma) 1 << 31))
#ifdef BFD64
#ifdef BFD64
                    sign_bits = ((bfd_vma) 1 << 32) - 1;
                    sign_bits = ((bfd_vma) 1 << 32) - 1;
#else
#else
                    sign_bits = -1;
                    sign_bits = -1;
#endif
#endif
                  else
                  else
                    sign_bits = 0;
                    sign_bits = 0;
 
 
                  /* If we don't know that we have a 64-bit type,
                  /* If we don't know that we have a 64-bit type,
                     do two separate stores.  */
                     do two separate stores.  */
                  if (bfd_big_endian (input_bfd))
                  if (bfd_big_endian (input_bfd))
                    {
                    {
                      /* Store the sign-bits (which are most significant)
                      /* Store the sign-bits (which are most significant)
                         first.  */
                         first.  */
                      low_bits = sign_bits;
                      low_bits = sign_bits;
                      high_bits = addend;
                      high_bits = addend;
                    }
                    }
                  else
                  else
                    {
                    {
                      low_bits = addend;
                      low_bits = addend;
                      high_bits = sign_bits;
                      high_bits = sign_bits;
                    }
                    }
                  bfd_put_32 (input_bfd, low_bits,
                  bfd_put_32 (input_bfd, low_bits,
                              contents + rel->r_offset);
                              contents + rel->r_offset);
                  bfd_put_32 (input_bfd, high_bits,
                  bfd_put_32 (input_bfd, high_bits,
                              contents + rel->r_offset + 4);
                              contents + rel->r_offset + 4);
                  continue;
                  continue;
                }
                }
 
 
              if (! mips_elf_perform_relocation (info, howto, rel, addend,
              if (! mips_elf_perform_relocation (info, howto, rel, addend,
                                                 input_bfd, input_section,
                                                 input_bfd, input_section,
                                                 contents, FALSE))
                                                 contents, FALSE))
                return FALSE;
                return FALSE;
            }
            }
 
 
          /* Go on to the next relocation.  */
          /* Go on to the next relocation.  */
          continue;
          continue;
        }
        }
 
 
      /* In the N32 and 64-bit ABIs there may be multiple consecutive
      /* In the N32 and 64-bit ABIs there may be multiple consecutive
         relocations for the same offset.  In that case we are
         relocations for the same offset.  In that case we are
         supposed to treat the output of each relocation as the addend
         supposed to treat the output of each relocation as the addend
         for the next.  */
         for the next.  */
      if (rel + 1 < relend
      if (rel + 1 < relend
          && rel->r_offset == rel[1].r_offset
          && rel->r_offset == rel[1].r_offset
          && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
          && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
        use_saved_addend_p = TRUE;
        use_saved_addend_p = TRUE;
      else
      else
        use_saved_addend_p = FALSE;
        use_saved_addend_p = FALSE;
 
 
      /* Figure out what value we are supposed to relocate.  */
      /* Figure out what value we are supposed to relocate.  */
      switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
      switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
                                             input_section, info, rel,
                                             input_section, info, rel,
                                             addend, howto, local_syms,
                                             addend, howto, local_syms,
                                             local_sections, &value,
                                             local_sections, &value,
                                             &name, &cross_mode_jump_p,
                                             &name, &cross_mode_jump_p,
                                             use_saved_addend_p))
                                             use_saved_addend_p))
        {
        {
        case bfd_reloc_continue:
        case bfd_reloc_continue:
          /* There's nothing to do.  */
          /* There's nothing to do.  */
          continue;
          continue;
 
 
        case bfd_reloc_undefined:
        case bfd_reloc_undefined:
          /* mips_elf_calculate_relocation already called the
          /* mips_elf_calculate_relocation already called the
             undefined_symbol callback.  There's no real point in
             undefined_symbol callback.  There's no real point in
             trying to perform the relocation at this point, so we
             trying to perform the relocation at this point, so we
             just skip ahead to the next relocation.  */
             just skip ahead to the next relocation.  */
          continue;
          continue;
 
 
        case bfd_reloc_notsupported:
        case bfd_reloc_notsupported:
          msg = _("internal error: unsupported relocation error");
          msg = _("internal error: unsupported relocation error");
          info->callbacks->warning
          info->callbacks->warning
            (info, msg, name, input_bfd, input_section, rel->r_offset);
            (info, msg, name, input_bfd, input_section, rel->r_offset);
          return FALSE;
          return FALSE;
 
 
        case bfd_reloc_overflow:
        case bfd_reloc_overflow:
          if (use_saved_addend_p)
          if (use_saved_addend_p)
            /* Ignore overflow until we reach the last relocation for
            /* Ignore overflow until we reach the last relocation for
               a given location.  */
               a given location.  */
            ;
            ;
          else
          else
            {
            {
              struct mips_elf_link_hash_table *htab;
              struct mips_elf_link_hash_table *htab;
 
 
              htab = mips_elf_hash_table (info);
              htab = mips_elf_hash_table (info);
              BFD_ASSERT (htab != NULL);
              BFD_ASSERT (htab != NULL);
              BFD_ASSERT (name != NULL);
              BFD_ASSERT (name != NULL);
              if (!htab->small_data_overflow_reported
              if (!htab->small_data_overflow_reported
                  && (gprel16_reloc_p (howto->type)
                  && (gprel16_reloc_p (howto->type)
                      || literal_reloc_p (howto->type)))
                      || literal_reloc_p (howto->type)))
                {
                {
                  msg = _("small-data section exceeds 64KB;"
                  msg = _("small-data section exceeds 64KB;"
                          " lower small-data size limit (see option -G)");
                          " lower small-data size limit (see option -G)");
 
 
                  htab->small_data_overflow_reported = TRUE;
                  htab->small_data_overflow_reported = TRUE;
                  (*info->callbacks->einfo) ("%P: %s\n", msg);
                  (*info->callbacks->einfo) ("%P: %s\n", msg);
                }
                }
              if (! ((*info->callbacks->reloc_overflow)
              if (! ((*info->callbacks->reloc_overflow)
                     (info, NULL, name, howto->name, (bfd_vma) 0,
                     (info, NULL, name, howto->name, (bfd_vma) 0,
                      input_bfd, input_section, rel->r_offset)))
                      input_bfd, input_section, rel->r_offset)))
                return FALSE;
                return FALSE;
            }
            }
          break;
          break;
 
 
        case bfd_reloc_ok:
        case bfd_reloc_ok:
          break;
          break;
 
 
        case bfd_reloc_outofrange:
        case bfd_reloc_outofrange:
          if (jal_reloc_p (howto->type))
          if (jal_reloc_p (howto->type))
            {
            {
              msg = _("JALX to a non-word-aligned address");
              msg = _("JALX to a non-word-aligned address");
              info->callbacks->warning
              info->callbacks->warning
                (info, msg, name, input_bfd, input_section, rel->r_offset);
                (info, msg, name, input_bfd, input_section, rel->r_offset);
              return FALSE;
              return FALSE;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
 
 
        default:
        default:
          abort ();
          abort ();
          break;
          break;
        }
        }
 
 
      /* If we've got another relocation for the address, keep going
      /* If we've got another relocation for the address, keep going
         until we reach the last one.  */
         until we reach the last one.  */
      if (use_saved_addend_p)
      if (use_saved_addend_p)
        {
        {
          addend = value;
          addend = value;
          continue;
          continue;
        }
        }
 
 
      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
        /* See the comment above about using R_MIPS_64 in the 32-bit
        /* See the comment above about using R_MIPS_64 in the 32-bit
           ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
           ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
           that calculated the right value.  Now, however, we
           that calculated the right value.  Now, however, we
           sign-extend the 32-bit result to 64-bits, and store it as a
           sign-extend the 32-bit result to 64-bits, and store it as a
           64-bit value.  We are especially generous here in that we
           64-bit value.  We are especially generous here in that we
           go to extreme lengths to support this usage on systems with
           go to extreme lengths to support this usage on systems with
           only a 32-bit VMA.  */
           only a 32-bit VMA.  */
        {
        {
          bfd_vma sign_bits;
          bfd_vma sign_bits;
          bfd_vma low_bits;
          bfd_vma low_bits;
          bfd_vma high_bits;
          bfd_vma high_bits;
 
 
          if (value & ((bfd_vma) 1 << 31))
          if (value & ((bfd_vma) 1 << 31))
#ifdef BFD64
#ifdef BFD64
            sign_bits = ((bfd_vma) 1 << 32) - 1;
            sign_bits = ((bfd_vma) 1 << 32) - 1;
#else
#else
            sign_bits = -1;
            sign_bits = -1;
#endif
#endif
          else
          else
            sign_bits = 0;
            sign_bits = 0;
 
 
          /* If we don't know that we have a 64-bit type,
          /* If we don't know that we have a 64-bit type,
             do two separate stores.  */
             do two separate stores.  */
          if (bfd_big_endian (input_bfd))
          if (bfd_big_endian (input_bfd))
            {
            {
              /* Undo what we did above.  */
              /* Undo what we did above.  */
              rel->r_offset -= 4;
              rel->r_offset -= 4;
              /* Store the sign-bits (which are most significant)
              /* Store the sign-bits (which are most significant)
                 first.  */
                 first.  */
              low_bits = sign_bits;
              low_bits = sign_bits;
              high_bits = value;
              high_bits = value;
            }
            }
          else
          else
            {
            {
              low_bits = value;
              low_bits = value;
              high_bits = sign_bits;
              high_bits = sign_bits;
            }
            }
          bfd_put_32 (input_bfd, low_bits,
          bfd_put_32 (input_bfd, low_bits,
                      contents + rel->r_offset);
                      contents + rel->r_offset);
          bfd_put_32 (input_bfd, high_bits,
          bfd_put_32 (input_bfd, high_bits,
                      contents + rel->r_offset + 4);
                      contents + rel->r_offset + 4);
          continue;
          continue;
        }
        }
 
 
      /* Actually perform the relocation.  */
      /* Actually perform the relocation.  */
      if (! mips_elf_perform_relocation (info, howto, rel, value,
      if (! mips_elf_perform_relocation (info, howto, rel, value,
                                         input_bfd, input_section,
                                         input_bfd, input_section,
                                         contents, cross_mode_jump_p))
                                         contents, cross_mode_jump_p))
        return FALSE;
        return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}


/* A function that iterates over each entry in la25_stubs and fills
/* A function that iterates over each entry in la25_stubs and fills
   in the code for each one.  DATA points to a mips_htab_traverse_info.  */
   in the code for each one.  DATA points to a mips_htab_traverse_info.  */
 
 
static int
static int
mips_elf_create_la25_stub (void **slot, void *data)
mips_elf_create_la25_stub (void **slot, void *data)
{
{
  struct mips_htab_traverse_info *hti;
  struct mips_htab_traverse_info *hti;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_la25_stub *stub;
  struct mips_elf_la25_stub *stub;
  asection *s;
  asection *s;
  bfd_byte *loc;
  bfd_byte *loc;
  bfd_vma offset, target, target_high, target_low;
  bfd_vma offset, target, target_high, target_low;
 
 
  stub = (struct mips_elf_la25_stub *) *slot;
  stub = (struct mips_elf_la25_stub *) *slot;
  hti = (struct mips_htab_traverse_info *) data;
  hti = (struct mips_htab_traverse_info *) data;
  htab = mips_elf_hash_table (hti->info);
  htab = mips_elf_hash_table (hti->info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  /* Create the section contents, if we haven't already.  */
  /* Create the section contents, if we haven't already.  */
  s = stub->stub_section;
  s = stub->stub_section;
  loc = s->contents;
  loc = s->contents;
  if (loc == NULL)
  if (loc == NULL)
    {
    {
      loc = bfd_malloc (s->size);
      loc = bfd_malloc (s->size);
      if (loc == NULL)
      if (loc == NULL)
        {
        {
          hti->error = TRUE;
          hti->error = TRUE;
          return FALSE;
          return FALSE;
        }
        }
      s->contents = loc;
      s->contents = loc;
    }
    }
 
 
  /* Work out where in the section this stub should go.  */
  /* Work out where in the section this stub should go.  */
  offset = stub->offset;
  offset = stub->offset;
 
 
  /* Work out the target address.  */
  /* Work out the target address.  */
  target = (stub->h->root.root.u.def.section->output_section->vma
  target = mips_elf_get_la25_target (stub, &s);
            + stub->h->root.root.u.def.section->output_offset
  target += s->output_section->vma + s->output_offset;
            + stub->h->root.root.u.def.value);
 
  target_high = ((target + 0x8000) >> 16) & 0xffff;
  target_high = ((target + 0x8000) >> 16) & 0xffff;
  target_low = (target & 0xffff);
  target_low = (target & 0xffff);
 
 
  if (stub->stub_section != htab->strampoline)
  if (stub->stub_section != htab->strampoline)
    {
    {
      /* This is a simple LUI/ADDIU stub.  Zero out the beginning
      /* This is a simple LUI/ADDIU stub.  Zero out the beginning
         of the section and write the two instructions at the end.  */
         of the section and write the two instructions at the end.  */
      memset (loc, 0, offset);
      memset (loc, 0, offset);
      loc += offset;
      loc += offset;
      if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
      if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
        {
        {
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
                      loc);
                      loc);
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
                      loc + 2);
                      loc + 2);
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
                      loc + 4);
                      loc + 4);
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
                      loc + 6);
                      loc + 6);
        }
        }
      else
      else
        {
        {
          bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
          bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
          bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
          bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
        }
        }
    }
    }
  else
  else
    {
    {
      /* This is trampoline.  */
      /* This is trampoline.  */
      loc += offset;
      loc += offset;
      if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
      if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
        {
        {
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
                      loc);
                      loc);
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
          bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
                      loc + 2);
                      loc + 2);
          bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
          bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
          bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
          bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
                      loc + 8);
                      loc + 8);
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
          bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
                      loc + 10);
                      loc + 10);
          bfd_put_32 (hti->output_bfd, 0, loc + 12);
          bfd_put_32 (hti->output_bfd, 0, loc + 12);
        }
        }
      else
      else
        {
        {
          bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
          bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
          bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
          bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
          bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
          bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
          bfd_put_32 (hti->output_bfd, 0, loc + 12);
          bfd_put_32 (hti->output_bfd, 0, loc + 12);
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* If NAME is one of the special IRIX6 symbols defined by the linker,
/* If NAME is one of the special IRIX6 symbols defined by the linker,
   adjust it appropriately now.  */
   adjust it appropriately now.  */
 
 
static void
static void
mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
                                      const char *name, Elf_Internal_Sym *sym)
                                      const char *name, Elf_Internal_Sym *sym)
{
{
  /* The linker script takes care of providing names and values for
  /* The linker script takes care of providing names and values for
     these, but we must place them into the right sections.  */
     these, but we must place them into the right sections.  */
  static const char* const text_section_symbols[] = {
  static const char* const text_section_symbols[] = {
    "_ftext",
    "_ftext",
    "_etext",
    "_etext",
    "__dso_displacement",
    "__dso_displacement",
    "__elf_header",
    "__elf_header",
    "__program_header_table",
    "__program_header_table",
    NULL
    NULL
  };
  };
 
 
  static const char* const data_section_symbols[] = {
  static const char* const data_section_symbols[] = {
    "_fdata",
    "_fdata",
    "_edata",
    "_edata",
    "_end",
    "_end",
    "_fbss",
    "_fbss",
    NULL
    NULL
  };
  };
 
 
  const char* const *p;
  const char* const *p;
  int i;
  int i;
 
 
  for (i = 0; i < 2; ++i)
  for (i = 0; i < 2; ++i)
    for (p = (i == 0) ? text_section_symbols : data_section_symbols;
    for (p = (i == 0) ? text_section_symbols : data_section_symbols;
         *p;
         *p;
         ++p)
         ++p)
      if (strcmp (*p, name) == 0)
      if (strcmp (*p, name) == 0)
        {
        {
          /* All of these symbols are given type STT_SECTION by the
          /* All of these symbols are given type STT_SECTION by the
             IRIX6 linker.  */
             IRIX6 linker.  */
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
          sym->st_other = STO_PROTECTED;
          sym->st_other = STO_PROTECTED;
 
 
          /* The IRIX linker puts these symbols in special sections.  */
          /* The IRIX linker puts these symbols in special sections.  */
          if (i == 0)
          if (i == 0)
            sym->st_shndx = SHN_MIPS_TEXT;
            sym->st_shndx = SHN_MIPS_TEXT;
          else
          else
            sym->st_shndx = SHN_MIPS_DATA;
            sym->st_shndx = SHN_MIPS_DATA;
 
 
          break;
          break;
        }
        }
}
}
 
 
/* Finish up dynamic symbol handling.  We set the contents of various
/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */
   dynamic sections here.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
                                     struct bfd_link_info *info,
                                     struct bfd_link_info *info,
                                     struct elf_link_hash_entry *h,
                                     struct elf_link_hash_entry *h,
                                     Elf_Internal_Sym *sym)
                                     Elf_Internal_Sym *sym)
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *sgot;
  asection *sgot;
  struct mips_got_info *g, *gg;
  struct mips_got_info *g, *gg;
  const char *name;
  const char *name;
  int idx;
  int idx;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_entry *hmips;
  struct mips_elf_link_hash_entry *hmips;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  hmips = (struct mips_elf_link_hash_entry *) h;
  hmips = (struct mips_elf_link_hash_entry *) h;
 
 
  BFD_ASSERT (!htab->is_vxworks);
  BFD_ASSERT (!htab->is_vxworks);
 
 
  if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
  if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
    {
    {
      /* We've decided to create a PLT entry for this symbol.  */
      /* We've decided to create a PLT entry for this symbol.  */
      bfd_byte *loc;
      bfd_byte *loc;
      bfd_vma header_address, plt_index, got_address;
      bfd_vma header_address, plt_index, got_address;
      bfd_vma got_address_high, got_address_low, load;
      bfd_vma got_address_high, got_address_low, load;
      const bfd_vma *plt_entry;
      const bfd_vma *plt_entry;
 
 
      BFD_ASSERT (htab->use_plts_and_copy_relocs);
      BFD_ASSERT (htab->use_plts_and_copy_relocs);
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (htab->splt != NULL);
      BFD_ASSERT (htab->splt != NULL);
      BFD_ASSERT (h->plt.offset <= htab->splt->size);
      BFD_ASSERT (h->plt.offset <= htab->splt->size);
      BFD_ASSERT (!h->def_regular);
      BFD_ASSERT (!h->def_regular);
 
 
      /* Calculate the address of the PLT header.  */
      /* Calculate the address of the PLT header.  */
      header_address = (htab->splt->output_section->vma
      header_address = (htab->splt->output_section->vma
                        + htab->splt->output_offset);
                        + htab->splt->output_offset);
 
 
      /* Calculate the index of the entry.  */
      /* Calculate the index of the entry.  */
      plt_index = ((h->plt.offset - htab->plt_header_size)
      plt_index = ((h->plt.offset - htab->plt_header_size)
                   / htab->plt_entry_size);
                   / htab->plt_entry_size);
 
 
      /* Calculate the address of the .got.plt entry.  */
      /* Calculate the address of the .got.plt entry.  */
      got_address = (htab->sgotplt->output_section->vma
      got_address = (htab->sgotplt->output_section->vma
                     + htab->sgotplt->output_offset
                     + htab->sgotplt->output_offset
                     + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
                     + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
      got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
      got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
      got_address_low = got_address & 0xffff;
      got_address_low = got_address & 0xffff;
 
 
      /* Initially point the .got.plt entry at the PLT header.  */
      /* Initially point the .got.plt entry at the PLT header.  */
      loc = (htab->sgotplt->contents
      loc = (htab->sgotplt->contents
             + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
             + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
      if (ABI_64_P (output_bfd))
      if (ABI_64_P (output_bfd))
        bfd_put_64 (output_bfd, header_address, loc);
        bfd_put_64 (output_bfd, header_address, loc);
      else
      else
        bfd_put_32 (output_bfd, header_address, loc);
        bfd_put_32 (output_bfd, header_address, loc);
 
 
      /* Find out where the .plt entry should go.  */
      /* Find out where the .plt entry should go.  */
      loc = htab->splt->contents + h->plt.offset;
      loc = htab->splt->contents + h->plt.offset;
 
 
      /* Pick the load opcode.  */
      /* Pick the load opcode.  */
      load = MIPS_ELF_LOAD_WORD (output_bfd);
      load = MIPS_ELF_LOAD_WORD (output_bfd);
 
 
      /* Fill in the PLT entry itself.  */
      /* Fill in the PLT entry itself.  */
      plt_entry = mips_exec_plt_entry;
      plt_entry = mips_exec_plt_entry;
      bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
      bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
      bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
      bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
 
 
      if (! LOAD_INTERLOCKS_P (output_bfd))
      if (! LOAD_INTERLOCKS_P (output_bfd))
        {
        {
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
          bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
          bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
        }
        }
      else
      else
        {
        {
          bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
          bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
        }
        }
 
 
      /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
      /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
      mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
      mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
                                          plt_index, h->dynindx,
                                          plt_index, h->dynindx,
                                          R_MIPS_JUMP_SLOT, got_address);
                                          R_MIPS_JUMP_SLOT, got_address);
 
 
      /* We distinguish between PLT entries and lazy-binding stubs by
      /* We distinguish between PLT entries and lazy-binding stubs by
         giving the former an st_other value of STO_MIPS_PLT.  Set the
         giving the former an st_other value of STO_MIPS_PLT.  Set the
         flag and leave the value if there are any relocations in the
         flag and leave the value if there are any relocations in the
         binary where pointer equality matters.  */
         binary where pointer equality matters.  */
      sym->st_shndx = SHN_UNDEF;
      sym->st_shndx = SHN_UNDEF;
      if (h->pointer_equality_needed)
      if (h->pointer_equality_needed)
        sym->st_other = STO_MIPS_PLT;
        sym->st_other = STO_MIPS_PLT;
      else
      else
        sym->st_value = 0;
        sym->st_value = 0;
    }
    }
  else if (h->plt.offset != MINUS_ONE)
  else if (h->plt.offset != MINUS_ONE)
    {
    {
      /* We've decided to create a lazy-binding stub.  */
      /* We've decided to create a lazy-binding stub.  */
      bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
      bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
 
 
      /* This symbol has a stub.  Set it up.  */
      /* This symbol has a stub.  Set it up.  */
 
 
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
 
 
      BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
      BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
                  || (h->dynindx <= 0xffff));
                  || (h->dynindx <= 0xffff));
 
 
      /* Values up to 2^31 - 1 are allowed.  Larger values would cause
      /* Values up to 2^31 - 1 are allowed.  Larger values would cause
         sign extension at runtime in the stub, resulting in a negative
         sign extension at runtime in the stub, resulting in a negative
         index value.  */
         index value.  */
      if (h->dynindx & ~0x7fffffff)
      if (h->dynindx & ~0x7fffffff)
        return FALSE;
        return FALSE;
 
 
      /* Fill the stub.  */
      /* Fill the stub.  */
      idx = 0;
      idx = 0;
      bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
      bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
      idx += 4;
      idx += 4;
      bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
      bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
      idx += 4;
      idx += 4;
      if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
      if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
        {
        {
          bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
          bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
                      stub + idx);
                      stub + idx);
          idx += 4;
          idx += 4;
        }
        }
      bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
      bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
      idx += 4;
      idx += 4;
 
 
      /* If a large stub is not required and sign extension is not a
      /* If a large stub is not required and sign extension is not a
         problem, then use legacy code in the stub.  */
         problem, then use legacy code in the stub.  */
      if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
      if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
        bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
        bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
      else if (h->dynindx & ~0x7fff)
      else if (h->dynindx & ~0x7fff)
        bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
        bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
      else
      else
        bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
        bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
                    stub + idx);
                    stub + idx);
 
 
      BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
      BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
      memcpy (htab->sstubs->contents + h->plt.offset,
      memcpy (htab->sstubs->contents + h->plt.offset,
              stub, htab->function_stub_size);
              stub, htab->function_stub_size);
 
 
      /* Mark the symbol as undefined.  plt.offset != -1 occurs
      /* Mark the symbol as undefined.  plt.offset != -1 occurs
         only for the referenced symbol.  */
         only for the referenced symbol.  */
      sym->st_shndx = SHN_UNDEF;
      sym->st_shndx = SHN_UNDEF;
 
 
      /* The run-time linker uses the st_value field of the symbol
      /* The run-time linker uses the st_value field of the symbol
         to reset the global offset table entry for this external
         to reset the global offset table entry for this external
         to its stub address when unlinking a shared object.  */
         to its stub address when unlinking a shared object.  */
      sym->st_value = (htab->sstubs->output_section->vma
      sym->st_value = (htab->sstubs->output_section->vma
                       + htab->sstubs->output_offset
                       + htab->sstubs->output_offset
                       + h->plt.offset);
                       + h->plt.offset);
    }
    }
 
 
  /* If we have a MIPS16 function with a stub, the dynamic symbol must
  /* If we have a MIPS16 function with a stub, the dynamic symbol must
     refer to the stub, since only the stub uses the standard calling
     refer to the stub, since only the stub uses the standard calling
     conventions.  */
     conventions.  */
  if (h->dynindx != -1 && hmips->fn_stub != NULL)
  if (h->dynindx != -1 && hmips->fn_stub != NULL)
    {
    {
      BFD_ASSERT (hmips->need_fn_stub);
      BFD_ASSERT (hmips->need_fn_stub);
      sym->st_value = (hmips->fn_stub->output_section->vma
      sym->st_value = (hmips->fn_stub->output_section->vma
                       + hmips->fn_stub->output_offset);
                       + hmips->fn_stub->output_offset);
      sym->st_size = hmips->fn_stub->size;
      sym->st_size = hmips->fn_stub->size;
      sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
      sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
    }
    }
 
 
  BFD_ASSERT (h->dynindx != -1
  BFD_ASSERT (h->dynindx != -1
              || h->forced_local);
              || h->forced_local);
 
 
  sgot = htab->sgot;
  sgot = htab->sgot;
  g = htab->got_info;
  g = htab->got_info;
  BFD_ASSERT (g != NULL);
  BFD_ASSERT (g != NULL);
 
 
  /* Run through the global symbol table, creating GOT entries for all
  /* Run through the global symbol table, creating GOT entries for all
     the symbols that need them.  */
     the symbols that need them.  */
  if (hmips->global_got_area != GGA_NONE)
  if (hmips->global_got_area != GGA_NONE)
    {
    {
      bfd_vma offset;
      bfd_vma offset;
      bfd_vma value;
      bfd_vma value;
 
 
      value = sym->st_value;
      value = sym->st_value;
      offset = mips_elf_global_got_index (dynobj, output_bfd, h,
      offset = mips_elf_global_got_index (dynobj, output_bfd, h,
                                          R_MIPS_GOT16, info);
                                          R_MIPS_GOT16, info);
      MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
      MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
    }
    }
 
 
  if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
  if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
    {
    {
      struct mips_got_entry e, *p;
      struct mips_got_entry e, *p;
      bfd_vma entry;
      bfd_vma entry;
      bfd_vma offset;
      bfd_vma offset;
 
 
      gg = g;
      gg = g;
 
 
      e.abfd = output_bfd;
      e.abfd = output_bfd;
      e.symndx = -1;
      e.symndx = -1;
      e.d.h = hmips;
      e.d.h = hmips;
      e.tls_type = 0;
      e.tls_type = 0;
 
 
      for (g = g->next; g->next != gg; g = g->next)
      for (g = g->next; g->next != gg; g = g->next)
        {
        {
          if (g->got_entries
          if (g->got_entries
              && (p = (struct mips_got_entry *) htab_find (g->got_entries,
              && (p = (struct mips_got_entry *) htab_find (g->got_entries,
                                                           &e)))
                                                           &e)))
            {
            {
              offset = p->gotidx;
              offset = p->gotidx;
              if (info->shared
              if (info->shared
                  || (elf_hash_table (info)->dynamic_sections_created
                  || (elf_hash_table (info)->dynamic_sections_created
                      && p->d.h != NULL
                      && p->d.h != NULL
                      && p->d.h->root.def_dynamic
                      && p->d.h->root.def_dynamic
                      && !p->d.h->root.def_regular))
                      && !p->d.h->root.def_regular))
                {
                {
                  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
                  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
                     the various compatibility problems, it's easier to mock
                     the various compatibility problems, it's easier to mock
                     up an R_MIPS_32 or R_MIPS_64 relocation and leave
                     up an R_MIPS_32 or R_MIPS_64 relocation and leave
                     mips_elf_create_dynamic_relocation to calculate the
                     mips_elf_create_dynamic_relocation to calculate the
                     appropriate addend.  */
                     appropriate addend.  */
                  Elf_Internal_Rela rel[3];
                  Elf_Internal_Rela rel[3];
 
 
                  memset (rel, 0, sizeof (rel));
                  memset (rel, 0, sizeof (rel));
                  if (ABI_64_P (output_bfd))
                  if (ABI_64_P (output_bfd))
                    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
                    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
                  else
                  else
                    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
                    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
                  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
                  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
 
 
                  entry = 0;
                  entry = 0;
                  if (! (mips_elf_create_dynamic_relocation
                  if (! (mips_elf_create_dynamic_relocation
                         (output_bfd, info, rel,
                         (output_bfd, info, rel,
                          e.d.h, NULL, sym->st_value, &entry, sgot)))
                          e.d.h, NULL, sym->st_value, &entry, sgot)))
                    return FALSE;
                    return FALSE;
                }
                }
              else
              else
                entry = sym->st_value;
                entry = sym->st_value;
              MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
              MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
            }
            }
        }
        }
    }
    }
 
 
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
  name = h->root.root.string;
  name = h->root.root.string;
  if (strcmp (name, "_DYNAMIC") == 0
  if (strcmp (name, "_DYNAMIC") == 0
      || h == elf_hash_table (info)->hgot)
      || h == elf_hash_table (info)->hgot)
    sym->st_shndx = SHN_ABS;
    sym->st_shndx = SHN_ABS;
  else if (strcmp (name, "_DYNAMIC_LINK") == 0
  else if (strcmp (name, "_DYNAMIC_LINK") == 0
           || strcmp (name, "_DYNAMIC_LINKING") == 0)
           || strcmp (name, "_DYNAMIC_LINKING") == 0)
    {
    {
      sym->st_shndx = SHN_ABS;
      sym->st_shndx = SHN_ABS;
      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
      sym->st_value = 1;
      sym->st_value = 1;
    }
    }
  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
    {
    {
      sym->st_shndx = SHN_ABS;
      sym->st_shndx = SHN_ABS;
      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
      sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
      sym->st_value = elf_gp (output_bfd);
      sym->st_value = elf_gp (output_bfd);
    }
    }
  else if (SGI_COMPAT (output_bfd))
  else if (SGI_COMPAT (output_bfd))
    {
    {
      if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
      if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
          || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
          || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
        {
        {
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
          sym->st_other = STO_PROTECTED;
          sym->st_other = STO_PROTECTED;
          sym->st_value = 0;
          sym->st_value = 0;
          sym->st_shndx = SHN_MIPS_DATA;
          sym->st_shndx = SHN_MIPS_DATA;
        }
        }
      else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
      else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
        {
        {
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
          sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
          sym->st_other = STO_PROTECTED;
          sym->st_other = STO_PROTECTED;
          sym->st_value = mips_elf_hash_table (info)->procedure_count;
          sym->st_value = mips_elf_hash_table (info)->procedure_count;
          sym->st_shndx = SHN_ABS;
          sym->st_shndx = SHN_ABS;
        }
        }
      else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
      else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
        {
        {
          if (h->type == STT_FUNC)
          if (h->type == STT_FUNC)
            sym->st_shndx = SHN_MIPS_TEXT;
            sym->st_shndx = SHN_MIPS_TEXT;
          else if (h->type == STT_OBJECT)
          else if (h->type == STT_OBJECT)
            sym->st_shndx = SHN_MIPS_DATA;
            sym->st_shndx = SHN_MIPS_DATA;
        }
        }
    }
    }
 
 
  /* Emit a copy reloc, if needed.  */
  /* Emit a copy reloc, if needed.  */
  if (h->needs_copy)
  if (h->needs_copy)
    {
    {
      asection *s;
      asection *s;
      bfd_vma symval;
      bfd_vma symval;
 
 
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (htab->use_plts_and_copy_relocs);
      BFD_ASSERT (htab->use_plts_and_copy_relocs);
 
 
      s = mips_elf_rel_dyn_section (info, FALSE);
      s = mips_elf_rel_dyn_section (info, FALSE);
      symval = (h->root.u.def.section->output_section->vma
      symval = (h->root.u.def.section->output_section->vma
                + h->root.u.def.section->output_offset
                + h->root.u.def.section->output_offset
                + h->root.u.def.value);
                + h->root.u.def.value);
      mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
      mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
                                          h->dynindx, R_MIPS_COPY, symval);
                                          h->dynindx, R_MIPS_COPY, symval);
    }
    }
 
 
  /* Handle the IRIX6-specific symbols.  */
  /* Handle the IRIX6-specific symbols.  */
  if (IRIX_COMPAT (output_bfd) == ict_irix6)
  if (IRIX_COMPAT (output_bfd) == ict_irix6)
    mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
    mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
 
 
  if (! info->shared)
 
    {
 
      if (! mips_elf_hash_table (info)->use_rld_obj_head
 
          && (strcmp (name, "__rld_map") == 0
 
              || strcmp (name, "__RLD_MAP") == 0))
 
        {
 
          asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
 
          BFD_ASSERT (s != NULL);
 
          sym->st_value = s->output_section->vma + s->output_offset;
 
          bfd_put_32 (output_bfd, 0, s->contents);
 
          if (mips_elf_hash_table (info)->rld_value == 0)
 
            mips_elf_hash_table (info)->rld_value = sym->st_value;
 
        }
 
      else if (mips_elf_hash_table (info)->use_rld_obj_head
 
               && strcmp (name, "__rld_obj_head") == 0)
 
        {
 
          /* IRIX6 does not use a .rld_map section.  */
 
          if (IRIX_COMPAT (output_bfd) == ict_irix5
 
              || IRIX_COMPAT (output_bfd) == ict_none)
 
            BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
 
                        != NULL);
 
          mips_elf_hash_table (info)->rld_value = sym->st_value;
 
        }
 
    }
 
 
 
  /* Keep dynamic MIPS16 symbols odd.  This allows the dynamic linker to
  /* Keep dynamic MIPS16 symbols odd.  This allows the dynamic linker to
     treat MIPS16 symbols like any other.  */
     treat MIPS16 symbols like any other.  */
  if (ELF_ST_IS_MIPS16 (sym->st_other))
  if (ELF_ST_IS_MIPS16 (sym->st_other))
    {
    {
      BFD_ASSERT (sym->st_value & 1);
      BFD_ASSERT (sym->st_value & 1);
      sym->st_other -= STO_MIPS16;
      sym->st_other -= STO_MIPS16;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Likewise, for VxWorks.  */
/* Likewise, for VxWorks.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
                                         struct bfd_link_info *info,
                                         struct bfd_link_info *info,
                                         struct elf_link_hash_entry *h,
                                         struct elf_link_hash_entry *h,
                                         Elf_Internal_Sym *sym)
                                         Elf_Internal_Sym *sym)
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *sgot;
  asection *sgot;
  struct mips_got_info *g;
  struct mips_got_info *g;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_entry *hmips;
  struct mips_elf_link_hash_entry *hmips;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  hmips = (struct mips_elf_link_hash_entry *) h;
  hmips = (struct mips_elf_link_hash_entry *) h;
 
 
  if (h->plt.offset != (bfd_vma) -1)
  if (h->plt.offset != (bfd_vma) -1)
    {
    {
      bfd_byte *loc;
      bfd_byte *loc;
      bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
      bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
      static const bfd_vma *plt_entry;
      static const bfd_vma *plt_entry;
 
 
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (htab->splt != NULL);
      BFD_ASSERT (htab->splt != NULL);
      BFD_ASSERT (h->plt.offset <= htab->splt->size);
      BFD_ASSERT (h->plt.offset <= htab->splt->size);
 
 
      /* Calculate the address of the .plt entry.  */
      /* Calculate the address of the .plt entry.  */
      plt_address = (htab->splt->output_section->vma
      plt_address = (htab->splt->output_section->vma
                     + htab->splt->output_offset
                     + htab->splt->output_offset
                     + h->plt.offset);
                     + h->plt.offset);
 
 
      /* Calculate the index of the entry.  */
      /* Calculate the index of the entry.  */
      plt_index = ((h->plt.offset - htab->plt_header_size)
      plt_index = ((h->plt.offset - htab->plt_header_size)
                   / htab->plt_entry_size);
                   / htab->plt_entry_size);
 
 
      /* Calculate the address of the .got.plt entry.  */
      /* Calculate the address of the .got.plt entry.  */
      got_address = (htab->sgotplt->output_section->vma
      got_address = (htab->sgotplt->output_section->vma
                     + htab->sgotplt->output_offset
                     + htab->sgotplt->output_offset
                     + plt_index * 4);
                     + plt_index * 4);
 
 
      /* Calculate the offset of the .got.plt entry from
      /* Calculate the offset of the .got.plt entry from
         _GLOBAL_OFFSET_TABLE_.  */
         _GLOBAL_OFFSET_TABLE_.  */
      got_offset = mips_elf_gotplt_index (info, h);
      got_offset = mips_elf_gotplt_index (info, h);
 
 
      /* Calculate the offset for the branch at the start of the PLT
      /* Calculate the offset for the branch at the start of the PLT
         entry.  The branch jumps to the beginning of .plt.  */
         entry.  The branch jumps to the beginning of .plt.  */
      branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
      branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
 
 
      /* Fill in the initial value of the .got.plt entry.  */
      /* Fill in the initial value of the .got.plt entry.  */
      bfd_put_32 (output_bfd, plt_address,
      bfd_put_32 (output_bfd, plt_address,
                  htab->sgotplt->contents + plt_index * 4);
                  htab->sgotplt->contents + plt_index * 4);
 
 
      /* Find out where the .plt entry should go.  */
      /* Find out where the .plt entry should go.  */
      loc = htab->splt->contents + h->plt.offset;
      loc = htab->splt->contents + h->plt.offset;
 
 
      if (info->shared)
      if (info->shared)
        {
        {
          plt_entry = mips_vxworks_shared_plt_entry;
          plt_entry = mips_vxworks_shared_plt_entry;
          bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
          bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
          bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
          bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
        }
        }
      else
      else
        {
        {
          bfd_vma got_address_high, got_address_low;
          bfd_vma got_address_high, got_address_low;
 
 
          plt_entry = mips_vxworks_exec_plt_entry;
          plt_entry = mips_vxworks_exec_plt_entry;
          got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
          got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
          got_address_low = got_address & 0xffff;
          got_address_low = got_address & 0xffff;
 
 
          bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
          bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
          bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
          bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
          bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
          bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
          bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
          bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
          bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
          bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
          bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
          bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
          bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
          bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
          bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
 
 
          loc = (htab->srelplt2->contents
          loc = (htab->srelplt2->contents
                 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
                 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
 
 
          /* Emit a relocation for the .got.plt entry.  */
          /* Emit a relocation for the .got.plt entry.  */
          rel.r_offset = got_address;
          rel.r_offset = got_address;
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
          rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
          rel.r_addend = h->plt.offset;
          rel.r_addend = h->plt.offset;
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
 
 
          /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
          /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
          loc += sizeof (Elf32_External_Rela);
          loc += sizeof (Elf32_External_Rela);
          rel.r_offset = plt_address + 8;
          rel.r_offset = plt_address + 8;
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
          rel.r_addend = got_offset;
          rel.r_addend = got_offset;
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
 
 
          /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
          /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
          loc += sizeof (Elf32_External_Rela);
          loc += sizeof (Elf32_External_Rela);
          rel.r_offset += 4;
          rel.r_offset += 4;
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
          rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
          bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
        }
        }
 
 
      /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
      /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
      loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
      loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
      rel.r_offset = got_address;
      rel.r_offset = got_address;
      rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
      rel.r_addend = 0;
      rel.r_addend = 0;
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
 
 
      if (!h->def_regular)
      if (!h->def_regular)
        sym->st_shndx = SHN_UNDEF;
        sym->st_shndx = SHN_UNDEF;
    }
    }
 
 
  BFD_ASSERT (h->dynindx != -1 || h->forced_local);
  BFD_ASSERT (h->dynindx != -1 || h->forced_local);
 
 
  sgot = htab->sgot;
  sgot = htab->sgot;
  g = htab->got_info;
  g = htab->got_info;
  BFD_ASSERT (g != NULL);
  BFD_ASSERT (g != NULL);
 
 
  /* See if this symbol has an entry in the GOT.  */
  /* See if this symbol has an entry in the GOT.  */
  if (hmips->global_got_area != GGA_NONE)
  if (hmips->global_got_area != GGA_NONE)
    {
    {
      bfd_vma offset;
      bfd_vma offset;
      Elf_Internal_Rela outrel;
      Elf_Internal_Rela outrel;
      bfd_byte *loc;
      bfd_byte *loc;
      asection *s;
      asection *s;
 
 
      /* Install the symbol value in the GOT.   */
      /* Install the symbol value in the GOT.   */
      offset = mips_elf_global_got_index (dynobj, output_bfd, h,
      offset = mips_elf_global_got_index (dynobj, output_bfd, h,
                                          R_MIPS_GOT16, info);
                                          R_MIPS_GOT16, info);
      MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
      MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
 
 
      /* Add a dynamic relocation for it.  */
      /* Add a dynamic relocation for it.  */
      s = mips_elf_rel_dyn_section (info, FALSE);
      s = mips_elf_rel_dyn_section (info, FALSE);
      loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
      loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
      outrel.r_offset = (sgot->output_section->vma
      outrel.r_offset = (sgot->output_section->vma
                         + sgot->output_offset
                         + sgot->output_offset
                         + offset);
                         + offset);
      outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
      outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
      outrel.r_addend = 0;
      outrel.r_addend = 0;
      bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
      bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
    }
    }
 
 
  /* Emit a copy reloc, if needed.  */
  /* Emit a copy reloc, if needed.  */
  if (h->needs_copy)
  if (h->needs_copy)
    {
    {
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
 
 
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
 
 
      rel.r_offset = (h->root.u.def.section->output_section->vma
      rel.r_offset = (h->root.u.def.section->output_section->vma
                      + h->root.u.def.section->output_offset
                      + h->root.u.def.section->output_offset
                      + h->root.u.def.value);
                      + h->root.u.def.value);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
      rel.r_addend = 0;
      rel.r_addend = 0;
      bfd_elf32_swap_reloca_out (output_bfd, &rel,
      bfd_elf32_swap_reloca_out (output_bfd, &rel,
                                 htab->srelbss->contents
                                 htab->srelbss->contents
                                 + (htab->srelbss->reloc_count
                                 + (htab->srelbss->reloc_count
                                    * sizeof (Elf32_External_Rela)));
                                    * sizeof (Elf32_External_Rela)));
      ++htab->srelbss->reloc_count;
      ++htab->srelbss->reloc_count;
    }
    }
 
 
  /* If this is a mips16/microMIPS symbol, force the value to be even.  */
  /* If this is a mips16/microMIPS symbol, force the value to be even.  */
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
  if (ELF_ST_IS_COMPRESSED (sym->st_other))
    sym->st_value &= ~1;
    sym->st_value &= ~1;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Write out a plt0 entry to the beginning of .plt.  */
/* Write out a plt0 entry to the beginning of .plt.  */
 
 
static void
static void
mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
{
{
  bfd_byte *loc;
  bfd_byte *loc;
  bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
  bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
  static const bfd_vma *plt_entry;
  static const bfd_vma *plt_entry;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  if (ABI_64_P (output_bfd))
  if (ABI_64_P (output_bfd))
    plt_entry = mips_n64_exec_plt0_entry;
    plt_entry = mips_n64_exec_plt0_entry;
  else if (ABI_N32_P (output_bfd))
  else if (ABI_N32_P (output_bfd))
    plt_entry = mips_n32_exec_plt0_entry;
    plt_entry = mips_n32_exec_plt0_entry;
  else
  else
    plt_entry = mips_o32_exec_plt0_entry;
    plt_entry = mips_o32_exec_plt0_entry;
 
 
  /* Calculate the value of .got.plt.  */
  /* Calculate the value of .got.plt.  */
  gotplt_value = (htab->sgotplt->output_section->vma
  gotplt_value = (htab->sgotplt->output_section->vma
                  + htab->sgotplt->output_offset);
                  + htab->sgotplt->output_offset);
  gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
  gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
  gotplt_value_low = gotplt_value & 0xffff;
  gotplt_value_low = gotplt_value & 0xffff;
 
 
  /* The PLT sequence is not safe for N64 if .got.plt's address can
  /* The PLT sequence is not safe for N64 if .got.plt's address can
     not be loaded in two instructions.  */
     not be loaded in two instructions.  */
  BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
  BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
              || ~(gotplt_value | 0x7fffffff) == 0);
              || ~(gotplt_value | 0x7fffffff) == 0);
 
 
  /* Install the PLT header.  */
  /* Install the PLT header.  */
  loc = htab->splt->contents;
  loc = htab->splt->contents;
  bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
  bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
  bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
  bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
  bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
  bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
}
}
 
 
/* Install the PLT header for a VxWorks executable and finalize the
/* Install the PLT header for a VxWorks executable and finalize the
   contents of .rela.plt.unloaded.  */
   contents of .rela.plt.unloaded.  */
 
 
static void
static void
mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
{
{
  Elf_Internal_Rela rela;
  Elf_Internal_Rela rela;
  bfd_byte *loc;
  bfd_byte *loc;
  bfd_vma got_value, got_value_high, got_value_low, plt_address;
  bfd_vma got_value, got_value_high, got_value_low, plt_address;
  static const bfd_vma *plt_entry;
  static const bfd_vma *plt_entry;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  plt_entry = mips_vxworks_exec_plt0_entry;
  plt_entry = mips_vxworks_exec_plt0_entry;
 
 
  /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
  /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
  got_value = (htab->root.hgot->root.u.def.section->output_section->vma
  got_value = (htab->root.hgot->root.u.def.section->output_section->vma
               + htab->root.hgot->root.u.def.section->output_offset
               + htab->root.hgot->root.u.def.section->output_offset
               + htab->root.hgot->root.u.def.value);
               + htab->root.hgot->root.u.def.value);
 
 
  got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
  got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
  got_value_low = got_value & 0xffff;
  got_value_low = got_value & 0xffff;
 
 
  /* Calculate the address of the PLT header.  */
  /* Calculate the address of the PLT header.  */
  plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
  plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
 
 
  /* Install the PLT header.  */
  /* Install the PLT header.  */
  loc = htab->splt->contents;
  loc = htab->splt->contents;
  bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
  bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
  bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
  bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
  bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
  bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
  bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
  bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
 
 
  /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
  /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
  loc = htab->srelplt2->contents;
  loc = htab->srelplt2->contents;
  rela.r_offset = plt_address;
  rela.r_offset = plt_address;
  rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
  rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
  rela.r_addend = 0;
  rela.r_addend = 0;
  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
  loc += sizeof (Elf32_External_Rela);
  loc += sizeof (Elf32_External_Rela);
 
 
  /* Output the relocation for the following addiu of
  /* Output the relocation for the following addiu of
     %lo(_GLOBAL_OFFSET_TABLE_).  */
     %lo(_GLOBAL_OFFSET_TABLE_).  */
  rela.r_offset += 4;
  rela.r_offset += 4;
  rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
  rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
  loc += sizeof (Elf32_External_Rela);
  loc += sizeof (Elf32_External_Rela);
 
 
  /* Fix up the remaining relocations.  They may have the wrong
  /* Fix up the remaining relocations.  They may have the wrong
     symbol index for _G_O_T_ or _P_L_T_ depending on the order
     symbol index for _G_O_T_ or _P_L_T_ depending on the order
     in which symbols were output.  */
     in which symbols were output.  */
  while (loc < htab->srelplt2->contents + htab->srelplt2->size)
  while (loc < htab->srelplt2->contents + htab->srelplt2->size)
    {
    {
      Elf_Internal_Rela rel;
      Elf_Internal_Rela rel;
 
 
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
      rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      loc += sizeof (Elf32_External_Rela);
      loc += sizeof (Elf32_External_Rela);
 
 
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      loc += sizeof (Elf32_External_Rela);
      loc += sizeof (Elf32_External_Rela);
 
 
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
      bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
      rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
      loc += sizeof (Elf32_External_Rela);
      loc += sizeof (Elf32_External_Rela);
    }
    }
}
}
 
 
/* Install the PLT header for a VxWorks shared library.  */
/* Install the PLT header for a VxWorks shared library.  */
 
 
static void
static void
mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
{
{
  unsigned int i;
  unsigned int i;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  /* We just need to copy the entry byte-by-byte.  */
  /* We just need to copy the entry byte-by-byte.  */
  for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
  for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
    bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
    bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
                htab->splt->contents + i * 4);
                htab->splt->contents + i * 4);
}
}
 
 
/* Finish up the dynamic sections.  */
/* Finish up the dynamic sections.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
                                       struct bfd_link_info *info)
                                       struct bfd_link_info *info)
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *sdyn;
  asection *sdyn;
  asection *sgot;
  asection *sgot;
  struct mips_got_info *gg, *g;
  struct mips_got_info *gg, *g;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
 
 
  sgot = htab->sgot;
  sgot = htab->sgot;
  gg = htab->got_info;
  gg = htab->got_info;
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      bfd_byte *b;
      bfd_byte *b;
      int dyn_to_skip = 0, dyn_skipped = 0;
      int dyn_to_skip = 0, dyn_skipped = 0;
 
 
      BFD_ASSERT (sdyn != NULL);
      BFD_ASSERT (sdyn != NULL);
      BFD_ASSERT (gg != NULL);
      BFD_ASSERT (gg != NULL);
 
 
      g = mips_elf_got_for_ibfd (gg, output_bfd);
      g = mips_elf_got_for_ibfd (gg, output_bfd);
      BFD_ASSERT (g != NULL);
      BFD_ASSERT (g != NULL);
 
 
      for (b = sdyn->contents;
      for (b = sdyn->contents;
           b < sdyn->contents + sdyn->size;
           b < sdyn->contents + sdyn->size;
           b += MIPS_ELF_DYN_SIZE (dynobj))
           b += MIPS_ELF_DYN_SIZE (dynobj))
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          const char *name;
          const char *name;
          size_t elemsize;
          size_t elemsize;
          asection *s;
          asection *s;
          bfd_boolean swap_out_p;
          bfd_boolean swap_out_p;
 
 
          /* Read in the current dynamic entry.  */
          /* Read in the current dynamic entry.  */
          (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
          (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
 
 
          /* Assume that we're going to modify it and write it out.  */
          /* Assume that we're going to modify it and write it out.  */
          swap_out_p = TRUE;
          swap_out_p = TRUE;
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            case DT_RELENT:
            case DT_RELENT:
              dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
              dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
              break;
              break;
 
 
            case DT_RELAENT:
            case DT_RELAENT:
              BFD_ASSERT (htab->is_vxworks);
              BFD_ASSERT (htab->is_vxworks);
              dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
              dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
              break;
              break;
 
 
            case DT_STRSZ:
            case DT_STRSZ:
              /* Rewrite DT_STRSZ.  */
              /* Rewrite DT_STRSZ.  */
              dyn.d_un.d_val =
              dyn.d_un.d_val =
                _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
                _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
              break;
              break;
 
 
            case DT_PLTGOT:
            case DT_PLTGOT:
              s = htab->sgot;
              s = htab->sgot;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              break;
              break;
 
 
            case DT_MIPS_PLTGOT:
            case DT_MIPS_PLTGOT:
              s = htab->sgotplt;
              s = htab->sgotplt;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
              break;
              break;
 
 
            case DT_MIPS_RLD_VERSION:
            case DT_MIPS_RLD_VERSION:
              dyn.d_un.d_val = 1; /* XXX */
              dyn.d_un.d_val = 1; /* XXX */
              break;
              break;
 
 
            case DT_MIPS_FLAGS:
            case DT_MIPS_FLAGS:
              dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
              dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
              break;
              break;
 
 
            case DT_MIPS_TIME_STAMP:
            case DT_MIPS_TIME_STAMP:
              {
              {
                time_t t;
                time_t t;
                time (&t);
                time (&t);
                dyn.d_un.d_val = t;
                dyn.d_un.d_val = t;
              }
              }
              break;
              break;
 
 
            case DT_MIPS_ICHECKSUM:
            case DT_MIPS_ICHECKSUM:
              /* XXX FIXME: */
              /* XXX FIXME: */
              swap_out_p = FALSE;
              swap_out_p = FALSE;
              break;
              break;
 
 
            case DT_MIPS_IVERSION:
            case DT_MIPS_IVERSION:
              /* XXX FIXME: */
              /* XXX FIXME: */
              swap_out_p = FALSE;
              swap_out_p = FALSE;
              break;
              break;
 
 
            case DT_MIPS_BASE_ADDRESS:
            case DT_MIPS_BASE_ADDRESS:
              s = output_bfd->sections;
              s = output_bfd->sections;
              BFD_ASSERT (s != NULL);
              BFD_ASSERT (s != NULL);
              dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
              dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
              break;
              break;
 
 
            case DT_MIPS_LOCAL_GOTNO:
            case DT_MIPS_LOCAL_GOTNO:
              dyn.d_un.d_val = g->local_gotno;
              dyn.d_un.d_val = g->local_gotno;
              break;
              break;
 
 
            case DT_MIPS_UNREFEXTNO:
            case DT_MIPS_UNREFEXTNO:
              /* The index into the dynamic symbol table which is the
              /* The index into the dynamic symbol table which is the
                 entry of the first external symbol that is not
                 entry of the first external symbol that is not
                 referenced within the same object.  */
                 referenced within the same object.  */
              dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
              dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
              break;
              break;
 
 
            case DT_MIPS_GOTSYM:
            case DT_MIPS_GOTSYM:
              if (gg->global_gotsym)
              if (gg->global_gotsym)
                {
                {
                  dyn.d_un.d_val = gg->global_gotsym->dynindx;
                  dyn.d_un.d_val = gg->global_gotsym->dynindx;
                  break;
                  break;
                }
                }
              /* In case if we don't have global got symbols we default
              /* In case if we don't have global got symbols we default
                 to setting DT_MIPS_GOTSYM to the same value as
                 to setting DT_MIPS_GOTSYM to the same value as
                 DT_MIPS_SYMTABNO, so we just fall through.  */
                 DT_MIPS_SYMTABNO, so we just fall through.  */
 
 
            case DT_MIPS_SYMTABNO:
            case DT_MIPS_SYMTABNO:
              name = ".dynsym";
              name = ".dynsym";
              elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
              elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
              s = bfd_get_section_by_name (output_bfd, name);
              s = bfd_get_section_by_name (output_bfd, name);
              BFD_ASSERT (s != NULL);
              BFD_ASSERT (s != NULL);
 
 
              dyn.d_un.d_val = s->size / elemsize;
              dyn.d_un.d_val = s->size / elemsize;
              break;
              break;
 
 
            case DT_MIPS_HIPAGENO:
            case DT_MIPS_HIPAGENO:
              dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
              dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
              break;
              break;
 
 
            case DT_MIPS_RLD_MAP:
            case DT_MIPS_RLD_MAP:
              dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
              {
 
                struct elf_link_hash_entry *h;
 
                h = mips_elf_hash_table (info)->rld_symbol;
 
                if (!h)
 
                  {
 
                    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
 
                    swap_out_p = FALSE;
 
                    break;
 
                  }
 
                s = h->root.u.def.section;
 
                dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
 
                                  + h->root.u.def.value);
 
              }
              break;
              break;
 
 
            case DT_MIPS_OPTIONS:
            case DT_MIPS_OPTIONS:
              s = (bfd_get_section_by_name
              s = (bfd_get_section_by_name
                   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
                   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
              dyn.d_un.d_ptr = s->vma;
              dyn.d_un.d_ptr = s->vma;
              break;
              break;
 
 
            case DT_RELASZ:
            case DT_RELASZ:
              BFD_ASSERT (htab->is_vxworks);
              BFD_ASSERT (htab->is_vxworks);
              /* The count does not include the JUMP_SLOT relocations.  */
              /* The count does not include the JUMP_SLOT relocations.  */
              if (htab->srelplt)
              if (htab->srelplt)
                dyn.d_un.d_val -= htab->srelplt->size;
                dyn.d_un.d_val -= htab->srelplt->size;
              break;
              break;
 
 
            case DT_PLTREL:
            case DT_PLTREL:
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
              if (htab->is_vxworks)
              if (htab->is_vxworks)
                dyn.d_un.d_val = DT_RELA;
                dyn.d_un.d_val = DT_RELA;
              else
              else
                dyn.d_un.d_val = DT_REL;
                dyn.d_un.d_val = DT_REL;
              break;
              break;
 
 
            case DT_PLTRELSZ:
            case DT_PLTRELSZ:
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
              dyn.d_un.d_val = htab->srelplt->size;
              dyn.d_un.d_val = htab->srelplt->size;
              break;
              break;
 
 
            case DT_JMPREL:
            case DT_JMPREL:
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
              BFD_ASSERT (htab->use_plts_and_copy_relocs);
              dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
              dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
                                + htab->srelplt->output_offset);
                                + htab->srelplt->output_offset);
              break;
              break;
 
 
            case DT_TEXTREL:
            case DT_TEXTREL:
              /* If we didn't need any text relocations after all, delete
              /* If we didn't need any text relocations after all, delete
                 the dynamic tag.  */
                 the dynamic tag.  */
              if (!(info->flags & DF_TEXTREL))
              if (!(info->flags & DF_TEXTREL))
                {
                {
                  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
                  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
                  swap_out_p = FALSE;
                  swap_out_p = FALSE;
                }
                }
              break;
              break;
 
 
            case DT_FLAGS:
            case DT_FLAGS:
              /* If we didn't need any text relocations after all, clear
              /* If we didn't need any text relocations after all, clear
                 DF_TEXTREL from DT_FLAGS.  */
                 DF_TEXTREL from DT_FLAGS.  */
              if (!(info->flags & DF_TEXTREL))
              if (!(info->flags & DF_TEXTREL))
                dyn.d_un.d_val &= ~DF_TEXTREL;
                dyn.d_un.d_val &= ~DF_TEXTREL;
              else
              else
                swap_out_p = FALSE;
                swap_out_p = FALSE;
              break;
              break;
 
 
            default:
            default:
              swap_out_p = FALSE;
              swap_out_p = FALSE;
              if (htab->is_vxworks
              if (htab->is_vxworks
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
                  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
                swap_out_p = TRUE;
                swap_out_p = TRUE;
              break;
              break;
            }
            }
 
 
          if (swap_out_p || dyn_skipped)
          if (swap_out_p || dyn_skipped)
            (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
            (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
              (dynobj, &dyn, b - dyn_skipped);
              (dynobj, &dyn, b - dyn_skipped);
 
 
          if (dyn_to_skip)
          if (dyn_to_skip)
            {
            {
              dyn_skipped += dyn_to_skip;
              dyn_skipped += dyn_to_skip;
              dyn_to_skip = 0;
              dyn_to_skip = 0;
            }
            }
        }
        }
 
 
      /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
      /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
      if (dyn_skipped > 0)
      if (dyn_skipped > 0)
        memset (b - dyn_skipped, 0, dyn_skipped);
        memset (b - dyn_skipped, 0, dyn_skipped);
    }
    }
 
 
  if (sgot != NULL && sgot->size > 0
  if (sgot != NULL && sgot->size > 0
      && !bfd_is_abs_section (sgot->output_section))
      && !bfd_is_abs_section (sgot->output_section))
    {
    {
      if (htab->is_vxworks)
      if (htab->is_vxworks)
        {
        {
          /* The first entry of the global offset table points to the
          /* The first entry of the global offset table points to the
             ".dynamic" section.  The second is initialized by the
             ".dynamic" section.  The second is initialized by the
             loader and contains the shared library identifier.
             loader and contains the shared library identifier.
             The third is also initialized by the loader and points
             The third is also initialized by the loader and points
             to the lazy resolution stub.  */
             to the lazy resolution stub.  */
          MIPS_ELF_PUT_WORD (output_bfd,
          MIPS_ELF_PUT_WORD (output_bfd,
                             sdyn->output_offset + sdyn->output_section->vma,
                             sdyn->output_offset + sdyn->output_section->vma,
                             sgot->contents);
                             sgot->contents);
          MIPS_ELF_PUT_WORD (output_bfd, 0,
          MIPS_ELF_PUT_WORD (output_bfd, 0,
                             sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
                             sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
          MIPS_ELF_PUT_WORD (output_bfd, 0,
          MIPS_ELF_PUT_WORD (output_bfd, 0,
                             sgot->contents
                             sgot->contents
                             + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
                             + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
        }
        }
      else
      else
        {
        {
          /* The first entry of the global offset table will be filled at
          /* The first entry of the global offset table will be filled at
             runtime. The second entry will be used by some runtime loaders.
             runtime. The second entry will be used by some runtime loaders.
             This isn't the case of IRIX rld.  */
             This isn't the case of IRIX rld.  */
          MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
          MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
          MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
          MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
                             sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
                             sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
        }
        }
 
 
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize
      elf_section_data (sgot->output_section)->this_hdr.sh_entsize
         = MIPS_ELF_GOT_SIZE (output_bfd);
         = MIPS_ELF_GOT_SIZE (output_bfd);
    }
    }
 
 
  /* Generate dynamic relocations for the non-primary gots.  */
  /* Generate dynamic relocations for the non-primary gots.  */
  if (gg != NULL && gg->next)
  if (gg != NULL && gg->next)
    {
    {
      Elf_Internal_Rela rel[3];
      Elf_Internal_Rela rel[3];
      bfd_vma addend = 0;
      bfd_vma addend = 0;
 
 
      memset (rel, 0, sizeof (rel));
      memset (rel, 0, sizeof (rel));
      rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
      rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
 
 
      for (g = gg->next; g->next != gg; g = g->next)
      for (g = gg->next; g->next != gg; g = g->next)
        {
        {
          bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
          bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
            + g->next->tls_gotno;
            + g->next->tls_gotno;
 
 
          MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
          MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
                             + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
                             + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
          MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
          MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
                             sgot->contents
                             sgot->contents
                             + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
                             + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
 
 
          if (! info->shared)
          if (! info->shared)
            continue;
            continue;
 
 
          while (got_index < g->assigned_gotno)
          while (got_index < g->assigned_gotno)
            {
            {
              rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
              rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
                = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
                = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
              if (!(mips_elf_create_dynamic_relocation
              if (!(mips_elf_create_dynamic_relocation
                    (output_bfd, info, rel, NULL,
                    (output_bfd, info, rel, NULL,
                     bfd_abs_section_ptr,
                     bfd_abs_section_ptr,
                     0, &addend, sgot)))
                     0, &addend, sgot)))
                return FALSE;
                return FALSE;
              BFD_ASSERT (addend == 0);
              BFD_ASSERT (addend == 0);
            }
            }
        }
        }
    }
    }
 
 
  /* The generation of dynamic relocations for the non-primary gots
  /* The generation of dynamic relocations for the non-primary gots
     adds more dynamic relocations.  We cannot count them until
     adds more dynamic relocations.  We cannot count them until
     here.  */
     here.  */
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      bfd_byte *b;
      bfd_byte *b;
      bfd_boolean swap_out_p;
      bfd_boolean swap_out_p;
 
 
      BFD_ASSERT (sdyn != NULL);
      BFD_ASSERT (sdyn != NULL);
 
 
      for (b = sdyn->contents;
      for (b = sdyn->contents;
           b < sdyn->contents + sdyn->size;
           b < sdyn->contents + sdyn->size;
           b += MIPS_ELF_DYN_SIZE (dynobj))
           b += MIPS_ELF_DYN_SIZE (dynobj))
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          asection *s;
          asection *s;
 
 
          /* Read in the current dynamic entry.  */
          /* Read in the current dynamic entry.  */
          (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
          (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
 
 
          /* Assume that we're going to modify it and write it out.  */
          /* Assume that we're going to modify it and write it out.  */
          swap_out_p = TRUE;
          swap_out_p = TRUE;
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            case DT_RELSZ:
            case DT_RELSZ:
              /* Reduce DT_RELSZ to account for any relocations we
              /* Reduce DT_RELSZ to account for any relocations we
                 decided not to make.  This is for the n64 irix rld,
                 decided not to make.  This is for the n64 irix rld,
                 which doesn't seem to apply any relocations if there
                 which doesn't seem to apply any relocations if there
                 are trailing null entries.  */
                 are trailing null entries.  */
              s = mips_elf_rel_dyn_section (info, FALSE);
              s = mips_elf_rel_dyn_section (info, FALSE);
              dyn.d_un.d_val = (s->reloc_count
              dyn.d_un.d_val = (s->reloc_count
                                * (ABI_64_P (output_bfd)
                                * (ABI_64_P (output_bfd)
                                   ? sizeof (Elf64_Mips_External_Rel)
                                   ? sizeof (Elf64_Mips_External_Rel)
                                   : sizeof (Elf32_External_Rel)));
                                   : sizeof (Elf32_External_Rel)));
              /* Adjust the section size too.  Tools like the prelinker
              /* Adjust the section size too.  Tools like the prelinker
                 can reasonably expect the values to the same.  */
                 can reasonably expect the values to the same.  */
              elf_section_data (s->output_section)->this_hdr.sh_size
              elf_section_data (s->output_section)->this_hdr.sh_size
                = dyn.d_un.d_val;
                = dyn.d_un.d_val;
              break;
              break;
 
 
            default:
            default:
              swap_out_p = FALSE;
              swap_out_p = FALSE;
              break;
              break;
            }
            }
 
 
          if (swap_out_p)
          if (swap_out_p)
            (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
            (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
              (dynobj, &dyn, b);
              (dynobj, &dyn, b);
        }
        }
    }
    }
 
 
  {
  {
    asection *s;
    asection *s;
    Elf32_compact_rel cpt;
    Elf32_compact_rel cpt;
 
 
    if (SGI_COMPAT (output_bfd))
    if (SGI_COMPAT (output_bfd))
      {
      {
        /* Write .compact_rel section out.  */
        /* Write .compact_rel section out.  */
        s = bfd_get_section_by_name (dynobj, ".compact_rel");
        s = bfd_get_section_by_name (dynobj, ".compact_rel");
        if (s != NULL)
        if (s != NULL)
          {
          {
            cpt.id1 = 1;
            cpt.id1 = 1;
            cpt.num = s->reloc_count;
            cpt.num = s->reloc_count;
            cpt.id2 = 2;
            cpt.id2 = 2;
            cpt.offset = (s->output_section->filepos
            cpt.offset = (s->output_section->filepos
                          + sizeof (Elf32_External_compact_rel));
                          + sizeof (Elf32_External_compact_rel));
            cpt.reserved0 = 0;
            cpt.reserved0 = 0;
            cpt.reserved1 = 0;
            cpt.reserved1 = 0;
            bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
            bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
                                            ((Elf32_External_compact_rel *)
                                            ((Elf32_External_compact_rel *)
                                             s->contents));
                                             s->contents));
 
 
            /* Clean up a dummy stub function entry in .text.  */
            /* Clean up a dummy stub function entry in .text.  */
            if (htab->sstubs != NULL)
            if (htab->sstubs != NULL)
              {
              {
                file_ptr dummy_offset;
                file_ptr dummy_offset;
 
 
                BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
                BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
                dummy_offset = htab->sstubs->size - htab->function_stub_size;
                dummy_offset = htab->sstubs->size - htab->function_stub_size;
                memset (htab->sstubs->contents + dummy_offset, 0,
                memset (htab->sstubs->contents + dummy_offset, 0,
                        htab->function_stub_size);
                        htab->function_stub_size);
              }
              }
          }
          }
      }
      }
 
 
    /* The psABI says that the dynamic relocations must be sorted in
    /* The psABI says that the dynamic relocations must be sorted in
       increasing order of r_symndx.  The VxWorks EABI doesn't require
       increasing order of r_symndx.  The VxWorks EABI doesn't require
       this, and because the code below handles REL rather than RELA
       this, and because the code below handles REL rather than RELA
       relocations, using it for VxWorks would be outright harmful.  */
       relocations, using it for VxWorks would be outright harmful.  */
    if (!htab->is_vxworks)
    if (!htab->is_vxworks)
      {
      {
        s = mips_elf_rel_dyn_section (info, FALSE);
        s = mips_elf_rel_dyn_section (info, FALSE);
        if (s != NULL
        if (s != NULL
            && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
            && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
          {
          {
            reldyn_sorting_bfd = output_bfd;
            reldyn_sorting_bfd = output_bfd;
 
 
            if (ABI_64_P (output_bfd))
            if (ABI_64_P (output_bfd))
              qsort ((Elf64_External_Rel *) s->contents + 1,
              qsort ((Elf64_External_Rel *) s->contents + 1,
                     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
                     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
                     sort_dynamic_relocs_64);
                     sort_dynamic_relocs_64);
            else
            else
              qsort ((Elf32_External_Rel *) s->contents + 1,
              qsort ((Elf32_External_Rel *) s->contents + 1,
                     s->reloc_count - 1, sizeof (Elf32_External_Rel),
                     s->reloc_count - 1, sizeof (Elf32_External_Rel),
                     sort_dynamic_relocs);
                     sort_dynamic_relocs);
          }
          }
      }
      }
  }
  }
 
 
  if (htab->splt && htab->splt->size > 0)
  if (htab->splt && htab->splt->size > 0)
    {
    {
      if (htab->is_vxworks)
      if (htab->is_vxworks)
        {
        {
          if (info->shared)
          if (info->shared)
            mips_vxworks_finish_shared_plt (output_bfd, info);
            mips_vxworks_finish_shared_plt (output_bfd, info);
          else
          else
            mips_vxworks_finish_exec_plt (output_bfd, info);
            mips_vxworks_finish_exec_plt (output_bfd, info);
        }
        }
      else
      else
        {
        {
          BFD_ASSERT (!info->shared);
          BFD_ASSERT (!info->shared);
          mips_finish_exec_plt (output_bfd, info);
          mips_finish_exec_plt (output_bfd, info);
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
 
 
/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
 
 
static void
static void
mips_set_isa_flags (bfd *abfd)
mips_set_isa_flags (bfd *abfd)
{
{
  flagword val;
  flagword val;
 
 
  switch (bfd_get_mach (abfd))
  switch (bfd_get_mach (abfd))
    {
    {
    default:
    default:
    case bfd_mach_mips3000:
    case bfd_mach_mips3000:
      val = E_MIPS_ARCH_1;
      val = E_MIPS_ARCH_1;
      break;
      break;
 
 
    case bfd_mach_mips3900:
    case bfd_mach_mips3900:
      val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
      val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
      break;
      break;
 
 
    case bfd_mach_mips6000:
    case bfd_mach_mips6000:
      val = E_MIPS_ARCH_2;
      val = E_MIPS_ARCH_2;
      break;
      break;
 
 
    case bfd_mach_mips4000:
    case bfd_mach_mips4000:
    case bfd_mach_mips4300:
    case bfd_mach_mips4300:
    case bfd_mach_mips4400:
    case bfd_mach_mips4400:
    case bfd_mach_mips4600:
    case bfd_mach_mips4600:
      val = E_MIPS_ARCH_3;
      val = E_MIPS_ARCH_3;
      break;
      break;
 
 
    case bfd_mach_mips4010:
    case bfd_mach_mips4010:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
      break;
      break;
 
 
    case bfd_mach_mips4100:
    case bfd_mach_mips4100:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
      break;
      break;
 
 
    case bfd_mach_mips4111:
    case bfd_mach_mips4111:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
      break;
      break;
 
 
    case bfd_mach_mips4120:
    case bfd_mach_mips4120:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
      break;
      break;
 
 
    case bfd_mach_mips4650:
    case bfd_mach_mips4650:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
      break;
      break;
 
 
    case bfd_mach_mips5400:
    case bfd_mach_mips5400:
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
      break;
      break;
 
 
    case bfd_mach_mips5500:
    case bfd_mach_mips5500:
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
      break;
      break;
 
 
    case bfd_mach_mips9000:
    case bfd_mach_mips9000:
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
      val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
      break;
      break;
 
 
    case bfd_mach_mips5000:
    case bfd_mach_mips5000:
    case bfd_mach_mips7000:
    case bfd_mach_mips7000:
    case bfd_mach_mips8000:
    case bfd_mach_mips8000:
    case bfd_mach_mips10000:
    case bfd_mach_mips10000:
    case bfd_mach_mips12000:
    case bfd_mach_mips12000:
    case bfd_mach_mips14000:
    case bfd_mach_mips14000:
    case bfd_mach_mips16000:
    case bfd_mach_mips16000:
      val = E_MIPS_ARCH_4;
      val = E_MIPS_ARCH_4;
      break;
      break;
 
 
    case bfd_mach_mips5:
    case bfd_mach_mips5:
      val = E_MIPS_ARCH_5;
      val = E_MIPS_ARCH_5;
      break;
      break;
 
 
    case bfd_mach_mips_loongson_2e:
    case bfd_mach_mips_loongson_2e:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
      break;
      break;
 
 
    case bfd_mach_mips_loongson_2f:
    case bfd_mach_mips_loongson_2f:
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
      val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
      break;
      break;
 
 
    case bfd_mach_mips_sb1:
    case bfd_mach_mips_sb1:
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
      break;
      break;
 
 
    case bfd_mach_mips_loongson_3a:
    case bfd_mach_mips_loongson_3a:
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
      break;
      break;
 
 
    case bfd_mach_mips_octeon:
    case bfd_mach_mips_octeon:
 
    case bfd_mach_mips_octeonp:
      val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
      val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
      break;
      break;
 
 
    case bfd_mach_mips_xlr:
    case bfd_mach_mips_xlr:
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
      val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
      break;
      break;
 
 
 
    case bfd_mach_mips_octeon2:
 
      val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
 
      break;
 
 
    case bfd_mach_mipsisa32:
    case bfd_mach_mipsisa32:
      val = E_MIPS_ARCH_32;
      val = E_MIPS_ARCH_32;
      break;
      break;
 
 
    case bfd_mach_mipsisa64:
    case bfd_mach_mipsisa64:
      val = E_MIPS_ARCH_64;
      val = E_MIPS_ARCH_64;
      break;
      break;
 
 
    case bfd_mach_mipsisa32r2:
    case bfd_mach_mipsisa32r2:
      val = E_MIPS_ARCH_32R2;
      val = E_MIPS_ARCH_32R2;
      break;
      break;
 
 
    case bfd_mach_mipsisa64r2:
    case bfd_mach_mipsisa64r2:
      val = E_MIPS_ARCH_64R2;
      val = E_MIPS_ARCH_64R2;
      break;
      break;
    }
    }
  elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
  elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
  elf_elfheader (abfd)->e_flags |= val;
  elf_elfheader (abfd)->e_flags |= val;
 
 
}
}
 
 
 
 
/* The final processing done just before writing out a MIPS ELF object
/* The final processing done just before writing out a MIPS ELF object
   file.  This gets the MIPS architecture right based on the machine
   file.  This gets the MIPS architecture right based on the machine
   number.  This is used by both the 32-bit and the 64-bit ABI.  */
   number.  This is used by both the 32-bit and the 64-bit ABI.  */
 
 
void
void
_bfd_mips_elf_final_write_processing (bfd *abfd,
_bfd_mips_elf_final_write_processing (bfd *abfd,
                                      bfd_boolean linker ATTRIBUTE_UNUSED)
                                      bfd_boolean linker ATTRIBUTE_UNUSED)
{
{
  unsigned int i;
  unsigned int i;
  Elf_Internal_Shdr **hdrpp;
  Elf_Internal_Shdr **hdrpp;
  const char *name;
  const char *name;
  asection *sec;
  asection *sec;
 
 
  /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
  /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
     is nonzero.  This is for compatibility with old objects, which used
     is nonzero.  This is for compatibility with old objects, which used
     a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
     a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
    mips_set_isa_flags (abfd);
    mips_set_isa_flags (abfd);
 
 
  /* Set the sh_info field for .gptab sections and other appropriate
  /* Set the sh_info field for .gptab sections and other appropriate
     info for each special section.  */
     info for each special section.  */
  for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
  for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
       i < elf_numsections (abfd);
       i < elf_numsections (abfd);
       i++, hdrpp++)
       i++, hdrpp++)
    {
    {
      switch ((*hdrpp)->sh_type)
      switch ((*hdrpp)->sh_type)
        {
        {
        case SHT_MIPS_MSYM:
        case SHT_MIPS_MSYM:
        case SHT_MIPS_LIBLIST:
        case SHT_MIPS_LIBLIST:
          sec = bfd_get_section_by_name (abfd, ".dynstr");
          sec = bfd_get_section_by_name (abfd, ".dynstr");
          if (sec != NULL)
          if (sec != NULL)
            (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
            (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
          break;
          break;
 
 
        case SHT_MIPS_GPTAB:
        case SHT_MIPS_GPTAB:
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
          BFD_ASSERT (name != NULL
          BFD_ASSERT (name != NULL
                      && CONST_STRNEQ (name, ".gptab."));
                      && CONST_STRNEQ (name, ".gptab."));
          sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
          sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
          BFD_ASSERT (sec != NULL);
          BFD_ASSERT (sec != NULL);
          (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
          (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
          break;
          break;
 
 
        case SHT_MIPS_CONTENT:
        case SHT_MIPS_CONTENT:
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
          BFD_ASSERT (name != NULL
          BFD_ASSERT (name != NULL
                      && CONST_STRNEQ (name, ".MIPS.content"));
                      && CONST_STRNEQ (name, ".MIPS.content"));
          sec = bfd_get_section_by_name (abfd,
          sec = bfd_get_section_by_name (abfd,
                                         name + sizeof ".MIPS.content" - 1);
                                         name + sizeof ".MIPS.content" - 1);
          BFD_ASSERT (sec != NULL);
          BFD_ASSERT (sec != NULL);
          (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
          (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
          break;
          break;
 
 
        case SHT_MIPS_SYMBOL_LIB:
        case SHT_MIPS_SYMBOL_LIB:
          sec = bfd_get_section_by_name (abfd, ".dynsym");
          sec = bfd_get_section_by_name (abfd, ".dynsym");
          if (sec != NULL)
          if (sec != NULL)
            (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
            (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
          sec = bfd_get_section_by_name (abfd, ".liblist");
          sec = bfd_get_section_by_name (abfd, ".liblist");
          if (sec != NULL)
          if (sec != NULL)
            (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
            (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
          break;
          break;
 
 
        case SHT_MIPS_EVENTS:
        case SHT_MIPS_EVENTS:
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
          BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
          name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
          BFD_ASSERT (name != NULL);
          BFD_ASSERT (name != NULL);
          if (CONST_STRNEQ (name, ".MIPS.events"))
          if (CONST_STRNEQ (name, ".MIPS.events"))
            sec = bfd_get_section_by_name (abfd,
            sec = bfd_get_section_by_name (abfd,
                                           name + sizeof ".MIPS.events" - 1);
                                           name + sizeof ".MIPS.events" - 1);
          else
          else
            {
            {
              BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
              BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
              sec = bfd_get_section_by_name (abfd,
              sec = bfd_get_section_by_name (abfd,
                                             (name
                                             (name
                                              + sizeof ".MIPS.post_rel" - 1));
                                              + sizeof ".MIPS.post_rel" - 1));
            }
            }
          BFD_ASSERT (sec != NULL);
          BFD_ASSERT (sec != NULL);
          (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
          (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
          break;
          break;
 
 
        }
        }
    }
    }
}
}


/* When creating an IRIX5 executable, we need REGINFO and RTPROC
/* When creating an IRIX5 executable, we need REGINFO and RTPROC
   segments.  */
   segments.  */
 
 
int
int
_bfd_mips_elf_additional_program_headers (bfd *abfd,
_bfd_mips_elf_additional_program_headers (bfd *abfd,
                                          struct bfd_link_info *info ATTRIBUTE_UNUSED)
                                          struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
{
  asection *s;
  asection *s;
  int ret = 0;
  int ret = 0;
 
 
  /* See if we need a PT_MIPS_REGINFO segment.  */
  /* See if we need a PT_MIPS_REGINFO segment.  */
  s = bfd_get_section_by_name (abfd, ".reginfo");
  s = bfd_get_section_by_name (abfd, ".reginfo");
  if (s && (s->flags & SEC_LOAD))
  if (s && (s->flags & SEC_LOAD))
    ++ret;
    ++ret;
 
 
  /* See if we need a PT_MIPS_OPTIONS segment.  */
  /* See if we need a PT_MIPS_OPTIONS segment.  */
  if (IRIX_COMPAT (abfd) == ict_irix6
  if (IRIX_COMPAT (abfd) == ict_irix6
      && bfd_get_section_by_name (abfd,
      && bfd_get_section_by_name (abfd,
                                  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
                                  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
    ++ret;
    ++ret;
 
 
  /* See if we need a PT_MIPS_RTPROC segment.  */
  /* See if we need a PT_MIPS_RTPROC segment.  */
  if (IRIX_COMPAT (abfd) == ict_irix5
  if (IRIX_COMPAT (abfd) == ict_irix5
      && bfd_get_section_by_name (abfd, ".dynamic")
      && bfd_get_section_by_name (abfd, ".dynamic")
      && bfd_get_section_by_name (abfd, ".mdebug"))
      && bfd_get_section_by_name (abfd, ".mdebug"))
    ++ret;
    ++ret;
 
 
  /* Allocate a PT_NULL header in dynamic objects.  See
  /* Allocate a PT_NULL header in dynamic objects.  See
     _bfd_mips_elf_modify_segment_map for details.  */
     _bfd_mips_elf_modify_segment_map for details.  */
  if (!SGI_COMPAT (abfd)
  if (!SGI_COMPAT (abfd)
      && bfd_get_section_by_name (abfd, ".dynamic"))
      && bfd_get_section_by_name (abfd, ".dynamic"))
    ++ret;
    ++ret;
 
 
  return ret;
  return ret;
}
}
 
 
/* Modify the segment map for an IRIX5 executable.  */
/* Modify the segment map for an IRIX5 executable.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_modify_segment_map (bfd *abfd,
_bfd_mips_elf_modify_segment_map (bfd *abfd,
                                  struct bfd_link_info *info)
                                  struct bfd_link_info *info)
{
{
  asection *s;
  asection *s;
  struct elf_segment_map *m, **pm;
  struct elf_segment_map *m, **pm;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
  /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
     segment.  */
     segment.  */
  s = bfd_get_section_by_name (abfd, ".reginfo");
  s = bfd_get_section_by_name (abfd, ".reginfo");
  if (s != NULL && (s->flags & SEC_LOAD) != 0)
  if (s != NULL && (s->flags & SEC_LOAD) != 0)
    {
    {
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
        if (m->p_type == PT_MIPS_REGINFO)
        if (m->p_type == PT_MIPS_REGINFO)
          break;
          break;
      if (m == NULL)
      if (m == NULL)
        {
        {
          amt = sizeof *m;
          amt = sizeof *m;
          m = bfd_zalloc (abfd, amt);
          m = bfd_zalloc (abfd, amt);
          if (m == NULL)
          if (m == NULL)
            return FALSE;
            return FALSE;
 
 
          m->p_type = PT_MIPS_REGINFO;
          m->p_type = PT_MIPS_REGINFO;
          m->count = 1;
          m->count = 1;
          m->sections[0] = s;
          m->sections[0] = s;
 
 
          /* We want to put it after the PHDR and INTERP segments.  */
          /* We want to put it after the PHDR and INTERP segments.  */
          pm = &elf_tdata (abfd)->segment_map;
          pm = &elf_tdata (abfd)->segment_map;
          while (*pm != NULL
          while (*pm != NULL
                 && ((*pm)->p_type == PT_PHDR
                 && ((*pm)->p_type == PT_PHDR
                     || (*pm)->p_type == PT_INTERP))
                     || (*pm)->p_type == PT_INTERP))
            pm = &(*pm)->next;
            pm = &(*pm)->next;
 
 
          m->next = *pm;
          m->next = *pm;
          *pm = m;
          *pm = m;
        }
        }
    }
    }
 
 
  /* For IRIX 6, we don't have .mdebug sections, nor does anything but
  /* For IRIX 6, we don't have .mdebug sections, nor does anything but
     .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
     .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
     PT_MIPS_OPTIONS segment immediately following the program header
     PT_MIPS_OPTIONS segment immediately following the program header
     table.  */
     table.  */
  if (NEWABI_P (abfd)
  if (NEWABI_P (abfd)
      /* On non-IRIX6 new abi, we'll have already created a segment
      /* On non-IRIX6 new abi, we'll have already created a segment
         for this section, so don't create another.  I'm not sure this
         for this section, so don't create another.  I'm not sure this
         is not also the case for IRIX 6, but I can't test it right
         is not also the case for IRIX 6, but I can't test it right
         now.  */
         now.  */
      && IRIX_COMPAT (abfd) == ict_irix6)
      && IRIX_COMPAT (abfd) == ict_irix6)
    {
    {
      for (s = abfd->sections; s; s = s->next)
      for (s = abfd->sections; s; s = s->next)
        if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
        if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
          break;
          break;
 
 
      if (s)
      if (s)
        {
        {
          struct elf_segment_map *options_segment;
          struct elf_segment_map *options_segment;
 
 
          pm = &elf_tdata (abfd)->segment_map;
          pm = &elf_tdata (abfd)->segment_map;
          while (*pm != NULL
          while (*pm != NULL
                 && ((*pm)->p_type == PT_PHDR
                 && ((*pm)->p_type == PT_PHDR
                     || (*pm)->p_type == PT_INTERP))
                     || (*pm)->p_type == PT_INTERP))
            pm = &(*pm)->next;
            pm = &(*pm)->next;
 
 
          if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
          if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
            {
            {
              amt = sizeof (struct elf_segment_map);
              amt = sizeof (struct elf_segment_map);
              options_segment = bfd_zalloc (abfd, amt);
              options_segment = bfd_zalloc (abfd, amt);
              options_segment->next = *pm;
              options_segment->next = *pm;
              options_segment->p_type = PT_MIPS_OPTIONS;
              options_segment->p_type = PT_MIPS_OPTIONS;
              options_segment->p_flags = PF_R;
              options_segment->p_flags = PF_R;
              options_segment->p_flags_valid = TRUE;
              options_segment->p_flags_valid = TRUE;
              options_segment->count = 1;
              options_segment->count = 1;
              options_segment->sections[0] = s;
              options_segment->sections[0] = s;
              *pm = options_segment;
              *pm = options_segment;
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      if (IRIX_COMPAT (abfd) == ict_irix5)
      if (IRIX_COMPAT (abfd) == ict_irix5)
        {
        {
          /* If there are .dynamic and .mdebug sections, we make a room
          /* If there are .dynamic and .mdebug sections, we make a room
             for the RTPROC header.  FIXME: Rewrite without section names.  */
             for the RTPROC header.  FIXME: Rewrite without section names.  */
          if (bfd_get_section_by_name (abfd, ".interp") == NULL
          if (bfd_get_section_by_name (abfd, ".interp") == NULL
              && bfd_get_section_by_name (abfd, ".dynamic") != NULL
              && bfd_get_section_by_name (abfd, ".dynamic") != NULL
              && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
              && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
            {
            {
              for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
              for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
                if (m->p_type == PT_MIPS_RTPROC)
                if (m->p_type == PT_MIPS_RTPROC)
                  break;
                  break;
              if (m == NULL)
              if (m == NULL)
                {
                {
                  amt = sizeof *m;
                  amt = sizeof *m;
                  m = bfd_zalloc (abfd, amt);
                  m = bfd_zalloc (abfd, amt);
                  if (m == NULL)
                  if (m == NULL)
                    return FALSE;
                    return FALSE;
 
 
                  m->p_type = PT_MIPS_RTPROC;
                  m->p_type = PT_MIPS_RTPROC;
 
 
                  s = bfd_get_section_by_name (abfd, ".rtproc");
                  s = bfd_get_section_by_name (abfd, ".rtproc");
                  if (s == NULL)
                  if (s == NULL)
                    {
                    {
                      m->count = 0;
                      m->count = 0;
                      m->p_flags = 0;
                      m->p_flags = 0;
                      m->p_flags_valid = 1;
                      m->p_flags_valid = 1;
                    }
                    }
                  else
                  else
                    {
                    {
                      m->count = 1;
                      m->count = 1;
                      m->sections[0] = s;
                      m->sections[0] = s;
                    }
                    }
 
 
                  /* We want to put it after the DYNAMIC segment.  */
                  /* We want to put it after the DYNAMIC segment.  */
                  pm = &elf_tdata (abfd)->segment_map;
                  pm = &elf_tdata (abfd)->segment_map;
                  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
                  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
                    pm = &(*pm)->next;
                    pm = &(*pm)->next;
                  if (*pm != NULL)
                  if (*pm != NULL)
                    pm = &(*pm)->next;
                    pm = &(*pm)->next;
 
 
                  m->next = *pm;
                  m->next = *pm;
                  *pm = m;
                  *pm = m;
                }
                }
            }
            }
        }
        }
      /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
      /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
         .dynstr, .dynsym, and .hash sections, and everything in
         .dynstr, .dynsym, and .hash sections, and everything in
         between.  */
         between.  */
      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
           pm = &(*pm)->next)
           pm = &(*pm)->next)
        if ((*pm)->p_type == PT_DYNAMIC)
        if ((*pm)->p_type == PT_DYNAMIC)
          break;
          break;
      m = *pm;
      m = *pm;
      if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
      if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
        {
        {
          /* For a normal mips executable the permissions for the PT_DYNAMIC
          /* For a normal mips executable the permissions for the PT_DYNAMIC
             segment are read, write and execute. We do that here since
             segment are read, write and execute. We do that here since
             the code in elf.c sets only the read permission. This matters
             the code in elf.c sets only the read permission. This matters
             sometimes for the dynamic linker.  */
             sometimes for the dynamic linker.  */
          if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
          if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
            {
            {
              m->p_flags = PF_R | PF_W | PF_X;
              m->p_flags = PF_R | PF_W | PF_X;
              m->p_flags_valid = 1;
              m->p_flags_valid = 1;
            }
            }
        }
        }
      /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
      /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
         glibc's dynamic linker has traditionally derived the number of
         glibc's dynamic linker has traditionally derived the number of
         tags from the p_filesz field, and sometimes allocates stack
         tags from the p_filesz field, and sometimes allocates stack
         arrays of that size.  An overly-big PT_DYNAMIC segment can
         arrays of that size.  An overly-big PT_DYNAMIC segment can
         be actively harmful in such cases.  Making PT_DYNAMIC contain
         be actively harmful in such cases.  Making PT_DYNAMIC contain
         other sections can also make life hard for the prelinker,
         other sections can also make life hard for the prelinker,
         which might move one of the other sections to a different
         which might move one of the other sections to a different
         PT_LOAD segment.  */
         PT_LOAD segment.  */
      if (SGI_COMPAT (abfd)
      if (SGI_COMPAT (abfd)
          && m != NULL
          && m != NULL
          && m->count == 1
          && m->count == 1
          && strcmp (m->sections[0]->name, ".dynamic") == 0)
          && strcmp (m->sections[0]->name, ".dynamic") == 0)
        {
        {
          static const char *sec_names[] =
          static const char *sec_names[] =
          {
          {
            ".dynamic", ".dynstr", ".dynsym", ".hash"
            ".dynamic", ".dynstr", ".dynsym", ".hash"
          };
          };
          bfd_vma low, high;
          bfd_vma low, high;
          unsigned int i, c;
          unsigned int i, c;
          struct elf_segment_map *n;
          struct elf_segment_map *n;
 
 
          low = ~(bfd_vma) 0;
          low = ~(bfd_vma) 0;
          high = 0;
          high = 0;
          for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
          for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
            {
            {
              s = bfd_get_section_by_name (abfd, sec_names[i]);
              s = bfd_get_section_by_name (abfd, sec_names[i]);
              if (s != NULL && (s->flags & SEC_LOAD) != 0)
              if (s != NULL && (s->flags & SEC_LOAD) != 0)
                {
                {
                  bfd_size_type sz;
                  bfd_size_type sz;
 
 
                  if (low > s->vma)
                  if (low > s->vma)
                    low = s->vma;
                    low = s->vma;
                  sz = s->size;
                  sz = s->size;
                  if (high < s->vma + sz)
                  if (high < s->vma + sz)
                    high = s->vma + sz;
                    high = s->vma + sz;
                }
                }
            }
            }
 
 
          c = 0;
          c = 0;
          for (s = abfd->sections; s != NULL; s = s->next)
          for (s = abfd->sections; s != NULL; s = s->next)
            if ((s->flags & SEC_LOAD) != 0
            if ((s->flags & SEC_LOAD) != 0
                && s->vma >= low
                && s->vma >= low
                && s->vma + s->size <= high)
                && s->vma + s->size <= high)
              ++c;
              ++c;
 
 
          amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
          amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
          n = bfd_zalloc (abfd, amt);
          n = bfd_zalloc (abfd, amt);
          if (n == NULL)
          if (n == NULL)
            return FALSE;
            return FALSE;
          *n = *m;
          *n = *m;
          n->count = c;
          n->count = c;
 
 
          i = 0;
          i = 0;
          for (s = abfd->sections; s != NULL; s = s->next)
          for (s = abfd->sections; s != NULL; s = s->next)
            {
            {
              if ((s->flags & SEC_LOAD) != 0
              if ((s->flags & SEC_LOAD) != 0
                  && s->vma >= low
                  && s->vma >= low
                  && s->vma + s->size <= high)
                  && s->vma + s->size <= high)
                {
                {
                  n->sections[i] = s;
                  n->sections[i] = s;
                  ++i;
                  ++i;
                }
                }
            }
            }
 
 
          *pm = n;
          *pm = n;
        }
        }
    }
    }
 
 
  /* Allocate a spare program header in dynamic objects so that tools
  /* Allocate a spare program header in dynamic objects so that tools
     like the prelinker can add an extra PT_LOAD entry.
     like the prelinker can add an extra PT_LOAD entry.
 
 
     If the prelinker needs to make room for a new PT_LOAD entry, its
     If the prelinker needs to make room for a new PT_LOAD entry, its
     standard procedure is to move the first (read-only) sections into
     standard procedure is to move the first (read-only) sections into
     the new (writable) segment.  However, the MIPS ABI requires
     the new (writable) segment.  However, the MIPS ABI requires
     .dynamic to be in a read-only segment, and the section will often
     .dynamic to be in a read-only segment, and the section will often
     start within sizeof (ElfNN_Phdr) bytes of the last program header.
     start within sizeof (ElfNN_Phdr) bytes of the last program header.
 
 
     Although the prelinker could in principle move .dynamic to a
     Although the prelinker could in principle move .dynamic to a
     writable segment, it seems better to allocate a spare program
     writable segment, it seems better to allocate a spare program
     header instead, and avoid the need to move any sections.
     header instead, and avoid the need to move any sections.
     There is a long tradition of allocating spare dynamic tags,
     There is a long tradition of allocating spare dynamic tags,
     so allocating a spare program header seems like a natural
     so allocating a spare program header seems like a natural
     extension.
     extension.
 
 
     If INFO is NULL, we may be copying an already prelinked binary
     If INFO is NULL, we may be copying an already prelinked binary
     with objcopy or strip, so do not add this header.  */
     with objcopy or strip, so do not add this header.  */
  if (info != NULL
  if (info != NULL
      && !SGI_COMPAT (abfd)
      && !SGI_COMPAT (abfd)
      && bfd_get_section_by_name (abfd, ".dynamic"))
      && bfd_get_section_by_name (abfd, ".dynamic"))
    {
    {
      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
      for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
        if ((*pm)->p_type == PT_NULL)
        if ((*pm)->p_type == PT_NULL)
          break;
          break;
      if (*pm == NULL)
      if (*pm == NULL)
        {
        {
          m = bfd_zalloc (abfd, sizeof (*m));
          m = bfd_zalloc (abfd, sizeof (*m));
          if (m == NULL)
          if (m == NULL)
            return FALSE;
            return FALSE;
 
 
          m->p_type = PT_NULL;
          m->p_type = PT_NULL;
          *pm = m;
          *pm = m;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}


/* Return the section that should be marked against GC for a given
/* Return the section that should be marked against GC for a given
   relocation.  */
   relocation.  */
 
 
asection *
asection *
_bfd_mips_elf_gc_mark_hook (asection *sec,
_bfd_mips_elf_gc_mark_hook (asection *sec,
                            struct bfd_link_info *info,
                            struct bfd_link_info *info,
                            Elf_Internal_Rela *rel,
                            Elf_Internal_Rela *rel,
                            struct elf_link_hash_entry *h,
                            struct elf_link_hash_entry *h,
                            Elf_Internal_Sym *sym)
                            Elf_Internal_Sym *sym)
{
{
  /* ??? Do mips16 stub sections need to be handled special?  */
  /* ??? Do mips16 stub sections need to be handled special?  */
 
 
  if (h != NULL)
  if (h != NULL)
    switch (ELF_R_TYPE (sec->owner, rel->r_info))
    switch (ELF_R_TYPE (sec->owner, rel->r_info))
      {
      {
      case R_MIPS_GNU_VTINHERIT:
      case R_MIPS_GNU_VTINHERIT:
      case R_MIPS_GNU_VTENTRY:
      case R_MIPS_GNU_VTENTRY:
        return NULL;
        return NULL;
      }
      }
 
 
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
}
 
 
/* Update the got entry reference counts for the section being removed.  */
/* Update the got entry reference counts for the section being removed.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
                             struct bfd_link_info *info ATTRIBUTE_UNUSED,
                             struct bfd_link_info *info ATTRIBUTE_UNUSED,
                             asection *sec ATTRIBUTE_UNUSED,
                             asection *sec ATTRIBUTE_UNUSED,
                             const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
                             const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
{
{
#if 0
#if 0
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  bfd_signed_vma *local_got_refcounts;
  bfd_signed_vma *local_got_refcounts;
  const Elf_Internal_Rela *rel, *relend;
  const Elf_Internal_Rela *rel, *relend;
  unsigned long r_symndx;
  unsigned long r_symndx;
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
 
 
  if (info->relocatable)
  if (info->relocatable)
    return TRUE;
    return TRUE;
 
 
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
  local_got_refcounts = elf_local_got_refcounts (abfd);
 
 
  relend = relocs + sec->reloc_count;
  relend = relocs + sec->reloc_count;
  for (rel = relocs; rel < relend; rel++)
  for (rel = relocs; rel < relend; rel++)
    switch (ELF_R_TYPE (abfd, rel->r_info))
    switch (ELF_R_TYPE (abfd, rel->r_info))
      {
      {
      case R_MIPS16_GOT16:
      case R_MIPS16_GOT16:
      case R_MIPS16_CALL16:
      case R_MIPS16_CALL16:
      case R_MIPS_GOT16:
      case R_MIPS_GOT16:
      case R_MIPS_CALL16:
      case R_MIPS_CALL16:
      case R_MIPS_CALL_HI16:
      case R_MIPS_CALL_HI16:
      case R_MIPS_CALL_LO16:
      case R_MIPS_CALL_LO16:
      case R_MIPS_GOT_HI16:
      case R_MIPS_GOT_HI16:
      case R_MIPS_GOT_LO16:
      case R_MIPS_GOT_LO16:
      case R_MIPS_GOT_DISP:
      case R_MIPS_GOT_DISP:
      case R_MIPS_GOT_PAGE:
      case R_MIPS_GOT_PAGE:
      case R_MIPS_GOT_OFST:
      case R_MIPS_GOT_OFST:
      case R_MICROMIPS_GOT16:
      case R_MICROMIPS_GOT16:
      case R_MICROMIPS_CALL16:
      case R_MICROMIPS_CALL16:
      case R_MICROMIPS_CALL_HI16:
      case R_MICROMIPS_CALL_HI16:
      case R_MICROMIPS_CALL_LO16:
      case R_MICROMIPS_CALL_LO16:
      case R_MICROMIPS_GOT_HI16:
      case R_MICROMIPS_GOT_HI16:
      case R_MICROMIPS_GOT_LO16:
      case R_MICROMIPS_GOT_LO16:
      case R_MICROMIPS_GOT_DISP:
      case R_MICROMIPS_GOT_DISP:
      case R_MICROMIPS_GOT_PAGE:
      case R_MICROMIPS_GOT_PAGE:
      case R_MICROMIPS_GOT_OFST:
      case R_MICROMIPS_GOT_OFST:
        /* ??? It would seem that the existing MIPS code does no sort
        /* ??? It would seem that the existing MIPS code does no sort
           of reference counting or whatnot on its GOT and PLT entries,
           of reference counting or whatnot on its GOT and PLT entries,
           so it is not possible to garbage collect them at this time.  */
           so it is not possible to garbage collect them at this time.  */
        break;
        break;
 
 
      default:
      default:
        break;
        break;
      }
      }
#endif
#endif
 
 
  return TRUE;
  return TRUE;
}
}


/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
   hiding the old indirect symbol.  Process additional relocation
   hiding the old indirect symbol.  Process additional relocation
   information.  Also called for weakdefs, in which case we just let
   information.  Also called for weakdefs, in which case we just let
   _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
   _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
 
 
void
void
_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
                                    struct elf_link_hash_entry *dir,
                                    struct elf_link_hash_entry *dir,
                                    struct elf_link_hash_entry *ind)
                                    struct elf_link_hash_entry *ind)
{
{
  struct mips_elf_link_hash_entry *dirmips, *indmips;
  struct mips_elf_link_hash_entry *dirmips, *indmips;
 
 
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
 
 
  dirmips = (struct mips_elf_link_hash_entry *) dir;
  dirmips = (struct mips_elf_link_hash_entry *) dir;
  indmips = (struct mips_elf_link_hash_entry *) ind;
  indmips = (struct mips_elf_link_hash_entry *) ind;
  /* Any absolute non-dynamic relocations against an indirect or weak
  /* Any absolute non-dynamic relocations against an indirect or weak
     definition will be against the target symbol.  */
     definition will be against the target symbol.  */
  if (indmips->has_static_relocs)
  if (indmips->has_static_relocs)
    dirmips->has_static_relocs = TRUE;
    dirmips->has_static_relocs = TRUE;
 
 
  if (ind->root.type != bfd_link_hash_indirect)
  if (ind->root.type != bfd_link_hash_indirect)
    return;
    return;
 
 
  dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
  dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
  if (indmips->readonly_reloc)
  if (indmips->readonly_reloc)
    dirmips->readonly_reloc = TRUE;
    dirmips->readonly_reloc = TRUE;
  if (indmips->no_fn_stub)
  if (indmips->no_fn_stub)
    dirmips->no_fn_stub = TRUE;
    dirmips->no_fn_stub = TRUE;
  if (indmips->fn_stub)
  if (indmips->fn_stub)
    {
    {
      dirmips->fn_stub = indmips->fn_stub;
      dirmips->fn_stub = indmips->fn_stub;
      indmips->fn_stub = NULL;
      indmips->fn_stub = NULL;
    }
    }
  if (indmips->need_fn_stub)
  if (indmips->need_fn_stub)
    {
    {
      dirmips->need_fn_stub = TRUE;
      dirmips->need_fn_stub = TRUE;
      indmips->need_fn_stub = FALSE;
      indmips->need_fn_stub = FALSE;
    }
    }
  if (indmips->call_stub)
  if (indmips->call_stub)
    {
    {
      dirmips->call_stub = indmips->call_stub;
      dirmips->call_stub = indmips->call_stub;
      indmips->call_stub = NULL;
      indmips->call_stub = NULL;
    }
    }
  if (indmips->call_fp_stub)
  if (indmips->call_fp_stub)
    {
    {
      dirmips->call_fp_stub = indmips->call_fp_stub;
      dirmips->call_fp_stub = indmips->call_fp_stub;
      indmips->call_fp_stub = NULL;
      indmips->call_fp_stub = NULL;
    }
    }
  if (indmips->global_got_area < dirmips->global_got_area)
  if (indmips->global_got_area < dirmips->global_got_area)
    dirmips->global_got_area = indmips->global_got_area;
    dirmips->global_got_area = indmips->global_got_area;
  if (indmips->global_got_area < GGA_NONE)
  if (indmips->global_got_area < GGA_NONE)
    indmips->global_got_area = GGA_NONE;
    indmips->global_got_area = GGA_NONE;
  if (indmips->has_nonpic_branches)
  if (indmips->has_nonpic_branches)
    dirmips->has_nonpic_branches = TRUE;
    dirmips->has_nonpic_branches = TRUE;
 
 
  if (dirmips->tls_type == 0)
  if (dirmips->tls_type == 0)
    dirmips->tls_type = indmips->tls_type;
    dirmips->tls_type = indmips->tls_type;
}
}


#define PDR_SIZE 32
#define PDR_SIZE 32
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
                            struct bfd_link_info *info)
                            struct bfd_link_info *info)
{
{
  asection *o;
  asection *o;
  bfd_boolean ret = FALSE;
  bfd_boolean ret = FALSE;
  unsigned char *tdata;
  unsigned char *tdata;
  size_t i, skip;
  size_t i, skip;
 
 
  o = bfd_get_section_by_name (abfd, ".pdr");
  o = bfd_get_section_by_name (abfd, ".pdr");
  if (! o)
  if (! o)
    return FALSE;
    return FALSE;
  if (o->size == 0)
  if (o->size == 0)
    return FALSE;
    return FALSE;
  if (o->size % PDR_SIZE != 0)
  if (o->size % PDR_SIZE != 0)
    return FALSE;
    return FALSE;
  if (o->output_section != NULL
  if (o->output_section != NULL
      && bfd_is_abs_section (o->output_section))
      && bfd_is_abs_section (o->output_section))
    return FALSE;
    return FALSE;
 
 
  tdata = bfd_zmalloc (o->size / PDR_SIZE);
  tdata = bfd_zmalloc (o->size / PDR_SIZE);
  if (! tdata)
  if (! tdata)
    return FALSE;
    return FALSE;
 
 
  cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
  cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
                                            info->keep_memory);
                                            info->keep_memory);
  if (!cookie->rels)
  if (!cookie->rels)
    {
    {
      free (tdata);
      free (tdata);
      return FALSE;
      return FALSE;
    }
    }
 
 
  cookie->rel = cookie->rels;
  cookie->rel = cookie->rels;
  cookie->relend = cookie->rels + o->reloc_count;
  cookie->relend = cookie->rels + o->reloc_count;
 
 
  for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
  for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
    {
    {
      if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
      if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
        {
        {
          tdata[i] = 1;
          tdata[i] = 1;
          skip ++;
          skip ++;
        }
        }
    }
    }
 
 
  if (skip != 0)
  if (skip != 0)
    {
    {
      mips_elf_section_data (o)->u.tdata = tdata;
      mips_elf_section_data (o)->u.tdata = tdata;
      o->size -= skip * PDR_SIZE;
      o->size -= skip * PDR_SIZE;
      ret = TRUE;
      ret = TRUE;
    }
    }
  else
  else
    free (tdata);
    free (tdata);
 
 
  if (! info->keep_memory)
  if (! info->keep_memory)
    free (cookie->rels);
    free (cookie->rels);
 
 
  return ret;
  return ret;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
{
{
  if (strcmp (sec->name, ".pdr") == 0)
  if (strcmp (sec->name, ".pdr") == 0)
    return TRUE;
    return TRUE;
  return FALSE;
  return FALSE;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_write_section (bfd *output_bfd,
_bfd_mips_elf_write_section (bfd *output_bfd,
                             struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
                             struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
                             asection *sec, bfd_byte *contents)
                             asection *sec, bfd_byte *contents)
{
{
  bfd_byte *to, *from, *end;
  bfd_byte *to, *from, *end;
  int i;
  int i;
 
 
  if (strcmp (sec->name, ".pdr") != 0)
  if (strcmp (sec->name, ".pdr") != 0)
    return FALSE;
    return FALSE;
 
 
  if (mips_elf_section_data (sec)->u.tdata == NULL)
  if (mips_elf_section_data (sec)->u.tdata == NULL)
    return FALSE;
    return FALSE;
 
 
  to = contents;
  to = contents;
  end = contents + sec->size;
  end = contents + sec->size;
  for (from = contents, i = 0;
  for (from = contents, i = 0;
       from < end;
       from < end;
       from += PDR_SIZE, i++)
       from += PDR_SIZE, i++)
    {
    {
      if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
      if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
        continue;
        continue;
      if (to != from)
      if (to != from)
        memcpy (to, from, PDR_SIZE);
        memcpy (to, from, PDR_SIZE);
      to += PDR_SIZE;
      to += PDR_SIZE;
    }
    }
  bfd_set_section_contents (output_bfd, sec->output_section, contents,
  bfd_set_section_contents (output_bfd, sec->output_section, contents,
                            sec->output_offset, sec->size);
                            sec->output_offset, sec->size);
  return TRUE;
  return TRUE;
}
}


/* microMIPS code retains local labels for linker relaxation.  Omit them
/* microMIPS code retains local labels for linker relaxation.  Omit them
   from output by default for clarity.  */
   from output by default for clarity.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
{
{
  return _bfd_elf_is_local_label_name (abfd, sym->name);
  return _bfd_elf_is_local_label_name (abfd, sym->name);
}
}
 
 
/* MIPS ELF uses a special find_nearest_line routine in order the
/* MIPS ELF uses a special find_nearest_line routine in order the
   handle the ECOFF debugging information.  */
   handle the ECOFF debugging information.  */
 
 
struct mips_elf_find_line
struct mips_elf_find_line
{
{
  struct ecoff_debug_info d;
  struct ecoff_debug_info d;
  struct ecoff_find_line i;
  struct ecoff_find_line i;
};
};
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
                                 asymbol **symbols, bfd_vma offset,
                                 asymbol **symbols, bfd_vma offset,
                                 const char **filename_ptr,
                                 const char **filename_ptr,
                                 const char **functionname_ptr,
                                 const char **functionname_ptr,
                                 unsigned int *line_ptr)
                                 unsigned int *line_ptr)
{
{
  asection *msec;
  asection *msec;
 
 
  if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
  if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
                                     filename_ptr, functionname_ptr,
                                     filename_ptr, functionname_ptr,
                                     line_ptr))
                                     line_ptr))
    return TRUE;
    return TRUE;
 
 
  if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
  if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
                                     section, symbols, offset,
                                     section, symbols, offset,
                                     filename_ptr, functionname_ptr,
                                     filename_ptr, functionname_ptr,
                                     line_ptr, ABI_64_P (abfd) ? 8 : 0,
                                     line_ptr, ABI_64_P (abfd) ? 8 : 0,
                                     &elf_tdata (abfd)->dwarf2_find_line_info))
                                     &elf_tdata (abfd)->dwarf2_find_line_info))
    return TRUE;
    return TRUE;
 
 
  msec = bfd_get_section_by_name (abfd, ".mdebug");
  msec = bfd_get_section_by_name (abfd, ".mdebug");
  if (msec != NULL)
  if (msec != NULL)
    {
    {
      flagword origflags;
      flagword origflags;
      struct mips_elf_find_line *fi;
      struct mips_elf_find_line *fi;
      const struct ecoff_debug_swap * const swap =
      const struct ecoff_debug_swap * const swap =
        get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
        get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
 
 
      /* If we are called during a link, mips_elf_final_link may have
      /* If we are called during a link, mips_elf_final_link may have
         cleared the SEC_HAS_CONTENTS field.  We force it back on here
         cleared the SEC_HAS_CONTENTS field.  We force it back on here
         if appropriate (which it normally will be).  */
         if appropriate (which it normally will be).  */
      origflags = msec->flags;
      origflags = msec->flags;
      if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
      if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
        msec->flags |= SEC_HAS_CONTENTS;
        msec->flags |= SEC_HAS_CONTENTS;
 
 
      fi = elf_tdata (abfd)->find_line_info;
      fi = elf_tdata (abfd)->find_line_info;
      if (fi == NULL)
      if (fi == NULL)
        {
        {
          bfd_size_type external_fdr_size;
          bfd_size_type external_fdr_size;
          char *fraw_src;
          char *fraw_src;
          char *fraw_end;
          char *fraw_end;
          struct fdr *fdr_ptr;
          struct fdr *fdr_ptr;
          bfd_size_type amt = sizeof (struct mips_elf_find_line);
          bfd_size_type amt = sizeof (struct mips_elf_find_line);
 
 
          fi = bfd_zalloc (abfd, amt);
          fi = bfd_zalloc (abfd, amt);
          if (fi == NULL)
          if (fi == NULL)
            {
            {
              msec->flags = origflags;
              msec->flags = origflags;
              return FALSE;
              return FALSE;
            }
            }
 
 
          if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
          if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
            {
            {
              msec->flags = origflags;
              msec->flags = origflags;
              return FALSE;
              return FALSE;
            }
            }
 
 
          /* Swap in the FDR information.  */
          /* Swap in the FDR information.  */
          amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
          amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
          fi->d.fdr = bfd_alloc (abfd, amt);
          fi->d.fdr = bfd_alloc (abfd, amt);
          if (fi->d.fdr == NULL)
          if (fi->d.fdr == NULL)
            {
            {
              msec->flags = origflags;
              msec->flags = origflags;
              return FALSE;
              return FALSE;
            }
            }
          external_fdr_size = swap->external_fdr_size;
          external_fdr_size = swap->external_fdr_size;
          fdr_ptr = fi->d.fdr;
          fdr_ptr = fi->d.fdr;
          fraw_src = (char *) fi->d.external_fdr;
          fraw_src = (char *) fi->d.external_fdr;
          fraw_end = (fraw_src
          fraw_end = (fraw_src
                      + fi->d.symbolic_header.ifdMax * external_fdr_size);
                      + fi->d.symbolic_header.ifdMax * external_fdr_size);
          for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
          for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
            (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
            (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
 
 
          elf_tdata (abfd)->find_line_info = fi;
          elf_tdata (abfd)->find_line_info = fi;
 
 
          /* Note that we don't bother to ever free this information.
          /* Note that we don't bother to ever free this information.
             find_nearest_line is either called all the time, as in
             find_nearest_line is either called all the time, as in
             objdump -l, so the information should be saved, or it is
             objdump -l, so the information should be saved, or it is
             rarely called, as in ld error messages, so the memory
             rarely called, as in ld error messages, so the memory
             wasted is unimportant.  Still, it would probably be a
             wasted is unimportant.  Still, it would probably be a
             good idea for free_cached_info to throw it away.  */
             good idea for free_cached_info to throw it away.  */
        }
        }
 
 
      if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
      if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
                                  &fi->i, filename_ptr, functionname_ptr,
                                  &fi->i, filename_ptr, functionname_ptr,
                                  line_ptr))
                                  line_ptr))
        {
        {
          msec->flags = origflags;
          msec->flags = origflags;
          return TRUE;
          return TRUE;
        }
        }
 
 
      msec->flags = origflags;
      msec->flags = origflags;
    }
    }
 
 
  /* Fall back on the generic ELF find_nearest_line routine.  */
  /* Fall back on the generic ELF find_nearest_line routine.  */
 
 
  return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
  return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
                                     filename_ptr, functionname_ptr,
                                     filename_ptr, functionname_ptr,
                                     line_ptr);
                                     line_ptr);
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_find_inliner_info (bfd *abfd,
_bfd_mips_elf_find_inliner_info (bfd *abfd,
                                 const char **filename_ptr,
                                 const char **filename_ptr,
                                 const char **functionname_ptr,
                                 const char **functionname_ptr,
                                 unsigned int *line_ptr)
                                 unsigned int *line_ptr)
{
{
  bfd_boolean found;
  bfd_boolean found;
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
  found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
                                         functionname_ptr, line_ptr,
                                         functionname_ptr, line_ptr,
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
                                         & elf_tdata (abfd)->dwarf2_find_line_info);
  return found;
  return found;
}
}
 
 


/* When are writing out the .options or .MIPS.options section,
/* When are writing out the .options or .MIPS.options section,
   remember the bytes we are writing out, so that we can install the
   remember the bytes we are writing out, so that we can install the
   GP value in the section_processing routine.  */
   GP value in the section_processing routine.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
                                    const void *location,
                                    const void *location,
                                    file_ptr offset, bfd_size_type count)
                                    file_ptr offset, bfd_size_type count)
{
{
  if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
  if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
    {
    {
      bfd_byte *c;
      bfd_byte *c;
 
 
      if (elf_section_data (section) == NULL)
      if (elf_section_data (section) == NULL)
        {
        {
          bfd_size_type amt = sizeof (struct bfd_elf_section_data);
          bfd_size_type amt = sizeof (struct bfd_elf_section_data);
          section->used_by_bfd = bfd_zalloc (abfd, amt);
          section->used_by_bfd = bfd_zalloc (abfd, amt);
          if (elf_section_data (section) == NULL)
          if (elf_section_data (section) == NULL)
            return FALSE;
            return FALSE;
        }
        }
      c = mips_elf_section_data (section)->u.tdata;
      c = mips_elf_section_data (section)->u.tdata;
      if (c == NULL)
      if (c == NULL)
        {
        {
          c = bfd_zalloc (abfd, section->size);
          c = bfd_zalloc (abfd, section->size);
          if (c == NULL)
          if (c == NULL)
            return FALSE;
            return FALSE;
          mips_elf_section_data (section)->u.tdata = c;
          mips_elf_section_data (section)->u.tdata = c;
        }
        }
 
 
      memcpy (c + offset, location, count);
      memcpy (c + offset, location, count);
    }
    }
 
 
  return _bfd_elf_set_section_contents (abfd, section, location, offset,
  return _bfd_elf_set_section_contents (abfd, section, location, offset,
                                        count);
                                        count);
}
}
 
 
/* This is almost identical to bfd_generic_get_... except that some
/* This is almost identical to bfd_generic_get_... except that some
   MIPS relocations need to be handled specially.  Sigh.  */
   MIPS relocations need to be handled specially.  Sigh.  */
 
 
bfd_byte *
bfd_byte *
_bfd_elf_mips_get_relocated_section_contents
_bfd_elf_mips_get_relocated_section_contents
  (bfd *abfd,
  (bfd *abfd,
   struct bfd_link_info *link_info,
   struct bfd_link_info *link_info,
   struct bfd_link_order *link_order,
   struct bfd_link_order *link_order,
   bfd_byte *data,
   bfd_byte *data,
   bfd_boolean relocatable,
   bfd_boolean relocatable,
   asymbol **symbols)
   asymbol **symbols)
{
{
  /* Get enough memory to hold the stuff */
  /* Get enough memory to hold the stuff */
  bfd *input_bfd = link_order->u.indirect.section->owner;
  bfd *input_bfd = link_order->u.indirect.section->owner;
  asection *input_section = link_order->u.indirect.section;
  asection *input_section = link_order->u.indirect.section;
  bfd_size_type sz;
  bfd_size_type sz;
 
 
  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
  arelent **reloc_vector = NULL;
  arelent **reloc_vector = NULL;
  long reloc_count;
  long reloc_count;
 
 
  if (reloc_size < 0)
  if (reloc_size < 0)
    goto error_return;
    goto error_return;
 
 
  reloc_vector = bfd_malloc (reloc_size);
  reloc_vector = bfd_malloc (reloc_size);
  if (reloc_vector == NULL && reloc_size != 0)
  if (reloc_vector == NULL && reloc_size != 0)
    goto error_return;
    goto error_return;
 
 
  /* read in the section */
  /* read in the section */
  sz = input_section->rawsize ? input_section->rawsize : input_section->size;
  sz = input_section->rawsize ? input_section->rawsize : input_section->size;
  if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
  if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
    goto error_return;
    goto error_return;
 
 
  reloc_count = bfd_canonicalize_reloc (input_bfd,
  reloc_count = bfd_canonicalize_reloc (input_bfd,
                                        input_section,
                                        input_section,
                                        reloc_vector,
                                        reloc_vector,
                                        symbols);
                                        symbols);
  if (reloc_count < 0)
  if (reloc_count < 0)
    goto error_return;
    goto error_return;
 
 
  if (reloc_count > 0)
  if (reloc_count > 0)
    {
    {
      arelent **parent;
      arelent **parent;
      /* for mips */
      /* for mips */
      int gp_found;
      int gp_found;
      bfd_vma gp = 0x12345678;  /* initialize just to shut gcc up */
      bfd_vma gp = 0x12345678;  /* initialize just to shut gcc up */
 
 
      {
      {
        struct bfd_hash_entry *h;
        struct bfd_hash_entry *h;
        struct bfd_link_hash_entry *lh;
        struct bfd_link_hash_entry *lh;
        /* Skip all this stuff if we aren't mixing formats.  */
        /* Skip all this stuff if we aren't mixing formats.  */
        if (abfd && input_bfd
        if (abfd && input_bfd
            && abfd->xvec == input_bfd->xvec)
            && abfd->xvec == input_bfd->xvec)
          lh = 0;
          lh = 0;
        else
        else
          {
          {
            h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
            h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
            lh = (struct bfd_link_hash_entry *) h;
            lh = (struct bfd_link_hash_entry *) h;
          }
          }
      lookup:
      lookup:
        if (lh)
        if (lh)
          {
          {
            switch (lh->type)
            switch (lh->type)
              {
              {
              case bfd_link_hash_undefined:
              case bfd_link_hash_undefined:
              case bfd_link_hash_undefweak:
              case bfd_link_hash_undefweak:
              case bfd_link_hash_common:
              case bfd_link_hash_common:
                gp_found = 0;
                gp_found = 0;
                break;
                break;
              case bfd_link_hash_defined:
              case bfd_link_hash_defined:
              case bfd_link_hash_defweak:
              case bfd_link_hash_defweak:
                gp_found = 1;
                gp_found = 1;
                gp = lh->u.def.value;
                gp = lh->u.def.value;
                break;
                break;
              case bfd_link_hash_indirect:
              case bfd_link_hash_indirect:
              case bfd_link_hash_warning:
              case bfd_link_hash_warning:
                lh = lh->u.i.link;
                lh = lh->u.i.link;
                /* @@FIXME  ignoring warning for now */
                /* @@FIXME  ignoring warning for now */
                goto lookup;
                goto lookup;
              case bfd_link_hash_new:
              case bfd_link_hash_new:
              default:
              default:
                abort ();
                abort ();
              }
              }
          }
          }
        else
        else
          gp_found = 0;
          gp_found = 0;
      }
      }
      /* end mips */
      /* end mips */
      for (parent = reloc_vector; *parent != NULL; parent++)
      for (parent = reloc_vector; *parent != NULL; parent++)
        {
        {
          char *error_message = NULL;
          char *error_message = NULL;
          bfd_reloc_status_type r;
          bfd_reloc_status_type r;
 
 
          /* Specific to MIPS: Deal with relocation types that require
          /* Specific to MIPS: Deal with relocation types that require
             knowing the gp of the output bfd.  */
             knowing the gp of the output bfd.  */
          asymbol *sym = *(*parent)->sym_ptr_ptr;
          asymbol *sym = *(*parent)->sym_ptr_ptr;
 
 
          /* If we've managed to find the gp and have a special
          /* If we've managed to find the gp and have a special
             function for the relocation then go ahead, else default
             function for the relocation then go ahead, else default
             to the generic handling.  */
             to the generic handling.  */
          if (gp_found
          if (gp_found
              && (*parent)->howto->special_function
              && (*parent)->howto->special_function
              == _bfd_mips_elf32_gprel16_reloc)
              == _bfd_mips_elf32_gprel16_reloc)
            r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
            r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
                                               input_section, relocatable,
                                               input_section, relocatable,
                                               data, gp);
                                               data, gp);
          else
          else
            r = bfd_perform_relocation (input_bfd, *parent, data,
            r = bfd_perform_relocation (input_bfd, *parent, data,
                                        input_section,
                                        input_section,
                                        relocatable ? abfd : NULL,
                                        relocatable ? abfd : NULL,
                                        &error_message);
                                        &error_message);
 
 
          if (relocatable)
          if (relocatable)
            {
            {
              asection *os = input_section->output_section;
              asection *os = input_section->output_section;
 
 
              /* A partial link, so keep the relocs */
              /* A partial link, so keep the relocs */
              os->orelocation[os->reloc_count] = *parent;
              os->orelocation[os->reloc_count] = *parent;
              os->reloc_count++;
              os->reloc_count++;
            }
            }
 
 
          if (r != bfd_reloc_ok)
          if (r != bfd_reloc_ok)
            {
            {
              switch (r)
              switch (r)
                {
                {
                case bfd_reloc_undefined:
                case bfd_reloc_undefined:
                  if (!((*link_info->callbacks->undefined_symbol)
                  if (!((*link_info->callbacks->undefined_symbol)
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
                         input_bfd, input_section, (*parent)->address, TRUE)))
                         input_bfd, input_section, (*parent)->address, TRUE)))
                    goto error_return;
                    goto error_return;
                  break;
                  break;
                case bfd_reloc_dangerous:
                case bfd_reloc_dangerous:
                  BFD_ASSERT (error_message != NULL);
                  BFD_ASSERT (error_message != NULL);
                  if (!((*link_info->callbacks->reloc_dangerous)
                  if (!((*link_info->callbacks->reloc_dangerous)
                        (link_info, error_message, input_bfd, input_section,
                        (link_info, error_message, input_bfd, input_section,
                         (*parent)->address)))
                         (*parent)->address)))
                    goto error_return;
                    goto error_return;
                  break;
                  break;
                case bfd_reloc_overflow:
                case bfd_reloc_overflow:
                  if (!((*link_info->callbacks->reloc_overflow)
                  if (!((*link_info->callbacks->reloc_overflow)
                        (link_info, NULL,
                        (link_info, NULL,
                         bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
                         bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
                         (*parent)->howto->name, (*parent)->addend,
                         (*parent)->howto->name, (*parent)->addend,
                         input_bfd, input_section, (*parent)->address)))
                         input_bfd, input_section, (*parent)->address)))
                    goto error_return;
                    goto error_return;
                  break;
                  break;
                case bfd_reloc_outofrange:
                case bfd_reloc_outofrange:
                default:
                default:
                  abort ();
                  abort ();
                  break;
                  break;
                }
                }
 
 
            }
            }
        }
        }
    }
    }
  if (reloc_vector != NULL)
  if (reloc_vector != NULL)
    free (reloc_vector);
    free (reloc_vector);
  return data;
  return data;
 
 
error_return:
error_return:
  if (reloc_vector != NULL)
  if (reloc_vector != NULL)
    free (reloc_vector);
    free (reloc_vector);
  return NULL;
  return NULL;
}
}


static bfd_boolean
static bfd_boolean
mips_elf_relax_delete_bytes (bfd *abfd,
mips_elf_relax_delete_bytes (bfd *abfd,
                             asection *sec, bfd_vma addr, int count)
                             asection *sec, bfd_vma addr, int count)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  unsigned int sec_shndx;
  unsigned int sec_shndx;
  bfd_byte *contents;
  bfd_byte *contents;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isymend;
  Elf_Internal_Sym *isymend;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **end_hashes;
  struct elf_link_hash_entry **end_hashes;
  struct elf_link_hash_entry **start_hashes;
  struct elf_link_hash_entry **start_hashes;
  unsigned int symcount;
  unsigned int symcount;
 
 
  sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
  sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
  contents = elf_section_data (sec)->this_hdr.contents;
  contents = elf_section_data (sec)->this_hdr.contents;
 
 
  irel = elf_section_data (sec)->relocs;
  irel = elf_section_data (sec)->relocs;
  irelend = irel + sec->reloc_count;
  irelend = irel + sec->reloc_count;
 
 
  /* Actually delete the bytes.  */
  /* Actually delete the bytes.  */
  memmove (contents + addr, contents + addr + count,
  memmove (contents + addr, contents + addr + count,
           (size_t) (sec->size - addr - count));
           (size_t) (sec->size - addr - count));
  sec->size -= count;
  sec->size -= count;
 
 
  /* Adjust all the relocs.  */
  /* Adjust all the relocs.  */
  for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
  for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
    {
    {
      /* Get the new reloc address.  */
      /* Get the new reloc address.  */
      if (irel->r_offset > addr)
      if (irel->r_offset > addr)
        irel->r_offset -= count;
        irel->r_offset -= count;
    }
    }
 
 
  BFD_ASSERT (addr % 2 == 0);
  BFD_ASSERT (addr % 2 == 0);
  BFD_ASSERT (count % 2 == 0);
  BFD_ASSERT (count % 2 == 0);
 
 
  /* Adjust the local symbols defined in this section.  */
  /* Adjust the local symbols defined in this section.  */
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  isym = (Elf_Internal_Sym *) symtab_hdr->contents;
  isym = (Elf_Internal_Sym *) symtab_hdr->contents;
  for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
  for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
    if (isym->st_shndx == sec_shndx && isym->st_value > addr)
    if (isym->st_shndx == sec_shndx && isym->st_value > addr)
      isym->st_value -= count;
      isym->st_value -= count;
 
 
  /* Now adjust the global symbols defined in this section.  */
  /* Now adjust the global symbols defined in this section.  */
  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
              - symtab_hdr->sh_info);
              - symtab_hdr->sh_info);
  sym_hashes = start_hashes = elf_sym_hashes (abfd);
  sym_hashes = start_hashes = elf_sym_hashes (abfd);
  end_hashes = sym_hashes + symcount;
  end_hashes = sym_hashes + symcount;
 
 
  for (; sym_hashes < end_hashes; sym_hashes++)
  for (; sym_hashes < end_hashes; sym_hashes++)
    {
    {
      struct elf_link_hash_entry *sym_hash = *sym_hashes;
      struct elf_link_hash_entry *sym_hash = *sym_hashes;
 
 
      if ((sym_hash->root.type == bfd_link_hash_defined
      if ((sym_hash->root.type == bfd_link_hash_defined
           || sym_hash->root.type == bfd_link_hash_defweak)
           || sym_hash->root.type == bfd_link_hash_defweak)
          && sym_hash->root.u.def.section == sec)
          && sym_hash->root.u.def.section == sec)
        {
        {
          bfd_vma value = sym_hash->root.u.def.value;
          bfd_vma value = sym_hash->root.u.def.value;
 
 
          if (ELF_ST_IS_MICROMIPS (sym_hash->other))
          if (ELF_ST_IS_MICROMIPS (sym_hash->other))
            value &= MINUS_TWO;
            value &= MINUS_TWO;
          if (value > addr)
          if (value > addr)
            sym_hash->root.u.def.value -= count;
            sym_hash->root.u.def.value -= count;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
 
 
/* Opcodes needed for microMIPS relaxation as found in
/* Opcodes needed for microMIPS relaxation as found in
   opcodes/micromips-opc.c.  */
   opcodes/micromips-opc.c.  */
 
 
struct opcode_descriptor {
struct opcode_descriptor {
  unsigned long match;
  unsigned long match;
  unsigned long mask;
  unsigned long mask;
};
};
 
 
/* The $ra register aka $31.  */
/* The $ra register aka $31.  */
 
 
#define RA 31
#define RA 31
 
 
/* 32-bit instruction format register fields.  */
/* 32-bit instruction format register fields.  */
 
 
#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
 
 
/* Check if a 5-bit register index can be abbreviated to 3 bits.  */
/* Check if a 5-bit register index can be abbreviated to 3 bits.  */
 
 
#define OP16_VALID_REG(r) \
#define OP16_VALID_REG(r) \
  ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
  ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
 
 
 
 
/* 32-bit and 16-bit branches.  */
/* 32-bit and 16-bit branches.  */
 
 
static const struct opcode_descriptor b_insns_32[] = {
static const struct opcode_descriptor b_insns_32[] = {
  { /* "b",     "p",            */ 0x40400000, 0xffff0000 }, /* bgez 0 */
  { /* "b",     "p",            */ 0x40400000, 0xffff0000 }, /* bgez 0 */
  { /* "b",     "p",            */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
  { /* "b",     "p",            */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
static const struct opcode_descriptor bc_insn_32 =
static const struct opcode_descriptor bc_insn_32 =
  { /* "bc(1|2)(ft)", "N,p",    */ 0x42800000, 0xfec30000 };
  { /* "bc(1|2)(ft)", "N,p",    */ 0x42800000, 0xfec30000 };
 
 
static const struct opcode_descriptor bz_insn_32 =
static const struct opcode_descriptor bz_insn_32 =
  { /* "b(g|l)(e|t)z", "s,p",   */ 0x40000000, 0xff200000 };
  { /* "b(g|l)(e|t)z", "s,p",   */ 0x40000000, 0xff200000 };
 
 
static const struct opcode_descriptor bzal_insn_32 =
static const struct opcode_descriptor bzal_insn_32 =
  { /* "b(ge|lt)zal", "s,p",    */ 0x40200000, 0xffa00000 };
  { /* "b(ge|lt)zal", "s,p",    */ 0x40200000, 0xffa00000 };
 
 
static const struct opcode_descriptor beq_insn_32 =
static const struct opcode_descriptor beq_insn_32 =
  { /* "b(eq|ne)", "s,t,p",     */ 0x94000000, 0xdc000000 };
  { /* "b(eq|ne)", "s,t,p",     */ 0x94000000, 0xdc000000 };
 
 
static const struct opcode_descriptor b_insn_16 =
static const struct opcode_descriptor b_insn_16 =
  { /* "b",     "mD",           */ 0xcc00,     0xfc00 };
  { /* "b",     "mD",           */ 0xcc00,     0xfc00 };
 
 
static const struct opcode_descriptor bz_insn_16 =
static const struct opcode_descriptor bz_insn_16 =
  { /* "b(eq|ne)z", "md,mE",    */ 0x8c00,     0xdc00 };
  { /* "b(eq|ne)z", "md,mE",    */ 0x8c00,     0xdc00 };
 
 
 
 
/* 32-bit and 16-bit branch EQ and NE zero.  */
/* 32-bit and 16-bit branch EQ and NE zero.  */
 
 
/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
   eq and second the ne.  This convention is used when replacing a
   eq and second the ne.  This convention is used when replacing a
   32-bit BEQ/BNE with the 16-bit version.  */
   32-bit BEQ/BNE with the 16-bit version.  */
 
 
#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
 
 
static const struct opcode_descriptor bz_rs_insns_32[] = {
static const struct opcode_descriptor bz_rs_insns_32[] = {
  { /* "beqz",  "s,p",          */ 0x94000000, 0xffe00000 },
  { /* "beqz",  "s,p",          */ 0x94000000, 0xffe00000 },
  { /* "bnez",  "s,p",          */ 0xb4000000, 0xffe00000 },
  { /* "bnez",  "s,p",          */ 0xb4000000, 0xffe00000 },
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
static const struct opcode_descriptor bz_rt_insns_32[] = {
static const struct opcode_descriptor bz_rt_insns_32[] = {
  { /* "beqz",  "t,p",          */ 0x94000000, 0xfc01f000 },
  { /* "beqz",  "t,p",          */ 0x94000000, 0xfc01f000 },
  { /* "bnez",  "t,p",          */ 0xb4000000, 0xfc01f000 },
  { /* "bnez",  "t,p",          */ 0xb4000000, 0xfc01f000 },
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
static const struct opcode_descriptor bzc_insns_32[] = {
static const struct opcode_descriptor bzc_insns_32[] = {
  { /* "beqzc", "s,p",          */ 0x40e00000, 0xffe00000 },
  { /* "beqzc", "s,p",          */ 0x40e00000, 0xffe00000 },
  { /* "bnezc", "s,p",          */ 0x40a00000, 0xffe00000 },
  { /* "bnezc", "s,p",          */ 0x40a00000, 0xffe00000 },
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
static const struct opcode_descriptor bz_insns_16[] = {
static const struct opcode_descriptor bz_insns_16[] = {
  { /* "beqz",  "md,mE",        */ 0x8c00,     0xfc00 },
  { /* "beqz",  "md,mE",        */ 0x8c00,     0xfc00 },
  { /* "bnez",  "md,mE",        */ 0xac00,     0xfc00 },
  { /* "bnez",  "md,mE",        */ 0xac00,     0xfc00 },
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
/* Switch between a 5-bit register index and its 3-bit shorthand.  */
/* Switch between a 5-bit register index and its 3-bit shorthand.  */
 
 
#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
#define BZ16_REG_FIELD(r) \
#define BZ16_REG_FIELD(r) \
  (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
  (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
 
 
 
 
/* 32-bit instructions with a delay slot.  */
/* 32-bit instructions with a delay slot.  */
 
 
static const struct opcode_descriptor jal_insn_32_bd16 =
static const struct opcode_descriptor jal_insn_32_bd16 =
  { /* "jals",  "a",            */ 0x74000000, 0xfc000000 };
  { /* "jals",  "a",            */ 0x74000000, 0xfc000000 };
 
 
static const struct opcode_descriptor jal_insn_32_bd32 =
static const struct opcode_descriptor jal_insn_32_bd32 =
  { /* "jal",   "a",            */ 0xf4000000, 0xfc000000 };
  { /* "jal",   "a",            */ 0xf4000000, 0xfc000000 };
 
 
static const struct opcode_descriptor jal_x_insn_32_bd32 =
static const struct opcode_descriptor jal_x_insn_32_bd32 =
  { /* "jal[x]", "a",           */ 0xf0000000, 0xf8000000 };
  { /* "jal[x]", "a",           */ 0xf0000000, 0xf8000000 };
 
 
static const struct opcode_descriptor j_insn_32 =
static const struct opcode_descriptor j_insn_32 =
  { /* "j",     "a",            */ 0xd4000000, 0xfc000000 };
  { /* "j",     "a",            */ 0xd4000000, 0xfc000000 };
 
 
static const struct opcode_descriptor jalr_insn_32 =
static const struct opcode_descriptor jalr_insn_32 =
  { /* "jalr[.hb]", "t,s",      */ 0x00000f3c, 0xfc00efff };
  { /* "jalr[.hb]", "t,s",      */ 0x00000f3c, 0xfc00efff };
 
 
/* This table can be compacted, because no opcode replacement is made.  */
/* This table can be compacted, because no opcode replacement is made.  */
 
 
static const struct opcode_descriptor ds_insns_32_bd16[] = {
static const struct opcode_descriptor ds_insns_32_bd16[] = {
  { /* "jals",  "a",            */ 0x74000000, 0xfc000000 },
  { /* "jals",  "a",            */ 0x74000000, 0xfc000000 },
 
 
  { /* "jalrs[.hb]", "t,s",     */ 0x00004f3c, 0xfc00efff },
  { /* "jalrs[.hb]", "t,s",     */ 0x00004f3c, 0xfc00efff },
  { /* "b(ge|lt)zals", "s,p",   */ 0x42200000, 0xffa00000 },
  { /* "b(ge|lt)zals", "s,p",   */ 0x42200000, 0xffa00000 },
 
 
  { /* "b(g|l)(e|t)z", "s,p",   */ 0x40000000, 0xff200000 },
  { /* "b(g|l)(e|t)z", "s,p",   */ 0x40000000, 0xff200000 },
  { /* "b(eq|ne)", "s,t,p",     */ 0x94000000, 0xdc000000 },
  { /* "b(eq|ne)", "s,t,p",     */ 0x94000000, 0xdc000000 },
  { /* "j",     "a",            */ 0xd4000000, 0xfc000000 },
  { /* "j",     "a",            */ 0xd4000000, 0xfc000000 },
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
/* This table can be compacted, because no opcode replacement is made.  */
/* This table can be compacted, because no opcode replacement is made.  */
 
 
static const struct opcode_descriptor ds_insns_32_bd32[] = {
static const struct opcode_descriptor ds_insns_32_bd32[] = {
  { /* "jal[x]", "a",           */ 0xf0000000, 0xf8000000 },
  { /* "jal[x]", "a",           */ 0xf0000000, 0xf8000000 },
 
 
  { /* "jalr[.hb]", "t,s",      */ 0x00000f3c, 0xfc00efff },
  { /* "jalr[.hb]", "t,s",      */ 0x00000f3c, 0xfc00efff },
  { /* "b(ge|lt)zal", "s,p",    */ 0x40200000, 0xffa00000 },
  { /* "b(ge|lt)zal", "s,p",    */ 0x40200000, 0xffa00000 },
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
 
 
/* 16-bit instructions with a delay slot.  */
/* 16-bit instructions with a delay slot.  */
 
 
static const struct opcode_descriptor jalr_insn_16_bd16 =
static const struct opcode_descriptor jalr_insn_16_bd16 =
  { /* "jalrs", "my,mj",        */ 0x45e0,     0xffe0 };
  { /* "jalrs", "my,mj",        */ 0x45e0,     0xffe0 };
 
 
static const struct opcode_descriptor jalr_insn_16_bd32 =
static const struct opcode_descriptor jalr_insn_16_bd32 =
  { /* "jalr",  "my,mj",        */ 0x45c0,     0xffe0 };
  { /* "jalr",  "my,mj",        */ 0x45c0,     0xffe0 };
 
 
static const struct opcode_descriptor jr_insn_16 =
static const struct opcode_descriptor jr_insn_16 =
  { /* "jr",    "mj",           */ 0x4580,     0xffe0 };
  { /* "jr",    "mj",           */ 0x4580,     0xffe0 };
 
 
#define JR16_REG(opcode) ((opcode) & 0x1f)
#define JR16_REG(opcode) ((opcode) & 0x1f)
 
 
/* This table can be compacted, because no opcode replacement is made.  */
/* This table can be compacted, because no opcode replacement is made.  */
 
 
static const struct opcode_descriptor ds_insns_16_bd16[] = {
static const struct opcode_descriptor ds_insns_16_bd16[] = {
  { /* "jalrs", "my,mj",        */ 0x45e0,     0xffe0 },
  { /* "jalrs", "my,mj",        */ 0x45e0,     0xffe0 },
 
 
  { /* "b",     "mD",           */ 0xcc00,     0xfc00 },
  { /* "b",     "mD",           */ 0xcc00,     0xfc00 },
  { /* "b(eq|ne)z", "md,mE",    */ 0x8c00,     0xdc00 },
  { /* "b(eq|ne)z", "md,mE",    */ 0x8c00,     0xdc00 },
  { /* "jr",    "mj",           */ 0x4580,     0xffe0 },
  { /* "jr",    "mj",           */ 0x4580,     0xffe0 },
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
 
 
/* LUI instruction.  */
/* LUI instruction.  */
 
 
static const struct opcode_descriptor lui_insn =
static const struct opcode_descriptor lui_insn =
 { /* "lui",    "s,u",          */ 0x41a00000, 0xffe00000 };
 { /* "lui",    "s,u",          */ 0x41a00000, 0xffe00000 };
 
 
 
 
/* ADDIU instruction.  */
/* ADDIU instruction.  */
 
 
static const struct opcode_descriptor addiu_insn =
static const struct opcode_descriptor addiu_insn =
  { /* "addiu", "t,r,j",        */ 0x30000000, 0xfc000000 };
  { /* "addiu", "t,r,j",        */ 0x30000000, 0xfc000000 };
 
 
static const struct opcode_descriptor addiupc_insn =
static const struct opcode_descriptor addiupc_insn =
  { /* "addiu", "mb,$pc,mQ",    */ 0x78000000, 0xfc000000 };
  { /* "addiu", "mb,$pc,mQ",    */ 0x78000000, 0xfc000000 };
 
 
#define ADDIUPC_REG_FIELD(r) \
#define ADDIUPC_REG_FIELD(r) \
  (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
  (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
 
 
 
 
/* Relaxable instructions in a JAL delay slot: MOVE.  */
/* Relaxable instructions in a JAL delay slot: MOVE.  */
 
 
/* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
/* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
   (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
   (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
 
 
#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
#define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
#define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
 
 
static const struct opcode_descriptor move_insns_32[] = {
static const struct opcode_descriptor move_insns_32[] = {
  { /* "move",  "d,s",          */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
  { /* "move",  "d,s",          */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
  { /* "move",  "d,s",          */ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
  { /* "move",  "d,s",          */ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
  { 0, 0 }  /* End marker for find_match().  */
  { 0, 0 }  /* End marker for find_match().  */
};
};
 
 
static const struct opcode_descriptor move_insn_16 =
static const struct opcode_descriptor move_insn_16 =
  { /* "move",  "mp,mj",        */ 0x0c00,     0xfc00 };
  { /* "move",  "mp,mj",        */ 0x0c00,     0xfc00 };
 
 
 
 
/* NOP instructions.  */
/* NOP instructions.  */
 
 
static const struct opcode_descriptor nop_insn_32 =
static const struct opcode_descriptor nop_insn_32 =
  { /* "nop",   "",             */ 0x00000000, 0xffffffff };
  { /* "nop",   "",             */ 0x00000000, 0xffffffff };
 
 
static const struct opcode_descriptor nop_insn_16 =
static const struct opcode_descriptor nop_insn_16 =
  { /* "nop",   "",             */ 0x0c00,     0xffff };
  { /* "nop",   "",             */ 0x0c00,     0xffff };
 
 
 
 
/* Instruction match support.  */
/* Instruction match support.  */
 
 
#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
 
 
static int
static int
find_match (unsigned long opcode, const struct opcode_descriptor insn[])
find_match (unsigned long opcode, const struct opcode_descriptor insn[])
{
{
  unsigned long indx;
  unsigned long indx;
 
 
  for (indx = 0; insn[indx].mask != 0; indx++)
  for (indx = 0; insn[indx].mask != 0; indx++)
    if (MATCH (opcode, insn[indx]))
    if (MATCH (opcode, insn[indx]))
      return indx;
      return indx;
 
 
  return -1;
  return -1;
}
}
 
 
 
 
/* Branch and delay slot decoding support.  */
/* Branch and delay slot decoding support.  */
 
 
/* If PTR points to what *might* be a 16-bit branch or jump, then
/* If PTR points to what *might* be a 16-bit branch or jump, then
   return the minimum length of its delay slot, otherwise return 0.
   return the minimum length of its delay slot, otherwise return 0.
   Non-zero results are not definitive as we might be checking against
   Non-zero results are not definitive as we might be checking against
   the second half of another instruction.  */
   the second half of another instruction.  */
 
 
static int
static int
check_br16_dslot (bfd *abfd, bfd_byte *ptr)
check_br16_dslot (bfd *abfd, bfd_byte *ptr)
{
{
  unsigned long opcode;
  unsigned long opcode;
  int bdsize;
  int bdsize;
 
 
  opcode = bfd_get_16 (abfd, ptr);
  opcode = bfd_get_16 (abfd, ptr);
  if (MATCH (opcode, jalr_insn_16_bd32) != 0)
  if (MATCH (opcode, jalr_insn_16_bd32) != 0)
    /* 16-bit branch/jump with a 32-bit delay slot.  */
    /* 16-bit branch/jump with a 32-bit delay slot.  */
    bdsize = 4;
    bdsize = 4;
  else if (MATCH (opcode, jalr_insn_16_bd16) != 0
  else if (MATCH (opcode, jalr_insn_16_bd16) != 0
           || find_match (opcode, ds_insns_16_bd16) >= 0)
           || find_match (opcode, ds_insns_16_bd16) >= 0)
    /* 16-bit branch/jump with a 16-bit delay slot.  */
    /* 16-bit branch/jump with a 16-bit delay slot.  */
    bdsize = 2;
    bdsize = 2;
  else
  else
    /* No delay slot.  */
    /* No delay slot.  */
    bdsize = 0;
    bdsize = 0;
 
 
  return bdsize;
  return bdsize;
}
}
 
 
/* If PTR points to what *might* be a 32-bit branch or jump, then
/* If PTR points to what *might* be a 32-bit branch or jump, then
   return the minimum length of its delay slot, otherwise return 0.
   return the minimum length of its delay slot, otherwise return 0.
   Non-zero results are not definitive as we might be checking against
   Non-zero results are not definitive as we might be checking against
   the second half of another instruction.  */
   the second half of another instruction.  */
 
 
static int
static int
check_br32_dslot (bfd *abfd, bfd_byte *ptr)
check_br32_dslot (bfd *abfd, bfd_byte *ptr)
{
{
  unsigned long opcode;
  unsigned long opcode;
  int bdsize;
  int bdsize;
 
 
  opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
  opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
  if (find_match (opcode, ds_insns_32_bd32) >= 0)
  if (find_match (opcode, ds_insns_32_bd32) >= 0)
    /* 32-bit branch/jump with a 32-bit delay slot.  */
    /* 32-bit branch/jump with a 32-bit delay slot.  */
    bdsize = 4;
    bdsize = 4;
  else if (find_match (opcode, ds_insns_32_bd16) >= 0)
  else if (find_match (opcode, ds_insns_32_bd16) >= 0)
    /* 32-bit branch/jump with a 16-bit delay slot.  */
    /* 32-bit branch/jump with a 16-bit delay slot.  */
    bdsize = 2;
    bdsize = 2;
  else
  else
    /* No delay slot.  */
    /* No delay slot.  */
    bdsize = 0;
    bdsize = 0;
 
 
  return bdsize;
  return bdsize;
}
}
 
 
/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
   that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
   that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
 
 
static bfd_boolean
static bfd_boolean
check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
{
{
  unsigned long opcode;
  unsigned long opcode;
 
 
  opcode = bfd_get_16 (abfd, ptr);
  opcode = bfd_get_16 (abfd, ptr);
  if (MATCH (opcode, b_insn_16)
  if (MATCH (opcode, b_insn_16)
                                                /* B16  */
                                                /* B16  */
      || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
      || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
                                                /* JR16  */
                                                /* JR16  */
      || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
      || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
                                                /* BEQZ16, BNEZ16  */
                                                /* BEQZ16, BNEZ16  */
      || (MATCH (opcode, jalr_insn_16_bd32)
      || (MATCH (opcode, jalr_insn_16_bd32)
                                                /* JALR16  */
                                                /* JALR16  */
          && reg != JR16_REG (opcode) && reg != RA))
          && reg != JR16_REG (opcode) && reg != RA))
    return TRUE;
    return TRUE;
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
   then return TRUE, otherwise FALSE.  */
   then return TRUE, otherwise FALSE.  */
 
 
static bfd_boolean
static bfd_boolean
check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
{
{
  unsigned long opcode;
  unsigned long opcode;
 
 
  opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
  opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
  if (MATCH (opcode, j_insn_32)
  if (MATCH (opcode, j_insn_32)
                                                /* J  */
                                                /* J  */
      || MATCH (opcode, bc_insn_32)
      || MATCH (opcode, bc_insn_32)
                                                /* BC1F, BC1T, BC2F, BC2T  */
                                                /* BC1F, BC1T, BC2F, BC2T  */
      || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
      || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
                                                /* JAL, JALX  */
                                                /* JAL, JALX  */
      || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
      || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
                                                /* BGEZ, BGTZ, BLEZ, BLTZ  */
                                                /* BGEZ, BGTZ, BLEZ, BLTZ  */
      || (MATCH (opcode, bzal_insn_32)
      || (MATCH (opcode, bzal_insn_32)
                                                /* BGEZAL, BLTZAL  */
                                                /* BGEZAL, BLTZAL  */
          && reg != OP32_SREG (opcode) && reg != RA)
          && reg != OP32_SREG (opcode) && reg != RA)
      || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
      || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
                                                /* JALR, JALR.HB, BEQ, BNE  */
                                                /* JALR, JALR.HB, BEQ, BNE  */
          && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
          && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
    return TRUE;
    return TRUE;
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
   IRELEND) at OFFSET indicate that there must be a compact branch there,
   IRELEND) at OFFSET indicate that there must be a compact branch there,
   then return TRUE, otherwise FALSE.  */
   then return TRUE, otherwise FALSE.  */
 
 
static bfd_boolean
static bfd_boolean
check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
                     const Elf_Internal_Rela *internal_relocs,
                     const Elf_Internal_Rela *internal_relocs,
                     const Elf_Internal_Rela *irelend)
                     const Elf_Internal_Rela *irelend)
{
{
  const Elf_Internal_Rela *irel;
  const Elf_Internal_Rela *irel;
  unsigned long opcode;
  unsigned long opcode;
 
 
  opcode   = bfd_get_16 (abfd, ptr);
  opcode   = bfd_get_16 (abfd, ptr);
  opcode <<= 16;
  opcode <<= 16;
  opcode  |= bfd_get_16 (abfd, ptr + 2);
  opcode  |= bfd_get_16 (abfd, ptr + 2);
  if (find_match (opcode, bzc_insns_32) < 0)
  if (find_match (opcode, bzc_insns_32) < 0)
    return FALSE;
    return FALSE;
 
 
  for (irel = internal_relocs; irel < irelend; irel++)
  for (irel = internal_relocs; irel < irelend; irel++)
    if (irel->r_offset == offset
    if (irel->r_offset == offset
        && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
        && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
      return TRUE;
      return TRUE;
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Bitsize checking.  */
/* Bitsize checking.  */
#define IS_BITSIZE(val, N)                                              \
#define IS_BITSIZE(val, N)                                              \
  (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))               \
  (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))               \
    - (1ULL << ((N) - 1))) == (val))
    - (1ULL << ((N) - 1))) == (val))
 
 


bfd_boolean
bfd_boolean
_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
                             struct bfd_link_info *link_info,
                             struct bfd_link_info *link_info,
                             bfd_boolean *again)
                             bfd_boolean *again)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
  bfd_byte *contents = NULL;
  bfd_byte *contents = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
 
 
  /* Assume nothing changes.  */
  /* Assume nothing changes.  */
  *again = FALSE;
  *again = FALSE;
 
 
  /* We don't have to do anything for a relocatable link, if
  /* We don't have to do anything for a relocatable link, if
     this section does not have relocs, or if this is not a
     this section does not have relocs, or if this is not a
     code section.  */
     code section.  */
 
 
  if (link_info->relocatable
  if (link_info->relocatable
      || (sec->flags & SEC_RELOC) == 0
      || (sec->flags & SEC_RELOC) == 0
      || sec->reloc_count == 0
      || sec->reloc_count == 0
      || (sec->flags & SEC_CODE) == 0)
      || (sec->flags & SEC_CODE) == 0)
    return TRUE;
    return TRUE;
 
 
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
 
 
  /* Get a copy of the native relocations.  */
  /* Get a copy of the native relocations.  */
  internal_relocs = (_bfd_elf_link_read_relocs
  internal_relocs = (_bfd_elf_link_read_relocs
                     (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
                     (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
                      link_info->keep_memory));
                      link_info->keep_memory));
  if (internal_relocs == NULL)
  if (internal_relocs == NULL)
    goto error_return;
    goto error_return;
 
 
  /* Walk through them looking for relaxing opportunities.  */
  /* Walk through them looking for relaxing opportunities.  */
  irelend = internal_relocs + sec->reloc_count;
  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
  for (irel = internal_relocs; irel < irelend; irel++)
    {
    {
      unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
      unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
      unsigned int r_type = ELF32_R_TYPE (irel->r_info);
      unsigned int r_type = ELF32_R_TYPE (irel->r_info);
      bfd_boolean target_is_micromips_code_p;
      bfd_boolean target_is_micromips_code_p;
      unsigned long opcode;
      unsigned long opcode;
      bfd_vma symval;
      bfd_vma symval;
      bfd_vma pcrval;
      bfd_vma pcrval;
      bfd_byte *ptr;
      bfd_byte *ptr;
      int fndopc;
      int fndopc;
 
 
      /* The number of bytes to delete for relaxation and from where
      /* The number of bytes to delete for relaxation and from where
         to delete these bytes starting at irel->r_offset.  */
         to delete these bytes starting at irel->r_offset.  */
      int delcnt = 0;
      int delcnt = 0;
      int deloff = 0;
      int deloff = 0;
 
 
      /* If this isn't something that can be relaxed, then ignore
      /* If this isn't something that can be relaxed, then ignore
         this reloc.  */
         this reloc.  */
      if (r_type != R_MICROMIPS_HI16
      if (r_type != R_MICROMIPS_HI16
          && r_type != R_MICROMIPS_PC16_S1
          && r_type != R_MICROMIPS_PC16_S1
          && r_type != R_MICROMIPS_26_S1)
          && r_type != R_MICROMIPS_26_S1)
        continue;
        continue;
 
 
      /* Get the section contents if we haven't done so already.  */
      /* Get the section contents if we haven't done so already.  */
      if (contents == NULL)
      if (contents == NULL)
        {
        {
          /* Get cached copy if it exists.  */
          /* Get cached copy if it exists.  */
          if (elf_section_data (sec)->this_hdr.contents != NULL)
          if (elf_section_data (sec)->this_hdr.contents != NULL)
            contents = elf_section_data (sec)->this_hdr.contents;
            contents = elf_section_data (sec)->this_hdr.contents;
          /* Go get them off disk.  */
          /* Go get them off disk.  */
          else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
          else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
            goto error_return;
            goto error_return;
        }
        }
      ptr = contents + irel->r_offset;
      ptr = contents + irel->r_offset;
 
 
      /* Read this BFD's local symbols if we haven't done so already.  */
      /* Read this BFD's local symbols if we haven't done so already.  */
      if (isymbuf == NULL && symtab_hdr->sh_info != 0)
      if (isymbuf == NULL && symtab_hdr->sh_info != 0)
        {
        {
          isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
          isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
          if (isymbuf == NULL)
          if (isymbuf == NULL)
            isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
            isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
                                            symtab_hdr->sh_info, 0,
                                            symtab_hdr->sh_info, 0,
                                            NULL, NULL, NULL);
                                            NULL, NULL, NULL);
          if (isymbuf == NULL)
          if (isymbuf == NULL)
            goto error_return;
            goto error_return;
        }
        }
 
 
      /* Get the value of the symbol referred to by the reloc.  */
      /* Get the value of the symbol referred to by the reloc.  */
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          /* A local symbol.  */
          /* A local symbol.  */
          Elf_Internal_Sym *isym;
          Elf_Internal_Sym *isym;
          asection *sym_sec;
          asection *sym_sec;
 
 
          isym = isymbuf + r_symndx;
          isym = isymbuf + r_symndx;
          if (isym->st_shndx == SHN_UNDEF)
          if (isym->st_shndx == SHN_UNDEF)
            sym_sec = bfd_und_section_ptr;
            sym_sec = bfd_und_section_ptr;
          else if (isym->st_shndx == SHN_ABS)
          else if (isym->st_shndx == SHN_ABS)
            sym_sec = bfd_abs_section_ptr;
            sym_sec = bfd_abs_section_ptr;
          else if (isym->st_shndx == SHN_COMMON)
          else if (isym->st_shndx == SHN_COMMON)
            sym_sec = bfd_com_section_ptr;
            sym_sec = bfd_com_section_ptr;
          else
          else
            sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
            sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
          symval = (isym->st_value
          symval = (isym->st_value
                    + sym_sec->output_section->vma
                    + sym_sec->output_section->vma
                    + sym_sec->output_offset);
                    + sym_sec->output_offset);
          target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
          target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
        }
        }
      else
      else
        {
        {
          unsigned long indx;
          unsigned long indx;
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          /* An external symbol.  */
          /* An external symbol.  */
          indx = r_symndx - symtab_hdr->sh_info;
          indx = r_symndx - symtab_hdr->sh_info;
          h = elf_sym_hashes (abfd)[indx];
          h = elf_sym_hashes (abfd)[indx];
          BFD_ASSERT (h != NULL);
          BFD_ASSERT (h != NULL);
 
 
          if (h->root.type != bfd_link_hash_defined
          if (h->root.type != bfd_link_hash_defined
              && h->root.type != bfd_link_hash_defweak)
              && h->root.type != bfd_link_hash_defweak)
            /* This appears to be a reference to an undefined
            /* This appears to be a reference to an undefined
               symbol.  Just ignore it -- it will be caught by the
               symbol.  Just ignore it -- it will be caught by the
               regular reloc processing.  */
               regular reloc processing.  */
            continue;
            continue;
 
 
          symval = (h->root.u.def.value
          symval = (h->root.u.def.value
                    + h->root.u.def.section->output_section->vma
                    + h->root.u.def.section->output_section->vma
                    + h->root.u.def.section->output_offset);
                    + h->root.u.def.section->output_offset);
          target_is_micromips_code_p = (!h->needs_plt
          target_is_micromips_code_p = (!h->needs_plt
                                        && ELF_ST_IS_MICROMIPS (h->other));
                                        && ELF_ST_IS_MICROMIPS (h->other));
        }
        }
 
 
 
 
      /* For simplicity of coding, we are going to modify the
      /* For simplicity of coding, we are going to modify the
         section contents, the section relocs, and the BFD symbol
         section contents, the section relocs, and the BFD symbol
         table.  We must tell the rest of the code not to free up this
         table.  We must tell the rest of the code not to free up this
         information.  It would be possible to instead create a table
         information.  It would be possible to instead create a table
         of changes which have to be made, as is done in coff-mips.c;
         of changes which have to be made, as is done in coff-mips.c;
         that would be more work, but would require less memory when
         that would be more work, but would require less memory when
         the linker is run.  */
         the linker is run.  */
 
 
      /* Only 32-bit instructions relaxed.  */
      /* Only 32-bit instructions relaxed.  */
      if (irel->r_offset + 4 > sec->size)
      if (irel->r_offset + 4 > sec->size)
        continue;
        continue;
 
 
      opcode  = bfd_get_16 (abfd, ptr    ) << 16;
      opcode  = bfd_get_16 (abfd, ptr    ) << 16;
      opcode |= bfd_get_16 (abfd, ptr + 2);
      opcode |= bfd_get_16 (abfd, ptr + 2);
 
 
      /* This is the pc-relative distance from the instruction the
      /* This is the pc-relative distance from the instruction the
         relocation is applied to, to the symbol referred.  */
         relocation is applied to, to the symbol referred.  */
      pcrval = (symval
      pcrval = (symval
                - (sec->output_section->vma + sec->output_offset)
                - (sec->output_section->vma + sec->output_offset)
                - irel->r_offset);
                - irel->r_offset);
 
 
      /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
      /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
         of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
         of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
         R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
         R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
 
 
           (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
           (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
 
 
         where pcrval has first to be adjusted to apply against the LO16
         where pcrval has first to be adjusted to apply against the LO16
         location (we make the adjustment later on, when we have figured
         location (we make the adjustment later on, when we have figured
         out the offset).  */
         out the offset).  */
      if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
      if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
        {
        {
          bfd_boolean bzc = FALSE;
          bfd_boolean bzc = FALSE;
          unsigned long nextopc;
          unsigned long nextopc;
          unsigned long reg;
          unsigned long reg;
          bfd_vma offset;
          bfd_vma offset;
 
 
          /* Give up if the previous reloc was a HI16 against this symbol
          /* Give up if the previous reloc was a HI16 against this symbol
             too.  */
             too.  */
          if (irel > internal_relocs
          if (irel > internal_relocs
              && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
              && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
              && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
              && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
            continue;
            continue;
 
 
          /* Or if the next reloc is not a LO16 against this symbol.  */
          /* Or if the next reloc is not a LO16 against this symbol.  */
          if (irel + 1 >= irelend
          if (irel + 1 >= irelend
              || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
              || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
              || ELF32_R_SYM (irel[1].r_info) != r_symndx)
              || ELF32_R_SYM (irel[1].r_info) != r_symndx)
            continue;
            continue;
 
 
          /* Or if the second next reloc is a LO16 against this symbol too.  */
          /* Or if the second next reloc is a LO16 against this symbol too.  */
          if (irel + 2 >= irelend
          if (irel + 2 >= irelend
              && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
              && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
              && ELF32_R_SYM (irel[2].r_info) == r_symndx)
              && ELF32_R_SYM (irel[2].r_info) == r_symndx)
            continue;
            continue;
 
 
          /* See if the LUI instruction *might* be in a branch delay slot.
          /* See if the LUI instruction *might* be in a branch delay slot.
             We check whether what looks like a 16-bit branch or jump is
             We check whether what looks like a 16-bit branch or jump is
             actually an immediate argument to a compact branch, and let
             actually an immediate argument to a compact branch, and let
             it through if so.  */
             it through if so.  */
          if (irel->r_offset >= 2
          if (irel->r_offset >= 2
              && check_br16_dslot (abfd, ptr - 2)
              && check_br16_dslot (abfd, ptr - 2)
              && !(irel->r_offset >= 4
              && !(irel->r_offset >= 4
                   && (bzc = check_relocated_bzc (abfd,
                   && (bzc = check_relocated_bzc (abfd,
                                                  ptr - 4, irel->r_offset - 4,
                                                  ptr - 4, irel->r_offset - 4,
                                                  internal_relocs, irelend))))
                                                  internal_relocs, irelend))))
            continue;
            continue;
          if (irel->r_offset >= 4
          if (irel->r_offset >= 4
              && !bzc
              && !bzc
              && check_br32_dslot (abfd, ptr - 4))
              && check_br32_dslot (abfd, ptr - 4))
            continue;
            continue;
 
 
          reg = OP32_SREG (opcode);
          reg = OP32_SREG (opcode);
 
 
          /* We only relax adjacent instructions or ones separated with
          /* We only relax adjacent instructions or ones separated with
             a branch or jump that has a delay slot.  The branch or jump
             a branch or jump that has a delay slot.  The branch or jump
             must not fiddle with the register used to hold the address.
             must not fiddle with the register used to hold the address.
             Subtract 4 for the LUI itself.  */
             Subtract 4 for the LUI itself.  */
          offset = irel[1].r_offset - irel[0].r_offset;
          offset = irel[1].r_offset - irel[0].r_offset;
          switch (offset - 4)
          switch (offset - 4)
            {
            {
            case 0:
            case 0:
              break;
              break;
            case 2:
            case 2:
              if (check_br16 (abfd, ptr + 4, reg))
              if (check_br16 (abfd, ptr + 4, reg))
                break;
                break;
              continue;
              continue;
            case 4:
            case 4:
              if (check_br32 (abfd, ptr + 4, reg))
              if (check_br32 (abfd, ptr + 4, reg))
                break;
                break;
              continue;
              continue;
            default:
            default:
              continue;
              continue;
            }
            }
 
 
          nextopc  = bfd_get_16 (abfd, contents + irel[1].r_offset    ) << 16;
          nextopc  = bfd_get_16 (abfd, contents + irel[1].r_offset    ) << 16;
          nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
          nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
 
 
          /* Give up unless the same register is used with both
          /* Give up unless the same register is used with both
             relocations.  */
             relocations.  */
          if (OP32_SREG (nextopc) != reg)
          if (OP32_SREG (nextopc) != reg)
            continue;
            continue;
 
 
          /* Now adjust pcrval, subtracting the offset to the LO16 reloc
          /* Now adjust pcrval, subtracting the offset to the LO16 reloc
             and rounding up to take masking of the two LSBs into account.  */
             and rounding up to take masking of the two LSBs into account.  */
          pcrval = ((pcrval - offset + 3) | 3) ^ 3;
          pcrval = ((pcrval - offset + 3) | 3) ^ 3;
 
 
          /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
          /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
          if (IS_BITSIZE (symval, 16))
          if (IS_BITSIZE (symval, 16))
            {
            {
              /* Fix the relocation's type.  */
              /* Fix the relocation's type.  */
              irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
              irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
 
 
              /* Instructions using R_MICROMIPS_LO16 have the base or
              /* Instructions using R_MICROMIPS_LO16 have the base or
                 source register in bits 20:16.  This register becomes $0
                 source register in bits 20:16.  This register becomes $0
                 (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
                 (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
              nextopc &= ~0x001f0000;
              nextopc &= ~0x001f0000;
              bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
              bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
                          contents + irel[1].r_offset);
                          contents + irel[1].r_offset);
            }
            }
 
 
          /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
          /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
             We add 4 to take LUI deletion into account while checking
             We add 4 to take LUI deletion into account while checking
             the PC-relative distance.  */
             the PC-relative distance.  */
          else if (symval % 4 == 0
          else if (symval % 4 == 0
                   && IS_BITSIZE (pcrval + 4, 25)
                   && IS_BITSIZE (pcrval + 4, 25)
                   && MATCH (nextopc, addiu_insn)
                   && MATCH (nextopc, addiu_insn)
                   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
                   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
                   && OP16_VALID_REG (OP32_TREG (nextopc)))
                   && OP16_VALID_REG (OP32_TREG (nextopc)))
            {
            {
              /* Fix the relocation's type.  */
              /* Fix the relocation's type.  */
              irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
              irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
 
 
              /* Replace ADDIU with the ADDIUPC version.  */
              /* Replace ADDIU with the ADDIUPC version.  */
              nextopc = (addiupc_insn.match
              nextopc = (addiupc_insn.match
                         | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
                         | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
 
 
              bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
              bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
                          contents + irel[1].r_offset);
                          contents + irel[1].r_offset);
              bfd_put_16 (abfd,  nextopc        & 0xffff,
              bfd_put_16 (abfd,  nextopc        & 0xffff,
                          contents + irel[1].r_offset + 2);
                          contents + irel[1].r_offset + 2);
            }
            }
 
 
          /* Can't do anything, give up, sigh...  */
          /* Can't do anything, give up, sigh...  */
          else
          else
            continue;
            continue;
 
 
          /* Fix the relocation's type.  */
          /* Fix the relocation's type.  */
          irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
          irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
 
 
          /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
          /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
          delcnt = 4;
          delcnt = 4;
          deloff = 0;
          deloff = 0;
        }
        }
 
 
      /* Compact branch relaxation -- due to the multitude of macros
      /* Compact branch relaxation -- due to the multitude of macros
         employed by the compiler/assembler, compact branches are not
         employed by the compiler/assembler, compact branches are not
         always generated.  Obviously, this can/will be fixed elsewhere,
         always generated.  Obviously, this can/will be fixed elsewhere,
         but there is no drawback in double checking it here.  */
         but there is no drawback in double checking it here.  */
      else if (r_type == R_MICROMIPS_PC16_S1
      else if (r_type == R_MICROMIPS_PC16_S1
               && irel->r_offset + 5 < sec->size
               && irel->r_offset + 5 < sec->size
               && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
               && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
                   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
                   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
               && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
               && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
        {
        {
          unsigned long reg;
          unsigned long reg;
 
 
          reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
          reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
 
 
          /* Replace BEQZ/BNEZ with the compact version.  */
          /* Replace BEQZ/BNEZ with the compact version.  */
          opcode = (bzc_insns_32[fndopc].match
          opcode = (bzc_insns_32[fndopc].match
                    | BZC32_REG_FIELD (reg)
                    | BZC32_REG_FIELD (reg)
                    | (opcode & 0xffff));               /* Addend value.  */
                    | (opcode & 0xffff));               /* Addend value.  */
 
 
          bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
          bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
          bfd_put_16 (abfd,  opcode        & 0xffff, ptr + 2);
          bfd_put_16 (abfd,  opcode        & 0xffff, ptr + 2);
 
 
          /* Delete the 16-bit delay slot NOP: two bytes from
          /* Delete the 16-bit delay slot NOP: two bytes from
             irel->offset + 4.  */
             irel->offset + 4.  */
          delcnt = 2;
          delcnt = 2;
          deloff = 4;
          deloff = 4;
        }
        }
 
 
      /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
      /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
         to check the distance from the next instruction, so subtract 2.  */
         to check the distance from the next instruction, so subtract 2.  */
      else if (r_type == R_MICROMIPS_PC16_S1
      else if (r_type == R_MICROMIPS_PC16_S1
               && IS_BITSIZE (pcrval - 2, 11)
               && IS_BITSIZE (pcrval - 2, 11)
               && find_match (opcode, b_insns_32) >= 0)
               && find_match (opcode, b_insns_32) >= 0)
        {
        {
          /* Fix the relocation's type.  */
          /* Fix the relocation's type.  */
          irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
          irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
 
 
          /* Replace the the 32-bit opcode with a 16-bit opcode.  */
          /* Replace the the 32-bit opcode with a 16-bit opcode.  */
          bfd_put_16 (abfd,
          bfd_put_16 (abfd,
                      (b_insn_16.match
                      (b_insn_16.match
                       | (opcode & 0x3ff)),             /* Addend value.  */
                       | (opcode & 0x3ff)),             /* Addend value.  */
                      ptr);
                      ptr);
 
 
          /* Delete 2 bytes from irel->r_offset + 2.  */
          /* Delete 2 bytes from irel->r_offset + 2.  */
          delcnt = 2;
          delcnt = 2;
          deloff = 2;
          deloff = 2;
        }
        }
 
 
      /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
      /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
         to check the distance from the next instruction, so subtract 2.  */
         to check the distance from the next instruction, so subtract 2.  */
      else if (r_type == R_MICROMIPS_PC16_S1
      else if (r_type == R_MICROMIPS_PC16_S1
               && IS_BITSIZE (pcrval - 2, 8)
               && IS_BITSIZE (pcrval - 2, 8)
               && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
               && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
                    && OP16_VALID_REG (OP32_SREG (opcode)))
                    && OP16_VALID_REG (OP32_SREG (opcode)))
                   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
                   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
                       && OP16_VALID_REG (OP32_TREG (opcode)))))
                       && OP16_VALID_REG (OP32_TREG (opcode)))))
        {
        {
          unsigned long reg;
          unsigned long reg;
 
 
          reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
          reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
 
 
          /* Fix the relocation's type.  */
          /* Fix the relocation's type.  */
          irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
          irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
 
 
          /* Replace the the 32-bit opcode with a 16-bit opcode.  */
          /* Replace the the 32-bit opcode with a 16-bit opcode.  */
          bfd_put_16 (abfd,
          bfd_put_16 (abfd,
                      (bz_insns_16[fndopc].match
                      (bz_insns_16[fndopc].match
                       | BZ16_REG_FIELD (reg)
                       | BZ16_REG_FIELD (reg)
                       | (opcode & 0x7f)),              /* Addend value.  */
                       | (opcode & 0x7f)),              /* Addend value.  */
                      ptr);
                      ptr);
 
 
          /* Delete 2 bytes from irel->r_offset + 2.  */
          /* Delete 2 bytes from irel->r_offset + 2.  */
          delcnt = 2;
          delcnt = 2;
          deloff = 2;
          deloff = 2;
        }
        }
 
 
      /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
      /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
      else if (r_type == R_MICROMIPS_26_S1
      else if (r_type == R_MICROMIPS_26_S1
               && target_is_micromips_code_p
               && target_is_micromips_code_p
               && irel->r_offset + 7 < sec->size
               && irel->r_offset + 7 < sec->size
               && MATCH (opcode, jal_insn_32_bd32))
               && MATCH (opcode, jal_insn_32_bd32))
        {
        {
          unsigned long n32opc;
          unsigned long n32opc;
          bfd_boolean relaxed = FALSE;
          bfd_boolean relaxed = FALSE;
 
 
          n32opc  = bfd_get_16 (abfd, ptr + 4) << 16;
          n32opc  = bfd_get_16 (abfd, ptr + 4) << 16;
          n32opc |= bfd_get_16 (abfd, ptr + 6);
          n32opc |= bfd_get_16 (abfd, ptr + 6);
 
 
          if (MATCH (n32opc, nop_insn_32))
          if (MATCH (n32opc, nop_insn_32))
            {
            {
              /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
              /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
              bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
              bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
 
 
              relaxed = TRUE;
              relaxed = TRUE;
            }
            }
          else if (find_match (n32opc, move_insns_32) >= 0)
          else if (find_match (n32opc, move_insns_32) >= 0)
            {
            {
              /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
              /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
              bfd_put_16 (abfd,
              bfd_put_16 (abfd,
                          (move_insn_16.match
                          (move_insn_16.match
                           | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
                           | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
                           | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
                           | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
                          ptr + 4);
                          ptr + 4);
 
 
              relaxed = TRUE;
              relaxed = TRUE;
            }
            }
          /* Other 32-bit instructions relaxable to 16-bit
          /* Other 32-bit instructions relaxable to 16-bit
             instructions will be handled here later.  */
             instructions will be handled here later.  */
 
 
          if (relaxed)
          if (relaxed)
            {
            {
              /* JAL with 32-bit delay slot that is changed to a JALS
              /* JAL with 32-bit delay slot that is changed to a JALS
                 with 16-bit delay slot.  */
                 with 16-bit delay slot.  */
              bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
              bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
                          ptr);
                          ptr);
              bfd_put_16 (abfd,  jal_insn_32_bd16.match        & 0xffff,
              bfd_put_16 (abfd,  jal_insn_32_bd16.match        & 0xffff,
                          ptr + 2);
                          ptr + 2);
 
 
              /* Delete 2 bytes from irel->r_offset + 6.  */
              /* Delete 2 bytes from irel->r_offset + 6.  */
              delcnt = 2;
              delcnt = 2;
              deloff = 6;
              deloff = 6;
            }
            }
        }
        }
 
 
      if (delcnt != 0)
      if (delcnt != 0)
        {
        {
          /* Note that we've changed the relocs, section contents, etc.  */
          /* Note that we've changed the relocs, section contents, etc.  */
          elf_section_data (sec)->relocs = internal_relocs;
          elf_section_data (sec)->relocs = internal_relocs;
          elf_section_data (sec)->this_hdr.contents = contents;
          elf_section_data (sec)->this_hdr.contents = contents;
          symtab_hdr->contents = (unsigned char *) isymbuf;
          symtab_hdr->contents = (unsigned char *) isymbuf;
 
 
          /* Delete bytes depending on the delcnt and deloff.  */
          /* Delete bytes depending on the delcnt and deloff.  */
          if (!mips_elf_relax_delete_bytes (abfd, sec,
          if (!mips_elf_relax_delete_bytes (abfd, sec,
                                            irel->r_offset + deloff, delcnt))
                                            irel->r_offset + deloff, delcnt))
            goto error_return;
            goto error_return;
 
 
          /* That will change things, so we should relax again.
          /* That will change things, so we should relax again.
             Note that this is not required, and it may be slow.  */
             Note that this is not required, and it may be slow.  */
          *again = TRUE;
          *again = TRUE;
        }
        }
    }
    }
 
 
  if (isymbuf != NULL
  if (isymbuf != NULL
      && symtab_hdr->contents != (unsigned char *) isymbuf)
      && symtab_hdr->contents != (unsigned char *) isymbuf)
    {
    {
      if (! link_info->keep_memory)
      if (! link_info->keep_memory)
        free (isymbuf);
        free (isymbuf);
      else
      else
        {
        {
          /* Cache the symbols for elf_link_input_bfd.  */
          /* Cache the symbols for elf_link_input_bfd.  */
          symtab_hdr->contents = (unsigned char *) isymbuf;
          symtab_hdr->contents = (unsigned char *) isymbuf;
        }
        }
    }
    }
 
 
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    {
    {
      if (! link_info->keep_memory)
      if (! link_info->keep_memory)
        free (contents);
        free (contents);
      else
      else
        {
        {
          /* Cache the section contents for elf_link_input_bfd.  */
          /* Cache the section contents for elf_link_input_bfd.  */
          elf_section_data (sec)->this_hdr.contents = contents;
          elf_section_data (sec)->this_hdr.contents = contents;
        }
        }
    }
    }
 
 
  if (internal_relocs != NULL
  if (internal_relocs != NULL
      && elf_section_data (sec)->relocs != internal_relocs)
      && elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
    free (internal_relocs);
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (isymbuf != NULL
  if (isymbuf != NULL
      && symtab_hdr->contents != (unsigned char *) isymbuf)
      && symtab_hdr->contents != (unsigned char *) isymbuf)
    free (isymbuf);
    free (isymbuf);
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    free (contents);
    free (contents);
  if (internal_relocs != NULL
  if (internal_relocs != NULL
      && elf_section_data (sec)->relocs != internal_relocs)
      && elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
    free (internal_relocs);
 
 
  return FALSE;
  return FALSE;
}
}


/* Create a MIPS ELF linker hash table.  */
/* Create a MIPS ELF linker hash table.  */
 
 
struct bfd_link_hash_table *
struct bfd_link_hash_table *
_bfd_mips_elf_link_hash_table_create (bfd *abfd)
_bfd_mips_elf_link_hash_table_create (bfd *abfd)
{
{
  struct mips_elf_link_hash_table *ret;
  struct mips_elf_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
  bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
 
 
  ret = bfd_malloc (amt);
  ret = bfd_malloc (amt);
  if (ret == NULL)
  if (ret == NULL)
    return NULL;
    return NULL;
 
 
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
                                      mips_elf_link_hash_newfunc,
                                      mips_elf_link_hash_newfunc,
                                      sizeof (struct mips_elf_link_hash_entry),
                                      sizeof (struct mips_elf_link_hash_entry),
                                      MIPS_ELF_DATA))
                                      MIPS_ELF_DATA))
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
#if 0
#if 0
  /* We no longer use this.  */
  /* We no longer use this.  */
  for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
  for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
    ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
    ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
#endif
#endif
  ret->procedure_count = 0;
  ret->procedure_count = 0;
  ret->compact_rel_size = 0;
  ret->compact_rel_size = 0;
  ret->use_rld_obj_head = FALSE;
  ret->use_rld_obj_head = FALSE;
  ret->rld_value = 0;
  ret->rld_symbol = NULL;
  ret->mips16_stubs_seen = FALSE;
  ret->mips16_stubs_seen = FALSE;
  ret->use_plts_and_copy_relocs = FALSE;
  ret->use_plts_and_copy_relocs = FALSE;
  ret->is_vxworks = FALSE;
  ret->is_vxworks = FALSE;
  ret->small_data_overflow_reported = FALSE;
  ret->small_data_overflow_reported = FALSE;
  ret->srelbss = NULL;
  ret->srelbss = NULL;
  ret->sdynbss = NULL;
  ret->sdynbss = NULL;
  ret->srelplt = NULL;
  ret->srelplt = NULL;
  ret->srelplt2 = NULL;
  ret->srelplt2 = NULL;
  ret->sgotplt = NULL;
  ret->sgotplt = NULL;
  ret->splt = NULL;
  ret->splt = NULL;
  ret->sstubs = NULL;
  ret->sstubs = NULL;
  ret->sgot = NULL;
  ret->sgot = NULL;
  ret->got_info = NULL;
  ret->got_info = NULL;
  ret->plt_header_size = 0;
  ret->plt_header_size = 0;
  ret->plt_entry_size = 0;
  ret->plt_entry_size = 0;
  ret->lazy_stub_count = 0;
  ret->lazy_stub_count = 0;
  ret->function_stub_size = 0;
  ret->function_stub_size = 0;
  ret->strampoline = NULL;
  ret->strampoline = NULL;
  ret->la25_stubs = NULL;
  ret->la25_stubs = NULL;
  ret->add_stub_section = NULL;
  ret->add_stub_section = NULL;
 
 
  return &ret->root.root;
  return &ret->root.root;
}
}
 
 
/* Likewise, but indicate that the target is VxWorks.  */
/* Likewise, but indicate that the target is VxWorks.  */
 
 
struct bfd_link_hash_table *
struct bfd_link_hash_table *
_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
{
{
  struct bfd_link_hash_table *ret;
  struct bfd_link_hash_table *ret;
 
 
  ret = _bfd_mips_elf_link_hash_table_create (abfd);
  ret = _bfd_mips_elf_link_hash_table_create (abfd);
  if (ret)
  if (ret)
    {
    {
      struct mips_elf_link_hash_table *htab;
      struct mips_elf_link_hash_table *htab;
 
 
      htab = (struct mips_elf_link_hash_table *) ret;
      htab = (struct mips_elf_link_hash_table *) ret;
      htab->use_plts_and_copy_relocs = TRUE;
      htab->use_plts_and_copy_relocs = TRUE;
      htab->is_vxworks = TRUE;
      htab->is_vxworks = TRUE;
    }
    }
  return ret;
  return ret;
}
}
 
 
/* A function that the linker calls if we are allowed to use PLTs
/* A function that the linker calls if we are allowed to use PLTs
   and copy relocs.  */
   and copy relocs.  */
 
 
void
void
_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
{
{
  mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
  mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
}
}


/* We need to use a special link routine to handle the .reginfo and
/* We need to use a special link routine to handle the .reginfo and
   the .mdebug sections.  We need to merge all instances of these
   the .mdebug sections.  We need to merge all instances of these
   sections together, not write them all out sequentially.  */
   sections together, not write them all out sequentially.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
{
{
  asection *o;
  asection *o;
  struct bfd_link_order *p;
  struct bfd_link_order *p;
  asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
  asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
  asection *rtproc_sec;
  asection *rtproc_sec;
  Elf32_RegInfo reginfo;
  Elf32_RegInfo reginfo;
  struct ecoff_debug_info debug;
  struct ecoff_debug_info debug;
  struct mips_htab_traverse_info hti;
  struct mips_htab_traverse_info hti;
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
  const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
  const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
  HDRR *symhdr = &debug.symbolic_header;
  HDRR *symhdr = &debug.symbolic_header;
  void *mdebug_handle = NULL;
  void *mdebug_handle = NULL;
  asection *s;
  asection *s;
  EXTR esym;
  EXTR esym;
  unsigned int i;
  unsigned int i;
  bfd_size_type amt;
  bfd_size_type amt;
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
 
 
  static const char * const secname[] =
  static const char * const secname[] =
  {
  {
    ".text", ".init", ".fini", ".data",
    ".text", ".init", ".fini", ".data",
    ".rodata", ".sdata", ".sbss", ".bss"
    ".rodata", ".sdata", ".sbss", ".bss"
  };
  };
  static const int sc[] =
  static const int sc[] =
  {
  {
    scText, scInit, scFini, scData,
    scText, scInit, scFini, scData,
    scRData, scSData, scSBss, scBss
    scRData, scSData, scSBss, scBss
  };
  };
 
 
  /* Sort the dynamic symbols so that those with GOT entries come after
  /* Sort the dynamic symbols so that those with GOT entries come after
     those without.  */
     those without.  */
  htab = mips_elf_hash_table (info);
  htab = mips_elf_hash_table (info);
  BFD_ASSERT (htab != NULL);
  BFD_ASSERT (htab != NULL);
 
 
  if (!mips_elf_sort_hash_table (abfd, info))
  if (!mips_elf_sort_hash_table (abfd, info))
    return FALSE;
    return FALSE;
 
 
  /* Create any scheduled LA25 stubs.  */
  /* Create any scheduled LA25 stubs.  */
  hti.info = info;
  hti.info = info;
  hti.output_bfd = abfd;
  hti.output_bfd = abfd;
  hti.error = FALSE;
  hti.error = FALSE;
  htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
  htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
  if (hti.error)
  if (hti.error)
    return FALSE;
    return FALSE;
 
 
  /* Get a value for the GP register.  */
  /* Get a value for the GP register.  */
  if (elf_gp (abfd) == 0)
  if (elf_gp (abfd) == 0)
    {
    {
      struct bfd_link_hash_entry *h;
      struct bfd_link_hash_entry *h;
 
 
      h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
      h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
      if (h != NULL && h->type == bfd_link_hash_defined)
      if (h != NULL && h->type == bfd_link_hash_defined)
        elf_gp (abfd) = (h->u.def.value
        elf_gp (abfd) = (h->u.def.value
                         + h->u.def.section->output_section->vma
                         + h->u.def.section->output_section->vma
                         + h->u.def.section->output_offset);
                         + h->u.def.section->output_offset);
      else if (htab->is_vxworks
      else if (htab->is_vxworks
               && (h = bfd_link_hash_lookup (info->hash,
               && (h = bfd_link_hash_lookup (info->hash,
                                             "_GLOBAL_OFFSET_TABLE_",
                                             "_GLOBAL_OFFSET_TABLE_",
                                             FALSE, FALSE, TRUE))
                                             FALSE, FALSE, TRUE))
               && h->type == bfd_link_hash_defined)
               && h->type == bfd_link_hash_defined)
        elf_gp (abfd) = (h->u.def.section->output_section->vma
        elf_gp (abfd) = (h->u.def.section->output_section->vma
                         + h->u.def.section->output_offset
                         + h->u.def.section->output_offset
                         + h->u.def.value);
                         + h->u.def.value);
      else if (info->relocatable)
      else if (info->relocatable)
        {
        {
          bfd_vma lo = MINUS_ONE;
          bfd_vma lo = MINUS_ONE;
 
 
          /* Find the GP-relative section with the lowest offset.  */
          /* Find the GP-relative section with the lowest offset.  */
          for (o = abfd->sections; o != NULL; o = o->next)
          for (o = abfd->sections; o != NULL; o = o->next)
            if (o->vma < lo
            if (o->vma < lo
                && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
                && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
              lo = o->vma;
              lo = o->vma;
 
 
          /* And calculate GP relative to that.  */
          /* And calculate GP relative to that.  */
          elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
          elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
        }
        }
      else
      else
        {
        {
          /* If the relocate_section function needs to do a reloc
          /* If the relocate_section function needs to do a reloc
             involving the GP value, it should make a reloc_dangerous
             involving the GP value, it should make a reloc_dangerous
             callback to warn that GP is not defined.  */
             callback to warn that GP is not defined.  */
        }
        }
    }
    }
 
 
  /* Go through the sections and collect the .reginfo and .mdebug
  /* Go through the sections and collect the .reginfo and .mdebug
     information.  */
     information.  */
  reginfo_sec = NULL;
  reginfo_sec = NULL;
  mdebug_sec = NULL;
  mdebug_sec = NULL;
  gptab_data_sec = NULL;
  gptab_data_sec = NULL;
  gptab_bss_sec = NULL;
  gptab_bss_sec = NULL;
  for (o = abfd->sections; o != NULL; o = o->next)
  for (o = abfd->sections; o != NULL; o = o->next)
    {
    {
      if (strcmp (o->name, ".reginfo") == 0)
      if (strcmp (o->name, ".reginfo") == 0)
        {
        {
          memset (&reginfo, 0, sizeof reginfo);
          memset (&reginfo, 0, sizeof reginfo);
 
 
          /* We have found the .reginfo section in the output file.
          /* We have found the .reginfo section in the output file.
             Look through all the link_orders comprising it and merge
             Look through all the link_orders comprising it and merge
             the information together.  */
             the information together.  */
          for (p = o->map_head.link_order; p != NULL; p = p->next)
          for (p = o->map_head.link_order; p != NULL; p = p->next)
            {
            {
              asection *input_section;
              asection *input_section;
              bfd *input_bfd;
              bfd *input_bfd;
              Elf32_External_RegInfo ext;
              Elf32_External_RegInfo ext;
              Elf32_RegInfo sub;
              Elf32_RegInfo sub;
 
 
              if (p->type != bfd_indirect_link_order)
              if (p->type != bfd_indirect_link_order)
                {
                {
                  if (p->type == bfd_data_link_order)
                  if (p->type == bfd_data_link_order)
                    continue;
                    continue;
                  abort ();
                  abort ();
                }
                }
 
 
              input_section = p->u.indirect.section;
              input_section = p->u.indirect.section;
              input_bfd = input_section->owner;
              input_bfd = input_section->owner;
 
 
              if (! bfd_get_section_contents (input_bfd, input_section,
              if (! bfd_get_section_contents (input_bfd, input_section,
                                              &ext, 0, sizeof ext))
                                              &ext, 0, sizeof ext))
                return FALSE;
                return FALSE;
 
 
              bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
              bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
 
 
              reginfo.ri_gprmask |= sub.ri_gprmask;
              reginfo.ri_gprmask |= sub.ri_gprmask;
              reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
              reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
              reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
              reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
              reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
              reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
              reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
              reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
 
 
              /* ri_gp_value is set by the function
              /* ri_gp_value is set by the function
                 mips_elf32_section_processing when the section is
                 mips_elf32_section_processing when the section is
                 finally written out.  */
                 finally written out.  */
 
 
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
                 elf_link_input_bfd ignores this section.  */
                 elf_link_input_bfd ignores this section.  */
              input_section->flags &= ~SEC_HAS_CONTENTS;
              input_section->flags &= ~SEC_HAS_CONTENTS;
            }
            }
 
 
          /* Size has been set in _bfd_mips_elf_always_size_sections.  */
          /* Size has been set in _bfd_mips_elf_always_size_sections.  */
          BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
          BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
 
 
          /* Skip this section later on (I don't think this currently
          /* Skip this section later on (I don't think this currently
             matters, but someday it might).  */
             matters, but someday it might).  */
          o->map_head.link_order = NULL;
          o->map_head.link_order = NULL;
 
 
          reginfo_sec = o;
          reginfo_sec = o;
        }
        }
 
 
      if (strcmp (o->name, ".mdebug") == 0)
      if (strcmp (o->name, ".mdebug") == 0)
        {
        {
          struct extsym_info einfo;
          struct extsym_info einfo;
          bfd_vma last;
          bfd_vma last;
 
 
          /* We have found the .mdebug section in the output file.
          /* We have found the .mdebug section in the output file.
             Look through all the link_orders comprising it and merge
             Look through all the link_orders comprising it and merge
             the information together.  */
             the information together.  */
          symhdr->magic = swap->sym_magic;
          symhdr->magic = swap->sym_magic;
          /* FIXME: What should the version stamp be?  */
          /* FIXME: What should the version stamp be?  */
          symhdr->vstamp = 0;
          symhdr->vstamp = 0;
          symhdr->ilineMax = 0;
          symhdr->ilineMax = 0;
          symhdr->cbLine = 0;
          symhdr->cbLine = 0;
          symhdr->idnMax = 0;
          symhdr->idnMax = 0;
          symhdr->ipdMax = 0;
          symhdr->ipdMax = 0;
          symhdr->isymMax = 0;
          symhdr->isymMax = 0;
          symhdr->ioptMax = 0;
          symhdr->ioptMax = 0;
          symhdr->iauxMax = 0;
          symhdr->iauxMax = 0;
          symhdr->issMax = 0;
          symhdr->issMax = 0;
          symhdr->issExtMax = 0;
          symhdr->issExtMax = 0;
          symhdr->ifdMax = 0;
          symhdr->ifdMax = 0;
          symhdr->crfd = 0;
          symhdr->crfd = 0;
          symhdr->iextMax = 0;
          symhdr->iextMax = 0;
 
 
          /* We accumulate the debugging information itself in the
          /* We accumulate the debugging information itself in the
             debug_info structure.  */
             debug_info structure.  */
          debug.line = NULL;
          debug.line = NULL;
          debug.external_dnr = NULL;
          debug.external_dnr = NULL;
          debug.external_pdr = NULL;
          debug.external_pdr = NULL;
          debug.external_sym = NULL;
          debug.external_sym = NULL;
          debug.external_opt = NULL;
          debug.external_opt = NULL;
          debug.external_aux = NULL;
          debug.external_aux = NULL;
          debug.ss = NULL;
          debug.ss = NULL;
          debug.ssext = debug.ssext_end = NULL;
          debug.ssext = debug.ssext_end = NULL;
          debug.external_fdr = NULL;
          debug.external_fdr = NULL;
          debug.external_rfd = NULL;
          debug.external_rfd = NULL;
          debug.external_ext = debug.external_ext_end = NULL;
          debug.external_ext = debug.external_ext_end = NULL;
 
 
          mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
          mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
          if (mdebug_handle == NULL)
          if (mdebug_handle == NULL)
            return FALSE;
            return FALSE;
 
 
          esym.jmptbl = 0;
          esym.jmptbl = 0;
          esym.cobol_main = 0;
          esym.cobol_main = 0;
          esym.weakext = 0;
          esym.weakext = 0;
          esym.reserved = 0;
          esym.reserved = 0;
          esym.ifd = ifdNil;
          esym.ifd = ifdNil;
          esym.asym.iss = issNil;
          esym.asym.iss = issNil;
          esym.asym.st = stLocal;
          esym.asym.st = stLocal;
          esym.asym.reserved = 0;
          esym.asym.reserved = 0;
          esym.asym.index = indexNil;
          esym.asym.index = indexNil;
          last = 0;
          last = 0;
          for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
          for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
            {
            {
              esym.asym.sc = sc[i];
              esym.asym.sc = sc[i];
              s = bfd_get_section_by_name (abfd, secname[i]);
              s = bfd_get_section_by_name (abfd, secname[i]);
              if (s != NULL)
              if (s != NULL)
                {
                {
                  esym.asym.value = s->vma;
                  esym.asym.value = s->vma;
                  last = s->vma + s->size;
                  last = s->vma + s->size;
                }
                }
              else
              else
                esym.asym.value = last;
                esym.asym.value = last;
              if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
              if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
                                                 secname[i], &esym))
                                                 secname[i], &esym))
                return FALSE;
                return FALSE;
            }
            }
 
 
          for (p = o->map_head.link_order; p != NULL; p = p->next)
          for (p = o->map_head.link_order; p != NULL; p = p->next)
            {
            {
              asection *input_section;
              asection *input_section;
              bfd *input_bfd;
              bfd *input_bfd;
              const struct ecoff_debug_swap *input_swap;
              const struct ecoff_debug_swap *input_swap;
              struct ecoff_debug_info input_debug;
              struct ecoff_debug_info input_debug;
              char *eraw_src;
              char *eraw_src;
              char *eraw_end;
              char *eraw_end;
 
 
              if (p->type != bfd_indirect_link_order)
              if (p->type != bfd_indirect_link_order)
                {
                {
                  if (p->type == bfd_data_link_order)
                  if (p->type == bfd_data_link_order)
                    continue;
                    continue;
                  abort ();
                  abort ();
                }
                }
 
 
              input_section = p->u.indirect.section;
              input_section = p->u.indirect.section;
              input_bfd = input_section->owner;
              input_bfd = input_section->owner;
 
 
              if (!is_mips_elf (input_bfd))
              if (!is_mips_elf (input_bfd))
                {
                {
                  /* I don't know what a non MIPS ELF bfd would be
                  /* I don't know what a non MIPS ELF bfd would be
                     doing with a .mdebug section, but I don't really
                     doing with a .mdebug section, but I don't really
                     want to deal with it.  */
                     want to deal with it.  */
                  continue;
                  continue;
                }
                }
 
 
              input_swap = (get_elf_backend_data (input_bfd)
              input_swap = (get_elf_backend_data (input_bfd)
                            ->elf_backend_ecoff_debug_swap);
                            ->elf_backend_ecoff_debug_swap);
 
 
              BFD_ASSERT (p->size == input_section->size);
              BFD_ASSERT (p->size == input_section->size);
 
 
              /* The ECOFF linking code expects that we have already
              /* The ECOFF linking code expects that we have already
                 read in the debugging information and set up an
                 read in the debugging information and set up an
                 ecoff_debug_info structure, so we do that now.  */
                 ecoff_debug_info structure, so we do that now.  */
              if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
              if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
                                                   &input_debug))
                                                   &input_debug))
                return FALSE;
                return FALSE;
 
 
              if (! (bfd_ecoff_debug_accumulate
              if (! (bfd_ecoff_debug_accumulate
                     (mdebug_handle, abfd, &debug, swap, input_bfd,
                     (mdebug_handle, abfd, &debug, swap, input_bfd,
                      &input_debug, input_swap, info)))
                      &input_debug, input_swap, info)))
                return FALSE;
                return FALSE;
 
 
              /* Loop through the external symbols.  For each one with
              /* Loop through the external symbols.  For each one with
                 interesting information, try to find the symbol in
                 interesting information, try to find the symbol in
                 the linker global hash table and save the information
                 the linker global hash table and save the information
                 for the output external symbols.  */
                 for the output external symbols.  */
              eraw_src = input_debug.external_ext;
              eraw_src = input_debug.external_ext;
              eraw_end = (eraw_src
              eraw_end = (eraw_src
                          + (input_debug.symbolic_header.iextMax
                          + (input_debug.symbolic_header.iextMax
                             * input_swap->external_ext_size));
                             * input_swap->external_ext_size));
              for (;
              for (;
                   eraw_src < eraw_end;
                   eraw_src < eraw_end;
                   eraw_src += input_swap->external_ext_size)
                   eraw_src += input_swap->external_ext_size)
                {
                {
                  EXTR ext;
                  EXTR ext;
                  const char *name;
                  const char *name;
                  struct mips_elf_link_hash_entry *h;
                  struct mips_elf_link_hash_entry *h;
 
 
                  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
                  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
                  if (ext.asym.sc == scNil
                  if (ext.asym.sc == scNil
                      || ext.asym.sc == scUndefined
                      || ext.asym.sc == scUndefined
                      || ext.asym.sc == scSUndefined)
                      || ext.asym.sc == scSUndefined)
                    continue;
                    continue;
 
 
                  name = input_debug.ssext + ext.asym.iss;
                  name = input_debug.ssext + ext.asym.iss;
                  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
                  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
                                                 name, FALSE, FALSE, TRUE);
                                                 name, FALSE, FALSE, TRUE);
                  if (h == NULL || h->esym.ifd != -2)
                  if (h == NULL || h->esym.ifd != -2)
                    continue;
                    continue;
 
 
                  if (ext.ifd != -1)
                  if (ext.ifd != -1)
                    {
                    {
                      BFD_ASSERT (ext.ifd
                      BFD_ASSERT (ext.ifd
                                  < input_debug.symbolic_header.ifdMax);
                                  < input_debug.symbolic_header.ifdMax);
                      ext.ifd = input_debug.ifdmap[ext.ifd];
                      ext.ifd = input_debug.ifdmap[ext.ifd];
                    }
                    }
 
 
                  h->esym = ext;
                  h->esym = ext;
                }
                }
 
 
              /* Free up the information we just read.  */
              /* Free up the information we just read.  */
              free (input_debug.line);
              free (input_debug.line);
              free (input_debug.external_dnr);
              free (input_debug.external_dnr);
              free (input_debug.external_pdr);
              free (input_debug.external_pdr);
              free (input_debug.external_sym);
              free (input_debug.external_sym);
              free (input_debug.external_opt);
              free (input_debug.external_opt);
              free (input_debug.external_aux);
              free (input_debug.external_aux);
              free (input_debug.ss);
              free (input_debug.ss);
              free (input_debug.ssext);
              free (input_debug.ssext);
              free (input_debug.external_fdr);
              free (input_debug.external_fdr);
              free (input_debug.external_rfd);
              free (input_debug.external_rfd);
              free (input_debug.external_ext);
              free (input_debug.external_ext);
 
 
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
                 elf_link_input_bfd ignores this section.  */
                 elf_link_input_bfd ignores this section.  */
              input_section->flags &= ~SEC_HAS_CONTENTS;
              input_section->flags &= ~SEC_HAS_CONTENTS;
            }
            }
 
 
          if (SGI_COMPAT (abfd) && info->shared)
          if (SGI_COMPAT (abfd) && info->shared)
            {
            {
              /* Create .rtproc section.  */
              /* Create .rtproc section.  */
              rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
              rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
              if (rtproc_sec == NULL)
              if (rtproc_sec == NULL)
                {
                {
                  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
                  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
                                    | SEC_LINKER_CREATED | SEC_READONLY);
                                    | SEC_LINKER_CREATED | SEC_READONLY);
 
 
                  rtproc_sec = bfd_make_section_with_flags (abfd,
                  rtproc_sec = bfd_make_section_with_flags (abfd,
                                                            ".rtproc",
                                                            ".rtproc",
                                                            flags);
                                                            flags);
                  if (rtproc_sec == NULL
                  if (rtproc_sec == NULL
                      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
                      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
                    return FALSE;
                    return FALSE;
                }
                }
 
 
              if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
              if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
                                                     info, rtproc_sec,
                                                     info, rtproc_sec,
                                                     &debug))
                                                     &debug))
                return FALSE;
                return FALSE;
            }
            }
 
 
          /* Build the external symbol information.  */
          /* Build the external symbol information.  */
          einfo.abfd = abfd;
          einfo.abfd = abfd;
          einfo.info = info;
          einfo.info = info;
          einfo.debug = &debug;
          einfo.debug = &debug;
          einfo.swap = swap;
          einfo.swap = swap;
          einfo.failed = FALSE;
          einfo.failed = FALSE;
          mips_elf_link_hash_traverse (mips_elf_hash_table (info),
          mips_elf_link_hash_traverse (mips_elf_hash_table (info),
                                       mips_elf_output_extsym, &einfo);
                                       mips_elf_output_extsym, &einfo);
          if (einfo.failed)
          if (einfo.failed)
            return FALSE;
            return FALSE;
 
 
          /* Set the size of the .mdebug section.  */
          /* Set the size of the .mdebug section.  */
          o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
          o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
 
 
          /* Skip this section later on (I don't think this currently
          /* Skip this section later on (I don't think this currently
             matters, but someday it might).  */
             matters, but someday it might).  */
          o->map_head.link_order = NULL;
          o->map_head.link_order = NULL;
 
 
          mdebug_sec = o;
          mdebug_sec = o;
        }
        }
 
 
      if (CONST_STRNEQ (o->name, ".gptab."))
      if (CONST_STRNEQ (o->name, ".gptab."))
        {
        {
          const char *subname;
          const char *subname;
          unsigned int c;
          unsigned int c;
          Elf32_gptab *tab;
          Elf32_gptab *tab;
          Elf32_External_gptab *ext_tab;
          Elf32_External_gptab *ext_tab;
          unsigned int j;
          unsigned int j;
 
 
          /* The .gptab.sdata and .gptab.sbss sections hold
          /* The .gptab.sdata and .gptab.sbss sections hold
             information describing how the small data area would
             information describing how the small data area would
             change depending upon the -G switch.  These sections
             change depending upon the -G switch.  These sections
             not used in executables files.  */
             not used in executables files.  */
          if (! info->relocatable)
          if (! info->relocatable)
            {
            {
              for (p = o->map_head.link_order; p != NULL; p = p->next)
              for (p = o->map_head.link_order; p != NULL; p = p->next)
                {
                {
                  asection *input_section;
                  asection *input_section;
 
 
                  if (p->type != bfd_indirect_link_order)
                  if (p->type != bfd_indirect_link_order)
                    {
                    {
                      if (p->type == bfd_data_link_order)
                      if (p->type == bfd_data_link_order)
                        continue;
                        continue;
                      abort ();
                      abort ();
                    }
                    }
 
 
                  input_section = p->u.indirect.section;
                  input_section = p->u.indirect.section;
 
 
                  /* Hack: reset the SEC_HAS_CONTENTS flag so that
                  /* Hack: reset the SEC_HAS_CONTENTS flag so that
                     elf_link_input_bfd ignores this section.  */
                     elf_link_input_bfd ignores this section.  */
                  input_section->flags &= ~SEC_HAS_CONTENTS;
                  input_section->flags &= ~SEC_HAS_CONTENTS;
                }
                }
 
 
              /* Skip this section later on (I don't think this
              /* Skip this section later on (I don't think this
                 currently matters, but someday it might).  */
                 currently matters, but someday it might).  */
              o->map_head.link_order = NULL;
              o->map_head.link_order = NULL;
 
 
              /* Really remove the section.  */
              /* Really remove the section.  */
              bfd_section_list_remove (abfd, o);
              bfd_section_list_remove (abfd, o);
              --abfd->section_count;
              --abfd->section_count;
 
 
              continue;
              continue;
            }
            }
 
 
          /* There is one gptab for initialized data, and one for
          /* There is one gptab for initialized data, and one for
             uninitialized data.  */
             uninitialized data.  */
          if (strcmp (o->name, ".gptab.sdata") == 0)
          if (strcmp (o->name, ".gptab.sdata") == 0)
            gptab_data_sec = o;
            gptab_data_sec = o;
          else if (strcmp (o->name, ".gptab.sbss") == 0)
          else if (strcmp (o->name, ".gptab.sbss") == 0)
            gptab_bss_sec = o;
            gptab_bss_sec = o;
          else
          else
            {
            {
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%s: illegal section name `%s'"),
                (_("%s: illegal section name `%s'"),
                 bfd_get_filename (abfd), o->name);
                 bfd_get_filename (abfd), o->name);
              bfd_set_error (bfd_error_nonrepresentable_section);
              bfd_set_error (bfd_error_nonrepresentable_section);
              return FALSE;
              return FALSE;
            }
            }
 
 
          /* The linker script always combines .gptab.data and
          /* The linker script always combines .gptab.data and
             .gptab.sdata into .gptab.sdata, and likewise for
             .gptab.sdata into .gptab.sdata, and likewise for
             .gptab.bss and .gptab.sbss.  It is possible that there is
             .gptab.bss and .gptab.sbss.  It is possible that there is
             no .sdata or .sbss section in the output file, in which
             no .sdata or .sbss section in the output file, in which
             case we must change the name of the output section.  */
             case we must change the name of the output section.  */
          subname = o->name + sizeof ".gptab" - 1;
          subname = o->name + sizeof ".gptab" - 1;
          if (bfd_get_section_by_name (abfd, subname) == NULL)
          if (bfd_get_section_by_name (abfd, subname) == NULL)
            {
            {
              if (o == gptab_data_sec)
              if (o == gptab_data_sec)
                o->name = ".gptab.data";
                o->name = ".gptab.data";
              else
              else
                o->name = ".gptab.bss";
                o->name = ".gptab.bss";
              subname = o->name + sizeof ".gptab" - 1;
              subname = o->name + sizeof ".gptab" - 1;
              BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
              BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
            }
            }
 
 
          /* Set up the first entry.  */
          /* Set up the first entry.  */
          c = 1;
          c = 1;
          amt = c * sizeof (Elf32_gptab);
          amt = c * sizeof (Elf32_gptab);
          tab = bfd_malloc (amt);
          tab = bfd_malloc (amt);
          if (tab == NULL)
          if (tab == NULL)
            return FALSE;
            return FALSE;
          tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
          tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
          tab[0].gt_header.gt_unused = 0;
          tab[0].gt_header.gt_unused = 0;
 
 
          /* Combine the input sections.  */
          /* Combine the input sections.  */
          for (p = o->map_head.link_order; p != NULL; p = p->next)
          for (p = o->map_head.link_order; p != NULL; p = p->next)
            {
            {
              asection *input_section;
              asection *input_section;
              bfd *input_bfd;
              bfd *input_bfd;
              bfd_size_type size;
              bfd_size_type size;
              unsigned long last;
              unsigned long last;
              bfd_size_type gpentry;
              bfd_size_type gpentry;
 
 
              if (p->type != bfd_indirect_link_order)
              if (p->type != bfd_indirect_link_order)
                {
                {
                  if (p->type == bfd_data_link_order)
                  if (p->type == bfd_data_link_order)
                    continue;
                    continue;
                  abort ();
                  abort ();
                }
                }
 
 
              input_section = p->u.indirect.section;
              input_section = p->u.indirect.section;
              input_bfd = input_section->owner;
              input_bfd = input_section->owner;
 
 
              /* Combine the gptab entries for this input section one
              /* Combine the gptab entries for this input section one
                 by one.  We know that the input gptab entries are
                 by one.  We know that the input gptab entries are
                 sorted by ascending -G value.  */
                 sorted by ascending -G value.  */
              size = input_section->size;
              size = input_section->size;
              last = 0;
              last = 0;
              for (gpentry = sizeof (Elf32_External_gptab);
              for (gpentry = sizeof (Elf32_External_gptab);
                   gpentry < size;
                   gpentry < size;
                   gpentry += sizeof (Elf32_External_gptab))
                   gpentry += sizeof (Elf32_External_gptab))
                {
                {
                  Elf32_External_gptab ext_gptab;
                  Elf32_External_gptab ext_gptab;
                  Elf32_gptab int_gptab;
                  Elf32_gptab int_gptab;
                  unsigned long val;
                  unsigned long val;
                  unsigned long add;
                  unsigned long add;
                  bfd_boolean exact;
                  bfd_boolean exact;
                  unsigned int look;
                  unsigned int look;
 
 
                  if (! (bfd_get_section_contents
                  if (! (bfd_get_section_contents
                         (input_bfd, input_section, &ext_gptab, gpentry,
                         (input_bfd, input_section, &ext_gptab, gpentry,
                          sizeof (Elf32_External_gptab))))
                          sizeof (Elf32_External_gptab))))
                    {
                    {
                      free (tab);
                      free (tab);
                      return FALSE;
                      return FALSE;
                    }
                    }
 
 
                  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
                  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
                                                &int_gptab);
                                                &int_gptab);
                  val = int_gptab.gt_entry.gt_g_value;
                  val = int_gptab.gt_entry.gt_g_value;
                  add = int_gptab.gt_entry.gt_bytes - last;
                  add = int_gptab.gt_entry.gt_bytes - last;
 
 
                  exact = FALSE;
                  exact = FALSE;
                  for (look = 1; look < c; look++)
                  for (look = 1; look < c; look++)
                    {
                    {
                      if (tab[look].gt_entry.gt_g_value >= val)
                      if (tab[look].gt_entry.gt_g_value >= val)
                        tab[look].gt_entry.gt_bytes += add;
                        tab[look].gt_entry.gt_bytes += add;
 
 
                      if (tab[look].gt_entry.gt_g_value == val)
                      if (tab[look].gt_entry.gt_g_value == val)
                        exact = TRUE;
                        exact = TRUE;
                    }
                    }
 
 
                  if (! exact)
                  if (! exact)
                    {
                    {
                      Elf32_gptab *new_tab;
                      Elf32_gptab *new_tab;
                      unsigned int max;
                      unsigned int max;
 
 
                      /* We need a new table entry.  */
                      /* We need a new table entry.  */
                      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
                      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
                      new_tab = bfd_realloc (tab, amt);
                      new_tab = bfd_realloc (tab, amt);
                      if (new_tab == NULL)
                      if (new_tab == NULL)
                        {
                        {
                          free (tab);
                          free (tab);
                          return FALSE;
                          return FALSE;
                        }
                        }
                      tab = new_tab;
                      tab = new_tab;
                      tab[c].gt_entry.gt_g_value = val;
                      tab[c].gt_entry.gt_g_value = val;
                      tab[c].gt_entry.gt_bytes = add;
                      tab[c].gt_entry.gt_bytes = add;
 
 
                      /* Merge in the size for the next smallest -G
                      /* Merge in the size for the next smallest -G
                         value, since that will be implied by this new
                         value, since that will be implied by this new
                         value.  */
                         value.  */
                      max = 0;
                      max = 0;
                      for (look = 1; look < c; look++)
                      for (look = 1; look < c; look++)
                        {
                        {
                          if (tab[look].gt_entry.gt_g_value < val
                          if (tab[look].gt_entry.gt_g_value < val
                              && (max == 0
                              && (max == 0
                                  || (tab[look].gt_entry.gt_g_value
                                  || (tab[look].gt_entry.gt_g_value
                                      > tab[max].gt_entry.gt_g_value)))
                                      > tab[max].gt_entry.gt_g_value)))
                            max = look;
                            max = look;
                        }
                        }
                      if (max != 0)
                      if (max != 0)
                        tab[c].gt_entry.gt_bytes +=
                        tab[c].gt_entry.gt_bytes +=
                          tab[max].gt_entry.gt_bytes;
                          tab[max].gt_entry.gt_bytes;
 
 
                      ++c;
                      ++c;
                    }
                    }
 
 
                  last = int_gptab.gt_entry.gt_bytes;
                  last = int_gptab.gt_entry.gt_bytes;
                }
                }
 
 
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
              /* Hack: reset the SEC_HAS_CONTENTS flag so that
                 elf_link_input_bfd ignores this section.  */
                 elf_link_input_bfd ignores this section.  */
              input_section->flags &= ~SEC_HAS_CONTENTS;
              input_section->flags &= ~SEC_HAS_CONTENTS;
            }
            }
 
 
          /* The table must be sorted by -G value.  */
          /* The table must be sorted by -G value.  */
          if (c > 2)
          if (c > 2)
            qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
            qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
 
 
          /* Swap out the table.  */
          /* Swap out the table.  */
          amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
          amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
          ext_tab = bfd_alloc (abfd, amt);
          ext_tab = bfd_alloc (abfd, amt);
          if (ext_tab == NULL)
          if (ext_tab == NULL)
            {
            {
              free (tab);
              free (tab);
              return FALSE;
              return FALSE;
            }
            }
 
 
          for (j = 0; j < c; j++)
          for (j = 0; j < c; j++)
            bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
            bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
          free (tab);
          free (tab);
 
 
          o->size = c * sizeof (Elf32_External_gptab);
          o->size = c * sizeof (Elf32_External_gptab);
          o->contents = (bfd_byte *) ext_tab;
          o->contents = (bfd_byte *) ext_tab;
 
 
          /* Skip this section later on (I don't think this currently
          /* Skip this section later on (I don't think this currently
             matters, but someday it might).  */
             matters, but someday it might).  */
          o->map_head.link_order = NULL;
          o->map_head.link_order = NULL;
        }
        }
    }
    }
 
 
  /* Invoke the regular ELF backend linker to do all the work.  */
  /* Invoke the regular ELF backend linker to do all the work.  */
  if (!bfd_elf_final_link (abfd, info))
  if (!bfd_elf_final_link (abfd, info))
    return FALSE;
    return FALSE;
 
 
  /* Now write out the computed sections.  */
  /* Now write out the computed sections.  */
 
 
  if (reginfo_sec != NULL)
  if (reginfo_sec != NULL)
    {
    {
      Elf32_External_RegInfo ext;
      Elf32_External_RegInfo ext;
 
 
      bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
      bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
      if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
      if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (mdebug_sec != NULL)
  if (mdebug_sec != NULL)
    {
    {
      BFD_ASSERT (abfd->output_has_begun);
      BFD_ASSERT (abfd->output_has_begun);
      if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
      if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
                                               swap, info,
                                               swap, info,
                                               mdebug_sec->filepos))
                                               mdebug_sec->filepos))
        return FALSE;
        return FALSE;
 
 
      bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
      bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
    }
    }
 
 
  if (gptab_data_sec != NULL)
  if (gptab_data_sec != NULL)
    {
    {
      if (! bfd_set_section_contents (abfd, gptab_data_sec,
      if (! bfd_set_section_contents (abfd, gptab_data_sec,
                                      gptab_data_sec->contents,
                                      gptab_data_sec->contents,
                                      0, gptab_data_sec->size))
                                      0, gptab_data_sec->size))
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (gptab_bss_sec != NULL)
  if (gptab_bss_sec != NULL)
    {
    {
      if (! bfd_set_section_contents (abfd, gptab_bss_sec,
      if (! bfd_set_section_contents (abfd, gptab_bss_sec,
                                      gptab_bss_sec->contents,
                                      gptab_bss_sec->contents,
                                      0, gptab_bss_sec->size))
                                      0, gptab_bss_sec->size))
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (SGI_COMPAT (abfd))
  if (SGI_COMPAT (abfd))
    {
    {
      rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
      rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
      if (rtproc_sec != NULL)
      if (rtproc_sec != NULL)
        {
        {
          if (! bfd_set_section_contents (abfd, rtproc_sec,
          if (! bfd_set_section_contents (abfd, rtproc_sec,
                                          rtproc_sec->contents,
                                          rtproc_sec->contents,
                                          0, rtproc_sec->size))
                                          0, rtproc_sec->size))
            return FALSE;
            return FALSE;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}


/* Structure for saying that BFD machine EXTENSION extends BASE.  */
/* Structure for saying that BFD machine EXTENSION extends BASE.  */
 
 
struct mips_mach_extension {
struct mips_mach_extension {
  unsigned long extension, base;
  unsigned long extension, base;
};
};
 
 
 
 
/* An array describing how BFD machines relate to one another.  The entries
/* An array describing how BFD machines relate to one another.  The entries
   are ordered topologically with MIPS I extensions listed last.  */
   are ordered topologically with MIPS I extensions listed last.  */
 
 
static const struct mips_mach_extension mips_mach_extensions[] = {
static const struct mips_mach_extension mips_mach_extensions[] = {
  /* MIPS64r2 extensions.  */
  /* MIPS64r2 extensions.  */
 
  { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
 
  { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
  { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
  { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
 
 
  /* MIPS64 extensions.  */
  /* MIPS64 extensions.  */
  { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
  { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
  { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
  { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
  { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
  { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
  { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
  { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
 
 
  /* MIPS V extensions.  */
  /* MIPS V extensions.  */
  { bfd_mach_mipsisa64, bfd_mach_mips5 },
  { bfd_mach_mipsisa64, bfd_mach_mips5 },
 
 
  /* R10000 extensions.  */
  /* R10000 extensions.  */
  { bfd_mach_mips12000, bfd_mach_mips10000 },
  { bfd_mach_mips12000, bfd_mach_mips10000 },
  { bfd_mach_mips14000, bfd_mach_mips10000 },
  { bfd_mach_mips14000, bfd_mach_mips10000 },
  { bfd_mach_mips16000, bfd_mach_mips10000 },
  { bfd_mach_mips16000, bfd_mach_mips10000 },
 
 
  /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
  /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
     vr5400 ISA, but doesn't include the multimedia stuff.  It seems
     vr5400 ISA, but doesn't include the multimedia stuff.  It seems
     better to allow vr5400 and vr5500 code to be merged anyway, since
     better to allow vr5400 and vr5500 code to be merged anyway, since
     many libraries will just use the core ISA.  Perhaps we could add
     many libraries will just use the core ISA.  Perhaps we could add
     some sort of ASE flag if this ever proves a problem.  */
     some sort of ASE flag if this ever proves a problem.  */
  { bfd_mach_mips5500, bfd_mach_mips5400 },
  { bfd_mach_mips5500, bfd_mach_mips5400 },
  { bfd_mach_mips5400, bfd_mach_mips5000 },
  { bfd_mach_mips5400, bfd_mach_mips5000 },
 
 
  /* MIPS IV extensions.  */
  /* MIPS IV extensions.  */
  { bfd_mach_mips5, bfd_mach_mips8000 },
  { bfd_mach_mips5, bfd_mach_mips8000 },
  { bfd_mach_mips10000, bfd_mach_mips8000 },
  { bfd_mach_mips10000, bfd_mach_mips8000 },
  { bfd_mach_mips5000, bfd_mach_mips8000 },
  { bfd_mach_mips5000, bfd_mach_mips8000 },
  { bfd_mach_mips7000, bfd_mach_mips8000 },
  { bfd_mach_mips7000, bfd_mach_mips8000 },
  { bfd_mach_mips9000, bfd_mach_mips8000 },
  { bfd_mach_mips9000, bfd_mach_mips8000 },
 
 
  /* VR4100 extensions.  */
  /* VR4100 extensions.  */
  { bfd_mach_mips4120, bfd_mach_mips4100 },
  { bfd_mach_mips4120, bfd_mach_mips4100 },
  { bfd_mach_mips4111, bfd_mach_mips4100 },
  { bfd_mach_mips4111, bfd_mach_mips4100 },
 
 
  /* MIPS III extensions.  */
  /* MIPS III extensions.  */
  { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
  { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
  { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
  { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
  { bfd_mach_mips8000, bfd_mach_mips4000 },
  { bfd_mach_mips8000, bfd_mach_mips4000 },
  { bfd_mach_mips4650, bfd_mach_mips4000 },
  { bfd_mach_mips4650, bfd_mach_mips4000 },
  { bfd_mach_mips4600, bfd_mach_mips4000 },
  { bfd_mach_mips4600, bfd_mach_mips4000 },
  { bfd_mach_mips4400, bfd_mach_mips4000 },
  { bfd_mach_mips4400, bfd_mach_mips4000 },
  { bfd_mach_mips4300, bfd_mach_mips4000 },
  { bfd_mach_mips4300, bfd_mach_mips4000 },
  { bfd_mach_mips4100, bfd_mach_mips4000 },
  { bfd_mach_mips4100, bfd_mach_mips4000 },
  { bfd_mach_mips4010, bfd_mach_mips4000 },
  { bfd_mach_mips4010, bfd_mach_mips4000 },
 
 
  /* MIPS32 extensions.  */
  /* MIPS32 extensions.  */
  { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
  { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
 
 
  /* MIPS II extensions.  */
  /* MIPS II extensions.  */
  { bfd_mach_mips4000, bfd_mach_mips6000 },
  { bfd_mach_mips4000, bfd_mach_mips6000 },
  { bfd_mach_mipsisa32, bfd_mach_mips6000 },
  { bfd_mach_mipsisa32, bfd_mach_mips6000 },
 
 
  /* MIPS I extensions.  */
  /* MIPS I extensions.  */
  { bfd_mach_mips6000, bfd_mach_mips3000 },
  { bfd_mach_mips6000, bfd_mach_mips3000 },
  { bfd_mach_mips3900, bfd_mach_mips3000 }
  { bfd_mach_mips3900, bfd_mach_mips3000 }
};
};
 
 
 
 
/* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
/* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
 
 
static bfd_boolean
static bfd_boolean
mips_mach_extends_p (unsigned long base, unsigned long extension)
mips_mach_extends_p (unsigned long base, unsigned long extension)
{
{
  size_t i;
  size_t i;
 
 
  if (extension == base)
  if (extension == base)
    return TRUE;
    return TRUE;
 
 
  if (base == bfd_mach_mipsisa32
  if (base == bfd_mach_mipsisa32
      && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
      && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
    return TRUE;
    return TRUE;
 
 
  if (base == bfd_mach_mipsisa32r2
  if (base == bfd_mach_mipsisa32r2
      && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
      && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
    return TRUE;
    return TRUE;
 
 
  for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
  for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
    if (extension == mips_mach_extensions[i].extension)
    if (extension == mips_mach_extensions[i].extension)
      {
      {
        extension = mips_mach_extensions[i].base;
        extension = mips_mach_extensions[i].base;
        if (extension == base)
        if (extension == base)
          return TRUE;
          return TRUE;
      }
      }
 
 
  return FALSE;
  return FALSE;
}
}
 
 
 
 
/* Return true if the given ELF header flags describe a 32-bit binary.  */
/* Return true if the given ELF header flags describe a 32-bit binary.  */
 
 
static bfd_boolean
static bfd_boolean
mips_32bit_flags_p (flagword flags)
mips_32bit_flags_p (flagword flags)
{
{
  return ((flags & EF_MIPS_32BITMODE) != 0
  return ((flags & EF_MIPS_32BITMODE) != 0
          || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
          || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
          || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
          || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
          || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
}
}
 
 
 
 
/* Merge object attributes from IBFD into OBFD.  Raise an error if
/* Merge object attributes from IBFD into OBFD.  Raise an error if
   there are conflicting attributes.  */
   there are conflicting attributes.  */
static bfd_boolean
static bfd_boolean
mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
{
{
  obj_attribute *in_attr;
  obj_attribute *in_attr;
  obj_attribute *out_attr;
  obj_attribute *out_attr;
 
 
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
  if (!elf_known_obj_attributes_proc (obfd)[0].i)
    {
    {
      /* This is the first object.  Copy the attributes.  */
      /* This is the first object.  Copy the attributes.  */
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
      _bfd_elf_copy_obj_attributes (ibfd, obfd);
 
 
      /* Use the Tag_null value to indicate the attributes have been
      /* Use the Tag_null value to indicate the attributes have been
         initialized.  */
         initialized.  */
      elf_known_obj_attributes_proc (obfd)[0].i = 1;
      elf_known_obj_attributes_proc (obfd)[0].i = 1;
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
  /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
     non-conflicting ones.  */
     non-conflicting ones.  */
  in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
  in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
  out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
  out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
  if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
  if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
    {
    {
      out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
      out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
      if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
      if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
        out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
        out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
      else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
      else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
        ;
        ;
      else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
      else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
        _bfd_error_handler
        _bfd_error_handler
          (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
          (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
           in_attr[Tag_GNU_MIPS_ABI_FP].i);
           in_attr[Tag_GNU_MIPS_ABI_FP].i);
      else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
      else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
        _bfd_error_handler
        _bfd_error_handler
          (_("Warning: %B uses unknown floating point ABI %d"), obfd,
          (_("Warning: %B uses unknown floating point ABI %d"), obfd,
           out_attr[Tag_GNU_MIPS_ABI_FP].i);
           out_attr[Tag_GNU_MIPS_ABI_FP].i);
      else
      else
        switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
        switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
          {
          {
          case 1:
          case 1:
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
              {
              {
              case 2:
              case 2:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
                  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
                   obfd, ibfd);
                   obfd, ibfd);
                break;
                break;
 
 
              case 3:
              case 3:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses hard float, %B uses soft float"),
                  (_("Warning: %B uses hard float, %B uses soft float"),
                   obfd, ibfd);
                   obfd, ibfd);
                break;
                break;
 
 
              case 4:
              case 4:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
                  (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
                   obfd, ibfd);
                   obfd, ibfd);
                break;
                break;
 
 
              default:
              default:
                abort ();
                abort ();
              }
              }
            break;
            break;
 
 
          case 2:
          case 2:
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
              {
              {
              case 1:
              case 1:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
                  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
                   ibfd, obfd);
                   ibfd, obfd);
                break;
                break;
 
 
              case 3:
              case 3:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses hard float, %B uses soft float"),
                  (_("Warning: %B uses hard float, %B uses soft float"),
                   obfd, ibfd);
                   obfd, ibfd);
                break;
                break;
 
 
              case 4:
              case 4:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
                  (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
                   obfd, ibfd);
                   obfd, ibfd);
                break;
                break;
 
 
              default:
              default:
                abort ();
                abort ();
              }
              }
            break;
            break;
 
 
          case 3:
          case 3:
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
              {
              {
              case 1:
              case 1:
              case 2:
              case 2:
              case 4:
              case 4:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses hard float, %B uses soft float"),
                  (_("Warning: %B uses hard float, %B uses soft float"),
                   ibfd, obfd);
                   ibfd, obfd);
                break;
                break;
 
 
              default:
              default:
                abort ();
                abort ();
              }
              }
            break;
            break;
 
 
          case 4:
          case 4:
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
            switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
              {
              {
              case 1:
              case 1:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
                  (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
                   ibfd, obfd);
                   ibfd, obfd);
                break;
                break;
 
 
              case 2:
              case 2:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
                  (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
                   ibfd, obfd);
                   ibfd, obfd);
                break;
                break;
 
 
              case 3:
              case 3:
                _bfd_error_handler
                _bfd_error_handler
                  (_("Warning: %B uses hard float, %B uses soft float"),
                  (_("Warning: %B uses hard float, %B uses soft float"),
                   obfd, ibfd);
                   obfd, ibfd);
                break;
                break;
 
 
              default:
              default:
                abort ();
                abort ();
              }
              }
            break;
            break;
 
 
          default:
          default:
            abort ();
            abort ();
          }
          }
    }
    }
 
 
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
  /* Merge Tag_compatibility attributes and any common GNU ones.  */
  _bfd_elf_merge_object_attributes (ibfd, obfd);
  _bfd_elf_merge_object_attributes (ibfd, obfd);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Merge backend specific data from an object file to the output
/* Merge backend specific data from an object file to the output
   object file when linking.  */
   object file when linking.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
{
{
  flagword old_flags;
  flagword old_flags;
  flagword new_flags;
  flagword new_flags;
  bfd_boolean ok;
  bfd_boolean ok;
  bfd_boolean null_input_bfd = TRUE;
  bfd_boolean null_input_bfd = TRUE;
  asection *sec;
  asection *sec;
 
 
  /* Check if we have the same endianness.  */
  /* Check if we have the same endianness.  */
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: endianness incompatible with that of the selected emulation"),
        (_("%B: endianness incompatible with that of the selected emulation"),
         ibfd);
         ibfd);
      return FALSE;
      return FALSE;
    }
    }
 
 
  if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
  if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
    return TRUE;
    return TRUE;
 
 
  if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
  if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: ABI is incompatible with that of the selected emulation"),
        (_("%B: ABI is incompatible with that of the selected emulation"),
         ibfd);
         ibfd);
      return FALSE;
      return FALSE;
    }
    }
 
 
  if (!mips_elf_merge_obj_attributes (ibfd, obfd))
  if (!mips_elf_merge_obj_attributes (ibfd, obfd))
    return FALSE;
    return FALSE;
 
 
  new_flags = elf_elfheader (ibfd)->e_flags;
  new_flags = elf_elfheader (ibfd)->e_flags;
  elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
  elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
  old_flags = elf_elfheader (obfd)->e_flags;
  old_flags = elf_elfheader (obfd)->e_flags;
 
 
  if (! elf_flags_init (obfd))
  if (! elf_flags_init (obfd))
    {
    {
      elf_flags_init (obfd) = TRUE;
      elf_flags_init (obfd) = TRUE;
      elf_elfheader (obfd)->e_flags = new_flags;
      elf_elfheader (obfd)->e_flags = new_flags;
      elf_elfheader (obfd)->e_ident[EI_CLASS]
      elf_elfheader (obfd)->e_ident[EI_CLASS]
        = elf_elfheader (ibfd)->e_ident[EI_CLASS];
        = elf_elfheader (ibfd)->e_ident[EI_CLASS];
 
 
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
          && (bfd_get_arch_info (obfd)->the_default
          && (bfd_get_arch_info (obfd)->the_default
              || mips_mach_extends_p (bfd_get_mach (obfd),
              || mips_mach_extends_p (bfd_get_mach (obfd),
                                      bfd_get_mach (ibfd))))
                                      bfd_get_mach (ibfd))))
        {
        {
          if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
          if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
                                   bfd_get_mach (ibfd)))
                                   bfd_get_mach (ibfd)))
            return FALSE;
            return FALSE;
        }
        }
 
 
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Check flag compatibility.  */
  /* Check flag compatibility.  */
 
 
  new_flags &= ~EF_MIPS_NOREORDER;
  new_flags &= ~EF_MIPS_NOREORDER;
  old_flags &= ~EF_MIPS_NOREORDER;
  old_flags &= ~EF_MIPS_NOREORDER;
 
 
  /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
  /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
     doesn't seem to matter.  */
     doesn't seem to matter.  */
  new_flags &= ~EF_MIPS_XGOT;
  new_flags &= ~EF_MIPS_XGOT;
  old_flags &= ~EF_MIPS_XGOT;
  old_flags &= ~EF_MIPS_XGOT;
 
 
  /* MIPSpro generates ucode info in n64 objects.  Again, we should
  /* MIPSpro generates ucode info in n64 objects.  Again, we should
     just be able to ignore this.  */
     just be able to ignore this.  */
  new_flags &= ~EF_MIPS_UCODE;
  new_flags &= ~EF_MIPS_UCODE;
  old_flags &= ~EF_MIPS_UCODE;
  old_flags &= ~EF_MIPS_UCODE;
 
 
  /* DSOs should only be linked with CPIC code.  */
  /* DSOs should only be linked with CPIC code.  */
  if ((ibfd->flags & DYNAMIC) != 0)
  if ((ibfd->flags & DYNAMIC) != 0)
    new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
    new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
 
 
  if (new_flags == old_flags)
  if (new_flags == old_flags)
    return TRUE;
    return TRUE;
 
 
  /* Check to see if the input BFD actually contains any sections.
  /* Check to see if the input BFD actually contains any sections.
     If not, its flags may not have been initialised either, but it cannot
     If not, its flags may not have been initialised either, but it cannot
     actually cause any incompatibility.  */
     actually cause any incompatibility.  */
  for (sec = ibfd->sections; sec != NULL; sec = sec->next)
  for (sec = ibfd->sections; sec != NULL; sec = sec->next)
    {
    {
      /* Ignore synthetic sections and empty .text, .data and .bss sections
      /* Ignore synthetic sections and empty .text, .data and .bss sections
         which are automatically generated by gas.  Also ignore fake
         which are automatically generated by gas.  Also ignore fake
         (s)common sections, since merely defining a common symbol does
         (s)common sections, since merely defining a common symbol does
         not affect compatibility.  */
         not affect compatibility.  */
      if ((sec->flags & SEC_IS_COMMON) == 0
      if ((sec->flags & SEC_IS_COMMON) == 0
          && strcmp (sec->name, ".reginfo")
          && strcmp (sec->name, ".reginfo")
          && strcmp (sec->name, ".mdebug")
          && strcmp (sec->name, ".mdebug")
          && (sec->size != 0
          && (sec->size != 0
              || (strcmp (sec->name, ".text")
              || (strcmp (sec->name, ".text")
                  && strcmp (sec->name, ".data")
                  && strcmp (sec->name, ".data")
                  && strcmp (sec->name, ".bss"))))
                  && strcmp (sec->name, ".bss"))))
        {
        {
          null_input_bfd = FALSE;
          null_input_bfd = FALSE;
          break;
          break;
        }
        }
    }
    }
  if (null_input_bfd)
  if (null_input_bfd)
    return TRUE;
    return TRUE;
 
 
  ok = TRUE;
  ok = TRUE;
 
 
  if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
  if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
      != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
      != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: warning: linking abicalls files with non-abicalls files"),
        (_("%B: warning: linking abicalls files with non-abicalls files"),
         ibfd);
         ibfd);
      ok = TRUE;
      ok = TRUE;
    }
    }
 
 
  if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
  if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
    elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
    elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
  if (! (new_flags & EF_MIPS_PIC))
  if (! (new_flags & EF_MIPS_PIC))
    elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
    elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
 
 
  new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
  new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
  old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
  old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
 
 
  /* Compare the ISAs.  */
  /* Compare the ISAs.  */
  if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
  if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: linking 32-bit code with 64-bit code"),
        (_("%B: linking 32-bit code with 64-bit code"),
         ibfd);
         ibfd);
      ok = FALSE;
      ok = FALSE;
    }
    }
  else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
  else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
    {
    {
      /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
      /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
      if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
      if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
        {
        {
          /* Copy the architecture info from IBFD to OBFD.  Also copy
          /* Copy the architecture info from IBFD to OBFD.  Also copy
             the 32-bit flag (if set) so that we continue to recognise
             the 32-bit flag (if set) so that we continue to recognise
             OBFD as a 32-bit binary.  */
             OBFD as a 32-bit binary.  */
          bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
          bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
          elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
          elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
          elf_elfheader (obfd)->e_flags
          elf_elfheader (obfd)->e_flags
            |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
            |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
 
 
          /* Copy across the ABI flags if OBFD doesn't use them
          /* Copy across the ABI flags if OBFD doesn't use them
             and if that was what caused us to treat IBFD as 32-bit.  */
             and if that was what caused us to treat IBFD as 32-bit.  */
          if ((old_flags & EF_MIPS_ABI) == 0
          if ((old_flags & EF_MIPS_ABI) == 0
              && mips_32bit_flags_p (new_flags)
              && mips_32bit_flags_p (new_flags)
              && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
              && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
            elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
            elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
        }
        }
      else
      else
        {
        {
          /* The ISAs aren't compatible.  */
          /* The ISAs aren't compatible.  */
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: linking %s module with previous %s modules"),
            (_("%B: linking %s module with previous %s modules"),
             ibfd,
             ibfd,
             bfd_printable_name (ibfd),
             bfd_printable_name (ibfd),
             bfd_printable_name (obfd));
             bfd_printable_name (obfd));
          ok = FALSE;
          ok = FALSE;
        }
        }
    }
    }
 
 
  new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
  new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
  old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
  old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
 
 
  /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
  /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
     does set EI_CLASS differently from any 32-bit ABI.  */
     does set EI_CLASS differently from any 32-bit ABI.  */
  if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
  if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
      || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
      || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
          != elf_elfheader (obfd)->e_ident[EI_CLASS]))
          != elf_elfheader (obfd)->e_ident[EI_CLASS]))
    {
    {
      /* Only error if both are set (to different values).  */
      /* Only error if both are set (to different values).  */
      if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
      if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
          || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
          || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
              != elf_elfheader (obfd)->e_ident[EI_CLASS]))
              != elf_elfheader (obfd)->e_ident[EI_CLASS]))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: ABI mismatch: linking %s module with previous %s modules"),
            (_("%B: ABI mismatch: linking %s module with previous %s modules"),
             ibfd,
             ibfd,
             elf_mips_abi_name (ibfd),
             elf_mips_abi_name (ibfd),
             elf_mips_abi_name (obfd));
             elf_mips_abi_name (obfd));
          ok = FALSE;
          ok = FALSE;
        }
        }
      new_flags &= ~EF_MIPS_ABI;
      new_flags &= ~EF_MIPS_ABI;
      old_flags &= ~EF_MIPS_ABI;
      old_flags &= ~EF_MIPS_ABI;
    }
    }
 
 
  /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
  /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
     and allow arbitrary mixing of the remaining ASEs (retain the union).  */
     and allow arbitrary mixing of the remaining ASEs (retain the union).  */
  if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
  if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
    {
    {
      int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
      int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
      int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
      int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
      int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
      int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
      int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
      int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
      int micro_mis = old_m16 && new_micro;
      int micro_mis = old_m16 && new_micro;
      int m16_mis = old_micro && new_m16;
      int m16_mis = old_micro && new_m16;
 
 
      if (m16_mis || micro_mis)
      if (m16_mis || micro_mis)
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B: ASE mismatch: linking %s module with previous %s modules"),
            (_("%B: ASE mismatch: linking %s module with previous %s modules"),
             ibfd,
             ibfd,
             m16_mis ? "MIPS16" : "microMIPS",
             m16_mis ? "MIPS16" : "microMIPS",
             m16_mis ? "microMIPS" : "MIPS16");
             m16_mis ? "microMIPS" : "MIPS16");
          ok = FALSE;
          ok = FALSE;
        }
        }
 
 
      elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
      elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
 
 
      new_flags &= ~ EF_MIPS_ARCH_ASE;
      new_flags &= ~ EF_MIPS_ARCH_ASE;
      old_flags &= ~ EF_MIPS_ARCH_ASE;
      old_flags &= ~ EF_MIPS_ARCH_ASE;
    }
    }
 
 
  /* Warn about any other mismatches */
  /* Warn about any other mismatches */
  if (new_flags != old_flags)
  if (new_flags != old_flags)
    {
    {
      (*_bfd_error_handler)
      (*_bfd_error_handler)
        (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
        (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
         ibfd, (unsigned long) new_flags,
         ibfd, (unsigned long) new_flags,
         (unsigned long) old_flags);
         (unsigned long) old_flags);
      ok = FALSE;
      ok = FALSE;
    }
    }
 
 
  if (! ok)
  if (! ok)
    {
    {
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
      return FALSE;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
/* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
{
{
  BFD_ASSERT (!elf_flags_init (abfd)
  BFD_ASSERT (!elf_flags_init (abfd)
              || elf_elfheader (abfd)->e_flags == flags);
              || elf_elfheader (abfd)->e_flags == flags);
 
 
  elf_elfheader (abfd)->e_flags = flags;
  elf_elfheader (abfd)->e_flags = flags;
  elf_flags_init (abfd) = TRUE;
  elf_flags_init (abfd) = TRUE;
  return TRUE;
  return TRUE;
}
}
 
 
char *
char *
_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
{
{
  switch (dtag)
  switch (dtag)
    {
    {
    default: return "";
    default: return "";
    case DT_MIPS_RLD_VERSION:
    case DT_MIPS_RLD_VERSION:
      return "MIPS_RLD_VERSION";
      return "MIPS_RLD_VERSION";
    case DT_MIPS_TIME_STAMP:
    case DT_MIPS_TIME_STAMP:
      return "MIPS_TIME_STAMP";
      return "MIPS_TIME_STAMP";
    case DT_MIPS_ICHECKSUM:
    case DT_MIPS_ICHECKSUM:
      return "MIPS_ICHECKSUM";
      return "MIPS_ICHECKSUM";
    case DT_MIPS_IVERSION:
    case DT_MIPS_IVERSION:
      return "MIPS_IVERSION";
      return "MIPS_IVERSION";
    case DT_MIPS_FLAGS:
    case DT_MIPS_FLAGS:
      return "MIPS_FLAGS";
      return "MIPS_FLAGS";
    case DT_MIPS_BASE_ADDRESS:
    case DT_MIPS_BASE_ADDRESS:
      return "MIPS_BASE_ADDRESS";
      return "MIPS_BASE_ADDRESS";
    case DT_MIPS_MSYM:
    case DT_MIPS_MSYM:
      return "MIPS_MSYM";
      return "MIPS_MSYM";
    case DT_MIPS_CONFLICT:
    case DT_MIPS_CONFLICT:
      return "MIPS_CONFLICT";
      return "MIPS_CONFLICT";
    case DT_MIPS_LIBLIST:
    case DT_MIPS_LIBLIST:
      return "MIPS_LIBLIST";
      return "MIPS_LIBLIST";
    case DT_MIPS_LOCAL_GOTNO:
    case DT_MIPS_LOCAL_GOTNO:
      return "MIPS_LOCAL_GOTNO";
      return "MIPS_LOCAL_GOTNO";
    case DT_MIPS_CONFLICTNO:
    case DT_MIPS_CONFLICTNO:
      return "MIPS_CONFLICTNO";
      return "MIPS_CONFLICTNO";
    case DT_MIPS_LIBLISTNO:
    case DT_MIPS_LIBLISTNO:
      return "MIPS_LIBLISTNO";
      return "MIPS_LIBLISTNO";
    case DT_MIPS_SYMTABNO:
    case DT_MIPS_SYMTABNO:
      return "MIPS_SYMTABNO";
      return "MIPS_SYMTABNO";
    case DT_MIPS_UNREFEXTNO:
    case DT_MIPS_UNREFEXTNO:
      return "MIPS_UNREFEXTNO";
      return "MIPS_UNREFEXTNO";
    case DT_MIPS_GOTSYM:
    case DT_MIPS_GOTSYM:
      return "MIPS_GOTSYM";
      return "MIPS_GOTSYM";
    case DT_MIPS_HIPAGENO:
    case DT_MIPS_HIPAGENO:
      return "MIPS_HIPAGENO";
      return "MIPS_HIPAGENO";
    case DT_MIPS_RLD_MAP:
    case DT_MIPS_RLD_MAP:
      return "MIPS_RLD_MAP";
      return "MIPS_RLD_MAP";
    case DT_MIPS_DELTA_CLASS:
    case DT_MIPS_DELTA_CLASS:
      return "MIPS_DELTA_CLASS";
      return "MIPS_DELTA_CLASS";
    case DT_MIPS_DELTA_CLASS_NO:
    case DT_MIPS_DELTA_CLASS_NO:
      return "MIPS_DELTA_CLASS_NO";
      return "MIPS_DELTA_CLASS_NO";
    case DT_MIPS_DELTA_INSTANCE:
    case DT_MIPS_DELTA_INSTANCE:
      return "MIPS_DELTA_INSTANCE";
      return "MIPS_DELTA_INSTANCE";
    case DT_MIPS_DELTA_INSTANCE_NO:
    case DT_MIPS_DELTA_INSTANCE_NO:
      return "MIPS_DELTA_INSTANCE_NO";
      return "MIPS_DELTA_INSTANCE_NO";
    case DT_MIPS_DELTA_RELOC:
    case DT_MIPS_DELTA_RELOC:
      return "MIPS_DELTA_RELOC";
      return "MIPS_DELTA_RELOC";
    case DT_MIPS_DELTA_RELOC_NO:
    case DT_MIPS_DELTA_RELOC_NO:
      return "MIPS_DELTA_RELOC_NO";
      return "MIPS_DELTA_RELOC_NO";
    case DT_MIPS_DELTA_SYM:
    case DT_MIPS_DELTA_SYM:
      return "MIPS_DELTA_SYM";
      return "MIPS_DELTA_SYM";
    case DT_MIPS_DELTA_SYM_NO:
    case DT_MIPS_DELTA_SYM_NO:
      return "MIPS_DELTA_SYM_NO";
      return "MIPS_DELTA_SYM_NO";
    case DT_MIPS_DELTA_CLASSSYM:
    case DT_MIPS_DELTA_CLASSSYM:
      return "MIPS_DELTA_CLASSSYM";
      return "MIPS_DELTA_CLASSSYM";
    case DT_MIPS_DELTA_CLASSSYM_NO:
    case DT_MIPS_DELTA_CLASSSYM_NO:
      return "MIPS_DELTA_CLASSSYM_NO";
      return "MIPS_DELTA_CLASSSYM_NO";
    case DT_MIPS_CXX_FLAGS:
    case DT_MIPS_CXX_FLAGS:
      return "MIPS_CXX_FLAGS";
      return "MIPS_CXX_FLAGS";
    case DT_MIPS_PIXIE_INIT:
    case DT_MIPS_PIXIE_INIT:
      return "MIPS_PIXIE_INIT";
      return "MIPS_PIXIE_INIT";
    case DT_MIPS_SYMBOL_LIB:
    case DT_MIPS_SYMBOL_LIB:
      return "MIPS_SYMBOL_LIB";
      return "MIPS_SYMBOL_LIB";
    case DT_MIPS_LOCALPAGE_GOTIDX:
    case DT_MIPS_LOCALPAGE_GOTIDX:
      return "MIPS_LOCALPAGE_GOTIDX";
      return "MIPS_LOCALPAGE_GOTIDX";
    case DT_MIPS_LOCAL_GOTIDX:
    case DT_MIPS_LOCAL_GOTIDX:
      return "MIPS_LOCAL_GOTIDX";
      return "MIPS_LOCAL_GOTIDX";
    case DT_MIPS_HIDDEN_GOTIDX:
    case DT_MIPS_HIDDEN_GOTIDX:
      return "MIPS_HIDDEN_GOTIDX";
      return "MIPS_HIDDEN_GOTIDX";
    case DT_MIPS_PROTECTED_GOTIDX:
    case DT_MIPS_PROTECTED_GOTIDX:
      return "MIPS_PROTECTED_GOT_IDX";
      return "MIPS_PROTECTED_GOT_IDX";
    case DT_MIPS_OPTIONS:
    case DT_MIPS_OPTIONS:
      return "MIPS_OPTIONS";
      return "MIPS_OPTIONS";
    case DT_MIPS_INTERFACE:
    case DT_MIPS_INTERFACE:
      return "MIPS_INTERFACE";
      return "MIPS_INTERFACE";
    case DT_MIPS_DYNSTR_ALIGN:
    case DT_MIPS_DYNSTR_ALIGN:
      return "DT_MIPS_DYNSTR_ALIGN";
      return "DT_MIPS_DYNSTR_ALIGN";
    case DT_MIPS_INTERFACE_SIZE:
    case DT_MIPS_INTERFACE_SIZE:
      return "DT_MIPS_INTERFACE_SIZE";
      return "DT_MIPS_INTERFACE_SIZE";
    case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
    case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
      return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
      return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
    case DT_MIPS_PERF_SUFFIX:
    case DT_MIPS_PERF_SUFFIX:
      return "DT_MIPS_PERF_SUFFIX";
      return "DT_MIPS_PERF_SUFFIX";
    case DT_MIPS_COMPACT_SIZE:
    case DT_MIPS_COMPACT_SIZE:
      return "DT_MIPS_COMPACT_SIZE";
      return "DT_MIPS_COMPACT_SIZE";
    case DT_MIPS_GP_VALUE:
    case DT_MIPS_GP_VALUE:
      return "DT_MIPS_GP_VALUE";
      return "DT_MIPS_GP_VALUE";
    case DT_MIPS_AUX_DYNAMIC:
    case DT_MIPS_AUX_DYNAMIC:
      return "DT_MIPS_AUX_DYNAMIC";
      return "DT_MIPS_AUX_DYNAMIC";
    case DT_MIPS_PLTGOT:
    case DT_MIPS_PLTGOT:
      return "DT_MIPS_PLTGOT";
      return "DT_MIPS_PLTGOT";
    case DT_MIPS_RWPLT:
    case DT_MIPS_RWPLT:
      return "DT_MIPS_RWPLT";
      return "DT_MIPS_RWPLT";
    }
    }
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
{
{
  FILE *file = ptr;
  FILE *file = ptr;
 
 
  BFD_ASSERT (abfd != NULL && ptr != NULL);
  BFD_ASSERT (abfd != NULL && ptr != NULL);
 
 
  /* Print normal ELF private data.  */
  /* Print normal ELF private data.  */
  _bfd_elf_print_private_bfd_data (abfd, ptr);
  _bfd_elf_print_private_bfd_data (abfd, ptr);
 
 
  /* xgettext:c-format */
  /* xgettext:c-format */
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
 
 
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
    fprintf (file, _(" [abi=O32]"));
    fprintf (file, _(" [abi=O32]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
    fprintf (file, _(" [abi=O64]"));
    fprintf (file, _(" [abi=O64]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
    fprintf (file, _(" [abi=EABI32]"));
    fprintf (file, _(" [abi=EABI32]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
    fprintf (file, _(" [abi=EABI64]"));
    fprintf (file, _(" [abi=EABI64]"));
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
    fprintf (file, _(" [abi unknown]"));
    fprintf (file, _(" [abi unknown]"));
  else if (ABI_N32_P (abfd))
  else if (ABI_N32_P (abfd))
    fprintf (file, _(" [abi=N32]"));
    fprintf (file, _(" [abi=N32]"));
  else if (ABI_64_P (abfd))
  else if (ABI_64_P (abfd))
    fprintf (file, _(" [abi=64]"));
    fprintf (file, _(" [abi=64]"));
  else
  else
    fprintf (file, _(" [no abi set]"));
    fprintf (file, _(" [no abi set]"));
 
 
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
  if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
    fprintf (file, " [mips1]");
    fprintf (file, " [mips1]");
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
    fprintf (file, " [mips2]");
    fprintf (file, " [mips2]");
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
    fprintf (file, " [mips3]");
    fprintf (file, " [mips3]");
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
    fprintf (file, " [mips4]");
    fprintf (file, " [mips4]");
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
    fprintf (file, " [mips5]");
    fprintf (file, " [mips5]");
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
    fprintf (file, " [mips32]");
    fprintf (file, " [mips32]");
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
    fprintf (file, " [mips64]");
    fprintf (file, " [mips64]");
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
    fprintf (file, " [mips32r2]");
    fprintf (file, " [mips32r2]");
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
  else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
    fprintf (file, " [mips64r2]");
    fprintf (file, " [mips64r2]");
  else
  else
    fprintf (file, _(" [unknown ISA]"));
    fprintf (file, _(" [unknown ISA]"));
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
    fprintf (file, " [mdmx]");
    fprintf (file, " [mdmx]");
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
    fprintf (file, " [mips16]");
    fprintf (file, " [mips16]");
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
    fprintf (file, " [micromips]");
    fprintf (file, " [micromips]");
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
    fprintf (file, " [32bitmode]");
    fprintf (file, " [32bitmode]");
  else
  else
    fprintf (file, _(" [not 32bitmode]"));
    fprintf (file, _(" [not 32bitmode]"));
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
    fprintf (file, " [noreorder]");
    fprintf (file, " [noreorder]");
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
    fprintf (file, " [PIC]");
    fprintf (file, " [PIC]");
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
    fprintf (file, " [CPIC]");
    fprintf (file, " [CPIC]");
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
    fprintf (file, " [XGOT]");
    fprintf (file, " [XGOT]");
 
 
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
  if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
    fprintf (file, " [UCODE]");
    fprintf (file, " [UCODE]");
 
 
  fputc ('\n', file);
  fputc ('\n', file);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
{
{
  { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
  { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
  { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
  { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
  { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
  { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
  { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
  { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
  { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
  { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
  { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
  { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
  { NULL,                     0,  0, 0,              0 }
  { NULL,                     0,  0, 0,              0 }
};
};
 
 
/* Merge non visibility st_other attributes.  Ensure that the
/* Merge non visibility st_other attributes.  Ensure that the
   STO_OPTIONAL flag is copied into h->other, even if this is not a
   STO_OPTIONAL flag is copied into h->other, even if this is not a
   definiton of the symbol.  */
   definiton of the symbol.  */
void
void
_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
                                      const Elf_Internal_Sym *isym,
                                      const Elf_Internal_Sym *isym,
                                      bfd_boolean definition,
                                      bfd_boolean definition,
                                      bfd_boolean dynamic ATTRIBUTE_UNUSED)
                                      bfd_boolean dynamic ATTRIBUTE_UNUSED)
{
{
  if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
  if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
    {
    {
      unsigned char other;
      unsigned char other;
 
 
      other = (definition ? isym->st_other : h->other);
      other = (definition ? isym->st_other : h->other);
      other &= ~ELF_ST_VISIBILITY (-1);
      other &= ~ELF_ST_VISIBILITY (-1);
      h->other = other | ELF_ST_VISIBILITY (h->other);
      h->other = other | ELF_ST_VISIBILITY (h->other);
    }
    }
 
 
  if (!definition
  if (!definition
      && ELF_MIPS_IS_OPTIONAL (isym->st_other))
      && ELF_MIPS_IS_OPTIONAL (isym->st_other))
    h->other |= STO_OPTIONAL;
    h->other |= STO_OPTIONAL;
}
}
 
 
/* Decide whether an undefined symbol is special and can be ignored.
/* Decide whether an undefined symbol is special and can be ignored.
   This is the case for OPTIONAL symbols on IRIX.  */
   This is the case for OPTIONAL symbols on IRIX.  */
bfd_boolean
bfd_boolean
_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
{
{
  return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
  return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
}
}
 
 
bfd_boolean
bfd_boolean
_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
{
{
  return (sym->st_shndx == SHN_COMMON
  return (sym->st_shndx == SHN_COMMON
          || sym->st_shndx == SHN_MIPS_ACOMMON
          || sym->st_shndx == SHN_MIPS_ACOMMON
          || sym->st_shndx == SHN_MIPS_SCOMMON);
          || sym->st_shndx == SHN_MIPS_SCOMMON);
}
}
 
 
/* Return address for Ith PLT stub in section PLT, for relocation REL
/* Return address for Ith PLT stub in section PLT, for relocation REL
   or (bfd_vma) -1 if it should not be included.  */
   or (bfd_vma) -1 if it should not be included.  */
 
 
bfd_vma
bfd_vma
_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
                           const arelent *rel ATTRIBUTE_UNUSED)
                           const arelent *rel ATTRIBUTE_UNUSED)
{
{
  return (plt->vma
  return (plt->vma
          + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
          + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
          + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
          + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
}
}
 
 
void
void
_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
{
{
  struct mips_elf_link_hash_table *htab;
  struct mips_elf_link_hash_table *htab;
  Elf_Internal_Ehdr *i_ehdrp;
  Elf_Internal_Ehdr *i_ehdrp;
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
  if (link_info)
  if (link_info)
    {
    {
      htab = mips_elf_hash_table (link_info);
      htab = mips_elf_hash_table (link_info);
      BFD_ASSERT (htab != NULL);
      BFD_ASSERT (htab != NULL);
 
 
      if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
      if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
        i_ehdrp->e_ident[EI_ABIVERSION] = 1;
        i_ehdrp->e_ident[EI_ABIVERSION] = 1;
    }
    }
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.